WorldWideScience

Sample records for resistant design codes

  1. Interleaver Design for Turbo Coding

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Zyablov, Viktor

    1997-01-01

    By a combination of construction and random search based on a careful analysis of the low weight words and the distance properties of the component codes, it is possible to find interleavers for turbo coding with a high minimum distance. We have designed a block interleaver with permutations...... of each row, and found a combination of permutations where a tight upper bound to the minimum distance of the complete turbo scheme is 108....

  2. VS30 – A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    VS30, defined as the average seismic shear-wave velocity from the surface to a depth of 30 meters, has found wide-spread use as a parameter to characterize site response for simplified earthquake resistant design as implemented in building codes worldwide. VS30 , as initially introduced by the author for the US 1994 NEHRP Building Code, provides unambiguous definitions of site classes and site coefficients for site-dependent response spectra based on correlations derived from extensive borehole logging and comparative ground-motion measurement programs in California. Subsequent use of VS30 for development of strong ground motion prediction equations (GMPEs) and measurement of extensive sets of VS borehole data have confirmed the previous empirical correlations and established correlations of SVS30 with VSZ at other depths. These correlations provide closed form expressions to predict S30 V at a large number of additional sites and further justify S30 V as a parameter to characterize site response for simplified building codes, GMPEs, ShakeMap, and seismic hazard mapping.

  3. Design of convolutional tornado code

    Science.gov (United States)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  4. LUCID - an optical design and raytrace code

    International Nuclear Information System (INIS)

    Nicholas, D.J.; Duffey, K.P.

    1980-11-01

    A 2D optical design and ray trace code is described. The code can operate either as a geometric optics propagation code or provide a scalar diffraction treatment. There are numerous non-standard options within the code including design and systems optimisation procedures. A number of illustrative problems relating to the design of optical components in the field of high power lasers is included. (author)

  5. Fundamentals of information theory and coding design

    CERN Document Server

    Togneri, Roberto

    2003-01-01

    In a clear, concise, and modular format, this book introduces the fundamental concepts and mathematics of information and coding theory. The authors emphasize how a code is designed and discuss the main properties and characteristics of different coding algorithms along with strategies for selecting the appropriate codes to meet specific requirements. They provide comprehensive coverage of source and channel coding, address arithmetic, BCH, and Reed-Solomon codes and explore some more advanced topics such as PPM compression and turbo codes. Worked examples and sets of basic and advanced exercises in each chapter reinforce the text's clear explanations of all concepts and methodologies.

  6. Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe

    Science.gov (United States)

    James Wacker; James (Scott) Groenier

    2010-01-01

    The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...

  7. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  8. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  9. Advanced Code for Photocathode Design

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Jensen, Kevin [Naval Research Lab. (NRL), Washington, DC (United States); Montgomery, Eric [Univ. of Maryland, College Park, MD (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2015-12-15

    The Phase I activity demonstrated that PhotoQE could be upgraded and modified to allow input using a graphical user interface. Specific calls to platform-dependent (e.g. IMSL) function calls were removed, and Fortran77 components were rewritten for Fortran95 compliance. The subroutines, specifically the common block structures and shared data parameters, were reworked to allow the GUI to update material parameter data, and the system was targeted for desktop personal computer operation. The new structures overcomes the previous rigid and unmodifiable library structures by implementing new, materials library data sets and repositioning the library values to external files. Material data may originate from published literature or experimental measurements. Further optimization and restructuring would allow custom and specific emission models for beam codes that rely on parameterized photoemission algorithms. These would be based on simplified and parametric representations updated and extended from previous versions (e.g., Modified Fowler-Dubridge, Modified Three-Step, etc.).

  10. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  11. Optimal patch code design via device characterization

    Science.gov (United States)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  12. Design Aspects of the Rayleigh Convection Code

    Science.gov (United States)

    Featherstone, N. A.

    2017-12-01

    Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.

  13. Computer codes used in particle accelerator design: First edition

    International Nuclear Information System (INIS)

    1987-01-01

    This paper contains a listing of more than 150 programs that have been used in the design and analysis of accelerators. Given on each citation are person to contact, classification of the computer code, publications describing the code, computer and language runned on, and a short description of the code. Codes are indexed by subject, person to contact, and code acronym

  14. Blahut-Arimoto algorithm and code design for action-dependent source coding problems

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Simeone, Osvaldo; Popovski, Petar

    2013-01-01

    for this problem is proposed. Moreover, a simplified two-stage code structure based on multiplexing is put forth, whereby the first stage encodes the actions and the second stage is composed of an array of classical Wyner-Ziv codes, one for each action. Leveraging this structure, specific coding....../decoding strategies are designed based on LDGM codes and message passing. Through numerical examples, the proposed code design is shown to achieve performance close to the rate-distortion-cost function....

  15. Space-Time Code Designs for Broadband Wireless Communications

    National Research Council Canada - National Science Library

    Xia, Xiang-Gen

    2005-01-01

    The goal of this research is to design new space AND time codes, such as complex orthogonal space AND time block codes with rate above 1/2 from complex orthogonal designs for QAM, PSK, and CPM signals...

  16. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  17. Long Non-coding RNAs and Drug Resistance.

    Science.gov (United States)

    Pan, Jing-Jing; Xie, Xiao-Juan; Li, Xu; Chen, Wei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

  18. Applications of American design codes for elevated temperature environment

    International Nuclear Information System (INIS)

    Severud, L.K.

    1980-03-01

    A brief summary of the ASME Code rules of Case N-47 is presented. An overview of the typical procedure used to demonstrate Code compliance is provided. Application experience and some examples of detailed inelastic analysis and simplified-approximate methods are given. Recent developments and future trends in design criteria and ASME Code rules are also presented

  19. SWAAM code development, verification and application to steam generator design

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs

  20. Evaluation of three coding schemes designed for improved data communication

    Science.gov (United States)

    Snelsire, R. W.

    1974-01-01

    Three coding schemes designed for improved data communication are evaluated. Four block codes are evaluated relative to a quality function, which is a function of both the amount of data rejected and the error rate. The Viterbi maximum likelihood decoding algorithm as a decoding procedure is reviewed. This evaluation is obtained by simulating the system on a digital computer. Short constraint length rate 1/2 quick-look codes are studied, and their performance is compared to general nonsystematic codes.

  1. Preliminary design studies for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement

  2. Comparative study of codes for the seismic design of structures

    Directory of Open Access Journals (Sweden)

    S. H. C. Santos

    Full Text Available A general evaluation of some points of the South American seismic codes is presented herein, comparing them among themselves and with the American Standard ASCE/SEI 7/10 and with the European Standard Eurocode 8. The study is focused in design criteria for buildings. The Western border of South America is one of the most seismically active regions of the World. It corresponds to the confluence of the South American and Nazca plates. This region corresponds roughly to the vicinity of the Andes Mountains. This seismicity diminishes in the direction of the comparatively seismically quieter Eastern South American areas. The South American countries located in its Western Border possess standards for seismic design since some decades ago, being the Brazilian Standard for seismic design only recently published. This study is focused in some critical topics: definition of the recurrence periods for establishing the seismic input; definition of the seismic zonation and design ground motion values; definition of the shape of the design response spectra; consideration of soil amplification, soil liquefaction and soil-structure interaction; classification of the structures in different importance levels; definition of the seismic force-resisting systems and respective response modification coefficients; consideration of structural irregularities and definition of the allowable procedures for the seismic analyses. A simple building structure is analyzed considering the criteria of the several standards and obtained results are compared.

  3. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  4. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  5. Designing and Improving Code-based Cryptosystems

    OpenAIRE

    Meziani, Mohammed

    2014-01-01

    In modern cryptography, the security of the most secure cryptographic primitives is based on hard problems coming from number theory such as the factorization and the discrete logarithm problem.However, being mainly based on the intractability of those problems seems to be risky. In 1994, Peter Shor showed how these two problems can be solved in polynomial time using a quantum computer. In contrast, crypttographic primitives based on problems from coding theory are believed to resistquant...

  6. Adventure Code Camp: Library Mobile Design in the Backcountry

    Directory of Open Access Journals (Sweden)

    David Ward

    2014-09-01

    Full Text Available This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate library services and resources into their use of mobile devices, librarians can better design the user experience for this environment.

  7. Resistive wall mode control code maturity: progress and specific examples

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yueqiang; Chapman, I T; Gimblett, C G; Hastie, R J; Hender, T C [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Chu, M S; Garofalo, A M; Jackson, G L; La Haye, R J [General Atomics, San Diego, CA 92186-5608 (United States); Guo, W F [ASIPP Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Villone, F; Ambrosino, G [ENEA/CREATE, DAEIMI, Universita di Cassino, Via di Biasio 43, Cassino (France) (Italy); Albanese, R [ENEA/CREATE, Universita Federico II di Napoli, Via Claudio 21, Napoli (Italy); Baruzzo, M; Bolzonella, T; Marchiori, G; Paccagnella, R [Consorzio RFX, Corso Stati Uniti 4, Padova, 35127 (Italy); Lanctot, M J [Columbia University, 2960 Broadway, New York, NY 10027-6902 (United States); In, Y [FAR-TECH, Inc., 3550 General Atomics Court, San Diego, CA (United States); Okabayashi, M, E-mail: yueqiang.liu@ccfe.ac.u [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States)

    2010-10-15

    Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.

  8. Research and Design in Unified Coding Architecture for Smart Grids

    Directory of Open Access Journals (Sweden)

    Gang Han

    2013-09-01

    Full Text Available Standardized and sharing information platform is the foundation of the Smart Grids. In order to improve the dispatching center information integration of the power grids and achieve efficient data exchange, sharing and interoperability, a unified coding architecture is proposed. The architecture includes coding management layer, coding generation layer, information models layer and application system layer. Hierarchical design makes the whole coding architecture to adapt to different application environments, different interfaces, loosely coupled requirements, which can realize the integration model management function of the power grids. The life cycle and evaluation method of survival of unified coding architecture is proposed. It can ensure the stability and availability of the coding architecture. Finally, the development direction of coding technology of the Smart Grids in future is prospected.

  9. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  10. Design and Analysis of LT Codes with Decreasing Ripple Size

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Popovski, Petar; Østergaard, Jan

    2012-01-01

    In this paper we propose a new design of LT codes, which decreases the amount of necessary overhead in comparison to existing designs. The design focuses on a parameter of the LT decoding process called the ripple size. This parameter was also a key element in the design proposed in the original...

  11. Improvement of Electromagnetic Code for Phased Array Antenna Design

    National Research Council Canada - National Science Library

    Holter, Henrik

    2007-01-01

    ... . An existing time domain code for electromagnetic design and analysis of phased array antennas and other periodic structures such as frequency selective surfaces and meta-materials has been improved in several ways...

  12. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  13. Structural reliability codes for probabilistic design

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    For the practical applications of probabilistic reliability methods it is important to make decisions about the target reliability level. Presently calibration to existing design practice seems to be the only practicable and politically reasonable solution to this decision problem. However, sever...

  14. Systematic Design of Space-Time Trellis Codes for Diversity and Coding Advantages

    Directory of Open Access Journals (Sweden)

    Zoltan Safar

    2002-03-01

    Full Text Available The emerging need for high data rate wireless services has raised considerable interest in space-time coding. In this work, we propose a systematic code construction method that jointly considers diversity advantage and coding advantage for an arbitrary number of transmit antennas and any memoryless constellation. Our approach is to directly assign channel symbols to transmit antennas at different states by exploiting the properties of the state transitions in the trellis. The code construction problem is reduced to a combinatorial optimization problem and a computationally efficient suboptimal solution is proposed. The flexibility of the method is demonstrated by designing space-time trellis codes for QPSK, 8PSK, 16PSK, asymmetric QPSK and 4ASK constellations. Space-time code construction for a large number of transmit antennas (6, 8, and 10 is also considered. The simulations show that our design procedure results in codes that outperform the ones constructed by previously existing methods. The achievable performance gain is governed by the distance structure of the chosen constellation.

  15. Code Development for Control Design Applications: Phase I: Structural Modeling

    International Nuclear Information System (INIS)

    Bir, G. S.; Robinson, M.

    1998-01-01

    The design of integrated controls for a complex system like a wind turbine relies on a system model in an explicit format, e.g., state-space format. Current wind turbine codes focus on turbine simulation and not on system characterization, which is desired for controls design as well as applications like operating turbine model analysis, optimal design, and aeroelastic stability analysis. This paper reviews structural modeling that comprises three major steps: formation of component equations, assembly into system equations, and linearization

  16. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  17. Design of Optimal Quincunx Filter Banks for Image Coding

    Directory of Open Access Journals (Sweden)

    Chen Yi

    2007-01-01

    Full Text Available Two new optimization-based methods are proposed for the design of high-performance quincunx filter banks for the application of image coding. These new techniques are used to build linear-phase finite-length-impulse-response (FIR perfect-reconstruction (PR systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment properties. A parametrization of quincunx filter banks based on the lifting framework is employed to structurally impose the PR and linear-phase conditions. Then, the coding gain is maximized subject to a set of constraints on vanishing moments and frequency selectivity. Examples of filter banks designed using the newly proposed methods are presented and shown to be highly effective for image coding. In particular, our new optimal designs are shown to outperform three previously proposed quincunx filter banks in 72% to 95% of our experimental test cases. Moreover, in some limited cases, our optimal designs are even able to outperform the well-known (separable 9/7 filter bank (from the JPEG-2000 standard.

  18. Compiler design handbook optimizations and machine code generation

    CERN Document Server

    Srikant, YN

    2003-01-01

    The widespread use of object-oriented languages and Internet security concerns are just the beginning. Add embedded systems, multiple memory banks, highly pipelined units operating in parallel, and a host of other advances and it becomes clear that current and future computer architectures pose immense challenges to compiler designers-challenges that already exceed the capabilities of traditional compilation techniques. The Compiler Design Handbook: Optimizations and Machine Code Generation is designed to help you meet those challenges. Written by top researchers and designers from around the

  19. Analytic transfer maps for Lie algebraic design codes

    International Nuclear Information System (INIS)

    van Zeijts, J.; Neri, F.; Dragt, A.J.

    1990-01-01

    Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system

  20. Identification of minority resistance mutations in the HIV-1 integrase coding region using next generation sequencing

    DEFF Research Database (Denmark)

    Fonager, Jannik; Larsson, Jonas T; Hussing, Christian

    2015-01-01

    BACKGROUND: The current widely applied standard method to screen for HIV-1 genotypic resistance is based on Sanger population sequencing (Sseq), which does not allow for the identification of minority variants (MVs) below the limit of detection for the Sseq-method in patients receiving integrase...... strand-transfer inhibitors (INSTI). Next generation sequencing (NGS) has facilitated the detection of MVs at a much deeper level than Sseq. OBJECTIVES: Here, we compared Illumina MiSeq and Sseq approaches to evaluate the detection of MVs involved in resistance to the three commonly used INSTI......: raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). STUDY DESIGN: NGS and Sseq were used to analyze RT-PCR products of the HIV-1 integrase coding region from six patients and in serial samples from two patients. NGS sequences were assembled and analyzed using the low frequency variant detection...

  1. Digital logic design using verilog coding and RTL synthesis

    CERN Document Server

    Taraate, Vaibbhav

    2016-01-01

    This book is designed to serve as a hands-on professional reference with additional utility as a textbook for upper undergraduate and some graduate courses in digital logic design. This book is organized in such a way that that it can describe a number of RTL design scenarios, from simple to complex. The book constructs the logic design story from the fundamentals of logic design to advanced RTL design concepts. Keeping in view the importance of miniaturization today, the book gives practical information on the issues with ASIC RTL design and how to overcome these concerns. It clearly explains how to write an efficient RTL code and how to improve design performance. The book also describes advanced RTL design concepts such as low-power design, multiple clock-domain design, and SOC-based design. The practical orientation of the book makes it ideal for training programs for practicing design engineers and for short-term vocational programs. The contents of the book will also make it a useful read for students a...

  2. Modern transform design for advanced image/video coding applications

    Science.gov (United States)

    Tran, Trac D.; Topiwala, Pankaj N.

    2008-08-01

    This paper offers an overall review of recent advances in the design of modern transforms for image and video coding applications. Transforms have been an integral part of signal coding applications from the beginning, but emphasis had been on true floating-point transforms for most of that history. Recently, with the proliferation of low-power handheld multimedia devices, a new vision of integer-only transforms that provide high performance yet very low complexity has quickly gained ascendency. We explore two key design approaches to creating integer transforms, and focus on a systematic, universal method based on decomposition into lifting steps, and use of (dyadic) rational coefficients. This method provides a wealth of solutions, many of which are already in use in leading media codecs today, such as H.264, HD Photo/JPEG XR, and scalable audio. We give early indications in this paper, and more fully elsewhere.

  3. Satellite link protocols design for the CODE system

    Science.gov (United States)

    Fernandez, A.; Vidaller, L.; Miguel, C.; Briones, D.

    1989-05-01

    The design of satellite link protocols for Very Small Aperture Terminals (VSAT) systems is outlined. The CODE system (Cooperative Olympus Data Experiment) is a VSAT system with two main characteristics: very low bit error rate, and multiple access over FDM channels in the inbound link. The design of the link protocols for this system covers two main aspects: error control procedures and medium access control procedures. In order to analyze both aspects, a profile of the average user of the CODE system is defined in terms of types of traffic and of messages arrival and service rates for every type of traffic. An analysis of the mean time between failures is made, and the average delay and through-put for different access methods are computed, including stability analysis for Aloha-based systems.

  4. Bragg optics computer codes for neutron scattering instrument design

    International Nuclear Information System (INIS)

    Popovici, M.; Yelon, W.B.; Berliner, R.R.; Stoica, A.D.

    1997-01-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given

  5. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  6. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  7. RCC-E a Design Code for I and C and Electrical Systems

    International Nuclear Information System (INIS)

    Haure, J.M.

