WorldWideScience

Sample records for resistant fibrous structures

  1. Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels.

    Science.gov (United States)

    Xu, Tong; Yang, Jing; Zhang, Jiamin; Zhu, Yingnan; Li, Qingsi; Pan, Chao; Zhang, Lei

    2017-12-28

    Electrospinning technology can easily produce different shaped fibrous structures, making them highly valuable to various biomedical applications. However, surface contamination of biomolecules, cells, or blood has emerged as a significant challenge to the success of electrospun devices, especially artificial blood vessels, catheters and wound dressings etc. Many efforts have been made to resist the surface non-specific biomolecules or cells adsorption, but most of them require complex pre-treatment processes, hard-to-remove metal catalysts or rigorous reaction conditions. In addition, the stability of antifouling coatings, especially in complex conditions, is still a major concern. In this work, inspired by the interpenetrating polymer network and reinforced concrete structure, an efficient and facile strategy for modifying hydrophobic electrospun meshes and tubes with antifouling zwitterionic hydrogels has been introduced. The resulting products could efficiently resist the adhesion of proteins, cells, or even fresh whole blood. Meanwhile, they could maintain the shapes and mechanical strength of the original electrospun structures. Furthermore, the hydrogel structures could retain stable in a physiological condition for at least 3 months. This paper provided a general antifouling and hydrophilicity surface modification strategy for various fibrous structures, and could be of great value for many biomedical applications where antifouling properties are critical.

  2. Fibrous Protein Structures: Hierarchy, History and Heroes.

    Science.gov (United States)

    Squire, John M; Parry, David A D

    2017-01-01

    During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the

  3. Beta-structures in fibrous proteins.

    Science.gov (United States)

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  4. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  5. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.

  6. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application

    Science.gov (United States)

    Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie

    2018-05-01

    In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.

  7. Tensor-based morphometry of fibrous structures with application to human brain white matter.

    Science.gov (United States)

    Zhang, Hui; Yushkevich, Paul A; Rueckert, Daniel; Gee, James C

    2009-01-01

    Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in anatomy both across populations and in time. Our work extends the standard TBM for quantifying local volumetric changes to establish both rich and intuitive descriptors of shape changes in fibrous structures. It leverages the data from diffusion tensor imaging to determine local spatial configuration of fibrous structures and combines this information with spatial transformations derived from image registration to quantify fibrous structure-specific changes, such as local changes in fiber length and in thickness of fiber bundles. In this paper, we describe the theoretical framework of our approach in detail and illustrate its application to study brain white matter. Our results show that additional insights can be gained with the proposed analysis.

  8. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  9. Structure and Identification of Solenin: A Novel Fibrous Protein from Bivalve Solen grandis Ligament

    Directory of Open Access Journals (Sweden)

    Jun Meng

    2014-01-01

    Full Text Available Fibrous proteins, which derived from natural sources, have been acting as templates for the production of new materials for decades, and most of them have been modified to improve mechanical performance. Insight into the structures of fibrous proteins is a key step for fabricating of bioinspired materials. Here, we revealed the microstructure of a novel fibrous protein: solenin from Solen grandis ligament and identified the protein by MALDI-TOF-TOF-MS and LC-MS-MS analyses. We found that the protein fiber has no hierarchical structure and is homologous to keratin type II cytoskeletal 1 and type I cytoskeletal 9-like, containing “SGGG,” “SYGSGGG,” “GS,” and “GSS” repeat sequences. Secondary structure analysis by FTIR shows that solenin is composed of 41.8% β-sheet, 16.2% β-turn, 26.5% α-helix, and 9.8% disordered structure. We believe that the β-sheet structure and those repeat sequences which form “glycine loops” may give solenin excellence elastic and flexible properties to withstand tensile stress caused by repeating opening and closing of the shell valves in vivo. This paper contributes a novel fibrous protein for the protein materials world.

  10. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  11. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Schoehn, Guy; Forge, Vincent; Forsyth, V Trevor; Riekel, Christian; Hernandez, Jean-François; Ruigrok, Rob W H; Mitraki, Anna

    2005-01-28

    Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.

  12. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY; SEMIANNUAL

    International Nuclear Information System (INIS)

    Mark J. Rigali; Kenneth L. Knittel; Mike L. Fulcher

    2002-01-01

    During this reporting period, work continued on development of formulations using the materials identified as contenders for the fibrous monolith wear resistant components. The FM structures fabricated were: diamond/WC-Co, B(sub 4)C/WC-Co, TiB(sub 2)/WC-Co, WC-Co/Co, WC-Co/WC-Co. Results of our consolidation densification studies on these systems lead to the down-selection of WC-Co/WC-Co, WC-Co/Co and diamond/WC-Co for further development for mining applications including drill bit inserts, roof bit inserts, radial tools conical tools and wear plates (WC-Co based system only) for earth moving equipment. Prototype component fabrication focused on the fabrication of WC-Co/WC-Co FM conical tools, diamond/WC-Co coated drill bit insert prototypes. Fabrication of WC-Co/WC-Co FM insert prototypes for a grader blade is also underway. ACR plans to initiate field-testing of the drill bit insert prototypes and the grader blade insert this summer (2002). The first WC-Co/WC-Co FM conical tool prototypes were sent to Kennametal for evaluation towards the end of the current reporting period

  13. Why fibrous proteins are romantic.

    Science.gov (United States)

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  14. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.

  15. Formation of fibrous materials from dense caseinate dispersions

    NARCIS (Netherlands)

    Manski, J.M.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Application of shear and cross-linking enzyme transglutaminase (Tgase) induced fibrous hierarchical structures in dense (30% w/w) calcium caseinate (Ca-caseinate) dispersions. Using Tgase was essential for the anisotropic structure formation. The fibrous materials showed anisotropy on both micro-

  16. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  17. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  18. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  19. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing. Separate abstracts have been indexed into the database for articles from this report.

  20. Structure and properties of permeable fine-fibrous materials fabricated of powders

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, I M; Kostornov, A G; Kirichenko, O V; Guzhva, N S [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1982-09-01

    Effect of main structural characteristics of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter.

  1. Structure and properties of permeable fine-fibrous materials fabricated of powders

    International Nuclear Information System (INIS)

    Fedorchenko, I.M.; Kostornov, A.G.; Kirichenko, O.V.; Guzhva, N.S.

    1982-01-01

    Effect of main structural characteristicf of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter

  2. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing. Separate abstracts have been prepared for articles from this report.

  3. Effects of compression on the sound absorption of fibrous

    DEFF Research Database (Denmark)

    Castagnede, Bernard; Akninen, Achour; Brouard, Achour

    2000-01-01

    During the compression of a fibrous mat, it is well known that the absorption properties are decreasing. In order to predict this change, some heuristic formulae are proposed which take into account the modifications of the physical parameters(porosity, resistivity, tortousity and shappe factors)......) which enter in the standard "equivalent fluid" model. Numerical predictions are then discussed and compared to experimental data obtained on a fibrous material(uncompressed and the compressed) used in automotive industry....

  4. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang; Han, Fangfei; Syed, Ahad; Bukhari, Ebtihaj M.; Siang, Basil Chew Joo; Yang, Shan; Zhou, Bingpu; Wen, Wei-jia; Jiang, Dechen

    2017-01-01

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  5. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  6. Novel two-step method to form silk fibroin fibrous hydrogel

    International Nuclear Information System (INIS)

    Ming, Jinfa; Li, Mengmeng; Han, Yuhui; Chen, Ying; Li, Han; Zuo, Baoqi; Pan, Fukui

    2016-01-01

    Hydrogels prepared by silk fibroin solution have been studied. However, mimicking the nanofibrous structures of extracellular matrix for fabricating biomaterials remains a challenge. Here, a novel two-step method was applied to prepare fibrous hydrogels using regenerated silk fibroin solution containing nanofibrils in a range of tens to hundreds of nanometers. When the gelation process of silk solution occurred, it showed a top-down type gel within 30 min. After gelation, silk fibroin fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. Moreover, the compressive stress and modulus of fibrous hydrogels were 31.9 ± 2.6 and 2.8 ± 0.8 kPa, respectively, which was formed using 2.0 wt.% concentration solutions. In addition, fibrous hydrogels supported BMSCs attachment and proliferation over 12 days. This study provides important insight in the in vitro processing of silk fibroin into useful new materials. - Highlights: • SF fibrous hydrogel was prepared by a novel two-step method. • SF solution containing nanofibrils in a range of tens to hundreds of nanometers was prepared. • Gelation process was top-down type gel with several minutes. • SF fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. • Fibrous hydrogels had higher compressive stresses superior to porous hydrogels.

  7. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    Science.gov (United States)

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structure formation in fibrous materials based on poly-3-hydroxybutyrate for traumatology

    Science.gov (United States)

    Olkhov, A. A.; Sklyanchuk, E. D.; Staroverova, O. V.; Abbasov, T. A.; Guryev, V. V.; Akatov, V. S.; Fadeyeva, I. S.; Fesenko, N. I.; Filatov, Yu. N.; Iordanskii, A. L.

    2015-10-01

    The paper reviews the structure formation of fibrous materials based on poly-3-hydroxybutyrate depending on parameters of electrospinning and characteristics of polymer solution. Fiber structure was studied by DSC, ESR and SEM. The molecular weight affects the diameter and uniformity of the fiber. An electromechanical impact leads to an orientation of crystalline structure in the fiber. The design of an artificial bioresorbable implant based on nano- and microfibers of poly-3-hydroxybutyrate is created. Dynamics of growth of mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds is studied. Successful field tests of implants of the Achilles tendon in Wistar rats are conducted.

  9. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  10. Malignant fibrous histiocytoma following radiation therapy of fibrous dysplasia: case report

    Energy Technology Data Exchange (ETDEWEB)

    Amin, R.; Ling, R. [Royal Devon and Exeter Hospital (United Kingdom)

    1995-10-01

    Malignant fibrous histiocytoma commonly occurs spontaneously. In some cases it follows previous therapeutic or incidental irradiation, or miscellaneous pre-existing osseous conditions. Recently, it has been associated with total hip arthroplasty. We report a case of malignant fibrous histocytoma following radiation therapy of fibrous dysplasia and review literature. (author).

  11. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    International Nuclear Information System (INIS)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields

  12. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Kazantzis, Antonios [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Beltsios, Konstantinos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); De Hosson, Jeff Th. M. [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)

    2013-04-20

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.

  13. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  14. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  15. Differences in Stylet Sheath Occurrence and the Fibrous Ring (Sclerenchyma) between xCitroncirus Plants Relatively Resistant or Susceptible to Adults of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae)

    Science.gov (United States)

    Ammar, El-Desouky; Richardson, Matthew L.; Abdo, Zaid; Hall, David G.; Shatters, Robert G.

    2014-01-01

    The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae), is the principal vector of the phloem-limited bacteria strongly associated with huanglongbing (HLB), the world’s most serious disease of citrus. Host plant resistance may provide an environmentally safe and sustainable method of controlling ACP and/or HLB. Two xCitroncirus accessions (hybrids of Poncirus trifoliata and Citrus spp.), that are relatively resistant (UN-3881) or relatively susceptible (Troyer-1459) to ACP adults with regard to adult longevity, were compared in relation to ACP feeding behavior and some structural features of the leaf midrib. The settling (putative feeding/probing) sites of ACP adults on various parts of the leaf were not influenced primarily by plant accession. However, fewer ACP stylet sheaths were found in the midrib and fewer stylet sheath termini reached the vascular bundle (phloem and/or xylem) in UN-3881 compared to Troyer-1459 plants. Furthermore, in midribs of UN-3881 leaves the fibrous ring (sclerenchyma) around the phloem was significantly wider (thicker) compared to that in midribs of Troyer-1459 leaves. Our data indicate that feeding and/or probing by ACP adults into the vascular bundle is less frequent in the more resistant (UN-3881) than in the more susceptible (Troyer-1459) accessions. Our results also suggest that the thickness of the fibrous ring may be a barrier to stylet penetration into the vascular bundle, which is important for successful ACP feeding on the phloem and for transmitting HLB-associated bacteria. These results may help in the development of citrus plants resistant to ACP, which in turn could halt or slow the spread of the HLB-associated bacteria by this vector. PMID:25343712

  16. Differences in stylet sheath occurrence and the fibrous ring (sclerenchyma between xCitroncirus plants relatively resistant or susceptible to adults of the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae.

    Directory of Open Access Journals (Sweden)

    El-Desouky Ammar

    Full Text Available The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae, is the principal vector of the phloem-limited bacteria strongly associated with huanglongbing (HLB, the world's most serious disease of citrus. Host plant resistance may provide an environmentally safe and sustainable method of controlling ACP and/or HLB. Two xCitroncirus accessions (hybrids of Poncirus trifoliata and Citrus spp., that are relatively resistant (UN-3881 or relatively susceptible (Troyer-1459 to ACP adults with regard to adult longevity, were compared in relation to ACP feeding behavior and some structural features of the leaf midrib. The settling (putative feeding/probing sites of ACP adults on various parts of the leaf were not influenced primarily by plant accession. However, fewer ACP stylet sheaths were found in the midrib and fewer stylet sheath termini reached the vascular bundle (phloem and/or xylem in UN-3881 compared to Troyer-1459 plants. Furthermore, in midribs of UN-3881 leaves the fibrous ring (sclerenchyma around the phloem was significantly wider (thicker compared to that in midribs of Troyer-1459 leaves. Our data indicate that feeding and/or probing by ACP adults into the vascular bundle is less frequent in the more resistant (UN-3881 than in the more susceptible (Troyer-1459 accessions. Our results also suggest that the thickness of the fibrous ring may be a barrier to stylet penetration into the vascular bundle, which is important for successful ACP feeding on the phloem and for transmitting HLB-associated bacteria. These results may help in the development of citrus plants resistant to ACP, which in turn could halt or slow the spread of the HLB-associated bacteria by this vector.

  17. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  18. A study on heat transfer characteristics of spherical and fibrous alumina nanofluids

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu

    2012-01-01

    Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.

  19. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  20. Fibrous hydroxyapatite-carbon nanotube composites by chemical vapor deposition : In situ fabrication, structural and morphological characterization

    NARCIS (Netherlands)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Fibrous hydroxyapatite (HA)-carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe-Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a

  1. Impregnated Fibrous Materials. Report of a Study Group on Impregnated Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    There has recently been renewed interest in the use of radiation from radioisotopes or particle accelerators to initiate and sustain chemical reactions. Particular attention is being paid to the production of wood-plastic composites, a process which is now a commercial reality with radiation competing against chemical methods to enhance the properties of wood. It has been reported that water repellancy, hardness, weathering, insect and chemical resistance, compressive, bending and shear strength can be significantly improved by the process, but so far there has been a limited commercial outlet for the product. Papers on this subject were presented at the International Atomic Energy Agency's Symposium on Industrial Uses of Large Radiation Sources, Salzburg, May 1963, and since then the Agency has been aware of the interest of developing countries in conducting research on wood and other fibrous materials as a means of further exploiting natural resources. It was felt that some attempt should be made to co-ordinate, on a regional basis, the work being done in this field and at the same time review the world status, including the associated technology in such areas as monomer-polymer chemistry and impregnation techniques where they are directly related to this work. Because of the wide range of fibrous materials being studied there, Asia and the Far East was chosen as the most representative area and 39 participants from 13 countries, and from international organizations, met in Bangkok from 20 to 24 November 1967 to assess the potential of impregnated fibrous materials. This report is a record of the meeting and is based not only on work performed both inside and outside the region but also on details of the resources and industries in the area.

  2. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  3. Bone scintigraphy in polyostotic fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B. [Illawarra Regional Hospital, Wollongong, NSW, (Australia)

    1998-03-01

    Fibrous dysplasia is a benign skeletal disorder of unknown aetiology. Fibrous dysplasia characteristically involves the fibrous replacement of portions of the medullary cavities of a single bone (monostotic) or multiple bones (polyostotic). Bones typically involved include the femurs, tibiae, ribs and maxillae. The polyostotic form may be accompanied by skin pigmentation and endocrine abnormalities (McCune Allbright Syndrome). Radiological findings in fibrous dysplasia are variable, ranging from completely radiolucent to radio-opaque lesions, depending on the amount of fibrous or osseous tissue deposited in the medulla. The most common radiographic finding is that of a ground glass-like semi-opaque lesion. Case reports on scintigraphic manifestation of fibrous dysplasia are scanty. We present radiological and scintigraphic findings of polyostotic fibrous dysplasia in a young male. (authors). 3 refs., 1 fig.

  4. [The influence of "rigidity" and structure of fibrous dust on their biological activity].

    Science.gov (United States)

    Troitskaia, N A; Velichkovskiĭ, B T; Vanchugova, N N

    2000-01-01

    The authors represent experimental data on cytotoxic, fibrogenic and mutagenic effects of fibrous dusts--"soft" pulp fibers and "stiff" ones (chrysotile-asbestos, carbon, basalt and fiber glass) in comparison with the nonfibrous analogs (antigorit, quartz DQ-12 and others). Viability of peritoneal macrophages was depressed more dramatically by "stiff" fibers vs. the "soft" ones. Mutagenic activity was associated with the "stiffness" degree of the dust particles. When compared to fibrous chemical dusts, nonfibrous ones appeared inert in micronuclear test.

  5. Concurrence of metaphyseal fibrous defect and osteosarcoma

    International Nuclear Information System (INIS)

    Kyriakos, M.; Murphy, W.A.

    1981-01-01

    The case of a 15-year-old girl with juxtaposition of a femoral metaphyseal fibrous defect (fibrous cortical defect) and an osteosarcoma is reported. Despite the relatively common occurrence of metaphyseal fibrous defects, their reported association with other bone tumors is exceedingly rare. Only two previous acceptable examples of this association were found. Reports of malignant transformation of metaphyseal fibrous defect were reviewed and rejected because they lacked convincing radiologic or histopathologic evidence of a pre-existent benign fibrous lesion. The finding of a malignant bone tumor in association with a metaphyseal fibrous defect appears to be a chance occurrence. (orig.)

  6. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study on the Unsteady Creep of Composite Beams with an Irregular Laminar Fibrous Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2017-09-01

    The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.

  8. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  9. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  10. Composite fibrous glaucoma drainage implant

    Science.gov (United States)

    Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.

    2017-10-01

    Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.

  11. Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites

    International Nuclear Information System (INIS)

    Huang Haitao; Zhou, L.M.

    2004-01-01

    We use a micromechanics approach to study the magnetoelectric (ME) properties of the piezoelectric/magnetostrictive composite with a 2-2 laminate structure and a 3-1 fibrous structure. It is found that the 3-1 composite has a higher ME coefficient than the 2-2 one, if the volume ratio of piezoelectric material is the same. The reason is that the 3-1 fibrous composite makes use of the longitudinal piezoelectric response and the piezoelectric voltage constant g 33 is 2-3 times that of g 31 . Generally, a smaller volume ratio of the piezoelectric material will generate a higher ME response. The tensile stress at the piezoelectric/magnetostrictive interface of the 3-1 fibrous composite, however, could be high enough to induce plastic deformation or microcracks, which leads to a ME coefficient lower than the theoretically predicted one

  12. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma)

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Saure, D.; Dammenhain, S.

    1981-01-01

    Fibrous cortical defect and nonossifying fibromas can be classified together as fibrous metaphyseal defects (FMD) since they have the same pahtological substrate, with a tendency to the same localisation around the knee, and occuring at the same age. They have a tendency to spontaneous healing, are clinically silent and are usually discovered accidentally during radiological examination. A radiological survey fo 5.674 metaphyseal regions in the upper and lower extremities of 2.065 unselected patients aged one to 20 years revealed an incidence of 1.8%; exlcusive examination of the distal femur showed an incidence of 2.7%. 96% of all lesions were in the lower extremities and only 4% in the upper. The marked discrepancy in the incidence rate between American and German publications is discussed. (orig.) [de

  13. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.

    Science.gov (United States)

    Huan, Siqi; Liu, Guoxiang; Cheng, Wanli; Han, Guangping; Bai, Long

    2018-03-12

    Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.

  14. Benign fibrous histiocytoma of the lumbar vertebrae

    International Nuclear Information System (INIS)

    Demiralp, Bahtiyar; Oguz, Erbil; Sehirlioglu, Ali; Kose, Ozkan; Sanal, Tuba; Ozcan, Ayhan

    2009-01-01

    Benign fibrous histiocytoma is an extremely rare spinal tumor with ten reported cases in the literature. Benign fibrous histiocytoma constitutes a diagnostic challenge because it shares common clinical symptoms, radiological characteristics, and histological features with other benign lesions involving the spine. We present a case of benign fibrous histiocytoma of the lumbar spine and discuss its differential diagnosis and management. (orig.)

  15. Disrupted bone remodeling leads to cochlear overgrowth and hearing loss in a mouse model of fibrous dysplasia.

    Directory of Open Access Journals (Sweden)

    Omar Akil

    Full Text Available Normal hearing requires exquisite cooperation between bony and sensorineural structures within the cochlea. For example, the inner ear secretes proteins such as osteoprotegrin (OPG that can prevent cochlear bone remodeling. Accordingly, diseases that affect bone regulation can also result in hearing loss. Patients with fibrous dysplasia develop trabecular bone overgrowth resulting in hearing loss if the lesions affect the temporal bones. Unfortunately, the mechanisms responsible for this hearing loss, which could be sensorineural and/or conductive, remain unclear. In this study, we used a unique transgenic mouse model of increased Gs G-protein coupled receptor (GPCR signaling induced by expression of an engineered receptor, Rs1, in osteoblastic cells. These ColI(2.3+/Rs1+ mice showed dramatic bone lesions that histologically and radiologically resembled fibrous dysplasia. We found that ColI(2.3+/Rs1+ mice showed progressive and severe conductive hearing loss. Ossicular chain impingement increased with the size and number of dysplastic lesions. While sensorineural structures were unaffected, ColI(2.3+/Rs1+ cochleae had abnormally high osteoclast activity, together with elevated tartrate resistant acid phosphatase (TRAP activity and receptor activator of nuclear factor kappa-B ligand (Rankl mRNA expression. ColI(2.3+/Rs1+ cochleae also showed decreased expression of Sclerostin (Sost, an antagonist of the Wnt signaling pathway that normally increases bone formation. The osteocyte canalicular networks of ColI(2.3+/Rs1+ cochleae were disrupted and showed abnormal osteocyte morphology. The osteocytes in the ColI(2.3+/Rs1+ cochleae showed increased expression of matrix metalloproteinase 13 (MMP-13 and TRAP, both of which can support osteocyte-mediated peri-lacunar remodeling. Thus, while the ossicular chain impingement is sufficient to account for the progressive hearing loss in fibrous dysplasia, the deregulation of bone remodeling extends to the

  16. A case report of the fibrous dysplasia

    International Nuclear Information System (INIS)

    You, Dong Soo

    1975-01-01

    The author observed a rare case of fibrous dysplasia in 12 year old female who came to the Infirmary of Dental College, Seoul National University, complaining of facial asymmetry of 3 years' duration in right maxillofacial region. The serial radiograms has been taken, and the nature of the lesion established as a typical fibrous dysplasia according to the interpreted findings in their images. The author has obtained the results as follows: 1. Fibrous dysplasia occurred at 3 years of age in this case. 2. On familial tendency, traumatic history and endocrine disturbances were not noted in this patient. 3. The serial radiograms revealed a typical fibrous dysplasia encroaching right zygomatic bone.

  17. A case report of the fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1975-11-15

    The author observed a rare case of fibrous dysplasia in 12 year old female who came to the Infirmary of Dental College, Seoul National University, complaining of facial asymmetry of 3 years' duration in right maxillofacial region. The serial radiograms has been taken, and the nature of the lesion established as a typical fibrous dysplasia according to the interpreted findings in their images. The author has obtained the results as follows: 1. Fibrous dysplasia occurred at 3 years of age in this case. 2. On familial tendency, traumatic history and endocrine disturbances were not noted in this patient. 3. The serial radiograms revealed a typical fibrous dysplasia encroaching right zygomatic bone.

  18. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed; Ranga, Chanakya; Fihri, Aziz; Shaikh, Rafik; Sarawade, Pradip; Emwas, Abdul-Hamid M.; Hedhili, Mohamed N.; Polshettiwar, Vivek

    2013-01-01

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  19. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed

    2013-09-03

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  20. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    Science.gov (United States)

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  1. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  2. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  3. A call to expand regulation to all carcinogenic fibrous minerals

    Science.gov (United States)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in

  4. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lu, Ke-Miao; Lee, Wen-Jhy; Liu, Shih-Hsien; Lin, Ta-Chang

    2014-01-01

    Highlights: • Non-oxidative and oxidative torrefaction of biomass is studied. • Two fibrous biomasses and two ligneous biomasses are tested. • SEM observations of four biomasses are provided. • Fibrous biomass is more sensitive to O 2 concentration than ligneous biomass. • The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. - Abstract: Oxidative torrefaction is a method to reduce the operating cost of upgrading biomass. To understand the potential of oxidative torrefaction and its impact on the internal structure of biomass, non-oxidative and oxidative torrefaction of two fibrous biomass materials (oil palm fiber and coconut fiber) and two ligneous ones (eucalyptus and Cryptomeria japonica) at 300 °C for 1 h are studied and compared with each other. Scanning electron microscope (SEM) observations are also performed to explore the impact of torrefaction atmosphere on the lignocellulosic structure of biomass. The results indicate that the fibrous biomass is more sensitive to O 2 concentration than the ligneous biomass. In oxidative torrefaction, an increase in O 2 concentration decreases the solid yield. The energy yield is linearly proportional to the solid yield, which is opposite to the behavior of non-oxidative torrefaction. The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. As a whole, ligneous biomass can be torrefied in oxidative environments at lower O 2 concentrations, whereas fibrous biomass is more suitable for non-oxidative torrefaction

  5. Skull infarction in a patient with malignant fibrous histiocytoma.

    Science.gov (United States)

    Nagle, C E; Morayati, S J; LeDuc, M A

    1987-09-01

    The authors describe a case of a skull infarction initially suspected to be an isolated, remote metastasis in a patient diagnosed with soft tissue malignant fibrous histiocytoma. Osseous malignant fibrous histiocytoma has been reported to occur within a bone infarction but the presence of a benign bone infarction remote from a soft tissue malignant fibrous histiocytoma has not been reported previously. Bone infarctions and malignant fibrous histiocytomas are briefly reviewed.

  6. Calcifying Fibrous Pseudotumor of the Esophagus

    Directory of Open Access Journals (Sweden)

    Shou-Wu Lee

    2010-11-01

    Full Text Available Calcifying fibrous pseudotumor is an uncommon lesion and has recently been recognized as a distinctive fibrous lesion. Esophageal calcifying fibrous pseudotumor is extremely rare and, to the best of our knowledge, has never been reported before. A 54-year-old woman underwent upper gastrointestinal endoscopy and endoscopic ultrasound because of intermittent dysphagia. The results showed 1 isoechoic esophageal submucosal tumor over the deep mucosa and submucosal layers, with calcifications inside. The patient underwent tumor excision, and the diagnosis was confirmed by pathological features, with abundant collagen, calcification and inflammatory cell infiltration. She received regular follow-up at the clinic and no evidence of tumor recurrence was found.

  7. Angiomatoid fibrous histiocytoma

    Directory of Open Access Journals (Sweden)

    Sunil Yogiraj Swami

    2016-01-01

    Full Text Available Angiomatoid fibrous histiocytoma[AFH] is a rare soft tissue tumour most commonly occurring in children, adolescents, and young adults. It is considered to be a tumour of intermediate malignancy because of its less aggressive course in contrast to conventional malignant fibrous histiocytoma[MFH]. It accounts for approximately 0.3% of soft-tissue neoplasms. The majority of cases occur in the extremities, are slow growing and are typically painless. We report a case of AFH on the scalp of a 40-year old man, locally recurring within two years of the original operation. AFH is a rare condition with the potential of local recurrence and metastasis. It should be considered in the differential diagnosis of a soft tissue mass in a child or adolescent.

  8. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  9. Solitary Fibrous Tumor Arising from Stomach: CT Findings

    Science.gov (United States)

    Park, Sung Hee; Kwon, Jieun; Park, Jong-pil; Park, Mi-Suk; Lim, Joon Seok; Kim, Joo Hee; Kim, Ki Whang

    2007-01-01

    Solitary fibrous tumors are spindle-cell neoplasms that usually develop in the pleura and peritoneum, and rarely arise in the stomach. To our knowledge, there is only one case reporting a solitary fibrous tumor arising from stomach in the English literature. Here we report the case of a 26-year-old man with a large solitary fibrous tumor arising from the stomach which involved the submucosa and muscular layer and resembled a gastrointestinal stromal tumor in the stomach, based on what was seen during abdominal computed tomography. A solitary fibrous tumor arising from the stomach, although rare, could be considered as a diagnostic possibility for gastric submucosal tumors. PMID:18159603

  10. Congenital fibrous hamartoma of the knee

    International Nuclear Information System (INIS)

    Arioni, Cesare; Bellini, Carlo; Risso, Francesco Maria; Scopesi, Fabio; Serra, Giovanni; Oddone, Mauro; Toma, Paolo; Nozza, Paolo

    2006-01-01

    A full-term male infant presented at birth with a hard swelling of the left knee. The lemon-sized lesion was fixed to the underlying knee muscles, while the overlying skin was stretched and shiny; there was no bruit. Radiography, sonography and MRI suggested a soft-tissue tumour. After surgical excision, histology showed the presence of fibrous and mesenchymal tissue, with mature adipose tissue. Fibrous hamartoma of infancy was diagnosed. Among soft-tissue tumours, fibrous hamartoma of infancy is a rare and benign lesion, occurring in the first 2 years of life. The tumour mainly affects the trunk, axilla, and upper extremities. This infant had unique involvement of the knee. The treatment of choice is local excision. (orig.)

  11. Congenital fibrous hamartoma of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Arioni, Cesare; Bellini, Carlo; Risso, Francesco Maria; Scopesi, Fabio; Serra, Giovanni [University of Genoa, Neonatal Pathology Service, Department of Paediatrics, Institute G. Gaslini, Genoa (Italy); Oddone, Mauro; Toma, Paolo [Institute G. Gaslini, Radiology Service, Genoa (Italy); Nozza, Paolo [Institute G. Gaslini, U. O. di Anatomia Patologica, Genoa (Italy)

    2006-05-15

    A full-term male infant presented at birth with a hard swelling of the left knee. The lemon-sized lesion was fixed to the underlying knee muscles, while the overlying skin was stretched and shiny; there was no bruit. Radiography, sonography and MRI suggested a soft-tissue tumour. After surgical excision, histology showed the presence of fibrous and mesenchymal tissue, with mature adipose tissue. Fibrous hamartoma of infancy was diagnosed. Among soft-tissue tumours, fibrous hamartoma of infancy is a rare and benign lesion, occurring in the first 2 years of life. The tumour mainly affects the trunk, axilla, and upper extremities. This infant had unique involvement of the knee. The treatment of choice is local excision. (orig.)

  12. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds.

    Science.gov (United States)

    Fuller, Kieran P; Gaspar, Diana; Delgado, Luis M; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-05-01

    Electro-spun scaffolds are utilized in a diverse spectrum of clinical targets, with an ever-increasing quantity of work progressing to clinical studies and commercialization. The limited number of conformations in which the scaffolds can be fabricated hampers their wide acceptance in clinical practice. Herein, we assessed a single-strep fabrication process for predesigned electro-spun scaffold preparation and the ramifications of the introduction of porosity (0, 30, 50, 70%) and pore shape (circle, rhomboid, square) on structural, mechanical (tensile and ball burst) and biological (dermal fibroblast and THP-1) properties. The collector design did not affect the fibrous nature of the scaffold. Modulation of the porosity and pore shape offered control over the mechanical properties of the scaffolds. Neither the porosity nor the pore shape affected cellular (dermal fibroblast and THP-1) response. Overall, herein we provide evidence that electro-spun scaffolds of controlled architecture can be fabricated with fibrous fidelity, adequate mechanical properties and acceptable cytocompatibility for a diverse range of clinical targets.

  13. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  14. Fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Kim, Kyung Soo; Lee, Sang Wook; Cho, Young Jun; Kim, Young Sook

    1983-01-01

    Fibrous dysplasia of bone is a skeletal development anomaly of unknown etiology characterized by single or multiple areas of fibrous tissue replacement of medullary cavity of one or more bones. The disease may be localized to single bone (monostotic form) or may affect multiple bones (polyostotic form). Eighteen cases of fibrous dysplasia diagnosed by roentgenlogic or histologic assessment at Chosun University Hospital, Chosun University Hospital and Kwangju Christian Hospital during recent ten tears were analyzed clinically and radiologically. The results were as follows: 1. 16 case of them had monostotic involvement, and 2 cases showed polyostotic disease, but none of our series presented Albright's syndrome. 2. The male to female ratio in this series was 10 : 8, but then 2 polyostotic forms of them were females. In age distribution, peak incidence at the time of diagnosis was in the age group of second decade (10 cases). 3. Maxilla (6 cases) and femur (4 case) were frequently involved sites in patients with monostotic lesion, whereas polyostotic lesions diffusely affected skull, pelvis, ribs and limb bones. 4. The clinical symptoms according to the extent and site of disease were very variable, which were localized painless or painful swelling, nasal obstruction, deformity of face or extremity and incidentally during routine roentgen study. 5. The chemical abnormality of blood serum was moderate degree of elevated serum alkaline phosphatase in only one patients with monostotic lesion. 6. The main radiologic findings of fibrous dysplasia were relatively well circumscribed single or multiloculated cystilike appearance, bone expansion, cortical thinning and/or erosion, bony deformity and pathologic fracture, but especially in maxilla, dense homogenous area with expanding lesion was observed in our series

  15. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma

    International Nuclear Information System (INIS)

    Kaushik, Shaifali; Smoker, Wendy R.K.; Frable, William J.

    2002-01-01

    A case of malignant transformation of polyostotic fibrous dysplasia into maxillary chondroblastic osteosarcoma is presented. The clinical, radiographic, CT, MR imaging features and pathological findings of polyostotic fibrous dysplasia and its malignant transformation are described. Malignant transformation of fibrous dysplasia is rare and has not previously been described in the English literature in this location in McCune-Albright syndrome and in the absence of radiation treatment. (orig.)

  16. Fibrous dysplasia of the femoral neck

    International Nuclear Information System (INIS)

    Savage, P.E.; Stoker, D.J.

    1984-01-01

    Fibrous dysplasia of the femur is usually observed in the intertrochanteric region. It is rarely confined to the femoral neck. We present four cases illustrating the radiographic appearance and spectrum of this condition which all showed the relatively lucent variety of fibrous dysplasia with varying degrees of expansion and surrounding sclerosis. The natural history of this condition is discussed. (orig.)

  17. Investigation on the effect of employing nano-fibrous structure as a scattering layer in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Rahimi, S.; Mohammadpour, R.; Iraji zad, A.

    2012-01-01

    TiO 2 nano fibers with different diameters have been fabricated through electro-spinning method and employed as a scattering layer in dye sensitized solar cell. The amount of scattering from nano-fibrous layers depends on their diameters; Because of various ability of light collection in fibers with different diameters, it can directly influence the solar cell performance. In this study, we have studied the optical and electrical properties of TiO 2 nano fibers and solar cells based on these structures have been fabricated and characterized. Finally, by optimizing the structure of scattering layer, maximum efficiency of 6.8 p ercent h as been achieved using fibers in range of 200-350 nm diameter.

  18. Postirradiation sarcoma (malignant fibrous histiocytoma) following cervix cancer

    International Nuclear Information System (INIS)

    Pinkston, J.A.; Sekine, Ichiro.

    1980-12-01

    A case of postirradiation sarcoma is described. The tumor, a malignant fibrous histiocytoma, occurred in the radiation field 11 years following postoperative external beam radiation therapy (7,000 rad) for carcinoma of the cervix. Reports of postirradiation malignant fibrous histiocytoma are rare, and the occurrence of this neoplasm following treatment for cervix cancer has not previously been described. The literature concerning postirradiation bone and soft tissue sarcomas is briefly reviewed, with special attention to malignant fibrous histiocytomas. (author)

  19. Solitary Fibrous Tumor Arising from Stomach: CT Findings

    OpenAIRE

    Park, Sung Hee; Kim, Myeong-Jin; Kwon, Jieun; Park, Jong-pil; Park, Mi-Suk; Lim, Joon Seok; Kim, Joo Hee; Kim, Ki Whang

    2007-01-01

    Solitary fibrous tumors are spindle-cell neoplasms that usually develop in the pleura and peritoneum, and rarely arise in the stomach. To our knowledge, there is only one case reporting a solitary fibrous tumor arising from stomach in the English literature. Here we report the case of a 26-year-old man with a large solitary fibrous tumor arising from the stomach which involved the submucosa and muscular layer and resembled a gastrointestinal stromal tumor in the stomach, based on what was see...

  20. Locally Aggressive Fibrous Dysplasia Mimicking Malign Calvarial Lesion.

    Science.gov (United States)

    Ogul, Hayri; Keskin, Emine

    2018-05-01

    Fibrous dysplasia is an unusual benign bone tumor. It is divided into 3 groups as monostotic, polyostotic, and craniofacial form. The authors reported an unusual patient with fibrous dysplasia with an aggressive radiologic appearance.

  1. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  2. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  3. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  4. CT Imaging of Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Zerrin Unal Erzurumlu

    2015-01-01

    Full Text Available Fibrous dysplasia is a benign fibroosseous bone dysplasia that can involve single (monostotic or multiple (polyostotic bones. Monostotic form is more frequent in the jaws. It is termed as craniofacial fibrous dysplasia, when it involves, though rarely, adjacent craniofacial bones. A 16-year-old girl consulted for a painless swelling in the right posterior mandible for two years. Panoramic radiography revealed ground-glass ill-defined lesions in the three different regions of the maxilla and mandible. Axial CT scan (bone window showed multiple lesions involving skull base and facial bones. Despite lesions in the skull base, the patient had no abnormal neurological findings. The lesion was diagnosed as fibrous dysplasia based on radiological and histopathological examination. In this paper, CT findings and differential diagnosis of CFD are discussed. CT is a useful imaging technique for CFD cases.

  5. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    International Nuclear Information System (INIS)

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  6. The interface interaction behavior between E. coli and two kinds of fibrous minerals.

    Science.gov (United States)

    Dai, Qunwei; Han, Linbao; Deng, Jianjun; Zhao, Yulian; Dang, Zheng; Tan, Daoyong; Dong, Faqin

    2017-11-09

    In the present, studies of interaction between human normal flora and fibrous mineral are still lacking. Batch experiments were performed to deal with the interaction of Escherichia coli and two fibrous minerals (brucite and palygorskite), and the interface and liquid phase characteristics in the short-term interaction processes were discussed. The bacterial concentrations, the remnant glucose (GLU), pyruvic acid, and the activity of β-galactosidase and six elements were measured, and the results show that the promoting effect of brucite on the growth of E. coli was more significant than that of palygorskite. FTIR and XRD analysis results also confirmed E. coli has obviously dissolved on brucite and damage effect on palygorskite silicon structure. SEM results show that the interfacial contact degree between E. coli cells and brucite fibers was higher than that of palygorskite. These may be due to the zeta potential difference between E. coli and palygorskite was 14.57-22.37 mV, while it of brucite was 44.04-64.24 mV. The elements dissolving of two fibrous minerals not only increased regularly to liquid EC but also had a good buffer effect to the decrease of liquid pH. Studies of short-term interaction between E. coli and brucite and palygorskite can help to understand the effect of fibrous minerals on microeubiosis of human normal flora and the contribution of microbial behaviors on the fibrous minerals weathering in the natural environment.

