WorldWideScience

Sample records for resistant maize zea

  1. Growth and dry matter accumulation in drought resistant maize ( Zea ...

    African Journals Online (AJOL)

    growth, dry matter accumulation and yield characters of maize planted under the same environmental conditions. The trial was conducted during the 2010 wet season at Bagauda the Kano University of Technology (KUST) temporary research farm (11° 39° N, 08° 20° E).The treatments consisted of three sowing dates ...

  2. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  3. Maize (Zea mays L.).

    Science.gov (United States)

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  4. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis)

    Science.gov (United States)

    In previous work, using near isogenic line (NIL) populations in which segments of the tesosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot resistance. We identified...

  5. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  6. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Liyu Shi

    2014-04-01

    Full Text Available Gray leaf spot (GLS, caused by Cercospora zeae-maydis, is an important foliar disease of maize (Zea mays L. worldwide, resistance to which is controlled by multiple quantitative trait loci (QTL. To gain insights into the genetic architecture underlying the resistance to this disease, an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide association study, using 41,101 single-nucleotide polymorphisms (SNPs, identified 51 SNPs significantly (P < 0.001 associated with GLS resistance, which could be converted into 31 QTL. In addition, three candidate genes related to plant defense were identified, including nucleotide-binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS of GLS resistance. These results provide an important resource for developing molecular markers closely linked with the target trait, enhancing breeding efficiency.

  7. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    DEFF Research Database (Denmark)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara

    2009-01-01

    Background The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance...... the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize....

  8. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis).

    Science.gov (United States)

    Zhang, Xinye; Yang, Qin; Rucker, Elizabeth; Thomason, Wade; Balint-Kurti, Peter

    2017-06-01

    In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes. In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.

  9. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    Science.gov (United States)

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  10. Differential protein expression in maize (Zea mays) in response to ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Accepted 25 May, 2011. Maize (Zea mays) is a major food stable in sub-Saharan Africa. .... has investigated differential expression at the proteome level, comparing this ..... GK, Jwa NS (2001). Characterization of rice (Oryza.

  11. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  12. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    Science.gov (United States)

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  13. Heritability and correlates of maize yield ( Zea mays L .) under ...

    African Journals Online (AJOL)

    Heritability and correlates of maize yield ( Zea mays L .) under varying drought conditions. ... Nigeria Agricultural Journal ... Correlation analysis revealed that days to 50% tasseling and silking under non-stress, ASI and leaf senescence under severe stress exhibited negative and significant correlations with grain yield.

  14. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    Science.gov (United States)

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. PERFORMANCE OF MAIZE (ZEA MAYS) CULTIVARS AS ...

    African Journals Online (AJOL)

    IBUKUN

    reported to have low remobilisation efficiency and reduced plasticity of seed weight to assimilate availability ... have indicated that the use of organo-mineral fertiliser in maize and melon gave high relative .... The soil physical and chemical characteristics of ..... yield in maize by examining genetic improvement and heterosis.

  16. Quantitative trait loci mapping of western corn rootworm (Coleoptera: Chrysomelidae) host plant resistance in two populations of doubled haploid lines in maize (Zea mays L.)

    Science.gov (United States)

    Over the last 70 years, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Sele...

  17. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    Science.gov (United States)

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  18. Effects of salt stress levels on five maize ( Zea mays L.) cultivars at ...

    African Journals Online (AJOL)

    Effects of salt stress levels on five maize ( Zea mays L.) cultivars at germination stage. ... To investigation the effects of salt stress levels (0, 50, 100, 150, 200 and 250 mM NaCl) on five maize (Zea mays L.) cultivars at ... from 32 Countries:.

  19. Genome-Wide Association Mapping of and Aspergillus flavus Aflatoxin Accumulation Resistance in Maize

    Science.gov (United States)

    Marilyn L. Warburton; Juliet D. Tang; Gary L. Windham; Leigh K. Hawkins; Seth C. Murray; Wenwei Xu; Debbie Boykin; Andy Perkins; W. Paul Williams

    2015-01-01

    Contamination of maize (Zea mays L.) with aflatoxin, produced by the fungus Aspergillus flavus Link, has severe health and economic consequences. Efforts to reduce aflatoxin accumulation in maize have focused on identifying and selecting germplasm with natural host resistance factors, and several maize lines with significantly...

  20. Assimilate unloading from maize (Zea mays L.) pedicel tissues

    International Nuclear Information System (INIS)

    Porter, G.A.; Knievel, D.P.; Shannon, J.C.

    1987-01-01

    Sugar and 14 C-assimilate release from the pedicel tissue of attached maize (Zea mays L.) kernels was studied following treatment with solute concentrations of up to 800 millimolal. Exposure and collection times ranged from 3 to 6 hours. Sugar and 14 C-assimilate unloading and collection in agar traps was reduced by 25 and 43%, respectively, following exposure to 800 millimolal mannitol. Inhibition of unloading was not specific to mannitol, since similar concentrations of glucose, fructose, or equimolar glucose plus fructose resulted in comparable inhibition. Ethylene glycol, a rapidly permeating solute which should not greatly influence cell turgor, did not inhibit 14 C-assimilate unloading. Based on these results, they suggest that inhibition of unloading by high concentrations of sugar or mannitol was due to reduced pedicel cell turgor. Changes in pedicel cell turgor may play a role in the regulation of assimilate transfer within the maize kernel

  1. evaluation of striga-resistant early maize hybrids and test locations

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    to evaluate selected Striga-resistant maize (Zea mays L.) hybrids for grain yield and stability of .... Analysis of variance procedure is useful for ... however, variance components alone do not ... for analysing multi-environment trial MET data.

  2. Mapping and validation of quantitative trait loci for resistance to Cercospora zeae-maydis infection in tropical maize (Zea mays L.).

    Science.gov (United States)

    Pozar, Gilberto; Butruille, David; Silva, Heyder Diniz; McCuddin, Zoe Patterson; Penna, Julio Cesar Viglioni

    2009-02-01

    Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values>2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q1 in bin 1.05 and Q2 in bin 1.07), and the allele in chromosome 3 (Q3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q1 and Q2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q2 and Q3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q1 and Q3 on gray leaf spot severity, for Q2 on stalk lodging and grain yield, and for Q3 on grain moisture and stalk lodging. We detected significant epitasis between Q1 and Q2 for grain moisture and between Q1 and Q3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.

  3. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.).

    Science.gov (United States)

    Mammadov, Jafar; Sun, Xiaochun; Gao, Yanxin; Ochsenfeld, Cherie; Bakker, Erica; Ren, Ruihua; Flora, Jonathan; Wang, Xiujuan; Kumpatla, Siva; Meyer, David; Thompson, Steve

    2015-11-10

    Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease. In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked molecular markers for robust marker-assisted selection and trait introgression. Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8, detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage - GWAS hybrid mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b). Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP markers that would be

  4. Efficacy of traditional maize (Zea mays L.) seed storage methods in ...

    African Journals Online (AJOL)

    Efficacy of traditional maize (Zea mays L.) seed storage methods in western Kenya. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ONLINE (AJOL) ... African Journal of Food, Agriculture, Nutrition and Development.

  5. Mycoflora of grain maize ( Zea mays L.) Stored in traditional storage ...

    African Journals Online (AJOL)

    Mycoflora of grain maize ( Zea mays L.) Stored in traditional storage containers ( Gombisa and sacks) in selected woredas ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  6. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  7. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Liu, Shengqun; Song, Fengbin; Liu, Fulai

    2012-01-01

    Increase of planting density has been widely used to increase grain yield in maize. However, it may lead to higher risk of root lodging hence causing significant yield loss of the crop. The objective of this study was to investigate the effect of planting density on maize nodal root growth...

  8. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Advances in Improving Ukiriguru Composite B Maize ( Zea mays L ...

    African Journals Online (AJOL)

    S1 recurrent selection was carried out to improve grain yield, plant height, ear placement, resistance to lodging and other desirable agronomic traits in Ukiriguru composite B (UCB) maize variety. This paper presents the genetic gain and progress made in improving these traits through two cycles of selection. Three hundred ...

  10. Mycoflora Of Maize Zea Maize At Different Locations In Hail Area-Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Elham S. Dawood

    2015-06-01

    Full Text Available Abstract Zea maize is one of the main cereals produced in Hail area Saudi Arabia. The risk of mycotoxin contamination is related to mycoflora associated with corn kernel. This paper reports on isolation and identification of external and internal mycoflora of maize harvested in Hail area in 2006 2008. A mycological survey was carried out on 200 samples from two agricultural companies . Comparison between frequency and relative density of the prevalent genera and species was carried out. Genus Fusarium was the most prevalent component of the internal seed - borne mycoflora in the two companies Aspergillus spp. was the most prevalent genus as external seed borne mycoflora. The predominant species of the different genera were Fusarium moniliforrme Aspergillus flavus A. niger and Alternaria alternate.

  11. Potential roles of WRKY transcription factors in resistance to Aspergillus flavus colonization of immature maize kernels

    Science.gov (United States)

    Resistance to Aspergillus flavus by maize (Zea mays L.) is mediated by several defense proteins; however the mechanism regulating the expression of these defenses is poorly understood. This study examined the potential roles of six maize WRKY transcription factors, ZmWRKY19, ZmWRKY21, ZmWRKY53, ZmW...

  12. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed.

    Science.gov (United States)

    Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari

    2016-04-01

    This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.

  13. Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

    Science.gov (United States)

    Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D

    2007-06-01

    Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.

  14. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  15. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    Science.gov (United States)

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  16. Maize silk antibiotic polyphenol compounds and molecular genetic improvement of resistance to corn earworm (Helicoverpa zea Boddie) in sh2 sweet corn

    OpenAIRE

    Baozhu Guo; Ana Butrón; Brian T. Scully

    2010-01-01

    The flavor of sh2 super-sweet corn is preferred by consumers. Unfortunately, sh2 sweet corn has little genetic variation for insect resistance. In this paper we review the functions of two loci, p1 and a1. The P1 allele has a major role in sh2 sweet corn resistance to corn earworm, an allele that was lost in historical selection because of its pleiotropic effect on undesirable cob color and silk browning. The P1 allele has significant effects on biosyntheses of silk antibiotic compounds, mays...

  17. Interaction of 2,4-D or Dicamba with Glufosinate for Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida L. in Glufosinate-Resistant Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Zahoor A. Ganie

    2017-07-01

    Full Text Available Glyphosate-resistant (GR giant ragweed is a problematic broadleaf weed in crops including maize and soybean in the Midwestern United States. Commercialization of crops with 2,4-D or dicamba and glufosinate resistance will allow post-emergence (POST applications of these herbicides. Therefore, information is needed on how 2,4-D/dicamba will interact with glufosinate in various rate combinations. The objectives of this study were to evaluate the interaction of glufosinate plus 2,4-D and/or dicamba for control of GR giant ragweed, and to determine their effect on GR giant ragweed density, biomass, maize injury, and yield. Field experiments were conducted in 2013 and 2014 in a field infested with GR giant ragweed in Nebraska, United States. The treatments included POST applications of glufosinate (450 or 590 g ai ha-1, 2,4-D, or dicamba at 280 or 560 g ae ha-1 applied alone and in tank-mixtures in glufosinate-resistant maize. The results showed that dicamba applied alone resulted in 56 to 62% and 73 to 83% control at 14 and 28 days after treatment (DAT, respectively, and ≥95% control at 60 DAT or at harvest compared to 17 to 30% and 57 to 73% control with 2,4-D applied alone at 280 and 560 g ai ha-1, respectively. Glufosinate tank-mixed with 2,4-D and/or dicamba consistently provided ≥89% control of GR giant ragweed, except that control with glufosinate plus 2,4-D varied from 80 to 92% at 60 DAT and at harvest. The comparison between the observed and expected control (determined by Colby’s equation suggested an additive interaction between glufosinate and 2,4-D or dicamba for control of GR giant ragweed. Contrast analysis also indicated that GR giant ragweed control with glufosinate plus 2,4-D or dicamba was either consistently higher or comparable with individual herbicides excluding 2,4-D applied alone. Herbicide programs, excluding 2,4-D at 280 g ae ha-1, resulted in ≥80% reduction in GR giant ragweed density. Tank-mixing glufosinate with

  18. Differential distribution of cadmium in lettuce (Lactuca sativa L.) and maize (Zea mays L.)

    NARCIS (Netherlands)

    Florijn, P.J.

    1993-01-01

    Large genotypic variation in shoot Cd concentrations has been reported in literature for several plant species including lettuce ( Lactuca sativa L.) and maize ( Zea mays L.). The objective of this thesis was to elucidate the physiological andlor

  19. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard

    2008-01-01

    genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD...

  20. Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology

    NARCIS (Netherlands)

    Jans, W.W.P.; Jacobs, C.M.J.; Kruijt, B.; Elbers, J.A.; Barendse, S.C.A.; Moors, E.J.

    2010-01-01

    A study was carried out to quantify the carbon budget of a maize (Zea mays L.) crop followed by a rye cover crop in the Netherlands, and to determine the importance of the phenological phases and the fallow phase when modelling the carbon budget. Measurements were made of carbon fluxes, soil

  1. Genetic diversity based on SSR markers in maize (Zea mays L.)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 87; Issue 3. Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. Yao Qi-Lun Fang Ping Kang Ke-Cheng Pan Guang-Tang. Research Note Volume 87 Issue 3 December 2008 pp 287-291 ...

  2. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  3. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Science.gov (United States)

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  4. Regeneration of tropical maize lines ( Zea mays l .) from mature ...

    African Journals Online (AJOL)

    The use of immature zygotic embryos as an explant for maize regeneration has been hampered by the strictly limited suitable duration of immature embryos for culture. In contrast, mature zygotic embryos harvested from dry seeds are ubiquitous. However, generally mature embryos and especially tropical maize genotypes ...

  5. Detection of genetically modified maize ( Zea mays L.) in seed ...

    African Journals Online (AJOL)

    Maize is the second major cereal in Nepal; its food biosafety and ecological conservation is an important concern. To address this issue, it is necessary to detect genetically modified (GM) maize and establish a monitoring and regulatory system in Nepal. Currently, Nepal does not have legal regulations or labeling directives ...

  6. Detection of genetically modified maize (Zea mays L.) in seed ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... establish a monitoring and regulatory system in Nepal. Currently, Nepal does not ... maize lines in 46 maize seed samples from different locations in Nepal. Suspected samples .... seeds supplied by informal channels (Sthapit and San, 2001). ... rence Materials and Measurements (IRRM, Geel, Belgium;.

  7. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays)

    Science.gov (United States)

    Mano, Y.; Omori, F.

    2013-01-01

    Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074

  8. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).

    Science.gov (United States)

    Mano, Y; Omori, F

    2013-10-01

    Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.

  9. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  10. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance

    Science.gov (United States)

    Oluwaseun F. Ogunola; Leigh K. Hawkins; Erik Mylroie; Michael V. Kolomiets; Eli Borrego; Juliet D. Tang; Paul W. Williams; Marilyn L. Warburton

    2017-01-01

    Maize (Zea mays L.) is a globally important staple food crop prone to contamination by aflatoxin, a carcinogenic secondary metabolite produced by the fungus Aspergillus flavus. An efficient approach to reduce accumulation of aflatoxin is the development of germplasm resistant to colonization and toxin...

  11. Drought tolerant tropical maize (Zea mays L.) developed through ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-10-26

    Oct 26, 2016 ... Seeds of the tropical maize inbred line CML216 were obtained from the International ... Infection, co-cultivation, resting, selection and maturation media ...... abscisic acid concentration does not induce kernel abortion in field-.

  12. Some aspects of cultivation and utilization of waxy maize (Zea mays L. ssp. ceratina

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2012-10-01

    Full Text Available This paper is a review of available literature on Zea mays L.ssp.ceratina. It contains information on the origin, cul- tivation and utilization of waxy maize in the world and can be a contribution to the development of new research on maize cultivation and starch processing technology. Maize, as an old and economically important cereal, played an enormous role in the ancient civilisations of the New World. Among the maize subspecies compared, Z. mays ssp. indurata and Z. mays ssp. indentata are now the most important in Poland. The subspecies Z. mays ssp. saccharata has a marginal role, while Z. mays ssp. ceratina has not been hitherto cultivated. Decisions to introduce the subspecies Z. mays ssp. ceratina into cultivation are based on different grounds, taking into account both agro-climatic conditions and industrial uses of grain processing products. The growing demand for maize grain, stimulated by the increased demand for maize starch and oil in the global market as raw materials that are important in food production, is an impulse for the development of agrobiological research. The development of the starch industry, associated with the demand for industrial starch, will probably contribute to increased interest in this subspecies in Central Europe, also including Poland. Waxy maize grain can be a major ingredient of high-energy feeds for livestock, replacing in this role the type of maize that has been grown for this purpose until now. A great advantage of waxy maize is its specific structure of starch, due to its unique and high amylopectin content (95-98%, which creates unlimited possibilities of industrial use. Currently, waxy maize acreage in Europe does not exceed 2% of the maize crop area in this continent.

  13. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. I. Relevant morphological parameters

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Engels, F.M.; Struik, P.C.; Cone, J.W.

    2005-01-01

    The morphology and rumen fermentation kinetics of the maize cultivars (Zea mays L.) Vitaro and Volens were investigated in detail throughout their growing period as a first step towards understanding the relation between plant characteristics and cell wall fermentability of forage maize. Vitaro is

  14. Water management options based on rainfall analysis for rainfed maize (Zea Mays L.) production in Rushinga district Zimbabwe

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2011-01-01

    Maize (Zea mays L.), the dominant and staple food crop in Southern and Eastern Africa, is preferred to the drought-tolerant sorghum and pearl millet even in semi-arid areas. In semi-arid areas production of maize is constrained by droughts and poor rainfall distribution. The best way to grow crops

  15. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  16. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  17. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  18. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador.

    Science.gov (United States)

    Zarrillo, Sonia; Pearsall, Deborah M; Raymond, J Scott; Tisdale, Mary Ann; Quon, Dugane J

    2008-04-01

    The study of maize (Zea mays L.) domestication has advanced from questions of its origins to the study-and debate-of its dietary role and the timing of its dispersal from Mexico. Because the investigation of maize's spread is hampered by poor preservation of macrobotanical remains in the Neotropics, research has focused on microbotanical remains whose contexts are often dated by association, leading some to question the dates assigned. Furthermore, some scholars have argued that maize was not introduced to southwestern Ecuador until approximately 4150-3850 calendar years before the present (cal B.P.), that it was used first and foremost as a fermented beverage in ceremonial contexts, and that it was not important in everyday subsistence, challenging previous studies based on maize starch and phytoliths. To further investigate these questions, we analyzed every-day cooking vessels, food-processing implements, and sediments for starch and phytoliths from an archaeological site in southwestern Ecuador constituting a small Early Formative village. Employing a new technique to recover starch granules from charred cooking-pot residues we show that maize was present, cultivated, and consumed here in domestic contexts by at least 5300-4950 cal B.P. Directly dating the residues by accelerator mass spectrometry (AMS) radiocarbon measurement, our results represent the earliest direct dates for maize in Early Formative Ecuadorian sites and provide further support that, once domesticated approximately 9000 calendar years ago, maize spread rapidly from southwestern Mexico to northwestern South America.

  19. Regenerability of elite tropical maize (Zea mays L.) inbred lines ...

    African Journals Online (AJOL)

    Yomi

    2012-01-10

    Jan 10, 2012 ... maize production (Evenson and Gollin, 2003) due to high heterotic ... the culture media used in the process (Armstrong and. Green, 1985). This calls .... a temperature of 27 ± 1°C. After two weeks of culture on the EMM, embryogenic .... al., 2008). This could be due to blockage of cell division and inactivation ...

  20. Decomposition characteristics of maize ( Zea mays . L.) straw with ...

    African Journals Online (AJOL)

    Decomposition of maize straw incorporated into soil with various nitrogen amended carbon to nitrogen (C/N) ratios under a range of moisture was studied through a laboratory incubation trial. The experiment was set up to simulate the most suitable C/N ratio for straw carbon (C) decomposition and sequestering in the soil.

  1. Drought tolerant tropical maize ( Zea mays L.) developed through ...

    African Journals Online (AJOL)

    Maize is a staple food crop for millions of Africans. Despite this fact, African farmers have been harvesting average grain yield of not more than 2 t/ha while there is a potential of producing more than 10 t/ha. Drought is one of the major abiotic constraints contributing to this low productivity. Drought diminishes crop ...

  2. Drought tolerance in transgenic tropical maize ( Zea mays L.) by ...

    African Journals Online (AJOL)

    Successful integration of XvPrx2 gene into maize we achieved and recovered 10 independent transgenic events. Transformation and regeneration frequencies were 12.9 and 31.3%, respectively. Reverse transcription polymerase chain reaction (PCR) revealed the expression of the XvPrx2 gene in transformed plants under ...

  3. Fertilizer use efficiency by maize (Zea mays) and egusi- melon ...

    African Journals Online (AJOL)

    DBOY

    fertilizers by maize and egusi-melon in various ratios of mixtures in an ultisol in ... fertilizers replicated three timesfor two years as experiments 2009 and 2010, .... design. In 2011, the fertilizer rates were increased to six to further determine the ...

  4. (MSV) resistant maize varieties for adaptation to a southern guinea

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... African Journal of Biotechnology Vol. 8 (19), pp. ... the development of superior maize varieties for the southern guinea savanna ecology. Key words: Zea ... tional agricultural research systems have succeeded in converting ...

  5. Expression of maize prolamins in Escherichia Coli. [Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Szu-zhen; Esen, Asim

    1985-12-02

    A cDNA expression library of developing corn (Zea mays L.) endosperm has been constructed using plasmid pUC8 as vector and Escherichia coli strain DH1 as host. The expression library was screened with non-radioactive immunological probes to detect the expression of gamma-zein and alpha-zein. When anti-gamma-zein antibody was used as the probe, 23 colonies gave positive reactions. The lengths of cDNA inserts of the 23 colonies were found to be 250-900 base pairs. When anti-alpha zein antibody was used, however, fewer colonies gave positive reactions. The library was also screened by colony-hybridization with /sup 32/P-labeled DNA probes. Based on immunological and hybridization screening of the library and other evidence, it was conclude that alpha-zein was either toxic to E. coli cells or rapidly degraded whereas gamma-zein and its fragments were readily expressed. 21 references.

  6. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-07-22

    Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays)

    International Nuclear Information System (INIS)

    Van Slycken, S.; Witters, N.; Meers, E.; Peene, A.; Michels, E.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Du Laing, G.; Wierinck, I.; Van Dael, M.; Van Passel, S.; Tack, F.M.G.

    2013-01-01

    Production of food crops on trace element-contaminated agricultural lands in the Campine region (Belgium) can be problematic as legal threshold values for safe use of these crops can be exceeded. Conventional sanitation of vast areas is too expensive and alternatives need to be investigated. Zea mays on a trace element-contaminated soil in the region showed an average yield of 53 ± 10 Mg fresh or 20 ± 3 Mg dry biomass ha −1 . Whole plant Cd concentrations complied with legal threshold values for animal feed. Moreover, threshold values for use in anaerobic digestion were met. Biogas production potential did not differ between maize grown on contaminated and non-contaminated soils. Results suggested favorable perspectives for farmers to generate non-food crops profitably, although effective soil cleaning would be very slow. This demonstrates that a valuable and sustainable alternative use can be generated for moderately contaminated soils on which conventional agriculture is impaired. -- Highlights: •Zea mays on trace element-contaminated soil has an average yield of 20 ± 3 Mg DW ha −1 . •Whole plant Cd concentrations complied with legal threshold values for animal feed. •Biogas production did not differ from maize grown on non-contaminated soils. •Perspectives are favorable for farmers to generate non-food crops profitably. •Effective soil cleaning would be very slow. -- Energy maize cultivation constitutes a sustainable alternative use of trace element-contaminated agricultural soils

  8. Review: Maize research and production in Nigeria | Iken | African ...

    African Journals Online (AJOL)

    Maize (Zea mays) is a major important cereal being cultivated in the rainforest and the derived Savannah zones of Nigeria. Land races, improved high yielding and pest and diseases resistant varieties of maize have been developed. Key words: Maize, Zea mays, Nigeria. African Journal of Biotechnology Vol.3(6) 2004: 302- ...

  9. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L. as assessed by pyrosequencing

    Directory of Open Access Journals (Sweden)

    David Correa-Galeote

    2016-07-01

    Full Text Available Maize (Zea mays L. is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the rhizospheric bacterial diversity of amilaceous maize grown either in the presence or the absence of bur clover cultivated in soils from the Quechua maize belt. Three 16S rRNA gene libraries, one corresponding to sequences of bacteria from bulk soil of a chacra maintained under fallow conditions, the second from the rhizosphere of maize-cultivated soils, and the third prepared from rhizospheric soil of maize cultivated in intercropping with bur clover were examined using pyrosequencing tags spanning the V4 and V5 hypervariable regions of the gene. A total of 26031 sequences were found that grouped into 5955 distinct operational taxonomic units which distributed in 309 genera. The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from bulk soil. One hundred ninety seven genera were found in the bulk soil library and 234 and 203 were in those from the maize and maize/bur clover-cultivated soils. Sixteen out of the 309 genera had a relative abundance higher than 0.5% and the were (in decreasing order of abundance Gp4, Gp6, Flavobacterium, Subdivision3 genera incertae sedis of the Verrucomicrobia phylum, Gemmatimonas, Dechloromonas, Ohtaekwangia, Rhodoferax, Gaiella, Opitutus, Gp7, Spartobacteria genera incertae sedis, Terrimonas, Gp5, Steroidobacter and Parcubacteria genera incertae sedis. Genera Gp4 and Gp6 of the Acidobacteria, Gemmatimonas and Rhodoferax were the most abundant in bulk soil, whereas Flavobacterium, Dechloromonas and Ohtaekwangia were the main genera in the rhizosphere

  10. Rapid screening for aluminum tolerance in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Carlos Daniel Giaveno

    2000-12-01

    Full Text Available A significant decrease in maize grain yield due to aluminum toxicity is considered to be one of the most important agricultural problems for tropical regions. Genetic improvement is a useful approach to increase maize yield in acid soils, but this requires a rapid and reliable method to discriminate between genotypes. In our work we investigated the feasibility of using hematoxylin staining (HS to detect Al-tolerant plants at the seedling stage. The original population along with two populations obtained after one cycle of divergent selection were evaluated by net root growth (NRG and HS after 7 days in nutrient solution. Results showed a negative correlation between NRG and HS in all populations, in which sensitive plants, characterized by low NRG, exhibited more intense staining than tolerant plants. These results indicate that HS is a useful procedure for selecting Al-tolerant maize seedlings.A importante diminuição nos rendimentos de milho causados pela toxidez produzida pelo alumínio é considerada um dos mais importantes problemas nas regiões tropicais. O melhoramento genético é uma metodologia útil para aumentar os rendimentos do milho em solos ácidos, requerendo um método rápido e seguro que permita diferenciar os diferentes genótipos. O objetivo deste trabalho foi avaliar a possibilidade de utilizar a técnica da coloração com hematoxilina (HS na detecção de plântulas tolerantes ao alumínio. Duas populações obtidas de um ciclo de seleção divergente e a original, foram avaliadas depois de sete dias em solução nutritiva utilizando os parâmetros NRG (crescimento líquido da raiz principal e HS. Os resultados apresentaram uma correlação negativa entre NRG e HS em todas as populações devido ao fato de que as plântulas suscetíveis, caracterizadas por um baixo NRG, apresentaram uma coloração mais intensa do que as tolerantes. Nossos resultados permitem concluir que a técnica de coloração com hematoxilina

  11. Start codon targeted (scot polymorphism reveals genetic diversity in european old maize (zea mays l. Genotypes

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available Maize (Zea mays L. is one of the world's most important crop plants following wheat and rice, which provides staple food to large number of human population in the world. It is cultivated in a wider range of environments than wheat and rice because of its greater adaptability. Molecular characterization is frequently used by maize breeders as an alternative method for selecting more promising genotypes and reducing the cost and time needed to develop hybrid combinations. In the present investigation 40 genotypes of maize from Czechoslovakia, Hungary, Poland, Union of Soviet Socialist Republics, Slovakia and Yugoslavia were analysed using 20 Start codon targeted (SCoT markers. These primers produced total 114 fragments across 40 maize genotypes, of which 86 (76.43% were polymorphic with an average of 4.30 polymorphic fragments per primer and number of amplified fragments ranged from 2 (SCoT 45 to 8 (SCoT 28 and SCoT 63. The polymorphic information content (PIC value ranged from 0.374 (ScoT 45 to 0.846 (SCoT 28 with an average of 0.739. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. The hierarchical cluster analysis showed that the maize genotypes were divided into two main clusters. Unique maize genotype (cluster 1, Zuta Brzica, originating from Yugoslavia separated from others. Cluster 2 was divided into two main clusters (2a and 2b. Subcluster 2a contained one Yugoslavian genotype Juhoslavanska and subcluster 2b was divided in two subclusters 2ba and 2bb. The present study shows effectiveness of employing SCoT markers in analysis of maize, and would be useful for further studies in population genetics, conservation genetics and genotypes improvement.

  12. USING MAIZE (ZEA MAYS L. AS A SUGAR CROP

    Directory of Open Access Journals (Sweden)

    F.E. Below

    2008-09-01

    Full Text Available The increased demand for homegrown energy has created a market for new feedstocks for the growing biofuel industry. Plants with C4 photosynthesis are particularly suited as biofuel crops because of their high radiation, water, and nitrogen (N use efficiency. C4 species that store high levels of sucrose in their stalks such as sugarcane (Saccharum spp, sorghum (Sorghum bicolor L., and maize are especially useful. Maize has been repeatedly evaluated as a sugar crop during the last century, and prevention of pollination or ear removal is typically associated with the highest concentrations of stalk sugar. Elimination of the reproductive phase, however, usually results in accelerated leaf senescence, which is expected to limit sugar accumulation. We have developed a series of hybrids that exhibit photoperiod sensitivity as an approach to simultaneously increase biomass and sugar production by crossing seven tropical inbreds with the historic temperate inbred B73. We used a tropical parent to confer photoperiod sensitivity and to greatly delay flowering and increase the anthesis-silking interval, resulting in low seed set. When grown in temperate regions these hybrids produce abundant biomass and do not exhibit accelerated leaf senescence without grain, but rather remain green and accumulate sugars in their stalks. Total biomass (stover and grain, sucrose accumulation, and the response to N of these hybrids was determined and compared to a similar number of locally grown commercial grain hybrids. On average the tropical hybrids produced 20% more total biomass than the commercial hybrids, and they showed a smaller response to the addition of fertilizer N. Total biomass yields of tropical hybrids ranged from 16.3 to 27.5 Mg/ha (average of 23.5 Mg/ha and the stalk contained from 1.7 to 3.2 Mg/ha of sucrose (average of 2.6 Mg/ha. Increasing the N supply from 0 to 225 kg/ha increased the average biomass production of tropical hybrids by only 2.2 Mg

  13. Comparative Cytotoxicity of the Herbicide Atrazine to Four Inbred Maize Lines (Zea mays L.)

    International Nuclear Information System (INIS)

    Shehata, Afaf I; AlGhethar, Haila A; AlHomaidan, Ali A; Arif, Ibrahim A

    2008-01-01

    Atrazine is one of the most widely used herbicides in the world. Recent reports have indicated that it has adverse impacts on the endocrine systems and on the early developments of wild animals and it has been banned in many European countries including Switzerland, the home of the manufacturing company. The genotoxic effects of Atrazine on four inbred lines of maize (Zea mays L.) were investigated. The herbicide showed mitoinhibition and clastogenic effects on the mitotic index of maize lines and they were proportional to the concentrations and time. The frequency of abnormality, chromosomal breakage, stickiness, lagging, C-metaphase and C-anaphase were observed at different stages of mitosis in treated cells. The harmful effect of this environmental pollutant proved that it may act as a strong mutagen. (author)

  14. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)

    Science.gov (United States)

    Liu, Yinglin; Xu, Lina; Dai, Yanhui

    2018-02-01

    The use of lanthanum oxide nanoparticles (La2O3 NPs) in life products have increased dramatically in the past decades, which are inevitable released into natural environment. In this study, we determined the phytotoxicity of La2O3 NPs to maize (Zea mays L.) grown in one-fourth strength Hoagland solution. After being exposed for two weeks, the biomass, roots length and the relative chlorophyll content were measured. La2O3 NPs had phytotoxicity to maize at 5 mg/L. La2O3 NPs decreased shoot biomass (≥10 mg/L), the root biomass and length (≥5 mg/L). Moreover, La2O3 NPs had adverse effects on the chlorophyll content (≥10 mg/L). The decreased chlorophyll content may reduce net photosynthetic rate. This research offers vital information about the phytotoxicity of La2O3 NPs.

  15. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  16. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response.

    Science.gov (United States)

    Kim, Hyuck-Soo; Kim, Kwon-Rae; Yang, Jae E; Ok, Yong Sik; Owens, Gary; Nehls, Thomas; Wessolek, Gerd; Kim, Kye-Hoon

    2016-01-01

    Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.) subsequently cultivated for 6weeks. While maize was cultivated, 0.1% NaCl solution was supplied from the bottom of the pots to simulate the natural RTLS conditions. Biochar induced changes in soil properties were evaluated by the water stable aggregate (WSA) percentage, exchangeable sodium percentage (ESP), soil organic carbon contents, cation exchange capacity, and exchangeable cations. Plant response was measured by growth rate, nutrient contents, and antioxidant enzyme activity of ascorbate peroxidase (APX) and glutathione reductase (GR). Application of rice hull derived biochar increased the soil organic carbon content and the percentage of WSA by 36-69%, while decreasing the ESP. The highest dry weight maize yield was observed from soil which received 5% BC (w/w), which was attributed to increased stability of water-stable aggregates and elevated levels of phosphate in BC incorporated soils. Moreover, increased potassium, sourced from the BC, induced mitigation of Na uptake by maize and consequently, reduced the impact of salt stress as evidenced by overall declines in the antioxidant activities of APX and GR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Field performance of maize (Zea mays L. cultivars under drought stress

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2018-04-01

    Full Text Available This research was carried out in 2014 at the Research Farm of the University of Tabriz, Iran. The experiment was arranged as split plot on the basis of randomized complete block with three replicates to assess the effects of four irrigation intervals (irrigations after 60, 80, 100 and 120 mm evaporation on physiological and agronomical traits of three cultivars of maize (Zea mays L.; ‘SC704’, ‘NS640’, ‘DC303’: late, mid and early maturing, respectively. Irrigation intervals and maize cultivars were assigned to the main and sub-plots, respectively. Leaf temperature of all maize cultivars significantly increased, but chlorophyll content index, maximum efficiency of photosystem II, number of grains per plant, 1000 grain mass, plant biomass, grain yield and harvest index significantly decreased with increasing irrigation intervals. Late maturing cultivar (‘SC704’ was superior in all studied traits, followed by mid (‘NS640’ and early (‘DC303’ maturing cultivars. It was concluded that water limitation can potentially reduce performance of maize cultivars in the field, but the extent of this reduction depends on genotype and severity of stress.

  18. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays)

    KAUST Repository

    George, Jessey

    2016-09-16

    Nitrate (NOequation image) and ammonium (NHequation image) are the predominant forms of nitrogen (N) available to plants in agricultural soils. Nitrate concentrations are generally ten times higher than those of NHequation image and this ratio is consistent across a wide range of soil types. The possible contribution of these small concentrations of NHequation image to the overall N budget of crop plants is often overlooked. In this study the importance of this for the growth and nitrogen budget of maize (Zea mays L.) was investigated, using agriculturally relevant concentrations of NHequation image. Maize inbred line B73 was grown hydroponically for 30 d at low (0.5 mM) and sufficient (2.5 mM) levels of NOequation image. Ammonium was added at 0.05 mM and 0.25 mM to both levels of NOequation image. At low NOequation image levels, addition of NHequation image was found to improve the growth of maize plants. This increased plant growth was accompanied by an increase in total N uptake, as well as total phosphorus, sulphur and other micronutrients in the shoot. Ammonium influx was higher than NOequation image influx for all the plants and decreased as the total N in the nutrient medium increased. This study shows that agriculturally relevant proportions of NHequation image supplied in addition to NOequation image can increase growth of maize.

  19. Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    Science.gov (United States)

    Saha, Rajib; Suthers, Patrick F.; Maranas, Costas D.

    2011-01-01

    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species. PMID:21755001

  20. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves

    NARCIS (Netherlands)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N.C.; Struik, Paul C.; Nicolaï, Bart M.

    2016-01-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model

  1. Fertilizer effect Azolla - Anabaena in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Aldás-Jarrín Juan Carlos

    2016-11-01

    Full Text Available The deterioration of natural resources in agricultural activities, has motivated the search for new alternatives to enrich the soil with macro and micro nutrients sustainably, for the benefit of future generations, just as you think about the conservation and maintenance of water, avoiding eutrophication problems by the accumulation of fertilizers (nitrates and nitrites leached and deposited in natural sources, for this purpose they have been measured several agro ecological options that provide proper nutrition and a delicate ecological balance; in this investigation at field level in maize cultivation and different states it applied dose of azolla as a natural source of nitrogen to enrich the soil in the canton Cevallos, Tungurahua province. Anabaena floors of the town, based on the state of azolla and the level established for such preparation, the states of azolla. Six mixtures were prepared substrates azolla studied were: Dry A1 and A2 in the fresh state; the doses were established in relation to the volume of azolla against soil volume used: (0.5: 1 (0.75: 1 and (1: 1. The data collected were plant height and percentage of nitrogen in dry matter at 15, 30, 60 and 90 days. All this in order to establish the amount of nitrogen contributed by azolla as biofertilizer in growing corn. The best results were presented at the A1D3 (azolla dry-Dose 1: 1 treatment given plant height 15.02 cm at 15 days, 35.88 cm 30 days, 53.22 cm 60 66.12 days and 90 days; to 0.54% nitrogen percentage at 15 days, 0.90% at 30 days, 1.68% at 60 days and 2.08% after 90 days. In conclusion, the use of Azolla as a bio-fertilizer rich in nitrogen is feasible, as has been demonstrated in this research that the corn plant benefits from the contribution of this material, improving sustainable agricultural practices. It is recommended to expand this research in the same crop or other commercially important crops until the end of its production cycle, to report the results of

  2. Genetic characterization of early maturing maize hybrids (Zea mays L. obtained by protein and RAPD markers

    Directory of Open Access Journals (Sweden)

    Bauer Iva

    2005-01-01

    Full Text Available Knowledge of maize germplasm genetic diversity is important for planning breeding programmes, germplasm conservation per se etc. Genetic variability of maize hybrids grown in the fields is also very important because genetic uniformity implies risks of genetic vulnerability to stress factors and can cause great losts in yield. Early maturing maize hybrids are characterized by shorter vegetation period and they are grown in areas with shorter vegetation season. Because of different climatic conditions in these areas lines and hybrids are developed with different features in respect to drought resistance and disease resistance. The objective of our study was to characterize set of early maturing maize hybrids with protein and RAPD markers and to compare this clasification with their pedigree information. RAPD markers gave significantly higher rate of polymorphism than protein markers. Better corelation was found among pedigree information and protein markers.

  3. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    Science.gov (United States)

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  4. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    Science.gov (United States)

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  5. Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin.

    Science.gov (United States)

    Duran, Ragbet Ezgi; Kilic, Semra; Coskun, Yasemin

    2015-10-01

    The aim of this study was to investigate the effect of the deltamethrin pesticide on the biological properties of maize (Zea mays L. saccharata Sturt). Maize seeds were exposed to environmentally relevant dosages (0.01, 0.05, 0.1 and 0.5 ppm) of deltamethrin. On the 7th day of germination, morphological, anatomical and physiological responses were determined. All seedling growth characters were decreased with increasing deltamethrin levels. The most negative effect on the radicle length of maize was observed by the highest deltamethrin concentration with a 61% decrease (P <0.05). Both stomatal density and stomatal dimension reduction were caused by increasing concentrations of deltamethrin. Moreover, the pigments like chlorophyll a, chlorophyll b, total chlorophyll and caretonoids decreased with the increase in deltamethrin concentration. Conversely, anthocyanin and proline content increased in parallel with deltamethrin concentration. As a result, all morphological traits and pigments except for proline and anthocyanin were significantly reduced with an increase in pesticide concentration, compared to control (P <0.05). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Isoenzymatic variation in the germplasm of Brazilian races of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gimenes Marcos Aparecido

    2000-01-01

    Full Text Available There are more than 200 races of maize (Zea mays L. divided into three groups (ancient commercial races, the recent commercial races, and indigenous races. Although the indigenous races have no commercial value, they have many important characteristics which can be incorporated into maize breeding programs. Most Brazilian indigenous germplasm race stocks were collected at least 40 years ago, and nothing is known of the genetic variability present in this germplasm. The genetic variability was assayed in 15 populations from four indigenous races of maize (Caingang, Entrelaçado, Lenha and Moroti and five indigenous cultivars, using five isoenzymatic systems encoded by 14 loci. The analysis revealed a low level of variability among the samples studied. Overall, the mean number of alleles/polymorphic locus was three, 64.3% of the loci analyzed being polymorphic and the estimated heterozygosity was 0.352. The mean number of alleles/polymorphic locus per population was 1.6. A mean of 47.5% of the loci were polymorphic. The mean expected heterozygosity was 0.195, the mean genetic identity was 0.821 and the proportion of total genetic diversity partitioned among populations (Gst was 0.156. A founder effect could explain the low variability detected.