    2015-01-01

    The paper deals with the stakes and strength of the RCC-E code applicable to Electrical and Instrumentation and control systems and components as regards dealing with safety class functions. The document is interlacing specifications between Owners, safety authorities, designers, and suppliers IAEA safety guides and IEC standards. The code is periodically updated and published by French Society for Design and Construction rules for Nuclear Island Components (AFCEN). The code is compliant with third generation PWR nuclear islands and aims to suit with national regulations as needed in a companion document. The Feedback experience of Fukushima and the licensing of UKEPR in the framework of Generic Design Assessment are lessons learnt that should be considered in the upgrading of the code. The code gathers a set of requirements and relevant good practices of several PWR design and construction practices related to the electrical and I and C systems and components, and electrical engineering documents dealing with systems, equipment and layout designs. Comprehensive statement including some recent developments will be provided about: - Offsite and onsite sources requirements including sources dealing the total loss of off sites and main onsite sources. - Highlights of a relevant protection level against high frequencies disturbances emitted by lightning strokes, Interfaces data used by any supplier or designer such as site data, rooms temperature, equipment maximum design temperature, alternative current and direct current electrical network voltages and frequency variation ranges, environmental conditions decoupling data, - Environmental Qualification process including normal, mild (earthquake resistant), harsh and severe accident ambient conditions. A suit made approach based on families, which are defined as a combination of mission time, duration and abnormal conditions (pressure, temperature, radiation), enables to better cope with Environmental Qualifications

  8. Designing an Earthquake-Resistant Building

    Science.gov (United States)

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  9. Managing resistance and negotiating co-design

    DEFF Research Database (Denmark)

    Yndigegn, Signe Louise

    work. The aim was to design services for senior citizens with the focus on social interaction – and with technology as a way to support the interaction among communities of elderlies. The dissertation is a retrospective reflection of the author’s experience with taking part and being heavily involved...... as participant in this project. This is done through a series of selected “moments” from the project and beyond, which in various ways are significant for what is happening in the project – and how the project is enacted. The dissertation contains of two research aims. The first is concerned with resistance...... as part of co-design and citizen involvement with the aim to reflect upon something that is rarely described or discussed within co-design and participatory design. The question is here how resistance is performed in practice, especially in the meetings between citizens and the project, and how resistance...

  10. Citizen Action Can Help the Code Adoption Process for Radon-Resistant New Construction: Decatur, Alabama

    Science.gov (United States)

    Adopting a code requiring radon-resistant new construction (RRNC) in Decatur, Alabama, took months of effort by four people. Their actions demonstrate the influence that passionate residents can have on reversing a city council’s direction.

  11. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  12. Nuclear component design ontology building based on ASME codes

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    The adoption of ontology analysis in the study of concept knowledge acquisition and representation for the nuclear component design process based on computer-supported cooperative work (CSCW) makes it possible to share and reuse numerous concept knowledge of multi-disciplinary domains. A practical ontology building method is accordingly proposed based on Protege knowledge model in combination with both top-down and bottom-up approaches together with Formal Concept Analysis (FCA). FCA exhibits its advantages in the way it helps establish and improve taxonomic hierarchy of concepts and resolve concept conflict occurred in modeling multi-disciplinary domains. With Protege-3.0 as the ontology building tool, a nuclear component design ontology based ASME codes is developed by utilizing the ontology building method. The ontology serves as the basis to realize concept knowledge sharing and reusing of nuclear component design. (authors)

  13. Turbo-like codes design for high speed decoding

    CERN Document Server

    Abbasfar, Aliazam

    2007-01-01

    Turbo code concepts are explained in simple languageTurbo codes and LDPC codes are viewed in a unified manner as turbo-like codesImplementation and hardware complexity is a major focus Presents a novel class of powerful and practical turbo-like codes Includes advanced theoretical framework for professionals.

  14. Software Design Document for the AMP Nuclear Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby [ORNL; Clarno, Kevin T [ORNL; Cochran, Bill [ORNL

    2010-03-01

    The purpose of this document is to describe the design of the AMP nuclear fuel performance code. It provides an overview of the decomposition into separable components, an overview of what those components will do, and the strategic basis for the design. The primary components of a computational physics code include a user interface, physics packages, material properties, mathematics solvers, and computational infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the development of AMP, but the primary physics components will be entirely new. The material properties required by these physics operators include many highly non-linear properties, which will be replicated from FRAPCON and LIFE where applicable, as well as some computationally-intensive operations, such as gap conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf leadership class computational solvers, AMP will leverage the Trilinos, PETSc, and SUNDIALS packages. The computational infrastructure includes a build system, mesh database, and other building blocks of a computational physics package. The user interface will be developed through a collaborative effort with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as much as possible and will be discussed in detail in a future document.

  15. HPLWR equilibrium core design with the KARATE code system

    Energy Technology Data Exchange (ETDEWEB)

    Maraczy, Cs.; Hegyi, Gy.; Hordosy, G.; Temesvari, E. [KFKI Atomic Energy Research Inst., Hungarian Academy of Sciences, Budapest (Hungary)

    2011-07-01

    The High Performance Light Water Reactor (HPLWR) is the European version of the various supercritical water cooled reactor proposals. The paper presents the activity of KFKI-AEKI in the field of neutronic core design within the framework of the 'HPLWR Phase 2' FP-6 and the Hungarian 'NUKENERG' projects. As the coolant density along the axial direction shows remarkable change, coupled neutronic- thermohydraulic calculations are essential which take into account the heating of moderator in the special water rods of the assemblies. A parametrized diffusion cross section library was prepared for the HPLWR assembly with the MULTICELL neutronic transport code. The parametrized cross sections are used by the KARATE program system, which was verified for supercritical conditions by comparative Monte Carlo calculations. To design the HPLWR equilibrium core preliminary loadings were assessed, which contain insulated assemblies with Gd burnable absorbers. The fuel assemblies have radial and axial enrichment zoning to reduce hot spots. (author)

  16. System Design Considerations In Bar-Code Laser Scanning

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  17. Design of Spreading-Codes-Assisted Active Imaging System

    Directory of Open Access Journals (Sweden)

    Alexey Volkov

    2015-07-01

    Full Text Available This work discusses an innovative approach to imaging which can improve the robustness of existing active-range measurement methods and potentially enhance their use in a variety of outdoor applications. By merging a proven modulation technique from the domain of spread-spectrum communications with the bleeding-edge CMOS sensor technology, the prototype of the modulated range sensor is designed and evaluated. A suitable set of application-specific spreading codes is proposed, evaluated and tested on the prototype. Experimental results show that the introduced modulation technique significantly reduces the impacts of environmental factors such as sunlight and external light sources, as well as mutual interference of identical devices. The proposed approach can be considered as a promising basis for a new generation of robust and cost-efficient range-sensing solutions for automotive applications, autonomous vehicles or robots.

  18. CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, W.I.

    1980-10-01

    CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels.

  19. Designing an Effective and Efficient Insolvency Code for a ...

    African Journals Online (AJOL)

    This paper reviews the Tanzania insolvency and related legislation, comparing their efficiency against a number of benchmarks. The benchmarks are a result of a study of eight insolvency codes those of UK, US, France, Germany, Italy, Canada, Japan and Sweden. UK was the source of Tanzanian code. Other codes have ...

  20. Seismic design of steel moment resisting frames-European versus American practice

    International Nuclear Information System (INIS)

    Naqash, M.T.; Matteis, G.D.; Luca, A.D.

    2012-01-01

    This paper provides an overview on the design philosophy of moment resisting frames (MRF) according to the seismic provisions of Eurocode 8 and American Institute of Steel Construction (AISC). A synopsis of the main recommendations of the two codes is briefly described. Then in order to examine the structural efficiency of the design principles of MRF according to the aforementioned codes, a case study is developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 storeys residential building are considered. In the case of EC8, Ductility Class Medium (DCM) with behaviour factor of 4 and Ductility Class High (DCH) with behaviour factor of 6.5 for 6-storey frames are used, while only DCH is employed in the design of 12 and 3 storey frames. When dealing with AISC/American Society of Civil Engineers (ASCE) code, special moment resisting frame (SMF) with response modification factor of 8 is employed in the design. The outcomes from the design are illustrated in terms of frame performance, section profiles, strength-demand to capacity ratios, drift-demand to capacity ratios and structural weight, thus allowing the understanding of pros and cons of the design criteria and the capacity design rules of the two codes. The main purpose of the current paper is to compare the seismic design rules of the two codes with a parametric analysis developed by a case study in order to let the technician knows about the importance and influence of some important parameters which are given in the capacity design rules of the two codes. This study will be a benchmark for further analysis on the two codes for seismic design of steel structures. (author)

  1. Development of reliability-based load and resistance factor design methods for piping

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.; Hill, Ralph S. III; Balkey, Kenneth R.

    2003-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The American Institute of Steel Construction and the American Concrete Institute, among other organizations, have incorporated probabilistic methodologies into their design codes. ASME nuclear codes and standards could benefit from developing a probabilistic, reliability-based, design methodology. This paper provides a plan to develop the technical basis for reliability-based, load and resistance factor design of ASME Section III, Class 2/3 piping for primary loading, i.e., pressure, deadweight and seismic. The plan provides a proof of concept in that LRFD can be used in the design of piping, and could achieve consistent reliability levels. Also, the results from future projects in this area could form the basis for code cases, and additional research for piping secondary loads. (author)

  2. Design of Short Synchronization Codes for Use in Future GNSS System

    Directory of Open Access Journals (Sweden)

    Surendran K. Shanmugam

    2008-01-01

    The modernization efforts include numerous signal structure innovations to ensure better performances over legacy GNSS system. The adoption of secondary short synchronization codes is one among these innovations that play an important role in spectral separation, bit synchronization, and narrowband interference protection. In this paper, we present a short synchronization code design based on the optimization of judiciously selected performance criteria. The new synchronization codes were obtained for lengths up to 30 bits through exhaustive search and are characterized by optimal periodic correlation. More importantly, the presence of better synchronization codes over standardized GPS and Galileo codes corroborates the benefits and the need for short synchronization code design.

  3. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  4. Bar Code Labels

    Science.gov (United States)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  5. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  6. Graphite structural design code for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    1989-02-01

    The reactor internal structures of the High Temperature Engineering Test Reactor (HTTR) are made up of mainly graphite components. The characteristics of graphite are quite different in stress-strain behavior from metals, since the ductility of graphite is significantly less than metals. Therefore, the design codes provided for metal components can not be applied directly to graphite components. The graphite structural design code for the HTTR was drafted by JAERI and reviewed by specialists outside JAERI. The design code is established mainly on the basis of JAERI's research data and by reference to the fundamental concepts of the domestic design codes for metal components. In this design code, the graphite components are categorized into the core components and core support components and the stress limits are specified separately to meet the safety requirements to each. This report presents the graphite structural design code for the HTTR which is utlized for the present design of the HTTR. (author)

  7. Practical Design of Delta-Sigma Multiple Description Audio Coding

    DEFF Research Database (Denmark)

    Leegaard, Jack Højholt; Østergaard, Jan; Jensen, Søren Holdt

    2014-01-01

    It was recently shown that delta-sigma quantization (DSQ) can be used for optimal multiple description (MD) coding of Gaussian sources. The DSQ scheme combined oversampling, prediction, and noise-shaping in order to trade off side distortion for central distortion in MD coding. It was shown that ...

  8. Resistive gaseous detectors designs, performance, and perspectives

    CERN Document Server

    Abbrescia, Marcello; Peskov, Vladimir

    2018-01-01

    This first book to critically summarize the latest achievements and emerging applications within this interdisciplinary topic focuses on one of the most important types of detectors for elementary particles and photons: resistive plate chambers (RPCs). In the first part, the outstanding, international team of authors comprehensively describes and presents the features and design of single and double-layer RPCs before covering more advanced multi-layer RPCs. The second part then focuses on the application of RPCs in high energy physics, materials science, medicine and security. Throughout, the experienced authors adopt a didactic approach, with each subject presented in a simple way, increasing in complexity step by step.

  9. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  10. Uncertainties in calculations of nuclear design code system for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Shindo, R.; Yamashita, K.; Murata, I.

    1991-01-01

    The nuclear design code system for the HTTR consists of one dimensional cell burnup computer code, developed in JAERI and the TWOTRAN-2 transport code. In order to satisfy related design criteria, uncertainty of the calculation was investigated by comparing the calculated and experimental results. The experiments were performed with a graphite moderated critical assembly. It was confirmed that discrepancies between calculations and experiments were small enough to be allowed in the nuclear design of HTTR. 8 refs, 6 figs

  11. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  12. EXIT Chart Aided Design of Periodically Punctured Turbo Codes

    OpenAIRE

    Babich, F.; Crismani, A.; Maunder, R. G.

    2010-01-01

    EXtrinsic Information Transfer (EXIT) charts have proved to be an effective tool for studying the convergence behaviour of iterative decoders. However, classical EXIT chart analysis fails to assess the performance of turbo codes in which the systematic bits are punctured periodically. In this letter, a novel 3-Dimensional (3D) EXIT chart technique is proposed for accurately modeling the convergence behaviour of turbo codes that are punctured following a periodic pattern. Finally, the novel 3D...

  13. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  14. Earthquake resistant design of nuclear facilities with limited radioactive inventory

    International Nuclear Information System (INIS)

    1985-10-01

    This document comprises the essential elements of an earthquake resistant design code for nuclear facilities with limited radioactive inventory. The purpose of the document is the enhancement of seismic safety for such facilities without the necessity to resort to complicated and sophisticated methodologies which are often associated with and borrowed from nuclear power plant analysis and design. The first two sections are concerned with the type of facility for which the document is applicable and the radiological consideration for accident conditions. The principles of facility classification and item categorization as a function of the potential radiological consequences of failure are given in section 3. The design basis ground motion is evaluated in sections 4-6 using a simplified but conservative approach which also includes considerations for the underlying soil characteristics. Sections 7 and 8 specify the principles of seismic design of building structures and equipment using two methods, called the equivalent static and simplified dynamic approach. Considerations for the detailing of equipment and piping and those other than for lateral load calculations, such as sloshing effects, are given in the subsequent sections. Several appendices are given for illustration of the principles presented in the text. Finally, a design tree diagram is included to facilitate the user's task of making the appropriate selections. (author)

  15. Analysis and design of Raptor codes using a multi-edge framework

    OpenAIRE

    Jayasooriya, Sachini; Shirvanimoghaddam, Mahyar; Ong, Lawrence; Johnson, Sarah J.

    2017-01-01

    The focus of this paper is on the analysis and design of Raptor codes using a multi-edge framework. In this regard, we first represent the Raptor code as a multi-edge type low-density parity-check (METLDPC) code. This MET representation gives a general framework to analyze and design Raptor codes over a binary input additive white Gaussian noise channel using MET density evolution (MET-DE). We consider a joint decoding scheme based on the belief propagation (BP) decoding for Raptor codes in t...

  16. SWAAM-code development and verification and application to steam generator designs

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes which were developed by Argonne National Laboratory to analyze the effects of sodium-water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The paper discusses the theoretical foundations and numerical treatments on which the codes are based, followed by a description of code capabilities and limitations, verification of the codes and applications to steam generator and IHTS designs. 25 refs., 14 figs

  17. Design of a European code of conduct for brain banking.

    Science.gov (United States)

    Klioueva, Natasja M; Rademaker, Marleen C; Huitinga, Inge

    2018-01-01

    The BrainNet Europe consortium, which is a consortium of 19 European brain banks, took the initiative to draft a series of documents to provide an ethical framework for brain banks to follow. The framework includes an ethical code of conduct, a model for brain bank regulations, and a toolkit containing several documents. The sources for the information included came from the laws, regulations, and guidelines (declarations, conventions, recommendations, guidelines, and directives) that had been issued by international key organizations, such as the Council of Europe, European Commission, World Medical Association, and World Health Organization. The code of conduct addresses fundamental topics such as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collections of human biologic material and their management, and transparency and accountability within the organization of a brain bank. The code of conduct was ratified by all European brain banks in 2009. This chapter describes the process of establishing the code of conduct within the BrainNet Europe consortium and elaborates on three key aspects of the code of conduct, namely informed consent, genetics, and financial aspects in brain banking. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. LMFBR core design codes based on experimental fast reactor 'JOYO' experiences

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Aoki, Katsutada; Kawashima, Masatoshi.

    1982-01-01

    In order to design the core for a 1,000-MWe-class fast breeder reactor, many kinds of computer codes as design tools are needed for analyzing the multicore components, mechanical behavior, nuclear performance and the thermal hydraulic performance of the core, and for designing the fuel. To meet these needs, Toshiba has endeavored for many years to develop highly reliable computer codes for core design, some of which are described in this article, and to continue their improvement by verifying them with actual fast reactor operation data. Above all, a series of nuclear design codes named COSMOS was successfully applied to the core design of the Japanese experimental fast breeder reactor ''JOYO'', and the excellent agreement between designed values and actual measured data has concluded that Toshiba's nuclear design codes are very useful for application to future large core design. (author)

  19. Programming peptidomimetic syntheses by translating genetic codes designed de novo.

    Science.gov (United States)

    Forster, Anthony C; Tan, Zhongping; Nalam, Madhavi N L; Lin, Hening; Qu, Hui; Cornish, Virginia W; Blacklow, Stephen C

    2003-05-27

    Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

  20. Design of a European code of conduct for brain banking.

    NARCIS (Netherlands)

    Klioueva, N.M.; Rademaker, M.; Huitinga, I.; Huitinga, I.; Webster, M.J.

    2018-01-01

    The BrainNet Europe consortium, which is a consortium of 19 European brain banks, took the initiative to draft a series of documents to provide an ethical framework for brain banks to follow. The framework includes an ethical code of conduct, a model for brain bank regulations, and a toolkit

  1. Contribution to study and design of PWR plant simulation code

    International Nuclear Information System (INIS)

    Delourme, Didier.

    1980-11-01

    This paper presents an improvement of PICOLO, a package for PWR plants simulation. Its describes principally the integration to the code of a primary loop and pressurizer model and the corresponding control loops. Fast transients are tested on the packages and results are compared with real transients obtained on plants [fr

  2. Impact of ACI-ASME code on design and construction of nuclear containment structures

    International Nuclear Information System (INIS)

    Reedy, R.F.

    1978-01-01

    The effect of the ACI-ASME code for design and construction of concrete containment structures on the nuclear and concrete industries is examined. Topics covered include purpose of the code, general requirements, responsibilities and duties, design and construction specifications, quality assurance, inspection, the liner, and stamping

  3. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  4. Prodeto, a computer code for probabilistic fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Braam, H. [ECN-Solar and Wind Energy, Petten (Netherlands); Christensen, C.J.; Thoegersen, M.L. [Risoe National Lab., Roskilde (Denmark); Ronold, K.O. [Det Norske Veritas, Hoevik (Norway)

    1999-03-01

    A computer code for structural relibility analyses of wind turbine rotor blades subjected to fatigue loading is presented. With pre-processors that can transform measured and theoretically predicted load series to load range distributions by rain-flow counting and with a family of generic distribution models for parametric representation of these distribution this computer program is available for carying through probabilistic fatigue analyses of rotor blades. (au)

  5. Developing a Coding Scheme to Analyse Creativity in Highly-constrained Design Activities

    DEFF Research Database (Denmark)

    Dekoninck, Elies; Yue, Huang; Howard, Thomas J.