  7. Fibrous epulis associated with impacted lower right third molar

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2009-12-01

    Full Text Available Background: Epulis or epulides are lesions associated with gingival tissues. Fibrous epulis is a type of hyperplastic fibrous tissue mass located at the gingival which is slow growing, painless, having same color as the oral mucosa and firm on palpation. Anterior regions of the oral cavity are the frequently affected sites as these areas are more prone to be affected by calculus deposition and poor plaque control due to frequent teeth malposition. Removal of any irritating factors and excision of the lesion are the usual treatments. Purpose: This case report presents a rare case of fibrous epulis which occurred in the posterior region of the oral cavity and associated with impacted lower third molar. Case: A case of fibrous epulis at the lower right third molar area of three months duration is presented. The mass was slow growing, painless and on examination it was a pedunculated mass overlying the unerupted lower right third molar, having same color with the oral mucosa and firm on palpation. Clinically, the lesion was diagnosed as fibrous epulis associated with impacted lower right third molar. Case management: The treatment were surgical excision of the epulis and removal of the lower right third molar. The histopathology result showed tissue with squamous epithelial lining, achanthotic fibrous connective tissue, mononuclear inflammatory cells and few capillaries without signs of malignancy. This is consistent with the diagnosis of fibrous epulis. Conclusion: Fibrous epulis, although frequently occurred at the anterior region of the oral cavity, may rarely grow at the area of lower third molar. This phenomenon supports the theory that epulis can grow on any surface of oral mucous membrane as long as local irritants are present.

  8. Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain.

    Science.gov (United States)

    Resnick, D; Chatterton, J E; Schwartz, K; Slayter, H; Krieger, M

    1996-10-25

    Structures of secreted forms of the human type I and II class A macrophage scavenger receptors were studied using biochemical and biophysical methods. Proteolytic analysis was used to determine the intramolecular disulfide bonds in the type I-specific scavenger receptor cysteine-rich (SRCR) domain: Cys2-Cys7, Cys3-Cys8, and Cys5-Cys6. This pattern is likely to be shared by the highly homologous domains in the many other members of the SRCR domain superfamily. Electron microscopy using rotary shadowing and negative staining showed that the type I and II receptors are extended molecules whose contour lengths are approximately 440 A. They comprised two adjacent fibrous segments, an alpha-helical coiled-coil ( approximately 230 A, including a contribution from the N-terminal spacer domain) and a collagenous triple helix ( approximately 210 A). The type I molecules also contained a C-terminal globular structure ( approximately 58 x 76 A) composed of three SRCR domains. The fibrous domains were joined by an extremely flexible hinge. The angle between these domains varied from 0 to 180 degrees and depended on the conditions of sample preparation. Unexpectedly, at physiologic pH, the prevalent angle seen using rotary shadowing was 0 degrees , resulting in a structure that is significantly more compact than previously suggested. The apparent juxtaposition of the fibrous domains at neutral pH provides a framework for future structure-function studies of these unusual multiligand receptors.

  9. Airflow resistivity of models of fibrous acoustic materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    A new way of calculating the airflow resistivity of randomly placed parallel cylinders is presented. The calculation is based on Voronoi polygons, and the resistivity is given by the mean spacing between the fibers, their diameters, and the physical properties of air. New explicit formulas...

  10. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  11. Craniofacial fibrous dysplasia - A review of current management techniques

    Directory of Open Access Journals (Sweden)

    Yadavalli Guruprasad

    2012-01-01

    Full Text Available Fibrous dysplasia is a pathologic condition of bone of unknown etiology with no apparent familial, hereditary or congenital basis. Lichtenstein first coined the term in 1938 and in 1942 he and Jaffe separated it from other fibro-osseous lesions. It is a bone tumor that, although benign, has the potential to cause significant cosmetic and functional disturbance, particularly in the craniofacial skeleton. Its management poses significant challenges to the surgeon. Craniofacial fibrous dysplasia is 1 of 3 types of fibrous dysplasia that can affect the bones of the craniofacial complex, including the mandible and maxilla. Fibrous dysplasia is a skeletal developmental disorder of the bone-forming mesenchyme that manifests as a defect in osteoblastic differentiation and maturation. It is a lesion of unknown etiology, uncertain pathogenesis, and diverse histopathology. Fibrous dysplasia represents about 2, 5% of all bone tumors and over 7% of all benign tumours. Over the years, we have gained a better understanding of its etiology, clinical behavior, and both surgical and non-surgical treatments.

  12. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  13. Fibrous Dysplasia versus Juvenile Ossifying Fibroma: A Dilemma

    Directory of Open Access Journals (Sweden)

    Sreelakshmi N. Nair

    2016-01-01

    Full Text Available Fibrous dysplasia (FD is a condition characterized by excessive proliferation of bone forming mesenchymal cells which can affect one bone (monostotic type or multiple bones (polyostotic type. It is predominantly noticed in adolescents and young adults. Fibrous dysplasia affecting the jaws is an uncommon condition. The most commonly affected facial bone is the maxilla, with facial asymmetry being the chief complaint. The lesion in many instances is confused with ossifying fibroma (OF. Diagnosis of these two lesions has to be done based on clinical, radiographic, and microscopic findings. Here, we present a case of fibrous dysplasia of maxilla in a nine-year-old boy mimicking juvenile ossifying fibroma.

  14. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.

    Science.gov (United States)

    Bai, Zhiyong; Wang, Jianlong; Yang, Qi

    2018-04-01

    Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.

  15. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  16. Extraction of uranium from sea water by means of fibrous complex adsorbents

    International Nuclear Information System (INIS)

    Miyamatsu, Tokuhisa; Oguchi, Noboru; Kanchiku, Yoshihiko; Aoyagi, Takanobu

    1982-01-01

    Fibrous complex adsorbents for uranium extraction from sea water were prepared by introducing titanic acid or basic zinc carbonate as effective constituents into fibrous ion exchangers. A fibrous chelate type adsorbent was also tested. Among the adsorbents examined, the following ones demonstrated excellent properties for the recovery of uranium from sea water. a) A fibrous, weakly acidic cation exchanger was treated with titanyl sulfate in aqueous sulfuric acid solution, which was followed by neutralization to afford a fibrous adsorbent containing titanic acid (QC-1f(Ti)). The adsorption capacity for uranium in sea water was estimated by extrapolation to be 50μg-U/g-Ad or 1170 μg-U/g-Ti. b) A fibrous, strongly acidic cation exchanger was treated in a similar way to afford another type of fibrous adsorbent with titanic acid incorporated (QCS-Ti). The adsorption capacity was estimated by extrapolation to be 20-30 μg-U/g-Ad. (author)

  17. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  18. A novel fibrous duct structure discovered in the brain meninges by using polarized light microscopy

    Science.gov (United States)

    Nam, Min-Ho; Jung, Sharon Jiyoon; Soh, Kwang-Sup; Lim, Jaekwan; Seo, Eunseok; Lim, Jun; Baek, Miok; Lee, Sang Joon

    2016-05-01

    We have previously reported the discovery of a novel fibrous structure (NFS) consisting of unidirectionally arranged collagen fibers in the spinal pia mater. Due to its unique structure, it was easily detected using polarized light microscopy. In the current study, we describe the discovery of a similar NFS in the brain meninges of rats by using polarized light microscopy. This NFS is located beneath the superior sagittal sinus. Initially, we systemically analyzed the polarization properties of the NFS. The change in the light intensity of the NFS, with respect to the polarization angle, was eight times greater than that of blood vessels, showing that the collagen fibers are oriented in a particular direction with almost perfect parallelism (0.99). The orientation angle of the polarization ellipse confirmed the orientation of the collagen fibers in the NFS. Histological studies further confirmed that the unidirectionally arranged collagen fibers were responsible for this distinct polarization property. Surprisingly, X-ray microtomography and 3D confocal imaging revealed that the NFS contains within it a duct structure, a putative primo vessel. In conclusion, we report a NFS in the brain meninges, detected by using polarized light microscopy, that provides space for a putative primo vessel, not a blood vessel.

  19. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  20. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.

    Science.gov (United States)

    Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2012-11-01

    The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and high modulus. The electrospun fibres were collected in tension on a rotating wire mandrel. Upon treating these fibres in a heated aqueous environment, they possessed a crimp-like pattern having a wavelength and amplitude similar to that of native ACL collagen. Of the polymer fibre scaffolds studied, those made from poly(L-lactide-co-D,L-lactide) PLDLA exhibited the highest modulus and were also the most resilient to in vitro hydrolytic degradation, undergoing a slight decrease in modulus compared to the other polymeric fibres over a 6 month period. Bovine fibroblasts seeded on the wavy, crimp-like PLDLA fibres attached, proliferated and deposited extracellular matrix (ECM) molecules on the surface of the fibrous scaffold. In addition, the deposited ECM exhibited bundle formation that resembled the fascicles found in native ACL. These findings demonstrate the importance of replicating the geometric microenvironment in developing effective tissue engineering scaffolds. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Composition of silicon fibrous nanostructures synthesized using ultrafast laser pulses under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sivakumar M.

    2015-01-01

    Full Text Available In this study the composition of nanostructures generated owing to ablation of crystalline silicon using high repletion rate femtosecond laser under ambient condition is investigated. The web-like silicon fibrous nanostructures are formed in and around the laser irradiated area. Electron Microscopy investigation revealed that the nanostructures are made of nanoparticles of size about 40 nm. In addition Micro-Raman analysis shows that the nanofibrous structures comprises a mixture of amorphous and polycrystalline silicon. X-ray photoelectron spectroscopy analysis reveals the oxidized and un-oxidized elemental states of silicon in the nanostructures. Moreover web-like fibrous nanostructures are generated due to condensation of super saturated vapour and subsequent nucleus growth in the laser induced plasma plume.

  2. CT features of fibrous dysplasia of the temporal bone

    International Nuclear Information System (INIS)

    Charrada-Ben Farhat, L.; Bourkhis, S.; Ben Yaacoub, I.; Dali, N.; Askri, A.; Hendaoui, L.

    2006-01-01

    Fibrous dysplasia is characterized by a progressive replacement of normal bone elements by fibrous tissue. The temporal bone is rarely involved. In this location, complications such as facial deformity, conductive hearing loss and facial peripheral neural involvement can occur. Positive diagnosis can be established with computerized tomography which also enables assessment of extension and detection of complications. We report a case of a 27-year-old man with extensive fibrous dysplasia of the right temporal bone presenting with conductive hearing loss secondary to progressive stenosis of the external auditory canal. Computerized tomography of the temporal region was performed. (authors)

  3. Fibrous scar in the infrapatellar fat pad after arthroscopy. MR imaging

    International Nuclear Information System (INIS)

    Tang, Guangyu; Niitsu, Mamoru; Ikeda, Kotaro; Itai, Yuji; Endo, Hideho

    2000-01-01

    We describe the MR appearance of fibrous scars in the infrapatellar fat pad after arthroscopy. The subjects were 96 patients who underwent arthroscope-assisted anterior cruciate ligament (ACL) reconstruction and were examined by oblique sagittal MR imaging at different follow-up intervals. Two observers evaluated the characteristics of the fibrous scars in the infrapatellar fat pad. All fibrous scars with low signal intensity were accentuated at the portal and coursed horizontally through the infrapatellar fat pad. The fibrous scar within the fat pad occurred and peaked within 6 months after arthroscopy. It then subsided gradually and had disappeared by one year later in nearly half of the patients. Identifying MR imaging characteristics of fibrous scars in the fat pad after arthroscopy may be clinically helpful to differentiate these scars from other abnormalities that involve the infrapatellar fat pad. (author)

  4. Fibrous scar in the infrapatellar fat pad after arthroscopy. MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangyu; Niitsu, Mamoru; Ikeda, Kotaro; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Endo, Hideho

    2000-02-01

    We describe the MR appearance of fibrous scars in the infrapatellar fat pad after arthroscopy. The subjects were 96 patients who underwent arthroscope-assisted anterior cruciate ligament (ACL) reconstruction and were examined by oblique sagittal MR imaging at different follow-up intervals. Two observers evaluated the characteristics of the fibrous scars in the infrapatellar fat pad. All fibrous scars with low signal intensity were accentuated at the portal and coursed horizontally through the infrapatellar fat pad. The fibrous scar within the fat pad occurred and peaked within 6 months after arthroscopy. It then subsided gradually and had disappeared by one year later in nearly half of the patients. Identifying MR imaging characteristics of fibrous scars in the fat pad after arthroscopy may be clinically helpful to differentiate these scars from other abnormalities that involve the infrapatellar fat pad. (author)

  5. Radiographic Differential Diagnosis Between The Fibrous Dysplasia And The Ossifying Fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Karp Shik [Dept. of Dental Radiology, College of Dentistry, Kyungpook National University, Daegu (Korea, Republic of)

    1999-02-15

    The author observed and compared the radiographic features of 49 cases of the fibrous dysplasia and 14 cases of the ossifying fibroma in the osteoblastic or mature stage radiologically and histopathologically. The obtained results were as follows: 1. Fibrous dysplasia occurred most frequently in the 2nd decade, but ossifying fibroma in the 3rd and 4th decades, and both lesions occurred with slight predilection in females. 2. In most cases, chief complaints were painless facial swelling. And 61.1% of fibrous dysplasia occurred in the maxilla, 92.9% of ossifying fibroma in the mandible, and most of these lesions occurred in the premolar-molar region. 3. In the mandibular lesions, ossifying fibroma was shown more oval and round shape, but fibrous dysplasia was shown fusiform shape. 4. Fibrous dysplasia was shown homogeneously distributed, complete radiopaque shadow at 63%, and ossifying fibroma was shown concentric, mixed appearance of radiolucent and radiopaque shadow at 92.9%. 5. Fibrous dysplasia was entirely shown poorly outlined and blended to normal surrounding bone, but ossifying fibroma was shown well-defined border. 6. Cortical thinning and expansion were observed in these lesions, but degree of cortical expansion was more severe in ossifying fibroma than fibrous dysplasia. 7. Loss of lamina dura, tooth displacement, and displacement of mandibular canal were observed in both lesions, but root resorption was observed in ossifying fibroma only.

  6. Polyostotic Fibrous Dysplasia of Cranio-Maxillofacial Area

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin Woo; Kwon, Hyuk Rok; Lee, Jin Ho; Park, In Woo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kangnung National University, Kangnung (Korea, Republic of)

    2000-06-15

    Fibrous dysplasia is believed to be a hamartomatous developmental lesion of unknown origin. This disease is divided into monostotic and polyostotic fibrous dysplasia. Polyostotic type can be divided into craniofacial type, Lichtenstein-Jaffe type, and McCune-Albright syndrome. In this case, a 31-year-old female presented spontaneous loss of right mandibular teeth before 5 years and has shown continuous expansion of right mandibular alveolus. Through the radiographic view, the coarse pattern of the mixed radiopaque-lucent lesion was seen on the right mandibular body, and there was diffuse pattern of the mixed radiopaque-lucent lesion with ill-defined margin in the left mandibular body. In the right calvarium, the lesion had cotton-wool appearance. Partial excision for contouring, multiple extraction, and alveoloplasty were accomplished under general anesthesia for supportive treatment. Finally we could conclude this case was polyostotic fibrous dysplasia of cranio-maxillofacial area based on the clinical, radiologic finding, and histopathologic examination.

  7. Polyostotic Fibrous Dysplasia of Cranio-Maxillofacial Area

    International Nuclear Information System (INIS)

    Han, Jin Woo; Kwon, Hyuk Rok; Lee, Jin Ho; Park, In Woo

    2000-01-01

    Fibrous dysplasia is believed to be a hamartomatous developmental lesion of unknown origin. This disease is divided into monostotic and polyostotic fibrous dysplasia. Polyostotic type can be divided into craniofacial type, Lichtenstein-Jaffe type, and McCune-Albright syndrome. In this case, a 31-year-old female presented spontaneous loss of right mandibular teeth before 5 years and has shown continuous expansion of right mandibular alveolus. Through the radiographic view, the coarse pattern of the mixed radiopaque-lucent lesion was seen on the right mandibular body, and there was diffuse pattern of the mixed radiopaque-lucent lesion with ill-defined margin in the left mandibular body. In the right calvarium, the lesion had cotton-wool appearance. Partial excision for contouring, multiple extraction, and alveoloplasty were accomplished under general anesthesia for supportive treatment. Finally we could conclude this case was polyostotic fibrous dysplasia of cranio-maxillofacial area based on the clinical, radiologic finding, and histopathologic examination.

  8. Marfan syndrome with multiseptate pneumothorax and mandibular fibrous dysplasia

    Directory of Open Access Journals (Sweden)

    Kate A

    2009-01-01

    Full Text Available We describe a rare case of pneumothorax due to Marfan syndrome associated with fibrous dysplasia of the mandible. Marfan syndrome and fibrous dysplasia were possibly due to a common etiological factor. The association between the two and other tumors described in literature related to Marfan syndrome is discussed.

  9. Case report 525: Benign fibrous histiocytoma (BFH) of thumb

    International Nuclear Information System (INIS)

    Statz, E.M.; Philipps, E.; Pochebit, S.M.; Cooper, A.; Leslie, B.M.

    1989-01-01

    A case was presented of benign fibrous histiocytoma (BFH) involving the distal phalanx of the thumb, a location heretofore not described in the literature. The distinction between BFH and other lesions (e.g. non-ossifying fibroma) was considered in depth. The distinction between benign and malignant fibrous histiocytoma was also described. (orig.)

  10. Left ventricular dysfunction in ischemic heart disease: fundamental importance of the fibrous matrix.

    Science.gov (United States)

    Swan, H J

    1994-05-01

    The contractile function of the myocardium is coordinated by a fibrous matrix of exquisite organization and complexity. In the normal heart, and apparently in physiological hypertrophy, this matrix is submicroscopic. In pathological states changes are frequent, and usually progressive. Thickening of the many elements of the fine structure is due to an increased synthesis of Type I collagen, This change, which affects the myocardium in a global manner, can be observed by light microscopy using special techniques. Perivascular fibrosis, with an increase in vascular smooth muscle, is accompanied by development of fibrous septa, with a decrease in diastolic compliance. These structural changes are believed to be due to increased activation of the renin-angiotensin-aldosterone system, and to be independent of the processes of myocyte hypertrophy. Reparative or replacement fibrosis is a separate process by means of which small and large areas of necrosis heal, with the development of coarse collagen structures, which lack a specific organizational pattern. Regarding ischemic heart disease, an increase in tissue collagenase is found in experimental myocardial "stunning" and in the very early phase of acute infarction. Absence of elements of the fibrous matrix allow for myocyte slippage, and--if the affected area is large--cardiac dilatation. If, subsequently, the necrosis becomes transmural, there is further disturbance of collagen due to both mechanical strain and continued autolysis, During healing collagen synthesis increases greatly to allow for reparative scarring in the available tissue matrix. In cases of infarction with moderate or severe initial dilatation, pathological hypertrophy of the spared myocardium is progressive, accounting for late heart failure and poor survival.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  12. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  13. Solitary Fibrous Tumor of the Pancreas: Imaging Findings

    International Nuclear Information System (INIS)

    Kwon, Heon Ju; Byun, Jae Ho; Kang, Jun; Park, Seong Ho; Lee, Moon Gyu

    2008-01-01

    We report here a case of a pathologically proven solitary fibrous tumor of the pancreas. A 54-year-old man was referred to our hospital for further evaluation of a pancreatic mass that was found incidentally. CT, MR imaging, and endoscopic ultrasonography showed a well-defined, enhancing mass with cystic portions of the pancreas body. MR cholangiopancreatography showed no pancreatic duct dilatation. A solitary fibrous tumor of the pancreas is a very rare lesion

  14. Neonatal respiratory distress secondary to nasal fibrous histiocytoma.

    Science.gov (United States)

    Koopmann, C F; Nagle, R B; Crone, R

    1987-08-01

    A full term one-day-old neonate developed respiratory distress secondary to a right intranasal mass. After exploratory craniotomy revealed no intracranial lesions, the child was observed for 6 months. At that time he experienced severe apnea with cyanosis necessitating removal of the mass, which was diagnosed histologically as a fibrous histiocytoma. Seven year follow-up reveals no further problems. A discussion of fibrous histiocytoma of the nose and paranasal sinuses is briefly given.

  15. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    Science.gov (United States)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay

  16. Solitary Fibrous Tumor of the Uterus

    Directory of Open Access Journals (Sweden)

    Po-Wei Chu

    2006-12-01

    Conclusion: The behavior of solitary fibrous tumors arising from the uterus is difficult to evaluate; therefore, complete surgical excision featuring clear margins and comprehensive follow-up is recommended.

  17. Conductive electrospun PANi-PEO/TiO{sub 2} fibrous membrane for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, Sebastian [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Pliszka, Damian, E-mail: nnidp@nus.edu.sg [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Thavasi, Velmurugan [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Wintermantel, Erich [Technical University of Munich, Bolzmannstr. 15, 85748 Garching (Germany); Ramakrishna, Seeram [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); King Saud University, Riyadh 11451 (Saudi Arabia)

    2011-05-15

    Graphical abstract: - Abstract: The integration of electrospinning and electrospraying to prepare the fibrous catalytic filter membrane is demonstrated. The non-conductive polyethylene oxide (PEO) is blended with ({+-})-camphor-10-sulfonic acid (CSA) doped conductive polyaniline (PANi) for electrospinning. The conductive CSA/PANi-PEO composite fibers are produced upon electrospinning, which are used as the conductive collector for electrospraying process by which titanium dioxide (TiO{sub 2}) nanoparticles (NPs) are sprayed and allowed to adsorb on the fibers. The degree of adsorption and dispersion of nano TiO{sub 2} catalysts on the surface of the CSA/PANi-PEO fibers exhibit a stronger dependence on weight percentage (wt%) of PANi in PEO solution and the strength of electrical conductivity of the fibers used during electrospraying. CSA/PANi-PEO fibers as collector reduce the wastage of TiO{sub 2} NPs during electrospraying to lesser than 5%. Among the three different composition of PANi studied, PEO with 12 wt% PANi yields very uniform diameter and beads-free fibrous structure with higher electrical conductivity. 12 wt% CSA/PANi-PEO fibrous membrane is found to support for greater dispersion of TiO{sub 2} NPs. The photocatalytic activity of the as-prepared TiO{sub 2}-PANi-PEO catalytic membrane is tested against the toxicant simulant 2-chloroethyl phenyl sulfide (CEPS) under the ultraviolet light irradiation. It is observed that the TiO{sub 2} nanoparticles catalysts embedded PANi-PEO fibrous membrane decontaminated the toxicant CEPS significantly, which is due to uniform dispersion of the catalysts produced by the methodology.

  18. A case of intracranial malignant fibrous histiocytoma

    Directory of Open Access Journals (Sweden)

    Amir Hossein Sarrami

    2011-01-01

    Full Text Available We describe a case of intracranial malignant fibrous histiocytoma which had infiltrated pons, cerebellum and basal surface of left temporal lobe without any visible mass. The patient presented with a sudden loss of consciousness and vomiting. Clinical findings, laboratory tests, imaging and examination of the cerebrospinal fluid tended to establish the diagnosis of an infectious condition than a malignancy. Without any response to the antibiotics and with a progressive deterioration of neurologic and mental condition, the patient died after 20 days. In the autopsy, histological and immunohistochemical study of the brain revealed the diagnosis of malignant fibrous histiocytoma (MFH.

  19. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    Science.gov (United States)

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-04-07

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.

  20. CHEMISORPtION OF SULFUR (IV OXIDeBY PoLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS. 1. HYDROPHILIC POLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2015-03-01

    Full Text Available The hydrophilicity of artificial and synthetic fibers and polyethylenepolyamine (PEPA impregnated fibrous materials based on them was investigated under static conditions using a vacuum sorption installation. Water vapor sorption isotherms were analyzed and monolayer capacitance values  and a water molecules adsorption in the first layer heats were determined in the framework of polymolecular adsorption Brunauer – Emmett – Teller. It has been found that the hydrophilicity of the fibers studied to change in the following sequence: viscose > VION AN-3 > VION KN-1 > nylon-polyester > nitrone > polyester > polypropylene; PEPA modified hydrophilic fibrous material does not depend essentially on the chemical nature of the carrier.

  1. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Patrick, E-mail: brownpd@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom); Jones, Tim, E-mail: jonestp@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); BeruBe, Kelly, E-mail: berube@cf.ac.uk [School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom)

    2011-12-15

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 {mu}m. Respirable particles (<10 {mu}m) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: > Chinese CFA had a greater crystalline mineral content and smaller particle size. > Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. > Mullite revealed a fibrous habit, with fibres 1-10 {mu}m in length and 0.5-1 {mu}m in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  2. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    International Nuclear Information System (INIS)

    Brown, Patrick; Jones, Tim; BeruBe, Kelly

    2011-01-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: → Chinese CFA had a greater crystalline mineral content and smaller particle size. → Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. → Mullite revealed a fibrous habit, with fibres 1-10 μm in length and 0.5-1 μm in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  3. Fibrous dysplasia and cherubism

    Directory of Open Access Journals (Sweden)

    Surajit Bhattacharya

    2015-01-01

    Full Text Available Fibrous dysplasia (FD is a non-malignant fibro-osseous bony lesion in which the involved bone/bones gradually get converted into expanding cystic and fibrous tissue. The underlying defect in FD is post-natal mutation of GNAS1 gene, which leads to the proliferation and activation of undifferentiated mesenchymal cells arresting the bone development in woven phase and ultimately converting them into fibro-osseous cystic tissue. Cherubism is a hereditary form of fibrous dysplasia in which the causative factor is transmission of autosomal dominant SH3BP2 gene mutation. The disease may present in two distinct forms, a less severe and limited monostotic form, and a more aggressive and more widespread polyostotic form. Polyostotic form may be associated with various endocrine abnormalities, which require active management apart from the management of FD. Management of FD is not free from controversies. While total surgical excision of the involved area and reconstruction using newer micro-vascular technique is the only definitive treatment available from the curative point of view, but this can be only offered to monostotic and very few polyostotic lesions. In polyostotic varieties on many occasions these radical surgeries are very deforming in these slow growing lesions and so their indication is highly debated. The treatment of cranio-facial fibrous dysplasia should be highly individualized, depending on the fact that the clinical behavior of lesion is variable at various ages and in individual patients. A more conservative approach in the form of aesthetic recontouring of deformed bone, orthodontic occlusal correction, and watchful expectancy may be the more accepted form of treatment in young patients. Newer generation real-time imaging guidance during recontouring surgery adds to accuracy and safety of these procedures. Regular clinical and radiological follow up is required to watch for quiescence, regression or reactivation of the disease process

  4. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  5. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  6. Chondrosarcoma occurring in a patient with polyostotic fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    De Smet, A.A.; Travers, H.; Neff, J.R.

    1981-12-01

    A 36-year-old white man with polyostotic fibrous dysplasia was found to have a high-grade chondrosarcoma arising from the left ilium. Although a left hemipelvectomy was performed, the patient subsequently developed sacral and pulmonary metastases and succumbed to his disease. This patient represents the first documented example of an unequivocally high-grade chondrosarcoma arising in an area of fibrous dysplasia without prior irradiation.

  7. Gastric Calcifying Fibrous Tumour

    Directory of Open Access Journals (Sweden)

    Tan Attila

    2006-01-01

    Full Text Available Intramucosal gastric tumours are most commonly found to be gastrointestinal stromal tumours or leiomyomas (smooth muscle tumours; however, a variety of other uncommon mesenchymal tumours can occur in the stomach wall. A rare benign calcifying fibrous tumour is reported and the endoscopic appearance, ultrasound findings and morphology are documented. A review of the literature found only two similar cases.

  8. Imaging of soft tissue malignant fibrous histiocytoma

    International Nuclear Information System (INIS)

    Jemni, H.; Bakir, D.; Ben Ahmed, S.; Kraiem, C.; Mrad Dali, K.; Tlili-Graiess, K.; Mnif, Z.; Jeddi, M.

    1996-01-01

    Malignant fibrous histiocytoma (MFH) is a rare and potentially highly malignant sarcoma. The authors report 6 cases of MFH in various sites : two in the chest wall, one in the pelvis, two in the gluteal zones and one on the scalp. Ultrasonography and computed tomography were the main imaging methods used in the assessment of the structure and extension of the tumor. A poor prognosis was noted in four cases: death within a few months in the two thoracic sites, recurrence in the pelvic and scalp lesions, radical surgery allowed recovery in two cases. A review of the literature showed that MRI and CT are complementary in the initial staging and follow-up these patients. (author)

  9. Welcome to Fibers—A New Open Access Journal for Fibrous Material Science

    Directory of Open Access Journals (Sweden)

    Stephen C. Bondy

    2012-08-01

    Full Text Available Fibers are materials in the form of elongated threads. They can possess elastic features that are relevant to the integrity and bonding of cells. These features also give man-made fibers a wide range of applications. The large ratio of length to width (aspect ratio, which defines fibers, strongly influences their physical and chemical properties. This quality gives them a relatively large surface area, which can lead to powerful tensile and absorptive characteristics, which are remarkably different from, and cannot be predicted by study of the non-fibrous parent materials. An example of this is asbestos, where the toxicity of the material is heavily influenced by its structural anatomy. Distinctive chemical processes can take place on fibrous surfaces that may themselves seem to be chemically inert. Certain commonalities result from the distinctive geometry of fibers, and lie behind the apparently great diversity of fiber types and materials. [...

  10. The clinical research of bone scan in patients with fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Yuan Zhibin; Yu Jianfang; Luo Quanyong; Lu Hankui; Zhu Jifang; Zhu Ruisen

    2002-01-01

    Objective: To study the characteristics of fibrous dysplasia of bone in bone imaging and evaluate the diagnostic value of radionuclide bone scan in fibrous dysplasia of bone. Methods: All 42 cases of fibrous dysplasia of bone patients had radionuclide bone scan performed and compared with other imaging modalities. A retrospective study method was used to analyze the imaging results. Results: Although fibrous dysplasia of bone showed uptake of 99m Tc-MDP in the images, its appearance characteristic was different from those metastatic bone tumors and other bone diseases. Combining with X rays and other imaging modalities can improve the diagnostic accuracy of this disease. Conclusion: Radionuclide bone scan has got certain value in the diagnosis of fibrous dysplasia of bone. Combining with other imaging modality can make up its disadvantage of low specificity

  11. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  12. Localized fibrous mesothelioma of the liver: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Lee, Moon Gyu; Weon, Young Cheol; Lee, Seung Gyu; Kim, Yoon Jeong; Lee, In Chul; Auh, Yong Ho [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1995-10-15

    Localized fibrous mesothelioma of the liver is very rare benign tumor. It usually manifest large palpable hepatic mass in right upper quadrant area, and the prognosis is excellent by surgical resection. Contrast enhanced CT scan shows well defined hyperattenuating mass and celiac angiogram shows hypervascular mass. Recently we experienced 1 case of localized fibrous mesothelioma of the liver, and we report CT and angiographic findings of this tumor.

  13. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    Science.gov (United States)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  14. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma). Pt. 2

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Ostertag, H.; Saure, D.

    1981-01-01

    FMD, whether in the stage of a fibrous cortical defect or a non-ossifying fibroma, possesses very characteristic radiological appearances which rarely make it necessary to resort to biopsy. In order to avoid mistakes, it is necessary to observe strictly the known radiological features: metaphyseal position, clearcut relationship to the cortex, well defined margins, maximal size 6 to 7 cm., presence during growth, rarely observed in the upper extremity. The differential diagnosis, which needs to be considered only rarely, is discussed. (orig.) [de

  15. CVD boron nitride infiltration of fibrous structures: properties of low temprature deposits

    International Nuclear Information System (INIS)

    Gebhardt, J.J.

    1973-01-01

    The pyrolytic infiltration of boron nitride and silica fibrous structures with boron nitride was investigated using the thermal decomposition of B-trichloroborazole (TCB) to provide the matrix surrounding felted and 4-directional braided constructions. The deposition precursor was generated on a continuous basis by the reaction between boron trichloride and ammonium chloride in a fixed bed reactor under conditions of total conversion of the trichloride: 3BCl 3 + 3NH 4 Cl = B 3 N 3 H 3 Cl 3 + 9HCl. Deposition rates in boron nitride felt specimens varied between 8 and 28 μm/h, depending on the distance from the exterior surface at the minimum deposition temperature used (1100 0 C ). Infiltration of 4-directional silica braids was poorer because of clogging of the fiber bundle surfaces and access paths to voids in the weave. Deposits prepared at 1100 0 C and above were stable to moisture and consisted of glassy transparent materials which had no discernible x-ray diffraction pattern. Heat treatment of low temperature deposits in nitrogen at 1800 0 C caused significant growth of the crystallites and the emergence of x-ray patterns characteristic of hexagonal boron nitride. Heat treatment in vacuum caused changes in the infrared spectrum which could be correlated with mass analyses of the gases evolved. Loss of hydrogen with amines predominated to about 1500 0 C above which point the loss of nitrogen became significant. (14 figures) (U.S.)

  16. Mechanical compression of a fibrous membrane surrounding bone causes bone resorption

    NARCIS (Netherlands)

    van der Vis, H. M.; Aspenberg, P.; Tigchelaar, W.; van Noorden, C. J.

    1999-01-01

    Early micromovement and migration of a prosthesis of a hip or knee predicts late clinical loosening of the prosthesis. Such migration is likely to be associated with mechanical compression of the fibrous membrane interpositioned between bone and prosthesis during movement. Compression of the fibrous

  17. APPRAISAL OF ECONOMICAL EFFICIENCY OF APPLICATION OF FIBROUS LINING IN THERMAL GASPLASMA FURNACES AND FURNACES OF RESISTANCE OF MACHINE-BUILDING PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij

    2011-01-01

    Full Text Available The carried out calculations showed that partial modernization of thermal furnaces of machine building production by means of replacement of chamotte by fibrous fettling is economically reasonable and has rather short period of payback.

  18. Fabrication of gelatin-siloxane fibrous mats via sol-gel and electrospinning procedure and its application for bone tissue engineering

    International Nuclear Information System (INIS)

    Ren Lei; Wang Jun; Yang Fangyu; Wang Lin; Wang Dong; Wang Tianxiao; Tian Miaomiao

    2010-01-01

    Our strategy is to design and fabricate biomimetic and bioactive scaffolds that resemble the native extracellular matrix as closely as possible so as to create conducive living milieu that will induce cell to function naturally. In the present study, gelatin/siloxane (GS) hybrids were prepared by a sol-gel processing, and electrospinning technique was used to fabricate GS fibrous mats to support the growth of bone marrow-derived mesenchymal stem cells (BMSCs) for tissue engineering of bone. The results indicate that the porous structure and fiber size of the GS fibrous mats can be fine tuned by varying the viscosity of GS precursor solution. Additionally, the Ca 2+ -containing GS fibrous mats biomimetically deposited apatite in a simulated body fluid (SBF), as well as stimulating its BMSCs proliferation and differentiation in vitro, thereby dignifying its in vitro bioactivity.

  19. Fibrous dysplasia of the jaws associated with secondary hyperparathyroidism: a case report

    International Nuclear Information System (INIS)

    Whi, Jung Hyun; Kim, Young Joo; Chun, Kyung Ah; Kim, Ki Tae; Chang, Eun Deok; Kim, Young Ok; Lee, Won

    2007-01-01

    There have been few reports on fibrous dyplasia associated with secondary hyperparathyroidism. We report a case of a hemodialysis patient with secondary hyperparathyroidism concomitant with fibrous dysplasia of the jaws causing an abnormal deformity

  20. Pilling Resistance of Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2011-09-01

    Full Text Available Knitted fabrics with different quantity of elastane, conspicuous by high viscosity and elasticity, having one of the most important performance properties - resistance to pilling are often used in the production of high quality sportswear. During technological process imitating operating conditions, the behaviour of knitted fabrics may be changed by different industrial softeners from 12 % to 20 % of active substance, for example fatty acid condensate (Tubingal 5051 or silicone micro emulsion (Tubingal SMF. The aim of this investigation is to define the influence of fibrous composition and chemical softeners to the propensity of fuzzing and pilling of plain and plated jersey pattern knitted fabrics. The results of investigations showed that fibrous composition and thickness of materials (up to 6 % and washing as well as softening (from 33 % to 67 % change the resistance of knitted fabrics to pilling.http://dx.doi.org/10.5755/j01.ms.17.3.597

  1. Radiological analysis of polyostotic fibrous dysplasia in skeletal system

    International Nuclear Information System (INIS)

    Shin, Ma Rie; Kim, Jin Sik; Kim, Han Suk; Park, Soo Soung

    1984-01-01

    Over a period of recent 3 years, the 5 cases of polyostotic fibrous dysplasia were proven histologically at National Medical Center, and they were evaluated and analyzed radiologically and clinically. The results were as follows: 1. The age of 5 patients ranged from 12 to 21. 2. In general, clinical symptoms of these patients were pain of affected sites and swelling , fracture, walking disturbance of lower extremities. 3. The order of frequent site of polyostotic fibrous dysplasia was skull (4 cases), femur (3 cases), maxilla (2 case), humerus, tibia, rib, radius, metacarpal bone and phalanx. 4. The characteristic radiological findings of polyostotic fibrous dysplasia were multicystic lesions with ground glass appearance, osteosclerosis, cortical thinning and pathologic fracture and deformity of long bones. Particularly, in the extremities, multicystic radiolucencies, groud glass appearance, shepherd's crook and coxa vara deformities were noticed, and in the skull and maxilla, sclerotic changes were principally demonstrated.

  2. Controlled antiseptic/eosin release from chitosan-based hydrogel modified fibrous substrates.

    Science.gov (United States)

    Romano, Ilaria; Ayadi, Farouk; Rizzello, Loris; Summa, Maria; Bertorelli, Rosalia; Pompa, Pier Paolo; Brandi, Fernando; Bayer, Ilker S; Athanassiou, Athanassia

    2015-10-20

    Fibers of cellulose networks were stably coated with N-methacrylate glycol chitosan (MGC) shells using subsequent steps of dip coating and photo-curing. The photo-crosslinked MGC-coated cellulose networks preserved their fibrous structure. A model hydrophilic antiseptic solution containing eosin, chloroxylenol and propylene glycol was incorporated into the shells to study the drug release dynamics. Detailed drug release mechanism into phosphate buffered saline (PBS) solutions from coated and pristine fibers loaded with the antiseptic was investigated. The results show that the MGC-coated cellulose fibers enable the controlled gradual release of the drug for four days, as opposed to fast, instantaneous release from eosin coated pristine fibers. This release behavior was found to affect the antibacterial efficiency of the fibrous cellulose sheets significantly against Staphylococcus aureus and Candida albicans. In the case of the MGC-eosin functionalized system the antibacterial efficiency was as high as 85% and 90%, respectively, while for the eosin coated pristine cellulose system the efficiency was negative, indicating bacterial proliferation. Furthermore, the MGC-eosin system was shown to be efficacious in a model of wound healing in mice, reducing the levels of various pro-inflammatory cytokines that modulate early inflammatory phase responses. The results demonstrate good potential of these coated fibers for wound dressing and healing applications. Due to its easy application on common passive commercial fibrous dressings such as gauzes and cotton fibers, the method can render them active dressings in a cost effective way. Copyright © 2015. Published by Elsevier Ltd.

  3. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide fibrous membranes

    Directory of Open Access Journals (Sweden)

    Zhao S

    2014-05-01

    Full Text Available Song Zhao,1,* Jingwen Zhao,3,* Shikui Dong,1 Xiaoqiao Huangfu,1 Bin Li,2,3 Huilin Yang,2,3 Jinzhong Zhao,1 Wenguo Cui2,31Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 2Orthopedic Institute, Soochow University, Suzhou, Jiangsu, 3Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China *These authors contributed equally to this work Abstract: Clinically, rotator cuff tear (RCT is among the most common shoulder pathologies. Despite significant advances in surgical techniques, the re-tear rate after rotator cuff (RC repair remains high. Insufficient healing capacity is likely the main factor for reconstruction failure. This study reports on a basic fibroblast growth factor (bFGF-loaded electrospun poly(lactide-co-glycolide (PLGA fibrous membrane for repairing RCT. Implantable biodegradable bFGF–PLGA fibrous membranes were successfully fabricated using emulsion electrospinning technology and then characterized and evaluated with in vitro and in vivo cell proliferation assays and repairs of rat chronic RCTs. Emulsion electrospinning fabricated ultrafine fibers with a core-sheath structure which secured the bioactivity of bFGF in a sustained manner for 3 weeks. Histological observations showed that electrospun fibrous membranes have excellent biocompatibility and biodegradability. At 2, 4, and 8 weeks after in vivo RCT repair surgery, electrospun fibrous membranes significantly increased the area of glycosaminoglycan staining at the tendon–bone interface compared with the control group, and bFGF–PLGA significantly improved collagen organization, as measured by birefringence under polarized light at the healing enthesis compared with the control and PLGA groups. Biomechanical testing showed that the electrospun fibrous membrane groups had a greater ultimate load-to-failure and stiffness than the control group at 4

  4. Age-related changes in dermal fiber-like structures in facial cheeks.

    Science.gov (United States)

    Mizukoshi, K; Hirayama, K

    2017-08-01

    Despite recent progress in non-invasive measurement methods, such as in vivo laser confocal microscopy (CLSM), it is difficult to quantitatively measure age-related changes in dermal fibrous structures in the face using these methods and qualitative characteristics. We used characteristics extracted from the analysis of CLSM images to quantitatively investigate the effects of aging on dermal fibrous structures in the face. CLSM images of dermal fibrous structures were obtained from 90 Japanese females, ranging in age from 20 to 60 years. The feature values of CLSM images were extracted using image analysis methods, such as short-line segment-matching processing and spatial frequency analysis. The qualitative characteristics of the dermal fibrous structures in the CLSM images were obtained by principal component analysis (PCA) of these feature values. The fibrous structures were scored on the basis of qualitative characteristics and then age-related changes in the scores among the subjects were quantitatively evaluated. The PCA results showed that there were two characteristics in the images of fibrous structures: clearness and directionality. The clearness of fibrous structures decreased and directionality isotropy increased with age. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  6. Brisement force in fibrous ankylosis: A technique revisited

    Directory of Open Access Journals (Sweden)

    Udupikrishna M Joshi

    2016-01-01

    Full Text Available Fibrous ankylosis is a common complication of trauma to the temporomandibular joint (TMJ in children. Proper treatment and regular follow-up is necessary for its successful management. This report highlights a case of posttraumatic fibrous ankylosis successfully managed with brisement force-gradual tractional forces applied to the TMJ under local anesthesia without any associated complications. Mouth opening increased significantly from 15 to 35 mm. The patient was advised to perform rigorous physiotherapy at home, to maintain interincisal opening of 35 mm. The case was followed up for 6 months with no decrease in mouth opening.