  7. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  8. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    International Nuclear Information System (INIS)

    Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W.

    2011-01-01

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: →Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. →DSE alleviated the deleterious effect of excessive heavy metals on maize. →DSE restricted the transfer of heavy metals from the roots to shoots in maize. →DSE colonization improved the tolerance of their host plants to heavy metals.

  9. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.; Liu, M.J.; Zhang, X.T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhang, H.B. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Department of Biology, Yunnan University, Kunming, 650091 Yunnan (China); Sha, T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhao, Z.W., E-mail: zhaozhw@ynu.edu.cn [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China)

    2011-02-15

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: {yields}Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. {yields}DSE alleviated the deleterious effect of excessive heavy metals on maize. {yields}DSE restricted the transfer of heavy metals from the roots to shoots in maize. {yields}DSE colonization improved the tolerance of their host plants to heavy metals.

  10. Production of antihypertensive peptides by enzymatic zein hydrolysate from maize-zea mays ssp. mexicana introgression line

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, X.; Qiao, Y.; Qu, M.

    2014-01-01

    Teosintes are essential gene reservoir for maize breeding improvement, among which Zea mays ssp. mexicana has many valuable traits deserved to be transferred into maize genetic background. In this study, one maize-teosinte introgression line SD00100 was selected from the population of Zea mays ssp. mexicana as wild parent. This introgression line manifested the outstanding agricultural traits similar to maize parent Ye 515 and alien genetic material was identified by genomic in situ hybridization (GISH). To produce bioactive peptides with potent angiotensin converting enzyme (ACE) inhibitory activity, zein extracted from endosperm meal was then undergone enzymatic hydrolysis with thermolysin and the hydrolysate was then filtered through a 3 kDa cut-off membrane. ACE inhibitory activity of permeate from Ye 515 and SD00100 was evaluated by RP-HPLC. The IC50 values of the peptides obtained from maize parent and the introgression line were 96.9 micro g/ml and 22.9 micro g/ml, respectively, with significant difference between them. Our results showed that an outstanding inbred maize line was obtained for production of antihypertensive peptides as well as for further development of functional food. (author)

  11. Maize (Zea

    African Journals Online (AJOL)

    essary to replant two to three times to establish a ited rainwater as runoff. .... Table 1: Amount of rainwater (mm) lost from runoff plots under different inanagement systems during long rains (March'- May;l99-' .... E10 Irrigatio'tl and Drainage pa-.

  12. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  13. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  14. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    International Nuclear Information System (INIS)

    Li Yongliang; Qin Guangyong; Huo Yuping; Tian Shuangqi; Tang Jihua

    2009-01-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism. (ion beam bioengineering)

  15. Enhanced plastochromanol-8 accumulation during reiterated drought in maize (Zea mays L.).

    Science.gov (United States)

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2017-03-01

    Plastochromanol-8 (PC-8) belongs to the group of tocochromanols, and together with tocopherols and carotenoids, might help protect photosystem II from photoinhibition during environmental stresses. Here, we aimed to unravel the time course evolution of PC-8 together with that of vitamin E compounds, in maize (Zea mays L.) plants exposed to reiterated drought. Measurements were performed in plants grown in a greenhouse subjected to two consecutive cycles of drought-recovery. PC-8 contents, which accounted for more than 25% of tocochromanols in maize leaves, increased progressively in response to reiterated drought stress. PC-8 contents paralleled with those of vitamin E, particularly α-tocopherol. Profiling of the stress-related phytohormones (ABA, jasmonic acid and salicylic acid) was consistent with a role of ABA in the regulation of PC-8 and vitamin E biosynthesis during drought stress. Results also suggest that PC-8 may help tocopherols prevent damage to the photosynthetic apparatus. A better knowledge of the ABA-dependent regulation of PC-8 may help us manipulate the contents of this important antioxidant in crops. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

    Science.gov (United States)

    Marcon, Caroline; Schützenmeister, André; Schütz, Wolfgang; Madlung, Johannes; Piepho, Hans-Peter; Hochholdinger, Frank

    2010-12-03

    Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.

  17. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    Science.gov (United States)

    Li, Yongliang; Tang, Jihua; Qin, Guangyong; Huo, Yuping; Tian, Shuangqi

    2009-08-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.

  18. Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.).

    Science.gov (United States)

    Lee, Moon-Sub; Anderson, Eric K; Stojšin, Duška; McPherson, Marc A; Baltazar, Baltazar; Horak, Michael J; de la Fuente, Juan Manuel; Wu, Kunsheng; Crowley, James H; Rayburn, A Lane; Lee, D K

    2017-08-01

    Eastern gamagrass (Tripsacum dactyloides L.) belongs to the same tribe of the Poaceae family as maize (Zea mays L.) and grows naturally in the same region where maize is commercially produced in the USA. Although no evidence exists of gene flow from maize to eastern gamagrass in nature, experimental crosses between the two species were produced using specific techniques. As part of environmental risk assessment, the possibility of transgene flow from maize to eastern gamagrass populations in nature was evaluated with the objectives: (1) to assess the seeds of eastern gamagrass populations naturally growing near commercial maize fields for the presence of a transgenic glyphosate-tolerance gene (cp4 epsps) that would indicate cross-pollination between the two species, and (2) to evaluate the possibility of interspecific hybridization between transgenic maize used as male parent and eastern gamagrass used as female parent. A total of 46,643 seeds from 54 eastern gamagrass populations collected in proximity of maize fields in Illinois, USA were planted in a field in 2014 and 2015. Emerged seedlings were treated with glyphosate herbicide and assessed for survival. An additional 48,000 seeds from the same 54 eastern gamagrass populations were tested for the presence of the cp4 epsps transgene markers using TaqMan ® PCR method. The results from these trials showed that no seedlings survived the herbicide treatment and no seed indicated presence of the herbicide tolerant cp4 epsps transgene, even though these eastern gamagrass populations were exposed to glyphosate-tolerant maize pollen for years. Furthermore, no interspecific hybrid seeds were produced from 135 hand-pollination attempts involving 1529 eastern gamagrass spikelets exposed to maize pollen. Together, these results indicate that there is no evidence of gene flow from maize to eastern gamagrass in natural habitats. The outcome of this study should be taken in consideration when assessing for environmental

  19. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    Science.gov (United States)

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.

  20. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  1. Zea mI, the maize homolog of the allergen-encoding Lol pI gene of rye grass.

    Science.gov (United States)

    Broadwater, A H; Rubinstein, A L; Chay, C H; Klapper, D G; Bedinger, P A

    1993-09-15

    Sequence analysis of a pollen-specific cDNA from maize has identified a homolog (Zea mI) of the gene (Lol pI) encoding the major allergen of rye-grass pollen. The protein encoded by the partial cDNA sequence is 59.3% identical and 72.7% similar to the comparable region of the reported amino acid sequence of Lol pIA. Southern analysis indicates that this cDNA represents a member of a small multigene family in maize. Northern analysis shows expression only in pollen, not in vegetative or female floral tissues. The timing of expression is developmentally regulated, occurring at a low level prior to the first pollen mitosis and at a high level after this postmeiotic division. Western analysis detects a protein in maize pollen lysates using polyclonal antiserum and monoclonal antibodies directed against purified Lolium perenne allergen.

  2. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  3. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    Science.gov (United States)

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  4. Maize (Zea mays L.) performance in organically amended mine site soils.

    Science.gov (United States)

    Oladipo, Oluwatosin Gbemisola; Olayinka, Akinyemi; Awotoye, Olusegun Olufemi

    2016-10-01

    Organic amendments play an important role in the eco-friendly remediation of degraded mine site soils. This study investigated the quality (essential nutrients and heavy metal content) of maize grown on organically amended soils from three active mines in Nigeria. Soil samples were collected randomly at 0-15 cm depth, air-dried and sieved. Five kg of soil were amended with poultry manure and sawdust (poultry manure only, sawdust only, poultry manure-sawdust mixtures in 3:1, 2:1 and 1:1 ratios) at 10 g kg(-1). Maize (Zea mays L.) seeds were planted and watered for two consecutive periods of 8 weeks, with the control and treatment experiments set up in the screenhouse in quadruples. Harvested tissues were weighed, dried, ground and digested. Chemical properties were determined using standard methods while atomic absorption spectrophotometry was used to determine total metal concentrations (Ca, Mg, Fe, Zn, Pb, Cd and Cu). ANOVA was used to test for significant differences among treatment groups in the various parameters. Application of poultry manure-sawdust mixtures significantly (p < 0.05) enhanced tissue dry matter yield, as well as N, P, K, and Na contents while Zn, Cd, Cu and Pb were immobilized to approximately 50-100%. Treatment with sawdust alone reduced tissue nutrient content resulting in depressed plant yield while poultry manure only though enhanced crop yield, contained higher heavy metal contents. Soil amendments comprised of poultry manure-sawdust mixtures can be effective remediation strategy for mine site soils, as these organic materials help replenish soil nutrients, immobilize heavy metals, and enhance food productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays).

    Science.gov (United States)

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-03-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.

  6. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents

    Science.gov (United States)

    Paschold, Anja; Jia, Yi; Marcon, Caroline; Lund, Steve; Larson, Nick B.; Yeh, Cheng-Ting; Ossowski, Stephan; Lanz, Christa; Nettleton, Dan; Schnable, Patrick S.; Hochholdinger, Frank

    2012-01-01

    Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%–55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome. PMID:23086286

  7. Effect of potassium application on ammonium nutrition in maize (zea mays l.) under salt stress

    International Nuclear Information System (INIS)

    Yousra, M.; Akhtar, J.; Saqib, A.; Haq, M.A

    2012-01-01

    Application of potassium has been found to minimize the toxic effect of NH/sup 4/sup +/ under salt stress. To study the interactive effect of K+ and NH4+ under saline condition, maize (Zea mays L., cv. Pioneer-3335) was grown in a hydroponic culture with ammonium (5.0 and 10 mM) as (NH/sub 4/)/sub 2/SO/ sub 4/ at two different levels (3.0 and 9.0 mM) of K+ under control and 100 mM NaCl. Under saline condition, 5 mM NH/sub 4/sup +/ application along with 3.0 mM K+ decreased the dry mass by 24% in maize while its addition at the rate of 10 mM showed a percent decline upto 70% than the control. A decrease in shoot dry mass induced by the combine application of 5.0 mM NH4+ and 9.0 mM K+ was 19% relative to control whilst a decrease i.e. 52% was observed at 10 mM NH/sub 4+/ level. The increasing concentration of potassium was found to alleviate the NH/sub 4+/ toxicity and salinity stress partly by inhibiting the uptake of NH/sub 4+/ and Na+ and by stimulating the N assimilation in plant body. Growth improvement at combination of 5.0 mM NH/sub 4+/ and 9.0 mM K+ was reinforced by higher K+ influx into root cells and its translocation to the growing tissues. Elevating the K+ supply also resulted in the enhanced plant growth several times and reduction in NH/sub 4+/ toxicity and salinity stress. (author)

  8. Introgression of genetic material from Zea mays ssp. Mexicana into cultivated maize was facilitated by tissue culture

    International Nuclear Information System (INIS)

    Wang, L.; Gu, X.; Qu, M.; Luan, J.; Zhang, J.

    2012-01-01

    Zea mays ssp. mexicana, a wild relative of cultivated maize (Z. mays ssp. mays), is a useful gene resource for maize breeding. In this study, two populations were generated by conventional breeding scheme (population I) or tissue culture regime (population II), respectively, to introgress genetic material of Z. mays ssp. mexicana into maize. Karyotype analysis showed that the arm ratios of 10 pairs of chromosomes in parent maize Ye515 and derivative lines from 2 different populations with 26% and 38% chromosome variation frequencies, respectively. Alien chromatin was detected in the root tip cells of progeny plants through genomic in situ hybridization (GISH). There were 3.3 chromosomes carrying alien chromatin on average in population I and 6.5 in population II. The hybridization signals were located mainly at the terminal or sub terminal regions of the chromosomes and the sizes were notably variant among lines. Based on those results, it is concluded that the introgression of genetic material from Z. mays ssp. mexicana into cultivated maize was facilitated by tissue culture, and subsequently some excellent materials for maize breeding were created. (author)

  9. Use of poultry manure for amendment of oil-polluted soils in relation to growth of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Amadi, A. Ue Bari, Y.

    1992-01-01

    The use of poultry manure for amelioration of oil-polluted soil was investigated by growing maize (Zea mays L.) under two experimental conditions: increasing the poultry manure rate from 0-20 kg ha -1 at 0.03 L/kg oil treatment level; and increasing the rate of oil treatment from 0-0.2 between the rate of poultry manure added and the enhancement of maize growth. But only a 16-kg ha -1 poultry manure rate and above exerted some beneficial effects on the maize growth relative to the unpolluted, unamended soil. Conversely, increasing oil concentration, regardless of the poultry manure level added, depressed maize growth, but only at oil levels of 0.03 L/kg. A positive correlation was recorded between maize height and leaf area growing in oil-treated soil amended with different poultry manure rates and growing in oil-treated amended with 20 kg ha -1 poultry manure. Amending oil-contaminated soils with poultry manure, should possibly improve soil fertility and maize production

  10. Breeding for culinary and nutritional quality of common bean (Phaseolus vulgaris L. in intercropping systems with maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Rodino A.P.

    1999-01-01

    Full Text Available Common bean (Phaseolus vulgaris L. is widely intercropped with maize (Zea mays L. in the North of Spain. Breeding beans for multiple cropping systems is important for the development of a productive and sustainable agriculture, and is mainly oriented to minimize intercrop competition and to stabilize complementarity with maize. Most agricultural research on intercropping to date has focused on the agronomic and overall yield effects of the different species, but characters related with socio-economic and food quality aspects are also important. The effect of intercropping beans with maize on food seed quality traits was studied for thirty-five bush bean varieties under different environments in Galicia (Northwestern Spain. Parameters determining Asturian (Northern Spain white bean commercial and culinary quality have also been evaluated in fifteen accessions. There are significant differences between varieties in the selected cropping systems (sole crop, intercrop with field maize and intercrop with sweet maize for dry and soaked seed weight, coat proportion, crude protein, crude fat and moisture. Different white bean accessions have been chosen according to their culinary quality. Under these environmental conditions it appears that intercropping systems with sweet maize give higher returns than sole cropping system. It is also suggested that the culinary and nutritional quality potential of some white bean accessions could be the base material in a breeding programme the objectives of which are to develop varieties giving seeds with high food quality.

  11. Caracterização da atividade amilásica do malte de milho (Zea mays L. = Characterization of amylase activity from maize (Zea mays L. malt

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2006-01-01

    Full Text Available Este trabalho objetivou estudar o processo de germinação e a caracterização da atividade bioquímica das amilases do malte de milho (Zea mays L. para gerar uma fonte de amilase de baixo custo e boa atividade enzimática. A atividade enzimática foi monitorada todos os dias durante a germinação das sementes para se obter a melhor condição de produção do malte. Os resultados mostraram que a atividade enzimática nas sementes foi maior no 4º. dia de germinação. A caracterização bioquímica mostrou que as amilases do malte apresentam faixa ótima de pH entre 4,3 e 6, com temperaturas ótimas a 50°C e 80ºC e os valores de Km e Vmax para hidrólise do amido foram de 7,69.10-2 g/L e 7,69.102g/L.min, respectivamente.This work aimed to study the germination process and characterization of the amylolytic activity of the maize (Zea mays L. malt aiming to obtain source amylases at lower cost. Enzymatic activity was monitored all days during the seed germination, for obtaining thebest condition of malt production. Results showed that the enzymatic activity from maize seeds was larger in 4° germination day. Enzymes characterization showed that the maize malt amylases have optimal zone of pH between 4.3 and 6, with optimal temperatures of 50°C and 80ºC. The Km and Vmax values for starch hydrolysis were 7.69.10-2 g/L and 7.69.102g/L.min, respectively.

  12. Selection of inbred maize (Zea mays L.) progenies by topcrosses conducted in contrasting environments.

    Science.gov (United States)

    Rodrigues, C S; Pacheco, C A P; Guedes, M L; Pinho, R G V; Castro, C R

    2016-09-23

    The aim of this study was to identify inbred progenies of S 0:1 maize (Zea mays L.) plants that were efficient at a low level of technology and responsive at a high level of technology through the use of topcrosses. Two contrasting environments were created using two levels of base fertilization and topdressing, so that the levels of nitrogen, phosphorus, and potassium were applied four times higher in one environment than in the other. We used S 0:1 progenies derived from commercial hybrids in topcrosses with two testers (an elite line from the flint heterotic group and an elite line from the dent heterotic group). The progenies and three controls were evaluated in an augmented block design in Nossa Senhora das Dores, SE, Brazil in the 2010 crop season. The average grain yield in the high-technological level was 21.44% greater than that in the low-technological level. There were no changes in progeny behavior in the two technological levels for grain yield. The testers did not differ in the average grain yield of the progenies at the two technological levels. Therefore, it is possible to select progenies derived from commercial hybrids that have an efficient response to fertilization.

  13. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    Science.gov (United States)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  14. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    Science.gov (United States)

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  16. Effect of different chelated zinc sources on the growth and yield of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    M. Tahir

    2009-05-01

    Full Text Available A field study was conducted at Agronomic Research Area, University of Agriculture, Faisalabad during spring, 2007 to evaluate the effect of different chelated zinc sources on growth and yield of maize (Zea mays L.. Crop was sown on well prepared soil in 1st week of March, 2007. The experiment was laid out according to randomized complete block design. The treatments comprised of different chelated zinc sources: ZnSO4-DTPA, ZnSO4-Fulvate, ZnSO4-Lignosulphonate, ZnSO4-EDTA and ZnSO4-H2O along with control (no zinc, repeated three times. Results showed that number of cobs plant-1, grain rows cob-1 and oil contents did not differ significantly. However, differences among treatments for plant height at harvest (cm, leaf area plant-1 (cm2, stem diameter (cm, cob length (cm, cob diameter (cm, 100-grains weight (g, number of grains cob-1, grains weight cob-1(g, biological yield (tons ha-1, grain yield (tons ha-1 and protein contents (% were significantly higher. Moreover, results also revealed that ZnSO4-DPTA was found the most effective Zn chelated source among all the treatments. Rest of the chelating agents were not too impressive as they showed varied response for different variables. The result of this experiment suggest further experimentation to explore behaviour of Zn-DTPA with other macro and micro nutrients and to calculate cost benefit ratio for use ofZn chelated compounds.

  17. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize.

    Science.gov (United States)

    Desjardins, Anne E; Busman, Mark; Manandhar, Gyanu; Jarosz, Andrew M; Manandhar, Hira K; Proctor, Robert H

    2008-07-09

    The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (1) or 4-deoxynivalenol (2), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance of 1 and 2 in maize ear rot, a survey of naturally contaminated maize in Nepal was combined with experiments in the field and in a plant growth room. In the survey, 1 contamination was 4-fold more frequent than 2 contamination and 1-producers (TRI13) were isolated more than twice as frequently as 2-producers (Psi TRI13). In maize ear rot experiments, genetically diverse 1-producers and 2-producers caused ear rot and trichothecene contamination. Among strains with the same genetic background, however, 1-producers caused less ear rot and trichothecene contamination than did 2-producers. The high frequency of 1 contamination and the high virulence of many 1-producers are of concern because maize is a staple food of rural populations in Nepal and because 1 has proven to be more toxic than 2 to animals.

  18. Diallel crossing among maize populations for resistance to fall armyworm

    Directory of Open Access Journals (Sweden)

    Alvarez María del Pilar

    2002-01-01

    Full Text Available Among the insects infecting the maize (Zea mays L. crop in Brazil, the fall armyworm (Spodoptera frugiperda Smith, 1797, Lepdoptera: Noctuidae is considered one of the most important because it causes the highest damage to yield. Genetic resistance to the fall armyworm has be an effective control strategy. The main objective of this work was to evaluate new germplasm sources for resistance to the fall armyworm, the key pest for the maize crop in Brazil. A partial diallel design between 20 varieties of Brazilian germplasm and nine exotic and semi-exotic varieties of different origin was used. The 180 crosses and 29 parental varieties along with two commercial checks were evaluated in three locations in the State of São Paulo State (Brasil. Fall armyworm resistance (FAWR under artificial and natural infestations, grain yield (GY, and plant height (PH were analyzed. The populations CMS14C and MIRT, and hybrid São José x MIRT showed the highest resistance, with values of 1.8, 1.7 and 1.4, respectively. Populations PMI9401 and PR91B, and the hybrid CMS14C x (B97xITU had best yields, with 4893, 3858 and 5677 kg ha-1, respectively. Heterosis ranged from -28% to 47% for FAWR and from -21% to 125% for GY, with mean values of -0,43% and 31%, respectively. Genotype by environment interaction was not significant for FAWR. The effects of varieties and heterosis were significant for all traits, showing that both additive and dominance effects may be important as sources of variation. For FAWR, only specific heterosis presented significance, suggesting strong genetic divergence between specific pairs of parental populations. Brasilian populations PMI9302 and São José, and the exotic population PR91B presented high performance per se, and also in croses for FAWR and GY. Crosses PMI9401 x (Cuba110 x EsalqPB1 and São José x MIRT presented high specific heterosis effects for both characters. These populations can be useful to be introgressed in maize

  19. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  20. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions

    International Nuclear Information System (INIS)

    Bi Xiangyang; Feng Xinbin; Yang Yuangen; Li Xiangdong; Shin, Grace P.Y.; Li Feili; Qiu Guangle; Li Guanghui; Liu Taoze; Fu Zhiyou

    2009-01-01

    Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake. - The sources and pathways of Pb and Cd accumulated in maize were assessed using Pb isotopes and Pb/Cd ratios

  1. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bi Xiangyang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Key Laboratory of Biogeology and Environmental Geology, Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)], E-mail: fengxinbin@vip.skleg.cn; Yang Yuangen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Xiangdong; Shin, Grace P.Y. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Feili [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Qiu Guangle; Li Guanghui; Liu Taoze; Fu Zhiyou [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2009-03-15

    Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake. - The sources and pathways of Pb and Cd accumulated in maize were assessed using Pb isotopes and Pb/Cd ratios.

  2. Early colonization pattern of maize (Zea mays L. Poales, Poaceae roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae

    Directory of Open Access Journals (Sweden)

    Rose A. Monteiro

    2008-12-01

    Full Text Available The bacterium Herbaspirillum seropedicae is an endophytic diazotroph found in several plants, including economically important poaceous species. However, the mechanisms involved in the interaction between H. seropedicae and these plants are not completely characterized. We investigated the attachment of Herbaspirillum to maize roots and the invasion of the roots by this bacterium using H. seropedicae strain SMR1 transformed with the suicide plasmid pUTKandsRed, which carries a mini-Tn5 transposon containing the gene for the Discosoma red fluorescent protein (Dsred constitutively expressed together with the kanamycin resistance gene. Integration of the mini-Tn5 into the bacterial chromosome yielded the mutant H. seropedicae strain RAM4 which was capable of expressing Dsred and could be observed on and inside fresh maize root samples. Confocal microscopy of maize roots inoculated with H. seropedicae three days after germination showed that H. seropedicae cell were attached to the root surface 30 min after inoculation, were visible in the internal tissues after twenty-four hours and in the endodermis, the central cylinder and xylem after three days.

  3. Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae

    Directory of Open Access Journals (Sweden)

    Walter Marín-Méndez

    2009-11-01

    Full Text Available Shoot tips of maize (Zea mays L. were cultured on Murashige and Skoog medium supplemented with 2 mg/l BA +1 mg/l 2,4-D +40 mg/l, to investigate phases of ontogenetic development. The study used light microscopy as well as scanning and transmission electronic microscopy techniques. Shoot tips of maize are composed of small cells with a dense cytoplasm and a prominent nucleus. The process of organogenesis began with swelling of the shoot tip, as the first evidence of organogenic calli formation observed three weeks after culture get started. There were two morphologically different types of cells within the organogenic calli. The layer consisted of large cells with small nucleus, free-organelle cytosol, irregular plasmatic membrane, trichome-like structures, and thick cell walls. In the inner cell layer, small and isodiametric cells with a prominent nucleus, small vacuoles, endoplasmatic reticulum, Golgi, mitochondrias and chloroplasts were observed. The presence of trichomes in the more active morphogenic zones could indicate an organogenic potential. Rev. Biol. Trop. 57 (Suppl. 1: 129-139. Epub 2009 November 30.Los ápices de vástagos de maíz (Zea mays L. fueron cultivados con el medio Murashige y Skoog, utilizando como suplemento 2 mg/l BA +1 mg/l 2,4-D +40 mg/l, con el fin de investigar el proceso organogénico durante las diferentes fases del desarrollo ontogenético. El estudio utilizó tanto microscopía de luz, como técnicas de microscopía electrónica. Los análisis histológicos revelaron que los vástagos de maíz están compuestos de pequeñas células con citoplasma denso y núcleo prominente. El proceso de organogénesis inicia con el engrosamiento del ápice del vástago, como primera evidencia de la formación organogénica del calli observada tres semanas después del inicio del cultivo. El estudio ultraestructural muestra dos tipos de células morfológicamente diferentes en el calli organogénico. La capa externa consiste de

  4. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate

    Science.gov (United States)

    Granato, T. C.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Maize (Zea mays L.) plants with two primary nodal root axes were grown for 8 d in flowing nutrient culture with each axis independently supplied with NO3-. Dry matter accumulation by roots was similar whether 1.0 mol m-3 NO3- was supplied to one or both axes. When NO3- was supplied to only one axis, however, accumulation of dry matter within the root system was significantly greater in the axis supplied with NO3-. The increased dry matter accumulation by the +N-treated axis was attributable entirely to increased density and growth of lateral branches and not to a difference in growth of the primary axis. Proliferation of lateral branches for the +N axis was associated with the capacity for in situ reduction and utilization of a portion of the absorbed NO3-, especially in the apical region where lateral primordia are initiated. Although reduced nitrogen was translocated to the -N axis, concentrations in the -N axis remained significantly lower than in the +N axis. The concentration of reduced nitrogen, as well as in vitro NO3- reductase activity, was greater in apical than in more basal regions of the +N axis. The enhanced proliferation of lateral branches in the +N axis was accompanied by an increase in total respiration rate of the axis. Part of the increased respiration was attributable to increased mass of roots. The specific respiration rate (micromoles CO2 evolved per hour per gram root dry weight) was also greater for the +N than for the -N axis. If respiration rate is taken as representative of sink demand, stimulation of initiation and growth of laterals by in situ utilization of a localized exogenous supply of NO3- establishes an increased sink demand through enhanced metabolic activity and the increased partitioning of assimilates to the +N axis responds to the difference in sink demand between +N and -N axes.

  5. Study on the effect of x-ray irradiation of seed on zinc uptake in maize (Zea Mays L.) plants

    International Nuclear Information System (INIS)

    Joshi, Gargi; Singh, K.P.; Joshi, G.C.

    2007-01-01

    The effects of irradiations by X-rays at the two dose levels (1.1 KR and 2.2 KR) of seeds on uptake of zinc ion in maize (Zea Mays L.) plants were studied. The uptake and internal distribution of zinc ion in the maize plants was carried out by incorporating radioactive zinc as zinc chloride (ZnCl 2 ) in the nutrient solution to the plants. The localization and translocation of radioactive zinc was studied employing phosphor imaging systems (FX). The radioactivity measurement has been carried out using solid scintillation counter. It was observed that zinc ions uptake was higher in plants out of 2.2 KR X-rays irradiated seeds. (author)

  6. A comparative study on infestation of three varieties of maize ( Zea ...

    African Journals Online (AJOL)

    A study was carried out to study the infestation of three maize varieties (Maize suwan I–Y, Maize T2 USR – White single cross and Maize suwan 123) by Sitophilus zeamais Motsch. Infestation was assessed by counting the numbers of alive and dead adults and the number of infested and uninfested seeds. It was found out ...

  7. Allelopathic effects of aqueous extracts of sunflower on wheat (triticum aestivum l.) and maize (zea mays l.)

    International Nuclear Information System (INIS)

    Muhammad, Z.; Mujeed, A.

    2014-01-01

    Sunflower is a potent allelopathic plant which possesses important allelochemicals with known allelopathic activity on other plants. In this study, allelopathic effects of fresh aqueous extracts (FAE) and air dried aqueous extracts (DAE) of root, shoot and leaves of sunflower (Halianthus annuus L.) were investigated on germination and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in seed bioassay experiments carried out at Botany Department of Peshawar University during 2010. Results showed significantly inhibitory effects of aqueous extracts on seed germination, growth and dry biomass of seedlings of wheat and maize. In wheat seedlings, significant germination inhibition (15.21%), increased mean germination time (MGT) (57.76%), reduced plumule and radical growth (21.66 and 28.44%) and lowered seedlings dry biomass (31.05%) were recorded under dry aqueous extracts of leaf when compared to control. Germination percentage of maize was inhibited by dry aqueous extracts of leaf by 7.81%, germination index by 16.51%, increased MGT by 25.53%, decreased plumule and radical lengths by 29.00 and 36.12% respectively, and lowered maize seedling dry biomass by 34.02 %. In both experiments, dry aqueous extracts (DAE) were more phytotoxic than fresh aqueous extracts (FAE). Similarly, inhibitory effects of aqueous extracts of different parts of sunflower were recorded in the order leaf > shoot > root for both tested plants. (author)

  8. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    Science.gov (United States)

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  9. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.

    Science.gov (United States)

    Shi, Yu; Huang, Zhanbin; Liu, Xiujie; Imran, Suheryani; Peng, Licheng; Dai, Rongji; Deng, Yulin

    2016-04-01

    Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.

  10. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  11. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  12. Phosphorus and compost management influence maize (Zea mays productivity under semiarid condition with and without phosphate solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Amanullah eAmanullah

    2015-12-01

    Full Text Available Phosphorus (P unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB on the yield and yield components of maize (Zea mays L., cv. Azam. The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1 inoculated seed with PSB (+ and (2 seed not inoculated with PSB (- or control] and three compost application times [(30, 15 and 0 days before sowing (DBS] combination (six treatments were used as main plot factor, while four P levels (25, 50, 75 and 100 kg P ha-1 used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1 had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+ had tremendously increased yield and yield components of maize over PSB-control plots (- under semiarid condition.

  13. Developing Inset Resistant Maize Varieties for Food Security in Kenya

    International Nuclear Information System (INIS)

    Mugo, S.

    2002-01-01

    The Insect Resistant Maize for Africa (IRMA) project aims at increasing maize production and food security through development and deployment of stem borer resistant maize germplasm developed using conventional and through biotechnology methods such as Bt maize. Bt maize offers farmers an effective and practical option for controlling stem borers. It was recognized that the development and routine use of Bt maize will require addressing relevant bio-safety, environmental, and community concerns and research and information gathering activities are in place to address these concerns and research and information gathering activities are in place to address these concerns. Suitable Bt gene have been acquired or synthesized and back-crossed into elite maize germplasm at CIMMYT-Mexico, and the effective Cry-proteins against the major maize stem borers in Kenya were identified to better target pests. Stem borer resistant maize germplasm is being developed through conventional breeding, using locally adapted and exotic germplasm. for safe and effective deployment of Bt maize,studies on its impacts on target and non-target arthropods as well as studies on the effects of Bt maize on key non-target arthropods as well as studies on gene flow are underway. Insect resistance management strategies are being developed through quantifying the effectiveness, ???. Socioeconomic impact studies are revealing factors in the society that may influence the adoption of Bt maize in Kenya. Also, baseline data, essential for the monitoring and evaluation of the Bt maize technology in Kenya, has been established. Technology transfer and capacity building, creating awareness and communications have received attention in the project. This paper describes the major research activities as they relate to development of the stem bore resistant maize germplasm

  14. Analysis of genetic diversity among the maize inbred lines (Zea mays L. under heat stress condition

    Directory of Open Access Journals (Sweden)

    Manoj Kandel

    2017-12-01

    Full Text Available High temperature adversely affects the plant physiological processes: limits plant growth and reduction in grain yield. Heat stress is often encountered to spring sowing of maize in spring season. Twenty maize inbred lines were studied for days to 50 % anthesis and silking, anthesis–silking interval, leaf firing, tassel blast, SPAD reading and leaf senescence, plant and ear height, leaf area index, ear per plant, cob length and diameter, number of kernel/ear, number of kernel row/ear, number of kernel row, silk receptivity, shelling percentage, thousand kernel weight and grain yield in alpha lattice design at National Maize Research Program at Rampur, Chitwan,Nepal with the objective to identify superior heat stress tolerant lines. Analysis of variance showed significant difference for all the traits. Result of multivariable analysis revealed that twenty inbred lines formed four clusters. The resistance inbred lines and susceptible inbred lines formed different clusters. The members of cluster 4 were found to be tolerant to heat stress due to they had lowest value of tassel blast, leaf firing, and leaf area index with highest value of cob diameter and length, ear per plant, number of kernel row/ear, number of kernel/ear, number of kernel row, shelling percentage, silk receptivity and grain yield whereas as members of cluster 1were found most susceptible due to they had longer anthesis silking interval, with maximum tassel blast and leaf firing along with no grain yield under heat stress condition. From this study inbred lines RL-140, RML-76, RML-91 and RML-40 were found most tolerant to heat stress. These inbred lines belonging to superior cluster could be considered very useful in developing heat tolerant variety and other breeding activities.

  15. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    NARCIS (Netherlands)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  16. Dynamics of phosphorus fractions in the rhizosphere of fababean (Phaseolus vulgaris L.) and maize (Zea mays L.) grown in calcareous and acid soils

    NARCIS (Netherlands)

    Li, G.; Li, Haigang; Leffelaar, P.A.; Shen, J.; Zhang, F.

    2015-01-01

    The dynamics of soil phosphorus (P) fractions were investigated, in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Plants were grown in a mini-rhizotron with a thin (3 mm) soil layer, which was in contact with the root-mat, and considered as

  17. Determination of the Heterotic groups of Maize inbred lines and the ...

    African Journals Online (AJOL)

    Maize weevil (Sitophilus zeamais Motschulsky) is a major maize (Zea mays L) storage insect pest in the tropics. Fifty-two inbred lines developed for weevil resistance were crossed to two testers, A and B, to determine their heterotic groups and inheritance of resistance to maize weevil. For 10 testcrosses selected for ...

  18. Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

    Directory of Open Access Journals (Sweden)

    Ana L. Galiano-Carneiro

    2017-08-01

    Full Text Available Northern corn leaf blight (NCLB, the most devastating leaf pathogen in maize (Zea mays L., is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

  19. Farmers' preferences for maize attributes in eastern and western

    African Journals Online (AJOL)

    ACSS

    African Crop Science Journal by African Crop Science Society is licensed ... Maize (Zea mays L.) is an important staple food crop in Uganda and is emerging as a cash crop for smallholder .... colour, grain size, pest and disease resistance.

  20. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    Science.gov (United States)

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  1. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  2. Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.).

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Akram, Asim; Ashraf, Muhammad Y; Ahmad, Khawaja S; Zulfiqar, Bilal; Sardar, Hasan; Shabbir, Rana N; Majeed, Sadia; Shehzad, Muhammad A; Anwar, Irfan

    2017-11-01

    Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO 3 seed priming (0 and 0.5% KNO 3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg -1 Pb). Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO 3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO 3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO 3 supply to prevent Pb toxicity. Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO 3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Effects of gamma-irradiation on elongation and indole-3-acetic acid level of maize (Zea mays) coleoptiles

    International Nuclear Information System (INIS)

    Momiyama, M.; Koshiba, T.; Furukawa, K.; Kamiya, Y.; Sato, M.

    1999-01-01

    The effects of gamma-irradiation on elongation and the level of indole-3-acetic acid (IAA) of maize (Zea mays) coleoptiles were investigated. When 3-day-old seedlings of maize were exposed to gamma-radiation lower than 1 kGy, a temporal retardation of coleoptile elongation was induced. This retardation was at least partly ascribed to a temporal decrease in the amount of free IAA in coleoptile tips on the basis of the following facts: (1) the reactivity to IAA of the elongating coleoptile cells was not altered by irradiation; (2) endogenous IAA level in the tip of irradiated coleoptiles was at first unchanged, but then declined before returning to nearly the same level as that of the non-irradiated control; and (3) the amount of IAA that diffused from coleoptile tip sections showed a similar pattern to that of endogenous IAA. The rate of conversion between free and conjugated IAA was not significantly affected by irradiation. These results suggest that a temporal inhibition of maize coleoptile elongation induced by gamma-irradiation can be ascribed to the reduction of endogenous IAA level in the coleoptile tip, and this may originate from the modulation in the rate of IAA biosynthesis or catabolism. (author)

  4. Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays seedlings

    Directory of Open Access Journals (Sweden)

    Assieh Behdad

    2015-12-01

    Full Text Available Salinity reduced the efficiency of agricultural production like maize as one of the most important cereals for food and oil for humans. Silicon is the second most abundant element in the soil and alleviates the biotic and abiotic stresses in plants. The aim of this study is evaluate the effect of silicon and nanosilicon on improvement of salt stress in maize (Zea mays. For this propose, the interaction between the effects of different levels of salinity (0 and 100 mM, silicon and nanosilicon (50, 100 and 150 mg /mL was studied in completely randomized block design with factorial experiments and with three replications. The results showed that salinity significantly decreased root and shoot growth, amount of chlorophyll and carotenoid pigments, protein and potassium contents, compared to control. Treating plants with silicon and nanosilicon caused reduction of salinity effects and increase above indices. Salinity stress also caused a significant increase in proline, anthocyanin and soluble carbohydrate contents, lipid peroxidation, and catalase activity and treatment with silicon and nanosilicon alleviates effects of salt stress and reduced the amount of above indices. 150 mg/mL of nanosilicon showed the maximum effect on diminishing negative effects of salt stress on all examined parameters. So, the use of this element is proposed as alleviator of salt stress on maize.

  5. Bioaccessibility of pro-vitamin A carotenoids is minimally affected by non pro-vitamin a xanthophylls in maize (Zea mays sp.).

    Science.gov (United States)

    Thakkar, Sagar K; Failla, Mark L

    2008-12-10

    The absorption of some carotenoids has been reported to be decreased by coingestion of relatively high concentrations of other carotenoids. It is unclear if such interactions occur among carotenoids during the digestion of plant foods. Current varieties of maize contain limited amounts of the pro-vitamin A (pro-VA) carotenoids beta-carotene (BC) and beta-cryptoxanthin (BCX) and relatively higher levels of their oxygenated metabolites lutein (LUT) and zeaxanthin (ZEA). Here, we examined if LUT and ZEA attenuate the bioaccessibility of pro-VA carotenoids at amounts and ratios present in maize. BC incorporation into bile salt mixed micelles during chemical preparation and during simulated small intestinal digestion of carotenoid-enriched oil was slightly increased when the concentration of LUT was sixfold or more greater than BC. Likewise, the efficiency of BC micellarization was slightly increased during simulated small intestinal digestion of white maize porridge supplemented with oil containing ninefold molar excess of LUT to BC. Mean efficiencies of micellarization of BC, BCX, LUT, and ZEA were 16.7, 27.7, 30.3, and 27.9%, respectively, and independent of the ratio of LUT plus ZEA to pro-VA carotenoids during simulated digestion of maize porridge prepared from flours containing 0.4-11.3 microg/g endogenous pro-VA carotenoids. LUT attenuated uptake of BC by differentiated cultures of Caco-2 human cells from medium-containing micelles in a dose-dependent manner with inhibition reaching 35% when the molar ratio of LUT to BC was 13. Taken together, these results suggest that the bioaccessibility of pro-VA carotenoids in maize is likely to be minimally affected by the relative levels of xanthophylls lacking pro-VA activity present in cultivars of maize.

  6. Identification of resistance to Maize rayado fino virus in maize inbred lines

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  7. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    Science.gov (United States)

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  8. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize.

    Science.gov (United States)

    Kelley, Rowena Y; Gresham, Cathy; Harper, Jonathan; Bridges, Susan M; Warburton, Marilyn L; Hawkins, Leigh K; Pechanova, Olga; Peethambaran, Bela; Pechan, Tibor; Luthe, Dawn S; Mylroie, J E; Ankala, Arunkanth; Ozkan, Seval; Henry, W B; Williams, W P

    2010-10-07

    Aspergillus flavus Link:Fr, an opportunistic fungus that produces aflatoxin, is pathogenic to maize and other oilseed crops. Aflatoxin is a potent carcinogen, and its presence markedly reduces the value of grain. Understanding and enhancing host resistance to A. flavus infection and/or subsequent aflatoxin accumulation is generally considered an efficient means of reducing grain losses to aflatoxin. Different proteomic, genomic and genetic studies of maize (Zea mays L.) have generated large data sets with the goal of identifying genes responsible for conferring resistance to A. flavus, or aflatoxin. In order to maximize the usage of different data sets in new studies, including association mapping, we have constructed a relational database with web interface integrating the results of gene expression, proteomic (both gel-based and shotgun), Quantitative Trait Loci (QTL) genetic mapping studies, and sequence data from the literature to facilitate selection of candidate genes for continued investigation. The Corn Fungal Resistance Associated Sequences Database (CFRAS-DB) (http://agbase.msstate.edu/) was created with the main goal of identifying genes important to aflatoxin resistance. CFRAS-DB is implemented using MySQL as the relational database management system running on a Linux server, using an Apache web server, and Perl CGI scripts as the web interface. The database and the associated web-based interface allow researchers to examine many lines of evidence (e.g. microarray, proteomics, QTL studies, SNP data) to assess the potential role of a gene or group of genes in the response of different maize lines to A. flavus infection and subsequent production of aflatoxin by the fungus. CFRAS-DB provides the first opportunity to integrate data pertaining to the problem of A. flavus and aflatoxin resistance in maize in one resource and to support queries across different datasets. The web-based interface gives researchers different query options for mining the database

  9. Genetic diversity in South African maize ( Zea mays L.) genotypes as ...

    African Journals Online (AJOL)

    One thousand and forty three (1043) maize genotypes including white and yellow maize inbred lines as well as hybrids from the public germplasm collection were characterized with 80 microsatellite markers distributed throughout the genome. A total of 1874 alleles were amplified and used in the genetic diversity analysis.