    2010-01-01

    This work is part of a larger project which aims to investigate the nature of creativity and the effectiveness of creativity tools in highly-constrained design tasks. This paper presents the research where a coding scheme was developed and tested with a designer-researcher who conducted two rounds...... of design and analysis on a highly constrained design task. This paper shows how design changes can be coded using a scheme based on creative ‘modes of change’. The coding scheme can show the way a designer moves around the design space, and particularly the strategies that are used by a creative designer...... larger study with more designers working on different types of highly-constrained design task is needed, in order to draw conclusions on the modes of change and their relationship to creativity....

  6. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel [Departamento de Astronomía y Astrofísica, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Müller, Ewald, E-mail: tomasz.rembiasz@uv.es [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.

  7. Design validation of the ITER EC upper launcher according to codes and standards

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, Peter, E-mail: peter.spaeh@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Gagliardi, Mario [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); F4E, Fusion for Energy, Joint Undertaking, Barcelona (Spain); Grossetti, Giovanni; Meier, Andreas; Scherer, Theo; Schreck, Sabine; Strauss, Dirk; Vaccaro, Alessandro [Karlsruhe Institute of Technology, Institute for Applied Materials, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Weinhorst, Bastian [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • A set of applicable codes and standards has been chosen for the ITER EC upper launcher. • For a particular component load combinations, failure modes and stress categorizations have been determined. • The design validation was performed in accordance with the “design by analysis”-approach of the ASME boiler and pressure vessel code section III. - Abstract: The ITER electron cyclotron (EC) upper launcher has passed the CDR (conceptual design review) in 2005 and the PDR (preliminary design review) in 2009 and is in its final design phase now. The final design will be elaborated by the European consortium ECHUL-CA with contributions from several research institutes in Germany, Italy, the Netherlands and Switzerland. Within this consortium KIT is responsible for the design of the structural components (the upper port plug, UPP) and also the design integration of the launcher. As the selection of applicable codes and standards was under discussion for the past decade, the conceptual and the preliminary design of the launcher structure were not elaborated in straight accordance with a particular code but with a variety of well-acknowledged engineering practices. For the final design it is compulsory to validate the design with respect to a typical engineering code in order to be compliant with the ITER quality and nuclear requirements and to get acceptance from the French regulator. This paper presents typical design validation of the closure plate, which is the vacuum and Tritium barrier and thus a safety relevant component of the upper port plug (UPP), performed with the ASME boiler and pressure vessel code. Rationales for choosing this code are given as well as a comparison between different design methods, like the “design by rule” and the “design by analysis” approach. Also the selections of proper load specifications and the identification of potential failure modes are covered. In addition to that stress categorizations, analyses

  8. REVA Advanced Fuel Design and Codes and Methods - Increasing Reliability, Operating Margin and Efficiency in Operation

    Energy Technology Data Exchange (ETDEWEB)

    Frichet, A.; Mollard, P.; Gentet, G.; Lippert, H. J.; Curva-Tivig, F.; Cole, S.; Garner, N.

    2014-07-01

    Since three decades, AREVA has been incrementally implementing upgrades in the BWR and PWR Fuel design and codes and methods leading to an ever greater fuel efficiency and easier licensing. For PWRs, AREVA is implementing upgraded versions of its HTP{sup T}M and AFA 3G technologies called HTP{sup T}M-I and AFA3G-I. These fuel assemblies feature improved robustness and dimensional stability through the ultimate optimization of their hold down system, the use of Q12, the AREVA advanced quaternary alloy for guide tube, the increase in their wall thickness and the stiffening of the spacer to guide tube connection. But an even bigger step forward has been achieved a s AREVA has successfully developed and introduces to the market the GAIA product which maintains the resistance to grid to rod fretting (GTRF) of the HTP{sup T}M product while providing addition al thermal-hydraulic margin and high resistance to Fuel Assembly bow. (Author)

  9. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  10. Serum acylated ghrelin is negatively correlated with the insulin resistance in the CODING study.

    Directory of Open Access Journals (Sweden)

    Peyvand Amini

    Full Text Available Ghrelin is a 28-amino acid orexigenic peptide synthesized mainly in the stomach. Acute administration of ghrelin has been found to decrease insulin secretion. However, little data is available regarding whether ghrelin contributes to the long-term regulation of insulin resistance at the population level. The aim of this study is to investigate the association between circulating ghrelin and insulin resistance in a large population based study.A total of 2082 CODING study (Complex Diseases in the Newfoundland population: Environment and Genetics subjects were assessed. Subjects were of at least third generation Newfoundland descent, between the ages of 20 and 79 years, and had no serious metabolic, cardiovascular, or endocrine diseases. Ghrelin was measured with an Enzyme Immunoassay method. Insulin and fasting glucose were measured by Immulite 2500 autoanalyzer and Lx20 clinical chemistry analyzer, respectively. Homeostatic Model Assessment of β cell function (HOMA-β and Insulin Resistance (HOMA-IR and Quantitative Insulin-sensitivity Check Index (QUICKI were used for measurement of insulin resistance.Partial correlation analyses showed a significant negative correlation between circulating ghrelin and insulin level and insulin resistance in the entire cohort and also in men and women separately. The aforementioned correlation was independent of age, percentage of trunk fat and HDL-cholesterol. According to menopausal status, only pre-menopausal women revealed negative correlations.Our results suggest that except for postmenopausal women, high circulating ghrelin level is associated with lower insulin resistance in the general population.

  11. DIANA Code: Design and implementation of an analytic core calculus code by two group, two zone diffusion

    International Nuclear Information System (INIS)

    Mochi, Ignacio

    2005-01-01

    The principal parameters of nuclear reactors are determined in the conceptual design stage.For that purpose, it is necessary to have flexible calculation tools that represent the principal dependencies of such parameters.This capability is of critical importance in the design of innovative nuclear reactors.In order to have a proper tool that could assist the conceptual design of innovative nuclear reactors, we developed and implemented a neutronic core calculus code: DIANA (Diffusion Integral Analytic Neutron Analysis).To calculate the required parameters, this code generates its own cross sections using an analytic two group, two zones diffusion scheme based only on a minimal set of data (i.e. 2200 m/s and fission averaged microscopic cross sections, Wescott factors and Effective Resonance Integrals).Both to calculate cross sections and core parameters, DIANA takes into account heterogeneity effects that are included when it evaluates each zone.Among them lays the disadvantage factor of each energy group.DIANA was totally implemented through Object Oriented Programming using C++ language. This eases source code understanding and would allow a quick expansion of its capabilities if needed.The final product is a versatile and easy-to-use code that allows core calculations with a minimal amount of data.It also contains the required tools needed to perform many variational calculations such as the parameterisation of effective multiplication factors for different radii of the core.The diffusion scheme s simplicity allows an easy following of the involved phenomena, making DIANA the most suitable tool to design reactors whose physics lays beyond the parameters of present reactors.All this reasons make DIANA a good candidate for future innovative reactor analysis

  12. General Concerns Life-Cycle Design of Economical Ice-Resistant Structures in the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Zhang Da-yong

    2017-08-01

    Full Text Available In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.

  13. Seismicity and Design Codes in Chile: Characteristic Features and a Comparison with Some of the Provisions of the Romanian Seismic Design Code

    Directory of Open Access Journals (Sweden)

    Diana ENE

    2010-07-01

    Full Text Available A brief history and the characteristics of the seismic region and events in Chile reveal interesting indices in understanding the present day Chilean seismic design code. The paper points out some of the most important prescriptions in the Chilean code that could have led to the relatively reduced number of casualties at the seismic event on February 27th, 2010. By comparing the Chilean code to the Romanian one, the goal is to underline the differences and the similarities regarding both the conceptual and the formal aspects. Observations are pointed out by means of comparative diagrams of significant parameters. Based on statistics of recorded damage published after the earthquake, some comments are made on the importance of the quality of seismic codes and of the effectiveness of their enforcement.

  14. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1998-01-01

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges

  15. Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation

    Science.gov (United States)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.

  16. APPLICATION FOR DESIGN OF STRUCTURAL ELEMENT USING VISUAL BASIC CODING

    OpenAIRE

    T. Thenmozhi; K. Nithya; M. Arun Kumar; M. Ravichandran

    2017-01-01

    The increasing reliance of engineers on computer software in the performance of their tasks requires engineers, the future professional engineers, must be knowledgeable of sound engineering concepts, updated on the latest computer technology used in the industry and aware of the limitations and capabilities of the computer in solving engineering problems. Computer Methods in Civil Engineering to developed structural design program for design of structural element using Visual Basic. By creati...

  17. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core

  18. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  19. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  20. MUP, CEC-DES, STRADE. Codes for uncertainty propagation, experimental design and stratified random sampling techniques

    International Nuclear Information System (INIS)

    Amendola, A.; Astolfi, M.; Lisanti, B.

    1983-01-01

    The report describes the how-to-use of the codes: MUP (Monte Carlo Uncertainty Propagation) for uncertainty analysis by Monte Carlo simulation, including correlation analysis, extreme value identification and study of selected ranges of the variable space; CEC-DES (Central Composite Design) for building experimental matrices according to the requirements of Central Composite and Factorial Experimental Designs; and, STRADE (Stratified Random Design) for experimental designs based on the Latin Hypercube Sampling Techniques. Application fields, of the codes are probabilistic risk assessment, experimental design, sensitivity analysis and system identification problems

  1. Hypervelocity Code to Design Light Gas Guns to Achieve 10km/s+

    Data.gov (United States)

    National Aeronautics and Space Administration — Create a validated three stage light gas gun (3SLGG) code, running over 400 iterations providing the optimal geometries to enable the design, build and safe...

  2. Mask design and fabrication in coded aperture imaging

    International Nuclear Information System (INIS)

    Shutler, Paul M.E.; Springham, Stuart V.; Talebitaher, Alireza

    2013-01-01

    We introduce the new concept of a row-spaced mask, where a number of blank rows are interposed between every pair of adjacent rows of holes of a conventional cyclic difference set based coded mask. At the cost of a small loss in signal-to-noise ratio, this can substantially reduce the number of holes required to image extended sources, at the same time increasing mask strength uniformly across the aperture, as well as making the mask automatically self-supporting. We also show that the Finger and Prince construction can be used to wrap any cyclic difference set onto a two-dimensional mask, regardless of the number of its pixels. We use this construction to validate by means of numerical simulations not only the performance of row-spaced masks, but also the pixel padding technique introduced by in ’t Zand. Finally, we provide a computer program CDSGEN.EXE which, on a fast modern computer and for any Singer set of practical size and open fraction, generates the corresponding pattern of holes in seconds

  3. Jointly Decoded Raptor Codes: Analysis and Design for the BIAWGN Channel

    Directory of Open Access Journals (Sweden)

    Venkiah Auguste

    2009-01-01

    Full Text Available Abstract We are interested in the analysis and optimization of Raptor codes under a joint decoding framework, that is, when the precode and the fountain code exchange soft information iteratively. We develop an analytical asymptotic convergence analysis of the joint decoder, derive an optimization method for the design of efficient output degree distributions, and show that the new optimized distributions outperform the existing ones, both at long and moderate lengths. We also show that jointly decoded Raptor codes are robust to channel variation: they perform reasonably well over a wide range of channel capacities. This robustness property was already known for the erasure channel but not for the Gaussian channel. Finally, we discuss some finite length code design issues. Contrary to what is commonly believed, we show by simulations that using a relatively low rate for the precode , we can improve greatly the error floor performance of the Raptor code.

  4. ASME Code requirements for multi-canister overpack design and fabrication

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified

  5. Application of the MELCOR code to design basis PWR large dry containment analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jesse; Notafrancesco, Allen (USNRC, Office of Nuclear Regulatory Research, Rockville, MD); Tills, Jack Lee (Jack Tills & Associates, Inc., Sandia Park, NM)

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  6. Do Performance-Based Codes Support Universal Design in Architecture?

    DEFF Research Database (Denmark)

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project ‘An analysis of the accessibility requirements’ studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design...... understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom´s taxonomy...... of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency....

  7. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  8. Environmental construction of nano-material design codes. The example of simulation codes used in the CMD workshop

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Mikiya [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Kizu, Kyoto (Japan)

    2003-05-01

    Generally it is well known that the R and D works on new materials or devices will play a central role on the evolution of future society. But, the old ways based on the empirical and experimental approach have already reached the limit, especially for dealing with a strange substance and material. The structure of a substance and material is needed to be dealt with in detail by quantum mechanics, because the limit on accuracy has come in sight in the calculation using a classical theory. The research on the latest electronic state calculation technique founded on quantum mechanics made a great advance as the technique of solving these problems as well as the technique of a computational materials design. It enables the prediction of material properties because it is based on First Principles. Therefore, in the future it is expected to have a very high possibility of becoming a breakthrough in such a situation. In this article, the example calculation results by PC cluster on the codes (MACHIKANEYAMA-2000, OSAKA-2000) used in the CMD (Computational Materials Design) workshop, held on Sep. 19-21, at ITBL-Building and International Institute for Advanced Studies under the auspices of the University of Osaka, are described. Furthermore, the graphical user interfaces on the codes are examined. (author)

  9. Objective Oriented Design of Architecture for TH System Safety Analysis Code and Verification

    International Nuclear Information System (INIS)

    Chung, Bub Dong

    2008-03-01

    In this work, objective oriented design of generic system analysis code has been tried based on the previous works in KAERI for two phase three field Pilot code. It has been performed to implement of input and output design, TH solver, component model, special TH models, heat structure solver, general table, trip and control, and on-line graphics. All essential features for system analysis has been designed and implemented in the final product SYSTF code. The computer language C was used for implementation in the Visual studio 2008 IDE (Integrated Development Environment) since it has easier and lighter than C++ feature. The code has simple and essential features of models and correlation, special component, special TH model and heat structure model. However the input features is able to simulate the various scenarios, such as steady state, non LOCA transient and LOCA accident. The structure validity has been tested through the various verification tests and it has been shown that the developed code can treat the non LOCA and LOCA simulation. However more detailed design and implementation of models are required to get the physical validity of SYSTF code simulation

  10. Status of design code work for metallic high temperature components

    International Nuclear Information System (INIS)

    Bieniussa, K.; Seehafer, H.J.; Over, H.H.; Hughes, P.

    1984-01-01

    The mechanical components of high temperature gas-cooled reactors, HTGR, are exposed to temperatures up to about 1000 deg. C and this in a more or less corrosive gas environment. Under these conditions metallic structural materials show a time-dependent structural behavior. Furthermore changes in the structure of the material and loss of material in the surface can result. The structural material of the components will be stressed originating from load-controlled quantities, for example pressure or dead weight, and/or deformation-controlled quantities, for example thermal expansion or temperature distribution, and thus it can suffer rowing permanent strains and deformations and an exhaustion of the material (damage) both followed by failure. To avoid a failure of the components the design requires the consideration of the following structural failure modes: ductile rupture due to short-term loadings; creep rupture due to long-term loadings; reep-fatigue failure due to cyclic loadings excessive strains due to incremental deformation or creep ratcheting; loss of function due to excessive deformations; loss of stability due to short-term loadings; loss of stability due to long-term loadings; environmentally caused material failure (excessive corrosion); fast fracture due to instable crack growth

  11. Materials and design bases issues in ASME Code Case N-47

    International Nuclear Information System (INIS)

    Huddleston, R.L.; Swindeman, R.W.

    1993-04-01

    A preliminary evaluation of the design bases (principally ASME Code Case N-47) was conducted for design and operation of reactors at elevated temperatures where the time-dependent effects of creep, creep-fatigue, and creep ratcheting are significant. Areas where Code rules or regulatory guides may be lacking or inadequate to ensure the operation over the expected life cycles for the next-generation advanced high-temperature reactor systems, with designs to be certified by the US Nuclear Regulatory Commission, have been identified as unresolved issues. Twenty-two unresolved issues were identified and brief scoping plans developed for resolving these issues

  12. Artificial viscosity method for the design of supercritical airfoils. [Analysis code H

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, G.B.

    1979-07-01

    The need for increased efficiency in the use of our energy resources has stimulated applied research in many areas. Recently progress has been made in the field of aerodynamics, where the development of the supercritical wing promises significant savings in the fuel consumption of aircraft operating near the speed of sound. Computational transonic aerodynamics has proved to be a useful tool in the design and evaluation of these wings. A numerical technique for the design of two-dimensional supercritical wing sections with low wave drag is presented. The method is actually a design mode of the analysis code H developed by Bauer, Garabedian, and Korn. This analysis code gives excellent agreement with experimental results and is used widely by the aircraft industry. The addition of a conceptually simple design version should make this code even more useful to the engineering public.

  13. The Impact of Diagnostic Code Misclassification on Optimizing the Experimental Design of Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Steven J. Schrodi

    2017-01-01

    Full Text Available Diagnostic codes within electronic health record systems can vary widely in accuracy. It has been noted that the number of instances of a particular diagnostic code monotonically increases with the accuracy of disease phenotype classification. As a growing number of health system databases become linked with genomic data, it is critically important to understand the effect of this misclassification on the power of genetic association studies. Here, I investigate the impact of this diagnostic code misclassification on the power of genetic association studies with the aim to better inform experimental designs using health informatics data. The trade-off between (i reduced misclassification rates from utilizing additional instances of a diagnostic code per individual and (ii the resulting smaller sample size is explored, and general rules are presented to improve experimental designs.

  14. Designing LUT-based mealy FSMs with transformation of state codes

    Science.gov (United States)

    Mielcarek, Kamil; Barkalov, Alexander; Titarenko, Larisa

    2017-11-01

    A design method is proposed for LUT-based Mealy FSMs. The method is based on transformation of state codes into outputs of FSMs. Example of design and results of investigations are given. The method allows obtaining FSM logic circuits with less amount of LUTs than known from literature methods.

  15. Estimating Design Resistance of Wrought Balcony Girders

    Directory of Open Access Journals (Sweden)

    Jung Karel

    2017-06-01

    Full Text Available The contribution is focused on reliability of balcony girders of a Czech national heritage monument. As preliminary reliability assessment suggests insufficient resistance, a series of nondestructive tests supplemented by a single tensile test are performed and evaluated by the statistical methods. Values of material properties, recommended in standards for historic materials, seem to be overly conservative and it is advised to specify properties of historic metallic materials by tests.

  16. The beta equilibrium, stability, and transport codes. Applications to the design of stellarators

    International Nuclear Information System (INIS)

    Bauer, F.; Garabedian, P.; Betancourt, O.; Wakatani, M.

    1987-01-01

    This book gives a detailed exposition of the available computational methods, documents the codes, and presents many examples showing how to run them and how to interpret the results. A listing of the recently completed BETA transport code is included. Current stellarator experiments are discussed, and the book contains significant applications to the design of major new stellarator experiments that are now in the planning stage

  17. Computer codes for particle accelerator design and analysis: A compendium. Second edition

    International Nuclear Information System (INIS)

    Deaven, H.S.; Chan, K.C.D.