  7. Recurring fibrous dysplasia of anthro maxillary with cranial base invasion

    Directory of Open Access Journals (Sweden)

    Sousa, Kátia Maria Marabuco de

    2009-09-01

    Full Text Available Introduction: Fibrous dysplasia is an osseous lesion with an unknown etiology. It is characterized by the osseous maturation insufficiency. It may affect any bone, but the affection of craniofacial bones is the most critical for otorhinolaryngology. Maxilla is the most affected facial bone and the orbitary invasion is an uncommon event. The symptoms are unspecific and for its low suspicion and uncommonness, the diagnosis is generally late. The monostotic form presents a slow growth and asymptomatic course and needs to be followed up. The polyostotic type has a progressive behavior and is associated to recurrence and complications. Objective: To present two cases of patients with fibrous dysplasia diagnosis and describe the clinical presentation, radiological findings and the treatment of this pathology. Cases Report: Two cases of fibrous dysplasia are reported, which initially presented unspecific symptomatology, but with characteristic radiologic signs. They were submitted to surgical treatment for resection of the lesions and evolved with frequent recurrences with extensive affection of the facial sinuses, one patient had cranial base invasion and frontal craniotomy was needed for tumoral excision. Final Comments: Fibrous dysplasia is an uncommon osteopathy. The tomography is the choice method for characterization of the tumoral expansion, and helps in the surgical planning. The surgical strategy is indicated for symptomatic lesions, functions alterations or anatomic disorders. This article describes two uncommon manifestations of recurrent fibrous dysplasia with an extensive affection of anthro maxillary, ethmoidal and sphenoid sinuses, in addition to orbitary and cranial base invasion.

  8. Backscatter factor and absorption ratio of fibrous zirconia media in the visible

    International Nuclear Information System (INIS)

    Njomo, Donatien; Tagne, Herve Thierry Kamdem

    2001-11-01

    Fibrous thermal insulations are widely used to conserve energy in ambient to high temperature applications including buildings, solar collectors, heat exchangers, furnaces and thermal protection systems of reusable launch vehicles. It has long been recognised that zirconia has the lowest thermal conductivity of commercial refractories. The thermal conductivity of a zirconia fibrous medium is strongly dependent of its bulk density; high bulk densities of zirconia fibers provide the most effective insulation at high temperatures. Lee's theory for radiative transfer through fibrous media is used in this paper. The two-flux model is applied to determine the backward and forward parameters of a medium of zirconia fibers oriented in parallel planes. Theoretical calculations of the backscatter factor and absorption ratio of this medium are carried out in the visible spectrum for different size parameters of the fibers and for three different temperatures. Our results show that the backscatter factor of zirconia fibrous insulations is maximum, and therefore the heat transfer by the fibrous medium is the lowest, for a size parameter of 0.45 for all the temperatures studied. We also observed that the backscatter factor decreases with increasing temperature. (author)

  9. Malign Fibrous Histiocytoma of the Bladder: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Ižbrahim Bozkurt

    2014-06-01

    Full Text Available Malignant fibrous histocytoma is a mesenchimal tumor, which was described in 1964. It is the most common soft tissue sarcoma in patients over the age of 40 years. There were very few reports about malignant fibrous histocytoma in urinary tract especially in bladder with 30 patients. Patients usually present with gross hematuria. Because of its agressive characteristics; recurrences, progressions and metastasis are likely. Tumor grade, tumor size, amount of invasion and histological type are the risk factors for metastasis. Early radical cystectomy is the first treatment option because of poor prognosis of these tumors but usually can not be sufficient. Chemotherapy and radiotherapy are used to as an alternative treatment or adjuvant treatment with surgery. We would like to present a bladder malignant fibrous histocytoma case to contribute to the lirature.

  10. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane

    International Nuclear Information System (INIS)

    Liu, Shen; Zhao, Jingwen; Ruan, Hongjiang; Wang, Wei; Wu, Tianyi; Cui, Wenguo; Fan, Cunyi

    2013-01-01

    The complications of tendon injury are frequently compromised by peritendinous adhesions and tendon sheath infection. Physical barriers for anti-adhesion may increase the incidence of postoperative infection. This study was designed to evaluate the potential of silver nanoparticles (AgNPs)-loaded poly(L-lactide) (PLLA) electrospun fibrous membranes to prevent adhesion formation and infection. Results of an in vitro drug release study showed that a burst release was followed by sustained release from electrospun fibrous membranes with a high initial silver content. Fewer fibroblasts adhered to and proliferated on the AgNP-loaded PLLA electrospun fibrous membranes compared with pure PLLA electrospun fibrous membrane. In the antibacterial test, the AgNP-loaded PLLA electrospun fibrous membranes can prevent the adhesion of Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa. Taken together, these results demonstrate that AgNP-loaded PLLA electrospun fibrous membranes have the convenient practical medical potential of reduction of infection and adhesion formation after tendon injury. - Highlights: ► Silver nanoparticles are directly electrospun into PLLA fibrous membrane. ► Long-lasting release of Ag + ions is achieved. ► Cytotoxicity of silver ions benefits the anti-proliferation of physical barriers. ► Broad anti-microbial effect of drug-loaded fibrous membrane is revealed. ► Antibacterial and anti-adhesion effects of the physical barriers are combined

  11. Pulping and papermaking properties of the leaf fiber and fibrous residue from Agave tequilana

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, T.; Mitsuhashi, S.; Kanetsuna, H.; Iguchi, M.; Shirota, T.; Trujillo, J.J.; Herrera, T.

    1981-01-01

    The leaves and fibrous residue of A. tequilana had fibriles with parallel orientation and helical arrangement to the fiber axis and contained fibers in average length and width of 1.7 mm and 10.3 mu m and 0.8 mm and 25.5 mu m, respectively. The cell wall in leaves was thicker and narrower than those in fibrous residue, and leaves contained cellulose and lignin lower than fibrous residue did. Alkali sulfite cooking of leaves gave pulp, the yield of which was lower than that from fibrous residue. The H/sub 2/On retention and bulk density of leaf pulps increased rapidly on beating suggesting that an internal fibrillation in pulp occurs easily during beating. The breaking length and burst and tear factors of paper from leaf pulp were higher than those from fibrous residue.

  12. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-01-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  13. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-02-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  14. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Aho, Johanna; Baldursdottir, Stefania G.

    2017-01-01

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dis...

  15. Bilateral fibrous dysplasia of the mandible in a 7-year-old male patient-A rare case

    Directory of Open Access Journals (Sweden)

    Chandar V

    2010-06-01

    Full Text Available Fibrous dysplasia is a disturbance of bone metabolism that is classified as a benign fibro-osseous lesion. Fibrous connective tissue, containing abnormal bone, replaces normal bone. The etiology of fibrous dysplasia is unknown. The radiographic appearance of the irregularly shaped trabeculae aids in the differential diagnosis. Occurring most commonly in the second decade of life, the lesions of fibrous dysplasia can be surgically recontoured for esthetic or functional purposes once they become dormant. Here, we report a case of bilateral fibrous dysplasia in a 7 year old male patient and its diagnostic work-up.

  16. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  17. Fibrous dysplasia: rapid malignant transformation into osteogenic sarcoma - A rare occurance

    Directory of Open Access Journals (Sweden)

    S Gon

    2012-09-01

    Full Text Available Malignant transformation of fibrous dysplasia is rare, occurring in less than 1% of cases with a mean lag period of 13.5 years. We report a case of Osteogenic Sarcoma with chondroid differentiation in a pre-existing Fibrous Dysplasia occurring within one year of surgical resection and without any history of exposure to radiation. To the best of our knowledge and extensive search of literature, malignant transformation of Fibrous Dysplasia in such a short period of time, and without history of radiation exposure has never been reported from India.Journal of Pathology of Nepal (2012 Vol. 2, 335-337DOI: http://dx.doi.org/10.3126/jpn.v2i4.6891

  18. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  19. The influence of fibrous elastomer structure and porosity on matrix organization.

    Science.gov (United States)

    Ifkovits, Jamie L; Wu, Katherine; Mauck, Robert L; Burdick, Jason A

    2010-12-22

    Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus). The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate) (PGS), with changes in fiber alignment (non-aligned (NA) versus aligned (AL)) and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO)). PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ∼3-240 kPa, failing within the range of properties (<300 kPa) appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ∼90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ∼13% and ∼16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important considerations in

  20. Feed Technology of Fibrous Sugarcane Residues for Ruminants

    Directory of Open Access Journals (Sweden)

    Kuswandi

    2007-06-01

    Full Text Available Abundant sugarcane residue during shortage of roughage in dry season gives an opportunity to raise ruminants around sugarcane industries. However, these products are not widely used by farmers due to an assumption that the usage is inefficient and that the feed utilization technology is not widely recognized. Sugarcane fibrous residues (tops, bagasse and pith may be a potential feed component if pre-treated to increase its digestion and consumption by the animal, and/or supplemented by other ingredients to balance nutrients in the rumen as well as those for production purpose. Digestibility can be increased by chemical treatments such as ammoniation and other alkaline treatments, whereas consumption can be increased by physical treatments such as grinding, hammermilling or pelleting. Nutrients that are missing in these fibrous residues can be provided by addition of urea, molasses and minerals for maintenance need, and bypass nutrients (carbohydrates, protein and fats that are digested in the small intestine and available for tissue or milk synthesis. There are three options for development of livestock agribusiness based on fibrous sugarcane residues; however, these require several technologies to optimize the utilization of these residues.

  1. Toxicity and Carcinogenicity Mechanisms of Fibrous Antigorite

    Directory of Open Access Journals (Sweden)

    Michael Balazy

    2007-03-01

    Full Text Available We studied the effects of fibrous antigorite on mesothelial MeT-5A and monocyte-macrophage J774 cell lines to further understand cellular mechanisms induced by asbestos fibers leading to lung damage and cancer. Antigorite is a mineral with asbestiform properties, which tends to associate with chrysotile or tremolite, and frequently occurs as the predominant mineral in the veins of several serpentinite rocks found abundantly in the Western Alps. Particles containing antigorite are more abundant in the breathing air of this region than those typically found in urban ambient air. Exposure of MeT-5A and J774 cells to fibrous antigorite at concentrations of 5-100 μg/ml for 72 hr induced dose-dependent cytotoxicity. Antigorite also stimulated the ROS production, induced the generation of nitrite and PGE2. MeT-5A cells were more sensitive to antigorite than J774 cells. The results of this study revealed that the fibrous antigorite stimulates cyclooxygenase and formation of hydroxyl and nitric oxide radicals. These changes represent early cellular responses to antigorite fibers, which lead to a host of pathological and neoplastic conditions because free radicals and PGE2 play important roles as mediators of tumor pathogenesis. Understanding the mechanisms of the cellular responses to antigorite and other asbestos particles should be helpful in designing rational prevention and treatment approaches.

  2. The Fiber Content in Fibrous Hemp Depending on Selected Agrotechnical Factors

    Directory of Open Access Journals (Sweden)

    Kryszak N.

    2016-06-01

    Full Text Available Relationship between genotypes represented by two fibrous hemp varieties and some agrotechnical factors was investigated in the study. The aim of it was finding how selected factors (three sowing dates, two sowing densities and five harvest dates influence on total fiber content using osmotic degumming of fibrous plants method for fiber content determination.

  3. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek; Cha, Dong Kyu; Zhang, Xixiang; Basset, Jean-Marie

    2010-01-01

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek

    2010-08-02

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Congenital costo-vertebral fibrous band and congenital kyphoscoliosis: a previously unreported combination.

    Science.gov (United States)

    Eid, Tony; Ghostine, Bachir; Kreichaty, Gaby; Daher, Paul; Ghanem, Ismat

    2013-05-01

    Congenital kyphoscoliosis (CKS) results from abnormal vertebral chondrification. Congenital fibrous bands occur in several locations with variable impact on vertebral development. We report a previously unreported case of a female infant with CKS presenting with an L2 hypoplastic vertebra and a costo-vertebral fibrous band extending to the skin in the form of a dimple. We also describe the therapeutic approach, consisting of surgical excision of the fibrous band and postoperative fulltime bracing, with a 7-year follow-up. We recommend a high index of suspicion in any unusual presentation of CKS and insist on case by case management in such cases.

  6. First description of Phanerozoic radiaxial fibrous dolomite

    Science.gov (United States)

    Richter, D. K.; Heinrich, F.; Geske, A.; Neuser, R. D.; Gies, H.; Immenhauser, A.

    2014-05-01

    The petrographic analysis and crystallographic analysis of concretionary carbonate cements ("coal balls") from Carboniferous paralic swamp deposits reveal the presence of (length fast) radiaxial fibrous dolomite (RFD), a fabric not previously reported from the Phanerozoic. This finding is of significance as earlier reports of Phanerozoic radiaxial fibrous carbonates are exclusively of calcite mineralogy. Dolomite concretions described here formed beneath marine transgressive intervals within palustrine coal seams. This is of significance as seawater was arguably the main source of Mg2 + ions for dolomite formation. Here, data from optical microscopy, cathodoluminescence, electron backscattered diffraction, X-ray diffraction and geochemical analyses are presented to characterize three paragenetic dolomite phases and one calcite phase in these concretions. The main focus is on the earliest diagenetic, non-stoichiometric (degree of order: 0.41-0.46) phase I, characterized by botryoidal dolomite constructed of fibres up to 110 μm wide with a systematic undulatory extinction and converging crystal axes. Petrographic and crystallographic evidence clearly qualifies phase I dolomite as radiaxial fibrous. Conversely, fascicular optical fabrics were not found. Carbon-isotope ratios (δ13C) are depleted (between - 11.8 and - 22.1‰) as expected for carbonate precipitation from marine pore-fluids in organic-matter-rich, paralic sediment. Oxygen isotope (δ18O) ratios range between - 1.3 and - 6.0‰. The earliest diagenetic nature of these cements is documented by the presence of ubiquitous, non-compacted fossil plant remains encased in phase I dolomite as well as by the complex zoned luminescence patterns in the crystals and is supported by crystallographic and thermodynamic considerations. It is argued that organic matter, and specifically carboxyl groups, reduced thermodynamic barriers for dolomite formation and facilitated Mg/CaCO3 precipitation. The data shown here

  7. Ehlers-Danlos syndrome with monostotic fibrous dysplasia

    Directory of Open Access Journals (Sweden)

    Rao A

    1979-01-01

    Full Text Available An unusual case of Ehlers-Danlos syndrome with monostotic fibrous dysplasia of the humorus is presented. The other orthopae-dic manifestations, its complications and associated features are re-viewed and summarised.

  8. Rationalization of specific structure formation in electrospinning process: Study on nano-fibrous PCL- and PLGA-based scaffolds.

    Science.gov (United States)

    Saeed, Mahdi; Mirzadeh, Hamid; Zandi, Mojgan; Irani, Shiva; Barzin, Jalal

    2015-12-01

    Formation of specific structures on poly-ɛ-caprolactone (PCL) and poly lactide-co-glycolide (PLGA) based electrospun mats is rationalized and the effect of interactive parameters; high voltage and flow rate on unique surface topography is evaluated. By increasing the collecting time in electrospinning process and enhancing fiber to fiber repulsion, surface characteristics of mats changes from nano- to micro-topography. In this study surface topography of the fabricated mats based on PCL and PLGA were assessed using AFM and SEM techniques to display the distinct phenomenon occurs on collected random fibers. In this research the rationale behind the formation of bump and flower like structures on fibrous mats was discussed. Because of great potential application of the fabricated substrates in the fields of medical purposes, cell-matrix interaction was evaluated and in vitro biological test with human dermal fibroblast and mouse L929 fibroblast cells was performed to study the cell responses to different roughness of nano-fibers collected at different time intervals. Our results show that after 7 days, cell proliferation is improved on PCL collected at 40 min in the case of human fibroblast cells and on PCL collected in 70 min in the case of L929 mouse fibroblast cells. © 2015 Wiley Periodicals, Inc.

  9. The use of fibrous ion exchangers in gold hydrometallurgy

    Science.gov (United States)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  10. Morphology and In Vitro Behavior of Electrospun Fibrous Poly(D,L-lactic acid for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Toshihiro Inami

    2013-01-01

    Full Text Available This work describes the fabrication, optimization, and characterization of electrospun fibrous poly(D,L-lactic acid (PDLLA for biomedical applications. The influences of the polymer concentration of the electrospinning solution (5, 10, or 15 wt% and the solution flow rate (0.1, 0.5, 1.0, or 2.0 mL/h on the morphology of the obtained fibrous PDLLA were evaluated. The in vitro biocompatibility of two types of PDLLA, ester terminated PDLLA (PDLLA-R and carboxyl terminated PDLLA (PDLLA-COOH, was evaluated by monitoring apatite formation on samples immersed in Hanks’ balanced salt (HBS solution. 15 wt% polymer solution was the most beneficial for preparing a fibrous PDLLA structure. Meanwhile, no differences in morphology were observed for PDLLA prepared at various flow rates. Apatite precipitate is formed on both types of PDLLA only 1 day after immersion in HBS solution. After 7 days of immersion, PDLLA-COOH showed greater apatite formation ability compared with that of PDLLA-R, as measured by thin-film X-ray diffraction. The results indicated that the carboxyl group is effective for apatite precipitation in the body environment.

  11. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  12. Case Report of a Satin Guinea Pig with Fibrous Osteodystrophy That Resembles Human Pseudohypoparathyroidism

    Directory of Open Access Journals (Sweden)

    Miguel Gallego

    2017-01-01

    Full Text Available A case report of a 2-year-old female satin guinea pig with a history of dental overgrowth and lameness and radiological lesions of fibrous osteodystrophy is presented. The most relevant clinical findings were bone demineralization, high level of parathyroid hormone (PTH, normophosphatemia, normal ionized calcium, and low total thyroxine (tT4 with a normal renal function. Long-term treatment was based on teeth coronal reduction and maintaining a balanced diet. PTH measurement was performed with a kit suitable for rats to test 4 different paired samples of guinea pigs and resulted in similar results for each pair of measurements. Two kits routinely employed in dogs and cats failed in measuring PTH in guinea pig serum samples. The ionized calcium, PTH, and tT4 values, not previously reported in similar cases, were obtained. The determination of tT4 could be useful in the diagnosis of fibrous osteodystrophy in guinea pigs. The observed findings show similarity with human pseudohypoparathyroidism type Ia, a disease caused by an inactivating heterozygous mutation of the stimulatory G protein α subunit from the maternal genome that induces multiple hormone resistance and that courses with a syndrome called Albright hereditary osteodystrophy. Naturally occurring pseudohypoparathyroidism in animals has been reported previously only in a ferret.

  13. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Lu Ping; Hsieh, You-Lo

    2009-01-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  14. Inverse Problem of Air Filtration of Nanoparticles: Optimal Quality Factors of Fibrous Filters

    Directory of Open Access Journals (Sweden)

    Dahua Shou

    2015-01-01

    Full Text Available Application of nanofibers has become an emerging approach to enhance filtration efficiency, but questions arise about the decrease in Quality factor (QF for certain particles due to the rapidly increasing pressure drop. In this paper, we theoretically investigate the QF of dual-layer filters for filtration of monodisperse and polydisperse nanoparticles. The inverse problem of air filtration, as defined in this work, consists in determining the optimal construction of the two-layer fibrous filter with the maximum QF. In comparison to a single-layer substrate, improved QF values for dual-layer filters are found when a second layer with proper structural parameters is added. The influences of solidity, fiber diameter, filter thickness, face velocity, and particle size on the optimization of QF are studied. The maximum QF values for realistic polydisperse particles with a lognormal size distribution are also found. Furthermore, we propose a modified QF (MQF accounting for the effects of energy cost and flow velocity, which are significant in certain operations. The optimal MQF of the dual-layer filter is found to be over twice that of the first layer. This work provides a quick tool for designing and optimizing fibrous structures with better performance for the air filtration of specific nanoparticles.

  15. Fibrous Myopathy as a Complication of Repeated Intramuscular Injections for Chronic Headache

    Directory of Open Access Journals (Sweden)

    R Burnham

    2006-01-01

    Full Text Available Two cases of fibrous myopathy associated with repeated, long-term intramuscular injections for treatment of chronic temporomandibular joint pain and chronic headache, respectively, are described. Both patients developed severe, function-limiting contractures in upper and lower extremity muscles used as injection sites. In one of the cases, the contractures were painful. Electrophysiological testing, magnetic resonance imaging and muscle biopsy results were all consistent with myopathy and replacement of skeletal muscle with noncontractile fibrous tissue. These cases are presented to increase awareness of fibrous myopathy and to promote surveillance for this serious potential complication of long-term intramuscular injections in chronic headache and other pain patients.

  16. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  17. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Saya; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.

    2015-01-01

    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure

  18. Protein valves prepared by click reaction grafting of poly(N-isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes

    Science.gov (United States)

    Guo, Jian-Wei; Lin, Zhen-Yu; Chang, Chi-Jung; Lu, Chien-Hsing; Chen, Jem-Kun

    2018-05-01

    In this study, poly(vinyl chloride) (PVC) was electrospun into fibrous membranes and then reacted with NaN3 to generate azido-terminated PVC fibrous membranes. A propargyl-terminated poly(N-isopropylacrylamide) (PNIPAAm) was also synthesized and then grafted, through click reactions, onto the azido-terminated PVC fiber surface. Protrusion-, scale-, and joint-like structures of the PNIPAAm grafts on the PVC fibers were formed upon increasing the molecular weight of the PNIPAAm grafts. The PNIPAAm-grafted PVC fibrous mats exhibited completely wetted surfaces at 25 °C because of their high roughness. The static water contact angle of the PNIPAAm-grafted PVC fibrous mats reached 140° when the temperature was increased to 45 °C. This thermoresponsive behavior was significantly greater than that of the PNIPAAm grafted on a flat surface. Temperature-responsive membranes were constructed having a pore size of 1.38 μm and applied as protein valves to block and release an antibody (fluorescein-conjugated AffiniPure goat anti-rabbit IgG). At 25 °C, the collection efficiency remained at 94% for antibody concentrations up to 60 ng/L. As the temperature increased to 45 °C, the collection efficiency decreased abruptly, to 4%, when the antibody concentration was greater than 20 ng/L. Accordingly, this system of PNIPAAm-grafted PVC fibers functioned as a protein valve allowing the capture and concentration of proteins.

  19. Omnipresence of the polyproline II helix in fibrous and globular proteins.

    Science.gov (United States)

    Esipova, Natalia G; Tumanyan, Vladimir G

    2017-02-01

    Left-handed helical conformation of a polypeptide chain (PPII) is the third type of the protein backbone structure. This conformation universally exists in fibrous, globular proteins, and biologically active peptides. It has unique physical and chemical properties determining a wide range of biological functions, from the protein folding to the tissue differentiation. New examples of the structure have been appearing in spite of difficulties in their detection and investigation. The annotation and prediction of the PPII was also a challenging task. Recently, many PPII motifs with new and/or unexpected functions are being accumulated in databases. In this review we describe the major structural and dynamic forms of PPII, the diversity of its functions, and the role in different biological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  1. Case report 359: Gigantic benign fibrous histiocytoma (nonossifying fibroma)

    International Nuclear Information System (INIS)

    Remagen, W.; Nidecker, A.; Prein, J.

    1986-01-01

    In summary, a fascinating case is presented of an enormous 'blow-out' lesion in the left half of the mandible in a 17-year-old boy. The histological diagnosis was benign fibrous histiocytoma or non-ossifying fibroma. An extensive differential diagnosis was presented by the authors and although benign fibrous histiocytoma was their final diagnosis, they could not exclude an example of the rarely encountered entity called the Jaffe-Campanacci syndrome. This syndrome consists of multiple non-ossifying fibromas of the mandible, cafe-au-lait spots, various endocrine disorders, mental retardation, occular anomalies and cardiovascular malformations. (orig./SHA)

  2. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    Science.gov (United States)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  3. Steam Reformer With Fibrous Catalytic Combustor

    Science.gov (United States)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  4. Meurigite, a new fibrous iron phosphate resembling kidwellite

    Science.gov (United States)

    Birch, W.D.; Pring, A.; Self, P.G.; Gibbs, R.B.; Keck, E.; Jensen, M.C.; Foord, E.E.

    1996-01-01

    Meurigite is a new hydrated potassium iron phosphate related to kidwellite and with structural similarities to other late-stage fibrous ferric phosphate species. It has been found at four localities so far - the Santa Rita mine, New Mexico, U.S.A.; the Hagendorf-Sud pegmatite in Bavaria, Germany; granite pegmatite veins at Wycheproof, Victoria. Australia; and at the Gold Quarry Mine, Nevada, U.S.A. The Santa Rita mine is the designated type locality. Meurigite occurs as tabular, elongated crystals forming spherical and hemispherical clusters and drusy coatings. The colour ranges from creamy white to pale yellow and yellowish brown. At the type locality, the hemispheres may reach 2 mm across, but the maximum diameter reached in the other occurrences is usually less than 0.5 mm. A wide variety of secondary phosphate minerals accompanies meurigite at each locality, with dufrenite, cyrilovite. beraunite, rockbridgeite and leucophosphite amongst the most common. Vanadates and uranates occur with meurigite at the Gold Quarry mine. Electron microprobe analysis and separate determination of H2O and CO2 on meurigite from the type locality gave a composition for which several empirical formulae could be calculated. The preferred formula, obtained on the basis of 35 oxygen atoms, is (K0.85Na0.03)??0.88(Fe7.013+Al0.16Cu0.02)??7.19 (PO4)5.11(CO3)0.20(OH) 6.7??7-7.25H2O, which simplifies to KFe73+(PO4)5(OH) 7??8H2O. Qualitative analyses only were obtained for meurigite from the other localities, due to the softness and openness of the aggregates. Because of the fibrous nature of meurigite, it was not possible to determine the crystal structure, hence the exact stoichiometry remains uncertain. The lustre of meurigite varies from vitreous to waxy for the Santa Rita mine mineral, to silky for the more open sprays and internal surfaces elsewhere. The streak is very pale yellow to cream and the estimated Mohs hardness is about 3. Cleavage is perfect on {001] and fragments from the

  5. Influence of bending deflection rate on properties of fibrous mortar

    Directory of Open Access Journals (Sweden)

    Metwally Abd Allah Abd el Aty

    2013-04-01

    Full Text Available Selection of the construction materials is affected by many factors including their properties under the applied loads. Loading rate is considered as a very important parameter which influences the behavior of the materials. Fibrous concrete is commonly used in applications in which the loading rate exceeds quasi static conditions by a large margin. This paper investigates the influence of flexural loading rate on the performance of fibrous concrete prisms in flexure. Two hundred and fifty two prisms include fibrous concrete and control specimens were prepared and tested. Fiber type, fiber dosage and flexural loading rate were the main parameters considered in this study. Two types of fibers were investigated namely polypropylene fibers and glass fibers. Three dosages of fiber volume fractions were implemented as 0.5%, 1.0% and 2.0%. A total of 12 different rates of displacement (0.0039 up to 8 mm/s for load application were conducted. A computer controlled universal testing machine provided with data acquisition system capable of performing 1000 loop per second was used. Load–central deflection, flexural strength and toughness were the evaluated properties for the investigated specimens. The results indicated that the flexure strength values exhibited loading rate dependence not only for the control mix but also for the investigated fibrous mortar mixes. Also the performance in flexure varied substantially not only with loading rate but with fiber type and fiber volume fractions as well.

  6. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    Science.gov (United States)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  7. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    Science.gov (United States)

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  8. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Hajek, P.C.; Ritschi, P.; Kramer, J.; Imhof, H.; Karnel, F.

    1988-01-01

    Eighty-two patients (107 fibrous metaphyseal defects [FMDs]) were investigated with standard radiography and MR imaging (N = 15). Twenty-two of these were followed up sequentially up to 10 years (mean, 7.3 years). Histologic studies proved that FMDs originate at the site of insertion of a tendon in the perichondrium of the epiphyseal cartilage. After normal bone growth is regained, all FMDs were found to move diaphysically, following a straight line parallel to the long axis of the FMDs. This line pointed to the insertion of the tendon originally involved, a fact that was proved with MR imaging. Four characteristic stages were found to define a typical radiomorphologic course of an FMD

  9. A Solitary Fibrous Tumor of the Pleura Revealed by Hiccups

    Directory of Open Access Journals (Sweden)

    A. Chafik

    2011-01-01

    Full Text Available Solitary fibrous tumors of the pleura are rare and benign primary localized tumors; they possess a malignant potential and thus should be excised. We report a case of a 43-year-old woman, who had suffered for 5 years from right basithoracic pain associated with progressive dyspnea and persistent hiccups during the last 6 months. We have not found any similar case in the literature. Further testing after excision by thoracotomy revealed a solitary fibrous pleural tumor. A brief discussion of the clinical presentation and incidence of these tumors is included.

  10. The influence of fibrous elastomer structure and porosity on matrix organization.

    Directory of Open Access Journals (Sweden)

    Jamie L Ifkovits

    Full Text Available Fibrous scaffolds are finding wide use in the field of tissue engineering, as they can be designed to mimic many native tissue properties and structures (e.g., cardiac tissue, meniscus. The influence of fiber alignment and scaffold architecture on cellular interactions and matrix organization was the focus of this study. Three scaffolds were fabricated from the photocrosslinkable elastomer poly(glycerol sebacate (PGS, with changes in fiber alignment (non-aligned (NA versus aligned (AL and the introduction of a PEO sacrificial polymer population to the AL scaffold (composite (CO. PEO removal led to an increase in scaffold porosity and maintenance of scaffold anisotropy, as evident through visualization, mechanical testing, and mass loss studies. Hydrated scaffolds possessed moduli that ranged between ∼3-240 kPa, failing within the range of properties (<300 kPa appropriate for soft tissue engineering. CO scaffolds were completely degraded as early as 16 days, whereas NA and AL scaffolds had ∼90% mass loss after 21 days when monitored in vitro. Neonatal cardiomyocytes, used as a representative cell type, that were seeded onto the scaffolds maintained their viability and aligned along the surface of the AL and CO fibers. When implanted subcutaneously in rats, a model that is commonly used to investigate in vivo tissue responses to biomaterials, CO scaffolds were completely integrated at 2 weeks, whereas ∼13% and ∼16% of the NA and AL scaffolds, respectively remained acellular. However, all scaffolds were completely populated with cells at 4 weeks post-implantation. Polarized light microscopy was used to evaluate the collagen elaboration and orientation within the scaffold. An increase in the amount of collagen was observed for CO scaffolds and enhanced alignment of the nascent collagen was observed for AL and CO scaffolds compared to NA scaffolds. Thus, these results indicate that the scaffold architecture and porosity are important

  11. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites

    International Nuclear Information System (INIS)

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-01-01

    Graphical abstract: Fiber with porous like structure of PANI/SnO 2 nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO 2 nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO 2 nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO 2 . -- Abstract: Polyaniline (PANI)/tin oxide (SnO 2 ) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO 2 and the crystalline structure of SnO 2 was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO 2 nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO 2 . The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO 2 composite electrode was evaluated in a H 2 SO 4 solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO 2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  12. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  13. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  14. Epithelioid fibrous histiocytoma: molecular characterization of ALK fusion partners in 23 cases.

    Science.gov (United States)

    Dickson, Brendan C; Swanson, David; Charames, George S; Fletcher, Christopher Dm; Hornick, Jason L

    2018-05-01

    Epithelioid fibrous histiocytoma is a rare and distinctive cutaneous neoplasm. Most cases harbor ALK rearrangement and show ALK overexpression, which distinguish this neoplasm from conventional cutaneous fibrous histiocytoma and variants. SQSTM1 and VCL have previously been shown to partner with ALK in one case each of epithelioid fibrous histiocytoma. The purpose of this study was to examine a large cohort of epithelioid fibrous histiocytomas by next-generation sequencing to characterize the nature and prevalence of ALK fusion partners. A retrospective archival review was performed to identify cases of epithelioid fibrous histiocytoma (2012-2016). Immunohistochemistry was performed to confirm ALK expression. Targeted next-generation sequencing was applied on RNA extracted from formalin-fixed paraffin-embedded tissue to identify the fusion partners. Twenty-three cases fulfilled inclusion criteria. The mean patient age was 39 years (range, 8-74), there was no sex predilection, and >75% of cases involved the lower extremities. The most common gene fusions were SQSTM1-ALK (N=12; 52%) and VCL-ALK (N=7; 30%); the other four cases harbored novel fusion partners (DCTN1, ETV6, PPFIBP1, and SPECC1L). The pattern of ALK immunoreactivity was usually granular cytoplasmic (N=12; 52%) or granular cytoplasmic and nuclear (N=10; 43%); the case containing an ETV6 fusion partner showed nuclear staining alone. There was no apparent relationship between tumor morphology and the ALK fusion partner. In summary, SQSTM1 and VCL are the most common ALK fusion partners in epithelioid fibrous histiocytoma; DCTN1, ETV6, PPFIBP1, and SPECC1L represent rare fusion partners. The proteins encoded by these genes play diverse roles in scaffolding, cell adhesion, signaling, and transcription (among others) without clear commonalities. These findings expand the oncogenic promiscuity of many of these ALK fusion genes, which drive neoplasia in tumors of diverse lineages with widely varied clinical

  15. Fibrous composite material for textile heart valve design: in vitro assessment.

    Science.gov (United States)

    Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic

    2018-04-17

    With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.

  16. Improved lifetime of new fibrous carbon/ceramic composites

    Science.gov (United States)

    Gumula, Teresa

    2018-03-01

    New carbon/ceramic composites have been synthesized from low-cost phenol-formaldehyde resin and polysiloxane preceram. A reference carbon composite reinforced with carbon fibre (CC composite) is obtained in first place from a carbon fibre roving impregnated with a solution of phenol-formaldehyde resin in isopropyl alcohol. To obtain fibrous carbon/ceramic composites the CC perform is impregnated with polymethylphenylsiloxane polymer and then a thermal treatment in an inert atmosphere is applied. Depending on the temperature of this process, the resulting ceramics can be silicon carbide (SiC) or silicon oxycarbide (SiCO). Three representative samples, named CC/SiCO( a) (obtained at 1000 °C), CC/SiCO( b) (1500 °C) and CC/SiC (1700 °C), have been tested for fatigue behaviour and oxidation resistance. The value of the Young's modulus remains constant in fatigue tests done in flexion mode for the three new composites during a high number of cycles until sudden degradation begins. This is an unusual and advantageous characteristic for this type of materials and results in the absence of delamination during the measurements. In contrast, the CC reference composite shows a progressive degradation of the Young's modulus accompanied by delamination. SEM micrographs revealed that the formation of filaments of submicrometer diameter during the heat treatment can be responsible for the improved behaviour of these composites. The CC/SiC composite shows the best oxidation resistance among the three types of composites, with a 44% mass loss after 100 h of oxidation.

  17. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) of Cadaveric Shoulders: Comparison of Contrast Dynamics in Hyaline and Fibrous Cartilage after Intraarticular Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, E. (Dept. of Radiology, Charite Universitaetsmedizin Berlin (Germany)); Hodler, J.; Pfirrmann, C.W.A. (Dept. of Radiology, Orthopedic Univ. Hospital Balgrist, Zuerich (Switzerland))

    2009-01-15

    Background: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. Purpose: To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Material and Methods: Transverse T1 maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T1 maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. Results: T1 of unenhanced hyaline cartilage of the glenoid was 568+-34 ms. T1 of unenhanced fibrous cartilage of the labrum was 552+-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T1(Gd) values in fibrous cartilage. T1 and ?R1 values of hyaline and fibrous cartilage after 2.5 hours were 351+-16 ms and 1.1+-0.09/s, and 332+-31 ms and 1.2+-0.1/s, respectively. Conclusion: A significant decrease in T1(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium

  18. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    Science.gov (United States)

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  19. Solitary Fibrous Tumor of Retromolar Pad; a Rare Challenging Case

    Science.gov (United States)

    Lotfi, Ali; Mokhtari, Sepideh; Moshref, Mohammad; Shahla, Maryam; Atarbashi Moghadam, Saede

    2017-01-01

    Solitary fibrous tumor has a wide spectrum of histopathologic features and many tumors show similar microscopic features. This similarity poses diagnostic challenges to the pathologists and immunohistochemical analysis is required in many cases. Moreover, it is a rare entity in orofacial region which consequently would make its diagnosis more challenging in oral cavity. The knowledge of various microscopic patterns of this tumor contributes to a proper diagnosis and prevents unnecessary treatment. This study reports a case of solitary fibrous tumor in the retromolar pad area and discusses its various histological features and differential diagnoses. PMID:28620640

  20. Microwave-assisted extraction of metal elements from glass fibrous filters for aerosol sampling

    International Nuclear Information System (INIS)

    Li Dong-Mei; Zhang Li-Xing; Wang Xu-Hui; Liu Long-Bo

    2003-01-01

    Atmospheric aerosols are generally collected on filters according to the International Monitoring System (IMS) designed in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). More information could be revealed when the filter sample is pretreated rather than measured directly by γ-ray spectrometer. Microwave-assisted extraction (MAE) is a suitable method that gives higher recoveries of elements from glass fibrous filters under different conditions. The results indicate that the MAE is a highly efficient and robust method for the treatment of glass fibrous filter samples. The recoveries of potential fission products from glass fibrous filter samples by microwave-assisted extraction meet the efficiency of the extraction by both aqua regia and 2% HCl. (author)

  1. Transient desorption characteristics of fibrous organic adsorbent; Sen'ikei yuki kyuchakuzai no katoteki dacchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Ozaki, K.; Horibe, A. [Okayama University, Okayama (Japan). Faculty of Engineering; Shimoyama, R. [Okayama University, Okayama (Japan); Kida, T. [Japan Exlan Co. Ltd., Osaka (Japan)

    1999-11-25

    An experimental investigation was performed to determine time transient desorption characteristics of a fibrous type organic adsorbent, which was composed of the bridged complex of sodium polyacrylate as a new kind of adsorbent. The test fibrous adsorbent was packed in a cylindrical vessel, and dry air was passed through it. The experiments were conducted under various conditions of air velocity, temperature, relative humidity and vessel length. As a result, time pressure loss for the packed bed of the test fibrous adsorbent showed a similar tendency to that for the packed bed of spherical particles. The mass transfer data was correlated by the modified Sherwood number, the Reynolds number, the Schmidt number, the ratio of desorbed water vapor mass to fibrous absorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. Fourier number for the nondimensional temperature and the ratio of desorbed water vapor mass to fibrous adsorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. (author)

  2. MRI of intracranial meningeal malignant fibrous histiocytoma

    International Nuclear Information System (INIS)

    Ogino, A.; Ochi, M.; Hayashi, K.; Hirata, K.; Hayashi, T.; Yasunaga, A.; Shibata, S.