  10. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    maize crop and improve the soil structures and chemical nutrients of the soil. The significant interaction between intra-row spacing and poultry manure on cob diameter, 100 grain weight and grain yield showed the importance of poultry manure on yield and yield components of maize crop. Poultry manure increases both ...

  11. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  12. Genetic variation of european maize genotypes (zea mays l. Detected using ssr markers

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2017-01-01

    Full Text Available The SSR molecular markers were used to assess genetic diversity in 40 old European maize genotypes. Ten SSR primers revealed a total of 65 alleles ranging from 4 (UMC1060 to 8 (UMC2002 and UMC1155 alleles per locus with a mean value of 6.50 alleles per locus. The PIC values ranged from 0.713 (UMC1060 to 0.842 (UMC2002 with an average value of 0.810 and the DI value ranged from 0.734 (UMC1060 to 0.848 (UMC2002 with an average value of 0.819. 100% of used SSR markers had PIC and DI values higher than 0.7 that means high polymorphism of chosen markers used for analysis. Probability of identity (PI was low ranged from 0.004 (UMC1072 to 0.022 (UMC1060 with an average of 0.008. A dendrogram was constructed from a genetic distance matrix based on profiles of the 10 maize SSR loci using the unweighted pair-group method with the arithmetic average (UPGMA. According to analysis, the collection of 40 diverse accessions of maize was clustered into four clusters. The first cluster contained nine genotypes of maize, while the second cluster contained the four genotypes of maize. The third cluster contained 5 maize genotypes. Cluster 4 contained five genotypes from Hungary (22.73%, two genotypes from Poland (9.10%, seven genotypes of maize from Union of Soviet Socialist Republics (31.81%, six genotypes from Czechoslovakia (27.27%, one genotype from Slovak Republic (4.55% and one genotype of maize is from Yugoslavia (4.55%. We could not distinguish 4 maize genotypes grouped in cluster 4, (Voroneskaja and Kocovska Skora and 2 Hungarian maize genotypes - Feheres Sarga Filleres and Mindszentpusztai Feher, which are genetically the closest.

  13. Difference between resistant and susceptible maize to systematic colonization as revealed by DsRed-labeled Fusarium verticillioides

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2013-10-01

    Full Text Available Fusarium verticillioides was labeled with DsRed via Agrobacterium tumefaciens-mediated transformation to examine differences in colonization and reactions of resistant and susceptible inbred lines of maize (Zea mays L.. The extent of systemic colonization of F. verticillioides in roots from maize lines either resistant or susceptible to the fungus was studied by visualizing the red fluorescence produced by the fungus expressing DsRed. The difference in quantities of colony forming units (CFU in roots and basal stems, production of fumonisin B1, and pH of root were determined. Although F. verticillioides colonized both resistant and susceptible lines, differences were observed in the pattern and extent of fungal colonization in the two types of maize lines. The fungus colonized the susceptible lines producing mosaic patterns by filling the individual root cells with hyphae. Such a pattern of colonization was rarely observed in resistant lines, which were less colonized by the fungus than the susceptible lines in terms of CFUs. The production of mycotoxin fumonisin B1 in roots from different lines was closely correlated with the amount of F. verticillioides colonization, rather than the pH or amylopectin concentrations in the root. The findings from this study contribute to a better understanding of the defense mechanism in resistant maize lines to F. verticillioides.

  14. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).

    Science.gov (United States)

    Xu, Wending; Lu, Guining; Wang, Rui; Guo, Chuling; Liao, Changjun; Yi, Xiaoyun; Dang, Zhi

    2015-01-01

    A pot experiment was conducted to investigate the effects of pollination on cadmium (Cd) phytoextraction from soil by mature maize plants. The results showed that the unpollinated maize plants accumulated 50% more Cd than that of the pollinated plants, even though the dry weight of the former plants was 15% less than that of the latter plants. The Cd accumulation in root and leaf of the unpollinated maize plant was 0.47 and 0.89 times higher than that of the pollinated plant, respectively. The Cd concentration in the cob was significantly decreased because of pollination. Preventing pollination is a promising approach for enhancing the effectiveness of phytoextraction in Cd-contaminated soils by maize. This study suggested that in low Cd-contaminated soil pollination should be encouraged because accumulation of Cd in maize grains is very little and maize seeds can bring farmers economic benefits, while in high Cd-contaminated soil, inhibition of pollination can be applied to enhance phytoextraction of Cd from soil by maize plant.

  15. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  16. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects.

    Science.gov (United States)

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M; Zhao, Zhi-wei

    2016-02-25

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg(-1)). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  17. Effects of solar UVB radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.)

    International Nuclear Information System (INIS)

    Mark, U.; Saile-Mark, M.; Tevini, M.

    1996-01-01

    Different cultivars of maize (Zea mays L.) originating from Central and South Europe were grown from June to September 1994 for 16 weeks in two greenhouses covered with different UVB-absorbing (280-320 nm) plastic foils. Using the ambient UVB radiation level of a southern location (Portugal, 38.7 o N) in one of the greenhouses as an enhanced radiation compared to the reduced radiation in the second greenhouse, an increase of about 12% of UVB was simulated. Six of the eight cultivars examined showed significant reductions in height of up to 18.9% at all developmental stages under increased UVB. In contrast to this, the fresh and dry weight as well as the leaf area was reduced under UVB only at early developmental stages, but with ongoing development the UVB stressed plants caught up. The total content of absorbing compounds of the maize cultivars was completely unaffected by UVB. A flowering delay up to a maximum of 5 days was observed under higher UVB in several cultivars. Probably due to this delay in the cob development the yield decreased to 27.7% under higher UVB at the first harvest after 12 and 14 weeks, whereas at the second harvest after 14 and 16 weeks yield reduction levelled off. (Author)

  18. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    Science.gov (United States)

    Wang, Jun-Ling; Li, Tao; Liu, Gao-Yuan; Smith, Joshua M.; Zhao, Zhi-Wei

    2016-02-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg-1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  19. Utilization of soil and fertilizer zinc by maize (Zea mays) and moong (Phaseolus aureus Roxb.) from some Indian soils

    International Nuclear Information System (INIS)

    Iyengar, B.R.V.; Deb, D.L.

    1977-01-01

    Utilization of soil and fertilizer zinc by maize (Zea mays) and moong (Phaseolus aureus Roxb.) was studied under greenhouse conditions in ten soils belonging to three important soil groups of India viz. alluvial, red and laterite using two levels of labelled zinc sulphate. The efficiency of utilization of fertilizer zinc was found to be higher at 10 ppm level of application in both the crops as compared with 20 ppm level of applied zinc. The total utilization of fertilizer zinc by both the crops in different soils ranged from 0.47 to 1.34 percent and 0.41 to 0.95 percent at 10 and 20 ppm level of applied zinc, respectively. Application of fertilizer zinc resulted in a decrease in the uptake of soil zinc. The utilization of fertilizer zinc was found to be negatively correlated with soil pH but the interaction of different soil characters seemed to have determined the efficiency of fertilizer use by both the crops. The efficiency of fertilizer zinc utilization was found to be low in moong as compared with maize. (author)

  20. Genotypic variation for maize weevil resistance in eastern and ...

    African Journals Online (AJOL)

    ACSS

    Uganda Journal of Agricultural Sciences by National Agricultural Research Organisation ... damage, median development period, Dobie's index of susceptibility, and ... resistance and grain yield, suggesting that breeding for maize weevil ...

  1. Effect of zinc and phosphorus on dry matter yield, uptake and utilization of 65Zn on Maize (Zea Mays L.) grown in a molli-soil

    International Nuclear Information System (INIS)

    Joshi, Megha; Shri Ram; Joshi, G.C.

    2013-01-01

    Zinc uptake and its utilization by Maize (Zea mays L.) variety Pragati using radiotracer 65 Zn technique along with varying levels of phosphorus treatments on dry matter yield was studied. The gamma activity was measured by calibrated NaI(Tl) gamma ray spectrometer. It was observed that zinc uptake in treatment T 2 found to be higher. However, treatment T 6 showed good growth parameters and dry matter yield. The 65 Zn activity was found maximum in roots and minimum in the leaves of maize plant. (author)

  2. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation.

    Science.gov (United States)

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Hussain, Saddam; Bao, Mingchen; Wang, Longchang; Khan, Imran; Ullah, Ehsan; Tung, Shahbaz Atta; Samad, Rana Abdul; Shahzad, Babar

    2015-11-01

    Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.

  3. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    Science.gov (United States)

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  4. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  5. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays in response to drought and light.

    Directory of Open Access Journals (Sweden)

    Xiuli Hu

    Full Text Available To better understand abscisic acid (ABA regulation of the synthesis of chloroplast proteins in maize (Zea mays L. in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS. After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4 plants.

  6. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb, which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20-60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding.

  7. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    Science.gov (United States)

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  8. A novel beta-glucosidase from the cell wall of maize (Zea mays L.): rapid purification and partial characterization

    Science.gov (United States)

    Nematollahi, W. P.; Roux, S. J.

    1999-01-01

    Plants have a variety of glycosidic conjugates of hormones, defense compounds, and other molecules that are hydrolyzed by beta-glucosidases (beta-D-glucoside glucohydrolases, E.C. 3.2.1.21). Workers have reported several beta-glucosidases from maize (Zea mays L.; Poaceae), but have localized them mostly by indirect means. We have purified and partly characterized a 58-Ku beta-glucosidase from maize, which we conclude from a partial sequence analysis, from kinetic data, and from its localization is not identical to any of those already reported. A monoclonal antibody, mWP 19, binds this enzyme, and localizes it in the cell walls of maize coleoptiles. An earlier report showed that mWP19 inhibits peroxidase activity in crude cell wall extracts and can immunoprecipitate peroxidase activity from these extracts, yet purified preparations of the 58 Ku protein had little or no peroxidase activity. The level of sequence similarity between beta-glucosidases and peroxidases makes it unlikely that these enzymes share epitopes in common. Contrary to a previous conclusion, these results suggest that the enzyme recognized by mWP19 is not a peroxidase, but there is a wall peroxidase closely associated with the 58 Ku beta-glucosidase in crude preparations. Other workers also have co-purified distinct proteins with beta-glucosidases. We found no significant charge in the level of immunodetectable beta-glucosidase in mesocotyls or coleoptiles that precedes the red light-induced changes in the growth rate of these tissues.

  9. Is Drought Tolerance in Maize (Zea Mays L.) Cultivars at the Juvenile Stage Maintained at the Reproductive Stage

    International Nuclear Information System (INIS)

    Bashir, N.; Mahmood, S.; Zafar, Z. U.; Athar, H. R.; Manzoor, H.; Rasul, S.

    2016-01-01

    Among several abiotic stresses, drought or water scarcity is a major constraint for crop production in many parts of the world. Six maize (Zea mays L.) cultivars; DTC, EV-77, EV-78, EV-79, Faisalabad mays, and 6621 were evaluated for drought tolerance at germination and seedling stages. Distilled deionized water was used as control but uniform drought stress was induced using 3, 6 and 9 percent of polyethylene glycol-6000 (PEG-6000) which correspond to osmotic potential of -0.0466, -0.0759 and -0.0876 MPa, respectively. PEG influenced the germination and growth of the cultivars in a concentration dependent manner but the highest level of PEG induced more drastic decline for the various attributes studied. The cultivars showed significantly variable responses to different levels of PEG. The result of study clearly suggested variability of characters for drought tolerance among maize cultivars. Based on the pattern of variability for various attributes, 3 groups of cultivars can be classified. The cultivar 6621 had a consistent degree of sensitivity to drought in terms the reduction of various attributes studied. The second group includes DTC which showed a steady tolerance ((germination percentage (GP), energy of emergence (EG), germination rate (GR), root fresh and dry weight (RFW and RDW), shoot fresh and dry weight (SFW and SDW), dry biomass tolerance index (DBTI) and seedling vigor index (SVI)) thus seemed to provide some manifestation of drought tolerance. For the third group of cultivars, pattern of drought tolerance was independent for germination, growth and physiological indices as an incoherent variability of attributes was observed. A similar pattern of variability for a number of characters to simulated water stress in the cultivar DTC served as reliable determinants for drought tolerance in maize. To assess maintenance of degree of drought tolerance selected maize cultivars, a field experiment was also conducted. Kernel yield, 1000- kernel weight (g

  10. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  11. Utilization of maize (Zea mays) cob as an adsorbent for lead (II ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... heavy metal of great environmental concern and poses threat to .... groups responsible for interaction with metal ions (Dakiky et al., 2002). ... negatively charged. ... was greatly enhanced by shaking except maize cob at 60.

  12. Isolation of Mucorales from processed maize (Zea mays L.) and screening for protease activity

    OpenAIRE

    de Azevedo Santiago, Andr? Luiz Cabral Monteiro; de Souza Motta, Cristina Maria

    2008-01-01

    Mucorales were isolated from maize flour, corn meal and cooked cornflakes using surface and depth plate methods. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus, Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis and Absidia cylindrospora showed protease activity.

  13. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    Bayero Journal of Pure and Applied Sciences, 5(1): 113 – 122 ... Department of Agronomy Institute of Agricultiral Research, Ahmadu Bello University, Zaria ..... Nitrogen fertilization significantly increased extra early maize development.

  14. Effects of salt stress on germination of some maize (Zea mays L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Key words: Maize, NaCl, germination percentage, stress tolerance ındex, germination ındex. .... interactions between salt treatments and cultivars. This ..... Hormones and Abiotic Stresses on Germination, Growth and Phos-.

  15. Fertilizer use efficiency by maize ( Zea mays ) and egusi-melon ...

    African Journals Online (AJOL)

    Three separate field studies were conducted in a rainforest area to determine efficient use of applied fertilizers by maize and egusi-melon in various ratios of mixtures in an ultisol in Nigeria. The experiment was a factorial combination of seven cropping ratios of maize and egusi-melon (MA:EM 1:0, 1:1, 2:1, 3:1, 1:2, and 1:3, ...

  16. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Runqing Yue

    2016-08-01

    Full Text Available Cadmium (Cd is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize ‘Zheng 58’ root responses to Cd stress was sequenced using Illumina sequencing technology. In our study, six RNA-seq libraries yielded a total of 244 million clean short reads and 30.37 Gb of sequence data. A total of 6342 differentially expressed genes (DEGs were grouped into 908 Gene Ontology (GO categories and 198 Kyoto Encyclopedia of Genes and Genomes terms. GO term enrichment analysis indicated that various auxin signaling pathway-related GO terms were significantly enriched in DEGs. Comparison of the transcript abundances for auxin biosynthesis, transport, and downstream response genes revealed a universal expression response under Cd treatment. Furthermore, our data showed that free indole-3-acetic acid (IAA levels were significantly reduced; but IAA oxidase activity was up-regulated after Cd treatment in maize roots. The analysis of Cd activity in maize roots under different Cd and auxin conditions confirmed that auxin affected Cd accumulation in maize seedlings. These results will improve our understanding of the complex molecular mechanisms underlying the response to Cd stress in maize roots.

  17. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdennaceur, Hassen; Jedidi, Naceur

    2013-01-01

    The ubiquitous coexistence of heavy metals and organic contaminants was increased in the polluted soil and phytoremediation as a remedial technology and management option is recommended to solve the problems of co-contamination. Growth of Zea mays L and pollutant removal ability may be influenced by interactions among mixed pollutants. Pot-culture experiments were conduced to investigate the single and interactive effect of cadmium (Cd) and pentachlorophenol (PCP) on growth of Zea mays L, PCP, and Cd removal from soil. Growth response of Zea mays L is considerably influenced by interaction of Cd and PCP, significantly declining with either Cd or PCP additions. The dissipation of PCP in soils was notably affected by interactions of Cd, PCP, and plant presence or absence. At the Pentachlorophenol in both planted and non-planted soil was greatly decreased at the end of the 10-week culture, accounting for 16-20% of initial extractable concentrations in non-planted soil and 9-14% in planted soil. With the increment of Cd level, residual pentachlorophenol in the planted soil tended to increase. The pentachlorophenol residual in the presence of high concentration of Cd was even higher in the planted soil than that in the non-planted soil.

  18. Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Songlin Hu

    2017-06-01

    Full Text Available Brassinosteroids (BRs and Gibberellins (GAs are two classes of plant hormones affecting plant height (PHT. Thus, manipulation of BR and GA levels or signaling enables optimization of crop grain and biomass yields. We established backcross (BC families, selected for increased PHT, in two elite maize inbred backgrounds. Various exotic accessions used in the germplasm enhancement in maize project served as donors. BC1-derived doubled haploid lines in the same two elite maize inbred backgrounds established without selection for plant height were included for comparison. We conducted genome-wide association studies to explore the genetic control of PHT by BR and GA. In addition, we used BR and GA inhibitors to compare the relationship between PHT, BR, and GA in inbred lines and heterozygotes from a physiological and biological perspective. A total of 73 genomic loci were discovered to be associated with PHT, with seven co-localized with GA, and two co-localized with BR candidate genes. PHT determined in field trials was significantly correlated with seedling stage BR and GA inhibitor responses. However, this observation was only true for maize heterozygotes, not for inbred lines. Path analysis results suggest that heterozygosity increases GA levels, which in turn promote BR levels. Thus, at least part of heterosis for PHT in maize can be explained by increased GA and BR levels, and seedling stage hormone inhibitor response is promising to predict heterosis for PHT.

  19. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  20. Viable suspensions of maize (Zea mays L.) pollen with exogenous DNA

    Energy Technology Data Exchange (ETDEWEB)

    Broglia, M. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione

    1996-12-01

    A viable suspension of maize pollen in aqueous medium containing exogenous DNA would be a suitable tool in attempting maize genetic transformation via pollen grains by different techniques. In this work the effects of addition of DNA to hypertonic aqueous media able to preserve maize pollen viability were investigated. An almost total loss of viability was found when pollen was incubated with native DNA in water or sucrose medium due to the immediate sticking of DNA on the pollen wall. Calcium in the incubation medium avoided DNA sticking preserving pollen fertilization ability. Pre-washing of pollen in hypertonic sucrose solution was proved to remove DNA binding components from the pollen wall. PEG 20%, that is known to inhibit pollen, and silk nucleases, was also used instead of sucrose, without any reduction in the seed-set yields.

  1. Selectivity and stability of herbicides and herbicide combinations for the grain yield of maize (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-09-01

    Full Text Available Abstract. The research was conducted during 2012 - 2014 on pellic vertisol soil type. Under investigation was cycloxydim tolerant maize hybrid Ultrafox duo (Zea mays L.. Factor A included the years of investigation. Factor B included no treated check and 3 soil-applied herbicides – Adengo 465 SC (isoxaflutol + tiencarbazon – 440 ml/ha, Wing P (pendimethalin + dimethenamid – 4 l/ha and Lumax 538 SC (S-metolachlor + terbuthylazine + mesotrione – 4 l/ha. Factor C included no treated check and 5 foliar-applied herbicides – Stellar 210 SL (topramezon + dicamba – 1 l/ha, Principal plus (nicosulfuron + rimsulfuron + dicamba – 380 g/ha, Ventum WG (foramsulfuron + iodosulfuron – 150 g/ha, Monsun active OD (foramsulfuron + tiencarbazon – 1.5 l/ha and Laudis OD (tembotrione – 2 l/ha. In addition to these variants by conventional technology for maize growing one variant by Duo system technology is also included in the experiment. It includes soil-applied herbicide Merlin flex 480 SC (isoxaflutole – 420 g/ha and tank mixture of antigraminaceous herbicide Focus ultra (cycloxydim - 2 l/ha + antibroadleaved herbicide Kalam (tritosulfuron + dicamba – 300 g/ha. It is found that herbicide combination of soil-applied herbicide Merlin flex with tank mixture Focus ultra + Kalam by Duo system technology leads to obtaining high grain yield. High yields of maize grain are also obtained by herbicide combinations Lumax + Principal plus, Lumax + Laudis and Wing + Principal plus. The most unstable are the non-treated check and single use of soilapplied herbicides Adengo, Wing and Lumax. Technologically the most valuable are herbicide combination Merlin flex + Focus ultra + Kalam by Duo system technology, followed by combinations of foliar-applied herbicides Principal plus and Laudis with soil-applied herbicides Adengo, Wing and Lumax by conventional technology. Single use of herbicides has low estimate due to must to combine soil-applied with foliar

  2. Nixtamalized flour from quality protein maize (Zea mays L). optimization of alkaline processing.

    Science.gov (United States)

    Milán-Carrillo, J; Gutiérrez-Dorado, R; Cuevas-Rodríguez, E O; Garzón-Tiznado, J A; Reyes-Moreno, C

    2004-01-01

    Quality of maize proteins is poor, they are deficient in the essential amino acids lysine and tryptophan. Recently, in Mexico were successfully developed nutritionally improved 26 new hybrids and cultivars called quality protein maize (QPM) which contain greater amounts of lysine and tryptophan. Alkaline cooking of maize with lime (nixtamalization) is the first step for producing several maize products (masa, tortillas, flours, snacks). Processors adjust nixtamalization variables based on experience. The objective of this work was to determine the best combination of nixtamalization process variables for producing nixtamalized maize flour (NMF) from QPM V-537 variety. Nixtamalization conditions were selected from factorial combinations of process variables: nixtamalization time (NT, 20-85 min), lime concentration (LC, 3.3-6.7 g Ca(OH)2/l, in distilled water), and steep time (ST, 8-16 hours). Nixtamalization temperature and ratio of grain to cooking medium were 85 degrees C and 1:3 (w/v), respectively. At the end of each cooking treatment the steeping started for the required time. Steeping was finished by draining the cooking liquor (nejayote). Nixtamal (alkaline-cooked maize kernels) was washed with running tap water. Wet nixtamal was dried (24 hours, 55 degrees C) and milled to pass through 80-US mesh screen to obtain NMF. Response surface methodology (RSM) was applied as optimization technique, over four response variables: In vitro protein digestibility (PD), total color difference (deltaE), water absorption index (WAI), and pH. Predictive models for response variables were developed as a function of process variables. Conventional graphical method was applied to obtain maximum PD, WAI and minimum deltaE, pH. Contour plots of each of the response variables were utilized applying superposition surface methodology, to obtain three contour plots for observation and selection of best combination of NT (31 min), LC (5.4 g Ca(OH)2/l), and ST (8.1 hours) for producing

  3. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Studies on Screening of Maize (Zea mays L.) Hybrids under Drought Stress Conditions

    OpenAIRE

    Zahoor Ahmad

    2015-01-01

    Drought is one of the most serious problems posing a grave threat to cereals production including maize. Two experiments (lab and wire house) were conducted to screen out the most tolerant and most sensitive maize hybrids (7386, 6525, Hycorn, 9696, 32B33, 3672, MMRI and 31P41) under artificial imposing drought stress by PEG-6000 and under water stress applied after seedling emergence. In first experiment five water stress levels such as zero (control), -0.2 MPa, -0.4 MPa, -0.6 MPa, and -0.8 M...

  5. Physiology of forage maize (Zea mays L.) in relation to its production and quality

    NARCIS (Netherlands)

    Struik, P.C.

    1983-01-01

    This thesis describes and discusses the quantitative effects of changes in temperature, light intensity and photoperiod on the development, dry-matter production, dry-matter distribution, digestibility and dry-matter content of forage maize. Cultivation techniques and hybrid choice are also

  6. Fertilizer nitrogen use efficiency and nutrient uptake by maize (Zea mays L.) in vertisols in Kenya

    NARCIS (Netherlands)

    Sigunga, D.O.

    1997-01-01

    The general objectives of this study were to increase the understanding of nitrogen (N) losses in maize cropping on Vertisols, and to develop management options to reduce such losses and to improve fertilizer N use efficiency. The specific objectives were. to quantify the effects of

  7. Genetic diversity in South African maize (Zea mays L.) genotypes as ...

    African Journals Online (AJOL)

    Charlotte Mienie

    varied between 6 and 36 per locus for the total population screened. When looking at the separate populations tested, the mean number of alleles per locus was the highest for the yellow maize breeding lines, which also had the highest entries in the screening program (Table. 2). In PCoA of the RD of the breeding lines, the ...

  8. Improvement in maize (zea mays l) growth and quality through integrated use of biochar

    International Nuclear Information System (INIS)

    Ali, K.; Shah, F.; Shehzad, A.; Munsif, F.; Mian, A.A.

    2017-01-01

    To evaluate the potential use of biochar in crop production, two years experiments were conducted in 2013 and 2014. The experiment consisted of three factors namely: (1) Biochar (0, 25 and 50 ton ha-1), (2) FYM (5 and 10 ton ha-1) and (3) nitrogen (75 and 150 kg ha-1). A control treatment (no application of either treatment) was included in the experiment for comparison. All the treatments were replicated three time in RCB design at New Developmental Farm of the University of Agriculture Peshawar Pakistan. Experimental evidence indicated that BC, FYM and N significantly delayed all growth stages of maize such as days to taseling, silking and maturity. Biochar application significantly improved maize oil content by 12 and 29% over no BC plots (plots receiving other treatments) and control plots respectively. An increase of 27% and decrease of 11% was observed in maize protein and starch content in BC treated plots over control. FYM application of 10 ton ha-1 improved maize protein content by 12% but reduced oil content by 15% over 5 ton FYM ha-1. Likewise, N application resulted in higher protein content and starch content but reduced oil content significantly. Overall, application of BC showed convincing results as sole application of N and FYM, however, problems associated with BC production in Pakistan are needed to be addressed in future research. (author)

  9. Utilization of maize ( Zea mays ) cob as an adsorbent for lead (II ...

    African Journals Online (AJOL)

    Maize cob was used as an adsorbent in order to evaluate its potential for the removal of lead from aqueous solutions and effluents from battery and paint industries with Dowex (synthetic resin) as control. Experimental data were analyzed in terms of Freundlich isotherm model. Equilibrium was attained at 2 h and adsorption ...

  10. Efficacy of nitrogen on the growth and yield of maize (Zea Mays L ...

    African Journals Online (AJOL)

    , 170, 210 and 250 kg/ha with three replications. Urea application significantly increased plant height, number of leaves and ear weight, ear length and ear diameter per plant. The use of 210kg/ha Nitrogen produced the best maize grain yield ...

  11. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil

    Energy Technology Data Exchange (ETDEWEB)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V., E-mail: veerajendran@gmail.com [K. S. Rangasamy College of Technology, Centre for Nano Science and Technology (India); Kannan, N. [K. S. Rangasamy College of Arts and Science, Department of Biotechnology (India)

    2012-12-15

    The present study aims to explore the effect of high surface area (360.85 m{sup 2} g{sup -1}) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha{sup -1}) in comparison with bulk silica (15-20 kg ha{sup -1}). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha{sup -1} whereas at 20 kg ha{sup -1}, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha{sup -1} (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha{sup -1} compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha{sup -1} has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  12. Development and mapping of gene-tagged SNP markers in laccases of maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Andersen, J R; Asp, T; Lu, Y C

    2009-01-01

    Laccases, EC 1.10.3.2 or p-diphenol : dioxygen oxidoreductases, have been proposed to be involved in the oxidative polymerization of monolignols into lignins in plants. While 17 laccases have been identified in Arabidopsis, only five (ZmLac1-5) have so far been identified in maize. By a bioinform...

  13. Isolation of Mucorales from processed maize (Zea mays L.) and screening for protease activity

    Science.gov (United States)

    de Azevedo Santiago, André Luiz Cabral Monteiro; de Souza Motta, Cristina Maria

    2008-01-01

    Mucorales were isolated from maize flour, corn meal and cooked cornflakes using surface and depth plate methods. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus, Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis and Absidia cylindrospora showed protease activity. PMID:24031292

  14. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants.

    Science.gov (United States)

    Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I

    2018-03-01

    Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Genetic variation and relationships of old maize genotypes (Zea mays l. detected using SDS-page

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 40 old genotypes of maize from Hungary, Union of Soviet Socialist Republics, Poland, Czechoslovakia, Yugoslavia and Slovak Republic  were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE through vertical slab unit. The number of total scorable protein bands was twentythree as a result of SDS-PAGE technique but those that were not cosistent in reproducibility and showed occasional variation in sharpness and density were not considered. Out of twentythree polypeptide bands, 6 (31% were commonly present in all accessions and considered as monomorphic, while 17 (65% showed variations and considered as polymorphic. On the basis of banding profiles of proteins of different kDa, gel was divided into zones A, B and C. The major protein bands were lied in zones A and B, while minor bands were present in zones C. In zone A out of 10 protein bands, 1 were monomorphic and 9 were polymorphic. In zone B out of 8 protein bands, 3 was monomorphic and 5 was polymorphic and in zone C out of 5 protein bands, 2 were monomorphic whereas 3 polymorphic. The dendrogram tree demonstrated the relationship among the forty registered old maize genotypes according to the similarity index, using UPGMA cluster analysis. The dendrogram was divided into two main clusters. The first one contained eleven genotypes from maize, while the second cluster contained the twentynine genotypes of maize. Similarly the present study of genetic variability in the seed storage polypeptide determined by SDS-PAGE technique proved that it is fruitful to identify genetic diversity among accessions of maize

  16. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  17. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  18. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  19. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    Science.gov (United States)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  1. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    International Nuclear Information System (INIS)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha

    2016-01-01

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  2. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha, E-mail: haqnawaz@bzu.edu.pk [Bahauddin Zakariya University, Multan (Pakistan)

    2016-10-15

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  3. SRAP analysis for space induced mutant line of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Du Wenping; Yu Guirong; Song Jun; Xu Liyuan

    2011-01-01

    In order to detect the effects of space mutation on maize, 16 SRAP primers were applied for the discrimination of the maize inbred line '968' and its 93 mutant materials, 154 polymorphic fragments were amplified. The average of polymorphic bands detected by per SRAP primer combination was 9.6 with a range from 5 to 18. Genetic similarities among the 94 materials ranged from 0.481 to 1.000 with an average of 0.903, and the largest genetic distance was found between mutant line 37 and control. The 94 materials were divided into six groups with the similarity coefficient of 0.732. The phylogenetic analysis showed distinct variation among the mutants. The results indicated that SRAP markers could be used for analyzing genetic variation of mutants. (authors)

  4. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots.

    Science.gov (United States)

    Esim, Nevzat; Tiryaki, Deniz; Karadagoglu, Omer; Atici, Okkes

    2013-10-01

    The aim of this study was to investigate the possible oxidative stress and the antioxidant response, which were caused on maize by boron (B). For this, 11- and 15-day-old maize seedlings were subjected to 2 or 4 mM B in the form of boric acid (H₃BO₃) for 2 and/or 6 days. At the end of the treatment period, root length, hydrogen peroxide (H₂O₂) content, malondialdehyde (MDA) content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were measured. The results revealed that root length of plants, activity of antioxidative enzymes such as SOD, POX and CAT and also H₂O₂ contents and MDA levels were seriously affected by excess B. These results suggested that the oxidative stress occurred due to the toxic effect of B.

  5. Field inoculation of arbuscular mycorrhiza on maize (Zea mays L. under low inputs: preliminary study on quantitative and qualitative aspects

    Directory of Open Access Journals (Sweden)

    Emilio Sabia

    2015-03-01

    Full Text Available Arbuscular mycorrhizal symbiosis contributes to the sustainability of soil-plant system. A field experiment was conducted to examine the effect of arbuscular mycorrhiza (AM on quantitative and qualitative performance in forage maize (Zea mays L.. Within the project Sviluppo di modelli zootecnici ai fini della sostenibilità (SOS-ZOOT a trial was conducted at the experimental farm of the Agricultural Research Council in Bella (PZ, located in Basilicata region (Southern Italy at 360 m asl, characterised by an annual rainfall of approximately 650 mm. For spring sowing, two plots of 2500 m2 were used, one sown with seeds inoculated with AM (M, 1.0 kg/ha, and the other one with non-inoculated seeds (NM. After 120 days after sowing, when plants showed 30% dry matter, five replicates of 1 m2 per plot were used to estimate dry matter yield (DMY, while half plot was dedicated to the assessment of grain production. For each replicate, three representative plants were considered; each plant was measured for height and was divided into leaves, stem and ear. For each plot, the following constituents were determined: crude protein, ash, ether extract, crude fibre (CF, fractions of fibre [neutral detergent (NDF, acid detergent fibre (ADF and sulphuric acid lignin] and phosphorus (P. Throughout the period of plants’ growth, no herbicides, organic or inorganic fertilisation, and irrigation water were distributed. The preliminary results revealed a significant effect of AM inoculation on forage maize DMY, P content in the whole plant, into the leaves and on the quality of steam. The M thesis showed a significant increase in terms of DMY in comparison with the NM thesis: 21.2 vs 17.9 t/ha (P<0.05. The mycorrhized whole plants [0.22 vs 0.17% dry matter (DM, P<0.05] and leaves (0.14 vs 0.09% DM, P<0.05 showed an increased P content. The stems of M plants showed a content of CF, NDF, ADF and Ash significantly lower compared with NM plants. No significant

  6. Genetic diversity of improved salt tolerant calli of maize (Zea mays L.) using RAPD

    Science.gov (United States)

    Saputro, Triono Bagus; Dianawati, Siti; Sholihah, Nur Fadlillatus; Ermavitalini, Dini

    2017-06-01

    Maize is one of important cultivated plants in the world, in terms of production rates, utilization rates and demands. Unfortunately, the increment of demands were not followed by the increase of production rates since the cultivation area were significantly decrease. Coastal area is the marginal land that have a good potential to extend the cultivation area. The main challenge of this area is the high content of salt. The aims of this research were try to induce a new varian of local maize through in vitro culture and observe its genetic variation using RAPD. Bluto variety from Madura island was used as an explant in callus induction. Induction of callus were conducted using MS basal medium supplemented with 3 mg/L of 2,4 D under dark condition. While the selection stage was conducted using MS basal medium supplemented with 3 mg/L of 2,4 D with the addition of various concentration of NaCl (0 mg/L; 2500 mg/L; 5000 mg/L; and 7500 mg/L). The research were arranged in a completely randomized design with three replications. The exposion of NaCl were significantly decrease the mass of maize callus. The highest addition of callus weight was 210 mgs in control treatment, while the lowest is in 7500 mg/L with 3 mgs. The RAPD technique was utilized to characterize the genotype of maize callus. Out of five primers, only three primers can produce polymorphic bands named OPA10, OPB07 and OPC02. Taken together, the surviving callus of Bluto varians can be further developed as potential somaclone that has high tolerance to salt stress.

  7. Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit

    International Nuclear Information System (INIS)

    Amin, M.; Ahmad, R.; Basra, S.M.A.; Murtaza, G.

    2014-01-01

    Current water scarcity is an emerging issue in semi-arid regions like Pakistan and cause of deterioration in productivity of crops to reduce crop yield all over the world. Silicon is known to be better against the deleterious effects of drought on plant growth and development. A pot study was conducted to evaluate the effect of Si nutrition (0, 50, 100 and 150 mg/kg) on the growth of a relatively drought tolerant (P-33H25) and sensitive (FH-810) maize hybrids. Two levels of soil water content were used viz. 100 and 60% of field capacity. Water deficit condition in soil significantly reduced morphological and physiological attributes of maize plants. Silicon application significantly improved the plant height, leaf area per plant, primary root length, dry matter of shoot and roots and plant dry matter, water relation and gas exchange characteristics of both maize cultivars under water deficit condition. Poor growth of drought stressed plants was significantly improved with Si application. The silicon fertilized (100 mg/kg) drought stressed plants of hybrid P-33H25 produced maximum (21.68% more) plant dry matter as compared to plants that were not provided with silicon nutrition. Nonetheless, silicon application (150 mg/kg) resulted in maximum increase (26.03%) in plant dry weight of hybrid FH-810 plants that were grown under limited moisture supply i.e., 60% FC. In conclusion silicon application to drought stressed maize plants was better to improve the growth and dry matter could be attributed to improved osmotic adjustment, photosynthetic rate and lowered transpiration. (author)

  8. Response of maize ( Zea mays L.) to varied moisture levels under ...

    African Journals Online (AJOL)

    Laboratory and glasshouse trials were used to determine the response of maize plants to varied moisture levels under Striga lutea infestation. Six moisture levels (1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 ml) were applied to striga seed for germination count in the laboratory, while five moisture levels (300, 600, 900, 1200 and 1500 ml) ...

  9. Effects of phosphorus and sulphur on dry matter yield of maize ( Zea ...

    African Journals Online (AJOL)

    A screen-house experiment was conducted to investigate the effects of phosphorus (P) and sulphur (S) on maize dry-matter yield (MDY) in soils of five locations (Obantoko I, II, Alabata I, II, and III) in Abeokuta, Ogun State of Nigeria. Three levels of sulphur (0, 10 and 20 kg S ha–1) and phosphorus (0, 30 and 45 kg P ha–1) ...

  10. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    Science.gov (United States)

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Citric acid mediated phyto extraction of cadmium by maize (zea mays l.)

    International Nuclear Information System (INIS)

    Anwar, S.; Hussain, M.

    2012-01-01

    The aim of the investigation was to determine the potential of citric acid for accumulation and translocation of cadmium and their effect on maize growth. The plants were grown in small plastic glasses and treated with 300 mg kg/sup -1/ CdCl/sub 2/ and 0, 0.25, 0.5, 1 and 2 g kg/sup -1/ of citric acid. After 10 days, the plants were harvested, dried and root and shoot biomass weighed. To study the efficiency of maize to bioaccumulate metal, uptake of cadmium was studied in the root and shoot. The results showed that heavy metal accumulated more in roots than the shoots and application of citric acid depressed Cd uptake at all concentrations. Percent decrease in Cd uptake was 58, 35, 26, 25 and 63, 46, 44, 42 by Sahiwal-2002 and Pak-affgoee, respectively at 0.25, 0.5, 1 and 2 g kg/sup -1/ of citric acid application. Maize proved to be an effective accumulator for cadmium, however, neither concentration of citric acid showed advantages for phytoextraction of cadmium. (author)

  12. Identification of QTLs for Arsenic Accumulation in Maize (Zea mays L.) Using a RIL Population

    Science.gov (United States)

    Ding, Dong; Li, Weihua; Song, Guiliang; Qi, Hongyuan; Liu, Jingbao; Tang, Jihua

    2011-01-01

    The Arsenic (As) concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels. PMID:22028786

  13. Identification of QTLs for arsenic accumulation in maize (Zea mays L. using a RIL population.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available The Arsenic (As concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels.

  14. Differential resistance reaction of maize genotypes to maize stem borer (Chilo partellus Swinhoe at Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2016-12-01

    Full Text Available Maize stem borer (MSB, Chilo partellus Swinhoe, Lepidoptera: Pyralidae is one of the most important insect pest of maize in Nepal. Host plant resistance is the cost-effective, ecologically sound and stable approach to reduce damage by stem borers. Forty four maize genotypes were screened for resistance to maize stem borer at the research field of National Maize Research Program, Rampur during spring seasons (March to June of two consecutive years 2013 and 2014. The maize genotypes were evaluated in randomized complete block design with three replications and data were collected on foliar damage rating, tunnel length and number of exit holes made by the borer. The foliar damage and tunnel length damage were significant for genotypes for both the years. The exit holes were not significant in 2013 but significant in 2014 ranging from 2-6 scale. The foliar rating ranged from 2 to 5.5 in 2013 and 1.1 to 4.5 in 2014 on a 1-9 rating scale. The highly resistant genotypes (10 cm scale. The least susceptible genotypes (<5 cm were RampurSO3F8, RampurSO3FQ02 and RampurS10F18. The genotypes having least exit holes (2.0 in 2014 were RampurSO3F8, RampurSO3FQ02, RampurS10F18. Thus less damage parameters were observed in R-POP-2, RML-5/RML-8, RampurSO3F8, RampurSO3FQ02 and RampurS10F18 and therefore they can be used as parents or as sources of resistance in breeding program.

  15. Monitoring of Sesamia nonagrioides resistance to MON 810 maize in the European Union: lessons from a long-term harmonized plan.