    1990-05-01

    The design of the next generation of high-energy accelerators will probably be done as an international collaborative efforts and it would make sense to establish, either formally or informally, an international center for accelerator codes with branches for maintenance, distribution, and consultation at strategically located accelerator centers around the world. This arrangement could have at least three beneficial effects. It would cut down duplication of effort, provide long-term support for the best codes, and provide a stimulating atmosphere for the evolution of new codes. It does not take much foresight to see that the natural evolution of accelerator design codes is toward the development of so-called Expert Systems, systems capable of taking design specifications of future accelerators and producing specifications for optimized magnetic transport and acceleration components, making a layout, and giving a fairly impartial cost estimate. Such an expert program would use present-day programs such as TRANSPORT, POISSON, and SUPERFISH as tools in the optimization process. Such a program would also serve to codify the experience of two generations of accelerator designers before it is lost as these designers reach retirement age. This document describes 203 codes that originate from 10 countries and are currently in use. The authors feel that this compendium will contribute to the dialogue supporting the international collaborative effort that is taking place in the field of accelerator physics today

  18. A contribution to the design of fast code converters for position encoders

    Science.gov (United States)

    Denic, Dragan B.; Dincic, Milan R.; Miljkovic, Goran S.; Peric, Zoran H.

    2016-10-01

    Pseudorandom binary sequences (PRBS) are very useful in many areas of applications. Absolute position encoders based on PRBS have many advantages. However, the pseudorandom code is not directly applicable to the digital electronic systems, hence a converter from pseudorandom to natural binary code is needed. Recently, a fast pseudorandom/natural code converter based on Galois PRBS generator (much faster than previously used converter based on Fibonacci PRBS generator) was proposed. One of the main parts of the Galois code converter is an initial logic. The problem of the design of the initial logic has been solved only for some single values of resolution, but it is still not solved for any value of resolution, which significantly limits the applicability of the fast Galois code converter. This paper solves this problem presenting the solution for the design of the initial logic of the fast Galois pseudorandom/natural code converters used in the pseudorandom position encoders, in general manner, that is for any value of the resolution, allowing for a wide applicability of the fast Galois pseudorandom position encoders. Rigorous mathematical derivation of the formula for the designing of the initial logic is presented. Simulation of the proposed converter is performed in NI MultiSim software. The proposed solution, although developed for pseudorandom position encoders, can be used in many other fields where PRBS are used.

  19. Applicability of GALE-86 Codes to Integral Pressurized Water Reactor designs

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-01

    This report describes work that Pacific Northwest National Laboratory is doing to assist the U.S. Nuclear Regulatory Commission (NRC) Office of New Reactors (NRO) staff in their reviews of applications for nuclear power plants using new reactor core designs. These designs include small integral PWRs (IRIS, mPower, and NuScale reactor designs), HTGRs, (pebble-bed and prismatic-block modular reactor designs) and SFRs (4S and PRISM reactor designs). Under this specific task, PNNL will assist the NRC staff in reviewing the current versions of the GALE codes and identify features and limitations that would need to be modified to accommodate the technical review of iPWR and mPower® license applications and recommend specific changes to the code, NUREG-0017, and associated NRC guidance. This contract is necessary to support the licensing of iPWRs with a near-term focus on the B&W mPower® reactor design. While the focus of this review is on the mPower® reactor design, the review of the code and the scope of recommended changes consider a revision of the GALE codes that would make them universally applicable for other types of integral PWR designs. The results of a detailed comparison between PWR and iPWR designs are reported here. Also included is an investigation of the GALE code and its basis and a determination as to the applicability of each of the bases to an iPWR design. The issues investigated come from a list provided by NRC staff, the results of comparing the PWR and iPWR designs, the parameters identified as having a large impact on the code outputs from a recent sensitivity study and the main bases identified in NUREG-0017. This report will provide a summary of the gaps in the GALE codes as they relate to iPWR designs and for each gap will propose what work could be performed to fill that gap and create a version of GALE that is applicable to integral PWR designs.

  20. Reliability functions for earthquake resistant design

    International Nuclear Information System (INIS)

    Esteva, Luis; Diaz-Lopez, Orlando; Garcia-Perez, Jaime

    2001-01-01

    A unified approach is presented for the establishment of design conditions and acceptance criteria for performance objectives associated with different return intervals. A life-cycle optimization analysis is adopted for this purpose. Reliability and expected damage functions are defined both for individual seismic events and for a long-term framework. System reliability functions are determined by Monte Carlo simulation for a number of multistory frames, designed for different base-shear ratios and subjected to earthquakes of different intensities. Systematic trends are identified about the variation of the reliability index with the natural logarithm of the expected ductility demand of a reference system. These trends lead to the definition of seismic reliability functions that can easily be adapted for applications to reliability-based design. The problem of transforming the results of the optimization studies into codified rules for practical design is briefly discussed

  1. Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and its Application to Sparse Coding

    Directory of Open Access Journals (Sweden)

    Sapan eAgarwal

    2016-01-01

    Full Text Available The exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational advantages of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an NxN crossbar, these two kernels are at a minimum O(N more energy efficient than a digital memory-based architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1. These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N reduction in energy for the entire algorithm. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.

  2. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    Science.gov (United States)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  3. Researching on knowledge architecture of design by analysis based on ASME code

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2003-01-01

    The quality of knowledge-based system's knowledge architecture is one of decisive factors of knowledge-based system's validity and rationality. For designing the ASME code knowledge based system, this paper presents a knowledge acquisition method which is extracting knowledge through document analysis consulted domain experts' knowledge. Then the paper describes knowledge architecture of design by analysis based on the related rules in ASME code. The knowledge of the knowledge architecture is divided into two categories: one is empirical knowledge, and another is ASME code knowledge. Applied as the basement of the knowledge architecture, a general procedural process of design by analysis that is met the engineering design requirements and designers' conventional mode is generalized and explained detailed in the paper. For the sake of improving inference efficiency and concurrent computation of KBS, a kind of knowledge Petri net (KPN) model is proposed and adopted in expressing the knowledge architecture. Furthermore, for validating and verifying of the empirical rules, five knowledge validation and verification theorems are given in the paper. Moreover the research production is applicable to design the knowledge architecture of ASME codes or other engineering standards. (author)

  4. Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach

    International Nuclear Information System (INIS)

    Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou

    2005-01-01

    A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)

  5. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    Directory of Open Access Journals (Sweden)

    Qiongdan Huang

    2014-01-01

    Full Text Available By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Chebyshev mapping to conduct a phase modulation on MCPC pulse train so as to design two different types of multicarrier chaotic phase coded pulse train signal. The ambiguity functions of the two pulse train signals are compared with that of P4 code MCPC pulse train. In addition, we analyze the influences of subcarrier number, phase-modulated bit number, and period number on the pulse train’s autocorrelation performance. The low probability of intercept (LPI performance of the two signals is also discussed. Simulation results show that the designed pulse train signals have a thumbtack ambiguity function, a periodic autocorrelation side lobe lower than P4 code MCPC pulse train, and excellent LPI performance, as well as the feature of waveform diversity.

  6. Attention Filtering in the Design of Electronic Map Displays: A Comparison of Color-Coding, Intensity Coding, and Decluttering Techniques

    National Research Council Canada - National Science Library

    Yeh, Michelle; Wickens, Christopher D

    2000-01-01

    In a series of experiments, the use of color-coding, intensity coding, and decluttering were compared order to assess their potential benefits for accessing information from electronic map displays...

  7. Realistic edge field model code REFC for designing and study of isochronous cyclotron

    International Nuclear Information System (INIS)

    Ismail, M.

    1989-01-01

    The focussing properties and the requirements for isochronism in cyclotron magnet configuration are well-known in hard edge field model. The fact that they quite often change considerably in realistic field can be attributed mainly to the influence of the edge field. A solution to this problem requires a field model which allows a simple construction of equilibrium orbit and yield simple formulae. This can be achieved by using a fitted realistic edge field (Hudson et al 1975) in the region of the pole edge and such a field model is therefore called a realistic edge field model. A code REFC based on realistic edge field model has been developed to design the cyclotron sectors and the code FIELDER has been used to study the beam properties. In this report REFC code has been described along with some relevant explaination of the FIELDER code. (author). 11 refs., 6 figs

  8. Design of TIME2 code: time dependent effects on Land 2 type repositories for Department of the Environment

    International Nuclear Information System (INIS)

    1985-07-01

    Design details for the proposed TIME2 computer code are presented for the purposes of information, planning and to serve as a guideline during code development. The TIME2 code will describe the long-term evolution of the environments of Land 2 type radioactive waste disposal sites (also known as 'time dependent effects'). Outlines are presented of code purpose and utilisation, specification and structure, input and output design, verification and validation, quality assurance and documentation. (author)

  9. Flow resistance a design guide for engineers

    CERN Document Server

    Idelchik, I

    1989-01-01

    A sourcebook offering an up-to-date perspective on a variety of topics and using practical, applications-oriented data necessary for the design and evaluation of internal fluid system pressure losses. It has been prepared for the practicing engineer who understands fluid-flow fundamentals.

  10. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    Science.gov (United States)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  11. An Examination of the Performance Based Building Code on the Design of a Commercial Building

    Directory of Open Access Journals (Sweden)

    John Greenwood

    2012-11-01

    Full Text Available The Building Code of Australia (BCA is the principal code under which building approvals in Australia are assessed. The BCA adopted performance-based solutions for building approvals in 1996. Performance-based codes are based upon a set of explicit objectives, stated in terms of a hierarchy of requirements beginning with key general objectives. With this in mind, the research presented in this paper aims to analyse the impact of the introduction of the performance-based code within Western Australia to gauge the effect and usefulness of alternative design solutions in commercial construction using a case study project. The research revealed that there are several advantages to the use of alternative designs and that all parties, in general, are in favour of the performance-based building code of Australia. It is suggested that change in the assessment process to streamline the alternative design path is needed for the greater use of the performance-based alternative. With appropriate quality control measures, minor variations to the deemed-to-satisfy provisions could easily be managed by the current and future building surveying profession.

  12. A Shape Optimization Study for Tool Design in Resistance Welding

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Bendsøe, Martin P.; Hattel, Jesper Henri

    2009-01-01

    The purpose of this study is to apply shape optimization tools for design of resistance welding electrodes. The numerical simulation of the welding process has been performed by a simplified FEM model implemented in COMSOL. The design process is formulated as an optimization problem where...

  13. Current Status of the Elevated Temperature Structure Design Codes for VHTR

    International Nuclear Information System (INIS)

    Kim, Jong-Bum; Kim, Seok-Hoon; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    An elevated temperature structure design and analysis is one of the key issues in the VHTR (Very High Temperature Reactor) project to achieve an economic production of hydrogen which will be an essential energy source for the near future. Since the operating temperature of a VHTR is above 850 .deg. C, the existing code and standards are insufficient for a high temperature structure design. Thus the issues concerning a material selection and behaviors are being studied for the main structural components of a VHTR in leading countries such as US, France, UK, and Japan. In this study, the current status of the ASME code, French RCC-MR, UK R5, and Japanese code were investigated and the necessary R and D items were discussed

  14. Inhibition of long non-coding RNA ROR reverses resistance to Tamoxifen by inducing autophagy in breast cancer.

    Science.gov (United States)

    Li, Yuehua; Jiang, Baohong; Zhu, Hongbo; Qu, Xiaofei; Zhao, Liqin; Tan, Yeru; Jiang, Yiling; Liao, Mingchu; Wu, Xiaoping

    2017-06-01

    This study explored the mechanism underlying long non-coding RNA ROR regulating autophagy on Tamoxifen resistance in breast cancer. Cancer tissues and adjacent normal tissues were collected from 74 breast cancer patients. Human breast cancer BT474 cells were assigned into blank, phosphate buffered saline, Tamoxifen, negative control + Tamoxifen, siROR + Tamoxifen, 3-methyladenine + Tamoxifen, and siROR + 3-methyladenine + TA groups. The expression of long non-coding RNA ROR and expressions of multi-drug resistance-associated P-glycoprotein and glutathione S-transferase-π messenger RNA were detected using quantitative real-time polymerase chain reaction. The expressions of light chain 3, Beclin 1, multi-drug resistance-associated P-glycoprotein, and glutathione S-transferase-π protein were determined using western blotting. Cell proliferation, invasion, and migration abilities were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Transwell assay, and scratch test, respectively. The long non-coding RNA ROR expression was higher in the breast cancer tissues than that in the adjacent normal tissues. Compared with the blank group, light chain 3 and Beclin 1 expressions were increased in the siROR + Tamoxifen group but decreased in the 3-methyladenine + Tamoxifen group; these data indicated that downregulated long non-coding RNA ROR promoted autophagy. In comparison with the blank group, multi-drug resistance-associated P-glycoprotein and glutathione S-transferase-π messenger RNA and protein expressions were reduced in the siROR + Tamoxifen group but elevated in the 3-methyladenine + Tamoxifen group, suggesting that downregulated long non-coding RNA ROR suppressed the drug resistance to Tamoxifen and the inhibition of autophagy reversed the effect of long non-coding RNA ROR on drug resistance. Compared with the Tamoxifen, negative control, and siROR + 3-methyladenine + Tamoxifen groups, the cell

  15. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  16. Design and Performance Evaluation of Underwater Data Dissemination Strategies using Interference Avoidance and Network Coding

    DEFF Research Database (Denmark)

    Palacios, Raul; Heide, Janus; Fitzek, Frank

    2012-01-01

    The long propagation delays of the underwater acoustic channel make traditional Medium Access schemes impractical and inefficient under water. This paper introduces and studies Interference Avoidance and Network Coding for Medium Access protocol design aiming to cope with the underwater channel c...

  17. Teacher Candidates Implementing Universal Design for Learning: Enhancing Picture Books with QR Codes

    Science.gov (United States)

    Grande, Marya; Pontrello, Camille

    2016-01-01

    The purpose of this study was to investigate if teacher candidates could gain knowledge of the principles of Universal Design for Learning by enhancing traditional picture books with Quick Response (QR) codes and to determine if the process of making these enhancements would impact teacher candidates' comfort levels with using technology on both…

  18. Design and Analysis of Boiler Pressure Vessels based on IBR codes

    Science.gov (United States)

    Balakrishnan, B.; Kanimozhi, B.

    2017-05-01

    Pressure vessels components are widely used in the thermal and nuclear power plants for generating steam using the philosophy of heat transfer. In Thermal power plant, Coal is burnt inside the boiler furnace for generating the heat. The amount of heat produced through the combustion of pulverized coal is used in changing the phase transfer (i.e. Water into Super-Heated Steam) in the Pressure Parts Component. Pressure vessels are designed as per the Standards and Codes of the country, where the boiler is to be installed. One of the Standards followed in designing Pressure Parts is ASME (American Society of Mechanical Engineers). The mandatory requirements of ASME code must be satisfied by the manufacturer. In our project case, A Shell/pipe which has been manufactured using ASME code has an issue during the drilling of hole. The Actual Size of the drilled holes must be, as per the drawing, but due to error, the size has been differentiate from approved design calculation (i.e. the diameter size has been exceeded). In order to rectify this error, we have included an additional reinforcement pad to the drilled and modified the design of header in accordance with the code requirements.

  19. Review of design codes of concrete encased steel short columns under axial compression

    Directory of Open Access Journals (Sweden)

    K.Z. Soliman

    2013-08-01

    Full Text Available In recent years, the use of encased steel concrete columns has been increased significantly in medium-rise or high-rise buildings. The aim of the present investigation is to assess experimentally the current methods and codes for evaluating the ultimate load behavior of concrete encased steel short columns. The current state of design provisions for composite columns from the Egyptian codes ECP203-2007 and ECP-SC-LRFD-2012, as well as, American Institute of Steel Construction, AISC-LRFD-2010, American Concrete Institute, ACI-318-2008, and British Standard BS-5400-5 was reviewed. The axial capacity portion of both the encased steel section and the concrete section was also studied according to the previously mentioned codes. Ten encased steel concrete columns have been investigated experimentally to study the effect of concrete confinement and different types of encased steel sections. The measured axial capacity of the tested ten composite columns was compared with the values calculated by the above mentioned codes. It is concluded that non-negligible discrepancies exist between codes and the experimental results as the confinement effect was not considered in predicting both the strength and ductility of concrete. The confining effect was obviously influenced by the shape of the encased steel section. The tube-shaped steel section leads to better confinement than the SIB section. Among the used codes, the ECP-SC-LRFD-2012 led to the most conservative results.

  20. Computer Programs for LB/TS Test Design: Technical Description, Usage Instructions and Source Code Listings

    Science.gov (United States)

    1995-09-01

    this subprogram defines the relationship bet~een the ·actuator position c louver angle and open area for the end vend of the LB /TS RWE c c...ARMY RESEARCH UBORA TORY Computer Programs for LB {fS Test Design: Technical Description, Usage Instructions and Source Code Listings ARL-MR-260...COVERED Final, Oct 94 - May 95 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Computer Programs for LB /TS Test Design: Technical Description, Usage

  1. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors

    Directory of Open Access Journals (Sweden)

    Sandra G. Zárate

    2018-01-01

    Full Text Available Resistance to aminoglycoside antibiotics has had a profound impact on clinical practice. Despite their powerful bactericidal activity, aminoglycosides were one of the first groups of antibiotics to meet the challenge of resistance. The most prevalent source of clinically relevant resistance against these therapeutics is conferred by the enzymatic modification of the antibiotic. Therefore, a deeper knowledge of the aminoglycoside-modifying enzymes and their interactions with the antibiotics and solvent is of paramount importance in order to facilitate the design of more effective and potent inhibitors and/or novel semisynthetic aminoglycosides that are not susceptible to modifying enzymes.

  2. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  3. Design and implementation of encrypted and decrypted file system based on USBKey and hardware code

    Science.gov (United States)

    Wu, Kehe; Zhang, Yakun; Cui, Wenchao; Jiang, Ting

    2017-05-01

    To protect the privacy of sensitive data, an encrypted and decrypted file system based on USBKey and hardware code is designed and implemented in this paper. This system uses USBKey and hardware code to authenticate a user. We use random key to encrypt file with symmetric encryption algorithm and USBKey to encrypt random key with asymmetric encryption algorithm. At the same time, we use the MD5 algorithm to calculate the hash of file to verify its integrity. Experiment results show that large files can be encrypted and decrypted in a very short time. The system has high efficiency and ensures the security of documents.

  4. [The design and experiment of complementary S coding matrix based on digital micromirror spectrometer].