    1996-01-01

    We describe the CT and MRI findings in a patient with primary intracranial meningeal malignant fibrous histiocytoma (MFH). CT delineated the anatomical relations and MRI aided in tissue characterisation. To our knowledge, this is the first report describing the MRI findings in primary intracranial meningeal MFH. (orig.). With 1 fig

  3. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  4. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  5. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    Science.gov (United States)

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. [Morphological signs of inflammatory activity in different clinical forms of drug-resistant pulmonary tuberculosis].

    Science.gov (United States)

    Elipashev, A A; Nikolsky, V O; Shprykov, A S

    to determine whether the activity of tuberculous inflammation is associated with different clinical forms of drug-resistant pulmonary tuberculosis. The material taken from 310 patients operated on in 2010-2015 were retrospectively examined. The patients underwent economical lung resections of limited extent (typical and atypical ones of up to 3 segments) for circumscribed forms of tuberculosis with bacterial excretion. A study group consisted of 161 (51.9%) patients with drug-resistant variants of pulmonary tuberculosis. A control group included 149 (48.1%) patients with preserved susceptibility of Mycobacterium tuberculosis to anti-TB drugs. The activity of specific changes in tuberculosis was morphologically evaluated in accordance with the classification proposed by B.M. Ariel in 1998. The highest activity of fourth-to-fifth degree specific inflammation, including that outside the primary involvement focus, was obtained in the drug-resistant pulmonary tuberculosis group due to the predominance of patients with cavernous and fibrous-cavernous tuberculosis versus those in whom the susceptibility to chemotherapeutic agents was preserved. A macroscopic study showed that the primary lesion focus had a median size in one-half of the all the examinees; but large tuberculomas, caverns, and fibrous caverns over 4 cm in diameter were multiple and detected in the drug-resistant pulmonary tuberculosis group. Multidrug resistance was observed in more than 60% of the patients with fibrous-cavernous pulmonary tuberculosis, extensive drug resistance was seen in those with cavernous tuberculosis, which is an aggravating factor. The data obtained from the morphological study of the intraoperative material can specify the clinical form of tuberculosis and evaluate the efficiency of preoperative specific therapy. The highest activity of specific inflammation was observed in patients with multiple drug-resistant pulmonary tuberculosis, the prevalence of third-to-fourth degree

  7. Atomic force microscopy and Raman scattering spectroscopy studies on heat-induced fibrous aggregates of β-lactoglobulin

    OpenAIRE

    Ikeda, Shinya

    2003-01-01

    Nanometer-thick fibrous aggregates of β-lactoglobulin alone and its mixture with other globular proteins were formed by heating aqueous solutions at pH 2 with maintaining an effective level of electrostatic repulsion among denatured protein molecules. In atomic force microscopy (AFM) images, these fibrous aggregates appeared to be fairly uniform in width and height and composed of strings of globular elements. Fibrous aggregates formed in β-lactoglobulin individual systems were only slightly ...

  8. Processamento e caracterização de filtros cerâmicos fibrosos Processing and characterization of fibrous ceramic filters

    Directory of Open Access Journals (Sweden)

    D. Muller

    2009-09-01

    Full Text Available Neste trabalho, filtros com estrutura fibrosa foram produzidos utilizando-se matéria-prima de baixo custo, disponível comercialmente e caracterizados para aplicações em filtração de aerossóis. Mantas refratárias sílico-aluminosas comerciais foram prensadas uniaxialmente, utilizando-se 10% em massa de acetato de polivinila como ligante. Nesta etapa, as amostras foram submetidas à compactação com diferentes pressões para obtenção de diferentes porosidades. Após a prensagem, as amostras foram submetidas a um tratamento térmico a 500 ºC durante 1 h para a degradação do polímero. Subseqüentemente, as amostras foram sinterizadas a 1200 ºC durante 1 h, resultando em uma estrutura fibrilar porosa, composta por mulita (3SiO2.2Al2O3, com porosidade na faixa de 50 a 75%. A morfologia dos filtros fibrosos foi caracterizada através de microscopia eletrônica de varredura, que revelou uma estrutura tridimensional porosa de fibras interconectadas. A resistência mecânica foi avaliada através de ensaios de compressão e de flexão em quatro pontos. Ensaios de permeabilidade e eficiência de coleta de partículas com diferentes diâmetros foram efetuados e os resultados comparados a filtros comerciais. Os valores obtidos para a permeabilidade e eficiência de coleta estão na ordem de grandeza esperada para filtros de gases, apresentando assim grande potencial para aplicações industriais.Filters with fibrous structure were produced from low cost, commercially available raw materials and characterized for aerosol filtration. Refractory aluminosilicate fibers were uniaxially pressed with polyvinyl acetate as binder. Different pressures were applied, which yielded samples with different porosities. After pressing, the samples were heat treated at 500 ºC during 1 h in air for debinding with subsequent sintering at 1200 ºC for 1 h, which resulted in porous fibrous structures composed mainly by mullite (3SiO2.2Al2O3 with porosity in the

  9. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  10. Fibrous dysplasia as a rare cause of nasolacrimal duct obstruction

    Directory of Open Access Journals (Sweden)

    Bahtiyar Polat

    2015-09-01

    Full Text Available Fibrous dysplasia of the paranasal sinuses is mostly asymptomatic, but sometimes may cause signs and symptoms de- pending on its location. We report two cases of maxillary fibrous dysplasia obstructing the lacrimal drainage system as a reason of chronic dacryocystitis, and reviewed the related literature. The first case underwent an endonasal endoscopic approach combined with external dacryocystorhinostomy. He had a patent lacrimal system at one-year follow-up. The le- sion was completely removed via an endonasal endoscopic approach in the second case, wherein the patient was asymp- tomatic of the six-month follow-up period. [Arch Clin Exp Surg 2015; 4(3.000: 172-175

  11. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  12. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  13. Fibrous Platinum-Group Minerals in “Floating Chromitites” from the Loma Larga Ni-Laterite Deposit, Dominican Republic

    Directory of Open Access Journals (Sweden)

    Thomas Aiglsperger

    2016-11-01

    Full Text Available This contribution reports on the observation of enigmatic fibrous platinum-group minerals (PGM found within a chromitite body included in limonite (“floating chromitite” from Ni-laterites in the Dominican Republic. Fibrous PGM have a Ru-Os-Ir-Fe dominated composition and are characterized by fibrous textures explained by grain-forming fibers which are significantly longer (1–5 µm than they are wide (~100 nm. Back-scattered electron (BSE images suggest that these nanofibers are platinum-group elements (PGE-bearing and form <5 µm thick layers of bundles which are oriented orthogonal to grains’ surfaces. Trace amounts of Si are most likely associated with PGE-bearing nanofibers. One characteristic fibrous PGM was studied in detail: XRD analyses point to ruthenian hexaferrum. However, the unpolished fibrous PGM shows numerous complex textures on its surface which are suggestive for neoformation processes: (i features suggesting growth of PGE-bearing nanofibers; (ii occurrence of PGM nanoparticles within film material (biofilm? associated with PGE-bearing nanofibers; (iii a Si-rich and crater-like texture hosting PGM nanoparticles and an Ir-rich accumulation of irregular shape; (iv complex PGM nanoparticles with ragged morphologies, resembling sponge spicules and (v oval forms (<1 µm in diameter with included PGM nanoparticles, similar to those observed in experiments with PGE-reducing bacteria. Fibrous PGM found in the limonite may have formed due to supergene (bio-weathering of fibrous Mg-silicates which were incorporated into desulphurized laurite during stages of serpentinization.

  14. Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, Yuzhong; Borneman, Zandrie; Koops, G.H.; Wessling, Matthias

    2006-01-01

    The cation-exchange resin-mixed polyethersulfone (PES)-based fibrous adsorbents were developed to study their adsorption behavior with bovine serum albumin (BSA). A fibrous adsorbent with an open pore surface had much better adsorption behavior with a higher adsorbing rate. The adsorption capacity

  15. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation.

    Science.gov (United States)

    Liu, Yaowen; Lu, Jinfu; Li, Huinan; Wei, Jiaojun; Li, Xiaohong

    2015-01-01

    Although engineered blood vessels have seen important advances during recent years, proper mechanical strength and vasoactivity remain unsolved problems. In the current study, micropatterned fibrous mats were created to load smooth muscle cells (SMC), and a co-culture with endothelial cells (EC) was established through overlaying on an EC-loaded flat fibrous mat to mimic the layered structure of a blood vessel. A preferential distribution of SMC was determined in the patterned regions throughout the fibrous scaffolds, and aligned fibers in the patterned regions provided topological cues to guide the orientation of SMC with intense actin filaments and extracellular matrix (ECM) production in a circumferential direction. Plasmid DNA encoding basic fibroblast growth factors and vascular endothelial growth factor were integrated into electrospun fibers as biological cues to promote SMC infiltration into fibrous mats, and the viability and ECM production of both EC and SMC. The layered fibrous mats with loaded EC and SMC were wrapped into a cylinder, and engineered vessels were obtained with compact EC and SMC layers after co-culture for 3 months. Randomly oriented ECM productions of EC formed a continuous endothelium covering the entire lumenal surface, and a high alignment of ECM was shown in the circumferential direction of SMC layers. The tensile strength, strain at failure and suture retention strength were higher than those of the human femoral artery, and the burst pressure and radial compliance were in the same range as the human saphenous vein, indicating potential as blood vessel substitutes for transplantation in vivo. Thus, the establishment of topographical cues and biochemical signals in fibrous scaffolds demonstrates advantages in modulating cellular behavior and organization found in complex multicellular tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  17. IMPREGNATED FIBROUS CHEMOSORBENTS OF ACID GASES FOR RESPIRATORY PURPOSE

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2017-11-01

    Full Text Available The present review is dedicated to the analysis of scientific works carried out in Physico- Chemical Institute of Environment and Human Protection (Odessa, Ukrainie and directed to the development of import-substituting sorption-filtering materials for respiratory purposes – impregnated fibrous chemisorbents (IFCS of acid gases, which are manufactured using standard equipment, as well as affordable and inexpensive chemical reagents and carriers of domestic origin. The process of chemisorption of sulphur dioxide by hexamethylenetetramine (HMTA modified nonwoven fibrous material resulted acid-catalyzed hydrolysis of HMTA to form aminomethanesulfonic acid and toxic formaldehyde. The IFCS with HMTA carried was recommended to use for air purification only from SiF4, HF, HCl and Cl2. Chemisorption of sulphur dioxide by fibrous materials impregnated by ethanolamines (monoethanolamine, diethanomamine, triethanomamine and N-methylethanolamine and polyethylenepolyamine (PEPA occurs only in the presence of “free” water with formation of “onium” sulphites, hydrosulphites and pyrosulphites. IFCS-PEPA (dynamic activity is 1,38 mmol(SO2/g are not inferior to the protective characteristics of IFCS with Na2CO3, HMTA, ethanolamines and the best foreign ionexchange fibrous chemisorbents brand VION and FIBAN (dynamic activity is 0,263 ÷0,422 mmol(SO2/g under conditions of respirators actual use (jAGM = 60 ÷ 90 %, TAGM = 297 K, VAGM = 2,0 sm/s, СSO2 = 20 ÷ 1000 mg/g3, QPEPA = 3,45 mmol/g. It is recommended to use the condensation products of primary alkylamines with formaldehyde (with large molar masses than the bases, complex compounds of amines with 3d-metals (Ni(II and Cu(II, salts of amine with aminoacids (glycine and polybasic acids (orthophosphoric acid (pKa1 = 2,12 and citric acid (pKa1 = 3,13 for manufacturing of IFCS of acid gases The IFCS with indication of dynamic absorptive capacity “wearing” (IVKS-I was developed.

  18. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing.

    Science.gov (United States)

    Eichholz, Kian F; Hoey, David A

    2018-05-29

    The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW) to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Mechanical characterisation was conducted via tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing (nuclear YAP). Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen with decreasing alignment of architecture correlated with enhanced osteogenesis. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression. This is the first study which has investigated the effect of controlled fibrous architectures fabricated via melt electrospinning writing on cell behaviour and differentiation. After optimising the process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell morphology. Nuclear YAP expression was further investigated as a marker of cell shape, cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies

  19. Fibrous tumours in children: imaging features of a heterogeneous group of disorders

    Energy Technology Data Exchange (ETDEWEB)

    Eich, G.F.; Hoeffel, J.C.; Tschaeppeler, H.; Gassner, I.; Willi, U.V. [Division of Diagnostic Imaging and Radiology, The University Children`s Hospital, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland)

    1998-07-01

    Background. Fibrous tumours are predominantly soft tissue lesions which are relatively frequent in childhood but are little known. Imaging is often used in the evaluation of these tumours but their characteristics, particularly on US or MRI, have not been studied systematically. Objectives. To provide an overview of the clinical and imaging features of the different disorders, and to correlate them with the currently used classification schemes. Material and methods. Twenty-five patients with fibrous tumours were evaluated retrospectively. Clinical histories were studied for the histopathological diagnosis, age, signs and symptoms at presentation, mode of therapy and follow-up where available. Imaging findings were analysed for the following variables: number, location, size, margin and architecture of soft tissue and/or visceral lesions and the presence and pattern of osseous involvement. Comparison with the available literature was performed. Results. The following tumour types were encountered: desmoid fibromatosis (n = 9), myofibromatosis (n = 7), fibromatosis colli (n = 2), congenital-infantile fibrosarcoma (n = 2), adult-type fibrosarcoma (n = 2), fibrous hamartoma of infancy (n = 1), angiofibroma (n = 1) and hyaline fibromatosis (n = 1). Conclusions. While some tumours were non-specific in their clinical and radiological manifestation, others such as myofibromatosis, fibromatosis colli, fibrous hamartoma of infancy and angiofibroma exhibited a characteristic pattern which allowed a diagnosis to be made even without histology. (orig.) With 10 figs., 1 tab., 20 refs.

  20. Differential radiodiagnosis of cranial lesions in hyperparathyroid and deforming asteodystrophy, fibrous osteoplasia, multiple myeloma and tumor metastases to the cranial bones

    International Nuclear Information System (INIS)

    Spuzyak, M.I.

    1986-01-01

    The results of an analysis of craniographic findings were provided for 58 patients with primary hyperparathyrosis, 12 with fibrous osteodysplasia, 6 with deforming osteodystrophy, 14 with multiple myeloma and 16 with tumor metastases to the cranial bones. A study was made of some features of roentgenological semiotics (changes in the structure thickness and shapes of the cranial bones) of cranial bone lesions in the above diseases. Differential radiodiagnosis of cranial lesions in hypeparathyroid and deforming osteodystrophy, fibrous osteodysplasia, multiple myeloma and metastatic lesions of the cranial bones should be based not on single signs but on the symptom-complex (x-ray syndrome). For each of the analysed diseases x-ray syndromes were described

  1. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture.

    Science.gov (United States)

    Bobryshev, Y V; Killingsworth, M C; Lord, R S A; Grabs, A J

    2008-10-01

    Plaque rupture is the most common type of plaque complication and leads to acute ischaemic events such as myocardial infarction and stroke. Calcification has been suggested as a possible indicator of plaque instability. Although the role of matrix vesicles in the initial stages of arterial calcification has been recognized, no studies have yet been carried out to examine a possible role of matrix vesicles in plaque destabilization. Tissue specimens selected for the present study represented carotid specimens obtained from patients undergoing carotid endarterectomy. Serial frozen cross-sections of the tissue specimens were cut and mounted on glass slides. The thickness of the fibrous cap (FCT) in each advanced atherosclerotic lesion, containing a well developed lipid/necrotic core, was measured at its narrowest sites in sets of serial sections. According to established criteria, atherosclerotic plaque specimens were histologically subdivided into two groups: vulnerable plaques with thin fibrous caps (FCT <100 microm) and presumably stable plaques, in which fibrous caps were thicker than 100 microm. Twenty-four carotid plaques (12 vulnerable and 12 presumably stable plaques) were collected for the present analysis of matrix vesicles in fibrous caps. In order to provide a sufficient number of representative areas from each plaque, laser capture microdissection (LCM) was carried out. The quantification of matrix vesicles in ultrathin sections of vulnerable and stable plaques revealed that the numbers of matrix vesicles were significantly higher in fibrous caps of vulnerable plaques than those in stable plaques (8.908+0.544 versus 6.208+0.467 matrix vesicles per 1.92 microm2 standard area; P= 0.0002). Electron microscopy combined with X-ray elemental microanalysis showed that some matrix vesicles in atherosclerotic plaques were undergoing calcification and were characterized by a high content of calcium and phosphorus. The percentage of calcified matrix vesicles

  2. The explosive cathode on the base of carbon-fibrous plastic material

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1988-01-01

    Production process of exploseve cathodes on the base of carbon-fibrous plastic material of any geometric form and size is discussed. Experimental study of current take-off from cathodes with diameter 2 cm of 10 kV and 150-250 kV voltage are given. It is shown that ignition voltage of cathode plasma is 2 kV with 5 mm gap electrode of diode and 5 ·10 -5 Tor pressure of residual gas. It is shown that carbon-fibrous cathode, made by this technology, provides more stable current take-off electron beam (withoud oscillations) in comparison with other cathodes

  3. Malignant fibrous histiocytoma of soft tissue with metaplastic bone and cartilage formation

    International Nuclear Information System (INIS)

    Dorfman, H.D.; Bhagavan, B.S.

    1982-01-01

    The presence of bone and cartilage in some cases of malignant fibrous histiocytoma of the soft tissue as a microscopic finding has been reported previously but little note has been taken of the radiologic manifestations of these tumor elements. A series of five such cases with sufficient metaplastic osseous and cartilaginous elements to produce roentgenographic evidence of their presence is reported here. An additional two cases showed only histologic evidence of bone or cartilage formation. The reactive ossification tends to be peripheral in location, involving the pseudocapsule of the sarcoma or its fibrous septa. In three there was a zoning pattern with peripheral or polar orientation, strongly suggesting the diagnosis of myositis ossificans. The latter was the diagnosis considered radiologically in four of the five cases. Malignant fibrous histiocytoma with reactive bone and cartilage must be considered in the differential diagnosis of soft tissue masses with calcific densities, particularly when these occur in tumors of the extremities. (orig.)

  4. Developing a technique to enhance durability of fibrous ion-exchange resin substrate for space greenhouses

    Science.gov (United States)

    Krivobok, A. S.; Berkovich, Yu. A.; Shcherbakova, V. A.; Chuvilskaya, N. A.

    2018-02-01

    One way to cut consumables for space plant growth facilities (PGF) with artificial soil in the form of fibrous ion-exchange resin substrate (FIERS) is on-board regeneration of the used medium. After crop harvest the procedure includes removal of the roots from the fibrous media with preservation of the exchanger properties and capillary structure. One type of FIERS, namely BIONA-V3ۛ, has been used in Russian prototypes of space conveyors. We describe a two-stage treatment of BIONA-V3ۛ including primary microwave heating of the used FIERS until (90 ± 5) °C in alkali-peroxide solution during 3.5 hrs. The second stage of the treatment is decomposition of root vestiges inside pores of BIONA-V3ۛ by using thermophilic and mesophilic anaerobic bacteria Clostridium thermocellum, Clostridium cellulolyticum and Cellulosilyticum lentocellum during 7-10 days at 55 °C. The two-stage procedure allows extraction of 90% dead roots from the FIERS' pores and the preservation of root zone hydro-physical properties. A posterior enrichment of the FIERS by minerals makes BIONA- V3ۛ reusable.

  5. The nature of the globular- to fibrous-actin transition.

    Science.gov (United States)

    Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro

    2009-01-22

    Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.

  6. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Johnson, Matthew S.; Yazdi, Sadegh

    2014-01-01

    The objective of the present study is to investigate the relationship between ultrafine particle concentrations and removal efficiencies for an electrostatic fibrous filter in a laboratory environment. Electrostatic fibrous filters capture particles efficiently, with a low pressure drop. Therefor...

  7. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    Science.gov (United States)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  8. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  9. Physical and chemical characteristics of fibrous peat

    Science.gov (United States)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  10. Extracranial metastasizing solitary fibrous tumors (SFT) of meninges: histopathological features of a case with long-term follow-up.

    Science.gov (United States)

    Gessi, Marco; Gielen, Gerrit H; Roeder-Geyer, Eva-Dorette; Sommer, Clemens; Vieth, Michael; Braun, Veit; Kuchelmeister, Klaus; Pietsch, Torsten

    2013-02-01

    Extrapleural solitary fibrous tumors are uncommon mesenchymal neoplasms frequently observed in middle-aged adults and are classified, according to the WHO classification of soft tissue tumors, as part of the hemangiopericytoma tumor group. However, these two entities remain separated in the WHO classification of tumors of the central nervous system. In fact, meningeal solitary fibrous tumors are believed to be benign lesion and only in a minority of cases local relapses have been described, although detailed survival clinical studies on solitary fibrous tumors of meninges are rare. In contrast to hemangiopericytoma, which frequently shows distant extracranial metastases, such an event is exceptional in patients with meningeal solitary fibrous tumors and has been clinically reported in a handful of cases only and their histopathological features have not been investigated in detail. In this report, we describe the detailed clinico-pathological features of a meningeal solitary fibrous tumor presenting during a 17-year follow-up period, multiple intra-, extracranial relapses and lung metastases. © 2012 Japanese Society of Neuropathology.

  11. Cystic solitary fibrous tumor arising from the left occipital meninges: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Bae Geun; Hwang, Yoon Joon; Cha, Soon Joo; Hur, Gham; Kim, Yong Hoon; Kim, Su Young; Seo, Jung Wook; Lee, Ji Young; Kim, Han Seung [Ilsan Paik Hospital, Inje University, School of Medicine, Goyang (Korea, Republic of)

    2007-02-15

    Solitary fibrous tumor (SFT) is a benign mesenchymal neoplasm of a spindle-cell origin, and it usually involves the pleura. It's occurrence in various organs of the body has recently been described. Meningeal SFT is very rare. Radiologically, it is a strongly enhancing solid mass and is undistinguishable from fibrous meningioma and hemangiopericytoma. Yet we report here on a case of SFT with massive cystic degeneration that arose from the meninges of the left occipital region.

  12. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  13. structural behavior of fibrous reinforced concrete hollowcore one-way slabs strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    wassif khudair majeed

    2016-02-01

    Full Text Available Abstract A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self weight of the construction . The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs  reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRP This study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers ( , and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to ( 96.2% , as has been observed decrease in deflection value of models after strengthening by (CFRP. It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP .

  14. Aerosol filtration with metallic fibrous filters

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.

    1983-01-01

    The filtration efficiency of stainless steel fibrous filters (BEKIPOR porous mats and sintered webs) is determined using submicronic monodisperse polystyrene aerosols. Lasers spectrometers are used for the aerosol measurements. The parameters varied are the fiber diameter, the number of layers, the aerosol diameter and the superficial velocity. Two selected types of filters are tested with polydisperse methylene blue aerosols to determine the effect of bed loading on the filter performance and to test washing techniques for the regeneration of the filter

  15. Unilateral Bimaxillary Idiopathic Fibrous Gingival Hyperplasia with Alveolar Bone Loss- Report of a Rare Case

    Directory of Open Access Journals (Sweden)

    R S Sathawane

    2007-01-01

    Full Text Available Gingival enlargements are of many types and vary according to the etiologic factors and pathologic processes that produce them. Though there are many classifications of gingival enlargement, the most practical one is as follows: 1 Inflammatory gingival enlargement 2 Fibrous gingival hyperplasia 3 Combination of inflammatory and fibrous hyperplasia. Gingival hyperplasia is a heterogeneous group of disorder, which appears clinically as diffuse, firm, and massive enlargement of the gingiva covering most of the crown of the teeth. Idiopathic gingival enlargement is a rare condition of undetermined etiology, although some cases have definite hereditary basis. A case of unilateral idiopathic fibrous gingival hyperplasia on left side of both the jaws with severe bone resorption is presented.

  16. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-04-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  17. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    International Nuclear Information System (INIS)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.

    2017-01-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  18. Growth Performance and Behaviour in Grouped Pigs Fed Fibrous Diet

    Directory of Open Access Journals (Sweden)

    A. G. Bakare

    2014-08-01

    Full Text Available The objective of the study was to investigate the effect of feeding fibrous diets on growth performance and occurrence of aggressive behaviours in growing pigs. Sixty healthy castrated pigs (initial body weight: 46.7±4.35 kg were used. A basal diet was diluted with maize cobs to two levels (0 and 160 g/kg dry matter. Behavioural activities were observed using video cameras for three weeks, 8 h/d starting at 0800 h. Pigs subjected to control diet gained more weight compared to pigs receiving fibrous diet in week 1 (0.47 vs 0.15 kg, respectively and 2 (1.37 vs 1.04, respectively (p<0.05. Average daily gain was not affected by treatment diet in the third week. Pigs on high fibrous spent more time eating, lying down, standing, walking and fighting (p<0.05 compared to pigs on control diet. Time spent eating increased as the weeks progressed whilst time spent lying down decreased. Time of day had an effect on time spent on different behavioural activities exhibited by all pigs on different treatment diet (p<0.05. Inactivity was greatest in 5th (1200 to 1300 h hour of the day for all the pigs on different dietary treatments. Skin lesions appeared the most on neck and shoulder region followed by chest, stomach and hind leg region, and finally head region (p<0.05. Pigs on high fibre diet had more skin lesions in all body regions compared to pigs on control diet (p<0.05. It can be concluded that the high fibrous diet with maize cobs did not affect growth performance and also did not reduce aggressive behaviours. Aggressive behaviours emanated out of frustration when queuing on the feeder. The findings of this study suggest that maize cobs can be included at a level of 160 g/kg in diets of pigs. However, to reduce the level of aggression more feeding space should be provided.

  19. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin; Sarawade, Pradip; Albert, Matthias; D'Elia, Valerio; Hedhili, Mohamed Nejib; Kö hler, Klaus; Basset, Jean-Marie

    2015-01-01

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  20. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): An efficient and selective catalyst for the transfer hydrogenation of alkenes

    KAUST Repository

    Qureshi, Ziyauddin

    2015-01-09

    An efficient palladium catalyst supported on fibrous silica nanospheres (KCC-1) has been developed for the hydrogenation of alkenes and α,β-unsaturated carbonyl compounds, providing excellent yields of the corresponding products with remarkable chemoselectivity. Comparison (high-resolution TEM, chemisorption) with analogous mesoporous (MCM-41, SBA-15) silica-supported Pd nanocatalysts prepared under identical conditions, demonstrates the advantage of employing the fibrous KCC-1 morphology versus traditional supports because it ensures superior accessibility of the catalytically active cores along with excellent Pd dispersion at high metal loading. This morphology ultimately leads to higher catalytic activity for the KCC-1-supported nanoparticles. The protocol developed for hydrogenation is advantageous and environmentally benign owing to the use of HCOOH as a source of hydrogen, water as a solvent, and because of efficient catalyst recyclability and durability. The recycled catalyst has been analyzed by XPS spectroscopy and TEM showing only minor changes in the oxidation state of Pd and in the morphology after the reaction, thus confirming the robustness of the catalyst.

  1. Resistance to fracture of carbon weldable structural steel with ferrite-pearlite and widmanstaetten structure

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Guzovskaya, M.A.

    1977-01-01

    Consideration is given to mechanical properties of St3 steel with varying ferritic-peartilic and widmanstaetten structures typical of a weld seam and adjacent zones. It has been found that mechanical properties determined at static tension are sensitive to structure variation in the limits under study. A considerable difference has been detected during impact tests CT 50 , asub(p)). The highest resistance to breakage is observed for the steel with a fine-grain ferritic-pearlitic structure (T 50 =-10 deg C, asub(p)=4.3 kgxm/cm 2 ). The enlargement of such a structure enhances transition temperature (T 50 =+20 deg C) and reduces resistance to crack development (asub(p)2.4 kgxm/cm 2 ). The appearance of widmanstaetten zones in the fine-grain structure leads also to a higher T 50 , up to +10 deg C, and at a completely widmanstaetten structure T 50 =+25 deg C. An especially unfavorable effect on the resistance of steel to breakage is produced by structure nonuniformity, i.e. accumulation of loop-like pearlitic and ferritic zones

  2. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  3. Optical and electrochemical studies of polyaniline/SnO{sub 2} fibrous nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Manivel, P. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Ramakrishnan, S.; Kothurkar, Nikhil K. [Department of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, Tamil Nadu (India); Balamurugan, A.; Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Viswanathan, C., E-mail: viswanathan@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)

    2013-02-15

    Graphical abstract: Fiber with porous like structure of PANI/SnO{sub 2} nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO{sub 2} nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO{sub 2} nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO{sub 2}. -- Abstract: Polyaniline (PANI)/tin oxide (SnO{sub 2}) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO{sub 2} and the crystalline structure of SnO{sub 2} was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO{sub 2} nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO{sub 2}. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO{sub 2} composite electrode was evaluated in a H{sub 2}SO{sub 4} solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO{sub 2} composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  4. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.

    Science.gov (United States)

    Bagniewska-Zadworna, Agnieszka; Byczyk, Julia; Eissenstat, David M; Oleksyn, Jacek; Zadworny, Marcin

    2012-09-01

    Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.

  5. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  6. Electron source with a carbon-fibrous cathode for radiation-technology accelerator

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The paper analyses the circuit of a full operating voltage electron source which is a direct-action electron accelerator. The electron source consists of a power supply, high-voltage multiplier-rectifier, vacuum planar diode, vacuum system and control system. The vacuum electron diode contains an autoemission carbon-fibrous cathode and beryllium foil strip anode. The results of measurements of emission characteristics of alumosilicate and carbon-fibrous cathodes are presented. The investigations into test electron source show that it can be used as a basis for creating an electron accelerator which will be capable of generating 1 MW electron beams of 1-2 MeV energy and 1 A current. 3 refs., 1 fig., 1 tab

  7. Tubing-Electrospinning: A One-Step Process for Fabricating Fibrous Matrices with Spatial, Chemical, and Mechanical Gradients.

    Science.gov (United States)

    Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung

    2016-08-31

    Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.

  8. Angiomatoid fibrous histiocytoma: novel MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Salutario J.; Vinson, Emily N. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Moreno, Courtney Coursey [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Dodd, Leslie G. [University of North Carolina School of Medicine, Department of Pathology and Laboratory Medicine, Chapel Hill, NC (United States); Brigman, Brian E. [Duke University Medical Center, Department of Orthopedic Surgery, Durham, NC (United States)

    2016-05-15

    To describe novel MR imaging features, and clinical characteristics of soft tissue angiomatoid fibrous histiocytoma (AFH) at presentation, local recurrence, and metastases. We described the MRI findings of six cases of histologically proven AFH. Pathologic findings, clinical presentation, and outcome were reviewed. Lesions were primarily cystic. At initial presentation, tumors were surrounded by low signal intensity fibrous pseudocapsule. High signal intensity consistent with the lymphoplasmacytic infiltrate was seen in T2-weighted and post-contrast images as a rim over the hypointense pseudocapsule (double rim sign). High signal intensity infiltrating tumoral cords extended into adjacent tissues, through pseudocapsular defects on T2-weighted and post-contrast images. The cystic component and tumor cell nodularity were demonstrated at post-contrast images. Clinically, lesions were often thought to be benign, underwent marginal resection, developed local recurrence, and one developed second recurrence consisting of metastases. Recurrent tumors appeared as multiple masses, misinterpreted as post-surgical changes. An intramuscular recurrence demonstrated double rim and infiltrating margin. A predominantly well-circumscribed, primarily cystic mass with double-rim and marginal infiltration on MRI suggests the possibility of AFH, in particular in child or young adult. Inclusion of these novel observations in AFH differential diagnosis may have a significant impact on treatment and prevention of recurrence. (orig.)

  9. Angiomatoid fibrous histiocytoma: novel MR imaging findings

    International Nuclear Information System (INIS)

    Martinez, Salutario J.; Vinson, Emily N.; Moreno, Courtney Coursey; Dodd, Leslie G.; Brigman, Brian E.

    2016-01-01

    To describe novel MR imaging features, and clinical characteristics of soft tissue angiomatoid fibrous histiocytoma (AFH) at presentation, local recurrence, and metastases. We described the MRI findings of six cases of histologically proven AFH. Pathologic findings, clinical presentation, and outcome were reviewed. Lesions were primarily cystic. At initial presentation, tumors were surrounded by low signal intensity fibrous pseudocapsule. High signal intensity consistent with the lymphoplasmacytic infiltrate was seen in T2-weighted and post-contrast images as a rim over the hypointense pseudocapsule (double rim sign). High signal intensity infiltrating tumoral cords extended into adjacent tissues, through pseudocapsular defects on T2-weighted and post-contrast images. The cystic component and tumor cell nodularity were demonstrated at post-contrast images. Clinically, lesions were often thought to be benign, underwent marginal resection, developed local recurrence, and one developed second recurrence consisting of metastases. Recurrent tumors appeared as multiple masses, misinterpreted as post-surgical changes. An intramuscular recurrence demonstrated double rim and infiltrating margin. A predominantly well-circumscribed, primarily cystic mass with double-rim and marginal infiltration on MRI suggests the possibility of AFH, in particular in child or young adult. Inclusion of these novel observations in AFH differential diagnosis may have a significant impact on treatment and prevention of recurrence. (orig.)

  10. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  11. Erionite and other fibrous zeolites in volcanic environments: the need for a risk assessment in Italy

    Science.gov (United States)

    Cavallo, A.; Rimoldi, B.

    2012-04-01

    linked to erionite in Italy is extremely scarce: INAIL, through its database of occupational diseases, can provide essential information for epidemiological research. An effective risk assessment in Italy will require coordinated actions from government agencies, local health authorities, Universities and research centers, in order to record the actual presence of fibrous zeolites, recognizing mineral species and quantifying their abundance in rock deposits. The different geological conditions through time of volcanic deposits will be compared with an updated "database" on the physical-chemical-geological conditions of formation of zeolites. In sites where the presence of fibrous zeolites has been validated by laboratory tests, we will proceed with accurate field surveys and sampling campaigns, in order to determine detailed geological-stratigraphic and structural features, and resolving precisely the thickness, areal extent and volume of lithostratigraphic units containing these minerals. These data will be entered into a GIS to produce a result that can be used immediately and in the long-period by research institutes, local authorities and regional agencies for environmental protection. In sites where the presence of hazardous fibrous minerals has been validated, we will plan airborne fibers sampling campaigns, and we will assess the extent of airborne dispersion produced by natural agents and by man activity. In the case that these sites host active mining or quarrying activities, we will quantify the airborne fibers contamination at workplaces and propose measures for environmental risk mitigation.

  12. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  13. Multi-functional composite structures

    Science.gov (United States)

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  14. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  15. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-03

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  16. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  17. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  18. Methods for determining deformation history for chocolate tablet boudinage with fibrous crystals

    Science.gov (United States)

    Casey, M.; Dietrich, D.; Ramsay, J. G.

    1983-02-01

    Chocolate tablet boudinage with fibrous crystal growths between the boudinaged plates from two localities were studied. In one, from Leytron, Valais, Switzerland, the deformation history was found to be a succession of plane strain increments with the shortening direction perpendicular to the boudinaged sheet and the extension direction showing a progressive change in orientation within the sheet. The incremental and finite strains were evaluated. The other specimen, from Parys Mountain, Anglesey Great Britain, was found to have a more complex history with diachronous break up of the competent layer and flattening strain increments. It was found that under these circumstances the direct graphical methods of determining finite and incremental strains gave inconsistent results. A numerical model was developed which allowed the simulation of chocolate tablet structure with a complex deformation history. The model was applied to the Anglesey specimen and three possible strain histories for this structure were tried.

  19. The anti-Staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata.

    Science.gov (United States)

    Guo, Jing-Jing; Dai, Bin-Ling; Chen, Ni-Pi; Jin, Li-Xia; Jiang, Fu-Sheng; Ding, Zhi-Shan; Qian, Chao-Dong

    2016-11-29

    Bletillae Rhizoma, the tuber of Bletilla striata, has been used in Chinese traditional medicine to treat infectious diseases. Chemical studies indicated that phenanthrene was one of the most important components of the herb, with a broad spectrum of antibiotic activity against Gram-positive bacteria. The objective of this study was to further characterize the antibacterial activity of the phenanthrene fraction from the fibrous root of the pseudobulb of B. striata. The phenanthrene fraction (EF60) from the ethanol extract of fibrous roots of Bletilla striata pseudobulbs was isolated using polyamide column chromatography. The antibacterial activity of the fraction was evaluated in vitro using a 96-well microtiter plate and microbroth dilution method. The cytotoxicity of EF60 against mammalian cells was tested by hemolysis and MTT assays. EF60 was obtained using alcohol extraction and polyamide column chromatography, with a yield of 14.9 g per 1 kg of the fibrous roots of B. striata. In vitro tests indicated that EF60 was active against all tested strains of Staphylococcus aureus, including clinical isolates and methicillin-resistant S. aureus (MRSA). The minimum inhibitory concentration (MIC) values of EF60 against these pathogens ranged from 8 to 64 μg/mL. Minimum bactericidal concentration tests demonstrated that EF60 was bactericidal against S. aureus 3304 and ATCC 29213 and was bacteriostatic against S. aureus 3211, ATCC 25923, and ATCC 43300. Consistently, the time-kill assay indicated that EF60 could completely kill S. aureus ATCC 29213 at 2× the MIC within 3 h but could kill less than two logarithmic units of ATCC 43300, even at 4× the MIC within 24 h. The postantibiotic effects (PAE) of EF60 (4× MIC) against strains 29213 and 43300 were 2.0 and 0.38 h, respectively. Further studies indicated that EF60 (160 μg/mL) showed no cytotoxicity against human erythrocytes, and was minimally toxic to Human Umbilical Vein Endothelial Cells with an IC 50 of 75

  20. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  1. Carbon-based fibrous EDLC capacitors and supercapacitors

    OpenAIRE

    Lekakou, C; Moudam, O; Markoulidis, F; Andrews, T; Watts, JF; Reed, GT

    2011-01-01

    This paper investigates electrochemical double-layer capacitors (EDLCs) including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF) and a multiwall carbon nanotube (CNT) electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance test...

  2. Benign Fibrous Tumour of the Parotid Gland

    Directory of Open Access Journals (Sweden)

    S.S. Sreetharan

    2005-01-01

    Full Text Available The case of a 44-year-old man with left parotid enlargement that was initially diagnosed as cementifying fibroma is presented. The lesion was found in the deep lobe of the parotid gland and was successfully removed. Postoperatively, the patient recovered well with intact facial nerve function and remained asymptomatic after 1 year. Subsequent histology revealed the mass to be a benign fibrous tumour. The diagnosis and management of this rare entity are discussed.

  3. Factors influencing malignant evolution and long-term survival in solitary fibrous tumours of the pleura

    OpenAIRE

    Rodríguez-González, Marta; Novoa, Nuria M.; Gomez, Maria T.; García, Juan L.; Ludeña, María Dolores

    2014-01-01

    Solitary pleuro-pulmonary fibrous tumours are relatively uncommon neoplasms that are difficult to manage therapeutically and which, cytogenetically, have been poorly studied. The aim of the present work was to analyse the characteristics of a series of consecutive operated solitary pleural fibrous tumours in an attempt to discover a malignant pattern of evolution. This was a retrospective observational study of 19 cases. Samples were studied for clinical, histological, immunohistochemical and...

  4. Structural Behavior of Fibrous Reinforced Concrete Hollow Core One-Way Slabs Strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    وصيف مجيد

    2016-02-01

    Full Text Available A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self-weight of the construction. The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRPThis study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers (ا, and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to (96.2%, as has been observed decrease in deflection value of models after strengthening by (CFRP.It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP.

  5. Fibrous metaphyseal defects - determination of their origin and natural history using a radiomorphological study

    International Nuclear Information System (INIS)

    Ritschl, P.; Karnel, F.; Hajek, P.

    1988-01-01

    The radiomorphological appearance of fibrous metaphyseal defects (FMDs) is demonstrated by long-term follow-up studies. A characteristic radiomorphological course rather than a typical single appearance can be established. These findings correlate well with the duration of these tumor-like lesions; therefore, the radiological findings allow conclusions to be made about the age of a fibrous metaphyseal defect. In addition, the characteristic locations of FMDs will be explained in respect of theier origins at insertions of tendons and ligaments. (orig.)