    Science.gov (United States)

    Farinós, Gema P; Hernández-Crespo, Pedro; Ortego, Félix; Castañera, Pedro

    2018-03-01

    Use of MON 810 maize (Zea mays), which expresses the insecticidal protein Cry1Ab from Bacillus thuringiensis (Bt maize), is a highly effective method to control Sesamia nonagrioides (Lefèbvre), a key maize pest in Mediterranean countries. Monitoring programs to assess the potential development of resistance of target pests to Bt maize are mandatory in the European Union (EU). Here we report the results of the S. nonagrioides resistance monitoring plan implemented for MON 810 maize in the EU between 2004 and 2015 and reassess the different components of this long-term harmonized plan. No major shifts in the susceptibility of S. nonagrioides to the Cry1Ab protein have occurred over time. The reassessment of this long-term program has identified some practical and technical constraints, allowing us to provide specific recommendations for improvement: use reference strains instead of susceptibility baselines as comparators for field-collected populations; shift from dose-response bioassays to diagnostic concentrations; and focus monitoring on areas with high adoption rates, such as the Ebro basin in Spain. There are no signs of field resistance of S. nonagrioides to the Cry1Ab protein of MON 810 maize. Specific recommendations for improvement are provided, based on the knowledge and experience accumulated through the implementation of this unique EU-wide harmonized plan. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effect of mulch types on nutrient composition, maize (Zea mays L. yield and soil properties of a tropical Alfisol in Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Matthew Awopegba

    2017-04-01

    Full Text Available Field investigations were carried out to evaluate the influence of shrub and herbaceous mulch types on soil properties and nutrient composition of maize (Zea mays L. at the Teaching and Research Farm of the Federal University of Technology, Akure in the rainforest zone of southwestern Nigeria in 2013 and 2014 respectively. The shrub mulch; Gliricidia sepium and Tithonia diversifolia, herbaceous mulch; Calopogonium mucunoides and Moringa oleifera were applied at the rate of 5 t ha-1. Application of NPK (20:10:10 fertilizer at the rate of 200 kg ha-1 was included as the standard treatment for the experiments. The treatments were laid out in randomized complete block design (RCBD with three replication. The growth, agronomic parameters and nutritional quality of maize (Zea mays L. were monitored and determined in both experiments. Results indicated that herbaceous mulch types and NPK fertilizer significantly (P<0.05 increased the number of leaves, plant height and leaf area when compared with the control in both years. Significant increases in yield parameters over the control were obtained for the NPK fertilizer treatment. In 2013 and 2014 cropping season NPK 20-10-10 treatment significantly produced the highest cob yield but was not significantly higher than the yield from Gliricidia sepium treatment in 2014. Soil organic carbon, total nitrogen (N, potassium (K, and exchangeable cations were positively stimulated by herbaceous mulches while residual phosphorus (P was increased by NPK fertilizer treatment. Mulched treatments significantly increased crude protein, carbohydrate, nitrogen, phosphorus and ash content of maize grain in both years of cropping season thereby improving nutritional content of maize grain. Therefore, shrub and herbaceous mulch treatments applied at 5t/ha-1 could be applied alternatively in lieu of scarce and expensive inorganic fertilizer for improved maize yield, soil properties and nutrient composition.

  17. Effect of nitrogen and potassium fertilization on micronutrient content in grain maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Josef Maňásek

    2013-01-01

    Full Text Available A two-year small-plot field experiment with the grain maize hybrid KWS 2376 was conducted on heavy soil with a low supply of available nutrients incl. potassium (K at Otrokovice, Czech Republic, during 2010–2011. The experiment included 4 treatments: unfertilized control; nitrogen (N fertilisation with urea (120 kg N/ha alone or combined with two forms of K fertiliser (potassium chloride (KCl or potassium sulphate (K2SO4; 125 kg K2O/ha. Biomass samples for determination of Zn, Mn, Cu and Fe were taken as the whole aboveground biomass in the DC 32 (first node stage, the ear-leaf in the DC 61 (flowering stage and grain during the harvest.Between the two years the content of micronutrients in the individual treatments varied irregularly. In DC 32 and DC 61 the order of the content of micronutrients was as follows: Fe > Mn > Zn > Cu. The Fe content was significantly the highest in the unfertilised control and the Mn content after the application of N + K2SO4 in both samplings. In the grain the order was as follows: Zn > Fe > Mn > Cu (mg/kg DM: at the following contents: Zn: 19.20–23.19; Fe: 15.12–19.87; Mn: 0.85–3.60; Cu: 0.19–1.34. We can recommend fertilisation of maize with urea and with both potassium mineral fertilisers without any negative effects on the content of the micronutrients in the maize biomass.

  18. Optimization of foramsulfuron doses for post-emergence weed control in maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Pannacci, E.

    2016-11-01

    Four field experiments were carried out from 2011 to 2014 in order to evaluate the effects of foramsulfuron, applied at the recommended (60.8 g a.i./ha) and reduced doses (1/3 and 2/3), on the efficacy against several of the most important weeds in maize. For each “year-weed” combination, dose-response curves were applied to estimate the dose of foramsulfuron required to obtain 90% and 95% weed control (ED90 and ED95). Foramsulfuron phytotoxicity on maize and crop yield were assessed. Foramsulfuron at 1/3 of the recommended dose (20.3 g a.i./ha) provided 95% efficacy against redroot pigweed (Amaranthus retroflexus L.), green foxtail (Setaria viridis (L.) Beauv.), wild mustard (Sinapis arvensis L.) and black nightshade (Solanum nigrum L.). Velvetleaf (Abutilon theophrasti Medik.), common lambsquarters (Chenopodium album L.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) were satisfactorily controlled (95% weed efficacy) with ED95 ranged from 20 to 50 g/ha of foramsulfuron (about from 1/3 to 5/6 of the recommended dose) depending on growth stage. The recommended dose was effective against pale smartweed (Polygonum lapathifolium L.) at 2-4 true leaves (12-14 BBCH scale), but this dose did not kill plants larger than 2-4 true leaves. The ranking among weed species based on their susceptibility to foramsulfuron was: redroot pigweed = green foxtail = wild mustard = black nightshade > velvetleaf = common lambsquarters = barnyardgrass > pale smartweed. Dose of foramsulfuron can be reduced below recommended dose depending on weed species and growth stage. Foramsulfuron showed a good crop selectivity and had no negative effect on maize yield. (Author)

  19. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels.

    Science.gov (United States)

    Calzavara, Anderson Kikuchi; Paiva, Pedro Henrique Godoy; Gabriel, Lorrant Cavanha; de Oliveira, André Luiz Martinez; Milani, Karina; Oliveira, Halley Caixeta; Bianchini, Edmilson; Pimenta, José Antonio; de Oliveira, Maria Cristina Neves; Dias-Pereira, Jaqueline; Stolf-Moreira, Renata

    2018-05-15

    Despite the great diversity of plant growth-promoting bacteria (PGPB) with potential to partially replace the use of N-fertilizers in agriculture, few PGPB are explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant-bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize. Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense. After germinating, the plants were subjected to two nitrogen treatments: full (N+) and limiting (N-) nitrogen supply. Then, anatomical, biometric and physiological analyses were performed. Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel elements (MVE) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ condition, both PGPB decreased the leaf protein content and led to the development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N-), photosynthesis rate and photosystem II efficiency increased in those inoculated with Bacillus sp., whilst A. brasilense led to higher ammonium, amino acids and total soluble sugars contents in the leaves, compared to control. Plant developmental and metabolical patterns were switched by the inoculation, regardless the inoculant bacteria used, producing similar as well as distinct modifications on the parameters studied. These results indicatie that even non-diazotrophic inoculant strains can improve the plant N-status as result of the morpho-anatomical and physiological modifications produced by the PGPB. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Assessing Lodging Severity over an Experimental Maize (Zea mays L. Field Using UAS Images

    Directory of Open Access Journals (Sweden)

    Tianxing Chu

    2017-09-01

    Full Text Available Lodging has been recognized as one of the major destructive factors for crop quality and yield, resulting in an increasing need to develop cost-efficient and accurate methods for detecting crop lodging in a routine manner. Using structure-from-motion (SfM and novel geospatial computing algorithms, this study investigated the potential of high resolution imaging with unmanned aircraft system (UAS technology for detecting and assessing lodging severity over an experimental maize field at the Texas A&M AgriLife Research and Extension Center in Corpus Christi, Texas, during the 2016 growing season. The method was proposed to not only detect the occurrence of lodging at the field scale, but also to quantitatively estimate the number of lodged plants and the lodging rate within individual rows. Nadir-view images of the field trial were taken by multiple UAS platforms equipped with consumer grade red, green, and blue (RGB, and near-infrared (NIR cameras on a routine basis, enabling a timely observation of the plant growth until harvesting. Models of canopy structure were reconstructed via an SfM photogrammetric workflow. The UAS-estimated maize height was characterized by polygons developed and expanded from individual row centerlines, and produced reliable accuracy when compared against field measures of height obtained from multiple dates. The proposed method then segmented the individual maize rows into multiple grid cells and determined the lodging severity based on the height percentiles against preset thresholds within individual grid cells. From the analysis derived from this method, the UAS-based lodging results were generally comparable in accuracy to those measured by a human data collector on the ground, measuring the number of lodging plants (R2 = 0.48 and the lodging rate (R2 = 0.50 on a per-row basis. The results also displayed a negative relationship of ground-measured yield with UAS-estimated and ground-measured lodging rate.

  1. Proteomic and phytohormone analysis of the response of maize (Zea mays L. seedlings to sugarcane mosaic virus.

    Directory of Open Access Journals (Sweden)

    Liuji Wu

    Full Text Available BACKGROUND: Sugarcane mosaic virus (SCMV is an important virus pathogen in crop production, causing serious losses in grain and forage yields in susceptible cultivars. Control strategies have been developed, but only marginal successes have been achieved. For the efficient control of this virus, a better understanding of its interactions and associated resistance mechanisms at the molecular level is required. METHODOLOGY/PRINCIPAL FINDINGS: The responses of resistant and susceptible genotypes of maize to SCMV and the molecular basis of the resistance were studied using a proteomic approach based on two-dimensional polyacrylamide gel electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS/MS analysis. Ninety-six protein spots showed statistically significant differences in intensity after SCMV inoculation. The classification of differentially expressed proteins showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, and photosynthesis. Most of the proteins identified were located in chloroplasts, chloroplast membranes, and the cytoplasm. Analysis of changes in phytohormone levels after virus inoculation suggested that salicylic acid, abscisic acid, jasmonic acid, and azelaic acid may played important roles in the maize response to SCMV infection. CONCLUSIONS/SIGNIFICANCE: Among these identified proteins, 19 have not been identified previously as virus-responsive proteins, and seven were new and did not have assigned functions. These proteins may be candidate proteins for future investigation, and they may present new biological functions and play important roles in plant-virus interactions. The behavioural patterns of the identified proteins suggest the existence of defense mechanisms operating during the early stages of infection that differed in two genotypes. In addition, there are overlapping and specific phytohormone

  2. Lignification of developing maize (Zea mays L.) endosperm transfer cells and starchy endosperm cells

    Science.gov (United States)

    Rocha, Sara; Monjardino, Paulo; Mendonça, Duarte; da Câmara Machado, Artur; Fernandes, Rui; Sampaio, Paula; Salema, Roberto

    2014-01-01

    Endosperm transfer cells in maize have extensive cell wall ingrowths that play a key role in kernel development. Although the incorporation of lignin would support this process, its presence in these structures has not been reported in previous studies. We used potassium permanganate staining combined with transmission electron microscopy – energy dispersive X-ray spectrometry as well as acriflavine staining combined with confocal laser scanning microscopy to determine whether the most basal endosperm transfer cells (MBETCs) contain lignified cell walls, using starchy endosperm cells for comparison. We investigated the lignin content of ultrathin sections of MBETCs treated with hydrogen peroxide. The lignin content of transfer and starchy cell walls was also determined by the acetyl bromide method. Finally, the relationship between cell wall lignification and MBETC growth/flange ingrowth orientation was evaluated. MBETC walls and ingrowths contained lignin throughout the period of cell growth we monitored. The same was true of the starchy cells, but those underwent an even more extensive growth period than the transfer cells. Both the reticulate and flange ingrowths were also lignified early in development. The significance of the lignification of maize endosperm cell walls is discussed in terms of its impact on cell growth and flange ingrowth orientation. PMID:24688487

  3. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Francisco Gheler Costa

    2013-12-01

    Full Text Available This work aimed a survey on the biodiversity of maize endophytic actinomycete, and an evaluation of their potential to control the phytopathogenic fungi. From several regions of São Paulo state, 40 strains were isolated from the healthy maize plants. The identification of these strains, based on morphological properties and fatty acid methyl ester (FAME profile showed that most of them belonged to the Streptomyces genus. These isolates were first screened for the growth inhibition of phytopathogenic fungi and results showed that all the isolate were able to inhibit the development of at least one tested pathogen. Two selected isolates were then evaluated for the control of P. aphanidermatum in cucumber (Cucumis sativa L. under greenhouse conditions. Isolate 16R3B was able to reduce up to 71% damping-off incidence whereas isolate 14F1D/2 reduced the disease incidence by 36%. Damping- off control in cucumber, mainly for the isolate 16R3B, suggested for its use in greenhouse cucumber producing fields and to be tested in field trials.

  4. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    Science.gov (United States)

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Characterization of yellow -, red-, and purple- kernel maize (zea mays L.) accessions in Ghana

    International Nuclear Information System (INIS)

    Ansah, G.

    2013-07-01

    Twenty yellow-, red-, and purple-kernel maize accessions were collected from three regions in Ghana for the study. The objectives were to characterize the yellow-, red- and purple-kernel maize accessions in Ghana using phenotypic traits in order to determine their identity, using molecular traits for confirmation of their identity and to determine the presence of the opaque-2 gene and β-carotene content of the grains as a way of assessing nutritional quality. A replicated field experiment was conducted to evaluate and characterize the accessions based on 16 quantitative and eleven qualitative traits. The same accessions were characterized based on 16 SSR markers. Variability in β-carotene content was determined by HPLC while presence of opaque 2-gene was determined by a light box. The results revealed that accessions GH4055 and GH4863 are extra early maturing and therefore can be very useful for urban farmers producing fresh maize and for cultivation in the coastal savanna ecological zone. However, they produce smaller cobs (Cob weight = 58.24g) as compared to other accessions. Significant variability in morphological traits was observed among the accessions with cob weight, number of kernels per row, plant height and 1000 seed weight having coefficient of variation of 42.7544, 20.5828, 11.4634, 13.0634 and 26.76 respectively. Few traits contributed to the variations observed as revealed by the principal components analysis and these include days to 50% anthesis, days to 50% of leaf senescence, plant height and cob weight. A dendrogram generated from morphological traits clustered the accessions based on kernel colour, physical structure of the plant and geographical location. Two duplicates were identified among the accessions and widest genetic distance was observe between NYRI and GH4055. Strong correlation exist between most of the morphological traits measured (r= 0.9193) but negative correlation was observed between most important yield parameters and

  6. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  7. Evaluation of ear rot (Fusarium verticillioides resistance and fumonisin accumulation in Italian maize inbred lines

    Directory of Open Access Journals (Sweden)

    Carlotta BALCONI

    2014-05-01

    Full Text Available Mycotoxin contamination of maize (Zea mays L. grain is a global threat to the safety of both human food and animal feed. Hence, the development of maize genotypes with reduced mycotoxin accumulation in grain is of major importance. In order to find maize germplasm sources of resistance to Fusarium ear rot, 34 Italian and six public inbred lines were evaluated by means of artificial inoculation in field experiments during 2009 and 2010. Relationships between ear rot and fumonisin concentration in the ears were investigated. Primary ears were challenged with a mixture of two Fusarium verticillioides isolates from Northern Italy, through kernel inoculation, and ear rot severity was assessed.The average number of visibly infected kernels per ear, after inoculation, ranged from 2 to 68 in 2009 and from 0 to 120 in 2010. Fumonisin concentrations in the inoculated ears were greater than in the experimental controls for both years. Variability was found between the inbred lines: fumonisin accumulation ranged from 0.56 to 240.83 mg kg-1 in 2009 and from 1.09 to 190.60 mg kg-1 in 2010. In both years, six inbred lines showed high fumonisin content (≥100 mg kg-1, while the other genotypes were almost equally split into two groups, low (≤10 mg kg-1 and medium (from 11 to 100 mg kg-1 fumonisin content. The number of infected kernels after artificial inoculation correlated with fumonisin concentration both in 2009 (r = 0.94; P≤0.01 and 2010 (r = 0.67; P≤0.01. Additionally, the percentage of internally infected kernels correlated positively with fumonisin concentration (r = 0.37; P≤0.01 and with the number of infected kernels (r = 0.29; P≤0.05. This research has demonstrated that Italian maize germplasm is a valid source of resistance to Fusarium ear rot. Furthermore, there is a strong association of visible Fusarium symptoms with fumonisin concentration, suggesting that selection in maize for reduced visible moulds should reduce the risk of

  8. Imazapyr-resistant maize technology adoption for witch weed control ...

    African Journals Online (AJOL)

    Saharan Africa. A new technology known as imazapyr-resistant maize (IRM) has proven to be effective in controlling it. This study examined the status of IRM adoption in western Kenya. A cross sectional survey that included 600 households, ...

  9. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  10. Genetic variation of maize (Zea mays L.) mutants based on ssr analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hongni, Qin; Yilin, Cai; Chunrong, Yang; Guoqiang, Wang [Maize Research Institute of Southwest University, Chongqing (China)

    2008-12-15

    52 SSR primers that gave stable profiles amplified in sample of the Maize inbred line '082' and its 48 mutants were selected from 97 primers, and produced 170 polymorphic amplified fragments. The average number of allele per SSR locus was 3.27 with a range from 2 to 6. The polymorphism information content for the SSR loci varied from 0.039 to 0.715 with an average of 0.327. Genetic similarities among the 49 materials ranged from 0.377 to 1.000 with an average of 0.823. The 49 materials were divided into 6 groups by UPGMA. The results indicated that distinct variation existed among mutants. (authors)

  11. Genetic variation of maize (Zea mays L.) mutants based on ssr analysis

    International Nuclear Information System (INIS)

    Qin Hongni; Cai Yilin; Yang Chunrong; Wang Guoqiang

    2008-01-01

    52 SSR primers that gave stable profiles amplified in sample of the Maize inbred line '082' and its 48 mutants were selected from 97 primers, and produced 170 polymorphic amplified fragments. The average number of allele per SSR locus was 3.27 with a range from 2 to 6. The polymorphism information content for the SSR loci varied from 0.039 to 0.715 with an average of 0.327. Genetic similarities among the 49 materials ranged from 0.377 to 1.000 with an average of 0.823. The 49 materials were divided into 6 groups by UPGMA. The results indicated that distinct variation existed among mutants. (authors)

  12. Estimation of Genetic Effects from Generation Means in Maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Ligeyo, D.O.; Ayiecho, P.O.

    1999-01-01

    Estimates of mean, additive, dominance, additive * additive, additive * dominance and dominance * dominance genetic effects were obtained for six crosses from four inbred lines of maize for grain yield. All the genetic effects contributed to the inheritance of yield. However not all genetic effects are present in all crosses at all locations. Both additive dominance genetic effects were responsible for the manifestation variability in grain yield, though the dominance genetic effect was preponderant in all cases. In most cases additive * additive and additive * dominance effects were more important contributors to inheritance than dominance * dominance gene effects at all locations.In all cases the manifestation of various genetic effects varied according to crosses and experimental sites

  13. Isolation of 14C labelled amino acids by biosynthesis in maize plants (Zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 C O2 produced from Ba 14 C O3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic column (Dowex 50-X4). (Author) 56 refs

  14. Isolation of carbon 14 labelled amino acids by biosynthesis in maize plants (zea mais L.)

    International Nuclear Information System (INIS)

    Carreras, N.; Mazon, M.P.

    1983-01-01

    A method of obtaining 14 C labelled amino acids by biosynthesis in maize plants which had assimilated 14 CO 2 , has been assayed. The plants were labelled for 60 minutes with 14 CO 2 produced from Ba 14 CO 3 (specific activity of 148 KBq/μmol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic columns (Dowex 50-X4). (author)

  15. Improvement of embryogenesis and regeneration by air desiccation in maize (zea mays l.)

    International Nuclear Information System (INIS)

    Morshed, S.; Siddique, B.; Islam, S.M.S.

    2016-01-01

    Calli derived from mature embryos of four maize varieties viz. Mohar, Khoi bhutta, Barnali and Shuvra were cultured in three basal media for regeneration (MS, N6 and 6N1) which individually supplemented with four hormonal combinations e.g. H1 = BAP 0.5 mg/l + IAA 0.0 mg/l, H2 = BAP 1.0 mg/l + IAA 0.5 mg/l, H3 = BAP 1.5 mg/l + IAA 1.0 mg/l and H4 = BAP 2.0 mg/l + IAA 1.5 mg/l. The highest frequency of regeneration was found with MS + H2 (41.35%) in Mohar, while the lowest was 17.37% in 6N1 + H1 for Barnali. To enhance the capability of regeneration, calli were pretreated by ten groups (6, 12, 18, 24, 30, 36, 42, 48, 54 and 60 h) of desiccation periods. The degrees of desiccation of pretreated calli were determined; and it was ranged as 6.23 to 40.52% where Khoi bhutta showed the maximum value at 60 h desiccation. The callus of Mohar exhibited the highest frequency of regeneration (75.24%) which desiccated for 48 h; and it was around 2 fold higher than the control. The variety Khoi bhutta showed the lowest efficiency (31.80%) when the callus was desiccated for 6 h. All the varieties performed their maximum regeneration at different periods, where 36, 30 and 42 h desiccation were optimal for Barnali (67.23%), Khoi bhutta (68.03%) and Shuvra (73.98%) accordingly. Analysis of variance (ANOVA) showed significant effect of maize genotype and periods of partial air desiccation to enhance regeneration at p<0.05 level. (author)

  16. Effect of Salt Stress on Growth and Antioxidant Enzymes in Two Cultivars of Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Saddiqe, Z.; Javeria, S; Khalid, H; Farooq, A.

    2016-01-01

    The effect of various concentrations of NaCl (50, 75, 100, 125, 150 mM ) was determined on the growth and biochemistry of two maize (Zea mays L.) cultivars (Pioneer X8F932 and DK -C61-42). Seed germination under salt stress conditions was more affected in cv. Pioneer X8F932 than cv. DK-C61-42. A significant reduction (p<0.05) in root and shoot growth was observed at 100, 125 and 150 mM salt concentrations in both the cultivars. Salt stress also caused a decrease in fresh weight of seedlings in a dose dependant manner (p=0.05). Among the two cultivars DK-C61-42 showed better tolerance towards salt stress (tolerance index = 105.4 at 75 mM) compared to Pioneer X8F932 (tolerance index = 76 at 50 mM). Total soluble protein content increased in both the cultivars under salt stress in a dose dependant manner with maximum protein content at 150 mM (6.004 mg/g tissue in DK-C61-42 and 7.375 mg/g tissue in cv. Pioneer X8F932). In DK-C61-42 highest peroxidase activity was at 125 mM (0.017 mg/g tissue) while in Pioneer X8F932 highest peroxidase activity was at 50 mM (0.006 mg/g tissue). The difference in enzyme activity between control and salt treated seedlings was significant (p<0.05). The catalase activity decreased under salt stress conditions in case of DK-C61-42 while an increase in activity of the enzyme was observed in Pioneer X8F932 at high salt concentrations. Among the two cultivars DK-C61-42 was better adapted towards salinity stress. (author)

  17. Energy balance analysis of different agroecological management systems of the soil in the cultures of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Óscar Eduardo Sanclemente Reyes

    2012-05-01

    Full Text Available In a Typic Haplustalfs (USDA soil of the municipality of Palmira – Valle (Colombia the rotation system velvet bean Mucuna pruriens Var. Utilis – maize Zea mays L. was established in design of complete blocks at random with seven treatments and three repetitions. The treatments in the rotation were: T1 (Without M. pruriens and fertilizing, T2 (green manure of M. pruriens without fertilizing, T3 (mulching of M. pruriens without fertilizing T4 (green manure of M. pruriens more compostado organic manure, T5 (green manure of M. pruriens more fertilizer of chemical synthesis, T6 (green manure of M. pruriens plus complemented compostado organic manure with fertilizer of chemical synthesis, T7 (mulching of M. pruriens plus complemented compostado organic manure with fertilizer of chemical synthesis. The energy balance was characterized and contributes nutritional using software Energy 3.01., from the entrances energetics in each treatment. The greater efficiency was obtained energetics in the T2 with 114.1 Mj.Mj-1 that was significantly greater (p<0.05 to the other treatments. The T5 where fertilization of chemical synthesis was used obtained value of 19.1 Mj.Mj-1, reflecting high entrances energetics and low productivity. The majors contribute nutritional were obtained in T3, T4, T6 and T7. Nevertheless, the treatments T3 and T4 stand out respectively where it was used mulching and green manure of M. pruriens more compost; since they are treatments where more efficient use becomes of the power resources by the use of consumptions readily accessible for the producer, being able to generate benefits like feeding for almost 50 persons.ha-1.year-1. These results suggest this valuable alternative association as for use in familiar agriculture farmer.

  18. Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gai-Li Niu

    2018-01-01

    Full Text Available Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT, a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2, 642 bp (P3, 428 bp (P4 and 245 bp (P5 were constructed from the 1048 bp (P1 promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s. Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.

  19. High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus)

    Science.gov (United States)

    2013-01-01

    Background Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable

  20. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    Science.gov (United States)

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  1. Effect of spatial arrangement and density on weed infestation and yield of maize (zea mays l.)

    International Nuclear Information System (INIS)

    Saeed, M.; Huang, Z.; Huang, H.; Wei, S.

    2016-01-01

    Field experiments were conducted during summer season 2012 and consequently repeated in 2013 to assess the efficacy of row and plant spacing on weed infestation and yield of maize crop. The experiments were carried out in Randomized Complete Block (RCB) design with split plot arrangements. Three row spacings i.e. 60, 75 and 90 cm were assigned to main plots while different plant spacings i.e. 10, 15, 20, 25 and 30 cm were allotted to subplots, respectively. The results showed that for both the years narrow row and plant spacing effectively suppressed weeds while wider row and plant spacing resulted in higher weed density. The data showed that the maximum weed density (202.07 and 218.70 m-2) was recorded in 90 cm row spacing in 2012 and 2013, respectively. However, among plant spacing highest weed density of 214.89 m-2 and 219.83 m-2 was recorded in 30 cm plant spacing during 2012 and 2013, respectively. The data regarding biological yield showed maximum biological yield in 60 cm row spacing while among plant spacing the highest biological yield was resulted in narrow plant spacing of 10 cm during both years. Furthermore, highest grain yield of 4928.9 kg ha-1 in 2012 and 5063.9 kg ha-1 in 2013 was recorded in 75 cm row spacing while lowest grain yield of 3026 kg ha-1 in 2012 and 3989 kg ha-1 in 2013 was observed for 90 cm row spacing. Among plant spacing highest grain yield of 4474.8 kg ha-1 and 5228.5 kg ha-1 was recorded in 15 cm plant spacing whereas lowest grain yield of 3554 kg ha-1 and 4010.6 kg ha-1 was observed for 30 cm row spacing in 2012 and 2013, respectively. The regression analysis also showed highest grain yield form 15-20 cm plant spacing during both years. Similarly the correlation data showed that with increase in weed density the grain yield decreases accordingly. The two years of research showed that narrow spacing (15-20 x 75 cm) enhanced the competitive ability of maize crop and suppressed weed growth. (author)

  2. Comparative effectiveness of different Rhizobium sp. for improving growth and yield of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Ijaz Mehboob, Zahir Ahmad Zahir, Muhammad Arshad, Muhammad Khalid

    2012-05-01

    Full Text Available During the last couple of decades, it has been demonstrated that rhizobia can associate with roots of non-legumes also without forming true nodules, and can promote their growth by using one or more of the direct or indirect mechanisms of actions. This work examines the growth and yield responses of maize to inoculation with different species of rhizobia, isolated from the root nodules of chickpea (Cicer arietinum L., lentil (Lens culinaris M. and mung bean (Vigna radiata L. in pots and fields. Twenty isolates of rhizobia were isolated from root nodules each of mung bean, lentil and chickpea and were screened under axenic conditions. On the basis of their promising performance under axenic conditions, nine most efficient isolates (three from each legume host were selected, characterized and further evaluated for their growth promoting activities by conducting pot and field experiments. Results of pot experiment revealed that maximum increase in grain yield, 1000 grain weight, N, P and K uptake (up to 47.89, 54.52, 73.46, 84.66 and 59.19% by CRI28, respectively, over un-inoculated control was produced by the isolate of Mesorhizobium ciceri. Whereas, maximum improvement in rest of the parameters was caused by the isolates of Rhizobium phaseoli (i.e. fresh biomass, straw yield and root length up to 36.30% by A18, 25.46% by S6 and 81.89% by A18, respectively over un-inoculated control. Rhizobium leguminosarum isolates came out to be the least effective among the species tested. Similarly, all the selected isolates improved the growth and yield attributing parameters in fields as well but with varying capacity compared with un-inoculated control. The selected isolates of Mesorhizobium ciceri and Rhizobium phaseoli again remained superior compared to the isolates of Rhizobium leguminosarum under field conditions. The results of this study imply that rhizobium species had potential to promote growth and yield of maize but this technology should be

  3. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Directory of Open Access Journals (Sweden)

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  4. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    Science.gov (United States)

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  5. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem

  7. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    Science.gov (United States)

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no

  8. Comparison of similarity coefficients used for cluster analysis with dominant markers in maize (Zea mays L

    Directory of Open Access Journals (Sweden)

    Meyer Andréia da Silva

    2004-01-01

    Full Text Available The objective of this study was to evaluate whether different similarity coefficients used with dominant markers can influence the results of cluster analysis, using eighteen inbred lines of maize from two different populations, BR-105 and BR-106. These were analyzed by AFLP and RAPD markers and eight similarity coefficients were calculated: Jaccard, Sorensen-Dice, Anderberg, Ochiai, Simple-matching, Rogers and Tanimoto, Ochiai II and Russel and Rao. The similarity matrices obtained were compared by the Spearman correlation, cluster analysis with dendrograms (UPGMA, WPGMA, Single Linkage, Complete Linkage and Neighbour-Joining methods, the consensus fork index between all pairs of dendrograms, groups obtained through the Tocher optimization procedure and projection efficiency in a two-dimensional space. The results showed that for almost all methodologies and marker systems, the Jaccard, Sorensen-Dice, Anderberg and Ochiai coefficient showed close results, due to the fact that all of them exclude negative co-occurrences. Significant alterations in the results for the Simple Matching, Rogers and Tanimoto, and Ochiai II coefficients were not observed either, probably due to the fact that they all include negative co-occurrences. The Russel and Rao coefficient presented very different results from the others in almost all the cases studied and should not be used, because it excludes the negative co-occurrences in the numerator and includes them in the denominator of their expression. Due to the fact that the negative co-occurrences do not necessarily mean that the regions of the DNA are identical, the use of coefficients that do not include negative co-occurrences was suggested.

  9. Analysis of combining ability over environments in diallel crosses of maize (Zea mays

    Directory of Open Access Journals (Sweden)

    M.A. Murtadha

    2018-01-01

    Full Text Available Utilization of stress tolerant maize is the key to sustainable production and food security, and hence studies were conducted at Dirab Research Station, Riyadh, Saudi Arabia, from 2009 to 2010 to estimate General Combining Ability (GCA, Specific Combining Ability (SCA and their interactions with environment. Non-reciprocal diallel crossing was performed among six inbreds. The inbreds, 15 F1 hybrids and two checks were evaluated in split plot design. Regulated irrigation commenced before tasselling and stopped before grain filling stage, using Food and Agriculture Organization (FAO evaporation pan as guide. Water was applied when pan reading was at 50, 70 and 90 in. to create E1, E2 and E3 environments respectively. Data were analyzed using method 3 of Gardner and Eberhart. Analysis of variance showed highly significant variance (P ⩽ 0.01 among almost all sources of variation. High significance GCA and SCA observed revealed the importance of both additive and non-additive genetic actions, while low GCA/SCA implied importance of dominant effects of gene. Anthesis-silking interval (ASI was the most affected trait by water deficit indicating that selection for tolerance could be based on short ASI. Performance per se of the genotypes reveals the importance of hybrids with P1 and P6 but failed to indicate their suitability as combiners. The KSU 6–47 had highest significant GCA for grain yield under E1 and E2. KSU 3–69 had the lowest significant negative GCA for days to tasselling, while cross KSU 6–47 × KSU 3–69 with high SCA for grain yield and 1000-kernel weight under all environments suggested their usefulness for improvement.

  10. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Directory of Open Access Journals (Sweden)

    Baozhu Guo

    2017-06-01

    Full Text Available Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays and affecting crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance. The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years. Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg−1, while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg−1. The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines, particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.

  11. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Struik, P.C.; Engels, F.M.; Cone, J.W.

    2012-01-01

    Improving digestibility of forage maize (Zea mays L.) through breeding is important to optimize the efficiency of ruminant's rations. It can partly be achieved by improving the digestibility of stem tissue, a genetically complex and diverse trait changing drastically during the growing season. We

  12. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. III. Intra-stem variability in anatomy, chemical composition and in vitro rumen fermentation

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Struik, P.C.; Tamminga, S.; Engels, F.M.; Cone, J.W.

    2008-01-01

    The internodes of forage maize (Zea mays L.) stems were studied at anthesis for variation in anatomy and chemical composition in relation to digestibility. The study was carried out with a short (Vitaro) and a tall (Volens) cultivar differing in whole-plant digestibility, both of which were grown in

  13. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. II. Relation between in vitro rumen fermentation characteristics and anatomical and chemical features within a single internode

    NARCIS (Netherlands)

    Boon, E.J.M.C.; Engels, F.M.; Struik, P.C.; Cone, J.W.

    2005-01-01

    Internode 7 of the stem of two forage maize (Zea mays L.) cultivars was studied anatomically and chemically at anthesis and subjected to fermentation tests in rumen fluid, using an automated gas production system. For anatomical studies internode 7 was sectioned at the top, middle and base. For

  14. Evaluation of the Beneficial Effects of Triple Intercropping of Maize (Zea mays L., Pinto Been (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    P. Moradi

    2016-05-01

    Full Text Available In order to evaluate the benefits of maize, pinto bean and naked pumpkin triple cropping, an experiment was carried out as a randomized complete block design with three replications at Faculty of Agricultural Science, University of Guilan, Rasht, Iran in 2012. The treatments consisted of maize, pinto bean and naked pumpkin sole cropping (100, 75 and 50% of conventional densities, maize – pinto bean and maize – pumpkin double cropping (100-100%, 75-75% and 50-50%, and maize-pinto bean-pumpkin triple cropping (100-100-100%, 75-75-75% and 50-50-50%. The highest and lowest forage fresh weights were obtained in triple cropping system with high density and sole cropping systems with low density, respectively. In double cropping systems, the maize-pumpkin out-yielded the maize-pinto bean in terms of fresh weight. The relative crowding coefficient, competitive ratio and aggressivity of maize in double cropping of maize-pinto bean and naked pumpkin in double cropping of maize-naked pumpkin were dominant. In triple cropping systems, while maize and naked pumpkin were comparable, but both of the latter crops were dominant over pinto bean. Land Equivalent Ratio (LER for double and triple cropping was greater than one, revealing the profitability of double and triple cropping systems on sole cropping. According to the LER, the cropping systems can be ranked as follows: triple cropping > double cropping maize/pinto bean > double cropping maize/pumpkin

  15. Molecular Basis of Resistance to Fusarium Ear Rot in Maize

    Directory of Open Access Journals (Sweden)

    Alessandra Lanubile

    2017-10-01

    Full Text Available The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants

  16. Evaluation and Selection of Maize (Zea Mays L.) Genotypes Tolerant to Low N Soil

    Energy Technology Data Exchange (ETDEWEB)

    The, C. [West Africa Centre for Crop Improvement (WACCI), Legon, Accra (Ghana); Ngonkeu, M. L.; Zonkeng, C.; Apala, H. M. [Institute of Agricultural Research for Development (IRAD), Yaounde (Cameroon)

    2013-11-15

    The identification and/or the development of germplasm with traits which enhance N uptake and N use efficiency in low N soil could significantly sustain maize production on stress environments. The use of secondary traits highly correlated with grain yield and high heritability, could speed up the development of genotypes adapted to low N environments. Arbuscular mycorrhiza fungi are known to enhance P uptake, but its role on plant N nutrition has not been extensively studied. The study aimed to (i) identify tolerant and/or low N responsive genotypes (ii) measure the correlated response of grain yield with some agronomic plant characteristic under low N and under mycorrhiza inoculation (iii) measure the combining ability and the gene effects of the lines under low and high N and (iv) to identify stable and high yielding hybrids adapted to low and high N condition. Initial screening of 99 genotypes for two years identified 30 inbred lines that were evaluated in split plots for: grain yield, root volume, chlorophyll content, leaf area index, and mycorrhizal colonization. Significant genotype x soil N level interactions were obtained among the tested inbreds for all measured traits, except for chlorophyll content which exhibited similar ranking from one soil N level to another. In addition to selection for grain yield, 5 lines were retained for their good root volume, 4 for their chlorophyll content and stay green traits, 3 for their leaf area index and the last 3 for their mycorrhizal colonization. Diallel crosses among the 15 selected lines yielded 105 F1 hybrids evaluated in split plots, with 3 soil treatment levels (20 kg-N ha{sup -1}, 20 kg-N ha{sup -1} + mycorrhiza and 100 kg-N h{sup a-1}). Significant differences were detected among the 3 soil treatments as well as for genotypes x soil interaction for all measured traits. On 20 N plots, 10 hybrids yielded at least as good as the check hybrid: Expl{sub 24} x 87036 (3.0 t ha{sup -1}). Among the 20 parents

  17. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    Science.gov (United States)

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105

  18. Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil

    International Nuclear Information System (INIS)

    Costa, L C; Justino, F; Oliveira, L J C; Sediyama, G C; Lemos, C F; Ferreira, W P M

    2009-01-01

    Based upon sensitivity experiments, this study aims to investigate the impact of increased atmospheric CO 2 concentration, climate changes, and ongoing technological advancements on bean (Phaseolus vulgaris) and maize (Zea mays) yield. This investigation assumes that the atmospheric CO 2 concentration evolves according to the A2 scenario. For these analyses we have used climate data as projected by climate simulations conducted with the HadCM3 climate model for both present day and greenhouse warming conditions. The results demonstrated that warming conditions associated with increased greenhouse gases as delivered by the HadCM3 model lead to reductions in the potential productivity of maize and beans for the years 2050 and 2080 by up to 30%. This thermal response is, however, damped by the highly efficient CO 2 fertilization effect which is expected to increase bean productivity as compared to present day conditions. A similar investigation for maize yield revealed a different picture. It has been found that the CO 2 fertilization feedback is much weaker and cannot cancel out the thermal effect. We have found, therefore, that climate changes as simulated to occur in the future are not favorable for increasing the maize yield in southeast Brazil. By the inclusion of the third forcing evaluated, representing technological advancements, it is demonstrated that improvements in the crop system reduce the negative effect associated with warmer climate conditions for both crops. We conclude that appropriate soil and technological management as well as genetic improvements may very likely induce an increase in bean and maize yield despite the unfavorable future climate conditions.

  19. Potential forcing of CO{sub 2}, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L C; Justino, F; Oliveira, L J C; Sediyama, G C; Lemos, C F [Department of Agricultural Engineering, Federal University of Vicosa, PH Rolfs S/N, Vicosa, MG, 36570 000 (Brazil); Ferreira, W P M [Embrapa Milho e Sorgo, Rodovia MG 424, km 45, Caixa Postal 285, CEP 35701-970 Sete Lagoas, MG (Brazil)], E-mail: fjustino@ufv.br

    2009-01-15

    Based upon sensitivity experiments, this study aims to investigate the impact of increased atmospheric CO{sub 2} concentration, climate changes, and ongoing technological advancements on bean (Phaseolus vulgaris) and maize (Zea mays) yield. This investigation assumes that the atmospheric CO{sub 2} concentration evolves according to the A2 scenario. For these analyses we have used climate data as projected by climate simulations conducted with the HadCM3 climate model for both present day and greenhouse warming conditions. The results demonstrated that warming conditions associated with increased greenhouse gases as delivered by the HadCM3 model lead to reductions in the potential productivity of maize and beans for the years 2050 and 2080 by up to 30%. This thermal response is, however, damped by the highly efficient CO{sub 2} fertilization effect which is expected to increase bean productivity as compared to present day conditions. A similar investigation for maize yield revealed a different picture. It has been found that the CO{sub 2} fertilization feedback is much weaker and cannot cancel out the thermal effect. We have found, therefore, that climate changes as simulated to occur in the future are not favorable for increasing the maize yield in southeast Brazil. By the inclusion of the third forcing evaluated, representing technological advancements, it is demonstrated that improvements in the crop system reduce the negative effect associated with warmer climate conditions for both crops. We conclude that appropriate soil and technological management as well as genetic improvements may very likely induce an increase in bean and maize yield despite the unfavorable future climate conditions.

  20. The distribution of 137Cs in maize (Zea mays L.) and two millet species (Panicum miliaceum L. and Panicum maximum Jacq.) cultivated on the cesium-contaminated soil

    International Nuclear Information System (INIS)

    Bystrzejewska-Nowacka, G.; Nowacka, R.

    2004-01-01

    The plant of three species (Zea mays L., Panicum miliaceum L. and Panicum maximum Jacq.) were grown on the soil contaminated with 0.3 mM CsCl solution traced with 137 Cs, in greenhouse. For all the species, the fresh-to-dry weight ratio was equal in the cesium-treated plants and in the central group after 3 weeks of culture. The shoot-to root fresh weight and dry weight ratios were decreased in maize, unchanged in Panicum miliaceum and increased in Panicum maximum, comparing to the control without cesium treatment. The shoot/soil and also root/soil transfer (TF) for 137 Cs (measured by means of Na I gamma spectrometer) were always the highest in maize, then lower in Panicum miliaceum and the lowest in Panicum maximum. All the plants seem to be hyperaccumulators of cesium. The root/soil Tf was especially high in maize, i.e. 55 (kBq kg -1 biomass)/kBq Kg -1 soil). The shoot/root concentration factor (CF) for 137 Cs was the lowest in maize, higher in Panicum miliaceum and highest in Panicum maximum. The proved ability of the investigated plants for phytoextraction of the soil cesium points to the (author). The detectability and reliin soil bioremediation. From this point of view, Panicum maximum seems to be the most useful plant because it accumulates cesium mainly in the shoot, and maize would be the least useful spices since it has the highest accumulation in root. (author)

  1. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    Science.gov (United States)

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  2. QTL mapping of resistance to gray leaf spot in maize.