    Science.gov (United States)

    Zhang, Zhi-Hai; Gao, Ling-Xiao; Guo, Yuan-Jun; Wang, Wei; Mo, Xiang-Xia

    2012-12-01

    The template selection is essential in the application of digital micromirror spectrometer. The best theoretical coding H-matrix is not widely used due to acyclic, complex coding and difficult achievement. The noise ratio of best practical S-matrix for improvement is slightly inferior to matrix H. So we designed a new type complementary S-matrix. Through studying its noise improvement theory, the algorithm is proved to have the advantages of both H-matrix and S-matrix. The experiments proved that the SNR can be increased 2.05 times than S-template.

  5. Comparison of the General Electric BWR/6 standard plant design to the IAEA NUSS codes and guides

    International Nuclear Information System (INIS)

    D'Ardenne, W.H.; Sherwood, G.G.

    1985-01-01

    The General Electric BWR/6 Mark III standard plant design meets or exceeds current requirements of published International Atomic Energy Agency (IAEA) Nuclear Safety Standards (NUSS) codes and guides. This conclusion is based on a review of the NUSS codes and guides by General Electric and by the co-ordinated US review of the NUSS codes and guides during their development. General Electric compared the published IAEA NUSS codes and guides with the General Electric design. The applicability of each code and guide to the BWR/6 Mark III standard plant design was determined. Each code or guide was reviewed by a General Electric engineer knowledgeable about the structures, systems and components addressed and the technical area covered by that code or guide. The results of this review show that the BWR/6 Mark III standard plant design meets or exceeds the applicable requirements of the published IAEA NUSS codes and guides. The co-ordinated US review of the IAEA NUSS codes and guides corroborates the General Electric review. In the co-ordinated US review, the USNRC and US industry organizations (including General Electric) review the NUSS codes and guides during their development. This review ensures that the NUSS codes and guides are consistent with the current US government regulations, guidance and regulatory practices, US voluntary industry codes and standards, and accepted US industry design, construction and operational practices. If any inconsistencies are identified, comments are submitted to the IAEA by the USNRC. All US concerns submitted to the IAEA have been resolved. General Electric design reviews and the Final Design Approval (FDA) issued by the USNRC have verified that the General Electric BWR/6 Mark III standard plant design meets or exceeds the current US requirements, guidance and practices. Since these requirements, guidance and practices meet or exceed those of the NUSS codes and guides, so does the General Electric design. (author)

  6. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  7. Structural design codes: Strain-life method and fatigue damage estimation for ITER

    International Nuclear Information System (INIS)

    Karditsas, P.J.

    1996-01-01

    A preferred route is suggested for implementing the design rules and requirements of the design codes for the International Thermonuclear Experimental Reactor (ITER), such as ASME and RCC-MR, and for preliminarily assessing which of the in-service loading conditions inflicts the greatest damage on the structure. Some of the relevant design code rules and constraints are presented, and lifetime and fatigue damage, with some data on fatigue life for Type 316 stainless steel, are predicted. A design curve for strain range versus the number of cycles to failure is presented, including the effect of neutron damage on the material. An example calculation is performed on a first-wall section, and preliminary estimation of the fatigue usage factor is presented. One must observe caution when assessing the results because of the assumptions made in performing the calculations. The results, however, indicate that parts of the component are in the low-cycle fatigue region of operation, which thus supports the use of strain-life methods. The load-controlled stress limit approach of the existing codes leads to difficulties with in-service loading and component categorization, whereas the strain-deformation limit approach may lead to difficulties in calculations. The conclusion is that the load-controlled approach shifts the emphasis to the regulator and the licensing body, whereas the strain-deformation approach shifts the emphasis to the designer and the structural analyst. 11 refs., 7 figs., 2 tabs

  8. Hexachlorophene. Secondary microorganism resistance to hexachlorophene. Conjugative transfer inhibition by the R-plasmid-coded resistance by hexachlorophene.

    Science.gov (United States)

    Volná, F

    1982-01-01

    Strain resistance of the genus Escherichia, Salmonella, and Pseudomonas to hexachlorophene is inducible. Secondary resistance of the Gram-negative microorganisms to hexachlorophene is an inherited property of these strains. There are not any explicit differences of primary sensitivity to hexachlorophene between sensitive strains and those resistant to antibiotics. The secondary resistance level of Gram-negative microorganisms to hexachlorophene is also not dependent on the natural resistance (or sensitivity) of strains to antibiotics. Hexachlorophene, in concentration of 10 micrograms/ml of conjugation mixture, causes 100% inhibition of the conjugation transfer of the resistance determinants to antibiotics from tested strains with conjugative R-plasmid. The indirect secondary resistance conjugation transfer to hexachlorophene was verified in two cases. The resistance to hexachlorophene was transferred, coupled with resistance to chloramphenicol, tetracycline, and streptomycin, from the Escherichia coli strains (No. 8) and Salmonella typhimurium (No. 4) to the recipient Escherichia coli strain K 12, SZK-Ec-329/74 (No. 2).

  9. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Wang, Z.

    1992-01-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material

  10. A Proposed Chaotic-Switched Turbo Coding Design and Its Application for Half-Duplex Relay Channel

    Directory of Open Access Journals (Sweden)

    Tamer H. M. Soliman

    2015-01-01

    Full Text Available Both reliability and security are two important subjects in modern digital communications, each with a variety of subdisciplines. In this paper we introduce a new proposed secure turbo coding system which combines chaotic dynamics and turbo coding reliability together. As we utilize the chaotic maps as a tool for hiding and securing the coding design in turbo coding system, this proposed system model can provide both data secrecy and data reliability in one process to combat problems in an insecure and unreliable data channel link. To support our research, we provide different schemes to design a chaotic secure reliable turbo coding system which we call chaotic-switched turbo coding schemes. In these schemes the design of turbo codes chaotically changed depending on one or more chaotic maps. Extensions of these chaotic-switched turbo coding schemes to half-duplex relay systems are also described. Results of simulations of these new secure turbo coding schemes are compared to classical turbo codes with the same coding parameters and the proposed system is able to achieve secured reasonable bit error rate performance when it is made to switch between different puncturing and design configuration parameters especially with low switching rates.

  11. Wind-induced transmission tower foundation loads. A field study-design code comparison

    Energy Technology Data Exchange (ETDEWEB)

    Savory, E. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ont. (Canada); Parke, G.A.R.; Disney, P.; Toy, N. [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-06-15

    This paper presents a comparison between the wind-induced foundation loads measured on a type L6 transmission line tower during a field study in the UK and those computed using the UK Code of Practice for lattice tower and transmission line design (BS8100). In this work, the Code provisions have been generalised to give the wind-induced strain in each of the tower legs immediately above the foundation as a function of wind direction and wind speed at the top of the tower. The complete data set from the field monitoring has been decomposed to provide a similar formulation for comparison purposes. The analysis shows excellent agreement between the Code calculations and the measured results, within the overall accuracy of the field data. This indicates that, at least for the tower type examined here, the existing design Code provides a reliable transformation of the local wind speed at the top of the tower into tension and compression loads on the foundations. (author)

  12. Design and construction of a resistivity meter for shallow investigation

    African Journals Online (AJOL)

    ... the difference in readings is much. Hence, the use of this system is limited to shallow investigations where the target depth is not more than fifty metres (50m). Efforts are being made to improve on its performance. Keywords: Design and construction, resistivity meter and field testing. Nigerian Journal of Physics Vol.

  13. Cost effective lateral force resisting concrete frame designs for low ...

    African Journals Online (AJOL)

    Cost effective lateral force resisting concrete frame designs for low, mid and high rise buildings. ... Journal of Applied Science and Technology ... With high demand for concrete material in the building market, the goal of Portland Cement Association has be-en to increase the market share of concrete usage by promoting ...

  14. Effects of Microneedle Design Parameters on Hydraulic Resistance.

    Science.gov (United States)

    Hood, R Lyle; Kosoglu, Mehmet A; Parker, Matthew; Rylander, Christopher G

    2011-09-01

    Microneedles have been an expanding medical technology in recent years due to their ability to penetrate tissue and deliver therapy with minimal invasiveness and patient discomfort. Variations in design have allowed for enhanced fluid delivery, biopsy collection, and the measurement of electric potentials. Our novel microneedle design attempts to combine many of these functions into a single length of silica tubing capable of both light and fluid delivery terminating in a sharp tip of less than 100 microns in diameter. This manuscript focuses on the fluid flow aspects of the design, characterizing the contributions to hydraulic resistance from the geometric parameters of the microneedles. Experiments consisted of measuring the volumetric flow rate of de-ionized water at set pressures (ranging from 69-621 kPa) through a relevant range of tubing lengths, needle lengths, and needle tip diameters. Data analysis showed that the silica tubing (~150 micron bore diameter) adhered to within ±5% of the theoretical prediction by Poiseuille's Law describing laminar internal pipe flow at Reynolds numbers less than 700. High hydraulic resistance within the microneedles correlated with decreasing tip diameter. The hydraulic resistance offered by the silica tubing preceding the microneedle taper was approximately 1-2 orders of magnitude less per unit length, but remained the dominating resistance in most experiments as the tubing length was >30 mm. These findings will be incorporated into future design permutations to produce a microneedle capable of both efficient fluid transfer and light delivery.

  15. Evaluation of the fracture resistance of computer‑aided design ...

    African Journals Online (AJOL)

    Introduction: The purpose of this study was to evaluate the fracture resistance of monolithic computer‑aided design/computer‑aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. Materials and Methods: For this investigation, a human maxillary premolar tooth was selected. Master ...

  16. Development and application of methods and computer codes of fuel management and nuclear design of reload cycles in PWR

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J.M.; Corella, M.R.; Esteban, A.; Martinez-Val, J.M.; Minguez, E.; Perlado, J.M.; Pena, J.; Matias, E. de; Llorente, A.; Navascues, J.; Serrano, J.

    1976-01-01

    Description of methods and computer codes for Fuel Management and Nuclear Design of Reload Cycles in PWR, developed at JEN by adaptation of previous codes (LEOPARD, NUTRIX, CITATION, FUELCOST) and implementation of original codes (TEMP, SOTHIS, CICLON, NUDO, MELON, ROLLO, LIBRA, PENELOPE) and their application to the project of Management and Design of Reload Cycles of a 510 Mwt PWR, including comparison with results of experimental operation and other calculations for validation of methods. (author) [es

  17. Evaluation of Advanced Thermohydraulic System Codes for Design and Safety Analysis of Integral Type Reactors

    International Nuclear Information System (INIS)

    2014-02-01

    The integral pressurized water reactor (PWR) concept, which incorporates the nuclear steam supply systems within the reactor vessel, is one of the innovative reactor types with high potential for near term deployment. An International Collaborative Standard Problem (ICSP) on Integral PWR Design, Natural Circulation Flow Stability and Thermohydraulic Coupling of Primary System and Containment during Accidents was established in 2010. Oregon State University, which made available the use of its experimental facility built to demonstrate the feasibility of the Multi-application Small Light Water Reactor (MASLWR) design, and sixteen institutes from seven Member States participated in this ICSP. The objective of the ICSP is to assess computer codes for reactor system design and safety analysis. This objective is achieved through the production of experimental data and computer code simulation of experiments. A loss of feedwater transient with subsequent automatic depressurization system blowdown and long term cooling was selected as the reference event since many different modes of natural circulation phenomena, including the coupling of primary system, high pressure containment and cooling pool are expected to occur during this transient. The power maneuvering transient is also tested to examine the stability of natural circulation during the single and two phase conditions. The ICSP was conducted in three phases: pre-test (with designed initial and boundary conditions established before the experiment was conducted), blind (with real initial and boundary conditions after the experiment was conducted) and open simulation (after the observation of real experimental data). Most advanced thermohydraulic system analysis codes such as TRACE, RELAPS and MARS have been assessed against experiments conducted at the MASLWR test facility. The ICSP has provided all participants with the opportunity to evaluate the strengths and weaknesses of their system codes in the transient

  18. HCPB TBM thermo mechanical design: Assessment with respect codes and standards and DEMO relevancy

    International Nuclear Information System (INIS)

    Cismondi, F.; Kecskes, S.; Aiello, G.

    2011-01-01

    In the frame of the activities of the European TBM Consortium of Associates the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) is developed in Karlsruhe Institute of Technology (KIT). After performing detailed thermal and fluid dynamic analyses of the preliminary HCPB TBM design, the thermo mechanical behaviour of the TBM under typical ITER loads has to be assessed. A synthesis of the different design options proposed has been realized building two different assemblies of the HCPB-TBM: these two assemblies and the analyses performed on them are presented in this paper. Finite Element thermo-mechanical analyses of two detailed 1/4 scaled models of the HCPB-TBM assemblies proposed have been performed, with the aim of verifying the accordance of the mechanical behaviour with the criteria of the design codes and standards. The structural design limits specified in the codes and standard are discussed in relation with the EUROFER available data and possible damage modes. Solutions to improve the weak structural points of the present design are identified and the DEMO relevancy of the present thermal and structural design parameters is discussed.

  19. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  20. Nonvolatile memory design magnetic, resistive, and phase change

    CERN Document Server

    Li, Hai

    2011-01-01

    The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances,

  1. Code of practice and design principles for portable and transportable radiological protection systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1980-10-01

    The Code of Practice and design principles for portable and transportable radiological protection systems are presented in three parts. Part 1 specifies the requirement for Radiological Protection Instrumentation (RPI) including operational characteristics and the effects of both a radiation and non-radiation environment. Part 2 satisfies the requirement for RPI equipment as regards the overall design, the availability, the reliability, the information display, the human factors, the power supplies, the manufacture and quality assurance, the testing and the cost. Part 3 deals with the supply, location and operation of the RPI equipment. (U.K.)

  2. Code of practice for the design and safe operation of non-medical irradiation facilities (1988)

    International Nuclear Information System (INIS)

    1988-01-01

    This Code establishes requirements for the design and operation of irradiation facilities which use X-rays, electrons or gamma radiation for non-medical purposes such as the sterilisation of therapeutic goods. These requirements aim to ensure that exposure of workers and members of the public to ionizing and non-ionizing radiation as well as to noxious gases and radioactive contamination of the environment and facilities are controlled through the design of engineering safety features, approved administrative controls and appropriate radiation monitoring [fr

  3. Free material stiffness design of laminated composite structures using commercial finite element analysis codes

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    In this work optimum stiffness design of laminated composite structures is performed using the commercially available programs ANSYS and MATLAB. Within these programs a Free Material Optimization algorithm is implemented based on an optimality condition and a heuristic update scheme. The heuristic...... update scheme is needed because commercially available finite element analysis software is used. When using a commercial finite element analysis code it is not straight forward to implement a computationally efficient gradient based optimization algorithm. Examples considered in this work are a clamped......, where full access to the finite element analysis core is granted. This comparison displays the possibility of using commercially available programs for stiffness design of laminated composite structures....

  4. Free-space optical code-division multiple-access system design

    Science.gov (United States)

    Jeromin, Lori L.; Kaufmann, John E.; Bucher, Edward A.

    1993-08-01

    This paper describes an optical direct-detection multiple access communications system for free-space satellite networks utilizing code-division multiple-access (CDMA) and forward error correction (FEC) coding. System performance is characterized by how many simultaneous users operating at data rate R can be accommodated in a signaling bandwidth W. The performance of two CDMA schemes, optical orthogonal codes (OOC) with FEC and orthogonal convolutional codes (OCC), is calculated and compared to information-theoretic capacity bounds. The calculations include the effects of background and detector noise as well as nonzero transmitter extinction ratio and power imbalance among users. A system design for 10 kbps multiple-access communications between low-earth orbit satellites is given. With near- term receiver technology and representative system losses, a 15 W peak-power transmitter provides 10-6 BER performance with seven interfering users and full moon background in the receiver FOV. The receiver employs an array of discrete wide-area avalanche photodiodes (APD) for wide field of view coverage. Issues of user acquisition and synchronization, implementation technology, and system scalability are also discussed.

  5. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  6. Pressure vessels design methods using the codes, fracture mechanics and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    Fatima Majid

    2016-10-01

    Full Text Available This paper gives a highlight about pressure vessel (PV methods of design to initiate new engineers and new researchers to understand the basics and to have a summary about the knowhow of PV design. This understanding will contribute to enhance their knowledge in the selection of the appropriate method. There are several types of tanks distinguished by the operating pressure, temperature and the safety system to predict. The selection of one or the other of these tanks depends on environmental regulations, the geographic location and the used materials. The design theory of PVs is very detailed in various codes and standards API, such as ASME, CODAP ... as well as the standards of material selection such as EN 10025 or EN 10028. While designing a PV, we must design the fatigue of its material through the different methods and theories, we can find in the literature, and specific codes. In this work, a focus on the fatigue lifetime calculation through fracture mechanics theory and the different methods found in the ASME VIII DIV 2, the API 579-1 and EN 13445-3, Annex B, will be detailed by giving a comparison between these methods. In many articles in the literature the uniaxial fatigue has been very detailed. Meanwhile, the multiaxial effect has not been considered as it must be. In this paper we will lead a discussion about the biaxial fatigue due to cyclic pressure in thick-walled PV. Besides, an overview of multiaxial fatigue in PVs is detailed

  7. Overview of seismic resistant design of Indian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sharma, G.K.; Hawaldar, R.V.K.P.; Vinod Kumar

    2007-01-01

    Safe operation of a Nuclear Power Plant (NPP) is of utmost importance. NPPs consist of various Structure, System and Equipment (SS and E) that are designed to resist the forces generated due to a natural phenomenon like earthquake. An earthquake causes severe oscillatory ground motion of short duration. Seismic resistant design of SS and E calls for evaluation of effect of severe ground shaking for assuring the structural integrity and operability during and after the occurrence of earthquake event. Overall exercise is a multi-disciplinary approach. First of standardized 220 MWe design reactor is Narora Atomic Power Station. Seismic design was carried out as per state of art then, for the first time. The twelve 220 MWe reactors and two 540 MWe reactors designed since 1975 have been seismically qualified for the earthquake loads expected in the region. Seismic design of 700 MWe reactor is under advanced stage of finalization. Seismic re-evaluation of six numbers of old plants has been completed as per latest state of art. Over the years, expertise have been developed at Nuclear Power Corporation of India Limited, Bhabha Atomic Research Centre, prominent educational institutes, research laboratories and engineering consultants in the country in the area of seismic design, analysis and shake table testing. (author)

  8. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  9. Development of capsule design support subprograms for 3-dimensional temperature calculation using FEM Code NISA

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Masahiro; Matsui, Yoshinori [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Prediction of irradiation temperature is one of the important issues in the design of the capsule for irradiation test. Many kinds of capsules with complex structure have been designed for recent irradiation requests, and three-dimensional (3D) temperature calculation becomes inevitable for the evaluation of irradiation temperature. For such 3D calculation, however, many works are usually needed for input data preparation, and a lot of time and resources are necessary for parametric studies in the design. To improve such situation, JAERI introduced 3D-FEM (finite element method) code NISA (Numerically Integrated elements for System Analysis) and developed several subprograms, which enabled to support input preparation works in the capsule design. The 3D temperature calculation of the capsule are able to carried out in much easier way by the help of the subprograms, and specific features in the irradiation tests such as non-uniform gamma heating in the capsule, becomes to be considered. (author)

  10. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    Toebbe, H.