  6. Invasive fibrous thyroiditis (Riedel's struma): a manifestation of multifocal fibrosclerosis? A case report with review of the literature.

    NARCIS (Netherlands)

    Lange, W E de; Freling, N J; Molenaar, W M; Doorenbos, H

    1989-01-01

    A patient is described with Riedel's thyroiditis and invasive fibrous growth in parathyroid, lacrimal glands, and retroperitoneally. It is proposed that Riedel's thyroiditis is not a disease in its own right but a manifestation of a generalized disease of fibrous tissues.

  7. Structural changes in connective tissues caused by a moderate laser heating

    International Nuclear Information System (INIS)

    Bagratashvili, Viktor N; Bagratashvili, N V; Sviridov, A P; Shakh, G Sh; Ignat'eva, Natalia Yu; Lunin, Valery V; Grokhovskaya, T E; Averkiev, S V

    2002-01-01

    The structural changes in adipose and fibrous tissues caused by 2- and 3-W IR laser irradiation are studied by the methods of IR and Raman spectroscopy and differential scanning calorimetry. It is shown that heating of fibrous tissue samples to 50 0 C and adipose tissue samples to 75 0 C by IR laser radiation changes the supramolecular structure of their proteins and triacylglycerides, respectively, without the intramolecular bond breaking. Heating of fibrous tissue to 70 0 C and adipose tissue to 90 - 110 0 C leads to a partial reversible denaturation of proteins and to oxidation of fats.

  8. Fracture resistance enhancement of layered structures by multiple cracks

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Sørensen, Bent F.

    2016-01-01

    A theoretical model is developed to test if the fracture resistance of a layered structure can be increased by introducing weak layers changing the cracking mechanism. An analytical model, based on the J integral, predicts a linear dependency between the number of cracks and the steady state...... fracture resistance. A finite element cohesive zone model, containing two cracking planes for simplicity, is used to check the theoretical model and its predictions. It is shown that for a wide range of cohesive law parameters, the numerical predictions agree well quantitatively with the theoretical model....... Thus, it is possible to enhance considerably the fracture resistance of a structure by adding weak layers....

  9. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    Science.gov (United States)

    Liu, Yu-Hsi; Chang, Kuo-Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place.

  10. Radiative Heat Transfer Modeling in Fibrous Porous Media

    Science.gov (United States)

    Sobhani, Sadaf; Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Wray, Alan; Mansour, Nagi N.

    2017-01-01

    Phenolic-Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center as a lightweight thermal protection system material for successful atmospheric entries. The objective of the current work is to compute the effective radiative conductivity of fibrous porous media, such as preforms used to make PICA, to enable the efficient design of materials that can meet the thermal performance goals of forthcoming space exploration missions.

  11. Use of Zoledronic Acid in Paediatric Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Chiara Di Pede

    2016-01-01

    Full Text Available We describe a case of a paediatric patient affected by mandibular fibrous dysplasia (FD with severe and chronic pain who was successfully treated with zoledronic acid (ZOL: a third-generation bisphosphonate. Further research is needed to assess its safety and efficacy as a treatment option for FD in the paediatric population.

  12. Computational methods for structural load and resistance modeling

    Science.gov (United States)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  13. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  14. Giant solitary fibrous tumor of the lung: A case report

    OpenAIRE

    Xiao, Ping; Sun, Linlin; Zhong, Diansheng; Lian, Linjuan; Xu, Dongbo

    2014-01-01

    A solitary fibrous tumor arising from the lung parenchyma is rarely described. Here, we present the clinical, imaging, and histological features of a case of a 54-year-old woman with an incidental lung mass of the right lower lobe on a chest radiograph.

  15. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome.

    Science.gov (United States)

    Désert, Romain; Mebarki, Sihem; Desille, Mireille; Sicard, Marie; Lavergne, Elise; Renaud, Stéphanie; Bergeat, Damien; Sulpice, Laurent; Perret, Christine; Turlin, Bruno; Clément, Bruno; Musso, Orlando

    2016-12-01

    Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fibrous dysplasia of the cranial vault: quantitative analysis based on neural networks

    International Nuclear Information System (INIS)

    Arana, E.; Marti-Bonmati, L.; Paredes, R.; Molla, E.

    1998-01-01

    To assess the utility of statistical analysis and neural networks in the quantitative analysis of fibrous dysplasia of the cranial vault. Ten patients with fibrous dysplasia (six women and four men with a mean age of 23.60±17.85 years) were selected from a series of 167 patients with lesions of the cranial vault evaluated by plain radiography and computed tomography (CT). Nineteen variables were taken from their medical records and radiological study. Their characterization was based on statistical analysis and neural network, and was validated by means of the leave-one-out method. The performance of the neural network was estimated by means of receiver operating characteristics (ROC) curves, using as a parameter the area under the curve A z . Bivariate analysis identified age, duration of symptoms, lytic and sclerotic patterns, sclerotic margin, ovoid shape, soft-tissue mas and periosteal reaction as significant variables. The area under the neural network curve was 0.9601±0.0435. The network selected the matrix and soft-tissue mass a variables that were indispensable for diagnosis. The neural network presents a high performance in the characterization of fibrous dysplasia of the cranial vault, disclosing occult interactions among the variables. (Author) 24 refs

  17. Malignant fibrous histiocytoma of the parotid gland associated with polycythemia

    NARCIS (Netherlands)

    van Wingerden, J. J.; van Rensburg, P. G.; Coetzee, B. P.

    1986-01-01

    Although malignant fibrous histiocytoma (MFH) is thought to be the most common soft tissue tumor of late adult life, it is extremely uncommon in the parotid gland. A case of MFH in the parotid is reported, associated with polycythemia, which remitted following surgical extirpation of the tumor

  18. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cellular solitary fibrous tumor (hemangiopericytoma) with anaplasia at cerebellopontine angle--a case report.

    Science.gov (United States)

    Zeng, Jianying; Ogera, Patricia; Benardete, Ethan A; Nicastri, Anthony D; Rao, Chandrakant

    2012-08-15

    Cellular solitary fibrous tumor is currently considered a synonym for hemangiopericytoma, as it became increasingly clear that the morphological and immunohistochemical features that separate these two entities have become tenuous, and evidence for a unifying concept has emerged. Furthermore, as no evidence of pericytic differentiation is given in most cases of hemangiopericytoma, this diagnostic term is waning in popularity. We present here a case of cellular solitary fibrous tumor in a 22-year-old man. Neuroimaging revealed a right cerebellopontine angle tumor. Most of the tumor was cellular although some less cellular areas were seen. Sinusoidally dilated large vessels, including staghorn type, were seen. Nuclear pleomorphism and increased mitotic activity (5 mitosis/10 high power field) were regarded as evidence of anaplasia. Diffuse CD34 immunoreactivity and focal positivity for Factor XIIIa were seen in the tumor, which was negative for EMA and S100. The tumor also displayed rich reticulin network. Solitary fibrous tumor at cerebellopontine angle is rare, and 20 such cases (five reported as hemangiopericytoma) have been reported in the English literature. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. A bioinspired study on the compressive resistance of helicoidal fibre structures.

    Science.gov (United States)

    Tan, Ting; Ribbans, Brian

    2017-10-01

    Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.

  1. A case of malignant fibrous histiocytoma arising in the irradiated maxilla

    International Nuclear Information System (INIS)

    Fukuta, Yoshiyasu; Yamada, Kazumi; Ohmura, Hiromi; Kudo, Keigo; Takeda, Yasunori

    1994-01-01

    A malignant fibrous histiocytoma (MFH) arising in the irradiated maxilla is reported. The patient was a 59-year-old Japanese female who was referred to us for a relatively well defined and lobulated tumor extending from the right buccal mucosa to left hard palate. Her past medical history revealed that she had had a squamous cell carcinoma of the right buccal mucosa treated by 145 Gy of radiotherapy 3 years previously. Although the patient underwent a bilateral partial maxillectomy, she died due to extensive local recurrence 14 months postoperatively. Histopathologically, proliferation of atypical tumor cells of non-epithelial origin, i.e., spindle-shaped fibroblastic cells, histiocytic cells and bizarre multinucleated giant cells, were noted. Furthermore, a storiform pattern was also seen in part of the lesion. These features suggested that this care was a postirradiation malignant fibrous histiocytoma. (author)

  2. A case of malignant fibrous histiocytoma arising in the irradiated maxilla

    Energy Technology Data Exchange (ETDEWEB)

    Fukuta, Yoshiyasu; Yamada, Kazumi; Ohmura, Hiromi; Kudo, Keigo; Takeda, Yasunori (Iwate Medical Univ., Morioka (Japan). School of Dentistry)

    1994-03-01

    A malignant fibrous histiocytoma (MFH) arising in the irradiated maxilla is reported. The patient was a 59-year-old Japanese female who was referred to us for a relatively well defined and lobulated tumor extending from the right buccal mucosa to left hard palate. Her past medical history revealed that she had had a squamous cell carcinoma of the right buccal mucosa treated by 145 Gy of radiotherapy 3 years previously. Although the patient underwent a bilateral partial maxillectomy, she died due to extensive local recurrence 14 months postoperatively. Histopathologically, proliferation of atypical tumor cells of non-epithelial origin, i.e., spindle-shaped fibroblastic cells, histiocytic cells and bizarre multinucleated giant cells, were noted. Furthermore, a storiform pattern was also seen in part of the lesion. These features suggested that this care was a postirradiation malignant fibrous histiocytoma. (author).

  3. Benign fibrous mesothelioma of the pleura: MR study and pathologic correlation

    International Nuclear Information System (INIS)

    Padovani, B.; Mouroux, J.; Raffaelli, C.; Huys, C.; Chanalet, S.; Michiels, J.F.; Brunner, P.; Bruneton, J.N.

    1996-01-01

    Benign fibrous mesothelioma of the pleura is a rare tumor of mesodermal origin. We describe the MR findings in three pathologically proven cases. All three tumors were imaged by MR as well-circumscribed lesions with smooth margins in contact with the pleura, but without chest wall invasion. Their low signal intensity on T1- and T2-weighted sequences reflect their fibrous nature. In one case a pedicle connecting the tumor to the chest wall was visualized on a sagittal MR scan. In two cases gadolinium-enhanced T1-weighted gradient echo sequences revealed intense contrast uptake by the tumor correlated with the intratumoral hypervascularization noted by histologic examination. Although the number of cases presented is small, MR seems to be the most accurate imaging modality in the assessment of the diagnosis. (orig.). With 4 figs., 1 tab

  4. Benign fibrous mesothelioma of the pleura: MR study and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Padovani, B. [Service Central de Radiologie, Hopital Pasteur, Nice (France); Mouroux, J. [Service de Chirurgie Thoracique, Hopital Pasteur, Nice (France); Raffaelli, C. [Service Central de Radiologie, Hopital Pasteur, Nice (France); Huys, C. [Service Central de Radiologie, Hopital Pasteur, Nice (France); Chanalet, S. [Service Central de Radiologie, Hopital Pasteur, Nice (France); Michiels, J.F. [Service d`Anatomie Pathologique, Hopital Pasteur, Nice (France); Brunner, P. [Service Central de Radiologie, Hopital Pasteur, Nice (France); Bruneton, J.N. [Service Central de Radiologie, Hopital Pasteur, Nice (France)

    1996-08-01

    Benign fibrous mesothelioma of the pleura is a rare tumor of mesodermal origin. We describe the MR findings in three pathologically proven cases. All three tumors were imaged by MR as well-circumscribed lesions with smooth margins in contact with the pleura, but without chest wall invasion. Their low signal intensity on T1- and T2-weighted sequences reflect their fibrous nature. In one case a pedicle connecting the tumor to the chest wall was visualized on a sagittal MR scan. In two cases gadolinium-enhanced T1-weighted gradient echo sequences revealed intense contrast uptake by the tumor correlated with the intratumoral hypervascularization noted by histologic examination. Although the number of cases presented is small, MR seems to be the most accurate imaging modality in the assessment of the diagnosis. (orig.). With 4 figs., 1 tab.

  5. The Philippines [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Bonoan, Leticia S. [Philippine Atomic Research Center, Philippine Atomic Energy Commission, Manila (Philippines)

    1968-10-15

    Fibrous materials (timber and fibres) constitute one of the most steady dollar-earning industries in the Philippines. In 1966 the produce from this industry alone was worth 1061 million pesos, which was almost 6% of the country's national income. The total timber production amounted to 3 325 541 899 board feet, of which 15. 2% was consumed locally and the rest exported to different countries, with Japan as one of the largest importers. The Philippines produces quite a number of varieties of timber and fibre which have earned a good reputation for quality in the world market. However, there are also other varieties of timber and fibres which need improvement to gain a market. Plastic impregnation of these fibrous materials seems a very promising technique for improving their quality. Plastic impregnation of fibrous materials, being a relatively new field, has only recently been started in the Philippines. So far, only the Philippine Atomic Research Center (PARC) has been working in this field. Exploratory studies were initiated in November 1966. Initial work was confined to wood plastic combination (WPC)

  6. Imaging Findings of Fibrous Hamartoma of Infancy

    International Nuclear Information System (INIS)

    Rho, Byung Hak; Lee, Hee Jung; Kwon, Sun Young

    2009-01-01

    We wanted to evaluate the imaging findings of fibrous hamartoma of infancy (FHI). We retrospectively reviewed the clinical presentation and the sonographic (n = 5) and CT (n = 3) findings of 5 cases of surgically/pathologically confirmed FHI. The sonographic findings were evaluated according to the location, size, internal echogenicity and vascularity. The CT findings were evaluated according to the attenuation of the mass on both the pre- (n = 3) and postcontrast (n = 2) scans. The image findings were correlated with the pathologic findings. The mean age was 14.8 months (range, 7 months - 3 years). The location of lesions was all in the fatty layer of the back (n = 4) and upper arm (n = 1). All the lesions demonstrated-hypertrichosis on the overlying skin. The lesions measured 31.2 mm in the longest diameter (range: 18 mm - 50 mm). The sonographic findings were purely solid, heterogeneously hyperechoic and hypovacular for all the cases. The internal architecture revealed a 'layering' appearance (n = 3). The CT findings demonstrated isoattenuation, as compared to the adjacent muscle on both the pre- and postcontrast CT scans. The pathologic correlation demonstrated a characteristic 'organoid' mixture of fibrous, mucoid and fatty tissues in all cases. The diagnosis of FHI can be suggested by the sonographic findings of a superficially located, heterogeneous solid mass with a 'layering' appearance in the fatty layer of the back or arms of infants with local hypertrochosis on the overlying skin

  7. McCune Albright syndrome - association of fibrous dysplasia, café-au-lait skin spots and hyperthyroidism - case report.

    Science.gov (United States)

    Raus, Iulian; Coroiu, Roxana Elena

    2016-01-01

    McCune-Albright syndrome is a rare sporadic disease characterized by bone fibrous dysplasia, café-au-lait skin spots and a variable association of hyperfunctional endocrine disorders. Fibrous dysplasia (FD), which can involve the craniofacial, axial, and appendicular skeleton, may range from an isolated, asymptomatic monostotic lesion to a severe disabling polyostotic disease involving the entire skeleton. A twenty-five-year old male patient presented to our clinic with recently developed heart palpitations. He had also been feeling pain in the right femur since he was younger, without any trauma history, leading to difficulties of ambulation and limping occasionally. His physical examination revealed café-au-lait spots with irregular borders and right testicular agenesis. Laboratory findings identified hyperthyroidism with hyperparathyroidism. Radiographs of the pelvis revealed multiple lytic lesions of the right femur and magnetic resonance imaging (MRI) characterized these lesions as specific to fibrous dysplasia of the bone, without any insufficiency fracture at this level. The association of café-au-lait skin spots with bone fibrous dysplasia, and hyperthyroidism in this patient suggested the diagnosis of McCune - Albright syndrome.

  8. Application of Colloidal Filtration Theory on Textile Fibrous Media: Effect of Fiber Orientation on Bacterial Removal Efficiency and Attachment

    Science.gov (United States)

    Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan

    2018-05-01

    A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.

  9. Nanoscale dynamics and aging of fibrous peptide-based gels

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, Nikola A., E-mail: dudukov1@illinois.edu [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zukoski, Charles F. [Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14222 (United States)

    2014-10-28

    Solutions of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) in dimethyl sulfoxide produce fibrous gels when mixed with water. We study the evolution of density fluctuations of this three-component system using X-ray photon correlation spectroscopy (XPCS) and compare these results to the macroscopic rheology of the gels and optical observations of the microstructure evolution. At the investigated scattering angles, the intensity autocorrelation functions do not follow behavior expected for simple diffusion of individual Fmoc-FF molecules localized within cages of nearest neighbors. Instead, the dynamics are associated with density fluctuations on length scales of ∼10–100 nm arising from disaggregation and reformation of fibers, leading to an increasingly uniform network. This process is correlated with the growth of the elastic modulus, which saturates at long times. Autocorrelation functions and relaxation times acquired from XPCS measurements are consistent with relaxation rates of structures at dynamic equilibrium. This study provides further support to the concept of exploring peptide-based gelators as valence-limited patchy particles capable of forming equilibrium gels.

  10. TiO2 based photo-catalysts prepared by chemical vapor infiltration (CVI) on micro-fibrous substrates

    International Nuclear Information System (INIS)

    Sarantopoulos, Ch.

    2007-10-01

    This thesis deals with micro-fibrous glass substrates functionalized with TiO 2 . The oxide is deposited as a thin film onto the micro fibres by chemical vapour infiltration (CVI), yielding a photo-catalytic material usable for cleaning polluted air. We studied the relation between the structure of the material and its photo-catalytic efficiency. TiO 2 thin films were prepared at low pressure, in a hot-wall CVD reactor, using Ti(O-iPr) 4 as a precursor. They were characterized by XRD, SEM, EDX, XPS and BET, and by recording the kinetics of decomposition of varied pollutants in solution (orange G, malic acid, imazapyr) and in air (toluene). The conditions favoring the growth of porous films through a columnar growth mode were established by MOCVD-depositing TiO 2 thin films on flat substrates. The subsequent works with micro fibrous thick substrates showed the uniformity of infiltration to be the main factor governing the photo-catalytic efficiency. Operating parameters that optimize infiltration do not yield columnar growth mode. A compromise is necessary. Our photo-catalysts are showing high efficiency comparable, if not higher, to those actually commercialized. These promising results are opening real perspectives for the proposed process. (author)

  11. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  12. Synthesis of fibrous TiO2 from layered protonic tetratitanate by a hydrothermal soft chemical process

    International Nuclear Information System (INIS)

    Jing Xuezhen; Li Yongxiang; Yang Qunbao; Yin Qingrui

    2004-01-01

    Fibrous TiO 2 (anatase) was prepared by a hydrothermal soft chemical process using H 2 Ti 4 O 9 ·0.25H 2 O as a template precursor. The influence of reaction time, temperature and precursor concentration on the phase formation, morphology and crystal-axis orientation were studied. The results have shown that fibrous anatase can be obtained at 220 deg. C for 24 h with the precursor concentrations in the range of 0.025-0.100 M, and that particles had diameters of 0.2-1 μm and lengths of 2-20 μm. The fibrous TiO 2 anatase prepared by this method showed a high orientation along a-axis direction. X-ray diffractometer (XRD) and SEM analyses have indicated that in situ transformation mechanism dominated the entire hydrothermal process but dissolution-recrystallization also occurred on the surface of the particles

  13. Wear particle diffusion and tissue differentiation in TKA implant fibrous interfaces

    NARCIS (Netherlands)

    Yuan, X.; Ryd, L.; Huiskes, H.W.J.

    2000-01-01

    In the context of mechanical loosening, we studied the hypothesis that wear-particle migration in the fibrous membrane under tibial plateaus after total knee arthroplasty can be explained by the pumping effects of the interstitial fluid in the tissue. Further, as a secondary objective we

  14. Examination of compression and resilience characteristics of fibrous insulation blankets

    International Nuclear Information System (INIS)

    Brislin, R.J.; Middleton, A.

    1979-08-01

    Load-deflection characteristics of alumina and alumino-silicate fibrous blankets were experimentally determined. Load retention and springback capability of combinations of these materials were measured in a 10,000-hour test at surface temperatures of 650 to 1000 0 C (1200 to 1832 0 F). Experimental results are presented and future testing plans are discussed

  15. Tailorable Release of Small Molecules Utilizing Plant Viral Nanoparticles and Fibrous Matrix

    Science.gov (United States)

    Cao, Jing

    We have engineered Red clover necrotic mosaic virus (RCNMV) derived plant viral nanoparticles (PVNs) within a fibrous matrix to optimize its application for delivery and controlled release of active ingredients. RCNMV's structure and unique response to divalent cation depletion and re-addition enables the infusion of small molecules into its viral capsid through a pore formation mechanism. While this PVN technology shows a potential use in nano-scale therapeutic drug delivery, its inherent molecular dynamics to environmental stimuli places a constraint on its application and functionality as a vehicle for tailorable release of loading cargo. In this study, we enhance the understanding of the PVN technology by elucidating its mechanism for loading and triggered release of doxorubicin (Dox), a chemotherapeutic drug for breast cancer. Of critical importance is the methodology for manipulation of Dox's loading capacity and its binding location on either the exterior or interior of the virion capsid. The ability to control the active ingredient binding location provides an additional approach of tunable release from the PVN delivery vehicle besides its inherent pH- and ion- responsive release of loading cargo. The efficacious and controlled release strategy for agricultural active ingredients, such as nematicides, is also a large social need right now. Crop infestation of plant parasite nematodes causes in excess of 157 billion in worldwide crop damage annually. If an effective control strategy for these pests could be developed, it is estimated that the current market for effective nematicides is between 700 million and $1 billion each year worldwide. In this study, we report on the utilization of PVN technology to encapsulate the biological nematicide, abamectin (Abm), within the PVN's interior capsid (PVNAbm). Creating PVNAbm addresses Abm's issues of soil immobility while rendering a controlled release strategy for its bioavailability to root knot nematodes (RKNs

  16. Malignant fibrous histiocytoma of the face: report of a case

    Directory of Open Access Journals (Sweden)

    Bánkfalvi Ágnes

    2007-10-01

    Full Text Available Abstract Background Soft tissue sarcomas in the head and neck region are rare and often present a difficult differential diagnosis. The aim of our presentation is to point out the complexity of the diagnosis, treatment and follow up. Case presentation An eighty-seven year old female patient was referred to our unit with a fast growing brownish lump on the face. Four months beforehand, a benign fibrous histiocytoma (BFH had been removed from the same location by excision biopsy with wide tumour-free resection margins. Excision biopsy of the recurrent lesion revealed a malignant fibrous histiocytoma (MFH. Radical tumour resection was completed by extended parotidectomy and neck dissection; the skin defect was covered by a regional bi-lobed flap. No adjuvant radio- or chemotherapy was administered. Full functional and cosmetic recovery was achieved; follow-up has been uneventful more than two years postoperatively. Discussion Malignant transformation of BFH is extremely rare and if so, extended radical surgery may give a fair chance for a favourable outcome even in patients with advanced age.

  17. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  18. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  19. Visual impairment from fibrous dysplasia in a middle-aged African man: a case report

    Directory of Open Access Journals (Sweden)

    Bekibele Charles O

    2009-01-01

    Full Text Available Abstract Introduction Fibrous dysplasia is a benign tumour of the bones and is a disease of unknown aetiology. This report discusses a case of proptosis and visual deterioration with associated bony mass involving the right orbit. Case presentation A 32-year-old Nigerian man of Yoruba ethnic origin presented to the eye clinic of our hospital with right-eye proptosis and visual deterioration of 7-year duration. Presentation was preceded by a history of trauma. Proptosis was preceded by trauma but was non-pulsatile with no thrill or bruit but was associated with bony orbital mass. The patient reported no weight loss. Examination of his right eye showed visual acuity of 6/60 with relative afferent pupillary defect. Fundal examination revealed optic atrophy. Computed tomography showed an expansile bony mass involving all the walls of the orbit. The bony orbital mass was diagnosed histologically as fibrous dysplasia. Treatment included orbital exploration and orbital shaping to create room for the globe and relieve pressure on the optic nerve. Conclusion Fibrous dysplasia should be considered in the differential diagnosis of slowly developing proptosis with associated visual loss in young adults.

  20. Republic of Korea [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chwa-Kyung [Office of Atomic Energy, Seoul (Korea, Republic of)

    1968-10-15

    In describing the present status of composite materials made from fibrous materials and synthetic polymers, it should first be mentioned that Korea produces almost no polymer-wood combinations. However, Korea has been very active in the production of various resin-fibrous material combinations that mainly employ thermosetting resins as binding agents to improve the quality of woods and other fibrous materials. Plywood, chip board, hard board and straw board are some examples. Korean forest resources are not sufficient to meet industrial needs. Only a small amount of domestic pine timber is used for ground pulp production. However, plywood production, which started some ten years ago, has increased to where domestic consumption is now fully supplied and annual exports are now worth more than 40 million US dollars. Although whole log timber for the industry is imported, urea and formalin for adhesives are produced domestically. To develop an effective means for using waste lumber, chip board, fibre board and hard board have been produced since 1962 and the production of straw board has been started as a means of utilizing agricultural wastes.

  1. Skeletal manifestations of primary malignant fibrous histiocytoma

    International Nuclear Information System (INIS)

    David, R.; Lindell, M.M.; Kumar, R.; Madewell, J.E.; Shirkhoda, A.

    1986-01-01

    Sixty-five patients, aged 18-84 years, with pathologically proved primary malignant fibrous histiocytoma of bone were studied. Tumors were distributed equally between men and women. The plain film, CT, bone scan, and angiographic findings in each patient were reviewed and correlated. The lesions were predominantly in the appendicular skeleton (66%), with about 33% being centrally located. Only one patient had multiple skeletal lesions. Fifty-two percent of the lesions were lytic, 28% were blastic, and 20% had a mixed pattern. This lesion should be recognized by the radiologist as an entity which has a poor prognosis

  2. Discussion on the fracutre microscopic resistance by cleavage in structural steels

    International Nuclear Information System (INIS)

    Darwish, F.A.I.; Teixeira, J.C.G.; Ouro, C.R.

    1982-01-01

    An analysis on the physical significance of the microscopic resistance of a structural steel is presented. The theorethical and experimental aspects involved in the determination of this resistance are still presented. The results obtained with low, medium and high mechanical resistance are showed and discussed. (E.G.) [pt

  3. 2 case reports of the polyostotic fibrous dysplasia on the cranial and maxillofacial bones of the sisters

    International Nuclear Information System (INIS)

    Kim, Han Pyung; Park, Chang Seo

    1979-01-01

    The authors observed 2 cases of fibrous dysplasia on the cranial and maxillofacial bones in 31.28 aged sisters, who had come to the Infirmary of Dental College, Yonsei University. The serial roentgenograms and clinical findings had been taken and the results established as polyostotic fibrous dysplasia according to the findings in their images. To author have obtained the results as follows: 1. Bony expansion of the mandible occurred at 18 years of age and the facial asymmetry appeared due to development of the lesions. 2. The traumatic history were not noted but weak tendency of familial history noted. 3. Endocrine disturbances, hyperpigmentation on the skin and premature puberty in the infancy were not noted. 4. We have concluded these diseases as polyostotic fibrous dysplasia on the cranial and maxillofacial bones with weak familial tendency according to the findings.

  4. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  5. [Optimization of dissolution process for superfine grinding technology on total saponins of Panax ginseng fibrous root by response surface methodology].

    Science.gov (United States)

    Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng

    2014-03-01

    To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.

  6. Solitary fibrous tumor - clinicopathologic, immunohistochemical and molecular analysis of 28 cases

    NARCIS (Netherlands)

    Vogels, Rob J. C.; Vlenterie, Myrella; Versleijen-Jonkers, Yvonne M. H.; Ruijter, Emiel; Bekers, Elise M.; Verdijk, Marian A. J.; Link, Monique M.; Bonenkamp, Johannes J.; van der Graaf, Winette T. A.; Slootweg, Pieter J.; Suurmeijer, Albert J. H.; Groenen, Patricia J. T. A.; Flucke, Uta

    2014-01-01

    Background: Solitary fibrous tumor is a mesenchymal tumor of fibroblastic type, which can affect any region of body. Recently, a recurrent gene fusion NAB2-STAT6 has been identified as molecular hallmark. The NAB2-STAT6 fusion leads to EGR1 activation and transcriptional deregulation of

  7. Clinical characteristics of the primary hepatic malignant fibrous histiocytoma in China: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Yao Dianbo

    2012-01-01

    Full Text Available Abstract Background A malignant fibrous histiocytoma is a soft tissue tumor that most commonly occurs in the extremities, but rarely involves the liver. The clinical characteristics and therapeutic experiences of primary hepatic malignant fibrous histiocytoma are still limited. Methods Two cases of primary hepatic malignant fibrous histiocytoma were analyzed retrospectively, and all the literature concerning primary hepatic malignant fibrous histiocytoma was analyzed. Results In China, a total of 76 cases had been reported, among which 50 were men, with a male to female ratio of 1.9:1. Mean age of the patients was 51.0 years old, and more than 85 percent were older than 40 years. 82.9 percent (63/76 of hepatic MFH were solitary lesions, with tumor size ranging from 2.5 to 23.5 cm (average 10.3 cm. Major clinical presentation (78.4% was abdominal pain or discomfort, accompanied with some other non-specific symptoms such as malaise, anorexia, weight loss, jaundice and fever, and small cases (14.9% were asymptomatic. Computed tomography and ultrasound usually revealed the location of lesions. The rate of pre-operative misdiagnosis was extremely high, and 14.9 percent of patients were even misdiagnosed as a benign liver cyst, liver abscess or hematoma. Integrated resection was performed among the most cases (49/68, among which only a few ones (12 cases were introduced to have no recurrence or metastasis or be still alive with no detail information provided, while among the cases with palliative operation or only a biopsy, the cases that were followed-up all died. Conclusions Hepatic malignant fibrous histiocytoma is a rare malignant mesenchymal tumor. The variable features of clinical presentations and images make the diagnosis difficult. Though the prognosis of primary hepatic malignant fibrous histiocytoma was rather poor, integrated resection might provide a few cases a good opportunity for surviving, suggesting that surgery might be an effective

  8. Preliminary Analytical Reviews on the Performance of Fibrous Filter

    International Nuclear Information System (INIS)

    Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek

    2015-01-01

    The wet type Containment Filtered Vent System (CFVS) is composed of a tank including nozzles in a liquid pool, moisture separators, and a few dry filters such as a metal fiber filter and a molecular sieve. After injecting gases from the containment into the CFVS under severe accident conditions, the CFVS will release decontaminated radioactive materials to the environment. To protect against the release of uncontrolled fission products to the environment, we need to confirm the performance of the CFVS in terms of not only the integral capability but also the capabilities of the individual components. It is crucial to confirm the performance of the metal fiber filter in both analytical and experimental ways. Pressure drop across a filter and collection efficiency are ways to explain the performance of a fibrous filter. Based on data from the literature survey, pressure drop and collection efficiency for a single filter were calculated. The trends of pressure drop and collection efficiencies due to various deposition mechanisms of particles onto the fiber of the filters were roughly confirmed. Therefore, to obtain better quantitative predictions of the performance of the metal fiber filter, a new model able to evaluate the performance of fibrous filters under severe conditions should be developed

  9. Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and thermally-induced self-assembly

    Science.gov (United States)

    Wu, Jie; Li, Xin; Wu, Yang; Liao, Guoxing; Johnston, Priscilla; Topham, Paul D.; Wang, Linge

    2017-11-01

    An inherent problem that restricts the practical application of superhydrophobic materials is that the superhydrophobic property is not sustainable; it can be diminished, or even lost, when the surface is physically damaged. In this work, we present an efficient approach for the fabrication of superhydrophobic fibrous fabrics with great rinse-resistance where a block copolymer has been electrospun into a nanofibrous mesh while micro-sized beads have been subsequently electrosprayed to give a morphologically composite material. The intricate nano- and microstructure of the composite was then fixed by thermally annealing the block copolymer to induce self-assembly and interdigitation of the microphase separated domains. To demonstrate this approach, a polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) nanofibrous scaffold was produced by electrospinning before SEBS beads were electrosprayed into this mesh to form a hierarchical micro/nanostructure of beads and fibers. The effects of type and density of SEBS beads on the surface morphology and wetting properties of composite membranes were studied extensively. Compared with a neat SEBS fibrous mesh, the composite membrane had enhanced hydrophobic properties. The static water contact angle increased from 139° (±3°) to 156° (±1°), while the sliding angle decreased to 8° (±1°) from nearly 90°. In order to increase the rinse-resistance of the composite membrane, a thermal annealing step was applied to physically bind the fibers and beads. Importantly, after 200 h of water flushing, the hierarchical surface structure and superhydrophobicity of the composite membrane were well retained. This work provides a new route for the creation of superhydrophobic fabrics with potential in self-cleaning applications.

  10. Estimation of the upper limit of aerosol nanoparticles penetration through inhomogeneous fibrous filters

    International Nuclear Information System (INIS)

    Podgorski, Albert

    2009-01-01

    The fully segregated flow model (FSFM) was formulated to describe filtration of aerosol nanoparticles in polydisperse fibrous filters made of fibers with different diameters. The model is capable of predicting significantly higher penetration of nanoparticles through polydisperse filters than it may be expected from the classical theory applied to a mean fiber diameter. The model was solved numerically in the case of the log-normal fiber size distribution, and a simple correlation between the actual penetration through a polydisperse filter and the one calculated for the geometric mean fiber diameter was proposed. Equivalent fiber diameter for deposition due to Brownian diffusion was determined and it was found to be dependent on particle size and filter's polydispersity degree, being significantly greater than any mean fiber diameter. It was noted that it is impossible to select any one universal mean fiber diameter to describe penetration of nanoparticles with different sizes. It was also shown that in the case of a polydisperse fibrous filter the apparent exponent of the Peclet number based on the mean fiber diameter is greater than the expected value of -2/3 for diffusional deposition in a monodisperse filter. This prediction is in agreement with the available experimental data. The FSFM is expected to give the estimation of the upper limit of nanoparticles penetration in polydisperse fibrous filters.

  11. A SOLITARY FIBROUS ORBITAL TUMOR IN A PATIENT WITH NEUROFIBROMATOSIS AND AN UTERINE CARCINOMA

    Directory of Open Access Journals (Sweden)

    E. E. Grishina

    2016-01-01

    Full Text Available We present a rare combination of a solitary fibrous orbital tumor and uterine cancer in a  female patient with type I  neurofibromatosis. This 77-year old patient developed a  left painless exophthalmos within 2 years and decreased visual acuity of the left eye. At the age of 20  she was diagnosed with type I neurofibromatosis. Half a year ago she underwent hysteron-oophorectomy due to uterine adenocarcinoma. The visual acuity of her left eye was decreased to 0.3, with an increase of intraocular pressure to 30 mm Hg. She had a 13-mm left-sided exophthalmos with misplacement of the eye downwards and laterally at 40°. Reposition of the left eye was severely impaired, with limitation of the eye movements to all directions. Ophthalmoscopy showed optic disc discoloration and blunting of its inner border. The patient underwent trans-conjunctival orbitotomy, with removal of three encapsulated tumor nodules. Histological and immunochemical studies of the removed tissue identified solitary fibrous tumor of the left orbit with an undetermined malignant potential. In the post-operative period, visual acuity of the left eye was 0.2, with no exophthalmos and right position of the eye. There was a non-significant limitation of the left eye movement to the left and to the right. X-ray computed tomography confirmed radical tumor excision. Conclusion: Solitary fibrous tumor is a  rare orbital neoplasm. Nevertheless, it should be included into the differential diagnosis list of spin-cell orbital tumors. It is necessary to aim at tumor removal through the least traumatic orbital access. Relapsing course of the tumor is the rationale for a  long-term follow-up of patients after removal of solitary fibrous orbital tumor.

  12. Lightweight Space Tug body structure

    International Nuclear Information System (INIS)

    Lager, J.R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, light-weight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle

  13. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  14. Monostotic fibrous dysplasia of a lumbar vertebral body with secondary aneurysmal bone cyst formation: a case report

    Directory of Open Access Journals (Sweden)

    Snieders Marieke N

    2009-06-01

    Full Text Available Abstract We report the case of a 25-year-old Caucasian woman with symptomatic monostotic fibrous dysplasia of the fourth lumbar vertebral body. The patient suffered from a five-week history of progressive low back pain, radiating continuously to the left leg. Her medical history and physical and neurological examination did not demonstrate any significant abnormalities. Radiographs, computed tomography and magnetic resonance imaging revealed an osteolytic expansive lesion with a cystic component of the fourth lumbar vertebral body. Percutaneous transpedicular biopsy showed histological characteristics of fibrous dysplasia superimposed by the formation of aneurysmal bone cyst components. The patient was treated by subtotal vertebrectomy of the L4 vertebral body with anterior reconstruction and her postoperative course was uncomplicated. To our knowledge, this is the first reported case of a monostotic fibrous dysplasia with superimposed secondary aneurysmal bone cysts of a lumbar vertebral body.

  15. Inferring the interaction structure of resistance to antimicrobials.

    Science.gov (United States)

    Zawack, Kelson; Love, Will; Lanzas, Cristina; Booth, James G; Gröhn, Yrjö T

    2018-04-01

    The growth of antimicrobial resistance presents a significant threat to human and animal health. Of particular concern is multi-drug resistance, as this increases the chances an infection will be untreatable by any antibiotic. In order to understand multi-drug resistance, it is essential to understand the association between drug resistances. Pairwise associations characterize the connectivity between resistances and are useful in making decisions about courses of treatment, or the design of drug cocktails. Higher-order associations, interactions, which tie together groups of drugs can suggest commonalities in resistance mechanism and lead to their identification. To capture interactions, we apply log-linear models of contingency tables to analyze publically available data on the resistance of Escheresia coli isolated from chicken and turkey meat by the National Antimicrobial Resistance Monitoring System. Standard large sample and conditional exact testing approaches for assessing significance of parameters in these models breakdown due to structured patterns inherent to antimicrobial resistance. To address this, we adopt a Bayesian approach which reveals that E. coli resistance associations can be broken into two subnetworks. The first subnetwork is characterized by a hierarchy of β-lactams which is consistent across the chicken and turkey datasets. Tier one in this hierarchy is a near equivalency between amoxicillin-clavulanic acid, ceftriaxone and cefoxitin. Susceptibility to tier one then implies susceptibility to ceftiofur. The second subnetwork is characterized by more complex interactions between a variety of drug classes that vary between the chicken and turkey datasets. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Calcified fibrous pseudotumor of spermatic cord

    International Nuclear Information System (INIS)

    Rodriguez Collar, Tomas Lazaro; Valdes Estevez, Brasily; Nagua Valencia, Miguel Angel; Salinas Olivares, Mercedes Rita

    2009-01-01

    Paratesticular tumors are infrequent and most are benigns. This a case presentation of a patient aged 24 with a history of good health coming to our consultation by presence of a hard and painless 4 cm tumor in right scrotum with a 6 months course. Scrotal ultrasound (US) showed a well circumscribed heterogeneous lesion separate of epididymis and the testis. Fine needle aspiration biopsy (FNAB) was not possible by hardness of tumor. A inguinal surgery was performed and the total tumor exeresis using freezing biopsy negative of malignancy. Final histopathological report was: calcified fibrous pseudotumor of spermatic cord. Patient's course has been satisfactory. Significance of inguinal surgery was confirmed for the paratesticular tumor approach, even more when FNAB it is not conclusive for diagnosis.(author)

  17. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  18. Viet Nam [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Le-Van-Thoi, [Viet Nam Atomic Energy Office, Saigon (Viet Nam)

    1968-10-15

    In South Viet Nam, forest covers about 30% of the land area or approximately 6 000 000 ha. Hardwoods comprise about 80% of the timber stock. The total growing stock is not known exactly. Forest inventory is difficult in Viet Nam since some areas are inaccessible in the virgin forest. Overcutting by the population for domestic uses should also be mentioned together with fire damage, destruction by the war, etc. Practically all species of fibrous wood which are common in South- East Asia grow in Viet Nam. Pine trees especially account for about 2% of the forest and bamboo for 1%, and rubber trees, kenaf and jute are abundant. Valuable fibrous materials other than wood are agricultural wastes such as rice straw and bagasse. Table I presents a list of the most common fibrous plants of Viet Nam; their importance, however, cannot be evaluated. In addition, restricted numbers of these plants are consumed by the population of the region where they grow wild. Exploitation is, in fact, purely artisanal and tends merely to meet local needs. Cotton plants (Gossipium herbaceum) grow mainly in Central Viet Nam; the cotton product is not of good quality since the fibres are not very long.