    Science.gov (United States)

    Zhang, Yan; Xu, Ling; Fan, Xingming; Tan, Jing; Chen, Wei; Xu, Mingliang

    2012-12-01

    Gray leaf spot (GLS), caused by the causal fungal pathogen Cercospora zeae-maydis, is one of the most serious foliar diseases of maize worldwide. In the current study, a highly resistant inbred line Y32 and a susceptible line Q11 were used to produce segregating populations for both genetic analysis and QTL mapping. The broad-sense heritability (H (2)) for GLS resistance was estimated to be as high as 0.85, indicating that genetic factors played key roles in phenotypic variation. In initial QTL analysis, four QTL, located on chromosomes 1, 2, 5, and 8, were detected to confer GLS resistance. Each QTL could explain 2.53-23.90 % of the total phenotypic variation, predominantly due to additive genetic effects. Two major QTL, qRgls1 and qRgls2 on chromosomes 8 and 5, were consistently detected across different locations and replicates. Compared to the previous results, qRgls2 is located in a 'hotspot' for GLS resistance; while, qRgls1 does not overlap with any other known resistance QTL. Furthermore, the major QTL-qRgls1 was fine-mapped into an interval of 1.4 Mb, flanked by the markers GZ204 and IDP5. The QTL-qRgls1 could enhance the resistance percentages by 19.70-61.28 %, suggesting its usefulness to improve maize resistance to GLS.

  3. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  4. PRODUCTIVITY OF MAIZE (ZEA MAYS) BASED INTERCROPPING SYSTEM DURING KHARIF SEASON UNDER RED AND LATERITIC TRACT OF WEST BENGAL

    OpenAIRE

    M K MANDAL; M BANERJEE; H BANERJEE; A ALIPATRA; G C MALIK

    2014-01-01

    A FIELD EXPERIMENT WAS CARRIED OUT DURING KHARIF SEASON OF 2010 AND 2011 AT SRINIKETAN RESEARCH FARM, VISVA BHARTI, WEST BENGAL. THE GRAIN YILED AND STOVER YIELD OF MAIZE WERE SIGNIFICANTLY HIGHER IN CASE OF PURE STAND OF MAIZE THAN EITHER OF ITS INTERCROPPING SYSTEMS WITH LEGUMES, WHILE THE COB YILED WAS HIGHEST IN THE MAIZE WITH SOYBEAN (1:2) INTERCROPPING SYSTEM AND IT WAS STATISTICALLY AT PAR WITH THE YIELD OBTAINED IN SOLE MAIZE. THE GRAIN YIELD OF LEGUMES WAS HIGHEST IN MAIZE WITH GROUN...

  5. Comparison of grain from corn rootworm resistant transgenic DAS-59122-7 maize with non-transgenic maize grain in a 90-day feeding study in Sprague-Dawley rats.

    Science.gov (United States)

    He, X Y; Huang, K L; Li, X; Qin, W; Delaney, B; Luo, Y B

    2008-06-01

    DAS-59122-7 (59122) is a transgenic maize (Zea mays L.) that contains genes encoding Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis Berliner strain 149B1 and phosphinothricin acetyltransferase (PAT) protein from Streptomyces viridochromogenes. Expression of these proteins in planta confers resistance to corn rootworms and other Coleopteran parasites and tolerance to herbicides containing glufosinate ammonium, respectively. In the current study, processed flours from 59122 maize grain or its near isogenic control line (091) were used at two concentrations (50% and 70% wt/wt) to produce diets that were fed to rats for 90 days in accordance with Chinese toxicology guidelines (GB15193.13-2003). A commercial AIN93G diet was used as an additional negative control. No significant differences in body weight and feed utilization were observed between rats consuming diets formulated with 59122 and 091 Control corn. Statistical differences (p<0.05) were observed in certain hematology and serum chemistry response variables between rats consuming diets formulated with 59122 or 091 Control flour compared to AIN93G diet. However, the mean value of these response variables in the 59122 groups were not statistically different from those observed in diets formulated with corresponding high and low concentrations of the flour from the 091 Control maize grain. Therefore, the statistical differences were considered to be related to consumption of diets containing high concentrations of maize flour (compared to AIN93G diets) regardless of source rather than to consumption of flour from 59122 maize grain. The results from this study demonstrated that 59122 maize grain is as safe as non-transgenic maize grain.

  6. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    OpenAIRE

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4?C) and drought (PEG2000, 20%) treated plant samples. A ...

  7. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Xu, Xuehui; Wen, Bei; Huang, Honglin; Wang, Sen; Han, Ruixia; Zhang, Shuzhen

    2016-01-01

    This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs. - Highlights: • Uptake and translocation of BDE-47 and 6-OH/MeO-BDE-47 were analog-specific. • Debromination was the fast and dominant metabolic reaction of BDE-47 in maize. • Metabolic pathways of BDE-47, 6-OH/MeO-BDE-47 in maize were discussed. • Metabolic processes should be considered in exploring phytoremediation strategy. - This article provides direct in vivo evidences of bioaccumulation and biotransformation of PBDEs, OH-PBDEs and MeO-PBDEs in plants.

  8. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    Science.gov (United States)

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. RELATIONS AMONG WESTERN CORN ROOTWORM RESISTANCE TRAITS AND ELEMENTS CONCENTRATION IN MAIZE GERMPLASM ROOTS

    Directory of Open Access Journals (Sweden)

    Andrija Brkić

    2015-06-01

    Full Text Available Western corn rootworm – WCR (Diabrotica virgifera virgifera LeConte is an important maize pest in Croatia. Using native resistance of maize germplasm could reduce chemical treatments and other costs in maize production. Objectives of this study were: i to assess variability of WCR resistance traits (root injury, regrowth and size and concentrations of nine elements in roots of 128 maize genotypes, and ii to determine correlations among the traits and ion concentrations. Results revealed high variability of maize genotypes for both WCR resistance traits and ion concentrations. Significant moderate negative correlations (>-0.4 were detected between root injury and boron as well as between root regrowth and iron, manganese and zinc concentrations in root. Consequently, ion concentration in maize roots might have an impact on WCR resistance research.

  10. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  11. Proteomic analysis of the maize rachis: potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor; Williams, W Paul; Luthe, Dawn S

    2011-01-01

    Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear that delivers essential nutrients to the developing kernels and A. flavus spreads through the rachis to infect kernels within the ear. Therefore, rachis plays an important role in fungal proliferation and subsequent kernel contamination. We used proteomic approaches and investigated the rachis tissue from aflatoxin accumulation resistant (Mp313E and Mp420) and susceptible (B73 and SC212m) maize inbred lines. First, we compared rachis proteins from resistant and susceptible inbred lines, which revealed that the young resistant rachis contains higher levels of abiotic stress-related proteins and proteins from phenylpropanoid metabolism, whereas susceptible young rachis contains pathogenesis-related proteins, which are generally inducible upon biotic stress. Second, we identified A. flavus-responsive proteins in rachis of both resistant and susceptible genotypes after 10- and 35-day infection. Differential expression of many stress/defense proteins during rachis juvenility, maturation and after A. flavus challenge demonstrates that resistant rachis relies on constitutive defenses, while susceptible rachis is more dependent on inducible defenses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    Science.gov (United States)

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  13. Evaluation of new generation maize steak virus (MSV) resistant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Five new generations of maize streak virus (MSV) resistant varieties were evaluated along with two checks in replicated trials ..... Year (Y). 60.07*. 0.88. 3.45. 10.45*. 50.16. 4.57. 2.16. Genotype (G). 4.61*. 1.24. 4.46. 8.46*. 7.91*. 227.83**. 5.19**. Y x G. 3.41. 1.08. 2.43. 4.89. 2.79. 137.66. 1.08. %CV. 1.91.

  14. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  15. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    Science.gov (United States)

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  16. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.).

    Science.gov (United States)

    Xu, Xuehui; Wen, Bei; Huang, Honglin; Wang, Sen; Han, Ruixia; Zhang, Shuzhen

    2016-01-01

    This study presents a detailed kinetic investigation on the uptake, acropetal translocation and transformation of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.) by hydroponic exposure. Root uptake followed the order: BDE-47 > 6-MeO-BDE-47 > 6-OH-BDE-47, while 6-OH-BDE-47 was the most prone to acropetal translocation. Debromination rates of BDE-47 were 1.31 and 1.46 times greater than the hydroxylation and methoxylation rates, respectively. Transformation from BDE-47 to lower brominated OH/MeO-PBDEs occurred mainly through debromination first followed by hydroxylation or methoxylation. There was no transformation from 6-OH-BDE-47 or 6-MeO-BDE-47 to PBDEs. Methylation rate of 6-OH-BDE-47 was twice as high as that of 6-MeO-BDE-47 hydroxylation, indicating methylation of 6-OH-BDE-47 was easier and more rapid than hydroxylation of 6-MeO-BDE-47. Debromination and isomerization were potential metabolic pathways for 6-OH-BDE-47 and 6-MeO-BDE-47 in maize. This study provides important information for better understanding the mechanism on plant uptake and transformation of PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of Piriformospora indica inoculation on root development and distribution of maize (Zea mays L.) in the presence of petroleum contaminated soil

    Science.gov (United States)

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim

    2014-05-01

    The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.

  18. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    Science.gov (United States)

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Effects of using phenotypic means and genotypic values in GGE biplot analyses on genotype by environment studies on tropical maize (Zea mays).

    Science.gov (United States)

    Granato, I S C; Fritsche-Neto, R; Resende, M D V; Silva, F F

    2016-10-05

    The objective of this study was to examine the effects of the type and intensity of nutritional stress, and of the statistical treatment of the data, on the genotype x environment (G x E) interaction for tropical maize (Zea mays). For this purpose, 39 hybrid combinations were evaluated under low- and high-nitrogen and -phosphorus availability. The plants were harvested at the V6 stage, and the shoot dry mass was estimated. The variance components and genetic values were assessed using the restricted maximum likelihood/best linear unbiased prediction method, and subsequently analyzed using the GGE biplot method. We observed differences in the performances of the hybrids depending on both the type and intensity of nutritional stress. The results of relationship between environments depended on whether genotypic values or phenotypic means were used. The selection of tropical maize genotypes against nutritional stress should be performed for each nutrient availability level within each type of nutritional stress. The use of phenotypic means for this purpose provides greater reliability than do genotypic values for the analysis of the G x E interaction using GGE biplot.

  20. Evaluation of fall armyworm resistance in maize germplasm lines using visual leaf injury rating and predator survey

    Science.gov (United States)

    After examining ear-colonizing pest resistance, 20 maize lines from the USDA-ARS germplasm enhancement of Maize (GEM) Program were evaluated for whorl-feeding fall armyworm (FAW) (Spodoptera frugiperda) resistance using four maize inbred lines as the resistant and susceptible controls. Both FAW inju...

  1. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    Directory of Open Access Journals (Sweden)

    Olga Pechanova

    2015-11-01

    Full Text Available Maize (Zea mays L. is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  2. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  3. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.).

    Science.gov (United States)

    Lv, Yuanda; Liang, Zhikai; Ge, Min; Qi, Weicong; Zhang, Tifu; Lin, Feng; Peng, Zhaohua; Zhao, Han

    2016-05-11

    Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however, little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which have emerged as key regulators in gene expression. In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637 nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative phosphorylation and the nitrogen compounds metabolic process. We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of lncRNAs' role in response to nitrogen stresses.

  4. Amelioration of Adverse Effects of Salt Stress on Maize (Zea Mays L.) Cultivars by Exogenous Application of Sulfur at Seedling Stage

    International Nuclear Information System (INIS)

    Riffat, A.; Ahmad, M. S. A.

    2016-01-01

    Sulfur is an important plant nutrient involved in seed germination and seedling establishment. It also plays an important role in response of plants to tolerate abiotic stresses such as salinity. A study was conducted to assess the role of sulfur on salinity tolerance of maize (Zea mays L.) at seed germination stage. Six varieties (Sadaf, MMRI, Pearl Basic, Agaitti 2003, Saiwal 2002 and Pak Afgoi 2003) and two hybrids (Yusafwala Hybrid and Hybrid 1898) of maize were used to assess the modulation of salt stress by exogenously applied sulfur. Three NaCl (25, 50 and 75 mM) and five potassium sulfate (20, 40, 60, 80 and 100 mM) levels were applied to plants as sand amendment at sowing time along with a control. The experiment was laid down in a Completely Randomized Design (CRD) with three replicates. The data for various germination attributes were recorded. The results revealed that sulfur application significantly modulated all germination parameters i-e. germination percentage germination index, coefficient of velocity of emergence, mean emergence time, vigour index, germination energy, germination speed, mean daily germination and germination value and thus reduced the toxic effect of salinity. It was found that sulfur at 60 and 80 mM had more pronounced effect in enhancing seed germination. Application of sulfur at 60 to 80 mM improved all germination parameters and reduced time needed for 50 percent seed to germinate. The phylogenetic tree constructed by NTSysPC clearly clustered all genotypes the two distinct clusters. The tolerant cluster mainly contained 4 varieties (Sadaf, MMRI, Pearl Basic and Agati 2003) while the sensitive cluster included two varieties (Sahiwal 2002, Pak Afgoi 2003) and two hybrids (Hybrid 1898 and Yusaf wala hybrid). Based on the distance matrixes generated by software, Agati 2003 proved to be the most tolerant genotype. In comparison, a maize variety (Pak Afgoi-2003) and a Hybrid-1898 showed the least improvement by exogenously applied

  5. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology

    Science.gov (United States)

    Su, Chengfu; Wang, Wei; Gong, Shunliang; Zuo, Jinghui; Li, Shujiang; Xu, Shizhong

    2017-01-01

    Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and

  6. Land management on soil physical properties and maize (Zea mays L. var. BIMA) growth (An adaptation strategy of climate change)

    Science.gov (United States)

    Zaki, M. K.; Komariah; Pujiasmanto, B.; Noda, K.

    2018-03-01

    Water deficit is a problem on rainfed maize production but can be solved by proper land management. The objective of the study to determine the soil physical properties and maize yield affected by land management to adapt to drought. The experimental design was a randomized complete block using 5 treatments with 4 repetitions, including: (i) Control (KO), (ii) Rice Straw Mulched (MC), (iii) Compost Fertilizer (CF), (iv) In-Organic Fertilizer (AF), (v) Legume Cover crop (CC). Soil physical and maize growth properties namely soil moisture, soil texture, soil bulk density, plant height, biomass, and yield were investigated. The results showed that composting land increased soil water availability and provided nutrient to crops and thus increase soil physical properties, maize growth and yield. Although inorganic fertilizer also increased plant growth and yield, but it did not improve soil physical properties.

  7. Zea mays L

    African Journals Online (AJOL)

    Markus

    near Jos, during the 2007 and 2008 planting seasons, to study the productivity of seven (7) hybrid varieties of maize. (Zea maysL.), namely SUWAN-1-Y, 'Kenya Kitali', ACR-9776-2, TZMSR-W, DMESR-Y, ACROSS-98 and TZPBSR-W. The experiments were laid out in a randomized complete block design (RCBD) with three ...

  8. Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland

    DEFF Research Database (Denmark)

    Holst, Niels; Lang, Andreas; Lövei, Gabor L

    2013-01-01

    A potential environmental risk of the field cultivation of insect-resistant (Bt-toxin expressing) transgenic maize (Zea mays) is the consumption of Bt-containing pollen by herbivorous larvae of butterflies (Lepidoptera). Maize is wind-pollinated, and at flowering time large amounts of pollen can...

  9. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns

    NARCIS (Netherlands)

    Yang, T.; Stoopen, G.; Yalpani, N.; Vervoort, J.J.M.; Vos, de R.; Voster, A.; Verstappen, F.W.A.; Bouwmeester, H.J.; Jongsma, M.A.

    2011-01-01

    Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum

  10. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination

    Science.gov (United States)

    Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related proteins serve as a first line of defense against invading pathogens by confer...

  11. A climate profile indicator based comparative analysis of climate change scenarios with regard to maize (Zea mays L.) cultures

    Energy Technology Data Exchange (ETDEWEB)

    Dios, N.; Szenteleki, K.; Ferenczy, A.; Petranyl, G. [Corvinus Univ. of Budapest (Hungary). Dept. of Mathematics and Informatics; Hufnagel, L. [Hungarian Academy of Sciences, Budapest (Hungary). Adaptation to Climate Change Research Group

    2009-07-01

    Recent research results let us conclude that climate change might have a significant effect on the yield of wheat, barley, rye, potato and maize, and the borderlines of their area of cultivation might shift 100--150 kilometers to the north. The possible mass occurrence of new aggressive pest, pathogen and weed species in Hungary might also create a problem from plant protection. Maize is one of the most important fodder-plants. Hungary has close to the largest total cultivating area in Europe. Maize is used in many ways, thus being of outstanding economic importance. In Hungary the conditions of maize cultivation are -- except for dry years -- quite favorable in most cultural regions and complex cultivating technologies are available. It also might gain a significant role in the line of new environment-friendly alternative sources of energy. For these reasons, it is important to examine the influence of meteorological factors on maize ecosystems and this examination should include as many climate change scenarios and as long a time series as possible. Using ecological data compiled from scientific literature on pest, pathogen and weed species characteristic in maize cultures in Hungary, we defined monthly climate profile indicators and applied them to complete a comparative analysis of the historical and modelled climate change scenario meteorological data of the city of Debrecen. Our results call attention to a drastic decline of the competitive ability of maize as compared to several C{sub 4} and especially C{sub 3} plants. According to the stricter scenarios, the frequency of potential pest and pathogen damage emergency situations will grow significantly by the end of the century.

  12. Effect of different phosphorus fertilizer rates on N-uptake, N-efficiency and zea maize yield in irrigated soils

    International Nuclear Information System (INIS)

    Khalifa, Kh.

    1993-01-01

    Effect of different rates of P fertilizer on N-uptake, N-efficiency and zea mays (C.V.Lg 11) were studied by use of 15 N technique. The main objectives of this study were to study effect of different level of P on N-utilization and determine the interaction between P and N on zea mays yield, and the efficiency of N-fertilizer during different stages of plant growth. The field experiment was conducted for two years 1985 and 1986. The treatments were 0, 80, 160 Kg N, as urea Co( 15 NH 2 ) 2 and 0, 40, 80, 160 Kg P 2 O 5 as triplsuperphophate. The experiment design was randomized block of four replicates for each treatment. Yield (grain and dry matter), utilization of urea, N-uptake, total N, N-yield, Ndff%, NDF% and A-values were determined. All results indicate that zea mays responds to the addition of nitrogen and the yield increases with the increase of added nitrogen. The highest yield was for N 2 (160 Kg) level during two seasons. Also zea mays responds clearly to phosphorus especially at stages 1 and 2, where dry matter yield increases with the increase of phosphorus rate. The highest yield was for P 3 (160 Kg) rate. While in grain stage the response was for rate P 1 (40 Kg) and P 2 (80 Kg) in comparison with control. However P 1 , rate was dominant over P 2 and P 3 . The effect of P 2 rate on grain yield was very little in comparison with P 1 , while P 3 decreases the grain yield during two seasons in comparison with control. There is an effect of N and P when added both or separately. There is also effect for interaction between them on the yield (grain and dry matter). Generally, from the previous data we can conclude that the rate 160 Kg N/ha and 40 Kg P 2 O 5 /ha were optimum rate for zea mays fertilization in Deir-Ezzor (Syria) and similar areas for grain yield. (author). 17 refs., 6 tabs

  13. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  14. Assessment of productivity and water use efficiency in three maize (zea mays L.) varieties in Kwabenya-Atomic area

    International Nuclear Information System (INIS)

    Frimpong, J. O.

    2010-06-01

    The production of rain-fed maize in the Kwabenya-Atomic area of the coastal savannah environment of Ghana is limited by low and erratic rainfall. Enhancing maize production in the area will require the use of maize varieties efficient in the use of soil moisture. The study was, therefore, conducted to evaluate three recently released maize varieties (Obatanpa, Mamaba, and Golden Crystal) for their efficiency in the use of soil moisture for total dry matter and grain production and consequently identify the maize varieties suitable for rain-fed production in the Kwabenya-Atomic area. Field experiments were conducted m 2008 during the major and minor cropping seasons at Kwabenya-Atomic area in Ghana using three maize varieties grown at a planting distance of 0.4 m within rows and 0.8 m between rows. The experimental design used was the randomised complete block design in four replicates. Plants were sampled every two weeks throughout the maize growing seasons. Access tubes installed in each sub-plot facilitated simultaneous moisture monitoring with the aid of a neutron probe (CPN (R) 503 Hydroprobe) in a 120 cm soil profile. The moisture content values were used for the estimation of actual evapotranspiration of the maize crop using the water balance approach. Grain yield (GY) and its associated water use efficiency (WUE GY ) were significantly different (P ≤ 0.05) among the maize varieties during the major cropping season with Mamaba producing the highest grain yield of 7250.0 kg ha -1 and WUE GY of 13.2 kg ha -1 mm -1 . For the minor cropping season, no significant difference was observed in grain yield, which ranged between 5800.0 and 7200.0 kg ha -1 , with Obatanpa producing the highest grain yield. No significant difference was observed in WUE GY during the minor cropping season which ranged between 14.6 and 19.1 kg ha -1 mm -1 with Obatanpa having the highest WUE GY . The maize genotype produced similar total dry matter (TDM) during each of the cropping

  15. Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.).

    Science.gov (United States)

    Sakcali, M Serdal; Kekec, Guzin; Uzonur, Irem; Alpsoy, Lokman; Tombuloglu, Huseyin

    2015-08-01

    This study was carried out to investigate the genotoxic effect of boron (B) on maize using randomly amplified polymorphic DNA (RAPD) method. Experimental design was conducted under 0, 5, 10, 25, 50, 100, 125, and 150 ppm B exposures, and physiological changes have revealed a sharp decrease in root growth rates from 28% to 85%, starting from 25 ppm to 150 ppm, respectively. RAPD-polymerase chain reaction (PCR) analysis shows that DNA alterations are clearly observed from beginning to 100 ppm. B-induced inhibition in root growth had a positive correlation with DNA alterations. Total soluble protein, root and stem lengths, and B content analysis in root and leaves encourage these results as a consequence. These preliminary findings reveal that B causes chromosomal aberration and genotoxic effects on maize. Meanwhile, usage of RAPD-PCR technique is a suitable biomarker to detect genotoxic effect of B on maize and other crops for the future. © The Author(s) 2013.

  16. Leaf transpiration efficiency of some drought-resistant maize lines

    Science.gov (United States)

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  17. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.).

    Science.gov (United States)

    Zhang, Weiqiang; Li, Zhi; Fang, Hui; Zhang, Mingcai; Duan, Liusheng

    2018-01-01

    Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize.

  18. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  19. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L..

    Directory of Open Access Journals (Sweden)

    Weiqiang Zhang

    Full Text Available Ethylene (ET is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH, and internode length above the uppermost ear (ILAU in two recombinant inbred line (RIL populations of Zea mays after ET treatment and in an untreated control (CK group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9 for the measured traits (PH, EH, ILAU was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1 were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH, and internode length above the uppermost ear (ILAU response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs determination, and elucidate the underlying molecular mechanisms of ET responses in maize.

  20. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize ( Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L -1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  1. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  2. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.)

    Science.gov (United States)

    Li, Zhi; Fang, Hui; Zhang, Mingcai; Duan, Liusheng

    2018-01-01

    Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87–17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize. PMID:29466465

  3. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was

  4. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    International Nuclear Information System (INIS)

    Debeljak, Marta; Elteren, Johannes T. van; Vogel-Mikuš, Katarina

    2013-01-01

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg 2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm −2 ; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg −1 DW HgCl 2 . It was found that at given

  5. Genomic Dissection of Leaf Angle in Maize (Zea mays L. Using a Four-Way Cross Mapping Population.

    Directory of Open Access Journals (Sweden)

    Junqiang Ding

    Full Text Available Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL on leaf angle detected by inclusive composite interval mapping (ICIM. ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs. Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.

  6. Genetic Markers for Western Corn Rootworm Resistance to Bt Toxin

    OpenAIRE

    Flagel, Lex E.; Swarup, Shilpa; Chen, Mao; Bauer, Christopher; Wanjugi, Humphrey; Carroll, Matthew; Hill, Patrick; Tuscan, Meghan; Bansal, Raman; Flannagan, Ronald; Clark, Thomas L.; Michel, Andrew P.; Head, Graham P.; Goldman, Barry S.

    2015-01-01

    Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genet...

  7. Quantitative trait loci for resistance to Maize rayado fino virus

    Science.gov (United States)

    Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in regions of Mexico, Central and South America, where it causes moderate to severe yield losses. The virus is found from the southern United States. to northern Argentina where its vector, the maize leafhopper D...

  8. Sixteen Years of Bt Maize in the EU Hotspot: Why Has Resistance Not Evolved?

    Directory of Open Access Journals (Sweden)

    Pedro Castañera

    Full Text Available The majority of Bt maize production in the European Union (EU is concentrated in northeast Spain, which is Europe's only hotspot where resistance might evolve, and the main target pest, Sesamia nonagrioides, has been exposed to Cry1Ab maize continuously since 1998. The cropping system in northeast Spain has some similar characteristics to those that probably led to rapid resistance failures in two other target noctuid maize pests. These include repeated cultivation of Bt maize in the same fields, low use of refuges, recurring exposure of larvae to non-high dose concentrations of Cry1Ab toxin during the first years of cultivation, low migratory potential, and production concentrated in an irrigated region with few alternative hosts. Available data reveal no evidence of resistance in S. nonagrioides after 16 years of use. We explore the possible reasons for this resistance management success using evolutionary models to consider factors expected to accelerate resistance, and those expected to delay resistance. Low initial adoption rates and the EU policy decision to replace Event 176 with MON 810 Bt maize were key to delaying resistance evolution. Model results suggest that if refuge compliance continues at the present 90%, Bt maize might be used sustainably in northeast Spain for at least 20 more years before resistance might occur. However, obtaining good estimates of the present R allele frequency and level of local assortative mating are crucial to reduce uncertainty about the future success of resistance management.

  9. Farmers' adoption of maize (Zea mays L.). Hybrids and persistence of landraces in Southwest China: implications for policy and breeding

    NARCIS (Netherlands)

    Li, Jingsong; Lammerts Van Bueren, E.; Jiggins, Janice; Leeuwis, C.

    2012-01-01

    This paper examines changes in the distribution of maize hybrids and landraces in the mountainous areas of southwest China over 1998–2008, farmers’ reasons for cultivar adoption and the implications for national policies in relation to seed production and breeding, based on baseline data and a

  10. Fermentation of maize (Zea mays L.) meal or mawe production in Benin : physical, chemical and microbiological aspects

    NARCIS (Netherlands)

    Hounhouigan, D.J.

    1994-01-01

    Mawè is a sour dough made from partially dehulled maize meal, which has undergone natural fermentation for 1 to 3 days.

    In this thesis, the processing methods, the characteristics of the products and the physical, chemical and microbiological changes during natural fermentation of

  11. Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L. in Central and Northern Benin (West Africa

    Directory of Open Access Journals (Sweden)

    Nadège A. Agbodjato

    2015-01-01

    Full Text Available Our study aims to characterize Plant Growth Promoting Rhizobacteria (PGPR isolated from maize roots in five agroecological zones of central and northern Benin. Sixty samples were collected at the rate of four samples per village and three villages per agroecological zone. Rhizobacteria strains were isolated from these samples and biochemically characterized. These strains were analyzed for some of their PGPR traits like ammonia production and hydrogen cyanide following conventional methods. Microbiological investigation of these samples has shown that maize rhizospheres in central and northern Benin contain a high diversity of microorganisms. A total of nine species of maize Plant Growth Promoting Rhizobacteria were identified. Those PGPR include five Bacillus species (B. polymyxa, B. pantothenticus, B. anthracis, B. thuringiensis, and B. circulans, three Pseudomonas species (P. cichorii, P. putida, and P. syringae, and Serratia marcescens. The microbial diversity does not depend on the soil types. The microbial density, generally high, varies according to both soil types and agroecological zones. All Serratia strains (100% have produced ammonia, whereas 80% of Bacillus and 77.77% of Pseudomonas produced this metabolite. The hydrogen cyanide was produced by all isolates (100% independent of their genus. These results suggest the possibility to use these rhizobacteria as biological fertilizers to increase maize production.

  12. Determination of plant growth promoting potential of enterobacteria isolated from the rhizosphere of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Luis H. León Mendoza

    2014-12-01

    Full Text Available The yellow maize is the third most important crop in Peru and part of the chain maize-poultry-pig, significant impact on the national economic and social activity, however, in 2011, only 40% of the corn offered corresponded to the domestic industry. Looking for alternatives to reduce the use of chemical fertilizers, have performed investigations with plant growth promoting rhizobacteria. Bacteria were isolated from the rhizosphere of maize from districts Monsefú and Reque, Lambayeque. Dilution was made into sterile saline 0.87% NaCl w/v and plated on MacConkey agar, incubating at 30°C for 48 hours. 269 pure cultures of bacteria were obtained, the biochemical reaction was investigated in agar Triple sugar iron agar Iron Lysine, agar Citrate Simons, peptone broth, red broth methyl Voges-Proskauer and nitrate broth, was identified 66% as Enterobacteriaceae of genera Pantoea (49%, Klebsiella (17%, Kluyvera (16%, Serratia (11%, Citrobacter (4% and Hafnia (3%. The native enterobacteria were quantified to 31.67 ppm of fixed nitrogen as ammonia; 54.25 ppm indole acetic acid and 4,78 ppm solubilized phosphorus, activity proteolytic and chitinolytic and antagonistic activity of Fusarium verticillioides were also determined. 16% of native enterobacteria did not affect the emergence of hard yellow maize, 77% affected positively and 7% affected negatively. In turn, none bacteria affected survival. Was demonstrated the potential plant growth promoter of enterobacteria isolated from field crops in the region of Lambayeque.

  13. Investigation of total seed storage proteins of pakistani and japanese maize (zea mays l.) through sds-page markers

    International Nuclear Information System (INIS)

    Shinwari, Z.K.

    2014-01-01

    The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 83 genotypes of maize of Pakistani and Japanese origin were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) through vertical slab unit. The total protein subunits were separated on 12% polyacrylamide gel using standard protocols. A total of 18 protein subunits were noted out of which 7 (39%) were monomorphic and 11 (61%) were polymorphic, with molecular weight ranging from 10 to 122 kDa. Coefficients of similarity among the accessions ranged between 0.89 and 1.00. The dendrogram obtained through UPGMA clustering method showed two main clusters: 1 and 2. First cluster comprised of 9 genotypes including Sahiwal-2002, while second cluster contained 74 genotypes including Aaiti-2002 and Sadaf. Over all a low level of polymorphism was observed in total seed storage protein patterns of maize genotypes from Pakistan as well as Japan. It is inferred from the present study that more genotypes of maize could be brought under study and more advanced biochemical techniques with more reliable results could be followed to bring assessment of genetic diversity of maize for planning breeding programs. (author)

  14. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  15. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transportors in maize (Zea mays L.)

    Science.gov (United States)

    A greenhouse experiment was conducted to study the expression of two phosphate (P) transporter genes ZEAma:Pht1;3 (epidermal-expressed) and ZEAma:Pht1;6 (AM specific induced, and expressed around arbuscules) in maize root to colonization by different arbuscular mycorrhizal (AM) fungal inoculants. No...

  16. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    Science.gov (United States)

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A DREB-Like Transcription Factor From Maize (Zea mays, ZmDREB4.1, Plays a Negative Role in Plant Growth and Development

    Directory of Open Access Journals (Sweden)

    Shixue Li

    2018-04-01

    Full Text Available The DREB (dehydration-responsive element binding-type transcription factors are classified into six subgroups, named A-1 to A-6. The members of DREB A-1 and A-2 subgroups have been reported to be involved in response to various abiotic stresses. However, there were only a few genes belonging to A-3 to A-6 subgroups to be reported. In this study, we cloned a DREB A-4 subgroup gene from maize (Zea mays, ZmDREB4.1, and analyzed its characteristics and functions. ZmDREB4.1 was expressed in roots, stems, and leaves at very low levels. It was not induced by any biotic or abiotic treatment. ZmDREB4.1 was located in the nucleus, could directly bind to the DRE element and functioned as a transcriptional activator. The constitutive expression of ZmDREB4.1 in tobacco (Nicotiana tabacum L. repressed leaf extension and hypocotyl, petiole and stem elongation. In maize, overexpression of ZmDREB4.1 repressed calli growth and regeneration. Further analysis showed that the smaller leaves of transgenic tobacco resulted from inhibition of cell division. The contents of cytokinin and auxin in transgenic leaves were severely decreased. The shorter hypocotyls, stems and petioles of transgenic tobacco were caused by inhibition of cell elongation. The transgenic hypocotyls, stems and petioles contained reduced gibberellin levels. Application of exogenous GA3 rescued the shorter hypocotyls, stems and petioles, but not the smaller leaves. These results demonstrated that ZmDREB4.1 plays an important role in the negative regulation of plant growth and development.

  18. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).

    Science.gov (United States)

    Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai

    2014-09-01

    RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Sensitivity studies of the common bean (Vigna unguiculata) and maize (Zea mays) to different soil types from the crude oil drilling site at Kutchalli, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Anoliefo, G.O. [Dept. of Botany, Univ. of Benin, Benin City (Nigeria); Isikhuemhen, O.S. [Dept. of Natural Resources and Environmental Design, NC Agricultural and Technical State Univ., Greensboro, NC (United States); Ohimain, E.I. [Rohi Biotechnologies Ltd., Port Harcourt (Nigeria)

    2006-02-15

    Background, aims and scope. The economic growth that Nigeria has enjoyed as a result of oil revenue has its drawback through exposure of people in the oil producing areas to environmental contamination, due largely to the increase in the movement of oil. Activities associated with oil well drilling on agricultural lands have led to serious economic losses on the communities affected. The local people in most of these communities are peasants who do not know how to react to drilling wastes or polluted fields where they have their crops. A case under study is the Kutchalli oil drilling area. Methods. Waste pit soil from drilling waste dumps in Kutchalli oil drilling area was tested whole and in combinations with 'clean' soil for their abilities to support plant growth and development in common bean (Vigna unguiculata) and maize (Zea mays). Seed germination, plant height, leaf area, biomass accumulation, respiratory activity as well as soil chemical analysis were used to access the ability of waste pit soil to support plant growth and development in the test plants. Results, discussion and conclusions. Waste pit soil completely inhibited the germination of bean and maize seeds. Waste pit soil in combinations with different proportions of Kutchalli soil gave growth (germination, height of plants, number of leaves, leaf area, etc.) values that were inferior to the control soil (Kutchalli) and the independent control soil (Monguno). Seeds planted in the test soil combinations containing waste pit soil showed significantly low respiratory activity. Waste pit soil seems to be toxic to plant growth and development. Drilling mud in combination with native Kutchalli soil significantly enhanced plant growth and development. Recommendations and outlook. The seed germination, growth and development inhibition by waste pit soil suggests its toxicity. We want to suggest the need for strict control and monitoring of waste pit soil in oil drilling sites. (orig.)

  20. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    Science.gov (United States)

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  1. Analysis of water and nitrogen use efficiency for maize (Zea mays L.) grown on soft rock and sand compound soil.

    Science.gov (United States)

    Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou

    2017-06-01

    Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Evaluation of Maize Germplasm for Resistance to Aflatoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Michael H. Blanco

    2012-03-01

    Full Text Available Aflatoxin contamination of maize grain threatens human food and animal feed safety. Breeding for reduced grain aflatoxin accumulation is one of the best strategies presently available to lower grain aflatoxin accumulation. Previously identified sources of germplasm with reduced grain aflatoxin accumulation are excessively tall and late maturing. The objective of this research was to screen germplasm and identify potential sources of aflatoxin resistance. KO679Y and CUBA117:S15-101-001-B-B-B-B inbreds were evaluated for aflatoxin accumulation alongside resistant and susceptible checks with both performing well. These two lines were also evaluated in various crosses. KO679Y performed especially well in crosses with Mp494 and Mp717, resulting in low ear rot and very low aflatoxin levels, but not well in other crosses. A breeding cross including CUBA117:S15-101-001-B-B-B-B as a parent accumulated low levels of aflatoxin both years it was evaluated. Lines resulting from these crosses are being advanced for further evaluation and improvement. KO679Y and CUBA117:S15-101-001-B-B-B-B may prove useful for breeders seeking germplasm sources for ear rot and mycotoxin reduction, especially KO679Y which matures a week earlier and is approximately 25% shorter than current lines resistant to grain aflatoxin accumulation.

  3. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    Science.gov (United States)

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  4. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    Science.gov (United States)

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zea mays L.) cultivated on an arsenic-contaminated soil.

    Science.gov (United States)

    Cattani, I; Beone, G M; Gonnelli, C

    2015-05-01

    Southern Tuscany (Italy) is characterized by extensive arsenic (As) anomalies, with concentrations of up to 2000 mg kg soil(-1). Samples from the location of Scarlino, containing about 200 mg kg(-1) of As, were used to study the influence of the inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis, previously known as Glomus intraradices) and of phosphorus (P) application, separately and in combination, on As speciation in the rhizosphere of Zea mays on plant growth and As accumulation. Also, P distribution in plant parts was investigated. Each treatment produced a moderate rise of As(III) in the rhizosphere, increased As(III) and lowered As(V) concentration in shoots. P treatment, alone or in combination with AM, augmented the plant biomass. The treatments did not affect total As concentration in the shoots (with all the values <1 mg kg(-1) dry weight), while in the roots it was lowered by P treatment alone. Such decrease was probably a consequence of the competition between P and As(V) for the same transport systems, interestingly nullified by the combination with AM treatment. P concentration was higher with AM only in both shoots and roots. Therefore, the obtained results can be extremely encouraging for maize cultivation on a marginal land, like the one studied.

  6. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells.

    Science.gov (United States)

    Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio

    2016-03-15

    The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The effect of germination and metallic salts on the stability of enzymes of three high yielding varieties of maize (Zea mays L. in respect of Bangladesh

    Directory of Open Access Journals (Sweden)

    Rupa, A.Z.,

    2017-09-01

    Full Text Available The study was conducted with a view to determine the effect of germination and metallic salts on nutritional quality, enzymes activity and their stability of three high yielding varieties of maize (Zea mays L.. The protein content of BHM-3, BHM-5 and BHM-6 were increased 22.37%, 26.48%, and 20.34% respectively at 48 hours then decreased drastically from 72-96 hours of germination. Starch content was increased maximum 29.19% in BHM-6 at 0 hours (non-germinating seeds among the three varieties and then decreased gradually from 48-96 hours of germination. Total sugar and reducing sugar contents of BHM-3, BHM-5 and BHM-6 seeds were maximum at 96 hours than 24-72 hours of germination while BHM-3 showed boosting increase of total sugar (336.97% due to 96 hours of germination. BHM-5 showed a tremendous increase of α-amylase (189.83% and protease (144.44% activity whereas BHM-6 showed maximum invertase activity (175.27% at 48 hours then decreased gradually from 72-96 hours of germination. The activities of enzymes were increased in presence of metallic salts such as Ca2+, Mg2+, and Mn2+ while Fe2+, Zn2+ and Cu2+ inhibited the activities moderately.

  9. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved.

    Science.gov (United States)

    Wang, Pu; Zhang, Hao; Hou, Haoli; Wang, Qing; Li, Yingnan; Huang, Yan; Xie, Liangfu; Gao, Fei; He, Shibin; Li, Lijia

    2016-07-01

    Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L. rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Karnwal Arun

    2017-06-01

    Full Text Available The use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits of Pseudomonas aeruginosa, P. fluorescens and Bacillus subtilis isolated from the maize (Zea mays L. rhizosphere. In vitro studies showed that isolates have the potential to produce indole acetic acid (IAA, hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical to P. aeruginosa strain DSM 50071 and P. aeruginosa strain NBRC 12689 (AK20 and AK31, while two others were 98% identical to P. fluorescens strain ATCC 13525, P. fluorescens strain IAM 12022 (AK18 and AK45 and one other was 99% identical to B. subtilis strain NCDO 1769 (AK38. Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.

  11. Assimilate unloading from maize (Zea mays L.) pedicel tissues. II. Effects of chemical agents on sugar, amino acid, and 14C-assimilate unloading

    International Nuclear Information System (INIS)

    Porter, G.A.; Knievel, D.P.; Shannon, J.C.