    1990-05-01

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  11. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  12. Overview of development and design of MPACT: Michigan parallel characteristics transport code

    International Nuclear Information System (INIS)

    Kochunas, B.; Collins, B.; Jabaay, D.; Downar, T. J.; Martin, W. R.

    2013-01-01

    MPACT (Michigan Parallel Characteristics Transport Code) is a new reactor analysis tool. It is being developed by students and research staff at the University of Michigan to be used for an advanced pin-resolved transport capability within VERA (Virtual Environment for Reactor Analysis). VERA is the end-user reactor simulation tool being produced by the Consortium for the Advanced Simulation of Light Water Reactors (CASL). The MPACT development project is itself unique for the way it is changing how students do research to achieve the instructional and research goals of an academic institution, while providing immediate value to industry. The MPACT code makes use of modern lean/agile software processes and extensive testing to maintain a level of productivity and quality required by CASL. MPACT's design relies heavily on object-oriented programming concepts and design patterns and is programmed in Fortran 2003. These designs are explained and illustrated as to how they can be readily extended to incorporate new capabilities and research ideas in support of academic research objectives. The transport methods currently implemented in MPACT include the 2-D and 3-D method of characteristics (MOC) and 2-D and 3-D method of collision direction probabilities (CDP). For the cross section resonance treatment, presently the subgroup method and the new embedded self-shielding method (ESSM) are implemented within MPACT. (authors)

  13. An Optimization Model for Design of Asphalt Pavements Based on IHAP Code Number 234

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2016-01-01

    Full Text Available Pavement construction is one of the most costly parts of transportation infrastructures. Incommensurate design and construction of pavements, in addition to the loss of the initial investment, would impose indirect costs to the road users and reduce road safety. This paper aims to propose an optimization model to determine the optimal configuration as well as the optimum thickness of different pavement layers based on the Iran Highway Asphalt Paving Code Number 234 (IHAP Code 234. After developing the optimization model, the optimum thickness of pavement layers for secondary rural roads, major rural roads, and freeways was determined based on the recommended prices in “Basic Price List for Road, Runway and Railway” of Iran in 2015 and several charts were developed to determine the optimum thickness of pavement layers including asphalt concrete, granular base, and granular subbase with respect to road classification, design traffic, and resilient modulus of subgrade. Design charts confirm that in the current situation (material prices in 2015, application of asphalt treated layer in pavement structure is not cost effective. Also it was shown that, with increasing the strength of subgrade soil, the subbase layer may be removed from the optimum structure of pavement.

  14. Fracture Resistance of Zirconia Restorations with a Modified Framework Design

    Directory of Open Access Journals (Sweden)

    sakineh Nikzadjamnani

    2017-12-01

    Full Text Available Objectives: Chipping is one of the concerns related to zirconia crowns. The reasons of chipping have not been completely understood. This in-vitro study aimed to assess the effect of coping design on the fracture resistance of all-ceramic single crowns with zirconia frameworks. Materials and Methods: Two types of zirconia copings were designed (n=12: (1 a standard coping (SC with a 0.5mm uniform thickness and (2 a modified coping (MC consisted of a lingual margin of 1mm thickness and 2mm height connected to a proximal strut of 4mm height and a 0.3mm-wide facial collar. After veneer porcelain firing, the crowns were cemented to metal dies. Afterwards, a static vertical load was applied until failure. The modes of failure were determined. Data were calculated and statistically analyzed by independent samples T-test. P<0.05 was considered statistically significant.Results: The mean and standard deviation (SD of the final fracture resistance equaled to 3519.42±1154.96 N and 3570.01±1224.33 N in SC and MC groups, respectively; the difference was not statistically significant (P=0.9. Also, the mean and SD of the initial fracture resistance equaled to 3345.34±1190.93 N and 3471.52±1228.93 N in SC and MC groups, respectively (P=0.8. Most of the specimens in both groups showed the mixed failure mode. Conclusions: Based on the results, the modified core design may not significantly improve the fracture resistance.

  15. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    Science.gov (United States)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  16. Structural integrity assessment of a pressure container component. Design and service code implementation. Case studies

    International Nuclear Information System (INIS)

    Sanzi, H.C.

    2006-01-01

    In the present work, the most important results of the local stresses occurred in the cracked pipes with a axial through-wall crack (outer), produced during operation of a Petrochemical Plant, using finite elements method, are presented. As requested, the component has been verified based 3D FE plastic analysis, under the postulated failure loading, assuring with this method a high degree of accuracy in the results. Codes used by Design and Service, as ASME Section VIII Div. 2 and API 579, have been used in the analysis. (author) [es

  17. Design of variable-weight quadratic congruence code for optical CDMA

    Science.gov (United States)

    Feng, Gang; Cheng, Wen-Qing; Chen, Fu-Jun

    2015-09-01

    A variable-weight code family referred to as variable-weight quadratic congruence code (VWQCC) is constructed by algebraic transformation for incoherent synchronous optical code division multiple access (OCDMA) systems. Compared with quadratic congruence code (QCC), VWQCC doubles the code cardinality and provides the multiple code-sets with variable code-weight. Moreover, the bit-error rate (BER) performance of VWQCC is superior to those of conventional variable-weight codes by removing or padding pulses under the same chip power assumption. The experiment results show that VWQCC can be well applied to the OCDMA with quality of service (QoS) requirements.

  18. On ethics and the earthquake resistant interior design of buildings.

    Science.gov (United States)

    Hurol, Yonca

    2014-03-01

    The most common tectonic quality of modern structures, such as frame systems, is their flexibility; they are open for change. Although this characteristic is a big advantage in comparison to the inflexible masonry structures of the past, it might also create some serious problems, such as e.g. the lack of safety in the event of an earthquake, if the flexibility is not used consciously by architects and interior designers. This article attempts to define and establish some rules for the interior design of buildings with reinforced concrete frame systems. The rules for making subtractions from these structures and extending them by making additions to them are contained within this article. The main objective of this article is to derive some ethical values from these rules. Thus, the conclusion of the article focuses on the derivation of some ethical values for achieving earthquake resistant interior design of buildings with reinforced concrete frame systems.

  19. Design and Implementation of Software for Resistance Welding Process Simulations

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2003-01-01

    Based on long time engineering research and dedicated collaborations with industry, a new welding software, SORPAS, has been developed for simulation of resistance projection and spot welding processes applying the powerful finite element method (FEM). In order to make the software directly usable...... by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn and easily operate...... of work pieces and electrodes as well as process parameter settings similar to real machine settings, the software has been readily applied in industry for supporting product development and process optimization. After simulation, the dynamic process parameters are graphically displayed. The distributions...

  20. Interface design of VSOP'94 computer code for safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Natsir, Khairina, E-mail: yenny@batan.go.id; Andiwijayakusuma, D.; Wahanani, Nursinta Adi [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Yazid, Putranto Ilham [Center for Nuclear Technology, Material and Radiometry- National Nuclear Energy Agency, Jl. Tamansari No.71, Bandung 40132 (Indonesia)

    2014-09-30

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  1. Optimum design of a coded mask X-ray telescope for rocket applications

    International Nuclear Information System (INIS)

    Gunson, J.; Polychronopulos, B.

    1976-01-01

    A review of the principles of current X-ray telescopes is made with particular emphasis on two-step imaging techniques involving coding masks. The merits and limitations of the various types of coding masks in use are examined in detail. The limitations are shown to arise from the finite nature of practical masks. By postulating periodicity, 'optimum masks' can be constructed with ideal imaging qualities. The theory for the design of such masks and the practical considerations involved in the design of a rocket-borne X-ray telescope system are discussed in full, with particular attention paid to resolution, field of view and image noise. The main emphasis throughout the paper is on one-dimensional masks but two-dimensional masks are also studied. It is concluded that optimum masks could prove very valuable in astronomical applications and also in other fields such as radiography, where high imaging quality coupled with high sensitivity and low cost are of utmost importance. (author)

  2. Code of practice and design principles, for installed radiological protection systems

    International Nuclear Information System (INIS)

    Powell, R.G.

    1980-09-01

    The main points on which a guide for designers and installers of radiological protection instrumentation (RPI) should be based have been examined by a small group of instrumentation engineers. The purpose of this document is to present a comprehensive and detailed review of these points. It is intended to give an overall coverage and serve as a reference document for specific points; it should also be of value to newcomers to the RPI field. The code presents a standard of good practice and takes the form of recommendations only. The contents cover: the requirement for RPI; design, availability and reliability, information displays, human factors, power supplies, manufacture, quality assurance, testing, cost, installation, operation, maintenance and documentation. Appendices include: Radon and thoron decay series, air sampling, reliability of component combinations and redundancy. (28 references). (author)

  3. Code of practice and design principles for installed radiological protection systems

    International Nuclear Information System (INIS)

    Powell, R.G.

    1979-03-01

    For some years there has been comprehensive guidance documentation for Nuclear Reactor Instrumentation, but apparently no corresponding guide for designers and installers of Radiological Protection Instrumentation. A small group of instrumentation engineers discussed this lack of a suitable guide, and they examined the main points on which it should be based. This document attempts to present a comprehensive and detailed review of these points. It is intended to give an overall coverage and serve as a reference document for specific points; it should also be of value to the newcomer to the Radiological Protection Instrumentation field. This Code of Practice represents a standard of good practice and takes the form of recommendations only. Each installation must be assessed individually, and agreement on its suitability must be reached locally by the designers and the officers responsible for safety and operation. (author)

  4. First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes

    International Nuclear Information System (INIS)

    Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong

    2015-01-01

    A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)

  5. Comparative study of design of piping supports class 1, 2 and 3 considering german code KTA and ASME III - NF

    International Nuclear Information System (INIS)

    Faloppa, Altair A.; Fainer, Gerson; Mattar Neto, Miguel; Elias, Marcos V.

    2013-01-01

    The objective of this paper is developing a comparative study of the design criteria for class 1, 2, 3 piping supports considering the American Code ASME Section III - NF and the German Code KTA 3205.1 to the Primary Circuit, KTA 3205.2 to the others systems and KTA 3205.3 series-production standards supports of a PWR nuclear power plant. An additional purpose of the paper is a general analysis of the main design concepts of the American Code ASME Boiler and Pressure Vessel Code, Section III, Division 1 and German Nuclear Design Code KTA that was performed in order to aid the comparative study proposed. The relevance of this study is to show the differences between codes ASME and KTA since they were applied in the design of the Nuclear Power Plants Angra 1 and Angra 2, and to the design of Angra 3, which is at the moment under construction. It is also considered their use in the design of nuclear installations such as RMB - Reator MultiProposito Brasileiro and LABGENE - Laboratorio de Geracao Nucleoeletrica. (author)

  6. Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis of Improved Integrated Codes on Advanced Architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Simon David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergen, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-01

    This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.

  7. Pressure vessel design codes: A review of their applicability to HTGR components at temperatures above 800 deg C

    International Nuclear Information System (INIS)

    Hughes, P.T.; Over, H.H.; Bieniussa, K.

    1984-01-01

    The governments of USA and Federal Republic of Germany have approved of cooperation between the two countries in an endeavour to establish structural design code for gas reactor components intended to operate at temperatures exceeding 800 deg C. The basis of existing codes and their applicability to gas reactor component design are reviewed in this paper. This review has raised a number of important questions as to the direct applicability of the present codes. The status of US and FRG cooperative efforts to obtain answers to these questions are presented

  8. Reliability based code calibration of fatigue design criteria of nuclear Class-1 piping

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.; Chellapandi, P.

    2016-01-01

    Fatigue design of Class-l piping of NPP is carried out using Section-III of American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel code. The fatigue design criteria of ASME are based on the concept of safety factor, which does not provide means for the management of uncertainties for consistently reliable and economical designs. In this regards, a work is taken up to estimate the implicit reliability level associated with fatigue design criteria of Class-l piping specified by ASME Section III, NB-3650. As ASME fatigue curve is not in the form of analytical expression, the reliability level of pipeline fittings and joints is evaluated using the mean fatigue curve developed by Argonne National Laboratory (ANL). The methodology employed for reliability evaluation is FORM, HORSM and MCS. The limit state function for fatigue damage is found to be sensitive to eight parameters, which are systematically modelled as stochastic variables during reliability estimation. In conclusion a number of important aspects related to reliability of various piping product and joints are discussed. A computational example illustrates the developed procedure for a typical pipeline. (author)

  9. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  10. Proliferation resistance design of a plutonium cycle (Proliferation Resistance Engineering Program: PREP)

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Roberts, F.P.; Clark, R.G.

    1979-01-01

    This document describes the proliferation resistance engineering concepts developed to counter the threat of proliferation of nuclear weapons in an International Fuel Service Center (IFSC). The basic elements of an International Fuel Service Center are described. Possible methods for resisting proliferation such as processing alternatives, close-coupling of facilities, process equipment layout, maintenance philosophy, process control, and process monitoring are discussed. Political and institutional issues in providing proliferation resistance for an International Fuel Service Center are analyzed. The conclusions drawn are (1) use-denial can provide time for international response in the event of a host nation takeover. Passive use-denial is more acceptable than active use-denial, and acceptability of active-denial concepts is highly dependent on sovereignty, energy dependence and economic considerations; (2) multinational presence can enhance proliferation resistance; and (3) use-denial must be nonprejudicial with balanced interests for governments and/or private corporations being served. Comparisons between an IFSC as a national facility, an IFSC with minimum multinational effect, and an IFSC with maximum multinational effect show incremental design costs to be less than 2% of total cost of the baseline non-PRE concept facility. The total equipment acquisition cost increment is estimated to be less than 2% of total baseline facility costs. Personnel costs are estimated to increase by less than 10% due to maximum international presence. 46 figures, 9 tables

  11. Proliferation resistance design of a plutonium cycle (Proliferation Resistance Engineering Program: PREP)

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, R.J.; Roberts, F.P.; Clark, R.G.

    1979-01-19

    This document describes the proliferation resistance engineering concepts developed to counter the threat of proliferation of nuclear weapons in an International Fuel Service Center (IFSC). The basic elements of an International Fuel Service Center are described. Possible methods for resisting proliferation such as processing alternatives, close-coupling of facilities, process equipment layout, maintenance philosophy, process control, and process monitoring are discussed. Political and institutional issues in providing proliferation resistance for an International Fuel Service Center are analyzed. The conclusions drawn are (1) use-denial can provide time for international response in the event of a host nation takeover. Passive use-denial is more acceptable than active use-denial, and acceptability of active-denial concepts is highly dependent on sovereignty, energy dependence and economic considerations; (2) multinational presence can enhance proliferation resistance; and (3) use-denial must be nonprejudicial with balanced interests for governments and/or private corporations being served. Comparisons between an IFSC as a national facility, an IFSC with minimum multinational effect, and an IFSC with maximum multinational effect show incremental design costs to be less than 2% of total cost of the baseline non-PRE concept facility. The total equipment acquisition cost increment is estimated to be less than 2% of total baseline facility costs. Personnel costs are estimated to increase by less than 10% due to maximum international presence. 46 figures, 9 tables.

  12. CACTUS Open Source Code for Hydrokinetic Turbine Design and Analysis: Model Performance Evaluation and Public Dissemination as Open Source Design Tool

    OpenAIRE

    Michelen, Carlos; Murray, Jonathan C.; Neary, Vincent S.; Barone, Mathew

    2014-01-01

    Sandia National Laboratories recently released an open source code for design and analysis of axial‐flow and cross‐flow marine and hydrokinetic (MHK) turbines, CACTUS (Code for Axial and Cross‐flow TUrbine Simulation), and has initiated an outreach effort to promote its use among MHK researchers and developers. Our aim in this paper is to summarize the recent developments in CACTUS, and present model performance evaluation results that demonstrate CACTUS's potential use as a design and optimi...

  13. Two Novel Space-Time Coding Techniques Designed for UWB MISO Systems Based on Wavelet Transform

    Science.gov (United States)

    Zaki, Amira Ibrahim; El-Khamy, Said E.

    2016-01-01

    In this paper two novel space-time coding multi-input single-output (STC MISO) schemes, designed especially for Ultra-Wideband (UWB) systems, are introduced. The proposed schemes are referred to as wavelet space-time coding (WSTC) schemes. The WSTC schemes are based on two types of multiplexing, spatial and wavelet domain multiplexing. In WSTC schemes, four symbols are transmitted on the same UWB transmission pulse with the same bandwidth, symbol duration, and number of transmitting antennas of the conventional STC MISO scheme. The used mother wavelet (MW) is selected to be highly correlated with transmitted pulse shape and such that the multiplexed signal has almost the same spectral characteristics as those of the original UWB pulse. The two WSTC techniques increase the data rate to four times that of the conventional STC. The first WSTC scheme increases the data rate with a simple combination process. The second scheme achieves the increase in the data rate with a less complex receiver and better performance than the first scheme due to the spatial diversity introduced by the structure of its transmitter and receiver. The two schemes use Rake receivers to collect the energy in the dense multipath channel components. The simulation results show that the proposed WSTC schemes have better performance than the conventional scheme in addition to increasing the data rate to four times that of the conventional STC scheme. PMID:27959939

  14. SEJITS: embedded specializers to turn patterns-based designs into optimized parallel code

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    All software should be parallel software. This is natural result of the transition to a many core world. For a small fraction of the world's programmers (efficiency programmers), this is not a problem. They enjoy mapping algorithms onto the details of a particular system and are well served by low level languages and OpenMP, MPI, or OpenCL. Most programmers, however, are "domain specialists" who write code. They are too busy working in their domain of choice (such as physics) to master the intricacies of each computer they use. How do we make these programmers productive without giving up performance? We have been working with a team at UC Berkeley's ParLab to address this problem. The key is a clear software architecture expressed in terms of design patterns that exposes the concurrency in a problem. The resulting code is written using a patterns-based framework within a high level, productivity language (such as Python). Then a separate system is used by a small group o...