  19. Resistive foil edge grading for accelerator and other high voltage structures

    Science.gov (United States)

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  20. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Science.gov (United States)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  1. Cylindrical concave body of composite fibrous material

    International Nuclear Information System (INIS)

    1979-01-01

    The invention is concerned with a cylindrical concave body of compound fibrous material which is intended to be exposed to high rotation speeds around its own longitudinal axis. The concave body in question has at least one layer of fibrils that are interwoven and enclose an identical angle with the longitudinal axis of the concave body in both directions. The concave body in question also has at least a second layer of fibrils that run in the direction of the circumference and are fitted radially to the outside. The cylindrical concave body of the invention is particularly well suited for application as a rotor tube in a gas ultra-centrifuge

  2. Effect of structure state on the microplastic resistance of thermobimetals

    International Nuclear Information System (INIS)

    Bashnin, Yu.A.; Ulanovskij, F.B.; Shiryaeva, A.N.

    1983-01-01

    The effect of structural state on microplastic resistance of nickel alloy thermobimetals with butt oint of layers has been studied. It has been shown that a stable polygonal structure with minimum level of residual stresses is achieved in thermobimetals by a three-fold thermocyclic treatment with heating up to 400 deg C, holding during 1 hour and slow cooling up to room temperature after each cycle with a speed of 2-4 deg C per min. The stable polygonal structure of alloys-components of thermobimetals provides growth of microplastic resistance and drop of residual deflection. The maximum thermobimetal thermosensitivity is provided at 50% preliminary plastic deformation degree on thermocouples cut out along the direction of rolli

  3. Effect of structure state on the microplastic resistance of thermobimetals

    Energy Technology Data Exchange (ETDEWEB)

    Bashnin, Yu.A.; Ulanovskij, F.B.; Shiryaeva, A.N. (Moskovskij Vechernij Metallurgicheskij Inst. (USSR))

    1983-01-01

    The effect of structural state on microplastic resistance of nickel alloy thermobimetals with butt joint of layers has been studied. It has been shown that a stable polygonal structure with minimum level of residual stresses is achieved in thermobimetals by a three-fold thermocyclic treatment with heating up to 400 deg C, holding during 1 hour and slow cooling up to room temperature after each cycle with a speed of 2-4 deg C per min. The stable polygonal structure of alloys-components of thermobimetals provides growth of microplastic resistance and drop of residual deflection. The maximum thermobimetal thermosensitivity is provided at 50% preliminary plastic deformation degree on thermocouples cut out along the direction of rolli.

  4. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic, chemical and isotopic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Al-Aasm, I.S.; Muir, I. (Imperial Oil Resources, Calgary, AB (Canada)); Morad, S. (Windsor Univ., ON (Canada))

    1992-03-01

    Antiaxial fibrous calcite veins 2-6 cm thick outcrop parallel to bedding in the Bluefish Member of the Middle Devonian Hare Indian Formation in the Norman Wells area of the Northwest Territories. The Bluefish Member consists of dark brown to black laminated shales with total organic matter content in the 1.8-8.0 wt % range. The basal part of the Member, characterized by the presence of low diversity macrofossils, was deposited under anaerobic conditions on top of the drowned Hume carbonate platform. The pattern of incorporation of host-shale fragments and tiny inclusions into the fibrous calcite indicates repeated episodes of vein opening and sealing. The [delta][sup 13]C values and the low Mn and Fe contents indicate a dominantly marine source of carbonate ions was related to the dissolution of metastable skeletal carbonates in the host shales. The [delta][sup 18]O values suggest precipitation at 30-50[degree]C and burial depths of tens to hundreds of meters. The formation of finely crystalline non-stoichiometric Ca-rich dolomite disseminated in the shale inclusions occurred subsequent to the emplacement of fibrous calcite veins under elevated burial temperatures. 54 refs., 8 figs., 3 tabs.

  5. Structural basis of protein oxidation resistance: a lysozyme study.

    Directory of Open Access Journals (Sweden)

    Marion Girod

    Full Text Available Accumulation of oxidative damage in proteins correlates with aging since it can cause irreversible and progressive degeneration of almost all cellular functions. Apparently, native protein structures have evolved intrinsic resistance to oxidation since perfectly folded proteins are, by large most robust. Here we explore the structural basis of protein resistance to radiation-induced oxidation using chicken egg white lysozyme in the native and misfolded form. We study the differential resistance to oxidative damage of six different parts of native and misfolded lysozyme by a targeted tandem/mass spectrometry approach of its tryptic fragments. The decay of the amount of each lysozyme fragment with increasing radiation dose is found to be a two steps process, characterized by a double exponential evolution of their amounts: the first one can be largely attributed to oxidation of specific amino acids, while the second one corresponds to further degradation of the protein. By correlating these results to the structural parameters computed from molecular dynamics (MD simulations, we find the protein parts with increased root-mean-square deviation (RMSD to be more susceptible to modifications. In addition, involvement of amino acid side-chains in hydrogen bonds has a protective effect against oxidation Increased exposure to solvent of individual amino acid side chains correlates with high susceptibility to oxidative and other modifications like side chain fragmentation. Generally, while none of the structural parameters alone can account for the fate of peptides during radiation, together they provide an insight into the relationship between protein structure and susceptibility to oxidation.

  6. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  7. Exploiting BSA to Inhibit the Fibrous Aggregation of Magnetic Nanoparticles under an Alternating Magnetic Field

    Directory of Open Access Journals (Sweden)

    Ning Gu

    2013-03-01

    Full Text Available The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of γ-Fe2O3 nanoparticles turn into a more isotropic aggregation in the presence of the alternating magnetic field. Also, the heating curves with and without BSA adsorption under different pH conditions were measured to show the influence of the colloidal aggregation states on the collective calorific behavior of magnetic nanoparticles.

  8. Ultrasonographic Localization of Solitary Fibrous Tumor of Pleura: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Tae; Jeon, Yong Sun; Cho, Soon Gu; Kim, Kwang Ho; Lee, Kyung Hee [Inha University School of Medicine, Incheon (Korea, Republic of)

    2010-03-15

    Plain radiography and computed tomography are widely used in the field of chest disease. Yet ultrasonography has a limitation as a diagnostic tool, except in the case of pleural effusion and chest wall lesion. We experienced a case of solitary fibrous tumor of the diaphragmatic pleura, and the origin of this tumor could be exactly localized by ultrasonography, but not by other imaging modalities

  9. Ultrasonographic Localization of Solitary Fibrous Tumor of Pleura: Case Report

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Jeon, Yong Sun; Cho, Soon Gu; Kim, Kwang Ho; Lee, Kyung Hee

    2010-01-01

    Plain radiography and computed tomography are widely used in the field of chest disease. Yet ultrasonography has a limitation as a diagnostic tool, except in the case of pleural effusion and chest wall lesion. We experienced a case of solitary fibrous tumor of the diaphragmatic pleura, and the origin of this tumor could be exactly localized by ultrasonography, but not by other imaging modalities

  10. Thermal-Interaction Matrix For Resistive Test Structure

    Science.gov (United States)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  11. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  12. Magnetic resonance of lipomatous, fibrous and muscular tissue tumors

    International Nuclear Information System (INIS)

    Dippolito, G.; Balzarini, L.; Patrillo, R.; Tess, J.T.; Musumeci, R.

    1991-01-01

    Two hundred and three MR examinations were reviewed of 195 patients with lipomatous, fibrous and muscular tissues tumors which were evaluated at staging or during the follow-up. All examinations were obtained with a 1.5 T superconductive magnet, and both T 1 and T 2 -weighted images were acquired. Its high contrast resolution, its direct multiplanarity and its allowing both T 1 and T 2 -weighted images to be obtained are the mos important characteristics of MR imaging. In our experience, MRI demonstrated a high overall accuracy (94.8%) - 94.1% at restaging alone - with similar sensitivity both at the staging of the disease (97.5%) and during the follow-up (96%). Overall sensibility was 96.3%. MR specificity in histologically proven relapses was 86.8%. Even though it is gradually assessing itself as the most important method in the evaluation of soft tissues masses, MRI allows an histological diagnosis to be made only in lipomatous tumors and in benign fibrous tumors due to their specific signal features. The commonest though specific finding is a soft tissue mass with relatively low signal intensity in T 1 -weighted images. In our opinion, MR imaging is the method of choice during the follow-up of the disease, whereas it is probably a complementary technique in the staging. (author)

  13. Safe-life and damage-tolerant design approaches for helicopter structures

    Science.gov (United States)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  14. Nutritional fibrous osteodystrophy in goats

    Directory of Open Access Journals (Sweden)

    Paulo M Bandarra

    2011-10-01

    Full Text Available Seven out of 25 goats from a southern Brazilian flock developed nutritional fibrous osteodystrophy. Affected animals were younger than 1 year of age and were confined in stalls and fed a concentrate ration containing 1:6 calcium:phosphorus ratio. The remaining flock (35 goats was managed at pasture and showed no disease. Clinical signs were characterized by mandibular and maxillary enlargements, varying degrees of mouth opening and protruding tongue, dyspnea, apart of abnormalities of prehension and mastication. Affected animals had increased seric levels of phosphorus and parathormone, as well as higher alkaline phosphatase activity. Postmortem examination on three succumbed goats revealed bilateral enlargement of the maxilla and mandibula, and loose teeth, apart of multiple incomplete rib fractures in one of them. Severe diffuse proliferation of loose connective tissue surrounded the osteoid trabeculae, many of which were partially or completely non-mineralized. Mineralized osteoid trabeculae showed osteoclasts in the Howship's lacunae.

  15. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    no boundary layer between the fibrous material and bulk liquid, was 5.85 m/d at an air pressure of 27 kPa, which was comparable to that value of the MABR (5.54 m/d). The amount of biomass on the fibrous support with a silicone tube was 2.48 times larger than on the bare silicone. The biomass loss after a high...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  16. A Structural View on Medicinal Chemistry Strategies against Drug Resistance.

    Science.gov (United States)

    Agnello, Stefano; Brand, Michael; Chellat, Mathieu F; Gazzola, Silvia; Riedl, Rainer

    2018-05-30

    The natural phenomenon of drug resistance represents a generic impairment that hampers the benefits of drugs in all major clinical indications. Antibacterials and antifungals are affected as well as compounds for the treatment of cancer, viral infections or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, underlying molecular processes have been identified to understand the emergence of resistance and to overcome this detrimental mechanism. Detailed structural information of the root causes for drug resistance is nowadays frequently available to design next generation drugs anticipated to suffer less from resistance. This knowledge-based approach is a prerequisite in the fight against the inevitable occurrence of drug resistance to secure the achievements of medicinal chemistry in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell

    OpenAIRE

    Dafforn, Tim; Rajendra, Jacindra; Halsall, David J.; Serpell, Louise C.; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the st...

  18. Polyostotic fibrous dysplasia associated with intramuscular myxomas: Mazabraud syndrome

    International Nuclear Information System (INIS)

    Samper Wamba, Jose Daniel; Fernandez Bermudez, Maria Jose; Dominguez, Teresa Lorenzo; Pascua, Luis Ramos

    2015-01-01

    The authors report a new case of Mazabraud syndrome in a 69-year-old woman complaining of pain in her right thigh. Plain radiographs demonstrated radiological findings consistent with polyostotic fibrous dysplasia of the right femur and tibia. Magnetic resonance imaging (MRI) study showed soft tissue tumors located in the vastus intermedius muscle with typical signal features of intramuscular myxomas. Biopsy was not performed because of its benign nature. Symptomatic treatment was prescribed and all the lesions remained 1 year after the diagnosis

  19. Malignant fibrous histiocytoma of pancreas: presentation of a case

    International Nuclear Information System (INIS)

    Garcia Sanchez, M.A.; Serrano Gotarredona, M.P.; Fernandez-Cruz, J.; Marrero Calvo, S.

    1995-01-01

    We present a case of malignant fibrous histiocytoma (MFH) located in the body and tail of the pancreas of a 60-year-old woman. The mass was large, lobulated and well delimited by a pseudocapsule. Pancreatectomy involving the body and tail and splenectomy were performed and the diagnosis was reached on the basis of pathological and immunohistochemical studies. The course was aggressive with local recurrence and liver metastases presenting two months after the operation. The computerized tomography (CT) findings are provided. (Author)

  20. Haematoma-like primary intracranial malignant fibrous histiocytoma in a 5-year-old girl

    International Nuclear Information System (INIS)

    Oezhan, S.; Tali, E.T.; Isik, S.; Saygili, M.R.; Baykaner, K.

    1999-01-01

    We present CT and MRI of an intracranial malignant fibrous histiocytoma in a 5-year-old girl with headache and vomiting. This case is unusual particular by virtue of its radiological appearances and the young age of the patient. (orig.)

  1. Fluorescence microscopy for the evaluation of elastic tissue patterns within fibrous proliferations of the skin on hematoxylin-eosin-stained slides.

    Science.gov (United States)

    Borucki, Robert; Perry, David M; Lopez-Garcia, Dan R; Kazlouskaya, Viktoryia; Elston, Dirk M

    2018-01-05

    Diagnosis of fibrous tumors can be challenging and expensive due to the use of special stains. Determine the usefulness of fluorescence microscopy in the evaluation of elastic pattern on H&E stained slides. A total of 228 slides were evaluated by fluorescence microscopy for elastic tissue patterns and sensitivity and specificity determined for relevant comparisons. Fluorescence microscopy was found to be useful especially in the case of distinguishing dermatofibroma (DF) vs dermatofibrosarcoma protuberans (DFSP) and also dermatomyofibroma (DMF) vs other fibrous tumors. In some cases, excessive background staining made it difficult to interpret. Evaluation of elastic tissue patterns by fluorescence microscopy in fibrous tumors is a cheap and efficient means to further delineate these often challenging tumors. Copyright © 2018. Published by Elsevier Inc.

  2. Flexural Behaviour of Precast Aerated Concrete Panel (PACP with Added Fibrous Material: An Overview

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Noor Hazlin

    2017-01-01

    Full Text Available The usage of precast aerated concrete panel as an IBS system has become the main alternative to conventional construction system. The usage of this panel system contributes to a sustainable and environmental friendly construction. This paper presents an overview of the precast aerated concrete panel with added fibrous material (PACP. PACP is fabricated from aerated foamed concrete with added Polypropylene fibers (PP. The influence of PP on the mechanical properties of PACP are studied and reviewed from previous research. The structural behaviour of precast concrete panel subjected to flexure load is also reviewed. It is found that PP has significant affects on the concrete mixture’s compressive stregth, tensile strength and flexural strength. It is also found that PP manage to control the crack propagation in the concrete panel.

  3. Malignant fibrous histiocytoma of the abdominal wall

    Directory of Open Access Journals (Sweden)

    Arif Aslaner

    2015-01-01

    Full Text Available Malignant fibrous histiocytoma (MFH or undifferentiated pleomorphic sarcoma is a type of malignt neoplasm that arises from any soft tissue and bone involving extremities, abdomen and retroperitoneum. MFH of the external oblique abdominis muscle is rare. Surgical resection of the mass is the treatment of choice depending on the stage of the disease and the invasion depth of the tumor. Radiotherapy, chemotherapy and immunotherapy are the other treatment methods. We present a case of a 71-year old man with the diagnosis of MFH on external oblique muscle which was completely resected. We believe that adjuvant chemoradiotherapy following surgical resection of the tumor was the most appropriate treatment for this disease.

  4. Solitary fibrous tumor arising in an intrathoracic goiter

    DEFF Research Database (Denmark)

    Larsen, Stine Rosenkilde; Godballe, Christian; Krogdahl, Annelise

    2010-01-01

    . CONCLUSION: The histological appearance and immunohistochemical reaction pattern of SFT is characteristic. The entity should be considered when dealing with a spindle cell lesion in the thyroid gland. All cases of this site of origin reported have had a benign clinical course. As only a small number of cases......BACKGROUND: Solitary fibrous tumor (SFT) is a rare spindle cell tumor most often found in the mediastinal pleura. Nineteen cases of SFT arising in the thyroid gland have been reported. We report a case of SFT of the thyroid gland with immunohistochemical and cytogenetic investigation. SUMMARY: A 58...

  5. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo

    International Nuclear Information System (INIS)

    Trivedi, Rikin A.; U-King-Im, Jean-Marie; Graves, Martin J.; Horsley, Jo; Goddard, Martin; Kirkpatrick, Peter J.; Gillard, Jonathan H.

    2004-01-01

    Vulnerable plaques have thin fibrous caps overlying large necrotic lipid cores. Recent studies have shown that high-resolution MR imaging can identify these components. We set out to determine whether in vivo high-resolution MRI could quantify this aspect of the vulnerable plaque. Forty consecutive patients scheduled for carotid endarterectomy underwent pre-operative in vivo multi-sequence MR imaging of the carotid artery. Individual plaque constituents were characterised on MR images. Fibrous-cap and lipid-core thickness was measured on MRI and histology images. Bland-Altman plots were generated to determine the level of agreement between the two methods. Multi-sequence MRI identified 133 corresponding MR and histology slices. Plaque calcification or haemorrhage was seen in 47 of these slices. MR and histology derived fibrous cap-lipid-core thickness ratios showed strong agreement with a mean difference between MR and histology ratios of 0.02 (±0.04). The intra-class correlation coefficient between two readers for measurements was 0.87 (95% confidence interval, 0.73 and 0.93). Multi-sequence, high-resolution MR imaging accurately quantified the relative thickness of fibrous-cap and lipid-core components of carotid atheromatous plaques. This may prove to be a useful tool to characterise vulnerable plaques in vivo. (orig.)

  6. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Rikin A. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospital, Academic Department of Neurosurgery, Cambridge (United Kingdom); U-King-Im, Jean-Marie; Graves, Martin J. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Horsley, Jo; Goddard, Martin [Papworth Hospital, Department of Histopathology, Papworth Everard (United Kingdom); Kirkpatrick, Peter J. [Addenbrooke' s Hospital, Academic Department of Neurosurgery, Cambridge (United Kingdom); Gillard, Jonathan H. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospital, Hills Road, Box 219, Cambridge (United Kingdom)

    2004-09-01

    Vulnerable plaques have thin fibrous caps overlying large necrotic lipid cores. Recent studies have shown that high-resolution MR imaging can identify these components. We set out to determine whether in vivo high-resolution MRI could quantify this aspect of the vulnerable plaque. Forty consecutive patients scheduled for carotid endarterectomy underwent pre-operative in vivo multi-sequence MR imaging of the carotid artery. Individual plaque constituents were characterised on MR images. Fibrous-cap and lipid-core thickness was measured on MRI and histology images. Bland-Altman plots were generated to determine the level of agreement between the two methods. Multi-sequence MRI identified 133 corresponding MR and histology slices. Plaque calcification or haemorrhage was seen in 47 of these slices. MR and histology derived fibrous cap-lipid-core thickness ratios showed strong agreement with a mean difference between MR and histology ratios of 0.02 ({+-}0.04). The intra-class correlation coefficient between two readers for measurements was 0.87 (95% confidence interval, 0.73 and 0.93). Multi-sequence, high-resolution MR imaging accurately quantified the relative thickness of fibrous-cap and lipid-core components of carotid atheromatous plaques. This may prove to be a useful tool to characterise vulnerable plaques in vivo. (orig.)

  7. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth

    International Nuclear Information System (INIS)

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-01-01

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications. (paper)

  8. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Deniz [Department of Engineering Sciences, Middle East Technical University (Turkey); Keskin, Dilek [Department of Engineering Sciences, Middle East Technical University (Turkey); Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University (Turkey); Tezcaner, Ayşen, E-mail: tezcaner@metu.edu.tr [Department of Engineering Sciences, Middle East Technical University (Turkey); Biomaterials and Tissue Engineering Center of Excellence, Middle East Technical University (Turkey)

    2016-12-01

    Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P{sub 80}/CA{sub 20}, P{sub 50}/CA{sub 50}, and P{sub 20}/CA{sub 80}%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10 min. Fiber morphologies of P{sub 50}/CA{sub 50} were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P{sub 20}/CA{sub 80} and P{sub 50}/CA{sub 50} were higher than that of P{sub 80}/CA{sub 20.} After crosslinking strain values of P{sub 50}/CA{sub 50} scaffolds were improved and these scaffolds became more stable. Unlike P{sub 80}/CA{sub 20,} uncrosslinked P{sub 50}/CA{sub 50} and P{sub 20}/CA{sub 80} were not lost in PBS. Among all groups, crosslinked P{sub 50}/CA{sub 50} scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P{sub 50}/CA{sub 50} scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P{sub 50}/CA{sub 50} scaffolds were proposed as candidate cell carriers for bone tissue engineering applications. - Highlights: • Crosslinked 3D electrospun P/CA scaffolds were prepared for the first time. • CA

  9. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  10. Theoretical study of the fibrous capsule tissue growth around a disk-shaped implant

    KAUST Repository

    Djellouli, Rabia; Mahserejian, Shant; Mokrane, A.; Moussaoui, Mohand; Laleg-Kirati, Taous-Meriem

    2012-01-01

    We analyze the mathematical properties of the fibrous capsule tissue concentration around a disk-shaped implant. We establish stability estimates as well as monotonicity results that illustrate the sensitivity of this growth to the biocompatibility index parameters of the implant. In addition, we prove that the growth of the tissue increases exponentially in time toward an asymptotic regime. We also study the mathematical properties of the solution of the inverse problem consisting in the determination of the values of the biocompatibility index parameters from the knowledge of some fibrous capsule tissue measurements. We prove that this model calibration problem admits a unique solution, and establish a characterization of the index parameters. Furthermore, we demonstrate analytically that such a solution is not continuous with respect to the data, and therefore the considered inverse problem is ill-posed due to the lack of the stability requirement. © 2012 Springer-Verlag.

  11. Theoretical study of the fibrous capsule tissue growth around a disk-shaped implant

    KAUST Repository

    Djellouli, Rabia

    2012-08-19

    We analyze the mathematical properties of the fibrous capsule tissue concentration around a disk-shaped implant. We establish stability estimates as well as monotonicity results that illustrate the sensitivity of this growth to the biocompatibility index parameters of the implant. In addition, we prove that the growth of the tissue increases exponentially in time toward an asymptotic regime. We also study the mathematical properties of the solution of the inverse problem consisting in the determination of the values of the biocompatibility index parameters from the knowledge of some fibrous capsule tissue measurements. We prove that this model calibration problem admits a unique solution, and establish a characterization of the index parameters. Furthermore, we demonstrate analytically that such a solution is not continuous with respect to the data, and therefore the considered inverse problem is ill-posed due to the lack of the stability requirement. © 2012 Springer-Verlag.

  12. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system.

    Science.gov (United States)

    Tiwari, Pranav; Agarwal, Sakshi; Srivastava, Sachchidanand; Jain, Shilpee

    2018-01-01

    Thermal therapy combined with chemotherapy is one of the advanced and efficient methods to eradicate cancer. In this work, we fabricated magnetically actuated smart textured (MAST) fibrous systems and studied their candidacy for cancer treatment. The polycaprolactone-Fe 3 O 4 based MAST fibers were fabricated using electrospinning technique. These MAST fibrous systems contained carbogenic quantum dots as a tracking agent and doxorubicin hydrochloride anticancer drug. Additionally, as fabricated MAST fibrous systems were able to deliver anticancer drug and heat energy simultaneously to kill HeLa cells in a 10 min period in vitro. After treatment, the metabolic activity and morphology of HeLa cells were analyzed. In addition, the mechanism of cell death was studied using flow cytometry. Interestingly, the navigation of these systems in the fluid can be controlled with the application of gradient magnetic field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 40-51, 2018. © 2016 Wiley Periodicals, Inc.

  13. Angiomatoid fibrous histiocytoma in a 25-year-old male

    Directory of Open Access Journals (Sweden)

    David Dingli

    2010-06-01

    Full Text Available Angiomatoid fibrous histiocytoma (AFH is a rare disease that is often misdiagnosed initially. Patients can present with a clinical picture concerning for other diseases, and pathologic review is not always revealing. Molecular diagnostics are increasingly being utilized to detect gene fusions characteristic for AFH. Surgery remains the mainstay of management, and can effectively control local recurrences and metastases. Herein we describe a case report of a 25-year-old gentleman whose presentation was concerning for lymphoma. Subsequently we review of the relevant literature.

  14. [Structural features of the pulp ground substance and its significance for acute and chronic pulpitis].

    Science.gov (United States)

    Davarashvili, Capital Ka Cyrillich; Dgebuadze, M; Melikadze, E; Zhvitiashvili, T; Jandieri, K

    2012-12-01

    The goal of the research study is an analysis of amorphous material, fibers and cellular elements of the dental pulp and evaluation of their interactions with a variety of fibrouse structures in the norm and inflammation. To solve this problem used dental pulp tissue bioptats (10 cases) of patients with acute and chronic pulpitis and 10 control specimens (orthodontic operations). The material was studied by histological and electron microscopic methods of research. It was determined that in acute pulpitis develope changes promoting dissociation of fibrouse and cellular structures of pulp components, and thus, loss the cementing binding role of the ground substance. Acute pulpitis characterized by the recruitment of mast cells. ; The reorganization and remodeling of ground substance associated with neoangiogenesis, especially capillaries, and the replacement of collagen fibers by the fibrouse structures are major points in chronic pulpitis.

  15. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae.

    Science.gov (United States)

    Vedithi, Sundeep Chaitanya; Malhotra, Sony; Das, Madhusmita; Daniel, Sheela; Kishore, Nanda; George, Anuja; Arumugam, Shantha; Rajan, Lakshmi; Ebenezer, Mannam; Ascher, David B; Arnold, Eddy; Blundell, Tom L

    2018-03-22

    The rpoB gene encodes the β subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.

  16. Uncommon presentation of a rare tumour - incidental finding in an asymptomatic patient: case report and comprehensive review of the literature on intrapericardial solitary fibrous tumours

    OpenAIRE

    Czimbalmos, Csilla; Csecs, Ibolya; Polos, Miklos; Bartha, Elektra; Szucs, Nikolette; Toth, Attila; Maurovich-Horvat, Pal; Becker, David; Sapi, Zoltan; Szabolcs, Zoltan; Merkely, Bela; Vago, Hajnalka

    2017-01-01

    Background A solitary fibrous tumour is a rare, mainly benign spindle cell mesenchymal tumour most commonly originating from the pleura. An intrapericardial location of a solitary fibrous tumour is extremely unusual. We present a case of an asymptomatic patient with a slow-growing massive benign cardiac solitary fibrous tumour. Case presentation A 37-year-old asymptomatic female patient was referred to our hospital with an enlarged cardiac silhouette found on her screening chest X-ray. The ec...

  17. Renal malignant solitary fibrous tumor with single lymph node involvement: report of unusual metastasis and review of the literature

    Directory of Open Access Journals (Sweden)

    Mearini E

    2014-05-01

    Full Text Available Ettore Mearini,1 Giovanni Cochetti,1 Francesco Barillaro,1 Sonia Fatigoni,2 Fausto Roila2 1Department of Medical-Surgical Specialties and Public Health, Division of Urological Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Terni, Italy; 2Medical Oncology, S Maria Hospital, Terni, Italy Abstract: Solitary fibrous tumors are rare mesenchymal spindle cell neoplasms that are usually found in the pleura. The kidneys are an uncommon site and only few cases of renal solitary fibrous tumor exhibit malignant behavior metastasizing to the liver, lung, and bone through the hematogenous pathway. Purpose: To describe the first case of lymph node metastasis from renal solitary fibrous tumor in order to increase the knowledge about the malignant behavior of these tumors. Patients and methods: A 19-year-old female patient had intermittent hematuria for several months without flank pain or other symptoms. A chest and abdomen CT scan was performed and showed a multi-lobed bulky solid mass of 170 × 98 × 120 mm in the left kidney. One day before the surgery, the left renal artery was catheterized and the kidney embolization was performed using a Haemostatic Absorbable Gelatin Sponge and polyvinyl alcohol. We then performed a radical nephrectomy with hilar, para-aortic, and inter-aortocaval lymphadenectomy. Results: Estimated intraoperative blood loss was 200 mL and the operative time was 100 minutes. No postoperative complications occurred. The hospital stay was 7 days long. The histological examination was malignant solitary fibrous tumor of the kidney. Cancerous tissue showed cellular atypia, with an increased mitotic index (up to 7 × 10 hpf. Immunohistochemical analysis showed positive results for CD34, BCL2, partial expression of HBME1, and occasionally of synaptophysin. Histological evaluation confirmed the presence of metastasis in one hilar node. The patient did not receive any other therapy. At 30-month follow-up, the

  18. Shepherd's Crook Deformity of Polyostotic Fibrous Dysplasia Treated with Corrective Osteotomy and Dynamic Hip Screw

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chen

    2005-07-01

    Full Text Available Fibrous dysplasia, a condition in which the skeleton fails to develop normally, is characterized by fibroblastic stroma and immature bone. Bowing of the long bones occurs frequently in the polyostotic form, and stress fractures often result. Shepherd's crook deformity is a characteristic feature of fibrous dysplasia. The goal of its treatment is to obtain normal walking ability and relieve pain due to pathologic fracture secondary to the deformity; however, correction of the deformity is a surgical challenge. We present 2 cases of shepherd's crook deformity treated with corrective osteotomy and a dynamic hip screw. Both cases showed good bone healing and no recurrent deformity. The gross deformities were corrected, and both patients were pain-free after operation.

  19. A solitary fibrous tumor of the kidney

    Directory of Open Access Journals (Sweden)

    Anuruddha M Abeygunasekera

    2015-01-01

    Full Text Available A solitary fibrous tumor (SFT is an uncommon spindle cell neoplasm that usually occurs in the pleura, but may occur in extrapleural sites. Its occurrence in the kidney is rare. We report a SFT, clinically thought to be a renal cell carcinoma arising in the kidney of a 68-year-old female. The tumor was well-circumscribed and composed of a mixture of spindle cells and dense collagenous bands. Immunohistochemical studies revealed reactivity for CD34, CD99, and Bcl-2 protein, with no staining for keratin or muscle markers, confirming the diagnosis. The immunohistochemical study was the key to diagnosis. Several younger members of her family had colorectal and lung cancers suggesting the possibility of a familial or genetic susceptibility.

  20. la dysplasie fibreuse du rocher fibrous dysplasia of the temporal bone

    African Journals Online (AJOL)

    view of the disease and its manifestations in the temporal bone. Ann. OtolRhinolLaryngol 1982;92(Suppl.): 1–52. 5- Papadakis CE, Skoulakis CE, Propakapis EP, et al. Fibrous dyspla- sia of the temporal bone: report of a case and review of its characteris- tics. Ear Nose Throat J, 2000;79:52–57. 6- Yang H, Chen S, Zheng Y, ...

  1. Solitary fibrous tumor of the orbit presenting in pregnancy

    Directory of Open Access Journals (Sweden)

    Das Jayanta

    2009-01-01

    Full Text Available A 32-year-old woman, three months pregnant, reported with the complaint of protrusion of the right eye for six months. She gave history of rapid protrusion of eyeball for the last two months along with the history of double vision for the last one month. Computer tomography (CT scan revealed a well-defined mass lesion in the intraconal space of the right orbit which was excised through a lateral orbitotomy approach. Histological examination and immunohistochemistry revealed a solitary fibrous tumor, which showed a rapid progression in pregnancy.

  2. Intradural Solitary Fibrous Tumor of the Lumbar Spine: A Distinctive Case Report

    Directory of Open Access Journals (Sweden)

    Recep Basaran

    2015-01-01

    Full Text Available Background. Solitary fibrous tumors are ubiquitous mesenchymal neoplasms of putative fibroblastic origin. They were originally described in the pleura but subsequently have been reported in many extraserosal sites. Solitary fibrous tumors may also occur in the meninges, central nervous system parenchyma, and spinal cord. Case. A 67-year-old male patient with progressive lower extremity weakness, urinary urgency, and sexual dysfunction has been admitted to our hospital. On his lumbar MRI, we detected an intradural lesion posterior to the L3 vertebral corpus. We resected the lesion by L3 total laminectomy. Immunohistological findings revealed strong and diffuse immunopositivity with vimentin, CD34, and bcl-2. Ki-67 proliferation index was 5–8%. We did not detect any recurrence 12 months after his operation. Conclusion. SFT is mostly seen in young and middle-aged patients and should be considered among differential diagnosis in cases suffering from pain, hypoesthesia, and urinary dysfunction. Gross total resection should be primary treatment. Tumors that have high Ki-67 labeling should be followed up for potential recurrences.

  3. Assessment of carotid plaque vulnerability using structural and geometrical determinants

    International Nuclear Information System (INIS)

    Li, Z.Y.; Tang, T.; U-King-Im, J.; Graves, M.; Gillard, J.H.; Sutcliffe, M.

    2008-01-01

    Because many acute cerebral ischemic events are caused by rupture of vulnerable carotid atheroma and subsequent thrombosis, the present study used both idealized and patient-specific carotid atheromatous plaque models to evaluate the effect of structural determinants on stress distributions within plaque. Using a finite element method, structural analysis was performed using models derived from in vivo high-resolution magnetic resonance imaging (MRI) of carotid atheroma in 40 non-consecutive patients (20 symptomatic, 20 asymptomatic). Plaque components were modeled as hyper-elastic materials. The effects of varying fibrous cap thickness, lipid core size and lumen curvature on plaque stress distributions were examined. Lumen curvature and fibrous cap thickness were found to be major determinants of plaque stress. The size of the lipid core did not alter plaque stress significantly when the fibrous cap was relatively thick. The correlation between plaque stress and lumen curvature was significant for both symptomatic (p=0.01; correlation coefficient: 0.689) and asymptomatic patients (p=0.01; correlation coefficient: 0.862). Lumen curvature in plaques of symptomatic patients was significantly larger than those of asymptomatic patients (1.50±1.0 mm -1 vs 1.25±0.75 mm -1 ; p=0.01). Specific plaque morphology (large lumen curvature and thin fibrous cap) is closely related to plaque vulnerability. Structural analysis using high-resolution MRI of carotid atheroma may help in detecting vulnerable atheromatous plaque and aid the risk stratification of patients with carotid disease. (author)

  4. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  5. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    International Nuclear Information System (INIS)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-01-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  6. Compressibility of air in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    The dynamic compressibility of air in fibrous materials has been computed for two assumed configurations of fibers which are close to the geometry of real fiber materials. Models with parallel cylinders placed in a regular square lattice and placed randomly are treated. For these models...... the compressibility is computed approximately from the diameter and mean distances between cylinders. This requires calculation of the air temperature, which is calculated for cylinders in a regular lattive by the Wigner-Seitz cell approximation. In the case of random placement, the calculation is done by a summation...... over thermal waves from all fibers, and by a self-consistent procedure. Figuren of the compressibility in the frequency range 10-100 000 Hz, are given for diameter of the cylinders of 6.8 µm, and mean distances between them from 50 to 110 µm, which corresponds to glass wool with a density of 40 to 16...

  7. Modeling of the coupled radiative and conductive heat transfer within fibrous media at high temperature

    International Nuclear Information System (INIS)

    Dauvois, Yann

    2016-01-01

    In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr

  8. Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions.

    Science.gov (United States)

    Xiao, Wenwu; Li, Qingtao; He, Huimin; Li, Wenxiu; Cao, Xiaodong; Dong, Hua

    2018-03-14

    Precise manipulation of biomolecule distribution and functions via biomolecule-matrix interaction is very important and challenging for tissue engineering and regenerative medicine. As a well-known biomimetic matrix, electrospun fibers often lack the unique spatial complexity compared to their natural counterparts in vivo and thus cannot deliver fully the regulatory cues to biomolecules. In this paper, we report a facile and reliable method to fabricate micro- and nanostructured poly(l-lactic acid) (PLLA) fibrous matrices with spatial complexity by a combination of advanced electrospinning and agarose hydrogel stamp-based micropatterning. Specifically, advanced electrospinning is used to construct multi-nanostructures of fibrous matrices while solvent-loaded agarose hydrogel stamps are used to create microstructures. Compared with other methods, our method shows extreme simplicity and flexibility originated from the mono-/multi-spinneret conversion and limitless micropatterns of agarose hydrogel stamps. Three types of PLLA fibrous matrices including patterned nano-Ag/PLLA hybrid fibers, patterned bicompartment polyethylene terephthalate/PLLA fibers, and patterned hollow PLLA fibers are fabricated and their capability to manipulate biomolecule distribution and functions, that is, bacterial distribution and antibacterial performance, cell patterning and adhesion/spreading behaviors, and protein adsorption and delivery, is demonstrated in detail. The method described in our paper provides a powerful tool to restore spatial complexity in biomimetic matrices and would have promising applications in the field of biomedical engineering.

  9. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  10. Malignant fibrous histiocytoma of the urinary bladder as a post-radiation secondary cancer: a case report

    Directory of Open Access Journals (Sweden)

    Nimmanon Thirayost

    2011-11-01

    Full Text Available Abstract Introduction Malignant fibrous histiocytomas have been periodically reported as the primary tumor in various organs including the urinary bladder, and is the second most frequent sarcoma of the urinary tract in adults. This report discusses a case of the well established diagnosis of a malignant fibrous histiocytoma of the bladder occurring as a post-radiation cancer after the treatment of a cervical carcinoma. Our findings support those of many previous studies and make the view of the nature of the disease clearer. Case presentation We report the case of a 54-year-old Thai woman who had been treated with radiation therapy for cervical cancer, who presented to our facility with urinary incontinence. Initially, our patient was diagnosed as having a high-grade urothelial carcinoma. Subsequent radical surgery rendered the final pathological diagnosis, confirmed histologically and immunohistochemically as malignant fibrous histiocytoma, with clinical and pathological staging of T4b N0 M0. Adjuvant chemotherapy was provided for our patient. Conclusions This type of malignancy is very aggressive and easily misdiagnosed due to its rarity. Therefore, in a patient with a prior history of irradiation in the pelvic area, this should be considered as a differential diagnosis to ensure early correct diagnosis and treatment.

  11. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  12. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  13. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    International Nuclear Information System (INIS)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min; Lee, Hyunjung

    2014-01-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq

  14. CT of the "Tegernsee Giant": juvenile gigantism and polyostotic fibrous dysplasia.

    Science.gov (United States)

    Vogl, T J; Nerlich, A; Dresel, S H; Bergman, C

    1994-01-01

    We report the radiological findings in the unusual case of the Bavarian "Tegernsee Giant." With conventional radiography, CT, and histologic examination, we succeeded in diagnosing two disorders: The Tegernsee Giant suffered from (a) juvenile gigantism caused by a growth hormone-secreting tumor of the pituitary gland and (b) a polyostotic form of fibrous dysplasia of the skull and multiple bones particularly on the left side of the body.

  15. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  16. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Ghoneim, Mohamed T.; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-01-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  17. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  18. Buried Man-made Structure Imaging using 2-D Resistivity Inversion

    Science.gov (United States)

    Anderson Bery, Andy; Nordiana, M. M.; El Hidayah Ismail, Noer; Jinmin, M.; Nur Amalina, M. K. A.

    2018-04-01

    This study is carried out with the objective to determine the suitable resistivity inversion method for buried man-made structure (bunker). This study was carried out with two stages. The first stage is suitable array determination using 2-D computerized modeling method. One suitable array is used for the infield resistivity survey to determine the dimension and location of the target. The 2-D resistivity inversion results showed that robust inversion method is suitable to resolve the top and bottom part of the buried bunker as target. In addition, the dimension of the buried bunker is successfully determined with height of 7 m and length of 20 m. The location of this target is located at -10 m until 10 m of the infield resistivity survey line. The 2-D resistivity inversion results obtained in this study showed that the parameters selection is important in order to give the optimum results. These parameters are array type, survey geometry and inversion method used in data processing.

  19. Keratins are the widely distributed fibrous proteins of our ...

    African Journals Online (AJOL)

    SAJID DANWAR

    2013-01-17

    Jan 17, 2013 ... Keratins, due to the presence of the disulfide linkages, coiled-coil in the structure, hydrophobic interactions, and hydrogen bonds, are highly resistant to acids and some protease enzymes ..... (2010) where slight reduction in.