    1987-01-01

    Sugar, amino acid, and 14 C-assimilate release from attached maize (Zea mays L.) pedicels was studied following treatment with several chemical inhibitors. In the absence of these agents, sugar release was nearly linear over a 7-hour period. At least 13 amino acids were released with glutamine comprising over 30% of the total. Release was not affected by potassium concentration, 10-minute pretreatments with p-chloromercuribenzene sulfonic acid (PCMBS) or dithiothreitol, and low concentrations of CaCl 2 . Three hours or more exposure to PCMBS, dinitrophenol, N-ethylmaleimide, or 2,4,6-trinitrobenzene sulfonic acid strongly inhibited 14 C-assimilate, sugar, and amino acid release from the pedicel. These treatments also reduced 14 C-assimilate movement into the kernel bases. It is, therefore, likely that reduced unloading, caused by these relatively long-term exposures to chemical inhibitors, was related to reduced translocation of assimilates into treated kernels. Whether this effect is due to disruption of kernel metabolism and sieve element function or reduced assimilate unloading and subsequent accumulation of unlabeled assimilates within the pedicel tissues cannot be determined at this time

  12. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  13. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    Science.gov (United States)

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  14. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Adriano Marocco

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  15. EVALUATION OF THE DEVELOPMENT OF MAIZE PLANTS (Zea mays L.) AFTER COLONIZATION BY ENDOPHYTE FUNGUS Fusarium verticillioides

    OpenAIRE

    Gomes, Ulisses de Deus; Orlandelli, Ravely Casarotti; Santos, Mariana Sanches; Polonio, Julio Cesar; Pamphile, João Alencar; Rubin Filho, Celso João

    2013-01-01

    Endophyte fungi inhabit the inside of plants without causing any damage. Benefits from endophyte-plant interactivities include vegetal growth and the plant´s defense against insects and other pathogens. Some endophytes, however, may act as latent pathogens which cause physiological changes and disease symptoms in the host. Current analysis evaluates the development of maize plants colonizer (treatment) and non-colonized (control) with the frequently found endophyte Fusarium verticillioides an...

  16. Nitrogen availability effects on gas exchange measurements in field-grown maize (Zea mays L.) under irrigated Mediterranean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Isla, R.; Guillén, M.; Salmerón, M.

    2016-07-01

    There are limited studies about the effect of nitrogen (N) deficiency on leaf growth, N status, and photosynthetic capacity of maize grown under field conditions in a Mediterranean climate. The objective of this work was to evaluate the effect of different levels of mineral N availability on leaf gas exchange parameters of sprinkler irrigated maize. The experiment was conducted in a conventional maize field located in the central part of the Ebro valley (Spain) during two seasons. Using a portable LICOR-6400 equipment, instantaneous measurements and light response curves to gas exchange were conducted in plots with different levels of N supply ranging from deficient (no fertilized) to over-fertilized (300 kg N/ha). In addition to gas exchange measurements, mineral soil N content, chlorophyll meter readings (CMR), leaf N content, and grain yield were measured in the different plots. Results showed that grain yield reached a plateau (14.5 Mg/ha) when the mineral N available was about 179 kg/ha. CMR were linearly and highly related to total N in ear leaves. The relationship between light-saturated leaf photosynthesis measurements and CMR was significant but very weak (R2=0.13) at V8 and V14 stages but increased later in the growing season (R2=0.52). Plants with intermediate levels of N supply (48maize crop.

  17. Nitrogen availability effects on gas exchange measurements in field-grown maize (Zea mays L.) under irrigated Mediterranean conditions

    International Nuclear Information System (INIS)

    Isla, R.; Guillén, M.; Salmerón, M.

    2016-01-01

    There are limited studies about the effect of nitrogen (N) deficiency on leaf growth, N status, and photosynthetic capacity of maize grown under field conditions in a Mediterranean climate. The objective of this work was to evaluate the effect of different levels of mineral N availability on leaf gas exchange parameters of sprinkler irrigated maize. The experiment was conducted in a conventional maize field located in the central part of the Ebro valley (Spain) during two seasons. Using a portable LICOR-6400 equipment, instantaneous measurements and light response curves to gas exchange were conducted in plots with different levels of N supply ranging from deficient (no fertilized) to over-fertilized (300 kg N/ha). In addition to gas exchange measurements, mineral soil N content, chlorophyll meter readings (CMR), leaf N content, and grain yield were measured in the different plots. Results showed that grain yield reached a plateau (14.5 Mg/ha) when the mineral N available was about 179 kg/ha. CMR were linearly and highly related to total N in ear leaves. The relationship between light-saturated leaf photosynthesis measurements and CMR was significant but very weak (R2=0.13) at V8 and V14 stages but increased later in the growing season (R2=0.52). Plants with intermediate levels of N supply (48< CMR<54) tended to have slightly higher assimilation rates than plants with higher CMR readings. As the available N increased, the saturation point, the light compensation point and significant increases of dark respiration rate were observed. Under the conditions of the study, leaf N contents of 1.9% in the ear leaf were enough to maximize leaf assimilation rates with no need to over-fertilize the maize crop.

  18. Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line.

    Science.gov (United States)

    Cho, Myeong-Je; Wu, Emily; Kwan, Jackie; Yu, Maryanne; Banh, Jenny; Linn, Wutt; Anand, Ajith; Li, Zhi; TeRonde, Susan; Register, James C; Jones, Todd J; Zhao, Zuo-Yu

    2014-10-01

    An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds. This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.

  19. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    Science.gov (United States)

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Soil Fertility Status, Nutrient Uptake, and Maize (Zea mays L.) Yield Following Organic Matters and P Fertilizer Application on Andisol

    Science.gov (United States)

    Minardi, S.; Harieni, S.; Anasrullah, A.; Purwanto, H.

    2017-04-01

    Objective of this study were to elucidate effects of organic matters and P fertilizer application on soil fertility status, nutrient uptake and maize yield in the Andisol. This experiment consisted of two factors. The first factor comprised of four levels of organic matters input (without organic matter, manure, rice straw, and Gliricidia sepium leaves), with the application dosage 10 t.ha-1 and the second factor comprised of three levels of P fertilizer application (without P addition (control), 50 kg P2O5 ha-1, 100 kg P2O5 ha-1). Results of this study showed that organic matters and P fertilizer application improved soil fertility status, especially pH, soil organic C, cation exchange capacity (CEC), available P which resulted in an increase in P uptake that improve yield of maize. The highest yield of maize (corn cob) was obtained through application Gliricida sepium (8.40 t.ha-1), followed by manure (6.02 t.ha-1) and rice straw (5.87 t.ha-1). Application of 50 kg P2O5 Ha-1 yield was (5.76 t.ha-1) and application of 100 Kg P2O5 Ha-1 yield was (6.12 t.ha-1).

  1. Photosynthetic capacity, nutrient status and growth of maize (Zea mays L. upon MgSO4 leaf-application

    Directory of Open Access Journals (Sweden)

    Mareike eJezek

    2015-01-01

    Full Text Available The major plant nutrient magnesium is involved in numerous physiological processes and its deficiency can severely reduce the yield and quality of crops. Since Mg availability in soil and uptake into the plant is often limited by unfavorable soil or climatic conditions, application of Mg onto leaves, the site with highest physiological Mg demand, might be a reasonable alternative fertilization strategy. This study aimed to investigate, if MgSO4 leaf-application in practically relevant amounts can efficiently alleviate the effects of Mg starvation in maize, namely reduced photosynthesis capacity, disturbed ion homeostasis and growth depression. Results clearly demonstrated that Mg deficiency could be mitigated by MgSO4 leaf-application as efficiently as by resupply of MgSO4 via the roots in vegetative maize plants. Significant increases in SPAD values and net rate of CO2-assimilation as well as enhanced shoot biomass have been achieved. Ion analysis furthermore revealed an improvement of the nutrient status of Mg-deficient plants with regard to [Mg], [K] and [Mn] in distinct organs, thereby reducing the risk of Mn-toxicity at the rootside, which often occurs together with Mg deficiency on acid soils. In conclusion, foliar fertilization with Mg proved to be an efficient strategy to adequately supply maize plants with magnesium and might hence be of practical relevance to correct nutrient deficiencies during the growing season.

  2. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.).

    Science.gov (United States)

    Pang, Kaiyuan; Li, Yanjiao; Liu, Menghan; Meng, Zhaodong; Yu, Yanli

    2013-09-10

    The metabolic functions of ATP-binding cassette (or ABC) proteins, one of the largest families of proteins presented in all organisms, have been investigated in many protozoan, animal and plant species. To facilitate more systematic and complicated studies on maize ABC proteins in the future, we present the first complete inventory of these proteins, including 130 open reading frames (ORFs), and provide general descriptions of their classifications, basic structures, typical functions, evolution track analysis and expression profiles. The 130 ORFs were assigned to eight subfamilies based on their structures and homological features. Five of these subfamilies consist of 109 proteins, containing transmembrane domains (TM) performing as transporters. The rest three subfamilies contain 21 soluble proteins involved in various functions other than molecular transport. A comparison of ABC proteins among nine selected species revealed either convergence or divergence in each of the ABC subfamilies. Generally, plant genomes contain far more ABC genes than animal genomes. The expression profiles and evolution track of each maize ABC gene were further investigated, the results of which could provide clues for analyzing their functions. Quantitative real-time polymerase chain reaction experiments (PCR) were conducted to detect induced expression in select ABC genes under several common stresses. This investigation provides valuable information for future research on stress tolerance in plants and potential strategies for enhancing maize production under stressful conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Impact of level and source of compost based organic material on the productivity of autumn maize (zea mays l.)

    International Nuclear Information System (INIS)

    Iqbal, S.; Khan, H.Z.; Ehsanullah, A.

    2014-01-01

    Organic manure from different sources could be an effective substitute of chemical fertilizers. Therefore, the present study compares the effect of varying level (0, 2, 4, 6, 8, 10 t ha/sup -1/) of two types of compost, i.e poultry manure compost (PM compost) and press-mud compost (PrM compost) on the yield of maize. The experiment was conducted at Agronomic Research Area, University of Agriculture Faisalabad, Pakistan for two consecutive years 2011 and 2012. Results of this study revealed that all the levels and sources of compost based organic material had significant effect on the yield and yield parameters of autumn maize. Maximum plant height, cob diameter, cob length, cob weight, number of grain rows per cob, number of grains per cob, 1000-grain weight biological yield, grain yield and harvest index were produced by the application of 10 t ha/sup -1/ PM compost. Whereas, the number of cobs per plant was not significantly affected by level and source of compost based organic material. It was concluded that 10 t ha/sup -1/ PM compost could be used lucratively for optimizing maize yield. (author)

  4. Development of genetic and molecular indices for drought tolerance in some inbred and hybrids of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Saleh, O.M.

    1998-01-01

    From eighteen zea mays inbred lines, two were chosen as drought tolerant and drought sensitive genotypes (G621W and G603W, respectively). They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield traits. The physiological markers cations (Na, K, Ca and Mg) and their ratios (K/Na, Ca/K and Ca/Mg) showed differential association with drought tolerance was observed.SDS-protein profiles indicated the presence of two bands in the tolerant group associated with drought tolerance. Western blotting analysis didn't give polymorphism patterns such as esterase, peroxidase and acid phosphatase showed differential responses with respect to drought tolerance

  5. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  6. Application of bokashi and sunn hemp (Crotalaria juncea L. to improve inorganic fertilizer efficiency on maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    A.I. Yuliana

    2015-10-01

    Full Text Available A field experiment was conducted lo learn about the effect of Bokashi and Sunn hemp (Crotalaria juncea L. on maize production and inorganic fertilizer use efficiency on maize. The experiment was conducted in Jatikerto, Malang; at the altitude of 303 m above sea level, in Alfisol soil type, the average daily temperature ranges 21-33oC, from June to October 2013. The experiment was conducted as factorial, designed in a randomized block design (RBD. The first factor was dose of inorganic fertilizer (100% ; 75% and 50% of recommendation dose. The second factor was the organic fertilizer (Without organic fertilizer20 t Bokashi/ ha, 20 t Sunn hemp/ha, 10 t Bokashi/ha + 10 t Sunn hemp/ha. The results showed that application of 20 t Bokashi/ha, 20 t Sunn hemp/ha, and combination of 10 t Bokashi/ha + 10 t Sunn hemp/ha, along with the application of inorganic fertilizer by dose of 100% increased the yields of maize for about 41.8%; 47.6% and 54.7% (10.73 t/ha; 11.17 t/ha, and 11.71 t/ha, respectively. The yield and nutrient use efficiency in the treatment dose of 100% inorganic fertilizer did not have any significant difference from the application of 20 t Bokashi /ha, 20 t Sunn hemp/ha, and 10 t Bokashi/ha + 10 t Sunn hemp/ha along with doses of inorganic fertilization 75% and 50%. Therefore, the organic fertilizer of 20 t Bokashi/ ha, 20 t Sunn hemp/ha, and combination of 10 t Bokashi/ha + 10 t Sunn hemp/ha could reduce the need of inorganic fertilizer for about 50%.

  7. QTL Mapping of Agronomic Waterlogging Tolerance Using Recombinant Inbred Lines Derived from Tropical Maize (Zea mays L) Germplasm

    Science.gov (United States)

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  8. Brackish water for irrigation: IV. effects on yield of maize (zea mays l.) and saturated hydraulic conductivity of soil

    International Nuclear Information System (INIS)

    Abid, M.; Anwar-ur-Hassan; Ghafoor, A.

    2003-01-01

    The experiment was conducted to investigate the effect of brackish water irrigation on fresh biomass yield of maize variety Agati-72 and saturated hydraulic conductivity (HC) of silty clay loam soil. Total 20 treatment combinations having different EC/sub iw/ (0.65, 2.0, 4.0, 6.0 and 7.35 dS m/sup -1/), SAR/sub iw/ (3.95, 9.65, 18.0, 26.35 and 32.04 (mmol L/sup -1)/sup 1/2/) and RSC (0.65, 2.0, 4.0, 6.0 and 7.35 mmol/sub c/ L/sup -1/) were applied to 30 cm x 68 cm undisturbed and disturbed soil columns. Results indicated that biomass yield of maize decreased with an increase in EC/sub iw/ from 0.65 to 7.35 dS m/sup -1/ at coded 0 levels of SAR/sub iw/ and RSC in undisturbed soil. The maize tolerated EC/sub iw/ up to 2.0 dS m/sup-1/ at coded 0 levels of SAR/sub iw/ and RSC in disturbed soil. The SAR/sub iw/ up to 18.0 did not affect the yield of crop at coded 0 levels of EC/sub iw/ for the undisturbed and disturbed soils, respectively. The increase in HC was 48% in undisturbed and 54% in disturbed soils with EC/sub iw/ 7.35 dS m/sup -1/ over EC/sub iw/ 0.65 dS m/sup -1/ coded 0 levels of EC/sub iw/ and RSC. The HC decreased with SAR/sub iw/ and RSC at coded 0 levels of EC/sub iw/ and RSC; EC/sub iw/ and SAR/sub iw/ in both the soil columns. (author)

  9. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.

    Directory of Open Access Journals (Sweden)

    Davide Savy

    2015-11-01

    Full Text Available The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by 31P-NMR and 13C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  10. Effect of EDTA and Citric Acid on Phytoextraction of Copper and Zinc from a Naturally Contaminated Soil by Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    A. Taheripur

    2016-09-01

    Full Text Available Introduction: Mining and smelting activities have contributed to increasing levels of copper (Cu and zinc (Zn in soils around of Sarcheshmeh copper mine (Kerman, Iran. Soil chemical analysis showed that the available of Cu and Zn (extracted with DTPA-TEA were 260.1 and 9.2 mg kg-1 soil, respectively. Phytoextraction is one of the most popular and useful phytoremediation techniques for removal of heavy metals from polluted soils. For chemically-assisted phytoextraction, different chelating agents such as EDTA and citric acid are applied to soil to increase the availability of heavy metals in soil for uptake by plants. A pot experiment was conducted to elucidate the performance of chelating agents addition in improving phytoextraction of Cu and zinc Zn from a naturally contaminated soil by maize (Zea mays L. cultivars. Materials and Methods: A factorial experiment in a completely randomized design was carried out bythree factors of chelate type, chelate concentrations and maize cultivars with three replications in 2012 at ShahreKord University. Chelating agents were Ethylene Diamine Tetra Acetic Acid (EDTA and citric acid (CA. They were applied in concentration levels of 0, 0.75 and 1.5 mmole kg-1 soil with irrigation water. The three maize cultivars used were single cross 704 (SC-704, three v cross 647 (TVC-647, and single cross 677 (SC-677. The pots were 23 cm in diameter and 23 cm deep, and were filled with 4 kg of a silty loam, calcareous soil taken from the surface layer of Sarcheshmeh copper mine area. Maize plant s was grown under greenhouse conditions over 90 days. After the harvest, soil available Cu and Zn contents (extracted with DTPA-TEA were determined by atomic absorption spectrophotometry (AAS. Plant samples (shoot and root were dried for 48 h at 70ºC to determine their dry matter content (yield. Total Cu and Zn concentrations in root and shoot of maize were measured after digestion plant samples by AAS method. The shoot and root

  11. Phytotoxicity of brominated diphenyl ether-47 (BDE-47) and its hydroxylated and methoxylated analogues (6-OH-BDE-47 and 6-MeO-BDE-47) to maize (Zea mays L.).

    Science.gov (United States)

    Xu, Xuehui; Huang, Honglin; Wen, Bei; Wang, Sen; Zhang, Shuzhen

    2015-03-16

    Polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), and hydroxylated PBDEs (OH-PBDEs) are widely found in various environmental media, which is of concern given their biological toxicity. In this study, the phytotoxicities of BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 to maize (Zea mays L.) were investigated by an in vivo exposure experiment. Results showed that BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 inhibited seed germination and seedling development, and elevated malondialdehyde (MDA), carbonyl groups, and phosphorylated histone H2AX levels in maize roots, suggesting the inducement of lipid peroxidation, protein carbonylation, and DNA damage to maize. Exposure to BDE-47, 6-MeO-BDE-47, and 6-OH-BDE-47 caused the overproduction of H2O2, O2(•-), and •OH, and elevated the activities of antioxidant enzymes in the roots. In addition, 6-OH-BDE-47 caused more severe damage and reactive oxygen species (ROS) generation in maize than did BDE-47 and 6-MeO-BDE-47. These results demonstrated the phytotoxicities of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 to maize, and clarified that overproduction of ROS was the key mechanism leading to toxicity. This study offers useful information for a more comprehensive understanding of the environmental behaviors and toxicities of PBDEs, MeO-PBDEs, and OH-PBDEs.

  12. First report of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) on larvae of Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in maize (Zea mays L.) under different cropping systems.

    Science.gov (United States)

    Silva, R B; Cruz, I; Penteado-Dias, A M

    2014-08-01

    In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea mays L.). However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae) in Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106). In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  13. First report of Dolichozele koebeleiViereck, 1911 (Hymenoptera: Braconidae on larvae of Spodoptera frugiperda (J. E. Smith, 1797 (Lepidoptera: Noctuidae in maize (Zea maysL. under different cropping systems

    Directory of Open Access Journals (Sweden)

    RB Silva

    Full Text Available In the context of the modern agriculture, pest control is important in order to increase productivity in maize (Zea maysL.. However, this control should be done rationally, prioritising environmentally safer methods such as biological control. This paper aims to report the occurrence of Dolichozele koebelei Viereck, 1911 (Hymenoptera: Braconidae in Spodoptera frugiperda(J. E. Smith, 1797 (Lepidoptera: Noctuidae larvae collected in maize subjected to different cropping systems. The experiment was conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS in Sete Lagoas, Minas Gerais State, Brazil, using organic and conventional production. Ten plants were sampled from each of the 24 plots and for each production system, three times a week during the entire cycle of maize (variety BR 106. In the laboratory, larvae were distributed in individual rearing containers with artificial diet until the end of the biological cycle. An increased number of S. frugiperda larvae was observed in organic single crop maize; hence a higher percentage of S. frugiperda larvae parasitised by Hymenoptera and Diptera also occurred in the maize under this production system. Dolichozele koebelei had not yet been described in association with larvae of S. frugiperda. The percentage of parasitism of S. frugiperda larvae was high in both experiments, indicating the importance of natural control agents in reducing the population density of S. frugiperda, and especially the importance of an appropriate crop management.

  14. A Technique for Identification of Intrinsic Resistance of Maize ...

    African Journals Online (AJOL)

    ... the insect fat body to determine the levels of fat body vitellogenin (FVg) in the vitellogenic S. zeamais females which were reared on different maize varieties. Results on levels of FVg varied and ranged from 83.33% to 43.33% in insects raised in different varieties ANOVA of FVg, maize weight loss and F1 numbers showed ...

  15. Isolation of 14{sub C} labelled amino acids by biosynthesis in maize plants (Zea mais L.); Obtencin de aminoacidos marcados con 14{sub C} por biosintesis en plantulas de maiz (Zea mais L)

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, N; Mazon, M P

    1983-07-01

    A method of obtaining 14{sub C} labelled amino acids by biosynthesis in maize plants which had assimilated 14CO{sub 2}, has been assayed. The plants were labelled for 60 minutes with 14{sub C}O2 produced from Ba 14{sub C}O3 (specific activity of 148 KBq/{mu}mol). An extract of the soluble compounds was obtained with 80% ethanol and the amino acids were separated from the rest of the soluble compounds by ion exchange chromatography on column of Dowex 50-X8 resin. Finally, seventeen amino acids were isolated and identified from the purified extract. The acid amino acids were separated in anionic column (Dowex 1-X8) and the neutral and basic amino acids in cationic column (Dowex 50-X4). (Author) 56 refs.

  16. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.).

    Science.gov (United States)

    Gou, Wei; Zheng, Pufan; Tian, Li; Gao, Mei; Zhang, Lixin; Akram, Nudrat Aisha; Ashraf, Muhammad

    2017-05-01

    Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H 2 O 2 ), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.

  17. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    Science.gov (United States)

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Effect of nitrification inhibitors on the content of available nitrogen forms in the soil under maize (Zea mays, L. growing

    Directory of Open Access Journals (Sweden)

    Zuzana PANAKOVA

    2016-12-01

    Full Text Available The objective of this research was to investigate the effect of nitrification inhibitors (dicyandiamide and 1,2,4 triazole on the content of nitrate and ammonium nitrogen in the soil and the effectiveness of nitrogen-sulphur nutrition of maize. The research was conducted in field small-plot experiment with maize on Haplic Luvisol with dominance of clay fraction in experimental years 2012 to 2015. The dose of nitrogen in all experimental treatments was 160 kg*ha-1 and was applied at one shot or split in three partial doses. Soil samples from all examined treatments were taken from three soil depths (0.0-0.3 m, 0.3-0.6 m and 0.6-0.9 m, respectively by probe rod in 4-5 week intervals. Achieved results indicate that on the average of four years and three depths of the soil profile, application of nitrification inhibitors contained in fertilizer ENSIN considerably reduced portion of nitrate nitrogen from the content of mineral nitrogen in the soil by 7-32 relative %. The application of fertilizer ENSIN considerably increased content of ammonium nitrogen in the soil by 10-59 relative %. A favourable effect on increase of ammonium nitrogen content and reduction of nitrate nitrogen content was found out in spite of the fact that in this treatment the total dose of fertilizer was applied at one shot.

  19. Ecophysiological Evaluation of Three Maize (Zea mays L. Cultivars under Irrigation Regimes and Use of Super Absorbent

    Directory of Open Access Journals (Sweden)

    Allahyar Hassanzadeh

    2016-03-01

    Full Text Available To evaluate the effects of using super absorbent and irrigation regimes on seed yield and yield components of maize cultivars a split plot experiment based on randomized complete block design with three replications was performed at the Research Field of Malekan Islamic Azad University. Main factor consisted of three irrigation regimes (irrigation after 70, 110 and 150 mm evaporation from pan and subfactor of two levels of super absorbent applications (application and without application and three maize cultivars (704, Iranian maxima and overseas maxima. Based on the results obtained it was revealed that highest seed yield (985 g/m2 belonged to the plants irrigated after 70 mm evaporation from the pan without using super absorbent. Irrigation after evaporation of 150 mm from the pan decreased both seed numbers per plant and 100 seed weight, and seed yield loss amounted to be 46.1% as compared with irrigation after 70 mm evaporation from the pan. Without using super absorbent and irrigation after 150 mm evaporation from the pan decreased seed number per ear by 38.8% and 100 seed weight by 13.8%. However, application of super absorbent and irrigation of plants after 150 mm evaporation from the pan increased by grain yield 38% as compared with out using super absorbent. There were not significant difference between cultivars for seed yield and yield components. It could be concluded that application of super absorbent under water shortage conditions may reduce crop yield losses.

  20. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I Three Year Yield Performances

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    Full Text Available A three-year (2004-2006 field trial was carried out to compare two agricultural land management systems, in the Po Valley (Northern Italy. Conventional tillage and No-tillage (hereafter indicated as CT and NT, respectively were compared for maize treated with three levels of nitrogen. The soil was a fine-loamy, mixed, mesic Ultic Haplustalf, that had been under processing tomato in the previous year. Experimental design was a split-plot with four replicates, with the management system as the main factor and nitrogen fertilization (0, 250 and 300 kg N ha-1 year-1 as the secondary factor. Cumulative 3-yr yields of grain and total biomass of NT maize plants were 8% lower than those obtained under CT management, but not significantly different. No N starter was distributed in the first conversion year, causing 17% less grain yield in the NT plots compared with the CT plots. The N fertilizing with 250 and 300 kg N ha-1 year-1 determined statistically equal grain yields, demonstrating the waste of the extra 50 kg N at the N2 rate. Overall, the results for the three years indicate that on an Ultic Haplustalf conversion from a ploughed regime to mature NT conditions could be achieved over a relatively short period.

  1. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.).

    Science.gov (United States)

    Subbaiah, Layam Venkata; Prasad, Tollamadugu Naga Venkata Krishna Vara; Krishna, Thimmavajjula Giridhara; Sudhakar, Palagiri; Reddy, Balam Ravindra; Pradeep, Thalappil

    2016-05-18

    In the present investigation, nanoscale zinc oxide particulates (ZnO-nanoparticulates) were prepared using a modified oxalate decomposition method. Prepared ZnO-nanoparticulates (mean size = 25 nm) were characterized using techniques such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and zeta potential analyzer. Different concentrations (50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 ppm) of ZnO-nanoparticulates were examined to reveal their effects on maize crop on overall growth and translocation of zinc along with bulk ZnSO4 and control. Highest germination percentage (80%) and seedling vigor index (1923.20) were observed at 1500 ppm of ZnO-nanoparticulates. The yield was 42% more compared to control and 15% higher compared to 2000 ppm of ZnSO4. Higher accumulation of zinc (35.96 ppm) in grains was recorded with application of 100 ppm followed by 400 ppm (31.05 ppm) of ZnO-nanoparticulates. These results indicate that ZnO-nanoparticulates have significant effects on growth, yield, and zinc content of maize grains, which is an important feature in terms of human health.

  2. Identification of sources of resistance to anthracnose stalk rot in maize

    Directory of Open Access Journals (Sweden)

    Alessandro Nicoli

    Full Text Available ABSTRACT: Adoption of resistant cultivars is the primary measure used to control anthracnose stalk rot. The goal of this study was to identify maize-resistant genotypes to anthracnose stalk rot, which are similar to the hybrid 2B710. Experiments were performed at Embrapa Maize and Sorghum experimental fields in Brazil. The first experimental trial evaluated 234 maize lines as well as two commercials hybrids, BRS1010 (susceptible and 2B710 (resistant. Artificial inoculations were performed with a strain at the blister (R2 phase, and evaluation of disease severity was performed after 30 days. The second experimental trial evaluated 48 maize lines and hybrids, inoculated with two Colletotrichum graminicola strains. In the first trial, eight resistance groups were formed, and the last lines were more resistant, as was the hybrid 2B710, with values between 11.50% and 23.0% of severity. In the second trial, there was an interaction between the two factors, lines and isolates, and the lines often showed the same reaction features as those obtained in the first trial. However, the disease severity was higher for most lines, even when using other isolates. These lines with effective levels of resistance could be used in future studies of inheritance, in programs to develop hybrids, and to identify molecular markers associated with resistance to anthracnose stalk rot in maize.

  3. A maize resistance gene functions against bacterial streak disease in rice.

    Science.gov (United States)

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  4. The effect of Nitrogen on Radiation Use Efficiency and Growth indices of Maize Hybrids (Zea mays L. under Kermanshah Condition

    Directory of Open Access Journals (Sweden)

    M Ahmadi

    2018-02-01

    Full Text Available Introduction Dry matter produced by crops is a function of absorbed radiation and radiation use efficiency. Radiation use efficiency is an effective approach to quantify total dry matter accumulation. It is defined as biomass produced by plant for solar radiation absorbed during growing season. Radiation use efficiency is often calculated from the linear regression slope between total dry matter accumulation and cumulative solar radiation absorbed. It is affected by species, weather conditions, crop management, plant development stages, and the production of photosynthesis compounds. Among the factors of agronomic management, nitrogen fertilizer and crop species are the most important aspects that affect the radiation use efficiency. Therefore, by considering the fact that Kermanshah province has favorable condition in terms of more natural resources such as solar radiation, the aims of the present study were evaluation of nitrogen effect on radiation use efficiency, growth indices and yield of some current maize hybrids. Materials and Methods A split plot experiment was done based on randomized complete block design with 4 replications at 2014. Treatments were 4 levels of nitrogen fertilizer application (40%, 70%, 100% and 140% of the maize demand to nitrogen which based on the amount recommended by soil experiment equivalent to 138, 238, 350 and 483 kg.ha-1 of urea as main plots and 3 maize hybrids KSC-704, BC-678 and Simon as sub plots. Leaf area index and total dry matter yield measured during growing season. Crop growth rate and relative growth ratio calculated by differentiation from fitted equation on total dry matter yield data. In order to calculate radiation use efficiency, sunny hours for Kermanshah latitude obtained from the nearest weather station. Daily solar radiation simulated by the method cited by Goudriaan and Van Laar (1993 for growing season. The absorbed radiation in each stage obtained through the multiplication simulated

  5. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers

    Science.gov (United States)

    2012-01-01

    Background Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. Results Two F2 populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. Conclusions These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries. PMID:23122295

  6. comparative resistance of improved maize genotypes and landraces ...

    African Journals Online (AJOL)

    Administrator

    weevil. The Open Pollinated Varieties (OPVs) were not superior to hybrids according to the Dobie's index of susceptibility. The possibility of ... and recommendations made. Key Words: Open pollinated, Sitophilus zeamais, Zambia, Zea mays ..... grit percentage was the proxy for grain hardness. Kernel weight. The number of ...

  7. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Science.gov (United States)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  8. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    International Nuclear Information System (INIS)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-01-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds

  9. Relative efficiency of different methods of phosphorus (32P) application on fertilizer phosphorus uptake by maize (zea may L.)

    International Nuclear Information System (INIS)

    Chaudhary, M.L.; Gupta, A.P.

    1975-01-01

    A green house study was conducted for comparing four methods of phosphorus application (broad cast, below the seed, one side and both sides of the seeds) at the rate of 60 ppm in sierozem soil of H issar (Haryana). Maize crop was planted in 50 cm. bottomless bitumin drums for 70 days i.e. upto tasseling stage. The plant samples were collected at jointing and tasseling stages of plant growth. The results revealed that the highest dry matter yield, total and fertilizer phosphorus uptake was observed when the phosphorus was applied below the seed, followed by both side application of phosphorus. The least yield, total and fertilizer phosphorus uptake were recorded when the phosphorus was broadcast at the time of sowing. (author)

  10. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Anjali, E-mail: joshianjali1982@gmail.com; Sharma, Arti [Centre For Nanoscience and Nanotechnology, Panjab University, Chandigarh (India); Nayyar, Harsh [Department of Botany, Panjab University, Chandigarh (India); Verma, Gaurav [Dr. SS Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India)

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  11. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns.

    Science.gov (United States)

    Yang, Ting; Stoopen, Geert; Yalpani, Nasser; Vervoort, Jacques; de Vos, Ric; Voster, Alessandra; Verstappen, Francel W A; Bouwmeester, Harro J; Jongsma, Maarten A

    2011-07-01

    Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum graminicola and Fusarium graminearum. Among all tested terpenoids, geranic acid showed very strong inhibitory activity against both fungi (MICLippia dulcis under the control of a ubiquitin promoter. The volatile and non-volatile metabolite profiles of leaves from transgenic and control lines were compared. The headspaces collected from intact seedlings of transgenic and control plants were not significantly different, although detached leaves of transgenic plants emitted 5-fold more geranyl acetate compared to control plants. Non-targeted LC-MS profiling and LC-MS-MS identification of extracts from maize leaves revealed that the major significantly different non-volatile compounds were 2 geranic acid derivatives, a geraniol dihexose and 4 different types of hydroxyl-geranic acid-hexoses. A geranic acid glycoside was the most abundant, and identified by NMR as geranoyl-6-O-malonyl-β-d-glucopyranoside with an average concentration of 45μM. Fungal bioassays with C. graminicola and F. graminearum did not reveal an effect of these changes in secondary metabolite composition on plant resistance to either fungus. The results demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing default pathway, but branching glycosylation pathways must be controlled to achieve accumulation of the aglycones. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Bikal Ghimire

    2015-12-01

    Full Text Available Chlorophyll has direct roles on photosynthesis and hence closely relates to capacity for photosynthesis, development and yield of crops. With object to explore the roles of chlorophyll content and its relation with other yield attributing traits a field research was conducted using fourteen early genotypes of maize in RCBD design with three replications. Observations were made for Soil Plant Analysis Development (SPAD reading, ear weight, number of kernel row/ear, number of kernel/row, five hundred kernel weight and grain yield/hectare and these traits were analyzed using Analysis of Variance (ANOVA and correlation coefficient analysis. SPAD reading showed a non-significant variation among the genotypes while it revealed significant correlation with no. of kernel/row, grain yield/hectare and highly significant correlation with no. of kernel row/ear and ear weight which are the most yield determinative traits. For the trait grain yield/ha followed by number of kernel row/ear genotype ARUN-1EV has been found comparatively superior to ARUN-2 (standard check. Grain Yield/hectare was highly heritable (>0.6 while no. of kernel / row, SPAD reading, ear weight, number of kernel row/ear were moderately heritable (0.3-0.6. Correlation analysis and ANOVA revealed ARUN-1EV, comparatively superior to ARUN-2 (standard check, had higher SPAD reading than mean SPAD reading with significant correlation with no. of kernel/row, no. of kernel row/ear, ear weight and grain yield/ha which are all yield determinative traits . This showed positive and significant effect of chlorophyll content in grain yield of the maize.

  13. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (Zea mays L.) Heterotic Groups.

    Science.gov (United States)

    Giraud, Héloïse; Bauland, Cyril; Falque, Matthieu; Madur, Delphine; Combes, Valérie; Jamin, Philippe; Monteil, Cécile; Laborde, Jacques; Palaffre, Carine; Gaillard, Antoine; Blanchard, Philippe; Charcosset, Alain; Moreau, Laurence

    2017-11-01

    Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize ( Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers. Copyright © 2017 by the Genetics Society of America.

  14. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    Science.gov (United States)

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    Science.gov (United States)

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  16. Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan).

    Science.gov (United States)

    Salian, Rupa; Wani, Suhas; Reddy, Ramamohan; Patil, Mukund

    2018-03-01

    Brewing industry releases large quantities of wastewater after product generation. Brewery wastewater contains organic compounds which are biodegradable in nature. These biodegradable wastes can be recycled and reused and hence considered as suitable products for agriculture. But before using wastewater for agriculture, it is better to evaluate the phytotoxic effects of wastewater on crops. Hence, the main objective of this study is to evaluate the effects of brewery effluent on seed germination and growth parameters of selected crop species like chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Study comprised seven types of water treatments-tap water as control, diluted UASBR effluent (50% effluent + 50% distilled water): UASBR50, undiluted UASBR effluent: UASBR100, diluted TC effluent (50% effluent + 50% distilled water): ETP50,TC effluent without dilution: ETP100, 10% diluted reverse osmosis (RO10) reject (10% RO reject + 90% distilled water), and 25% diluted reverse osmosis(RO25) reject (25% RO reject + 75% distilled water) with three replications in completely randomized design. Germination test was performed in petri plates for 5 days. Parameters like germination percentage, germination rate index, seedling length, phytotoxicity index, seed vigor index, and biomass were calculated. All parameters decreased with increase in respective effluent concentration. Among all treatments, RO25 showed highest inhibitory effect on all three crops. Even though undiluted effluent of UASBR and ETP effluent showed positive effect on germination, seedling growth of three crops was promoted to the maximum by UASBR50 and ETP50. Hence, from the study, it was concluded that dilution of brewery effluent can be recommended before using it for irrigational purpose.

  17. Registration of Mp718 and Mp719 germplasm lines of maize

    Science.gov (United States)

    Maize (Zea mays L.) germplasm lines Mp718 (Reg. No. GP-xxxx, PI 662045) and Mp719 (Reg. No. GP-xxxx, PI 662046) were developed and released by USDA-ARS in cooperation with the Mississippi Agricultural and Forestry Experiment Station, Mississippi State, Mississippi, as sources of resistance to aflat...

  18. traits and resistance to maize streak virus disease in kenya

    African Journals Online (AJOL)

    African Crop Science Journal, Vol. 14. No. 4, pp. ... Kenya Agricultural Research Institute, Muguga-South, P.O. Box 30148, Nairobi, Kenya .... streak disease has been identified in various maize recycling and development of pure-lines at.

  19. Genetic analysis of vitreous endosperms derived from homozygotic plants for opaque-2 gene in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Prioli, A.J.; Barbosa, H.M.; Sant'Anna, R.

    1980-01-01

    From experiments in which opaque-2 maize seeds were treated with gamma rays and ethil methanesulfonate, and their respective untreated controls, seeds with hard, vitreous endosperms were obtained. Some of these were completely vitreous, with no evidence of opaque endosperm tissue. Others had very small and few (one to three) areas of opaque tissue. Plants derived from completely vitreous endosperm seeds were self pollinated and crossed to an opaque-2 inbred. The segregation of vitreous to opaque seeds indicated that the normal allele at the opaque-2 locus was responsible for the vitreousity of the endosperm. Lysine content of the vitreous endosperm was comparable to that of normal endosperms. Plants derived from vitreous seeds with few and tiny spots of opaque tissue produced, upon selfing or crossing to the opaque-2 inbred, only opaque-2 seeds. It is concluded that: (a) induced mutation may not be an effective tool to obtain vitreous opaque-2 endosperm with high lysine content; and, (b) there are unknown genetic systems which severely modify the expression of the opaque-2 gene. (Author) [pt

  20. Physiological Responses to Cadmium, Nickel and their Interaction in the Seedlings of Two Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    Pavlovkin Ján

    2016-12-01

    Full Text Available In the leaves of maize seedlings, cultivars Premia and Blitz, the relatively low 2 μmol/L concentration of cadmium (Cd, nickel (Ni, or both metals acting simultaneously (Cd +Ni for 72 h, induced a significant metal accumulation, decrease in total K+ content, reduction of light-induced membrane electrical potential (EM repolarisation in mesophyll cells and changes of ascorbic acid (AsA, dehydroascorbic acid (DHA and glutathione (GSH content. Shoot growth and the values of resting EM did not change significantly. Increased K+ leakage, from the leaves, and lipid peroxidation accompanied by increase of TBA-reactive substances (TBARS were found only in cv. Blitz exposed to Cd + Ni. This indicates a capability of high leaf-cell anti-oxidant pool to ameliorate the toxic effects on plasma membrane of single ions in both cultivars, and of Cd + Ni only in cv. Premia. The decreased total content of K+ in leaves in all variants indicated repressing the K+ uptake and/or distribution to the shoots. Under anoxia, the magnitude of the repolarisation obtained after switching on the light was smaller in Cd-treated cultivar Premia than in the controls, and this also occurred in Ni- and Cd + Ni-treated cultivar Blitz.

  1. The dependence of maize (Zea mays hybrids yielding potential on the water amounts reaching the soil surface

    Directory of Open Access Journals (Sweden)

    Kresović Branka

    2013-01-01

    Full Text Available The aim of the present study was to observe the response of maize hybrids under rainfed and irrigation conditions of the soil in order to establish the dependence of yielding potential on the water amounts reaching the soil surface during the growing season. The four-replicate trail was set up according to the randomised complete-block design on chernozem. Pre-watering soil moisture was approximately 70% of field water capacity, and soil moisture was established thermogravimetrically. During the five-year studies, the following differences in yields could be as follows: 12.68 t ha-1 (ZP 341; 12.76 t ha-1 (ZP 434; 13.17 t ha-1 (ZP 578; 14.03 t ha-1 (ZP 684 and 13.75 t ha-1 (ZP 704 under conditions of 440 mm, 440 mm, 424 mm, 457 mm and 466 mm of water, respectively. The hybrid ZP 341, i.e. ZP 578 expressed the highest, i.e. the lowest tolerance in dry relative seasons, respectively. The reduction of the water amount for every 10 mm decreased the yield by 119.4 kg ha-1 (ZP 341, 156.7 kg ha-1 (ZP 434, 172.3 kg ha-1 (ZP 578, 148.9 kg ha-1 (ZP 684 and 151.1 kg ha-1 (ZP 704. [Projekat Ministarstva nauke Republike Srbije, br. TR 31037

  2. Red light-induced shift of the fluence-response curve for first positive curvature of maize [Zea mays] coleoptiles

    International Nuclear Information System (INIS)

    Hofmann, E.; Schäfer, E.