  15. A Design Method of Code Correlation Reference Waveform in GNSS Based on Least-Squares Fitting.

    Science.gov (United States)

    Xu, Chengtao; Liu, Zhe; Tang, Xiaomei; Wang, Feixue

    2016-07-29

    The multipath effect is one of the main error sources in the Global Satellite Navigation Systems (GNSSs). The code correlation reference waveform (CCRW) technique is an effective multipath mitigation algorithm for the binary phase shift keying (BPSK) signal. However, it encounters the false lock problem in code tracking, when applied to the binary offset carrier (BOC) signals. A least-squares approximation method of the CCRW design scheme is proposed, utilizing the truncated singular value decomposition method. This algorithm was performed for the BPSK signal, BOC(1,1) signal, BOC(2,1) signal, BOC(6,1) and BOC(7,1) signal. The approximation results of CCRWs were presented. Furthermore, the performances of the approximation results are analyzed in terms of the multipath error envelope and the tracking jitter. The results show that the proposed method can realize coherent and non-coherent CCRW discriminators without false lock points. Generally, there is performance degradation in the tracking jitter, if compared to the CCRW discriminator. However, the performance promotions in the multipath error envelope for the BOC(1,1) and BPSK signals makes the discriminator attractive, and it can be applied to high-order BOC signals.

  16. Design of power balance SRAM for DPA-resistance

    Science.gov (United States)

    Keji, Zhou; Pengjun, Wang; Liang, Wen

    2016-04-01

    A power balance static random-access memory (SRAM) for resistance to differential power analysis (DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional short-circuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm2. The post-simulation results show that the normalized energy deviation (NED) and normalized standard deviation (NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ14F040001), the National Natural Science Foundation of China (Nos. 61274132, 61234002), and the K. C. Wong Magna Fund in Ningbo University, China.

  17. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes

    International Nuclear Information System (INIS)

    Grishchenko, Dmitry; Jeltsov, Marti; Kööp, Kaspar; Karbojian, Aram; Villanueva, Walter; Kudinov, Pavel

    2015-01-01

    Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper

  18. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Jeltsov, Marti, E-mail: marti@safety.sci.kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Karbojian, Aram, E-mail: karbojan@kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2015-08-15

    Highlights: • Design of a heavy liquid thermal-hydraulic loop for CFD/STH code validation. • Description of the loop instrumentation and assessment of measurement error. • Experimental data from forced to natural circulation transient. - Abstract: Application of coupled CFD (Computational Fluid Dynamics) and STH (System Thermal Hydraulics) codes is a prerequisite for computationally affordable and sufficiently accurate prediction of thermal-hydraulics of complex systems. Coupled STH and CFD codes require validation for understanding and quantification of the sources of uncertainties in the code prediction. TALL-3D is a liquid Lead Bismuth Eutectic (LBE) loop developed according to the requirements for the experimental data for validation of coupled STH and CFD codes. The goals of the facility design are to provide (i) mutual feedback between natural circulation in the loop and complex 3D mixing and stratification phenomena in the pool-type test section, (ii) a possibility to validate standalone STH and CFD codes for each subsection of the facility, and (iii) sufficient number of experimental data to separate the process of input model calibration and code validation. Description of the facility design and its main components, approach to estimation of experimental uncertainty and calibration of model input parameters that are not directly measured in the experiment are discussed in the paper. First experimental data from the forced to natural circulation transient is also provided in the paper.

  19. Comparison benchmark between tokamak simulation code and TokSys for Chinese Fusion Engineering Test Reactor vertical displacement control design

    International Nuclear Information System (INIS)

    Qiu Qing-Lai; Xiao Bing-Jia; Guo Yong; Liu Lei; Wang Yue-Hang

    2017-01-01

    Vertical displacement event (VDE) is a big challenge to the existing tokamak equipment and that being designed. As a Chinese next-step tokamak, the Chinese Fusion Engineering Test Reactor (CFETR) has to pay attention to the VDE study with full-fledged numerical codes during its conceptual design. The tokamak simulation code (TSC) is a free boundary time-dependent axisymmetric tokamak simulation code developed in PPPL, which advances the MHD equations describing the evolution of the plasma in a rectangular domain. The electromagnetic interactions between the surrounding conductor circuits and the plasma are solved self-consistently. The TokSys code is a generic modeling and simulation environment developed in GA. Its RZIP model treats the plasma as a fixed spatial distribution of currents which couple with the surrounding conductors through circuit equations. Both codes have been individually used for the VDE study on many tokamak devices, such as JT-60U, EAST, NSTX, DIII-D, and ITER. Considering the model differences, benchmark work is needed to answer whether they reproduce each other’s results correctly. In this paper, the TSC and TokSys codes are used for analyzing the CFETR vertical instability passive and active controls design simultaneously. It is shown that with the same inputs, the results from these two codes conform with each other. (paper)

  20. Design of Wireless Automatic Synchronization for the Low-Frequency Coded Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Zhenghuan Xia

    2015-01-01

    Full Text Available Low-frequency coded ground penetrating radar (GPR with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.

  1. Assessment of codes, by-laws and regulations relating to air wells in building design

    Science.gov (United States)

    Fadzil, Sharifah Fairuz Syed; Karamazaman, Nazli

    2017-10-01

    Codes and by-laws concerning air well design (for buildings and lavatories) in Malaysia has been established in the Malaysian Uniform Building By-Laws UBBL number 40 (1) and (2) since the 1980s. Wells are there to fulfill the ventilation and daylighting requirements. The minimum well area according to building storey height are compared between UBBL and the Singapore's well requirements from the Building Construction Authority BCA. A visual and graphical representation (with schematics building and well diagrams drawn to scale) of the minimum well sizes and dimensions is given. It can be seen that if the minimum requirement of well size is used for buildings above 8 storeys high, a thin well resulted which is not proportionate to the building height. A proposed dimension is graphed and given to be used in the UBBL which translated to graphics (3 dimensional buildings drawn to scale) created a much better well proportion.

  2. Buckling rules in design codes: state of the art and future developments

    International Nuclear Information System (INIS)

    Turbat, A.; Meziere, Y.

    2001-01-01

    Buckling, which can affect structures like bars, beams and shells when they are submitted to compressive stresses, can lead to unacceptable deformations and ruptures. Consequently, main Design Codes, especially those used in nuclear industry, include rules and analysis methods in order to prevent this phenomenon. In this paper, a review of buckling rules and/or analysis methods existing in ASME, RCC-M, RCC-MR and European Recommendations is performed. Then, these rules and methods are applied to the case of a cylinder filled with water and submitted to a seismic loading and results are compared. In the last part, current developments of methods to analyse creep buckling and dynamic buckling which should come and complete RCC-MR soon are presented. (author)

  3. DESIGNING A G CODE PROGRAMMING LANGUAGE FOR THE REFERENCE POINT SEVEN-SPEED SHAFT

    Directory of Open Access Journals (Sweden)

    VALERIA VICTORIA IOVANOV

    2015-05-01

    Full Text Available A CNC machine makes use of mathematics and various coordinate systems to understand and process the information it receives to determine what to move where and how fast . The most important function of any CNC machine is precise and rigorous control of the motion. All CNC equipment have two or more directions of motion, called axes. CNC machines are driven by computer controlled servo motors and generally guided by a stored program, the type of motion (fast , linear, circular , the moving axes, the distances of motion and the speed of motion ( processing being programmable for most CNC machines .This paper proposes the design and implementation of a G code programming language for the reference point „Seven-speed shaft”, used in all fields, in the motion transmission systems.

  4. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  5. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vector/span>s aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vector/span>s in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vector/span>s may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  6. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-01-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA. PMID:27357627

  7. The integrated design and archive of space-borne signal processing and compression coding

    Science.gov (United States)

    He, Qiang-min; Su, Hao-hang; Wu, Wen-bo

    2017-10-01

    With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.

  8. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-07-01

    Full Text Available A simple iterative technique for the design of nonuniform cosine modulated filter banks (CMFBS is presented in this paper. The proposed technique employs a single parameter for optimization. The nonuniform cosine modulated filter banks are derived by merging the adjacent filters of uniform cosine modulated filter banks. The prototype filter is designed with the aid of different adjustable window functions such as Kaiser, Cosh and Exponential, and by using the constrained equiripple finite impulse response (FIR digital filter design technique. In this method, either cut off frequency or passband edge frequency is varied in order to adjust the filter coefficients so that reconstruction error could be optimized/minimized to zero. Performance and effectiveness of the proposed method in terms of peak reconstruction error (PRE, aliasing distortion (AD, computational (CPU time, and number of iteration (NOI have been shown through the numerical examples and comparative studies. Finally, the technique is exploited for the subband coding of electrocardiogram (ECG and speech signals.

  9. Basis of the tubesheet heat exchanger design rules used in the French pressure vessel code

    International Nuclear Information System (INIS)

    Osweiller, F.

    1990-01-01

    For about 40 years most tubesheet heat exchangers have been designed according to the standards of TEMA. Partly due to their simplicity, these rules do not assure a safe heat-exchangers design in all cases. This is the main reason why new tubesheet design rules were developed in 1981 in France for the French pressure vessel code CODAP. For fixed tubesheet heat exchangers the new rules account for the elastic rotational restraint of the shell and channel at the outer edge of the tubesheet. For floating-head and U- tube exchangers an approach was selected with some modifications. In both cases the tubesheet is replaced by an equivalent solid plate with adequate effective elastic constants, and the tube bundle is simulated by an elastic foundation. The elastic restraint at the edge of the tubesheet due the shell and channel is accounted for in different ways in the two types of heat exchangers. The purpose of the paper is to present the main basis of these rules and to compare them to TEMA rules

  10. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  11. A New Method Of Gene Coding For A Genetic Algorithm Designed For Parametric Optimization

    Directory of Open Access Journals (Sweden)

    Radu BELEA

    2003-12-01

    Full Text Available In a parametric optimization problem the genes code the real parameters of the fitness function. There are two coding techniques known under the names of: binary coded genes and real coded genes. The comparison between these two is a controversial subject since the first papers about parametric optimization have appeared. An objective analysis regarding the advantages and disadvantages of the two coding techniques is difficult to be done while different format information is compared. The present paper suggests a gene coding technique that uses the same format for both binary coded genes and for the real coded genes. After unifying the real parameters representation, the next criterion is going to be applied: the differences between the two techniques are statistically measured by the effect of the genetic operators over some random generated fellows.

  12. A design of a wavelength-hopping time-spreading incoherent optical code division multiple access system

    International Nuclear Information System (INIS)

    Glesk, I.; Baby, V.

    2005-01-01

    We present the architecture and code design for a highly scalable, 2.5 Gb/s per user optical code division multiple access (OCDMA) system. The system is scalable to 100 potential and more than 10 simultaneous users, each with a bit error rate (BER) of less than 10 -9 . The system architecture uses a fast wavelength-hopping, time-spreading codes. Unlike frequency and phase sensitive coherent OCDMA systems, this architecture utilizes standard on off keyed optical pulses allocated in the time and wavelength dimensions. This incoherent OCDMA approach is compatible with existing WDM optical networks and utilizes off the shelf components. We discuss the novel optical subsystem design for encoders and decoders that enable the realization of a highly scalable incoherent OCDMA system with rapid reconfigurability. A detailed analysis of the scalability of the two dimensional code is presented and select network deployment architectures for OCDMA are discussed (Authors)

  13. Toward the rational design of macrolide antibiotics to combat resistance.

    Science.gov (United States)

    Pavlova, Anna; Parks, Jerry M; Oyelere, Adegboyega K; Gumbart, James C

    2017-11-01

    Macrolides, one of the most prescribed classes of antibiotics, bind in the bacterial ribosome's polypeptide exit tunnel and inhibit translation. However, mutations and other ribosomal modifications, especially to the base A2058 of the 23S rRNA, have led to a growing resistance problem. Here, we have used molecular dynamics simulations to study the macrolides erythromycin and azithromycin in wild-type, A2058G-mutated, and singly or doubly A2058-methylated Escherichia coli ribosomes. We find that the ribosomal modifications result in less favorable interactions between the base 2058 and the desosamine sugar of the macrolides, as well as greater displacement of the macrolides from their crystal structure position, illuminating the causes of resistance. We have also examined four azithromycin derivatives containing aromatic indole-analog moieties, which were previously designed based on simulations of the stalling peptide SecM in the ribosome. Surprisingly, we found that the studied moieties could adopt very different geometries when interacting with a key base in the tunnel, A751, possibly explaining their distinct activities. Based on our simulations, we propose modifications to the indole-analog moieties that should increase their interactions with A751 and, consequently, enhance the potency of future azithromycin derivatives. © 2017 John Wiley & Sons A/S.

  14. Design of a charge sensitive preamplifier on high resistivity silicon

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3μm for silicon drift detectors. 6 refs., 9 figs

  15. Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances

    Science.gov (United States)

    Sharmin, Afsana; Rashid, Mohammad; Gaddipati, Vamsi; Sadeque, Abu; Ahmed, Shaikh

    2015-06-01

    Our objective is to develop a multiscale simulator for thermoelectric cooler devices, in which the material parameters are obtained atomistically using a combination of molecular dynamics and tight-binding simulations and then used in the system level design. After benchmarking the simulator against a recent experimental work, we carry out a detailed numerical investigation of the performance of Bi2Te3 nanowire-based thermoelectric devices for hot-spot cooling. The results suggest that active hotspot cooling of as much as 23°C with a high heat flux is achievable using such low-dimensionality structures. However, it has been observed that thermal and electrical contact resistances, which are quite large in nanostructures, play a critical role in determining the cooling range and lead to significant performance degradation that must be addressed before these devices can be deployed in such applications.

  16. Verified by Visa and MasterCard SecureCode: Or, How Not to Design Authentication

    Science.gov (United States)

    Murdoch, Steven J.; Anderson, Ross

    Banks worldwide are starting to authenticate online card transactions using the '3-D Secure' protocol, which is branded as Verified by Visa and MasterCard SecureCode. This has been partly driven by the sharp increase in online fraud that followed the deployment of EMV smart cards for cardholder-present payments in Europe and elsewhere. 3-D Secure has so far escaped academic scrutiny; yet it might be a textbook example of how not to design an authentication protocol. It ignores good design principles and has significant vulnerabilities, some of which are already being exploited. Also, it provides a fascinating lesson in security economics. While other single sign-on schemes such as OpenID, InfoCard and Liberty came up with decent technology they got the economics wrong, and their schemes have not been adopted. 3-D Secure has lousy technology, but got the economics right (at least for banks and merchants); it now boasts hundreds of millions of accounts. We suggest a path towards more robust authentication that is technologically sound and where the economics would work for banks, merchants and customers - given a gentle regulatory nudge.

  17. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  18. Simulation of the thermal behaviour of electric industrial resistance furnaces using the I-DEAS/TMG code; Simulation du comportement thermique des fours electriques industriels a resistances a l`aide du code I-DEAS/TMG

    Energy Technology Data Exchange (ETDEWEB)

    Plard, Ch.; Branchu, K.; Le Cloirec, B. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    In order to answer the modeling needs of manufacturers and users of electrical resistance furnaces, Electricite de France (EdF) has been appealed to search for a numerical simulation tool for the modeling of thermal phenomena and to carry out its qualification. The TNG software has been retained according to its modeling characteristics of radiant heat transfers and to the coupling with thermal conduction. After a description of the main characteristics of this code, two examples of application to electrical furnaces are presented. The first example illustrates how it can be possible to accurately reproduce the behaviour of a big industrial furnace. The second example is an illustration of numerical simulation possibilities for the optimization of processes performed with an electric furnace. (J.S.)

  19. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    Science.gov (United States)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  20. An Investigation of the Methods of Logicalizing the Code-Checking System for Architectural Design Review in New Taipei City

    Directory of Open Access Journals (Sweden)

    Wei-I Lee

    2016-12-01

    Full Text Available The New Taipei City Government developed a Code-checking System (CCS using Building Information Modeling (BIM technology to facilitate an architectural design review in 2014. This system was intended to solve problems caused by cognitive gaps between designer and reviewer in the design review process. Along with considering information technology, the most important issue for the system’s development has been the logicalization of literal building codes. Therefore, to enhance the reliability and performance of the CCS, this study uses the Fuzzy Delphi Method (FDM on the basis of design thinking and communication theory to investigate the semantic difference and cognitive gaps among participants in the design review process and to propose the direction of system development. Our empirical results lead us to recommend grouping multi-stage screening and weighted assisted logicalization of non-quantitative building codes to improve the operability of CCS. Furthermore, CCS should integrate the Expert Evaluation System (EES to evaluate the design value under qualitative building codes.

  1. 1024x1024 resistive emitter array design and fabrication status

    Science.gov (United States)

    Bryant, Paul T.; Oleson, Jim; McHugh, Stephen W.; Beuville, Eric; Schlesselmann, John D.; Woolaway, James T.; Barskey, Steve; Solomon, Steven L.; Joyner, Thomas W.

    2002-07-01

    Santa Barbara Infrared (SBIR) is producing a high performance 1,024 x 1,024 Large Format Resistive emitter Array (LFRA) for use in the next generation of IR Scene Projectors (IRSPs). LFRA requirements were developed through close cooperation with the Tri-Service IR Scene Projector working group, and through detailed trade studies sponsored by the OSD Central T&E Investment Program (CTEIP) and a Phase I US Navy Small Business Innovative Research (SBIR) contract. The CMOS Read-In Integrated Circuit (RIIC) is being designed by SBIR and Indigo Systems under a Small Business Innovative Research (SBIR) contract. Performance and features include 750 K MWIR maximum apparent temperature, 5 ms radiance rise time, 200 Hz full frame update, and 400 Hz window mode operation. Ten 8-inch CMOS wafers will be fabricated and characterized in mid-2002, followed by emitter fabrication in late 2002. This paper discusses array performance, requirements flow-down, array design, fabrication of 2 X 2-inch CMOS devices, and plans for subsequent RIIC wafer test and emitter pixel fabrication.

  2. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    OpenAIRE

    Huang, Qiongdan; Li, Yong; Zeng, Yaoping; Fu, Yinjuan

    2014-01-01

    By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC) radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Che...

  3. Accurate evaluation of the Kochin function for added resistance using a high-order finite difference-based seakeeping code

    DEFF Research Database (Denmark)

    Amini-Afshar, Mostafa; Bingham, Harry B.

    by a numerical integration over the surface of the body. Motivated by discussions with Prof. Kashiwagi during this workshop (Kashiwagi, 2017), we subsequently applied the Hanaoka transformation (Maruo, 1960) to change the integration domain from Θ to a wave-number like variable m. This allows a method developed......At the 32nd IWWWFB in Dalian, we presented our implementation of the far-field method for second-order wave drift forces based on the Kochin function, using the open-source seakeeping codeOceanWave3D-Seakeeping. In that work we used Maruo's method (Maruo, 1960), and calculated the added resistance...... by a line integral along the azimuthal angle XX around the body in the far-field. Some difficulties were encountered with regard to evaluating the singular and improper integrals, together with identifying the highest frequency limit where we can practically and reliably calculate the Kochin function...

  4. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  5. Preparation Ferrule Design Effect on Endocrown Failure Resistance.