  20. The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint

    Science.gov (United States)

    Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero

    2014-01-01

    This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947

  1. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  2. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  3. Report of a Rare Case of Malignant Fibrous Histiocytoma of Mandible

    Directory of Open Access Journals (Sweden)

    Fatemeh Ahmadi-Motamayel

    Full Text Available Introduction: Malignent Fibrous Histiocytoma (MFH is the most frequent soft tissue sarcoma of adulthood. The most common sites affected by MFH are limbs, orbit, retroperitoneum, pelvis and knee. Oral cavity and mandible involvements are very rare. Case Report: A 35-year-old male was visited in the oral medicine department of Hamadan dental school with the chief complaint of pain and teeth mobility. The patient also had a history of paresthesia in lower lip for two monthes. In intraoral examination, there was a crater like, deep and disseminated ulcer in lower buccal and ligual gingiva of right mandibular teeth and exophitic lesion with smooth surface, and color similar to normal mucosa with 2×2×3 cm in diameter in buccal and lingual part of right lateral and central teeth extended to left second premolar was observed. Gingival resorption was observed in all adjascent teeth. There was radiolucency with irregular border in all part of lesion. MFH was confirmed by histopathological report.Conclusion: The most common complaint of patients with malignant fibrous histiocytoma is the growing mass that could be ulcerative or painful. Early diagnosis and referral is very important in prognosis and survival of the patients.

  4. Solving RNA's structural secrets: interaction with antibodies and crystal structure of a nuclease resistant RNA

    International Nuclear Information System (INIS)

    Wallace, S.T.

    1998-10-01

    This Ph.D. thesis concerns the structural characterization of RNA. The work is split into two sections: 1) in vitro selection and characterization of RNAs which bind antibiotics and 2) crystal structure of a nuclease resistant RNA molecule used in antisense applications. Understanding antibiotic-RNA interactions is crucial in aiding rational drug design. We were interested in studying antibiotic interactions with RNAs small enough to characterize at the molecular and possibly at the atomic level. In order to do so, we previously performed in vitro selection to find small RNAs which bind to the peptide antibiotic viomycin and the aminoglycoside antibiotic streptomycin. The characterization of the viomycin-binding RNAs revealed the necessity of a pseudoknot-structure in order to interact with the antibiotic. The RNAs which were selected to interact with streptomycin require the presence of magnesium to bind the antibiotic. One of the RNAs, upon interacting with streptomycin undergoes a significant conformational change spanning the entire RNA sequence needed to bind the antibiotic. In a quest to design oligodeoxynucleotides (ODNs) which are able to specifically bid and inactivate the mRNA of a gene, it is necessary to fulfill two criteria: 1) increase binding affinity between the ODN and the target RNA and 2) increase the ODN's resistance to nuclease degradation. An ODN with an aminopropyl modification at the 2' position of its ribose has emerged as the most successful candidate at fulfilling both criteria. It is the most nuclease resistant modification known to date. We were interested in explaining how this modification is able to circumvent degradation by nucleases. A dodecamer containing a single 2'-O-aminopropyl modified nucleotide was crystallized and the structure was solved to a resolution of 1.6 A. In an attempt to explain the nuclease resistance, the crystal coordinates were modeled into the active exonuclease site of DNA polymerase I. We propose the

  5. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.

    Science.gov (United States)

    Vickers, Anna A; Potter, Nicola J; Fishwick, Colin W G; Chopra, Ian; O'Neill, Alex J

    2009-06-01

    This study sought to expand knowledge on the molecular mechanisms of mutational resistance to trimethoprim in Staphylococcus aureus, and the fitness costs associated with resistance. Spontaneous trimethoprim-resistant mutants of S. aureus SH1000 were recovered in vitro, resistance genotypes characterized by DNA sequencing of the gene encoding the drug target (dfrA) and the fitness of mutants determined by pair-wise growth competition assays with SH1000. Novel resistance genotypes were confirmed by ectopic expression of dfrA alleles in a trimethoprim-sensitive S. aureus strain. Molecular models of S. aureus dihydrofolate reductase (DHFR) were constructed to explore the structural basis of trimethoprim resistance, and to rationalize the observed in vitro fitness of trimethoprim-resistant mutants. In addition to known amino acid substitutions in DHFR mediating trimethoprim resistance (F(99)Y and H(150)R), two novel resistance polymorphisms (L(41)F and F(99)S) were identified among the trimethoprim-resistant mutants selected in vitro. Molecular modelling of mutated DHFR enzymes provided insight into the structural basis of trimethoprim resistance. Calculated binding energies of the substrate (dihydrofolate) for the mutant and wild-type enzymes were similar, consistent with apparent lack of fitness costs for the resistance mutations in vitro. Reduced susceptibility to trimethoprim of DHFR enzymes carrying substitutions L(41)F, F(99)S, F(99)Y and H(150)R appears to result from structural changes that reduce trimethoprim binding to the enzyme. However, the mutations conferring trimethoprim resistance are not associated with fitness costs in vitro, suggesting that the survival of trimethoprim-resistant strains emerging in the clinic may not be subject to a fitness disadvantage.

  6. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  7. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  8. Doege-Potter syndrome presenting with hypoinsulinemic hypoglycemia in a patient with a malignant extrapleural solitary fibrous tumor: a case report

    Directory of Open Access Journals (Sweden)

    Schutt Robert C

    2013-01-01

    Full Text Available Abstract Introduction Doege-Potter syndrome is a paraneoplastic syndrome characterized by non-islet cell tumor hypoglycemia secondary to a solitary fibrous tumor. This tumor causes hypoglycemia by the secretion of a prohormone form of insulin-like growth factor II. We describe the diagnosis and management of Doege-Potter syndrome and the use of transarterial chemoembolization in a patient with a malignant extrapleural solitary fibrous tumor. Case presentation Our patient was a 64-year-old Caucasian woman who initially presented with urinary incontinence and was found to have a 14.5×9.0×9.0cm retroperitoneal solitary fibrous tumor compressing her bladder. Her tumor was surgically resected but recurred with multiple hepatic metastatic lesions. The hepatic metastases progressed despite systemic chemotherapy and treatment with doxorubicin transarterial chemoembolization. Her course was complicated by the development of recurrent fasting hypoglycemia, most likely secondary to Doege-Potter syndrome. Her hypoglycemia was managed with corticosteroid therapy and frequent scheduled nutrient intake overnight. Conclusions The rarity of hepatic solitary fibrous tumors and consequent lack of controlled trials make this report significant in that it describes the diagnostic approach to Doege-Potter syndrome, describes our experience with the use of doxorubicin transarterial chemoembolization, and presents management options for tumor-associated hypoglycemia in the case of extensive disease not amenable to surgical resection.

  9. Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow

    Directory of Open Access Journals (Sweden)

    Nathan Brent Chancellor

    2014-09-01

    Full Text Available Structures designed in accordance with even the most modern buildings codes are expected to sustain damage during a severe earthquake; however; these structures are expected to protect the lives of the occupants. Damage to the structure can require expensive repairs; significant business downtime; and in some cases building demolition. If damage occurs to many structures within a city or region; the regional and national economy may be severely disrupted. To address these shortcomings with current seismic lateral force resisting systems and to work towards more resilient; sustainable cities; a new class of seismic lateral force resisting systems that sustains little or no damage under severe earthquakes has been developed. These new seismic lateral force resisting systems reduce or prevent structural damage to nonreplaceable structural elements by softening the structural response elastically through gap opening mechanisms. To dissipate seismic energy; friction elements or replaceable yielding energy dissipation elements are also included. Post-tensioning is often used as a part of these systems to return the structure to a plumb; upright position (self-center after the earthquake has passed. This paper summarizes the state-of-the art for self-centering seismic lateral force resisting systems and outlines current research challenges for these systems.

  10. Fibrous harmatoma of infancy in the scrotum: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Kim, Kyu Soon; Kang, Dong Wook; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-02-15

    Fibrous hamartoma of infancy (FHI) is a rare, benign subcutaneous tumor occurring mainly before the age of 2 years. The most commonly reported locations of FHI are the extremities such as the shoulder or axilla. However, FHI arising in the genital area is extremely rare and has not been reported with correlated radiologic findings. In this case report, we present a case of 5-month-old male child diagnosed with FHI in the scrotum, with a focus on the correlation between the radiologic and pathologic findings.

  11. A malignant fibrous histiocytoma after radical mastectomy with radiotherapy. A case report

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Tokuda, Yutaka; Kimura, Tomihiko; Tajima, Tomoo; Mitomi, Toshio; Osamura, Yoshiyuki

    1996-01-01

    A rare case of radiation induced malignant fibrous histiocytoma is presented. A 57-year-old woman noticed a rapidly enlarging tumor with itch in the left supraclavicular region and visited another hospital. There was a previous history of undergoing a radical mastectomy with radiotherapy for a left breast cancer at elsewhere (no clear information on clinical stage and dose of radiation was obtained). The patient was referred to the hospital. On admission a 10 x 8 cm tumor in the left supraclavicular region was noted. The tumor had lobulated surface to bleed easily and fixed to the clavicle. Thoracic CT and MRI revealed a hypervascular tumor destroying the clavicle. Angiography showed keterogenous vascularity of the tumor vis the transverse and ascending cervical arteries. We carried out wide resection of the tumor with the clavicle and reconstructed with a left lattisimus dorsi flap. Since the tumor was composed of atypical fibroblasts and histiocytes. It was diagnosed as radiation induced malignant fibrous histiocytoma. After operation, inflammation of the flap and dyskinesia of the left upper extremity occurred, but were managed conservatively. There has been no sign of recurrence as of 2 years and 8 months after the operation. (author)

  12. In situ degradability of dry matter and fibrous fraction of sorghum silage

    Directory of Open Access Journals (Sweden)

    Renê Ferreira Costa

    2016-05-01

    Full Text Available This study aimed to evaluate in situ degradability and degradation kinetics of DM, NDF and ADF of silage, with or without tannin in the grains. Two isogenic lines of grain sorghum (CMS-XS 114 with tannin and CMS-XS 165 without tannin and two sorghum hybrids (BR-700 dual purpose with tannin and BR-601 forage without tannin were ensiled; dried and ground silage samples were placed in nylon bags and introduced through the fistulas. After incubation for 6, 12, 24, 48, 72 and 96 hours, bags were taken for subsequent analysis of fibrous fractions. The experimental design was completely randomized with 4 replicates and 4 treatments and means compared by Tukey’s test at 5% probability. As for the DM degradation rate, silage of CMSXS165without tannin was superior. Silages of genotypes BR700 and CMSXS 114 with tannin showed the highest values of indigestible ADF (59.54 and 43.09%. Regarding the NDF, the potential degradation of silage of CMSXS165 line without tannin was superior. Tannin can reduce ruminal degradability of the dry matter and fibrous fractions.

  13. Solitary fibrous tumor of the pleura presenting with syncope episodes when coughing

    Directory of Open Access Journals (Sweden)

    Ciulla Michele M

    2008-08-01

    Full Text Available Abstract Background Solitary fibrous tumor of the pleura is a rarely encountered clinical entity which may have different clinical pictures. Although the majority of these neoplasms have a benign course, the malignant form has also been reported. Case presentation We herein describe a case of 72 year-old man with head, facial, and thoracic traumas caused by neurally-mediated situational syncope when coughing. The diagnostic work-up including chest x-ray, CT and PET, revealed a large solitary mass of the left hemithorax. Radical surgical resection of the mass was performed through a left lateral thoracotomy and completed with a wedge resection of the lingula. Hystological examination of the surgical specimen showed an encapsulated mass measuring 12 × 11.5 × 6 cm consistent with a solitary fibrous tumor of the pleura. It's surgical removal definitively resolved the neurologic manifestations. The patient had no postoperative complications. At two years follow-up the patient is free from recurrence and without clinical manifestations. Conclusion In our case its resection definitively resolved the episodes of situational syncope due, in our opinion, to the large thoracic mass compressing the phrenic nerve

  14. A long-distance fluid transport pathway within fibrous connective tissues in patients with ankle edema.

    Science.gov (United States)

    Li, Hongyi; Yang, Chongqing; Lu, Kuiyuan; Zhang, Liyang; Yang, Jiefu; Wang, Fang; Liu, Dongge; Cui, Di; Sun, Mingjun; Pang, Jianxin; Dai, Luru; Han, Dong; Liao, Fulong

    2016-10-05

    Although the microcirculatory dysfunctions of edema formation are well documented, the draining pattern of dermal edema lacks information. This study was to assess the potential drainage pathways of the interstitial fluid in patients with ankle edema using the anatomical and histological methods. Four amputees of lower leg participated in this study. Fluorescent imaging agent was injected into lateral ankle dermis in one volunteered patient before the amputation and three lower legs after the amputation. Physiologically in the volunteer or enhanced by cyclical compression on three amputated limbs, several fluorescent longitudinal pathways from ankle dermis to the broken end of the amputated legs were subsequently visualized and studied using histological methods, laser confocal microscopy and electron microscopy methods respectively. Interestingly, the fluorescent pathways confirmed to be fibrous connective tissues and the presence of two types: those of the cutaneous pathway (located in dermis or the interlobular septum among adipose tissues within the hypodermis) and those of the perivascular pathway (located in connective tissues surrounding the veins and the arteries). The intrinsic three-dimensional architecture of each fluorescent pathway was the longitudinally running and interconnected fibril bundles, upon which, an interfacial transport pathway within connective tissues was visualized by fluorescein. The current anatomical data suggested that a unique long-distance transport pathway composed of oriented fibrous connective tissues might play a pathophysiological role in draining dermal edema besides vascular circulations and provide novel understandings of general fibrous connective tissues in life science.

  15. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  16. Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Mao, Rui; Peijs, Ton

    2017-01-01

    Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...

  17. Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance.

    Directory of Open Access Journals (Sweden)

    Vicky Goler-Baron

    2011-01-01

    Full Text Available Multidrug resistance (MDR is a major impediment to curative cancer chemotherapy. The ATP-Binding Cassette transporters ABCG2, ABCB1 and ABCC2 form a unique defense network against multiple structurally and functionally distinct chemotherapeutics, thereby resulting in MDR. Thus, deciphering novel mechanisms of MDR and their overcoming is a major goal of cancer research. Recently we have shown that overexpression of ABCG2 in the membrane of novel extracellular vesicles (EVs in breast cancer cells results in mitoxantrone resistance due to its dramatic sequestration in EVs. However, nothing is known about EVs structure, biogenesis and their ability to concentrate multiple antitumor agents. To this end, we here found that EVs are structural and functional homologues of bile canaliculi, are apically localized, sealed structures reinforced by an actin-based cytoskeleton and secluded from the extracellular milieu by the tight junction proteins occludin and ZO-1. Apart from ABCG2, ABCB1 and ABCC2 were also selectively targeted to the membrane of EVs. Moreover, Ezrin-Radixin-Moesin protein complex selectively localized to the border of the EVs membrane, suggesting a key role for the tethering of MDR pumps to the actin cytoskeleton. The ability of EVs to concentrate and sequester different antitumor drugs was also explored. Taking advantage of the endogenous fluorescence of anticancer drugs, we found that EVs-forming breast cancer cells display high level resistance to topotecan, imidazoacridinones and methotrexate via efficient intravesicular drug concentration hence sequestering them away from their cellular targets. Thus, we identified a new modality of anticancer drug compartmentalization and resistance in which multiple chemotherapeutics are actively pumped from the cytoplasm and highly concentrated within the lumen of EVs via a network of MDR transporters differentially targeted to the EVs membrane. We propose a composite model for the structure and

  18. Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2013-01-01

    The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.

  19. Displasia fibrosa do clivus: relato de caso Fibrous dysplasia of the clivus: case report

    Directory of Open Access Journals (Sweden)

    Asdrubal Falavigna

    2006-06-01

    Full Text Available Relatamos o caso de uma paciente de 43 anos com história de cefaléia crônica e diplopia. O exame neurorradiológico demonstrou aumento de volume e alteração na densidade óssea do clivus. Foi submetida a cirurgia e o exame anatomopatológico evidenciou displasia fibrosa. Foram relatados na literatura outros 14 casos de displasia fibrosa envolvendo o clivus. Discutimos essa rara apresentação da doença segundo o quadro clínico, exames de imagem, histologia e tratamento.We describe the case of a 43 year-old woman with chronic headache and diplopia. The neurorradiologic exam showed volume increase and alteration in the bone density of the clivus. She was submitted to surgery and the anatomopathologic evidenced fibrous dysplasia. Other 14 of about fibrous dysplasia involving the clivus are related in the literature. We discuss clinical aspects, image exams, histology and treatment of this rare presentation of the disease.

  20. Diode laser surgery versus scalpel surgery in the treatment of fibrous hyperplasia: a randomized clinical trial.

    Science.gov (United States)

    Amaral, M B F; de Ávila, J M S; Abreu, M H G; Mesquita, R A

    2015-11-01

    Fibrous hyperplasia is treated by surgical incision using a scalpel, together with removal of the source of chronic trauma. However, scalpel techniques do not provide the haemostasis that is necessary when dealing with highly vascular tissues. Diode laser surgery can be used in the management of oral tissues due to its high absorption by water and haemoglobin, and has provided good results in both periodontal surgery and oral lesions. The aim of the present study was to compare the effects of diode laser surgery to those of the conventional technique in patients with fibrous hyperplasia. A randomized clinical trial was performed in which surgical and postoperative evaluations were analyzed. On comparison of the laser-treated (study group) patients to those treated with a scalpel (control group), significant differences were observed in the duration of surgery and the use of analgesic medications. Over a 3-week period, clinical healing of the postoperative wound was significantly faster in the control group as compared to the study group. In conclusion, diode laser surgery proved to be more effective and less invasive when compared to scalpel surgery in the management of fibrous hyperplasia. However, wound healing proved to be faster when using scalpel surgery. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. The demosponge Pseudoceratina purpurea as a new source of fibrous chitin.

    Science.gov (United States)

    Żółtowska-Aksamitowska, Sonia; Tsurkan, Mikhail V; Lim, Swee-Cheng; Meissner, Heike; Tabachnick, Konstantin; Shaala, Lamiaa A; Youssef, Diaa T A; Ivanenko, Viatcheslav N; Petrenko, Iaroslav; Wysokowski, Marcin; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil; Ehrlich, Hermann

    2018-06-01

    Among marine demosponges (Porifera: Demospongiae), only representatives of the order Verongiida have been recognized to synthetize both biologically active substances as well as scaffolds-like fibrous skeletons made of structural aminopolysaccharide chitin. The unique 3D architecture of such scaffolds open perspectives for their applications in waste treatment, biomimetics and tissue engineering. Here, we focus special attention to the demosponge Pseudoceratina purpurea collected in the coastal waters of Singapore. For the first time the detailed description of the isolation of chitin from the skeleton of this sponge and its identification using diverse bioanalytical tools were carried out. Calcofluor white staining, FTIR analysis, electrospray ionization mass spectrometry (ESI-MS), SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of alpha-chitin in the skeleton of P. purpurea. We suggest that the discovery of chitin within representatives of Pseudoceratinidae family is a perspective step in evaluation of these verongiid sponges as novel renewable sources for both chitin and biologically active metabolites, which are of prospective use for marine oriented biomedicine and pharmacology, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  3. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    Directory of Open Access Journals (Sweden)

    C. Lekakou

    2011-01-01

    Full Text Available This paper investigates electrochemical double-layer capacitors (EDLCs including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF and a multiwall carbon nanotube (CNT electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance tests. The best separator was a glass fibre-fine pore filter. The carbon woven fabric electrode and the corresponding supercapacitor exhibited superior performance per unit area, whereas the multiwall carbon nanotube electrode and corresponding supercapacitor demonstrated excellent specific properties. The hybrid CWF-CNT electrodes did not show a combined improved performance due to the lack of carbon nanotube penetration into the carbon fibre fabric.

  4. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.

    Science.gov (United States)

    Azeem, Syeda Maryam; Muwonge, Alecia N; Thakkar, Nehaben; Lam, Kristina W; Frey, Kathleen M

    2018-01-01

    Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) is a leading cause of HIV treatment failure. Often included in antiviral therapy, NNRTIs are chemically diverse compounds that bind an allosteric pocket of enzyme target reverse transcriptase (RT). Several new NNRTIs incorporate flexibility in order to compensate for lost interactions with amino acid conferring mutations in RT. Unfortunately, even successful inhibitors such as diarylpyrimidine (DAPY) inhibitor rilpivirine are affected by mutations in RT that confer resistance. In order to aid drug design efforts, it would be efficient and cost effective to pre-evaluate NNRTI compounds in development using a structure-based computational approach. As proof of concept, we applied a residue scan and molecular dynamics strategy using RT crystal structures to predict mutations that confer resistance to DAPYs rilpivirine, etravirine, and investigational microbicide dapivirine. Our predictive values, changes in affinity and stability, are correlative with fold-resistance data for several RT mutants. Consistent with previous studies, mutation K101P is predicted to confer high-level resistance to DAPYs. These findings were further validated using structural analysis, molecular dynamics, and an enzymatic reverse transcription assay. Our results confirm that changes in affinity and stability for mutant complexes are predictive parameters of resistance as validated by experimental and clinical data. In future work, we believe that this computational approach may be useful to predict resistance mutations for inhibitors in development. Published by Elsevier Inc.

  5. Salt-modulated structure formation in a dense calcium caseinate system

    NARCIS (Netherlands)

    Grabowska, K.J.; Goot, van der A.J.; Boom, R.M.

    2012-01-01

    A 30 wt% calcium caseinate dispersion can be transformed in an anisotropic and fibrous structure by applying well-defined flow and enzymatic gelation. The formation of an anisotropic structure is thought to be due to the micellar structure of the caseinate and the mild adhesion between the micelles

  6. A shell approach for fibrous reinforcement forming simulations

    Science.gov (United States)

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  7. High-Throughput Screening of Vascular Endothelium-Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure.

    Science.gov (United States)

    Ding, Yonghui; Floren, Michael; Tan, Wei

    2017-06-01

    Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Malignant fibrous histiocytoma of the mesentery: report of two cases and review of the literature.

    Science.gov (United States)

    Basso, L; Pisanelli, M Codacci; Bovino, A; Vietri, F; D'Ermo, G; De Toma, G

    2005-01-01

    Malignant Fibrous Histiocytoma (MFH) rarely affects the abdomen and only a few cases arising in the mesentery have to date been discovered. In this paper, two cases of MFH of the mesentery are described and a review of the literature is reported.

  9. A METHOD FOR CREATING STRUCTURES OR DEVICES USING AN ORGANIC ICE RESIST

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a method for creating an organic resist on a surface of a cooled substrate, the method comprising the steps of condensing a vapour into a solid film on the surface of the cooled substrate; patterning at least part of the solid film by exposing selected portions of said...... solid film to at least one electron beam thereby creating the organic resist on 5 the surface of the cooled substrate in accordance with a predetermined pattern; wherein the created organic resist remains essentially intact at ambient conditions; and using the created organic resist as a mask...... for creating semiconductor structures and/or semiconductor devices....

  10. Solitary fibrous tumor of the abdominal wall re-surfacing as unilateral pleural effusion and mass: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Xia Bi

    Full Text Available Background: Solitary fibrous tumors (SFTs are rare fibroblastic mesenchymal neoplasms that were initially described in the pleura, but have been increasingly recognized to occur in other parts of the body. They have been traditionally regarded as indolent tumors that are rare to metastasize after surgical resection. Here, we describe a case of a Filipino female who initially presented with unilateral pleural effusion and mass, and was ultimately diagnosed with recurrent solitary fibrous tumor that originated from the abdominal wall. Then, we reviewed existing literature on intra- and extrathoracic SFTs with focus on pathological characteristics, recommendations for treatment as well as post-treatment surveillance. Case presentation: A 79-year-old Filipino female with a history of solitary fibrous tumor of the abdominal wall status post complete surgical resection 3 years ago presented with unilateral pleural effusion and mass, and was diagnosed with recurrent solitary fibrous tumor that metastasized to the lung. She was not a candidate for systemic chemotherapy and ultimately died 1 year later from progressive respiratory failure. Conclusions: Solitary fibrous tumor are rare mesenchymal tumors that were initially described in the pleura, but have now been reported in many other sites. Complete surgical resection is the mainstay therapy for all cases; however, long-term monitoring and surveillance several years after initial presentation is crucial to prevent disease recurrence, and adjuvant treatment may be necessary for patients with high-risk features. Additional studies are needed to demonstrate the clinical utility of risk stratification models and to develop post-treatment surveillance guidelines for extrathoracic SFTs.

  11. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  12. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  13. The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia

    Science.gov (United States)

    Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif

    2016-04-01

    The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the oceanic crust.

  14. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    Science.gov (United States)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  15. Characterising benign fibrous soft-tissue tumours in adults: why is it so difficult and what do we need to know?

    International Nuclear Information System (INIS)

    Ng, E.; Tandon, A.A.; Ho, B.C.S.; Chong, B.K.

    2015-01-01

    Fibrous, myofibroblastic, and fibrohistiocytic soft-tissue tumours are amongst the most common benign soft-tissue lesions encountered in clinical practice. They demonstrate varied biological behaviour and imaging characteristics. Benign fibroblastic lesions, such as nodular fasciitis, are small, have a self-limited course, and rarely recur after excision, whereas deep fibromatosis and plexiform fibrohistiocytic tumours tend to exhibit more aggressive features and often have high recurrence rates. MRI with its superior tissue contrast, multiplanar imaging capability, and lack of ionising radiation is regarded as the preferred method of tumour evaluation, tissue characterisation, and assessment of treatment response. Histopathological features are depicted at MRI, reflecting the amount and distribution of the cellular and fibrous matrix. Cellular tumours tend to show higher T2 signal intensity and post-contrast enhancement as compared to tumours with greater collagenous content, which appear dark and show less enhancement. Awareness of MR characteristics, pathological behaviour, and common sites of occurrence of fibrous soft-tissue tumours will help radiologists to determine the appropriate differential diagnosis and guide patient management

  16. Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yasuhiro [ORNL; Fukatsu, Akinobu [Shizuoka University, Hamamatsu, Japan; Wang, Yangyang [ORNL; Miyamoto, Kazuaki [Shizuoka University, Hamamatsu, Japan; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Tasaka, Shigeru [Shizuoka University, Hamamatsu, Japan

    2014-01-01

    Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remained until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.

  17. Benign Fibrous Histiocytoma of the Buccal Mucosa: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Paraskevi Giovani

    2010-01-01

    Full Text Available Benign fibrous histiocytoma is an interesting and challenging entity even in its most usual, cutaneous presentation. Noncutaneous presentation is extremely limited, even more so for the mucosa of the head and neck area. We herein report such a case, describing the clinical characteristics of the lesion, complete diagnostic evaluation, management, and follow-up. Diagnostic histopathological challenges are specifically illustrated. A complete review of the relevant literature is also included.

  18. Polyostotic Fibrous Dysplasia with Epiphyseal Involvement in Long Bones: A Case Report

    Directory of Open Access Journals (Sweden)

    Tomoaki Fukui

    2013-01-01

    Full Text Available Fibrous dysplasia (FD is an uncommon, but well-known benign skeletal disorder. In cases affecting long bones, FD is commonly recognized to locate in the diaphyses or the metaphyses and to spare the epiphyses. In this paper, we present a rare case of polyostotic FD in a 13-year-old girl with unilateral multiple epiphyseal lesions arising in the femur, the tibia, and the fibula with the growth plates.

  19. Structure and formation of egg membranes in Aedes aegypti. (L. ) (Diptera:Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G; Rai, K S

    1975-01-01

    An ultrastructural study of mosquito ovarioles reveals that both the vitelline membrane and the endochorion are secreted by the follicular epithelium. The presecretory phase is characterized by the hypertrophy of endoplasmic reticulum and Golgi complex in the follicle cells. Synthesis of vitelline membrane precursors begins immediately after yolk protein uptake by micropinocytosis. Secretory droplets are budded off Golgi cisternae and released into the follicle cell--oocyte interface by exocytosis. The vitelline membrane first appears as dense plaques which eventually fuse to form a single homogeneous layer. Two types of secretory material are identified in the follicle cells prior to the formation of the endochorion. Golgi cisternae bud off small droplets similar in size and appearance to the precursors of the vitelline membrane. These migrate to the apical surface and accumulate between surface folds in the plasma membrane. The second type is a fibrous material formed in endoplasmic reticulum. When fully secreted, the endochorion is a 2-layered structure. The lower layer is comprised of pillar-like structures alternating with fibrous mesh-like areas. The pillars are formed by the coalescence of droplets released from Golgi, while the mesh-like areas presumably arise from the fibrous material. The outer layer is also fibrous. The follicle cells degenerate once the endochorion is laid down. endochorion is laid down.

  20. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Science.gov (United States)

    Yu, Qingxiong; Sheng, Lingling; Yang, Mei; Zhu, Ming; Huang, Xiaolu; Li, Qingfeng

    2014-01-01

    The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  1. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Directory of Open Access Journals (Sweden)

    Qingxiong Yu

    Full Text Available The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR, which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β and transforming growth factor-β (TGF-β were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  2. Preparation and photocatalytic performance of fibrous Tb3+-doped TiO2 using collagen fiber as template

    Science.gov (United States)

    Luo, Ting; Wan, Xiang-Jun; Jiang, Shang-Xuan; Zhang, Li-Yuan; Hong, Zheng-Qu; Liu, Jiao

    2018-04-01

    Fibrous Tb3+-doped TiO2 were prepared using collagen fiber as template. Morphology, crystalline structure, surface area, element content, chemical composition and elemental chemical status, microstructure and element distribution of the prepared samples were characterized by using scanning electron microscopy, X-ray diffraction, specific surface area analysis, inductively coupled plasma atomic emission spectrometer, X-ray photoelectron spectroscopy, transmission electron microscope and element mapping, respectively. The photocatalytic activities were evaluated by following degradation of methyl orange. The results showed that the fiber structure of collagen template was fully preserved when the calcination temperature was 500-800 °C. However, with the increase of calcination temperature, crystallinity and average particle size were increased, and the photocatalytic performance was decreased. For 2% Tb3+-TiO2 calcined at 500 °C, the degradation rate of methyl orange reached 93.87% after 6 h when a high-pressure mercury lamp (150 W) was used as the light source for photocatalytic degradation. Titanium tanning agent performance was excellent, the yield of TiO2 was high, and the fiber structure was presented when 0.2 mol/L citric acid/sodium citrate buffer solution was used.

  3. Host population structure and treatment frequency maintain balancing selection on drug resistance

    Science.gov (United States)

    Baskerville, Edward B.; Colijn, Caroline; Hanage, William; Fraser, Christophe; Lipsitch, Marc

    2017-01-01

    It is a truism that antimicrobial drugs select for resistance, but explaining pathogen- and population-specific variation in patterns of resistance remains an open problem. Like other common commensals, Streptococcus pneumoniae has demonstrated persistent coexistence of drug-sensitive and drug-resistant strains. Theoretically, this outcome is unlikely. We modelled the dynamics of competing strains of S. pneumoniae to investigate the impact of transmission dynamics and treatment-induced selective pressures on the probability of stable coexistence. We find that the outcome of competition is extremely sensitive to structure in the host population, although coexistence can arise from age-assortative transmission models with age-varying rates of antibiotic use. Moreover, we find that the selective pressure from antibiotics arises not so much from the rate of antibiotic use per se but from the frequency of treatment: frequent antibiotic therapy disproportionately impacts the fitness of sensitive strains. This same phenomenon explains why serotypes with longer durations of carriage tend to be more resistant. These dynamics may apply to other potentially pathogenic, microbial commensals and highlight how population structure, which is often omitted from models, can have a large impact. PMID:28835542

  4. Remanent resistance changes in metal- PrCaMnO-metal sandwich structures

    Energy Technology Data Exchange (ETDEWEB)

    Scherff, Malte; Meyer, Bjoern-Uwe; Scholz, Julius; Hoffmann, Joerg; Jooss, Christian [Institute of Materials Physics, University of Goettingen (Germany)

    2012-07-01

    The non-volatile electric pulse induced resistance change (EPIR) seems to be a rather common feature of oxides sandwiched by electrodes. However, microscopic mechanisms are discussed controversially. We present electrical transport measurements of sputtered Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} films sandwiched by metallic electrodes with variation of electrode materials, device geometry and PCMO deposition parameters. Cross-plane transport measurements have been performed as function of temperature and magnetic field. Specifically, the transition from dynamic resistance changes due to non-linear transport to remanent switching is analyzed. By analyzing changes of magneto-resistance at low temperatures in different resistance states we aim for separation between interface and film contributions to switching. Comparing switching behavior in symmetric and asymmetric electrode configuration allows for identification of the active, single interface in the switching process and the origin of an observed switching polarity inversion. The influence of excitation field and power on the switching characteristics of different noble metal electrodes is discussed. Samples from macroscopic devices and in situ stimulated sandwich structures were studied in a transmission electron microscope in order to investigate the induced structural, chemical and electronic changes.

  5. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance.

    Directory of Open Access Journals (Sweden)

    Meytal Galilee

    2018-01-01

    Full Text Available Reverse transcriptase (RT is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV. FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI. The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the "closed" pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more "closed" conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study

  6. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  7. Cross-bidge Kelvin resistor (CBKR) structures for measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Boksteen, B.K.; Boksteen, B.K.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2007-01-01

    A convenient test structure for measurement of the specific contact resistance (�?c) of metal-semiconductor junctions is the CBKR structure. During last few decades the parasitic factors which may strongly affect the measurements accuracy for �?c < 10-6 Ω • cm2 have been sufficiently discussed and

  8. Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate

    Directory of Open Access Journals (Sweden)

    Jiang-Yi Zheng

    2014-01-01

    Full Text Available AC pulse-modulated electrohydrodynamic direct-writing (EDW was utilized to direct-write orderly micro/nanofibrous structure on the flexible insulating polyethylene terephthalate (PET substrate. During the EDW process, AC electrical field induced charges to reciprocate along the jet and decreased the charge repulsive force that applied on charged jet. Thanks to the smaller charge repulsive force, stable straight jet can be built up to direct-write orderly micro/nanofibrous structures on the insulating substrate. The minimum motion velocity required to direct-write straight line fibrous structure on insulating PET substrate was 700 mm/s. Moreover, the influences of AC voltage amplitude, frequency, and duty cycle ratio on the line width of fibrous structures were investigated. This work proposes a novel solution to overcome the inherent charge repulsion emerging on the insulating substrate, and promotes the application of EDW technology on the flexible electronics.

  9. Application of resistivity-based high-density prospecting to embankments with underground structure; Chika kozobutsu wo yusuru moritsuchi ni okeru hiteiko komitsudo tansa no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T; Park, G [Osaka University, Osaka (Japan). Faculty of Engineering; Ueno, N [Dai Nippon Construction, Gifu (Japan); Park, K [Osaka University, Osaka (Japan)

    1997-10-22

    A structure was embedded in an embankment with homogeneous sandy soil. Resistivity was measured using three kinds of arrays, to investigate effects of the array on the underground structure. For a vertical structural model with high resistivity and a horizontal structural model with low resistivity, location of the underground structure could be grasped from the apparent resistivity profiles by individual arrays. For a transverse structural model with high resistivity, location of the underground structure could be grasped from the apparent resistivity profiles using Wenner array and pole-pole array. However, it could not be grasped from the apparent resistivity profile using dipole-dipole array. Based on the resistivity measurements for individual structural models, the dipole-dipole array was suitable for the vertical structural model, the pole-pole array was suitable for the transverse structural model, and the Wenner array was suitable for the horizontal structural model. Thus, the best apparent resistivity profiles and contrasts were obtained for individual structural models. 7 refs., 7 figs.

  10. Malignant fibrous histiocytoma: outcome and prognostic factors following conservation surgery and radiotherapy

    International Nuclear Information System (INIS)

    Zagars, Gunar K.; Mullen, John R.; Pollack, Alan

    1996-01-01

    Purpose: Malignant fibrous histiocytoma is the most common type of soft tissue sarcoma. This communication presents an analysis of outcome and prognostic factors based on a retrospective review of patients with this disease treated by conservation surgery and radiotherapy. Methods and Materials: From 1966 to 1991, 271 consecutive patients with malignant fibrous histiocytoma were treated with conservation surgery and radiotherapy. The outcome with local control, metastatic relapse, and survival as end points was evaluated by univariate and multivariate statistics to delineate independently significant prognostic factors. Results: Postoperative radiation at a mean dose of 62.8 Gy was used in 195 patients and preoperative radiation at a mean dose of 50 Gy was used in 76 patients. At a median follow-up of 7.3 years, 123 patients (45%) developed disease relapse at some site. Fifty-seven (21%) developed local recurrence leading to an actuarial local relapse rate of 26% at 10 years, 83 (31%) developed metastatic relapse for a 10-year actuarial metastatic rate of 33%, and the 5-, 10-, and 15-year survival rates were 68, 60, and 46%, respectively. For local control, prior local recurrence (in 53 patients) was identified as an adverse factor, yielding a 10-year recurrence rate of 42% compared to 22% for 218 patients without prior disease (p 5 cm), and histology (myxoid vs. nonmyxoid) were not significant determinants of local outcome. For metastatic relapse, the major determinants of outcome were histology (myxoid vs. nonmyxoid) and tumor size. Myxoid tumors (59 patients) had a low metastatic propensity (13% 10-year metastatic rate) compared to nonmyxoid tumors (212 patients) (40% 10-year metastatic rate) (p 5 cm) were the only independent determinants of outcome. Conclusion: Malignant fibrous histiocytoma is a heterogeneous disease and its myxoid variant must be recognized as a distinct entity. Both variants are locally aggressive and require equally aggressive local

  11. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  12. Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

    OpenAIRE

    Yang, Shu; Qi, Chang

    2013-01-01

    Sandwich armor structures with aluminum foam can be utilized to protect a military vehicle from harmful blast load such as a landmine explosion. In this paper, a system-level dynamic finite element model is developed to simulate the blast event and to evaluate the blast-resistant performance of the sandwich armor structure. It is found that a sandwich armor structure with only aluminum foam is capable of mitigating crew injuries under a moderate blast load. However, a severe blast load causes...

  13. Electronic structure, excitation properties, and chemical transformations of extreme ultra-violet resist materials

    Science.gov (United States)

    Rangan, Sylvie; Bartynski, Robert A.; Narasimhan, Amrit; Brainard, Robert L.

    2017-07-01

    The electronic structure of extreme ultra violet resist materials and of their individual components, two polymers and two photoacid generators (PAGs), is studied using a combination of x-ray and UV photoemission spectroscopies, electron energy loss spectroscopy, and ab-initio techniques. It is shown that simple molecular models can be used to understand the electronic structure of each sample and describe the experimental data. Additionally, effects directly relevant to the photochemical processes are observed: low energy loss processes are observed for the phenolic polymer containing samples that should favor thermalization of electrons; PAG segregation is measured at the surface of the resist films that could lead to surface inhomogeneities; both PAGs are found to be stable upon irradiation in the absence of the polymer, contrasting with a high reactivity that can be followed upon x-ray irradiation of the full resist.

  14. Vertically integrated ZnO-Based 1D1R structure for resistive switching

    International Nuclear Information System (INIS)

    Zhang Yang; Duan Ziqing; Li Rui; Ku, Chieh-Jen; Reyes, Pavel I; Ashrafi, Almamun; Zhong Jian; Lu Yicheng

    2013-01-01

    We report a ZnO-based 1D1R structure, which is formed by a vertical integration of a FeZnO/MgO switching resistor (1R) and an Ag/MgZnO Schottky diode (1D). The multifunctional ZnO and its compounds are grown through MOCVD with in situ doping. For the R element, the current ratio of the high-resistance state (HRS) over the low-resistance state (LRS) at 1 V is 2.4 × 10 6 . The conduction mechanisms of the HRS and LRS are Poole–Frenkel emission and resistive conduction, respectively. The D element shows the forward/reverse current ratio at ±1 V to be 2.4 × 10 7 . This 1D1R structure exhibits high R HRS /R LRS ratio, excellent rectifying characteristics and robust retention. (paper)

  15. Dislocation structure and cold resistance of low-carbon steel

    International Nuclear Information System (INIS)

    Gul', Yu.P.; Karnaukh, A.I.