    1987-01-01

    The fluence-response curve for first positive phototropic curvture of dark-grown maize coleoptiles is shifted to ten-fold higher fluences if the coieoptiles are irradiated with red light 2 h prior to the phototropic induction with blue light. Fluence-response curves for this red-induced shift were obtained with unilateral red irradiations 2 h prior to inductive blue pulses of different fluences. They differ significantly depending on whether the red light was given from the same side as or the opposite side to the respective inductive blue pulse, thus demonstrating that the red light effect is a local response of the coleoptile. The fluence-response curves for an inductive blue pulse in the ascending part were compared with those for an inductive blue pulse in the descending part of the fluence-response curve for blue light induced phototropism. They are quite different in threshold of red light sensitivity and shape for irradiations from both the same and the opposite sides. This offers evidence for the hypothesis that at least two different photosystems are involved in phototropism, and that they are modulated differently by a red light preirradiation. All these fluence-response curves indicate that it is possible to increase the response in the coleoptile, if the red light preirradiation is given opposite to the inductive blue pulse. This is supported by blue light fluence-response curves obtained after a weak unilateral red preirradiation. (author)

  3. EFFECT OF DROUGHT STRESS INDUCED BY MANNITOL ON PHYSIOLOGICAL PARAMETERS OF MAIZE (ZEA MAYS L. SEEDLINGS AND PLANTS

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2015-02-01

    Full Text Available Plants are exposed to various stress factors which might lead to structural damage and physiological function abnormalities. Drought is one of the environmental stress factors that reduce the productivity of plants. The aim of our study was to determine the influence of drought stress induced by mannitol (-0.5 and -1.5MPa on selected physiological processes in Z. mays L. In the first stage we studied the effect of mannitol on the germination. In the second stage the effect of mannitol on the growth of plants germinated on distilled water and watered with mannitol in growth phase were measured. Mannitol, which decreased the water content in a concentration-dependent manner, had an inhibitory effect on germination and growth of seedlings and adult plants. Electrolyte leakage of cell membranes of the Z. mays seedlings showed high disturbances in the functioning of the membrane structures in the osmotic drought conditions. Similar results were obtained for maize roots, shoots and leaves in both treatment studies. Chlorophyll content showed only significant differences in plants from treated during the growth phase. Drought stress caused a decrease in chlorophyll content by almost a half compared to the control plants. Measurements of chlorophyll fluorescence of plant leaves from the second stage of experiments showed changes in fluorescence activity parameters Fv/Fm, NPQ, Rfd, qP, ect.; gas exchange measurements also showed changes in activity in each of the two phases.

  4. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  5. Effect of zinc and plant-population on the yield and yield components of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Kakar, K.M.; Sadiq, S.A.; Tariq, M.

    2005-01-01

    A field experiment was conducted during 2001 to study the effect of two levels of zinc (0 and 5 kg Zn ha-J) and three plant-densities (60,000, 80,000 and 100,000 plants ha-J) on the performance of two varieties of maize Azam and Pahari and two hybrids N7989 and Babar, at Malakandher Farm of NWFP Agricultural University, Peshawar. Zinc at the rate of 5 kg ha-J increased the cob yield, grain yield and 1000-grain weight, while increase in plant-density significantly increased the number of grains cob-J, number of cob-plant-J, cob-yield, grain-yield and 1000-grain weight. Results revealed that the highest plant-density of 100,000 plant ha-J decreased the number of cobs plant-J, number of grains cob-J and 1000-grain weight. Maximum number of cobs plant-J (0.87), number of grains cob-J (313), cob yield (4602 kg ha-J), grain yield (4222 kg ha-J) and 1000-grain weight (249 g) were obtained with plant- density of 80,000 plant ha-J. The maximum grain-yield of 4333 kg ha-J was recorded in plots of hybrid variety N7989. (author)

  6. The Effect of Ascorbic Acid Treatment on Viability and Vigor Maize (Zea mays L. Seedling under Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIDAH HAMAMA

    2010-09-01

    Full Text Available This study was conducted in the laboratory and the field to examine the effects of ascorbic acid treatment on germination and seedling growth under drought stress. The laboratory works consisted of two experiments and were designed to determine the critical osmotic potential of maize and to determine the optimum ascorbic acid concentration. The field study was designed to examine the effects of soaking seed in ascorbic acid on seedling growth under drought stress. Drought condition was simulated by PEG-6000 and regulation of water treatment. During the first experiment, interactions of both osmotic potential and varieties were significant at all variables. Germination percentage and speed of germination were significantly decreased by increasing of osmotic potential. The second experiment showed that interactions of both factors were significant at all variables except vigor index, the length of shoot, primary, and seminal root. The results showed that the ascorbic acid treatment improved the germination percentage, the speed of germination and the vigor index compared with the control, besides the increase in length of shoot, primary and seminal root and number of seminal root. However, the best result was showed by 55 mM ascobic acid. The result of field experiment showed that interactions were not always significant and 55 mM ascorbic acid treatment increased the seedling height, the number of leaves and leaf area but it had no effect on the water deficit and the root length.

  7. Influence of different irrigation and nitrogen levels on crude oil and fatty acid composition of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Kaplan, M.; Kale, H.; Karaman, K.; Unlukara, A.

    2017-01-01

    The effect of irrigation and nitrogen fertilizer levels on the crude oil and fatty acid composition of maize cultivars was studied. Three levels of irrigation (50, 75 and 100% of field capacity) and nitrogen (100, 200 and 300 kg·ha-1) were used for treatment groups. After harvest, the crude oils were extracted and fatty acid profiles were determined by Gas Chromatography system. The study was repeated for two years and the interaction effects of fertilizer and irrigation were determined. Our results show that the crude oil content was affected positively by the fertilizer and the irrigation applications. As expected, the most abundant fatty acid was linoleic and the harvest year did not alter it. The highest linoleic acid content value was obtained with a 50% field capacity and 300 kg·ha-1 fertilizer treatment combination. In addition, fatty acid contents varied with the changing of interaction effects except for myristic and palmitic acid. Oleic acid was the second abundant fatty acid in the oil samples and the lowest oleic acid value was obtained with a 50% field capacity and 300 kg·ha-1 fertilizer treatment combination. Oleic acid content tended to increase with 75% field capacity but 100% field capacity treatment decreased in it. [es

  8. Combining ability of maize (Zea mays L.) inbred lines resistant to ...

    African Journals Online (AJOL)

    GREGORY

    2011-06-01

    Jun 1, 2011 ... evaluated across four locations in Kenya under artificial and natural infestation in 2009. Genotype (G) ... harvested area of annual food crops and 25% of total ..... to additive rather than non-additive gene effects, and selection ...

  9. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  10. Diallel crosses among maize lines with emphasis on resistance to foliar diseases

    Directory of Open Access Journals (Sweden)

    Maria Elisa Ayres Guidetti Zagatto Paterniani

    2000-06-01

    Full Text Available Ten elite maize (Zea mays L. lines were crossed in a complete diallel scheme and the single-cross hybrids obtained were assessed at four experimental stations of the Agronomic Institute of Campinas, in São Paulo State, Brazil. The experiments were set up in a randomized complete block design with three replications, including four commercial checks. The experimental plots consisted of two 5-m rows spaced at 0.9 m, with a total of 50 plants. The traits assessed included: days to mid-tassel pollen shed (DPS, plant height (PH, ear height (EH, grain yield, corrected for a 50-plant stand and 14% moisture (GY corr., and resistance to Phaeosphaeria maydis and Puccinia polysora. General and specific combining ability effects (GCA and SCA were determined. There was extensive genetic variability among hybrids with the best hybrids (HS 04 x 10 and HS 10 x 11 not differing from the commercial checks. The lines with the greatest potential for hybrid synthesis included: L 10, L 11 and L 13, because they had higher GCA for yield, moderate resistance to P. maydis and reduced EH. The greatest contribution to reduction of the Phaeosphaeria stain was obtained with L 5. The magnitude of the GCA relative to the total variation indicated that additive effects predominated for resistance to P. maydis and P. polysora. Significant SCA (P Cruzaram-se dez linhagens-elite de milho em esquema dialélico completo e os híbridos simples obtidos foram avaliados em quatro Núcleos Experimentais do Instituto Agronômico de Campinas, SP, Brasil. Os ensaios foram instalados sob delineamento de blocos casualizados com três repetições, incluindo quatro testemunhas comerciais. As parcelas consistiram em duas linhas de 5 m espaçadas por 0,90 m, contendo 50 plantas. Avaliaram-se os caracteres: dias para o florescimento masculino (DPS, altura da planta (PH e da espiga (EH, produtividade de grãos corrigida para estande ideal de 50 plantas e 14% de umidade (GY corr. e resistência a

  11. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut

    NARCIS (Netherlands)

    Volpicella, M.; Cordewener, J.H.G.; Jongsma, M.A.; Gallerani, R.; Ceci, L.R.; Beekwilder, M.J.

    2006-01-01

    Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet.

  12. The Mechanisms of Maize Resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq Data

    Directory of Open Access Journals (Sweden)

    Yanping Wang

    2016-11-01

    Full Text Available Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieties. However, the molecular mechanisms underlying the infection process remain poorly understood, which hampers the application of quantitative resistance in breeding programs. Here, we reveal the disease-resistance mechanism of the maize inbred line of BT-1 which displays high resistance to ear rot using RNA high throughput sequencing. By analyzing RNA-seq data from the BT-1 kernels before and after F. verticillioides inoculation, we found that transcript levels of genes associated with key pathways are dramatically changed compared with the control treatment. Differential gene expression in ear rot resistant and susceptible maize was confirmed by RNA microarray and qRT-PCR analyses. Further investigation suggests that the small heat shock protein family, some secondary metabolites, and the signaling pathways of abscisic acid (ABA, jasmonic acid (JA or salicylic acids (SA may be involved in the pathogen-associated molecular pattern-triggered immunity against F. verticillioides. These data will not only provide new insights into the molecular resistant mechanisms against fungi invading, but may also result in the identification of key molecular factors associated with ear rot resistance in maize.

  13. A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera.

    Science.gov (United States)

    Castano-Duque, Lina; Loades, Kenneth W; Tooker, John F; Brown, Kathleen M; Paul Williams, W; Luthe, Dawn S

    2017-12-01

    Insect resistance against root herbivores like the western corn rootworm (WCR, Diabrotica virgifera virgifera) is not well understood in non-transgenic maize. We studied the responses of two American maize inbreds, Mp708 and Tx601, to WCR infestation using biomechanical, molecular, biochemical analyses, and laser ablation tomography. Previous studies performed on several inbreds indicated that these two maize genotypes differed in resistance to pests including fall armyworm (Spodoptera frugiperda) and WCR. Our data confirmed that Mp708 shows resistance against WCR, and demonstrates that the resistance mechanism is based in a multi-trait phenotype that includes increased resistance to cutting in nodal roots, stable root growth during insect infestation, constitutive and induced expression of known herbivore-defense genes, including ribosomal inhibitor protein 2 (rip2), terpene synthase 23 (tps23) and maize insect resistance cysteine protease-1 (mir1), as well high constitutive levels of jasmonic acid and production of (E)-β-caryophyllene. In contrast, Tx601 is susceptible to WCR. These findings will facilitate the use of Mp708 as a model to explore the wide variety of mechanisms and traits involved in plant defense responses and resistance to herbivory by insects with several different feeding habits.

  14. Effect of integrated plant nutrition and irrigation scheduling on yield and yield components of maize (zea mays l.)

    International Nuclear Information System (INIS)

    Randhawa, M.S.; Maqsood, M.; Wajid, S.A.; Haq, A.U.

    2012-01-01

    Effect of three irrigation schedules (4-6 irrigations) and seven integrated plant nutrition levels (control, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + Farm yard manure at the rate 15 t ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/ -K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha-1 and 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 15 t ha/sup -1/) on grain yield and its components in maize were studied during 2009 and 2010. Plant height, number of cobs plant-1, number of grain rows cob-1, number of grains cob-1, 1000-grain weight, grain weight cob-1, grain yield, stover yield and biological yield were significantly affected by irrigation schedules and integrated plant nutrition levels during both years. The crop applied with six irrigations and fertilized by integrated application of chemical fertilizers (250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/) and farmyard manure (15 t ha/sup -1/) produced the highest grain yield of 8.47 t ha/sup -1/ and 8.22 t ha/sup -1/ during 2009 and 2010, respectively. (author)

  15. Functional molecular markers (EST-SSR) in the full-sib reciprocal recurrent selection program of maize (Zea mays L.).

    Science.gov (United States)

    Galvão, K S C; Ramos, H C C; Santos, P H A D; Entringer, G C; Vettorazzi, J C F; Pereira, M G

    2015-07-03

    This study aimed to improve grain yield in the full-sib reciprocal recurrent selection program of maize from the North Fluminense State University. In the current phase of the program, the goal is to maintain, or even increase, the genetic variability within and among populations, in order to increase heterosis of the 13th cycle of reciprocal recurrent selection. Microsatellite expressed sequence tags (EST-SSRs) were used as a tool to assist the maximization step of genetic variability, targeting the functional genome. Eighty S1 progenies of the 13th recur-rent selection cycle, 40 from each population (CIMMYT and Piranão), were analyzed using 20 EST-SSR loci. Genetic diversity, observed heterozygosity, information content of polymorphism, and inbreeding co-efficient were estimated. Subsequently, analysis of genetic dissimilarity, molecular variance, and a graphical dispersion of genotypes were conducted. The number of alleles in the CIMMYT population ranged from 1 to 6, while in the Piranão population the range was from 2 to 8, with a mean of 3.65 and 4.35, respectively. As evidenced by the number of alleles, the Shannon index showed greater diversity for the Piranão population (1.04) in relation to the CIMMYT population (0.89). The genic SSR markers were effective in clustering genotypes into their respective populations before selection and an increase in the variation between populations after selection was observed. The results indicate that the study populations have expressive genetic diversity, which cor-responds to the functional genome, indicating that this strategy may contribute to genetic gain, especially in association with the grain yield of future hybrids.

  16. RESOURCE ALLOCATION IN A MAIZE BREEDING PROGRAM FOR NATIVE RESISTANCE TO WESTERN CORN ROOTWORM

    Directory of Open Access Journals (Sweden)

    Ivan Brkić

    2012-06-01

    Full Text Available The objective of this study was to determine the optimum allocation of the number of plants sampled per plot and number of locations and years required for screening maize genotypes for reduced root damage caused by western corn rootworm (WCR larvae, major pest of maize in Croatia, Europe and in the USA. Field trials were conducted on two locations Eastern Croatia, a major maize production area with natural WCR occurrence under continuous maize growing conditions. The trials were set as an incomplete lattice block design in two replications in 2007, 2008 and 2009 including 128 genotypes from various maize gene-pools. Our results suggest that the effect of year and respective interactions including year were the most important factors in maize breeding programs for native resistance to WCR. Thus, screening germplasm for WCR resistance should be made in a multi-year experiment, but not necessarily as a multi-location experiment. Resource optimization should be done by reducing number of roots per plot to minimum 4 sampled plants due to small within-plot environmental variance.

  17. Evaluation of Tillage, Residue Management and Nitrogen Fertilizer Effects on CO2 Emission in Maize (Zea Mays L. Cultivation

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2016-02-01

    Full Text Available Introduction: The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause climatic change (16. These conditions are also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. The three GHGs associated with agriculture CO2, CH4, and N2O differ in their effectiveness in trapping heat and in their turnover rates in the atmosphere. This environmental change will have serious impacts on different growth and development processes of crops. Increasing temperature could affect physiological processes such as photosynthesis, respiration and partitioning of photoassimilates. Farmers are not able to change or manage the climatic conditions, but some factors such as soil, water, seed and agricultural practices can be managed to reduce the adverse impacts of climate change (32. Mitigation and adaptation are two known ways for reducing the negative impacts of climate change. Mitigation strategies are associated with decreasing greenhouse gas (GHG emissions through management practices such as reducing chemical fertilizer application, mechanization, increasing carbon storage in agroecosystems, planting biofuel crops and moving towards organic farming (42, etc. Material and Methods: This study was carried out at the experimental field of the Ferdowsi University of Mashhad in 2011 and was repeated in 2012. The Research Station (36°16´N, 59°36´E is located at about 985 m a.s.l. Average temperature and precipitation rate of the research station in two years are shown in Figure. 1. The three-factor experiment was set up in a strip-split-plot arranged in a randomized complete block design with three replications. The experimental treatments were tillage systems (conventional and reduced tillage and residual management (remaining and leaving of maize residual assigned to main plots

  18. A maize resistance gene functions against bacterial streak disease in rice

    OpenAIRE

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, wh...

  19. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil.

    Science.gov (United States)

    Omoto, Celso; Bernardi, Oderlei; Salmeron, Eloisa; Sorgatto, Rodrigo J; Dourado, Patrick M; Crivellari, Augusto; Carvalho, Renato A; Willse, Alan; Martinelli, Samuel; Head, Graham P

    2016-09-01

    The first Bt maize in Brazil was launched in 2008 and contained the MON 810 event, which expresses Cry1Ab protein. Although the Cry1Ab dose in MON 810 is not high against fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), MON 810 provided commercial levels of control. To support insect resistance management in Brazil, the baseline and ongoing susceptibility of FAW was examined using protein bioassays, and the level of control and life history parameters of FAW were evaluated on MON 810 maize. Baseline diet overlay assays with Cry1Ab (16 µg cm(-2) ) caused 76.3% mortality to field FAW populations sampled in 2009. Moderate mortality (48.8%) and significant growth inhibition (88.4%) were verified in leaf-disc bioassays. In greenhouse trials, MON 810 had significantly less damage than non-Bt maize. The surviving FAW larvae on MON 810 (22.4%) had a 5.5 day increase in life cycle time and a 24% reduction in population growth rate. Resistance monitoring (2010-2015) showed a significant reduction in Cry1Ab susceptibility of FAW over time. Additionally, a significant reduction in the field efficacy of MON 810 maize against FAW was observed in different regions from crop season 2009 to 2013. The decrease in susceptibility to Cry1Ab was expected, but the specific contributions to this resistance by MON 810 maize cannot be distinguished from cross-resistance to Cry1Ab caused by exposure to Cry1F maize. Technologies combining multiple novel insecticidal traits with no cross-resistance to the current Cry1 proteins and high activity against the same target pests should be pursued in Brazil and similar environments. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Development of nematode resistance maize varieties by diallel ...

    African Journals Online (AJOL)

    The study was conducted in 2014 and 2015 cropping season at the Centre for agricultural research and extension (CARE) of Federal University of Technology, Owerri (FUTO) located at latitude 050 27‖ N and longitude 070 O2‖ E within the rain forest agro-ecology of Nigeria; to assess the tolerance level of maize ...

  1. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    Science.gov (United States)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  2. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    Full Text Available Introduction Maize (Zea mays L. which belongs to the Poaceae family is the third important cereal crop of the world after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Planting method is a crucial factor for improving crop yield. Planting methods in saline and non-saline conditions are different. Kinetin is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. Indole acetic acid (IAA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of foliar applications of cytokinin and auxin hormones on yield and yield components of grain maize under different planting patterns in saline conditions. Materials and Methods The experiment was carried out at Bushehr Agricultural and Natural Resources Research Center, Dashtestan station with 29° 16´ E latitude and 51° 31´ N, longitude and 70 m above the see surface during the 2013 growing season. Dashtestan region is a warm-arid region with 250 mm precipitation per year. The field plowed by April 2013 and then prepared and sowed by August 2013. There were five rows with 75 cm distance. The experiment was conducted as a split-plot factorial design based on complete randomized blocks with three replications. Planting pattern (ridge planting, double rows of planting on a ridge in zigzag form and furrow planting as the main factor and time of cytokinin (0 as a control, V5- V6 stage and V8- V10 stage and auxin (0 as a control, silking stage, two weeks after silking stage foliar-applied was considered in a factorial. Cytokinin (Benzyl Adenine, Merck and Auxin (Indole-3-Butiric Acid, Merck were sprayed on the entire plant in the evening with

  3. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Directory of Open Access Journals (Sweden)

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  4. Identification of multiple ear-colonizing insect and disease resistance in CIMMYT maize inbred lines with varying levels of silk maysin.

    Science.gov (United States)

    Ni, Xinzhi; Krakowsky, Matthew D; Buntin, G David; Rector, Brian G; Guo, Baozhu; Snook, Maurice E

    2008-08-01

    Ninety four corn inbred lines selected from International Center for the Improvement of Maize and Wheat (CIMMYT) in Mexico were evaluated for levels of silk maysin in 2001 and 2002. Damage by major ear-feeding insects [i.e., corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae); maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae); brown stink bug, Euschistus servus (Say); southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae)], and common smut [Ustilago maydis DC (Corda)] infection on these inbred lines were evaluated in 2005 and 2006 under subtropical conditions at Tifton, GA. Ten inbred lines possessing good agronomic traits were also resistant to the corn earworm. The correlation between ear-feeding insect damage or smut infection and three phenotypic traits (silk maysin level, husk extension, and husk tightness of corn ears) was also examined. Corn earworm and stink bug damage was negatively correlated to husk extension, but not to either silk maysin levels or husk tightness. In combination with the best agronomic trait ratings that show the least corn earworm and stink bug damage, lowest smut infection rate, and good insect-resistant phenotypic traits (i.e., high maysin and good husk coverage and husk tightness), 10 best inbred lines (CML90, CML92, CML94, CML99, CML104, CML108, CML114, CML128, CML137, and CML373) were identified from the 94 lines examined. These selected inbred lines will be used for further examination of their resistance mechanisms and development of new corn germplasm that confers multiple ear-colonizing pest resistance.

  5. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination.

    Science.gov (United States)

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H 2 O 2 ) in response to chilling stress, we investigated the effects of seed priming with SA, H 2 O 2 , and SA+H 2 O 2 combination on maize resistance under chilling stress (13°C). Priming with SA, H 2 O 2 , and especially SA+H 2 O 2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H 2 O 2 priming notably increased the endogenous H 2 O 2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2 , and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H 2 O 2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2 , and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2 . The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H 2 O 2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights: Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H 2 O 2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and

  6. PERTUMBUHAN TANAMAN JAGUNG (Zea mays, L. VARIETAS BISI-2 PADA PASIR REJECT DAN PASIR ASLI DI PANTAI TRISIK KULONPROGO (The Growth of Maize Crop (Zea mays L. BISI-2 Variety on Rejected and non Rejected Sand at Pantai Trisik Kulon Progo

    Directory of Open Access Journals (Sweden)

    Diah Ekowati

    2011-11-01

    mineral is extracted, the remaining sand (reject sand will be returned as reclaimed material to be replanted. The aim of this study was to investigate the effect of different growth media called rejected and non rejected sand also fertilizer dossage of manure and NPK on the growth of maize crop (Zea mays L. BISI-2 variety at Pantai Trisik Kulon Progo. Fertilizers dossage that used in this study were 0 Kg manure and 0 g NPK (control, 0 Kg manure and 75 g NPK, 2,5 Kg manure and 0 g NPK, 2,5 Kg manure and 112,5 g NPK, 2,5 Kg manure and 75 g NPK, and 3,75 Kg manure and 37,5 g NPK. The parameters measured including plant height, number of leaves, dry weight of shoot, flowering time, number of cob, weight of cob, lenght of cob, and diameter of cob. The data collected were analyzed with Analysis of variance (Anova and for the advance test Duncan’s Multiple Range Test (DMRT was used. The results of this study showed that the avarage of plant height, number of leaves, dry weight of shoot, number of cob, weight of cob, lenght of cob, and diameter of cob of maize crop (Zea mays L. BISI-2 variety on reject sand was higher than non rejected sand but the average of flowering time of maize crop (Zea mays L. BISI-2 variety on rejected sand is longer than non rejected sand. In addition, the result of this study showed that the optimum vegetatif growth of maize crop was gained on dossage of 1,25 Kg manure and 112,5 g NPK but the most generatif growth of maize crop gained on dossage 3,75 Kg manure and 37,5 g NPK.

  7. [A method for genetic transformation of maize for resistance to viral diseases].

    Science.gov (United States)

    Valdez, Marta; Madriz, Kenneth; Ramírez, Pilar

    2004-09-01

    A system for the genetic transformation of maize was developed for two Costa Rican varieties: CR-7 and Diamantes 8843, that can allow the subsequent transfer of viral-derived genes in order to confer resistance to the disease caused by maize rayado fino virus (MRFV). The method is based on particle bombardment of organogenic calli derived from shoot tips. On the other hand, the molecular construction pRFcp-bar, containing the coat protein gene of MRFV and the marker gene bar, was elaborated. For the visual selection of the transformed material was used also the plasmid pDM803 that contains the reporter gene uidA (GUS). The results indicate that devices evaluated: the PIG ("Particle Inflow Gun") and the Bio-Rad are both enough efficient to transfer foreign genes to the genome of the maize.

  8. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    Science.gov (United States)

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  9. Alfalfa (Medicago sativa L./maize (Zea mays L. intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    Directory of Open Access Journals (Sweden)

    Baoru Sun

    Full Text Available Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  10. Alfalfa (Medicago sativa L.)/Maize (Zea mays L.) Intercropping Provides a Feasible Way to Improve Yield and Economic Incomes in Farming and Pastoral Areas of Northeast China

    Science.gov (United States)

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  11. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  12. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP-map, different testers, and cofactor analysis

    NARCIS (Netherlands)

    Ajimone Marsan, P.; Gorni, C.; Chitto, A.; Redaelli, R.; Vijk, van R.; Stam, P.; Motto, M.

    2001-01-01

    Abstract We exploited the AFLP?1(AFLP? is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals

  13. Genetic diversity of maize (Zea mays L. ssp. mays) in communities of the western highlands of Guatemala: geographical patterns and processes.

    NARCIS (Netherlands)

    Etten, van J.; Fuentes, M.R.; Molina, L.G.; Ponciano, K.M.

    2008-01-01

    This study concerns spatial genetic patterning, seed flow and the impact of modern varieties in maize populations in Chimaltenango, Guatemala. It uses a collection of 79 maize seed samples from farmers in the area and five samples derived from modern varieties. Bulked SSR markers employed with

  14. GENETIC DIVERSITY OF S3 MAIZE GENOTYPES RESISTANT TO DOWNY MILDEW BASED ON SSR MARKERS

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-02-01

    Full Text Available The compulsory requirement for releasing new high yielding maize varieties is resistance to downy mildew. The study aimed to determine the level of homozygosity, genetic diversity, and  genetic distance of 30 S3 genotypes of maize. Number of primers to be used were 30 polymorphic SSR loci which are distributed over the entire maize genomes. The S3 genotypes used were resistant to downy mildew with homozygosity level of >80%, genetic distance between the test and tester strains >0.7, and anthesis silking interval (ASI between inbred lines and tester lines was maximum 3 days. The results showed that 30 SSR primers used were spread evenly across the maize genomes which were manifested in the representation of SSR loci on each chromosome of a total of 10 chromosomes. The levels of polymorphism ranged from 0.13 to 0.78, an average of 0.51, and the number of alleles ranged from 2 to 8 alleles per SSR locus, an average of 4 alleles per SSR locus. The size of nucleotides in each locus also varied from 70 to 553 bp. Cophenetic correlation value (r at 0.67 indicated that the Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA was less reliable for differentiating genotypes in five groups. Of the total of 30 genotypes analyzed, 17 genotypes had homozygosity level of >80% so it can be included in the hybrid assembly program.

  15. Use of Drought Index and Crop Modelling for Drought Impacts Analysis on Maize (Zea mays L.) Yield Loss in Bandung District

    Science.gov (United States)

    Kurniasih, E.; Impron; Perdinan

    2017-03-01

    Drought impacts on crop yield loss depend on drought magnitude and duration and on plant genotype at every plant growth stages when droughts occur. This research aims to assess the difference calculation results of 2 drought index methods and to study the maize yield loss variability impacted by drought magnitude and duration during maize growth stages in Bandung district, province of West Java, Indonesia. Droughts were quantified by the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at 1- to 3-month lags for the January1986-December 2015 period data. Maize yield responses to droughts were simulated by AquaCrop for the January 1986-May 2016 period of growing season. The analysis showed that the SPI and SPEI methods provided similar results in quantifying drought event. Droughts during maize reproductive stages caused the highest maize yield loss.

  16. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  17. Maize germplasm of eastern Croatia with native resistance to western corn rootworm (Diabrotica virgifera virgifera LeConte

    Directory of Open Access Journals (Sweden)

    Brkić Andrija

    2017-01-01

    Full Text Available The western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR is a serious maize pest in Croatia. The species was first registered in Europe in the early 1990s and since then became one of the most dangerous maize pests, especially in parts of Central and Southeast Europe. Larvae that feed on the maize roots cause the most serious damages in maize fields. Management of this pest is difficult and expensive, with possible serious impact on the environment. Native (or host-plant resistance of maize against WCR could provide new economically and ecologically sustainable options in WCR management. Main goal of this study was to assess the variability of maize germplasm, correlations among resistance traits, and detect potential sources of resistance that could be used in breeding programs in order to develop hybrids with higher level of resistance against WCR. To our knowledge, the first native resistant hybrid is yet to be registered. Results showed great variability of estimated germplasm. Effect of the genotype was significant in all environments, as well as many interactions between genotype and the environment. Significant interactions emphasize the importance of the environment in WCR native resistance research. Significant positive correlations among all traits were detected. Several inbred lines were selected as a potentially useful germplasm for resistance breeding programs.

  18. Yield stability in maize (Zea mays L. and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Scapim

    2000-06-01

    Full Text Available Assessment of the stability and adaptability of a genotype to different environments is useful for recommending cultivars for known conditions of cultivation and should be a requirement in breeding programs. Twenty maize (Zea mays L. cultivars were tested at eight locations in Minas Gerais by the National Center for Maize and Sorghum Research (CNPMS of the Brazilian Enterprise for Agricultural Research (EMBRAPA for two years. The experiments involved a randomized complete block design in which three procedures were used to analyze cultivar stability and adaptability. The level of association among the parameters obtained by the three methods was assessed using Spearman's rank correlation. Hybrids 'DINA 170', 'G-96C', 'C 505', 'DINA 70' and 'C 435' had a mean yield greater than 6,000 kg/ha. Eberhart and Russell's regression coefficient (betai was negative and correlated significantly (P or = 0.05, but correlated positively with Si(1 (P O conhecimento sobre a estabilidade e adaptabilidade de comportamento de genótipos contém informações muito úteis para a recomendação de cultivares para condições de cultivo conhecidas a priori, de modo que a avaliação da resposta dos genótipos às variações ambientais deve ser etapa obrigatória em programas de melhoramento. Para caracterizar 20 cultivares de milho, foram realizados dez ensaios (oito localidades do Estado de Minas Gerais, em dois anos no delineamento de blocos ao acaso, pelo Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS da Empresa Brasileira de Pesquisa Agropecuária (Embrapa. Três procedimentos estatísticos foram adotados para a análise da estabilidade e adaptabilidade dos cultivares e avaliou-se o grau de associação entre os parâmetros dos três métodos por meio da correlação classificatória de Spearman. 'DINA 170', 'G-96C', 'C 505', 'DINA 70' e 'C 435' destacaram-se com produtividades médias superiores a 6.000 kg/ha. O coeficiente de regressão (betai de Eberhart

  19. Effects of water stress on the photosynthetic assimilation and distribution of 14C-photosynthate in maize (Zea mays L.) and bean (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Martinez y Huaman, C.A.; Cerri, C.C.

    1984-01-01

    The relationship between photosynthesis and distribution of 14 C-photosinthate as affected by water stress was evaluated. Corn (Zea mays L.) during the grain filling period and bean (Phaseolus vulgaris L.) during flowering, representing a C-4 and a C-3 photosynthetic type, respectively, were studied. (M.A.C.) [pt

  20. Tolerance of Glyphosate-Resistant Maize to Glyphosate Plus MCPA Amine Is Influenced by Dose and Timing

    Directory of Open Access Journals (Sweden)

    Nader Soltani

    2015-01-01

    Full Text Available There is little information on tolerance of glyphosate-resistant maize to glyphosate plus MCPA amine as influenced by dose and timing under Ontario environmental conditions. A total of seven field trials were conducted at various locations in Ontario, Canada, in 2011–2013 to evaluate tolerance of field maize to tank mixes of glyphosate (900 g a.e./ha plus MCPA amine (79, 158, 315, 630, 1260, 2520, or 5040 g a.e./ha at either the 4- or 8-leaf stage. The predicted dose of MCPA amine that caused 5, 10, and 20% injury was 339, 751, and 1914 g a.e./ha when applied to 4-leaf maize but only 64, 140, and 344 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% reduction in shoot dry weight of maize was 488, 844, and 1971 g a.e./ha when applied to 4-leaf maize and only 14, 136, and 616 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% yield reduction was 2557, 4247, and >5040 g a.e./ha when applied to 4-leaf maize and 184, 441, and 1245 g a.e./ha when applied to 8-leaf maize, respectively. Based on these results, glyphosate plus MCPA amine applied at the manufacturer’s recommended dose of 630 g a.e./ha applied to 4-leaf maize has potential to cause injury but the injury is transient with no significant reduction in yield. However, when glyphosate plus MCPA amine is applied to 8-leaf maize it has the potential to cause significant injury and yield loss in maize.

  1. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    Science.gov (United States)

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    significantly decreases the deleterious effects of Pb pollution and increases the maize growth under all Pb concentrations, i.e., 100-400 Pb mg kg(-1) soil. PGPR chelate the Pb in the soil, and ultimately influence its bioavailability, release and uptake. The PGPR having both ACC-deaminase and nitrogen-fixing abilities are more effective and resistive against Pb pollution than PGPR having either ACC-deaminase or nitrogen-fixing activity alone. The ACC enrichment technique is an efficient approach to select promising PGPR.

  2. Confirming QTL for aflatoxin resistance from Mp313E in different genetic backgrounds

    Science.gov (United States)

    The fungus Aspergillus flavus (Link:Fr) causes ear rot of maize (Zea mays L.) and produces the toxic metabolic product aflatoxin. One particularly effective method to control the fungus is via host plant resistance, but while several resistant breeding lines have been identified, transferring the r...

  3. The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males.

    Science.gov (United States)

    Hopkins, B W; Pietrantonio, P V

    2010-05-01

    Helicoverpa zea is one of the most costly insect pests of food and fiber crops throughout the Americas. Pyrethroid insecticides are widely applied for its control as they are effective and relatively inexpensive; however, resistance to pyrethroids threatens agricultural systems sustainability because alternative insecticides are often more expensive or less effective. Although pyrethroid resistance has been identified in this pest since 1990, the mechanisms of resistance have not yet been elucidated at the molecular level. Pyrethroids exert their toxicity by prolonging the open state of the voltage-gated sodium channel. Here we report the cDNA sequence of the H. zea sodium channel alpha-subunit homologous to the para gene from Drosophila melanogaster. In field-collected males which were resistant to cypermethrin as determined by the adult vial test, we identify known resistance-conferring mutations L1029H and V421M, along with two novel mutations at the V421 residue, V421A and V421G. An additional mutation, I951V, may be the first example of a pyrethroid resistance mutation caused by RNA editing. Identification of the sodium channel cDNA sequence will allow for testing hypotheses on target-site resistance for insecticides acting on this channel through modeling and expression studies. Understanding the mechanisms responsible for resistance will greatly improve our ability to identify and predict resistance, as well as preserve susceptibility to pyrethroid insecticides. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics

    Institute of Scientific and Technical Information of China (English)

    Xiangling L(U); Xinhai LI; Chuanxiao XIE; Zhuanfang HAO; Hailian JI; Liyu SHI; Shihuang ZHANG

    2008-01-01

    The development of genomics and bioinfor-matics offers new tools for comparative gene mapping. In this paper, an integrated QTL map for sugarcane mosaic virus (SCMV) resistance in maize was constructed by compiling a total of 81 QTL loci available, using the Genetic Map IBM2 2005 Neighbors as reference. These 81 QTL loci were scattered on 7 chromosomes of maize, and most of them were clustered on chromosomes 3 and 6. By using the method of meta-analysis, we identified one "consensus QTL" on chromosome 3 covering a genetic distance of 6.44 cM, and two on chromosome 6 covering genetic distances of 16 cM and 27.48 cM, respectively. Four positional candidate resistant genes were identified within the "consensus QTL" on chromosome 3 via the strategy of comparative genomics. These results suggest that application of a combination of meta-analysis within a species with sequence homology comparison in a related model plant is an efficient approach to identify the major QTL and its candidate gene(s) for the target traits. The results of this study provide useful information for iden-tifying and cloning the major gene(s) conferring resistance to SCMV in maize.

  5. Detection of Genes that Determine Maize Grain Quality Characteristics and Resistance to Stress Factors

    Directory of Open Access Journals (Sweden)

    Markovskyi, O.V.

    2014-01-01

    Full Text Available 200 experimental maize samples (Maize Company were examined for the presence of genes that determine the quality characteristics of grain (wx and fl-2 genes, herbicide (bar (pat, epsps genes and insect (cry-genes resistance. The total DNA was extracted from maize living plant tissue. Primers to detect wx, fl-2, bar (pat, mepsps, CP4 epsps, cry1A(b, cry1F, cry1A.105, mcry3A, cry2Ab2, cry3Bb1, cry34Ab1, cry35Ab1 genes were designed and selected. Multiplex and Touchdown PCR were worked out. PCR amplification of certain sequences was carried out. No transgenes (bar (pat, mepsps, CP4 epsps, cry1A(b, cry1F, cry1A.105, mcry3A, cry2Ab2, cry3Bb1, cry34Ab1, cry35Ab1 were found among 200 analyzed experimental maize samples. At the same time, fl-2 gene was found in 41 samples, wx gene was found in 192 analyzed samples.

  6. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J.; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  7. Metabolic profiling of two maize (Zea mays L. inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Liziane Cristina Brusamarello-Santos

    Full Text Available Maize roots can be colonized by free-living atmospheric nitrogen (N2-fixing bacteria (diazotrophs. However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2, already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+. The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts

  8. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  9. Randomly detected genetically modified (GM maize (Zea mays L. near a transport route revealed a fragile 45S rDNA phenotype.

    Directory of Open Access Journals (Sweden)

    Nomar Espinosa Waminal

    Full Text Available Monitoring of genetically modified (GM crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a "beads-on-a-string" fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed.

  10. Exploring maize-legume intercropping systems in Southwest Mexico

    NARCIS (Netherlands)

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  11. Selection for drought tolerance in two tropical maize populations ...

    African Journals Online (AJOL)

    Drought is a major factor limiting maize (Zea mays L.) yield in much of the world. The need to breed maize cultivars with improved drought tolerance is apparent. This study compared two maize populations, ZM601 and ZM607 for drought tolerance during flowering, the most drought-vulnerable period for the maize plant.

  12. Dominance of Cry1F resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on TC1507 Bt maize in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Sorgatto, Rodrigo J; dos Santos, Antonio C; Omoto, Celso

    2016-05-01

    Dominance of resistance has been one of the major parameters affecting the rate of evolution of resistance to Bt crops. High dose is the capacity of Bt crops to kill heterozygous insects and has been an essential component of the most successful strategy to manage resistance to these crops. Experiments were conducted to evaluate directly and indirectly whether the TC1507 event is high dose to Spodoptera frugiperda (JE Smith). About 8% of heterozygote neonate larvae were able to survive, complete larval development and emerge as normal adults on TC1507 leaves, while susceptible larvae could not survive for 5 days. The estimated dominance of resistance was 0.15 ± 0.09 and significantly higher than zero; therefore, the resistance to Cry1F expressed in TC1507 was not completely recessive. A 25-fold dilution of TC1507 maize leaf tissue in an artificial diet was able to cause a maximum mortality of only 37%, with growth inhibition of 82% at 7 days after larval infestation. Resistance to Cry1F in TC1507 maize is incompletely recessive in S. frugiperda. TC1507 maize is not high dose for S. frugiperda. Additional or alternative resistance management strategies, such as the replacement of single-trait Bt maize with pyramided Bt maize, which produces multiple proteins targeting the same insect pests, should be implemented wherever this technology is in use and S. frugiperda is the major pest. © 2015 Society of Chemical Industry.

  13. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: plant development, photosynthesis and antioxidative enzymes

    Czech Academy of Sciences Publication Activity Database

    Holá, D.; Kočová, M.; Rothová, O.; Wilhelmová, Naděžda; Benešová, M.

    2007-01-01

    Roč. 164, - (2007), s. 868-877 ISSN 0176-1617 Grant - others:Univerzita Karlova v Praze / Přírodovědecká fakulta(CZ) GP522/02/D174 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Antioxidant enzymes * chilling * intraspecific variability * photosynthesis * recovery * Zea mays Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.239, year: 2007

  14. Economical Evaluation of Faba bean (Vicia faba and Maize (Zea mays L. Intercropping Based on Total Relative Value Index and Weeds Growth Reduction

    Directory of Open Access Journals (Sweden)

    J. Hamzei

    2016-05-01

    Full Text Available The chemical control of weeds raises serious concerns about food safety and environmental quality, which have necessitated the need for non chemical weed management techniques such as intercropping. Intercropping can suppress weeds and reduce the use of herbicides in production systems. Therefore, the objective of this work was to evaluate the effects of intercropping of faba bean and maize, as well as hand-weeding on maize grain yield and total grain yield. The experiment was carried out during growing season of 2010 as a randomized complete block design with three replications at the Agricultural Research Station, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. Sole cropping of maize with weed control (MWF, sole cropping of maize without weed control (MWI, intercropping of 15% faba bean+maize (M+15%F, 30% faba bean+maize (M+30%F, 45% faba bean+maize (M+45%F  and sole cropping of faba bean were the experimental treatments. Weed biomass and density were affected by treatments. With increasing faba bean density in the intercropping treatments, weed biomass and density decreased significantly from 85 plants and 310 g m-2 for MWI treatment to 22 plants and 63 g m-2 for M+45%F treatment, respectively. The greatest number of seed row per ear, seed number per ear and grain and biological yields (8033 and 17933 kg ha-1, respectively were achieved at MWF treatment and the smallest values for these attributes were revealed at MWI treatment. There was no significant difference between MWF and M+45%F treatments for total grain yield (i.e. grain yield of maize + faba bean. Sole cropping of faba bean led to the greatest yield components and grain and biological yields. With increasing faba bean density in intercropping treatments, above mentioned traits (except number of pods per plant were increased significantly. The great values for weed control efficiency (73% and total relative value (1.14 were achieved at M+45%F treatment. Results of

  15. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  16. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage.

    Science.gov (United States)

    Ortiz, Darwin; Rocheford, Torbert; Ferruzzi, Mario G

    2016-04-06

    Maize is a staple crop that has been the subject of biofortification efforts to increase the natural content of provitamin A carotenoids. Although significant progress toward increasing provitamin A carotenoid content in maize varieties has been made, postharvest handling factors that influence carotenoid stability during storage have not been fully established. The objectives of this study were to determine carotenoid profiles of six selected provitamin A biofortified maize genotypes at various developmental stages and assess the stability of carotenoids in maize kernels during controlled storage conditions (12 month period), including elevated temperature and relative humidity. There were no significant changes in the content of individual carotenoids within genotypes during kernel development from 45 days after pollination through the time of harvest. Carotenoid losses through traditional grain drying were also minimal (carotenoids in maize kernels over storage time after harvest was found to be dependent on both temperature and humidity, with variation observed among genotypes. Different forms of provitamin A carotenoids follow similar degradation rates. The genotype C17xDE3 had a degradation rate 2 times faster than those of the other genotypes evaluated (P carotenoid stability under controlled storage were attributed, in part, to observed differences in the physical properties of the kernels (surface area and porosity). These results support the notion that effective control of moisture content and temperature of the kernels during storage conditions is essential to reduce the speed of degradative reactions.

  17. Pre-sowing laser light effect on some biochemical and physiological processes in seeds and plants of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Podleśny, J.; Stochmal, A.

    2005-01-01

    The work is a contribution towards to widen the knowledge concerning the influence of laser irradiation on maize seeds and plants. The treating of seeds by laser light increased the activity of amylolytic enzymes in studied seeds. The largest differentiation of amylolytic activity for irridiated vs. non irridiated seeds was found after 96 hours from sowing. The dynamics of activity of these enzymes was similar in the seeds of both maize hybrids. Pre-sowing laser stimulation of seeds also positively influenced the growth and development of seedlings grew from the seeds

  18. Conservação pós-colheita de espigas de milho verde minimamente processado sob diferentes temperaturas Post-harvest conservation of fresh-cut corn on the cob (Zea maiz L. under different temperatures

    Directory of Open Access Journals (Sweden)

    Alexandra Mara Goulart Nunes Mamede

    2009-02-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o efeito de três temperaturas (5ºC, 8ºC e 11ºC, na qualidade de híbridos de milho verde (Zea maiz L. com endosperma normal, minimamente processado, durante oito dias de armazenamento, com avaliações a cada dois dias. Foram utilizadas espigas de dois híbridos, sendo um comercial da Sementes Agroceres (Ag 1051 e outro do programa de melhoramento da Embrapa Milho e Sorgo (Embrapa HT1. A temperatura de 5ºC foi a que melhor preservou a qualidade das espigas dos híbridos de milho verde estudados, por proporcionar perda de massa reduzida e manutenção dos teores de sólidos solúveis, frutose e glicose. O híbrido Ag 1051 apresentou menor perda de massa, maiores valores de umidade e maior teor de frutose. O Embrapa HT1 apresentou maiores valores iniciais e finais para os teores de sólidos solúveis e maior valor para a coloração b*. O valor L*, que indica quãoclaro e escuro é produto, também diminuiu ao longo do armazenamento, indicando escurecimento das espigas ao longo do armazenamento.This work had the aim of evaluating the effect of three temperatures (5ºC, 8ºC and 11ºC on the quality of fresh-cut corn on the cob (Zea maiz L. with normal endosperm, for 8 days, with analyses taken every two days. Corn on the cob of two hybrids was used, a commercial common type from Sementes Agroceres (Ag 1051 and the other from the breeding program Embrapa Milho e Sorgo (Embrapa HT1. The temperature of 5ºC was more efficient to preserve the quality of normal corn by promoting reduced mass loss and higher contents of soluble solids, fructose and glucose. The hybrid Ag 1051 presented lower mass loss, higher contents of moisture and higher content of fructose. The hybrid Embrapa HT1 presented higher initial and final values for soluble solids and higher b* value. The L* value also decreased along storage, indicating browning of the corns along the storage.

  19. RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    Science.gov (United States)

    Wang, Pei; Lu, Yanli; Zheng, Mingmin; Rong, Tingzhao; Tang, Qilin

    2011-01-01

    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species. PMID:21525982

  20. Isolation of Mucorales from processed maize (Zea mays L. and screening for protease activity Isolamento de Mucorales de milho processado (Zea mays L. e seleção quanto à atividade proteásica

    Directory of Open Access Journals (Sweden)

    André Luiz Cabral Monteiro de Azevedo Santiago

    2008-12-01

    Full Text Available Mucoraleswere isolated from maize flour, corn meal and cooked cornflakes using surface and depth plate methods. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus,Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis and Absidia cylindrospora showed protease activity.Mucorales foram isolados da farinha de milho, fubá e flocos de milho pré-cozidos pelos métodos de plaqueamento em superfície e em profundidade. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus,Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis e Absidia cylindrospora exibiram atividade proteásica.

  1. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    Science.gov (United States)

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Allelopathic potential of Jimsonweed (Datura stramonium L. on the early growth of maize (Zea mays L. and sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Zvonko Pacanoski

    2014-09-01

    Full Text Available Laboratory and glasshouse experiments were carried out to investigate the allelopathic potential of different plant parts of D. stramonium on maize and sunflower on early growth stages. The aqueous leachates of D. stramonium roots and shoot did not produc a significant effect on germination and shoot length of maize, but root length of maize was significantly reduced at the highest (1/1 D. stramonium roots leachate compared to control. From the other side, germination of sunflower was significantly reduced at the highest (1/1 D. stramonium shoot leachate concentration, but lower (1/5 and 1/2 D. stramonium roots leachate concentrations significantly increased root and shoot length of sunflower compared to control. In glasshouse experiment, no one treatment with different D. stramonium plant residues significantly affected density, height and fresh weight of maize plants compared to control. Contrary, D. stramonium mixtures with 1/1 root and shoot residues significantly reduced plants density and fresh weight of sunflower plants compared to control. Lower (1/2 and 1/5 mixtures of D. stramonium roots residues and mixture with 1/5 D. stramonium shoot residues significantly increased the height of the sunflower plants.

  3. Maize (Zea mays L.) yield response to nitrogen as influenced by spatio-temporal variations of soil-water-topography dynamics

    Science.gov (United States)

    Reducing nitrogen (N) loss from agricultural lands and applying N fertilizer at rates that satisfy both economic and environmental objectives is critical for sustainable agricultural management. This study investigated spatial variability in maize yield response to N and its controlling factors alon...

  4. Influence of the nitrate concentration and source in the incorporation of 14CO2 by the RuBP-carboxylase from wheat (triticum aestivum) and maize (zea mays)

    International Nuclear Information System (INIS)

    Saez Angulo, R.M.; Gines Diaz, M.J.; Garcia Pineda, M.D.

    1982-01-01

    The effect of the concentration and source of nitrogen in the culture media has been studied regarding its influence in the activity of the RuBP-carboxylase from wheat and maize during the first month of development. Wheat and maize has been chosen as plants representatives of two different types of CO 2 assimilation: C3 and M- respectively. Plants have been grown in hydroponic media and under temperature, humidity and nutrient salts control. A negative effect of NH 4 has been observed in the enzymatic activity of wheat seedlings, being this effect more remarkable as NH 4 concentration increases and as long the time of treatment. In our experimental conditions the most favorable source of nitrogen has been N0 3 NH 4 . The specific activity of the enzyme from wheat is about four times higher than in maize, even it decreases with time. This decreasing has not been observed in maize, with the exception of total absence of nitrogen in the media. We have not seen significant differences between the two photo periods which have been tested. Also, no differences have been found in the enzyme activities at the different NO 3 NH 4 concentrations assayed, and it seems that RuBP-carboxylase metabolism is only affected in the case of absolute stress. (Author) 20 refs

  5. A Genome-Wide Association Study Reveals Genes Associated with Fusarium Ear Rot Resistance in a Maize Core Diversity Panel

    Science.gov (United States)

    Zila, Charles T.; Samayoa, L. Fernando; Santiago, Rogelio; Butrón, Ana; Holland, James B.

    2013-01-01

    Fusarium ear rot is a common disease of maize that affects food and feed quality globally. Resistance to the disease is highly quantitative, and maize breeders have difficulty incorporating polygenic resistance alleles from unadapted donor sources into elite breeding populations without having a negative impact on agronomic performance. Identification of specific allele variants contributing to improved resistance may be useful to breeders by allowing selection of resistance alleles in coupling phase linkage with favorable agronomic characteristics. We report the results of a genome-wide association study to detect allele variants associated with increased resistance to Fusarium ear rot in a maize core diversity panel of 267 inbred lines evaluated in two sets of environments. We performed association tests with 47,445 single-nucleotide polymorphisms (SNPs) while controlling for background genomic relationships with a mixed model and identified three marker loci significantly associated with disease resistance in at least one subset of environments. Each associated SNP locus had relatively small additive effects on disease resistance (±1.1% on a 0–100% scale), but nevertheless were associated with 3 to 12% of the genotypic variation within or across environment subsets. Two of three identified SNPs colocalized with genes that have been implicated with programmed cell death. An analysis of associated allele frequencies within the major maize subpopulations revealed enrichment for resistance alleles in the tropical/subtropical and popcorn subpopulations compared with other temperate breeding pools. PMID:24048647

  6. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).

    Science.gov (United States)

    Yang, Zhongzhou; Chen, Jing; Dou, Runzhi; Gao, Xiang; Mao, Chuanbin; Wang, Li

    2015-11-30

    In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize and rice). The results showed that seed germination was not affected by any of the seven metal oxide NPs. However, at the concentration of 2000 mg·L(-1), the root elongation was significantly inhibited by nCuO (95.73% for maize and 97.28% for rice), nZnO (50.45% for maize and 66.75% for rice). On the contrary, minor phytotoxicity of nAl₂O₃ was only observed in maize, and no obvious toxic effects were found in the other four metal oxide NPs. By further study we found that the phytotoxic effects of nZnO, nAl₂O₃ and nCuO (25 to 2000 mg·L(-)¹) were concentration dependent, and were not caused by the corresponding Cu(2+), Zn(2+) and Al(3+) ions (0.11 mg·L(-)¹, 1.27 mg·L(-)¹ and 0.74 mg·L(-)¹, respectively). Furthermore, ZnO NPs (<50 nm) showed greater toxicity than ZnO microparticles(MPs)(<5 μm) to root elongation of both maize and rice. Overall, this study provided valuable information for the application of engineered NPs in agriculture and the assessment of the potential environmental risks.

  7. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  8. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    Science.gov (United States)

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus.

  9. Leaves from banana (Musa nana) and maize (Zea mays) have no phyto-prophylactic effects on the susceptibility of grass carp (Ctenopharyngodon idella) to Aeromonas hydrophila infection.

    Science.gov (United States)

    Mayrhofer, Richard; Menanteau-Ledouble, Simon; Pucher, Johannes; Focken, Ulfert; El-Matbouli, Mansour

    2017-11-10

    The ubiquitous and opportunistic bacterial pathogen Aeromonas hydrophila has been associated with ulcerative dermatitis in fish, especially under stressful conditions. It can cause severe losses in fresh water aquaculture and is particularly prevalent in tropical and subtropical regions. Fresh leaves from maize and bananas have been used as feed supplement by fish farmers in Vietnam and it has been reported that they may have phyto-prophylactic benefits. In the present study, a feeding trial was conducted to investigate the benefits of providing maize and banana leaves as feed supplement: to determine if they were taken up and digested by grass carp (Ctenopharyngodon idella), if this uptake resulted in improved growth performance, and if leaf supplementation protected fish when challenged with A. hydrophila by intramuscular injection. All fish were fed an identical ratio of commercial pelleted feed relative to biomass. However, in 12/18 tanks, this diet was supplemented with either fresh banana leaves or fresh maize leaves; offered ad libitum. Addition of leaves increased the overall feed conversion ratio (FCR) significantly. However, if only the pellet were taken into account, then no difference was found between treatments. Changes to the isotopic composition of the fish showed leaf nutrient uptake occurred. No prophylactic effects of feeding banana or maize leaves were detected against infection with A. hydrophila, and the diet did not induce changes in the fish haematocrit. However, addition of the maize leaves was associated with significantly reduced severity of the skin lesions, which could improve the market value of the fish. Addition of the leaf supplement did not result in significantly improved growth performance. Similarly, the effect of the supplement on the fish survival to infection was not significant.

  10. Growth and yield response of hybrid maize (Zea mays L. to phosphorus levels in sandy loam soil of Chitwan Valley, Nepal

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-06-01

    Full Text Available To evaluate the phosphorus response on winter hybrid maize, a field experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan, Nepal on 2012 and 2013. Seven levels of Phosphorus i.e. 0, 20, 40, 60, 80, 100 and 120 kg P2O5 ha-1 were applied along with 160:40 kg N:K2O ha-1. The experiment was laid out in randomized complete block design with three replications. Hybrid maize RML 32 × RML 17 was used for this study. Analysis of variance showed that plant height (cm, dry matter accumulation (g, number of kernels per row, 1000 grain weight (g and grain yield (ton ha-1 were significantly affected with Phosphorus level. The results showed that the trend of increment was positive for grain yield with increased P level from 0 to 80 kg P2O5 ha-1. The highest grain yield (10.77 ton ha-1 was measured when 120 kg P2O5 ha-1 is applied. It is concluded that 80 kg P2O5 ha-1 can be applied in winter season for hybrid maize RML-32 × RML-17 in Chitwan valley low land irrigated condition. Further studies are necessary on different soil types, seasons, management system and varieties to get more information about the most proper addition of P on maize. DOI: http://dx.doi.org/10.3126/ije.v4i2.12634 International Journal of Environment Vol.4(2 2015: 147-156

  11. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm.

    Science.gov (United States)

    Paolino, Aubrey R; Gassmann, Aaron J

    2017-05-11

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry) toxins derived from the bacterium Bacillus thuringiensis (Bt). To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  12. Assessment of Inheritance and Fitness Costs Associated with Field-Evolved Resistance to Cry3Bb1 Maize by Western Corn Rootworm

    Directory of Open Access Journals (Sweden)

    Aubrey R. Paolino

    2017-05-01

    Full Text Available The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious insect pests of maize in North America. One strategy used to manage this pest is transgenic maize that produces one or more crystalline (Cry toxins derived from the bacterium Bacillus thuringiensis (Bt. To delay Bt resistance by insect pests, refuges of non-Bt maize are grown in conjunction with Bt maize. Two factors influencing the success of the refuge strategy to delay resistance are the inheritance of resistance and fitness costs, with greater delays in resistance expected when inheritance of resistance is recessive and fitness costs are present. We measured inheritance and fitness costs of resistance for two strains of western corn rootworm with field-evolved resistance to Cry3Bb1 maize. Plant-based and diet-based bioassays revealed that the inheritance of resistance was non-recessive. In a greenhouse experiment, in which larvae were reared on whole maize plants in field soil, no fitness costs of resistance were detected. In a laboratory experiment, in which larvae experienced intraspecific and interspecific competition for food, a fitness cost of delayed larval development was identified, however, no other fitness costs were found. These findings of non-recessive inheritance of resistance and minimal fitness costs, highlight the potential for the rapid evolution of resistance to Cry3Bb1 maize by western corn rootworm, and may help to improve resistance management strategies for this pest.

  13. Spodoptera frugiperda (J.E. Smith) with field-evolved resistance to Bt maize are susceptible to Bt pesticides.

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-10-01

    Field-evolved resistance to maize event TC1507 expressing the Cry1Fa toxin from Bacillus thuringiensis (Bt) was detected in populations of Spodoptera frugiperda from Puerto Rico. We tested for cross-resistance to purified Cry1A toxins and commercial Bt pesticides in susceptible (Benzon) and TC1507-resistant (456) strains of S. frugiperda. Larvae from the 456 strain exhibited cross-resistance to Cry1Ab and Cry1Ac toxins, while no differences in susceptibility to XenTari WG and DiPel ES pesticides were detected. These data support cross-resistance to toxins that share binding sites with Cry1Fa and no cross-resistance to Bt pesticides in S. frugiperda with field-evolved resistance to Bt maize. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Sensory characteristics of high-amylose maize-resistant starch in three food products

    OpenAIRE

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2012-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g...

  15. Construction and functional analysis of Trichoderma harzianum mutants that modulate maize resistance to the pathogen Curvularia lunata.

    Science.gov (United States)

    Fan, Lili; Fu, Kehe; Yu, Chuanjin; Ma, Jia; Li, Yaqian; Chen, Jie

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the mycelial fungus Trichoderma harzianum. From a total of 450 mutants, six mutants that showed significant influence on maize resistance to C. lunata were analyzed in detail. Maize coated with these mutants was more susceptible to C. lunata compared with those coated with a wild-type (WT) strain. Similar to other fungal ATMT libraries, all six mutants were single copy integrations, which occurred preferentially in noncoding regions (except two mutants) and were frequently accompanied by the loss of border sequences. Two mutants (T66 and T312) that were linked to resistance were characterized further. Maize seeds coated with T66 and T312 were more susceptible to C. lunata than those treated with WT. Moreover, the mutants affected the resistance of maize to C. lunata by enhancing jasmonate-responsive gene expression. T66 and T312 induced maize resistance to C. lunata infection through a jasmonic acid-dependent pathway.

  16. Is the nutritional value of grains in broiler chickens' diets affected by environmental factors of soybean (Glycine max) growing and the variety of maize (Zea maize) in Benin?

    DEFF Research Database (Denmark)

    Houndonougbo, Mankpondji Frederic; Chwalibog, Andrzej; Chrysostome, C.A.A.M.

    2009-01-01

    by soybean grains to supply mainly the dietary energy did not show an adverse effect of the diet on these variables. However, the variety of maize affected significantly the feed cost and the economic feed efficiency at starter phase. It can be concluded that under the particular conditions...... of this experiment, the environmental factors did not change significantly the nutritional value of soybean grains in chickens' diets. The grain of local variety of white maize were suitable at all ages, whereas the grains of DMR-ESRW were more economic in grower than starter broiler chickens feeding....

  17. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  18. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  19. Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Szczepanik, Jarosław; Sowiński, Paweł

    2016-10-20

    Chilling stress is known to affect the water balance in plants, which often manifests itself in the decrease of the water potential in different organs. Relationships between chilling, assimilate transport and water balance are far from being understood. Although aquaporins play a key role in regulating water balance in plants, especially under stress conditions, the role of individual aquaporins in stress response remains unclear. In this report we show the specific localization within plasma membranes of one of the aquaporins (PIP2;3) in the leaves of two maize inbred lines differing in their chilling-sensitivity. This form of aquaporin has been also observed in thick-walled sieve elements - an additional type of sieve tubes of unclear function found only in monocotyledons. Moderate chilling (about 15°C) caused significant reduction of labelling in these cells accompanied by a steep decrease in the water potential in leaves of chilling-sensitive maize line. Our results suggest that both PIP2;3 and thick-walled sieve tubes may be an unknown element of the mechanism of the response of maize to cold stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. UV-B component of sunlight causes measurable damage in field-grown maize (Zea mays L.): developmental and cellular heterogeneity of damage and repair

    International Nuclear Information System (INIS)

    Stapleton, A.E.; Thornber, C.S.; Walbot, V.

    1997-01-01

    Ultraviolet radiation has diverse morphogenetic and damaging effects on plants. The end point of damage is reduced plant growth, but in the short term UV radiation damages specific cellular components. We measured cyclobutane pyrimidine dimers in maize DNA from plants grown in natural solar radiation. Green maize tissues had detectable DNA damage, roots had less damage, and anthers had much more damage than green leaves. This heterogeneity in damage levels may reflect differences in dose received or in damage repair. The architecture of green tissues had no measurable effects on DNA damage levels, as leaf sheath and leaf blade were equivalent. We observed a slight increase in damage levels in plants sampled at the end of the day, but there was no accumulation of damage over the growing season. We measured photoreactivation, and found substantial levels of this light-dependent repair in both the epidermis and inner cell layers of leaves, and in all organelles that contain DNA – the nucleus, chloroplasts and mitochondria. We conclude that maize has efficient mechanisms for photo repair of daily UV-induced DNA damage that prevent accumulation

  1. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.).

    Science.gov (United States)

    Murakami, Masaharu; Ae, Noriharu

    2009-03-15

    Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1molL(-1) HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1molL(-1) HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions.

  2. Influence of the moisture at harvest and drying process of the grains on the level of carotenoids in maize (Zea mays

    Directory of Open Access Journals (Sweden)

    Wilton Soares CARDOSO

    2015-09-01

    Full Text Available AbstractMaize is considered a source of carotenoids; however, these compounds are highly unstable, degraded by high temperatures, exposure to light and presence of oxygen. The objective of this work was to evaluate the influence of the moisture and type of drying applied to grains on the level of carotenoids in yellow maize. The experiment was conducted in a completely randomized design (2 × 4 factorial, two levels of initial moisture at the harvest (22 and 19% and three types of drying (in the sun; in the shade and in a dryer and control (no drying. The samples of grains after drying with 12% of final moisture were analyzed by concentration of total carotenoids, carotenes (α-carotene + β-carotene, monohydroxilated carotenoids (β-cryptoxanthin, and xanthophylls (lutein + zeaxanthin. Initial moisture, type of drying and the interaction between moisture versus drying influence (p≤0.05 the levels of carotenoids in grains. This is the first report about the drying conditions and harvest’s initial moisture as influence on the profile and content of carotenoids in maize grains. Based on the results, this work suggested that the harvest be carried out preferably when the grains present 22% humidity, with drying in a dryer or in shade for further use or storage.

  3. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    Full Text Available Abstract Background The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84 domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. Results We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5, which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses. The first (ZmSUN1, 2, here designated canonical C-terminal SUN-domain (CCSD, includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5, here designated plant-prevalent mid-SUN 3 transmembrane (PM3, includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. Conclusions The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3

  4. Maize kernel antioxidants and their potential involvement in Fusarium ear rot resistance.

    Science.gov (United States)

    Picot, Adeline; Atanasova-Pénichon, Vessela; Pons, Sebastien; Marchegay, Gisèle; Barreau, Christian; Pinson-Gadais, Laëtitia; Roucolle, Joël; Daveau, Florie; Caron, Daniel; Richard-Forget, Florence

    2013-04-10

    The potential involvement of antioxidants (α-tocopherol, lutein, zeaxanthin, β-carotene, and ferulic acid) in the resistance of maize varieties to Fusarium ear rot was the focus of this study. These antioxidants were present in all maize kernel stages, indicating that the fumonisin-producing fungi (mainly Fusarium verticillioides and Fusarium proliferatum ) are likely to face them during ear colonization. The effect of these compounds on fumonisin biosynthesis was studied in F. verticillioides liquid cultures. In carotenoid-treated cultures, no inhibitory effect of fumonisin accumulation was observed while a potent inhibitory activity was obtained for sublethal doses of α-tocopherol (0.1 mM) and ferulic acid (1 mM). Using a set of genotypes with moderate to high susceptibility to Fusarium ear rot, ferulic acid was significantly lower in immature kernels of the very susceptible group. Such a relation was nonexistent for tocopherols and carotenoids. Also, ferulic acid in immature kernels ranged from 3 to 8.5 mg/g, i.e., at levels consistent with the in vitro inhibitory concentration. Overall, our data support the fact that ferulic acid may contribute to resistance to Fusarium ear rot and/or fumonisin accumulation.

  5. Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina.

    Science.gov (United States)

    Grimi, Damián A; Parody, Betiana; Ramos, María Laura; Machado, Marcos; Ocampo, Federico; Willse, Alan; Martinelli, Samuel; Head, Graham

    2018-04-01

    Maize technologies expressing Bacillus thuringiensis (Bt) insecticidal proteins are widely used in Argentina to control sugarcane borer (Diatraea saccharalis Fabricius). Unexpected D. saccharalis damage was observed to Bt maize events TC1507 (expressing Cry1F) and MON 89034 × MON 88017 (expressing Cry1A.105 and Cry2Ab2) in an isolated area of San Luis Province. Diatraea saccharalis larvae were sampled from MON 89034 × MON 88017 fields in the area to generate a resistant strain (RR), which was subsequently characterized in plant and diet bioassays. Survivorship of the RR strain was high on TC1507 leaf tissue, intermediate on MON 89034 × MON 88017, and low on MON 810 (expressing Cry1Ab). The RR strain had high resistance to Cry1A.105 (186.74-fold) and no resistance to Cry2Ab2 in diet bioassays. These results indicate resistance to Cry1F and Cry1A.105 (and likely cross-resistance between them) but not to Cry1Ab or Cry2Ab2. Resistance to MON 89034 × MON 88017 was functionally recessive. Reviews of grower records suggest that resistance initially evolved to Cry1F, conferring cross-resistance to Cry1A.105, with low refuge compliance as the primary cause. A mitigation plan was implemented in San Luis that included technology rotation, field monitoring, and grower education on best management practices (BMPs) including refuges. In the affected area, the resistance to Cry1F and Cry1A.105 is being managed effectively through use of MON 89034 × MON 88017 and MON 810 in combination with BMPs, and no spread of resistance to other regions has been observed. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  6. Maize-common bean/lupine intercrop productivity and profitability in ...

    African Journals Online (AJOL)

    Phaseolus vulgaris L.), narrow-leaf lupine (Lupinus angustifolius L.), and white lupine (Lupinus albus L.) with maize (Zea mays L.) were conducted under two intercrop planting arrangements (IPA), single row of legume in between maize rows and ...

  7. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize ( Zea mays l.) in subtropical northeastern Himalayas

    Science.gov (United States)

    Marwein, M. A.; Choudhury, B. U.; Chakraborty, D.; Kumar, M.; Das, A.; Rajkhowa, D. J.

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture and soil acidity induced abiotic stresses. The present study measured evapotranspiration loss (ETc) of maize crop under controlled condition (pot experiment) of water deficit (W25-25 % and W50-50 % of field capacity soil moistures) and well watered (W100 = 100 % of field capacity (FC)) regimes in strong acid soils (pH = 4.3) of the Northeastern Himalayan Region of India. The response of soil ameliorants (lime) and phosphorus (P) nutrition under differential water regimes on ETc losses and water use efficiency was also studied. The measured seasonal ETc loss varied from 124.3 to 270.9 mm across treatment combinations. Imposition of water deficit stress resulted in significant ( p < 0.05) reduction (by 33-50 %) of seasonal ETc losses but was at the cost of delay in tasseling to silking, 47-65 % reduction in dry matter accumulation (DMA), 12-22 days shortening of grain formation period, and complete kernel abortion. Liming @ 4 t ha-1 significantly ( p < 0.05) increased ETc losses and DMA across water regimes but the magnitude of increase was higher in severely water deficit (W25) regime. Unlike lime, P nutrition improved DMA only in well-watered regimes (W100) while seasonal ETc loss was unaffected. Vegetative stage (tillering to tasseling) contributed the maximum ETc losses while weekly crop ETc loss was estimated highest during 11th-14th week after sowing (coincided with blistering stage) and then declined. Water use efficiency estimated from dry matter produced per unit ETc losses and irrigation water used varied from 4.33 to 9.43 g dry matter kg-1 water and 4.21 to 8.56 g dry matter kg-1, respectively. Among the input factors (water, P, and lime), water regime most strongly influenced the ETc loss, growth duration, grain formation, and water use efficiency of maize.

  8. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    Science.gov (United States)

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    Science.gov (United States)

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Proteomics analysis of maize (Zea mays L.) grain based on iTRAQ reveals molecular mechanisms of poor grain filling in inferior grains.

    Science.gov (United States)

    Yu, Tao; Li, Geng; Liu, Peng; Dong, Shuting; Zhang, Jiwang; Zhao, Bin

    2017-06-01

    In maize, inferior grains (IG) located on the upper part of the ear have poor grain filling process compared to superior grains (SG) located on the middle and lower parts of the ear. This difference limits satisfactory yield and quality; however, the underlying molecular mechanisms remain unknown. Here, using the isobaric tag for relative and absolute quantification (iTRAQ) technology, the proteomes of IG and SG during early and middle grain filling stages were investigated. In total, 4720 proteins were identified in maize grain and 305 differentially accumulated proteins (DiAPs) were detected between IG and SG. These DiAPs were involved in diverse cellular and metabolic processes with preferred distribution in protein synthesis/destination and metabolism. Compared to SG, DiAPs related to cell growth/division and starch synthesis were lag-accumulated and down-regulated in IG, respectively, resulting in smaller sink sizes and lower sink activities in IG. Meanwhile, impediment of the glycolysis pathway in IG may lead to reduce energy supply and building materials for substance synthesis. Additionally, reactive oxygen species (ROS) homeostasis and the defense system were disturbed in IG, which might lead to reduce protection against various environmental stresses. The present study provides new information on the proteomic differences between IG and SG, and explains possible molecular mechanisms for poor grain filling in IG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US Corn Belt [Zea mays L.

    International Nuclear Information System (INIS)

    Campos, H.; Cooper, M.; Edmeades, G.O.; Löffler, C.; Schussler, J.R.; Ibanez, M.

    2006-01-01

    Understanding the changes underlying past breeding progress may help to focus research efforts and accelerate future genetic gains. The major abiotic stress affecting maize production on a worldwide basis is drought. We addressed the improvements in drought tolerance over a 50-year period of hybrid breeding by evaluating, under targeted stress conditions, a set of 18 Pioneer-brand hybrids that had been released during the 1953-2001 period. Stress treatments were designed as overlapping windows of water deficit covering the pre-flowering to late grain filling development stages. Data were collected on grain yield, yield components and anthesis-silking interval (ASI) and were analyzed using a linear mixed model approach. Genetic gain was measured as the slope of the regression of the trait on the year of hybrid release. Significant, positive genetic gains of varying magnitude were observed for grain yield in all windows of stress evaluated. The largest genetic gains for grain yield were observed under conditions of full irrigation and severe flowering stress. ASI and barrenness, especially under stress at flowering, were significantly reduced by selection. Though flowering remains the most susceptible stage to drought in maize, selection has reduced its negative effects and susceptibility during early grain filling is now of similar importance in many modern hybrids. Yield under drought at flowering has more than kept pace with the increase in yield potential because of the emphasis breeders have placed on improved floral synchrony [it

  12. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  13. Metabolism and Residues of 2,4-Dichlorophenoxyacetic Acid in DAS-40278-9 Maize (Zea mays) Transformed with Aryloxyalkanoate Dioxygenase-1 Gene.

    Science.gov (United States)

    Zhou, Xiao; Rotondaro, Sandra L; Ma, Mingming; Rosser, Steve W; Olberding, Ed L; Wendelburg, Brian M; Adelfinskaya, Yelena A; Balcer, Jesse L; Blewett, T Craig; Clements, Bruce

    2016-10-12

    DAS-40278-9 maize, which is developed by Dow AgroSciences, has been genetically modified to express the aryloxyalkanoate dioxygenase-1 (AAD-1) protein and is tolerant to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D). To understand the metabolic route and residue distribution of 2,4-D in DAS-40278-9 maize, a metabolism study was conducted with 14 C-radiolabeled 2,4-D applied at the maximum seasonal rate. Plants were grown in boxes outdoors. Forage and mature grain, cobs, and stover were collected for analysis. The metabolism study showed that 2,4-D was metabolized to 2,4-dichlorophenol (2,4-DCP), which was then rapidly conjugated with glucose. Field-scale residue studies with 2,4-D applied at the maximum seasonal rate were conducted at 25 sites in the U.S. and Canada to measure the residues of 2,4-D and free and conjugated 2,4-DCP in mature forage, grain, and stover. Residues of 2,4-D were not detectable in the majority of the grain samples and averaged <1.0 and <1.5 μg/g in forage and stover, respectively. Free plus conjugated 2,4-DCP was not observed in grain and averaged <1.0 μg/g in forage and stover.

  14. The Effect of Organic and Bio Fertilizers on Maize (Zea mays, and HydroMax Adjuvants Application on Optimizing of Nicosulfuron Herbicide Efficacy

    Directory of Open Access Journals (Sweden)

    ebrahim Mamnoie

    2017-06-01

    Full Text Available In order to study the effect of adjuvant on nicosulfuron herbicide efficacy improvement in maize weed control under organic fertilizers application, field study was conducted during 2013- 2014 at research field of Ferdowsi University of Mashhad, Iran. Experiment was arranged in completely randomized design with factorial arrangement of treatments with 16 treatments and three replications. Factors in this experiment were application of organic fertilizers (cow manure and vermicompost and bio fertilizer mycorrhiza, and a plot without fertilizer as control, nicosulfuron dose at 40, and 80 g a.i ha-1 (Cruz®,4% SC with and without the adjuvant of HydroMax™. Common purslane (Portulaca oleracea, black nightshade (Solanum nigrum L., and redroot pigweed (Amaranthus retroflexus L were the dominant weeds in the experimental fields. Black nightshade and common purslane had the highest relative density 20 and 45 days after spraying (DAS. Results showed that application of hydromax adjuvant increased herbicide efficiency, significantly. However dry weight of common purslane, black nightshade and redroot pigweed decreased 84, 71, 86 and 71, 79, 100 %, when nicosulfuron applied at reduced dose (40 g a.i. ha-1 with adjuvant 20 and 45 DAS, respectively. On the other hand, seed yield and dry weight of maize increased 49 and 60 % respectively, when nicosulfuron applied at 40 g a.i. ha-1 with Hydromax pulse cow manure. 

  15. Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizal in field soil

    Energy Technology Data Exchange (ETDEWEB)

    Almaca, A.; Ortas, I.

    2010-07-01

    The presence of indigenous mycorrhizal fungi may have significant effects on the growth and on the root morphology of plants, under arid and semi arid soil conditions. Lentil and wheat are the traditional crops grown in Southeastern Turkey. In this study soil samples from the Harran plain were collected from the 0-15 cm surface layer under wheat or lentil crop residues and used in a pot experiment carried out under greenhouse conditions with four levels of P fertilization: 0, 20, 40 and 80 mg kg{sup -}1 soil as Ca(H{sub 2}PO{sub 4}){sub 2}. Half of the soil batches were submitted to a heating treatment (80 degree centigrade, 2 h). The maize variety PX-9540 was grown in the pots for 57 days. At harvest, plant dry weight, root length, P and Zn concentrations in plant tissues were measured and the extent of root colonization by arbuscular mycorrhizal fungi (AMF) was determined. Results showed that maize plants grown in soils where lentil had been previously cultivated grew better than those grown after wheat cultivation. In both cases, P concentration in plant tissues increased with increased P fertilization. There were no significant differences in root AMF colonization between soils with different crop sequences, nor with soils submitted to high temperature. Previous crops had a significant influence on the growth of plants that could be related to differences in the indigenous mycorrhizas inoculum potential and efficacy that can promote P uptake and benefit plant growth. (Author) 29 refs.

  16. [Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )].

    Science.gov (United States)

    Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang

    2018-03-01

    We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.

  17. The dynamics of dry matter accumulation in the initial period of growth of four varieties of the "stay-green"type of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Szulc, P.; Michalski, T.; Bocianowski, J.; Nowosad, K.; Zajac, M.

    2017-01-01

    The aim of the study was to determine the impact of weather conditions (temperature, precipitation) on the dynamics of dry matter accumulation and nitrogen nutritional status of maize plants in the type of "stay-green"Four varieties were evaluated: NK Cooler, Delitop, NK Gazelle, NK Ravello. Thermal conditions and humidity in the period from sowing to the phase of 5-6 leaves (BBCH 15/16) shaped the dynamics of dry matter accumulation and nitrogen nutritional status of plants. The differences were found in tested varieties of "stay-green"in terms of the dynamics of initial growth, expressed by the dynamics of dry matter accumulation and their nitrogen nutritional status. In most of the analyzed characteristics, the variety of NK Cooler was characterized by favorable values of these characteristics, as compared to other varieties. The genetic variation of tested varieties is derived from the heterosis cultivation process of F1 hybrids. Currently, cultivated maize varieties (including "stay-green") are F1 hybrids characterized by identical genotype and varietal differences arise from components of parental hybrid genotype (paternal and maternal), as presented in the paper

  18. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  19. Grain Yield and Fusarium Ear Rot of Maize Hybrids Developed From Lines With Varying Levels of Resistance

    Science.gov (United States)

    Fusarium ear rot, caused by Fusarium verticillioides and other Fusarium spp. is found in all U.S. maize growing regions. Affected grain often contains carcinogenic mycotoxins called fumonisins. We tested the hypothesis that inbred lines with greater resistance to fumonisin contamination would pro...

  20. Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach

    Science.gov (United States)

    Signorini, Ana M.; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F.; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P.; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F.

    2018-01-01

    Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017*). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis, and in later plantings date's technologies with good control of S. frugiperda. A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average. PMID:29888224

  1. Quantitative trait loci for resistance to maize streak virus disease in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... African Journal of Biotechnology Vol. ... development ... Biotechnology Center, Kenya Agricultural Research Institute, P.O. Box 58711-00200, Nairobi, ... Maize streak virus disease is an important disease of maize in Kenya.

  2. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.).

    Science.gov (United States)

    Yongming, Liu; Zhuofan, Zhao; Yanli, Lu; Chuan, Li; Jing, Wang; Boxiao, Dong; Bing, Liang; Tao, Qiu; Wenbing, Zeng; Moju, Cao

    2016-01-01

    C-type cytoplasmic male sterility (CMS-C) is widely utilized for hybrid maize seed production. However, genetic mechanisms underlying the fertility restoration are very complicated. At present, there is a divergence on the number of fertility restorer genes in maize inbred line A619 for CMS-C. To further elucidate the restoring mechanism of A619, we used genetic analysis and molecular markers to confirm the restorer genes of maize inbred line A619 for C-type male sterile line C48-2 in this study. Firstly, the fertility segregations of (C48-2 × A619)F 2 populations were investigated under three environments during 2013-2015. The segregation ratio of fertile and sterile plants in the F 2 population fit to 15:1 via chi-square test and this result suggested that there are two dominant restorer genes in A619 for CMS-C, i.e., Rf4 and a novel gene named Rf*-A619 . Next, based on the sequence differences between Rf4 and its recessive allelic rf4 , a novel dominant marker F2/R2 was developed and validated to genotyping Rf4 in the F 2 population. Through genotypic analysis, we found that there were a certain amount of fertile individuals without Rf4 which accounted for 3/16 in the F 2 population via chi-square test at the 0.05 level. These results provided another proof to sustain that the inbred line A619 contains one additional restorer gene for CMS-C fertility restoration except Rf4 . At last, we used one SSR marker which is tightly linked with the dominant restorer gene Rf5 to analyze those fertile plants without Rf4 in the F 2 population. The PCR amplification results showed that Rf*-A619 is not allelic to Rf5 but a novel restorer gene for CMS-C. These results not only provide a basis for the mapping and characterization of a novel restorer gene but also give a new insight into the mechanism of CMS-C fertility restoration.

  3. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Liu Yongming

    2016-11-01

    Full Text Available C-type cytoplasmic male sterility (CMS-C is widely utilized for hybrid maize seed production. However, genetic mechanisms underlying the fertility restoration are very complicated. At present, there is a divergence on the number of fertility restorer genes in maize inbred line A619 for CMS-C. To further elucidate the restoring mechanism of A619, we used genetic analysis and molecular markers to confirm the restorer genes of maize inbred line A619 for C-type male sterile line C48-2 in this study. Firstly, the fertility segregations of (C48-2 × A619F2 populations were investigated under three environments during 2013–2015. The segregation ratio of fertile and sterile plants in the F2 population fit to 15:1 via chi-square test and this result suggested that there are two dominant restorer genes in A619 for CMS-C, i.e., Rf4 and a novel gene named Rf*-A619. Next, based on the sequence differences between Rf4 and its recessive allelic rf4, a novel dominant marker F2/R2 was developed and validated to genotyping Rf4 in the F2 population. Through genotypic analysis, we found that there were a certain amount of fertile individuals without Rf4 which accounted for 3/16 in the F2 population via chi-square test at the 0.05 level. These results provided another proof to sustain that the inbred line A619 contains one additional restorer gene for CMS-C fertility restoration except Rf4. At last, we used one SSR marker which is tightly linked with the dominant restorer gene Rf5 to analyze those fertile plants without Rf4 in the F2 population. The PCR amplification results showed that Rf*-A619 is not allelic to Rf5 but a novel restorer gene for CMS-C. These results not only provide a basis for the mapping and characterization of a novel restorer gene but also give a new insight into the mechanism of CMS-C fertility restoration.

  4. Response of water deficit regime and soil amelioration on evapotranspiration loss and water use efficiency of maize (Zea mays l.) in subtropical northeastern Himalayas.

    Science.gov (United States)

    Marwein, M A; Choudhury, B U; Chakraborty, D; Kumar, M; Das, A; Rajkhowa, D J

    2017-05-01

    Rainfed maize production in the hilly ecosystem of Northeastern Himalayas often suffers from moisture