    1975-01-01

    In the formation of the dislocation structure of a small (10%) deformation, the determining effect on the cold brittleness temperature is exerted by the degree of uniformity in the distribution of dislocations and microvolumes. The overall density of the dislocations is of secondary importance here. By pretreatment to achieve more uniform distribution and dispersion of particles of the excess phase, the degree of uniformity of dislocation distribution in microvolumes can be increased, the cold brittleness temperature lowered and the effect of various deformation patterns on resistance to cold counterbalanced. The formation of a cell-type dislocation structure in the case of a nonuniform distribution of relatively large particles of the excess phase and in that of a large overall density of dislocations does not result in low brittleness temperatures. The formation of a cell-type dislocation structure in the case of uniform distribution of particles of the excess phase and of a comparatively small overall density of dislocations is accompanied by a very pronounced decrease in cold brittleness temperature not only by comparison with other types of dislocation structure but also with the normalized state. At the same time the formation of this kind of a cell structure leads to a substantial (factor of 2-5) increase in resistance to plastic deformation. The prerequisites for obtaining an optimum dislocation are fulfilled either by a combination of hardening from the austenitic region and prompt, small-scale (5%) deformation, or by a combination of accelerated cooling from the austenitic region, 30-40% deformation and high yield. The size of the dislocation cells observed under the electron microscope does not exhibit - within the limits investigated - any direct effect on the cold brittleness temperature. (author)

  16. Dewetting based fabrication of fibrous micro-scaffolds as potential injectable cell carriers.

    Science.gov (United States)

    Song, Hokyung; Yin, Liya; Chilian, William M; Zhang Newby, Bi-Min

    2015-03-01

    Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widthsdewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fabrication and properties of aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers

    Science.gov (United States)

    Liu, Hao; Wei, Nan; Wang, Zhou-fu; Wang, Xi-tang; Ma, Yan

    2017-11-01

    To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol-gel process. During the preparation process, the fiber surface was coated with K2Ti6O13 whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K2Ti6O13 whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.

  18. Bipolar resistive switching in graphene oxide based metal insulator metal structure for non-volatile memory applications

    Science.gov (United States)

    Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh

    2018-05-01

    Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.

  19. Transformed chest chardomas in malignant fibrous histiocytorme: presentation of case and reviewing of literature

    International Nuclear Information System (INIS)

    Capelastegui, A.; Mateos, B.; Astigarraga, E.; Pastor, A.; Pomposo, I.; Egurbide, M.V.

    1994-01-01

    Chest chordomas are rare neoplasms, and their transformation into malignant fibrous histiocytoma (MFH) is even more exceptional. We present a new case, including magnetic resonance (MR) images. The literature on the subject is reviewed, focussing especially on the dorsal location of these neoplasms and their possible malignant transformation, as well as the role of MR in the assessment of these lesions. (Author)

  20. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice.

    Science.gov (United States)

    Park, Eun-Jung; Khaliullin, Timur O; Shurin, Michael R; Kisin, Elena R; Yanamala, Naveena; Fadeel, Bengt; Chang, Jaerak; Shvedova, Anna A

    2018-12-01

    With the rapid development of synthetic alternatives to mineral fibers, their possible effects on the environment and human health have become recognized as important issues worldwide. This study investigated effects of four fibrous materials, i.e. nanofibrillar/nanocrystalline celluloses (NCF and CNC), single-walled carbon nanotubes (CNTs), and crocidolite asbestos (ASB), on pulmonary inflammation and immune responses found in the lungs, as well as the effects on spleen and peripheral blood immune cell subsets. BALB/c mice were given NCF, CNC, CNT, and ASB on Day 1 by oropharyngeal aspiration. At 14 days post-exposure, the animals were evaluated. Total cell number, mononuclear phagocytes, polymorphonuclear leukocytes, lymphocytes, and LDH levels were significantly increased in ASB and CNT-exposed mice. Expression of cytokines and chemokines in bronchoalveolar lavage (BAL) was quite different in mice exposed to four particle types, as well as expression of antigen presentation-related surface proteins on BAL cells. The results revealed that pulmonary exposure to fibrous materials led to discrete local immune cell polarization patterns with a T H 2-like response caused by ASB and T H 1-like immune reaction to NCF, while CNT and CNC caused non-classical or non-uniform responses. These alterations in immune response following pulmonary exposure should be taken into account when testing the applicability of new nanosized materials with fibrous morphology.

  1. Effects of heat on meat proteins - Implications on structure and quality of meat products.

    Science.gov (United States)

    Tornberg, E

    2005-07-01

    Globular and fibrous proteins are compared with regard to structural behaviour on heating, where the former expands and the latter contracts. The meat protein composition and structure is briefly described. The behaviour of the different meat proteins on heating is discussed. Most of the sarcoplasmic proteins aggregate between 40 and 60 °C, but for some of them the coagulation can extend up to 90°C. For myofibrillar proteins in solution unfolding starts at 30-32°C, followed by protein-protein association at 36-40°C and subsequent gelation at 45-50°C (conc.>0.5% by weight). At temperatures between 53 and 63°C the collagen denaturation occurs, followed by collagen fibre shrinkage. If the collagen fibres are not stabilised by heat-resistant intermolecular bonds, it dissolves and forms gelatine on further heating. The structural changes on cooking in whole meat and comminuted meat products, and the alterations in water-holding and texture of the meat product that it leads to, are then discussed.

  2. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  3. DEVELOPMENT OF NANOTECHNOLOGIES IN CONSTRUCTION – A TASK WHICH IS OF GREAT IMPORTANCE FOR SCIENTISTS AND ENGINEERS. Part 4

    Directory of Open Access Journals (Sweden)

    KARPOV Alexey Ivanovich

    2013-08-01

    Full Text Available To popularize nanoindustrial subjects in construction, to increase consumers’ confidence to nanotechnological products, the main results of Russian scientists’ research are publised as the abstracts. Within the frame «Production of modified fibrous concrete mixture, aimed at improving physical and mechanical properties through the components hardening the structure of fibrous concrete at micro- and nanolevels» it was experimentally proved that complex modifying additive containing carbon nanomodifier «Taunit» can be applied in production of steel fiber concrete and solution; compositions of steel fiber concrete with complex modifying additives and compositions of lightweight heat-resistant steel fiber concrete have been developed. Two Russian patents (№ 2361847, 2386599 for inventions have been obtained. Practical recommendations concerning application of fibrous concrete mixture with reinforcer made of fiber «Miksarm» and nanoadditives have been developed; technology for production of steel fiber concrete with the use of complex modifying additives has been offered. Within the frame «Development and optimization of façade plaster compositions with increased durability based on simple and complex binders with fine natural and artificial fillers and research of their structure» it was proved that there is potential and practicability to apply nanotechnological fillers of local origins in façade plasters affecting positively on the structure and properties of the composition; compositions of façade plasters based on simple and complex binders modified with nanotechnological mineral fillers with high properties which provide required resistance when operated (bond resistance, compressive strength, cold resistance have been developed. As a result of systematic façade plaster optimization the share of construction market products has been minimized – binder savings are from 5 to 15%, in some compositions natural filler was

  4. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues.

    Science.gov (United States)

    Kim, Iris L; Khetan, Sudhir; Baker, Brendon M; Chen, Christopher S; Burdick, Jason A

    2013-07-01

    Electrospinning has recently gained much interest due to its ability to form scaffolds that mimic the nanofibrous nature of the extracellular matrix, such as the size and depth-dependent alignment of collagen fibers within hyaline cartilage. While much progress has been made in developing bulk, isotropic hydrogels for tissue engineering and understanding how the microenvironment of such scaffolds affects cell response, these effects have not been extensively studied in a nanofibrous system. Here, we show that the mechanics (through intrafiber crosslink density) and adhesivity (through RGD density) of electrospun hyaluronic acid (HA) fibers significantly affect human mesenchymal stem cell (hMSC) interactions and gene expression. Specifically, hMSC spreading, proliferation, and focal adhesion formation were dependent on RGD density, but not on the range of fiber mechanics investigated. Moreover, traction-mediated fiber displacements generally increased with more adhesive fibers. The expression of chondrogenic markers, unlike trends in cell spreading and cytoskeletal organization, was influenced by both fiber mechanics and adhesivity, in which softer fibers and lower RGD densities generally enhanced chondrogenesis. This work not only reveals concurrent effects of mechanics and adhesivity in a fibrous context, but also highlights fibrous HA hydrogels as a promising scaffold for future cartilage repair strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Mega-mining in Mexico. Structural reforms and resistance

    Directory of Open Access Journals (Sweden)

    Darcy Tetreault

    2013-11-01

    Full Text Available This article analyzes the structural causes of social environmental conflicts around mega-mining in Mexico and describes the emergence and coordination of resistance movements. It argues that neoliberal reforms have facilitated ‘accumulation by dispossession’ on two levels: first, by transferring public resources in the form of mineral reserves and state-run mining companies to the private sector; and second, bydispossessing smallholder farmers and indigenous communities of their land, water and cultural landscapes, in order to allow mining companies to carry out their activities. Furthermore, it argues that some factions of the resistance movements reflect ‘the environmentalism of the poor’ insofar as they seek to maintain natural resources outside of the sphere of the capitalist mode of production. Through a systematic revision of newspaper articles, blogs and scholarly publications, 29 high-profile eco-territorial mining conflicts are identified and a preliminary analysis of these is provided.

  6. Intra-articular fibrous band of the ankle: an uncommon cause of post-traumatic ankle pain

    International Nuclear Information System (INIS)

    Slavotinek, J.P.; Martin, D.K.

    2006-01-01

    A case of an intra-articular fibrous band of the ankle is presented with emphasis on the MR imaging appearances. This entity is an important but uncommon cause of post-traumatic ankle pain and is well recognized within the arthroscopy literature, but there is little if any documentation of this condition in the imaging literature

  7. High-Grade Transformation of Adenoid Cystic Carcinoma Delineated with a Fibrous Rim: A Case Report

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2013-09-01

    Full Text Available Background: High-grade transformation or dedifferentiation in carcinoma is progression of a low-grade malignant neoplasm to a high-grade carcinoma or poorly differentiated adenocarcinoma. This is rarely observed in adenoid cystic carcinoma of the salivary glands. Case Report: A 39 year-old woman presented with a painless mass at the left submandibulary region that had been growing slowly for 5 years. Submandibulary mass resection revealed a mass with peripheral adenoid cystic carcinoma and a central high-grade tumor delineated with a fibrous rim, raising the possibility of a hybrid or composite carcinoma, requiring differential diagnosis depending upon morphology and immunohistochemistry findings. The final histopathological diagnosis was high-grade transformation of adenoid cystic carcinoma. After surgical therapy, the patient was irradiated to the neck and submandibulary region. No sign of tumor recurrence has been evident for 36 months. Conclusion: This present case seems to be another rare case with high-grade transformation of adenoid cystic carcinoma and the fibrous rim may be a histopathological feature of such cases, which should be kept in mind.

  8. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell.

    Science.gov (United States)

    Dafforn, Timothy R; Rajendra, Jacindra; Halsall, David J; Serpell, Louise C; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.

  9. Resistivity Structures of the Chelungpu Fault in the Taichung Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Hu Cheng

    2006-01-01

    Full Text Available We conducted magnetotelluric prospecting in the Taichung area to investigate subsurface resistivity structures of the Chelungpu fault and the resistivity of rock formations. The results indicate that the Chelungpu fault is a complex fault system consisting of two major fault zones, several fracture zones, and back thrust. The two major fault zones, the basal and the Chi-Chi fault zone are about 800 m apart on the ground and converge to a narrow band at a depth of 3000 m. The fault zones are not smooth, composed of ramps and platforms with an average eastward dipping angle of 35° - 37° within the depth of 3000 m. In the shallower region, the basal fault zone has developed along the boundary of the Toukoshan Formation (resistivity: 200 - 400 Ω-m at the footwall and the Neogene formations on the hanging wall, where the Cholan Formation, the Chinshiu Shale, and the Kueichulai Formation have respective resistivity mainly in the ranges: 40 - 100, 8 - 60, and 50 - 150 Ω-m. While the Chi-Chi fault zone has developed along the weak layers of the Cholan Formation where resistivity is lower than the unsheared block.

  10. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  11. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  12. Effect of some structural parameters on high-temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    The paper presents results of physicomechanical studied in high-temperature crack resistance of tungsten produced by powder metallurgy methods. It is shown that at high temperatures (>2000 deg C) a structure is formed in the material and fails at stresses independent of temperature. It is found that high-temperature tungsten crack resistance is affected neighter by changes in the effictive grain size, nor by appearance of grain-boundary microcraks in the material under high-temperature action

  13. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Pielak, Rafal M. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States); Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115 (United States); Chou, James J., E-mail: chou@cmcd.hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-08

    Research highlights: {yields} This paper reports the structure of the V27A drug resistant mutant of the M2 channel of influenza A virus. {yields} High quality NMR data allowed a better-defined structure for the C-terminal region of the M2 channel. {yields} Using the structure, we propose a proton transfer pathway during M2 proton conduction. {yields} Structural comparison between the wildtype, V27A and S31N variants allowed an in-depth analysis of possible modes of drug resistance. {yields} Distinct feature of the V27A channel pore also provides an explanation for its faster rate of proton conduction. -- Abstract: The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural

  14. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth families.

    Directory of Open Access Journals (Sweden)

    Angelika Böttger

    Full Text Available The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.

  15. Structure and mechanical behavior of bird beaks

    Science.gov (United States)

    Seki, Yasuaki

    The structure and mechanical behavior of Toco toucan (Ramphastos toco) and Wreathed hornbill (Rhyticeros undulatus) beaks were examined. The structure of Toco toucan and Wreathed hornbill beak was found to be a sandwich composite with an exterior of keratin and a fibrous bony network of closed cells made of trabeculae. A distinctive feature of the hornbill beak is its casque formed from cornified keratin layers. The casque is believed to have an acoustic function due to the complex internal structure. The toucan and hornbill beaks have a hollow region that extends from proximal to mid-section. The rhamphotheca is comprised of super-posed polygonal scales (45 mum diameter and 1 mum thickness) fixed by some organic adhesive. The branched intermediate filaments embedded in keratin matrix were discovered by transmission electron microscopy (TEM). The diameter of intermediate laments was ~10 nm. The orientation of intermediate filaments was examined with TEM tomography and the branched filaments were homogeneously distributed. The closed-cell foam is comprised of the fibrous structure of bony struts with an edge connectivity of three or four and the cells are sealed off by the thin membranes. The volumetric structure of bird beak foam was reproduced by computed tomography for finite element modeling.

  16. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  17. Spontaneous Interlobar Pneumothorax in a Localized Fibrous Tumor of in the Pleura

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Tong [Dept. of Radiology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of)

    2012-03-15

    We report a case of a localized fibrous tumor of in the pleura pleura; this tumor was associated with interlobar pneumothorax, which, to our knowledge, has not been reported to date. A 63-year-old woman presented with an incidentally-detected nodule, which was seen on her chest radiograph. It presented as a mural nodule within a cystic lesion, on the chest radiograph and axial CT, and a reformatted sagittal CT image could then be diagnosed as a pleural tumor associated with interlobar pneumothorax.

  18. Spontaneous Interlobar Pneumothorax in a Localized Fibrous Tumor of in the Pleura

    International Nuclear Information System (INIS)

    Kim, Young Tong

    2012-01-01

    We report a case of a localized fibrous tumor of in the pleura pleura; this tumor was associated with interlobar pneumothorax, which, to our knowledge, has not been reported to date. A 63-year-old woman presented with an incidentally-detected nodule, which was seen on her chest radiograph. It presented as a mural nodule within a cystic lesion, on the chest radiograph and axial CT, and a reformatted sagittal CT image could then be diagnosed as a pleural tumor associated with interlobar pneumothorax.

  19. Craniofacial fibrous dysplasia: Report of a case using computed tomographic scan diagnosis

    Directory of Open Access Journals (Sweden)

    Nikhil Diwan

    2013-01-01

    Full Text Available Fibro-osseous lesions are benign mesenchymal tumors in which mineralized tissue, blood vessels, and giant cells, in varying proportions, replace normal bone. Although this group of lesions includes reactive lesions, harmatomas, and neoplasms, they cannot be distinguished only on the basis of the histopathology which can only confirm their common fibro-osseous nature. Definitive diagnosis requires thorough radiological evaluation. Computed tomographic images of craniofacial fibrous dysplasia on bone windows may be helpful and allow precise pre-operative diagnosis and surgical planning.

  20. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    International Nuclear Information System (INIS)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J.; Fearn, Sarah; Chater, Richard; McPhail, David

    2015-01-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G 0 , is a natural boundary between the high and low resistance states of our devices

  1. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Fearn, Sarah; Chater, Richard; McPhail, David; Kenyon, Anthony J.

    2015-03-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G0, is a natural boundary between the high and low resistance states of our devices.

  2. Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery

    Science.gov (United States)

    Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.

    2017-12-01

    Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.

  3. Polyostotic Fibrous Dysplasia With and Without McCune–Albright Syndrome—Clinical Features in a Nordic Pediatric Cohort

    Directory of Open Access Journals (Sweden)

    Pauliina Utriainen

    2018-03-01

    Full Text Available ObjectiveFibrous dysplasia (FD presents as skeletal lesions in which normal bone is replaced by abnormal fibrous tissue due to mosaic GNAS mutation. McCune–Albright syndrome (MAS refers to FD combined with skin (café-au-lait and endocrine manifestations. This study describes the clinical childhood manifestations of polyostotic FD and MAS in a Nordic cohort.Patients and designWe retrospectively reviewed a cohort of pediatric patients (n = 16 with polyostotic FD with or without MAS diagnosed and followed in two Nordic Pediatric tertiary clinics between 1996 and 2017.ResultsHalf of the 16 patients with polyostotic FD presented with MAS. All patients with MAS (n = 8 had café-au-lait spots, and either gonadotropin-independent precocious puberty (PP (girls; n = 5 or abnormal testicle structure (boys, n = 3. None manifested hyperthyroidism or growth hormone excess. Mild hypophosphatemia was common (11/16, but none had signs of hypophosphatemic rickets. Craniofacial bone involvement was found in 12 patients (75%; in 5 of these, skeletal lesions were limited to craniofacial area. One child with craniofacial disease had lost vision due to optic nerve damage. Eleven (69% patients had sustained a fracture at FD lesion, over half of them requiring surgical fixation of the fracture, most commonly in the proximal femur. The first symptoms leading to FD/MAS diagnosis included skull/facial asymmetry (n = 4, PP (n = 3, abnormal gait (n = 3, pathologic fracture (n = 3, wide-spread café-au-lait spots (n = 1, headache (n = 1, and vision loss (n = 1.ConclusionPolyostotic FD and MAS remain diagnostic and therapeutic challenges because of the broad clinical spectrum. Recurrent fractures, pain, and even vision loss may impair the quality of life in children with FD.

  4. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    Science.gov (United States)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  5. Process of making titanium carbide (TiC) nano-fibrous felts

    Science.gov (United States)

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  6. Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project (TCDP

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2008-01-01

    Full Text Available The Taiwan Chelungpu-fault drilling project (TCDP has undertaken scientific drilling and directly sampled the sub-surface rupture of the 1999 Chi-Chi earthquake. Audio-magnetotelluric (AMT measurements were used to investigate electrical resistivity structure at the TCDP site from 2004 - 2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m between depths of 1100 and 1500 m. When combined with porosity measurements, theAMT measurements imply that the ground water has a resistivity of 0.55 ohm-m at the depth of the fault zone.

  7. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  9. Improving patient outcomes in fibrous dysplasia/McCune-Albright syndrome: an international multidisciplinary workshop to inform an international partnership.

    Science.gov (United States)

    Boyce, A M; Turner, A; Watts, L; Forestier-Zhang, L; Underhill, A; Pinedo-Villanueva, R; Monsell, F; Tessaris, D; Burren, C; Masi, L; Hamdy, N; Brandi, M L; Chapurlat, R; Collins, M T; Javaid, Muhammad Kassim

    2017-12-01

    To develop consensus on improving the management of patients, we convened an international workshop involving patients, clinicians, and researchers. Key findings included the diagnostic delay and variability in subsequent management with agreement to develop an international natural history study. We now invite other stakeholders to join the partnership. The aim of this study was develop a consensus on how to improve the management of patients with fibrous dysplasia and prioritize areas for research METHODS: An international workshop was held over 3 days involving patients, clinicians, and researchers. Each day had a combination of formal presentations and facilitated discussions that focused on clinical pathways and research. The patient workshop day highlighted the variability of patients' experience in getting a diagnosis, the knowledge of general clinical staff, and understanding long-term outcomes. The research workshop prioritized collaborations that improved understanding of the contemporary natural history of fibrous dysplasia/McCune-Albright syndrome (FD/MAS). The clinical workshop outlined the key issues around diagnostics, assessment of severity, treatment and monitoring of patients. In spite of advances in understanding the genetic and molecular underpinnings of fibrous dysplasia/McCune-Albright syndrome, clinical management remains a challenge. From the workshop, a consensus was reached to create an international, multi-stakeholder partnership to advance research and clinical care in FD/MAS. We invite other stakeholders to join the partnership.

  10. Elemente de structură bacteriană și mecanismele transmiterii rezistenței la antibiotice / Elements of bacterial structure and mechanisms of antibiotic resistance transmission

    Directory of Open Access Journals (Sweden)

    Alexandru O. Doma

    2015-12-01

    Full Text Available The aim of this bibliographic essay is to refresh the knowledge of veterinarians in the field of therapy and bacterial resistance. Are summarized, in a didactic manner: the bacteria classification, the overall structure of the cell wall, the general characterization of antibiotics, the fundamental modes of action of antibiotics, the main interactions and side phenomena antibiotics and toxic products. Installing and effects of bacterial resistance to antibiotics is presented in detail, being given the basic concepts about resistance mechanisms as: the drug inactivation or misappropriation of the pathway, enzyme target altering or structure, low accumulation of antibiotic resistance in bacterial cells. They are also presented: the natural antibiotic resistance (epigenetic, the gained antibiotic resistance, the genetic adaptation (by mutation and selection and the genetic acquisition. By means of resistance means all the mechanisms by which bacteria can reduce or total inactivate the antimicrobial activity. In this regard are presented: phases of the resistance installation and antibiotics’ modification / inactivation, not being omitted also the trends in the evolution of resistance to antibiotics and environmental impacts analysis, the results of the imprudent using of the anti-infectives (like veterinary antibiotics in soil and water, the antibiotic resistance in the genetic modified crops or the long-term effects on ecosystems and them consequences.

  11. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Knittel

    2005-05-09

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Kyocera also continued research of the FM systems with the intention of developing commercial markets for a variety of applications. The continued development of FM technology by Kyocera is seen as a direct result of the cooperation established under this funding. Kyocera has a specific interest in the commercial development of the FM technology and have licensed it and have paid

  12. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  13. Microstructure and toughness of structural steels

    International Nuclear Information System (INIS)

    Chipperfield, C.G.; Knott, J.F.

    1975-01-01

    The effects of notch acuity, inclusion content, and strength level on the toughness of a variety of ductile steels have been investigated in fully plastic single edge notched bend testpieces. Results for specimens containing fatigue precracks and sharp notches indicate that accurate predictions of a material's resistance to the initiation of fibrous fracture ahead of a fatigue crack may be inferred from tests on notched testpieces and from a knowledge of the microstructure of the material; an experimental procedure has been proposed whereby this may be achieved for quality control and material evaluation purposes. The spacing of optically visible inclusions is found essentially to define both the unit of ductile crack extension and, for low-strength steels, the limiting lateral dimensions of the high-strain field ahead of the crack tip. As a consequence, the notch-tip ductility is found to be invariant with the changes in notch acuity for sharp stress concentrators. The effect of increasing the purity and/or strength level is to alter the mechanism of fibrous fracture from one involving void growth and coalescence to one of predominantly shear character. (author)

  14. Effect of tissue scaffold topography on protein structure monitored by fluorescence spectroscopy.

    Science.gov (United States)

    Portugal, Carla A M; Truckenmüller, Roman; Stamatialis, Dimitrios; Crespo, João G

    2014-11-10

    The impact of surface topography on the structure of proteins upon adhesion was assessed through non-invasive fluorescence monitoring. This study aimed at obtaining a better understanding about the role of protein structural status on cell-scaffold interactions. The changes induced upon adsorption of two model proteins with different geometries, trypsin (globular conformation) and fibrinogen (rod-shaped conformation) on poly-l-lactic acid (PLLA) scaffolds with different surface topographies, flat, fibrous and surfaces with aligned nanogrooves, were assessed by fluorescence spectroscopy monitoring, using tryptophan as structural probe. Hence, the maximum emission blue shift and the increase of fluorescence anisotropy observed after adsorption of globular and rod-like shaped proteins on surfaces with parallel nanogrooves were ascribed to more intense protein-surface interactions. Furthermore, the decrease of fluorescence anisotropy observed upon adsorption of proteins to scaffolds with fibrous morphology was more significant for rod-shaped proteins. This effect was associated to the ability of these proteins to adjust to curved surfaces. The additional unfolding of proteins induced upon adsorption on scaffolds with a fibrous morphology may be the reason for better cell attachment there, promoting an easier access of cell receptors to initially hidden protein regions (e.g. RGDS sequence), which are known to have a determinant role in cell attaching processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Thermal resistance of aluminum gravity heaГІ pipe with threaded capillary structure

    Directory of Open Access Journals (Sweden)

    Nikolaenko Yu. E.

    2017-10-01

    Full Text Available The results of an experimental study of the thermal resistance of an aluminum gravitational heat pipe with isobutane (R600a as a working fluid under conditions of heat removal of natural air convection are presented. Comparison of the thermal resistance of an aluminum gravitational heat pipe with a threaded capillary structure and the thermal resistance of an aluminum thermosyphon of the same size, having a smooth surface of the body in the evaporation zone, is given. It is shown that in the range of values of the input heat flux from 5 to 50 W the thermal resistance of the gravitational heat pipe is substantially lower than the thermal resistance of the thermosiphon. The studies were conducted both without the use of additional radiators in the condensation zone of heat transfer devices, and with the use of one, two and three radiators.

  16. Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system

    Science.gov (United States)

    Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.

    2016-11-01

    The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.

  17. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  18. Kidney fibroxanthoma (malignant fibrous xanthoma): a rare tumor and an unusual cause of retroperitoneal hemorrhage.

    Science.gov (United States)

    Witz, M; Bernheim, J; Dinbar, A; Griffel, B

    1984-06-01

    A case of kidney fibroxanthoma (malignant fibrous xanthoma, malignant variant of xanthogranuloma), a rare malignant neoplasm of kidney, is described. In addition to the typical histologic features of retroperitoneal xanthogranuloma, this tumor showed obvious pleomorphism and mitotic activity of the histiocytes. We present this case in view of the rarity of this neoplasm and the unusual presentation as massive retroperitoneal hemorrhage.

  19. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  20. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Liang, Junsheng; Su, Shijie; Fang, Xu; Wang, Dazhi; Xu, Shuangchao

    2016-01-01

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H_2SO_4) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m"2·g"−"1. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g"−"1, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg"−"1. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g"−"1 at a current density of 4 A·g"−"1, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g"−"1. And the specific capacitance of the electrode can retain 89% after 1500 charge/discharge cycles.

  1. Intracranial solitary fibrous tumor: Imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Clarencon, Frederic, E-mail: fredclare5@msn.com [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France); Bonneville, Fabrice [Department of Neuroradiology, Hopital Rangueil, Toulouse University Hospital, 31000 Toulouse (France); Rousseau, Audrey [Department of Neuropathology, Pitie-Salpetriere Hospital (France); Galanaud, Damien [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France); Kujas, Michele [Department of Neuropathology, Pitie-Salpetriere Hospital (France); Naggara, Olivier [Department of Neuroradiology, St Anne Hospital, 75014 Paris (France); Cornu, Philippe [Department of Neurosurgery, Pitie-Salpetriere Hospital (France); Chiras, Jacques [Department of Neuroradiology, Pitie-Salpetriere Hospital, APHP, 75013 Paris (France)

    2011-11-15

    Objective: To study the neuroimaging features of intracranial solitary fibrous tumors (ISFTs). Materials and methods: Retrospective study of neuroimaging features of 9 consecutive histopathologically proven ISFT cases. Location, size, shape, density, signal intensity and gadolinium uptake were studied at CT and MRI. Data collected from diffusion-weighted imaging (DWI) (3 patients), perfusion imaging and MR spectroscopy (2 patients), and DSA (4 patients) were also analyzed. Results: The tumors most frequently arose from the intracranial meninges (7/9), while the other lesions were intraventricular. Tumor size ranged from 2.5 to 10 cm (mean = 6.6 cm). They presented multilobular shape in 6/9 patients. Most ISFTs were heterogeneous (7/9) with areas of low T2 signal intensity that strongly enhanced after gadolinium administration (6/8). Erosion of the skull was present in about half of the cases (4/9). Components with decreased apparent diffusion coefficient were seen in 2/3 ISFTs on DWI. Spectroscopy revealed elevated peaks of choline and myo-inositol. MR perfusion showed features of hyperperfusion. Conclusion: ISFT should be considered in cases of extra-axial, supratentorial, heterogeneous, hypervascular tumor. Areas of low T2 signal intensity that strongly enhance after gadolinium injection are suggestive of this diagnosis. Restricted diffusion and elevated peak of myo-inositol may be additional valuable features.

  2. Fabrication of Nano-Crossbar Resistive Switching Memory Based on the Copper-Tantalum Pentoxide-Platinum Device Structure

    Science.gov (United States)

    Olga Gneri, Paula; Jardim, Marcos

    Resistive switching memory has been of interest lately not only for its simple metal-insulator-metal (MIM) structure but also for its promising ease of scalability an integration into current CMOS technologies like the Field Programmable Gate Arrays and other non-volatile memory applications. There are several resistive switching MIM combinations but under this scope of research, attention will be paid to the bipolar resistive switching characteristics and fabrication of Tantalum Pentaoxide sandwiched between platinum and copper. By changing the polarity of the voltage bias, this metal-insulator-metal (MIM) device can be switched between a high resistive state (OFF) and low resistive state (ON). The change in states is induced by an electrochemical metallization process, which causes a formation or dissolution of Cu metal filamentary paths in the Tantalum Pentaoxide insulator. There is very little thorough experimental information about the Cu-Ta 2O5-Pt switching characteristics when scaled to nanometer dimensions. In this light, the MIM structure was fabricated in a two-dimensional crossbar format. Also, with the limited available resources, a multi-spacer technique was formulated to localize the active device area in this MIM configuration to less than 20nm. This step is important in understanding the switching characteristics and reliability of this structure when scaled to nanometer dimensions.

  3. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  4. Functional nanometer-scale structures

    Science.gov (United States)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  5. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  6. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  7. Piezoelectric-assisted removal of a benign fibrous histiocytoma of the mandible: An innovative technique for prevention of dentoalveolar nerve injury

    Science.gov (United States)

    2011-01-01

    In this article, we present our experience with a piezoelectric-assisted surgical device by resection of a benign fibrous histiocytoma of the mandible. A 41 year-old male was admitted to our hospital because of slowly progressive right buccal swelling. After further radiographic diagnosis surgical removal of the yellowish-white mass was performed. Histologic analysis showed proliferating histiocytic cells with foamy, granular cytoplasm and no signs of malignancy. The tumor was positive for CD68 and vimentin in immunohistochemical staining. Therefore the tumor was diagnosed as primary benign fibrous histiocytoma. This work provides a new treatment device for benign mandibular tumour disease. By using a novel piezoelectric-assisted cutting device, protection of the dentoalveolar nerve could be achieved. PMID:22040611

  8. Piezoelectric-assisted removal of a benign fibrous histiocytoma of the mandible: An innovative technique for prevention of dentoalveolar nerve injury

    Directory of Open Access Journals (Sweden)

    Kokemueller Horst

    2011-10-01

    Full Text Available Abstract In this article, we present our experience with a piezoelectric-assisted surgical device by resection of a benign fibrous histiocytoma of the mandible. A 41 year-old male was admitted to our hospital because of slowly progressive right buccal swelling. After further radiographic diagnosis surgical removal of the yellowish-white mass was performed. Histologic analysis showed proliferating histiocytic cells with foamy, granular cytoplasm and no signs of malignancy. The tumor was positive for CD68 and vimentin in immunohistochemical staining. Therefore the tumor was diagnosed as primary benign fibrous histiocytoma. This work provides a new treatment device for benign mandibular tumour disease. By using a novel piezoelectric-assisted cutting device, protection of the dentoalveolar nerve could be achieved.

  9. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  10. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia.

    Science.gov (United States)

    Cox, Georgina; Stogios, Peter J; Savchenko, Alexei; Wright, Gerard D

    2015-01-06

    The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of aminoglycosides by the ANT(2″)-Ia enzyme. ANT(2″)-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2″-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two Mg(2+) ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural analysis revealed that ANT(2″)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4')-Ia, ANT(4″)-Ib, and ANT(6)-Ia. There is also similarity between the nucleotidyltransferase fold of ANT(2″)-Ia and DNA polymerase β. This similarity is consistent with evolution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct molecules. IMPORTANCE  : To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against resistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular

  11. Monostotic fibrous dysplasia of a lumbar vertebral body with secondary aneurysmal bone cyst formation: a case report

    NARCIS (Netherlands)

    Snieders, N.M.E.; Kemenade, van F.J.; Royen, van B.J.

    2009-01-01

    We report the case of a 25-year-old Caucasian woman with symptomatic monostotic fibrous dysplasia of the fourth lumbar vertebral body. The patient suffered from a five-week history of progressive low back pain, radiating continuously to the left leg. Her medical history and physical and neurological

  12. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  13. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  14. Structure-Based Design of Novel HIV-1 Protease Inhibitors to Combat Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh,A.; Sridhar, P.; Leshchenko, S.; Hussain, A.; Li, J.; Kovalevsky, A.; Walters, D.; Wedelind, J.; Grum-Tokars, V.; et al.

    2006-01-01

    Structure-based design and synthesis of novel HIV protease inhibitors are described. The inhibitors are designed specifically to interact with the backbone of HIV protease active site to combat drug resistance. Inhibitor 3 has exhibited exceedingly potent enzyme inhibitory and antiviral potency. Furthermore, this inhibitor maintains impressive potency against a wide spectrum of HIV including a variety of multi-PI-resistant clinical strains. The inhibitors incorporated a stereochemically defined 5-hexahydrocyclopenta[b]furanyl urethane as the P2-ligand into the (R)-(hydroxyethylamino)sulfonamide isostere. Optically active (3aS,5R,6aR)-5-hydroxy-hexahydrocyclopenta[b]furan was prepared by an enzymatic asymmetrization of meso-diacetate with acetyl cholinesterase, radical cyclization, and Lewis acid-catalyzed anomeric reduction as the key steps. A protein-ligand X-ray crystal structure of inhibitor 3-bound HIV-1 protease (1.35 Angstroms resolution) revealed extensive interactions in the HIV protease active site including strong hydrogen bonding interactions with the backbone. This design strategy may lead to novel inhibitors that can combat drug resistance.

  15. Solitary fibrous tumor of the liver: a case report

    Directory of Open Access Journals (Sweden)

    Ying Li-Xiong

    2011-03-01

    Full Text Available Abstract Hepatic solitary fibrous tumor (SFT is a rare tumor originating from the mesenchyme. Here we report a new case of SFT in the liver and review the clinical presentation, radiological and operative findings, diagnosis, treatment, and outcome. The patient was a 59-year-old man who presented with progressive fatigue for 3 months and an abdominal mass for 3 days. On laboratory tests, no abnormality was detected except that abdominal ultrasonography revealed a 9.0 × 6.2 cm hypoechogenic mass in the left lobe of the liver. A computed tomographic scan confirmed a hypodense lesion in the left lobe of the liver. The patient underwent left hepatectomy. SFT was diagnosed on the basis of histopathological findings. The patient was free from all symptoms and had no signs of local recurrence after 24 months' follow up.

  16. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  17. Population structure, genetic diversity and downy mildew resistance among Ocimum species germplasm.

    Science.gov (United States)

    Pyne, Robert M; Honig, Josh A; Vaiciunas, Jennifer; Wyenandt, Christian A; Simon, James E

    2018-04-23

    The basil (Ocimum spp.) genus maintains a rich diversity of phenotypes and aromatic volatiles through natural and artificial outcrossing. Characterization of population structure and genetic diversity among a representative sample of this genus is severely lacking. Absence of such information has slowed breeding efforts and the development of sweet basil (Ocimum basilicum L.) with resistance to the worldwide downy mildew epidemic, caused by the obligate oomycete Peronospora belbahrii. In an effort to improve classification of relationships 20 EST-SSR markers with species-level transferability were developed and used to resolve relationships among a diverse panel of 180 Ocimum spp. accessions with varying response to downy mildew. Results obtained from nested Bayesian model-based clustering, analysis of molecular variance and unweighted pair group method using arithmetic average (UPGMA) analyses were synergized to provide an updated phylogeny of the Ocimum genus. Three (major) and seven (sub) population (cluster) models were identified and well-supported (P UPGMA analysis provided best resolution for the 36-accession, DM resistant k3 cluster with consistently strong bootstrap support. Although the k3 cluster is a rich source of DM resistance introgression of resistance into the commercially important k1 accessions is impeded by reproductive barriers as demonstrated by multiple sterile F1 hybrids. The k2 cluster located between k1 and k3, represents a source of transferrable tolerance evidenced by fertile backcross progeny. The 90-accession k1 cluster was largely susceptible to downy mildew with accession 'MRI' representing the only source of DM resistance. High levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure

  18. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Proks, Vladimír; Karabiyik, Ö.; Calikoglu Koyuncu, A. C.; Köse, G. T.; Rypáček, František; Studenovská, Hana

    2017-01-01

    Roč. 11, č. 3 (2017), s. 831-842 ISSN 1932-6254 R&D Projects: GA ČR GAP108/12/1629; GA ČR GAP108/12/1538 Grant - others:AV ČR, TUBITAK(CZ) 111M031 Institutional support: RVO:61389013 Keywords : poly(amino acid) * fibrous scaffolds * adhesion peptide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.989, year: 2016

  19. Study on spontaneous potential exploration considering resistivity structures; Hiteiko kozo wo koryoshita shizen den`iho tansa

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Sakurai, K; Shimada, H [OYO Corp., Tokyo (Japan)

    1996-10-01

    Spontaneous potential (SP) was measured on the known traverse line of resistivity structure crossing Hanaori fault in Ohara area, Kyoto city to observe change in SP around the fault and to examine the possibility of fault position exploration. The supposed causes of generation of SP are as follows: the existence of sulfide mineral deposit including polarized minerals, underground fluid flow, and the existence of stratum including chemical compositions from hot springs. The SP method estimates underground structures based on measured surface potential distributions using DC component under anomaly of SP. FEM modeling clarified that a fault fracture zone is one of the causes of generation of SP, by considering SP measurement and resistivity structure strongly affecting observed SP. Consequently, combination of SP measurement with resistivity structure exploration allows a reliable fault estimation method. Under the assumption that anomaly of SP is caused by polarization around fault, the horizontal dipole model based on polarization of current source dipole along fault can well explain the measured data. 2 refs., 6 figs.

  20. The development of 3D food printer for printing fibrous meat materials

    Science.gov (United States)

    Liu, C.; Ho, C.; Wang, J.

    2018-01-01

    In this study, 3-D food printer was developed by integrating 3D printing technology with fibrous meat materials. With the help of computer-aided design and computer animation modeling software, users can model a desired pattern or shape, and then divide the model into layer-based sections. As the 3D food printer reads the design profile, food materials are extruded gradually through the nozzle to form the desired shape layer by layer. With the design of multiple nozzles, a wide variety of meat materials can be printed on the same product without the mixing of flavors. The technology can also extract the nutrients from the meat material to the food surface, allowing the freshness and sweetness of food to be tasted immediately upon eating it. This will also help the elderly’s eating experience since they often have bad teeth and poor taste sensing problems. Here, meat protein energy-type printing is used to solve the problem of currently available powder slurry calorie-type starch printing. The results show the novel technology development which uses pressurized tank with soft piping for material transport will improve the solid-liquid separation problem of fibrous meat material. In addition, the technology also allows amino acids from meat proteins as well as ketone body molecular substances from fatty acids to be substantially released, making ketogenic diet to be easier to accomplish. Moreover, time and volume controlled material feeding is made available by peristaltic pump to produce different food patterns and shapes with food materials of different viscosities, allowing food to be more eye-catching.