    Science.gov (United States)

    Einhorn, Michael; DuVall, Nicholas; Wajdowicz, Michael; Brewster, John; Roberts, Howard

    2017-10-06

    To evaluate the effect of preparation ferrule inclusion with fracture resistance of mandibular molar endocrowns. Recently extracted mandibular third molars were randomly divided into 3 groups (n = 12) with the coronal tooth structure removed perpendicular to the root long axis approximately 2 mm above the cemento-enamel junction with a slow-speed diamond saw. The pulp chamber was exposed using a diamond bur in a high-speed handpiece with pulpal remnants removed and canals instrumented using endodontic hand instruments. The chamber floor was restored using a resin core material with a two-step, self-etch adhesive and photopolymerized with a visible light-curing unit to create a 2 mm endocrown preparation pulp chamber extension. One and two millimeter ferrule height groups were prepared using a diamond bur in a high-speed handpiece following CAD/CAM guidelines. Completed preparation surface area was determined using a digital measuring microscope. Scanned preparations were restored with lithium disilicate restorations with a self-adhesive resin luting agent. All manufacturer recommendations were followed. Specimens were stored at 37°C/98% humidity and tested to failure after 24 hours at a 45° angle to the tooth long axis using a universal testing machine. Failure load was converted to MPa using the available bonding surface area with mean data analyzed using Kruskal-Wallis/Dunn (p = 0.05). Calculated failure stress found no difference in failure resistance among the three groups; however, failure load results identified that the endocrown preparations without ferrule had significantly lower fracture load resistance. Failure mode analysis identified that all preparations demonstrated a high number of catastrophic failures. Under the conditions of this study, ferrule-containing endocrown preparations demonstrated significantly greater failure loads than standard endocrown restorations; however, calculated failure stress based on available surface area for adhesive

  6. The design and implementation of Los Alamos PLasma Simulation (LAPS) code

    Science.gov (United States)

    Corbetta, Alessandro; Missanelli, Maria; Pagliantini, Cecilia; Scarabosio, Laura; Delzanno, Gian Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu

    2012-03-01

    Los Alamos Plasma Simulation (LAPS) is an integrated modeling code based on a common-data framework for multiphysics simulation of both magnetic and inertial confinment fusion (ICF) plasmas. Its principal design goal is to provide a common data structure on computational grids and plasma states for different components of the multiphysics integration. LAPS provides an optimal mesh generation for one to three dimensional configuration space discretization and an adaptive mesh scheme that equi-distributes application-specified error. The plasma state is defined on this mesh. LAPS supports the solution of moment and kinetic equations using grids, particle-in-cell, Monte-Carlo, and molecular dynamics. The parallel data structure and (non)linear solvers for PDEs are based on PETSc, while the parallel data structure and communication for particle and Monte-Carlo method are native to LAPS. LAPS separates the numerical discretization from application PDEs. The initial focus is on spectral method, including the spectral element/volume and discontinuous Garlekin scheme for conservative PDEs. The initial set of applications for LAPS development include PIC modeling of plasma transport and rotation in field reversed configuration, fluid-moment and kinetic model of tokamak scrape-off layer.

  7. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  8. Environmental conditions using thermal-hydraulics computer code GOTHIC for beyond design basis external events

    International Nuclear Information System (INIS)

    Pleskunas, R.J.

    2015-01-01

    In response to the Fukushima Dai-ichi beyond design basis accident in March 2011, the Nuclear Regulatory Commission (NRC) issued Order EA-12-049, 'Issuance of Order to Modify Licenses with Regard to Requirements for Mitigation Strategies Beyond-Design-Basis-External-Events'. To outline the process to be used by individual licensees to define and implement site-specific diverse and flexible mitigation strategies (FLEX) that reduce the risks associated with beyond design basis conditions, Nuclear Energy Institute document NEI 12-06, 'Diverse and Flexible Coping Strategies (FLEX) Implementation Guide', was issued. A beyond design basis external event (BDBEE) is postulated to cause an Extended Loss of AC Power (ELAP), which will result in a loss of ventilation which has the potential to impact room habitability and equipment operability. During the ELAP, portable FLEX equipment will be used to achieve and maintain safe shutdown, and only a minimal set of instruments and controls will be available. Given these circumstances, analysis is required to determine the environmental conditions in several vital areas of the Nuclear Power Plant. The BDBEE mitigating strategies require certain room environments to be maintained such that they can support the occupancy of personnel and the functionality of equipment located therein, which is required to support the strategies associated with compliance to NRC Order EA-12-049. Three thermal-hydraulic analyses of vital areas during an extended loss of AC power using the GOTHIC computer code will be presented: 1) Safety-related pump and instrument room transient analysis; 2) Control Room transient analysis; and 3) Auxiliary/Control Building transient analysis. GOTHIC (Generation of Thermal-Hydraulic Information for Containment) is a general purpose thermal-hydraulics software package for the analysis of nuclear power plant containments, confinement buildings, and system components. It is a volume/path/heat sink

  9. Conceptual OOP design of Pilot Code for Two-Fluid, Three-field Model with C++ 6.0

    International Nuclear Information System (INIS)

    Chung, B. D.; Lee, Y. J.

    2006-09-01

    To establish the concept of the objective oriented program (OOP) design for reactor safety analysis code, the preliminary OOP design for PILOT code, which based on one dimensional two fluid three filed model, has been attempted with C++ language feature. Microsoft C++ language has been used since it is available as groupware utilization in KAERI. The language has can be merged with Compac Visual Fortran 6.6 in Visual Studio platform. In the development platform, C++ has been used as main language and Fortran has been used as mixed language in connection with C++ main drive program. The mixed language environment is a specific feature provided in visual studio. Existing Fortran source was utilized for input routine of reading steam table from generated file and routine of steam property calculation. The calling convention and passing argument from C++ driver was corrected. The mathematical routine, such as inverse matrix conversion and tridiagonal matrix solver, has been used as PILOT Fortran routines. Simple volume and junction utilized in PILOT code can be treated as objects, since they are the basic construction elements of code system. Other routines for overall solution scheme have been realized as procedure C functions. The conceptual design which consists of hydraulic loop, component, volume, and junction class has been described in the appendix in order to give the essential OOP structure of system safety analysis code. The attempt shows that many part of system analysis code can be expressed as objects, although the overall structure should be maintained as procedure functions. The encapsulation of data and functions within an object can provide many beneficial aspects in programming of system code

  10. Refuelling design and core calculations at NPP Paks: codes and methods

    International Nuclear Information System (INIS)

    Pos, I.; Nemes, I.; Javor, E.; Korpas, L.; Szecsenyi, Z.; Patai-Szabo, S.

    2001-01-01

    This article gives a brief review of the computer codes used in the fuel management practice at NPP Paks. The code package consist of the HELIOS neutron and gamma transport code for preparation of few-group cross section library, the CERBER code to determine the optimal core loading patterns and the C-PORCA code for detailed reactor physical analysis of different reactor states. The last two programs have been developed at the NPP Paks. HELIOS gives sturdy basis for our neutron physical calculation, CERBER and C-PORCA programs have been enhanced in great extent for last years. Methods and models have become more detailed and accurate as regards the calculated parameters and space resolution. Introduction of a more advanced data handling algorithm arbitrary move of fuel assemblies can be followed either in the reactor core or storage pool. The new interactive WINDOWS applications allow easier and more reliable use of codes. All these computer code developments made possible to handle and calculate new kind of fuels as profiled Russian and BNFL fuel with burnable poison or to support the reliable reuse of fuel assemblies stored in the storage pool. To extend thermo-hydraulic capability, with KFKI contribution the COBRA code will also be coupled to the system (Authors)

  11. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII

    DEFF Research Database (Denmark)

    Vorpahl, Fabian; Strobel, Michael; Jonkman, Jason M.

    2014-01-01

    This work presents the results of a benchmark study on aero-servo-hydro-elastic codes for offshore wind turbine dynamic simulation. The codes verified herein account for the coupled dynamic systems including the wind inflow, aerodynamics, elasticity and controls of the turbine, along with the inc...

  12. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  13. A 3-D Fokker-Planck code for studying parallel transport in tokamak geometry with arbitrary collisionalities and application to neoclassical resistivity

    International Nuclear Information System (INIS)

    Sauter, O.; Harvey, R.W.; Hinton, F.L.

    1993-10-01

    A new 3-D Fokker-Planck code, CQL, which solves the Fokker-Planck equations with two velocity coordinates and one spatial coordinate parallel to the magnetic field lines B/B, has been developed. This code enables us to model the parallel transport for low, intermediate and high collisional regime. The physical model, the possible relevant applications of the code as well as a first application, the computation of the neoclassical resistivity for various collisionalities and aspect ratios in tokamak geometry are presented. (author) 3 figs., 3 refs

  14. Seismic resistant design of a nuclear category I earth dam

    International Nuclear Information System (INIS)

    Vaidya, N.R.; Ries, E.R.; Kissenpfennig, J.F.

    1975-01-01

    An integral part of many nuclear power plants is the ultimate heat sink (UHS); the purpose of which is to retain and deliver a supply of service water to the plant when water from the primary circulating water system is not available. The earth dam described herein is designed to retain the reservoir for the UHS of a nuclear power plant in Southern Europe. The usual pseudo-static analysis is only as good as the estimate for the seismic coefficient used to compute an equivalent horizontal static force on a potential sliding mass. In view of the earth dam considered herein, a more accurate computation of the seismic coefficients is to be made. A two-dimensional dynamic finite element analysis is made to predict the response of the earth dam to a Safe Shutdown Earthquake excitation which is in the form of a time history of accelerations appropriately deconvoluted from the surficial time history and applied at the base of the model. The material properties such as shear modulus and damping are adjusted to be compatible with the level of strain obtained. Thus, non-linear behavior of soil is considered in the analysis and a more realistic response is predicted. Acceleration and stress are determined throughout the dam and are used to compute a seismic coefficient for a pseudo-static stability analysis and the dynamic strength to stress ratios at several points in the body of the dam. The need to design the dam to resist a progressive erosion accident resulting from postulated concentrated leaks is discussed. This may be accomplished by providing a wide, well graded core protected by wide transition cores also heavily compacted

  15. Design principles for radiation-resistant solid solutions

    Science.gov (United States)

    Schuler, Thomas; Trinkle, Dallas R.; Bellon, Pascal; Averback, Robert

    2017-05-01

    We develop a multiscale approach to quantify the increase in the recombined fraction of point defects under irradiation resulting from dilute solute additions to a solid solution. This methodology provides design principles for radiation-resistant materials. Using an existing database of solute diffusivities, we identify Sb as one of the most efficient solutes for this purpose in a Cu matrix. We perform density-functional-theory calculations to obtain binding and migration energies of Sb atoms, vacancies, and self-interstitial atoms in various configurations. The computed data informs the self-consistent mean-field formalism to calculate transport coefficients, allowing us to make quantitative predictions of the recombined fraction of point defects as a function of temperature and irradiation rate using homogeneous rate equations. We identify two different mechanisms according to which solutes lead to an increase in the recombined fraction of point defects; at low temperature, solutes slow down vacancies (kinetic effect), while at high temperature, solutes stabilize vacancies in the solid solution (thermodynamic effect). Extension to other metallic matrices and solutes are discussed.

  16. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    International Nuclear Information System (INIS)

    Chvetsov, I.; Kouznetsov, I.; Volkov, A.

    2000-01-01

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  17. Recommendations for codes and standards to be used for design and fabrication of high level waste canister

    International Nuclear Information System (INIS)

    Bermingham, A.J.; Booker, R.J.; Booth, H.R.; Ruehle, W.G.; Shevekov, S.; Silvester, A.G.; Tagart, S.W.; Thomas, J.A.; West, R.G.

    1978-01-01

    This study identifies codes, standards, and regulatory requirements for developing design criteria for high-level waste (HLW) canisters for commercial operation. It has been determined that the canister should be designed as a pressure vessel without provision for any overpressure protection type devices. It is recommended that the HLW canister be designed and fabricated to the requirements of the ASME Section III Code, Division 1 rules, for Code Class 3 components. Identification of other applicable industry and regulatory guides and standards are provided in this report. Requirements for the Design Specification are found in the ASME Section III Code. It is recommended that design verification be conducted principally with prototype testing which will encompass normal and accident service conditions during all phases of the canister life. Adequacy of existing quality assurance and licensing standards for the canister was investigated. One of the recommendations derived from this study is a requirement that the canister be N stamped. In addition, acceptance standards for the HLW waste should be established and the waste qualified to those standards before the canister is sealed. A preliminary investigation of use of an overpack for the canister has been made, and it is concluded that the use of an overpack, as an integral part of overall canister design, is undesirable, both from a design and economics standpoint. However, use of shipping cask liners and overpack type containers at the Federal repository may make the canister and HLW management safer and more cost effective. There are several possible concepts for canister closure design. These concepts can be adapted to the canister with or without an overpack. A remote seal weld closure is considered to be one of the most suitable closure methods; however, mechanical seals should also be investigated

  18. Reracking of fuel pools, experience with improved codes and design for reactor sites with high seismic loads

    International Nuclear Information System (INIS)

    Banck, J.; Wirtz, K.

    1998-01-01

    Reracking of existing pools to the maximum extent is desirable from the economical point of view. Although the load onto the storage rack structure and the fuel pool bottom will be increased, new improved codes, optimized structural qualification procedures and advanced design enable to demonstrate the structural integrity for all normal and accident conditions so that the design provides a safe compact storage of spent fuel under any condition.(author)

  19. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Sejal Purvang Dalal

    2015-12-01

    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  20. Rational design of non-resistant targeted cancer therapies

    Science.gov (United States)

    Martínez-Jiménez, Francisco; Overington, John P.; Al-Lazikani, Bissan; Marti-Renom, Marc A.

    2017-01-01

    Drug resistance is one of the major problems in targeted cancer therapy. A major cause of resistance is changes in the amino acids that form the drug-target binding site. Despite of the numerous efforts made to individually understand and overcome these mutations, there is a lack of comprehensive analysis of the mutational landscape that can prospectively estimate drug-resistance mutations. Here we describe and computationally validate a framework that combines the cancer-specific likelihood with the resistance impact to enable the detection of single point mutations with the highest chance to be responsible of resistance to a particular targeted cancer therapy. Moreover, for these treatment-threatening mutations, the model proposes alternative therapies overcoming the resistance. We exemplified the applicability of the model using EGFR-gefitinib treatment for Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Cancer (LSCC) and the ERK2-VTX11e treatment for melanoma and colorectal cancer. Our model correctly identified the phenotype known resistance mutations, including the classic EGFR-T790M and the ERK2-P58L/S/T mutations. Moreover, the model predicted new previously undescribed mutations as potentially responsible of drug resistance. Finally, we provided a map of the predicted sensitivity of alternative ERK2 and EGFR inhibitors, with a particular highlight of two molecules with a low predicted resistance impact. PMID:28436422

  1. Evaluation of Design & Analysis Code, CACTUS, for Predicting Crossflow Hydrokinetic Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wosnik, Martin [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Bachant, Pete [Univ. of New Hampshire, Durham, NH (United States). Center for Ocean Renewable Energy; Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murphy, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    CACTUS, developed by Sandia National Laboratories, is an open-source code for the design and analysis of wind and hydrokinetic turbines. While it has undergone extensive validation for both vertical axis and horizontal axis wind turbines, and it has been demonstrated to accurately predict the performance of horizontal (axial-flow) hydrokinetic turbines, its ability to predict the performance of crossflow hydrokinetic turbines has yet to be tested. The present study addresses this problem by comparing the predicted performance curves derived from CACTUS simulations of the U.S. Department of Energy’s 1:6 scale reference model crossflow turbine to those derived by experimental measurements in a tow tank using the same model turbine at the University of New Hampshire. It shows that CACTUS cannot accurately predict the performance of this crossflow turbine, raising concerns on its application to crossflow hydrokinetic turbines generally. The lack of quality data on NACA 0021 foil aerodynamic (hydrodynamic) characteristics over the wide range of angles of attack (AoA) and Reynolds numbers is identified as the main cause for poor model prediction. A comparison of several different NACA 0021 foil data sources, derived using both physical and numerical modeling experiments, indicates significant discrepancies at the high AoA experienced by foils on crossflow turbines. Users of CACTUS for crossflow hydrokinetic turbines are, therefore, advised to limit its application to higher tip speed ratios (lower AoA), and to carefully verify the reliability and accuracy of their foil data. Accurate empirical data on the aerodynamic characteristics of the foil is the greatest limitation to predicting performance for crossflow turbines with semi-empirical models like CACTUS. Future improvements of CACTUS for crossflow turbine performance prediction will require the development of accurate foil aerodynamic characteristic data sets within the appropriate ranges of Reynolds numbers and AoA.

  2. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-01-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  3. Design and implementation of safety traceability system for candied fruits based on two-dimension code technology

    Directory of Open Access Journals (Sweden)

    ZHAO Kun

    2014-12-01

    Full Text Available Traceability is the basic principle of food safety.A food safety traceability system based on QR code and cloud computing technology was introduced in this paper.First of all we introduced the QR code technology and the concept of traceability.And then through the field investigation,we analyzed the traceability process.At the same time,we designed the system and database were found,and the consumer experiencing technology is studied.Finally we expounded the traceability information collection,transmission and final presentation style and expected the future development of traceability system.

  4. Codebook Design and Hybrid Digital/Analog Coding for Parallel Rayleigh Fading Channels

    OpenAIRE

    Shi, Shuying; Larsson, Erik G.; Skoglund, Mikael

    2011-01-01

    Low-delay source-channel transmission over parallel fading channels is studied. In this scenario separate sourceand channel coding is highly suboptimal. A scheme based on hybrid digital/analog joint source-channel coding istherefore proposed, employing scalar quantization and polynomial-based analog bandwidth expansion. Simulationsdemonstrate substantial performance gains. Funding agencies|European Community|248993|EL-LIIT||Knut and Alice Wallenberg Foundation||

  5. Resistance identification and rational process design in Capacitive Deionization

    NARCIS (Netherlands)

    Dykstra, Jouke; Zhao, R.; Biesheuvel, P.M.; Wal, van der A.

    2016-01-01

    Capacitive Deionization (CDI) is an electrochemical method for water desalination employing porous carbon electrodes. To enhance the performance of CDI, identification of electronic and ionic resistances in the CDI cell is important. In this work, we outline a method to identify these resistances.

  6. Calibration of resistance factors for drilled shafts for the new FHWA design method.

    Science.gov (United States)

    2013-01-01

    The Load and Resistance Factor Design (LRFD) calibration of deep foundation in Louisiana was first completed for driven piles (LTRC Final Report 449) in May 2009 and then for drilled shafts using 1999 FHWA design method (ONeill and Reese method) (...

  7. Calibration of Resistance Factors for Drilled Shafts for the New FHWA Design Method : Research Project Capsule

    Science.gov (United States)

    2011-02-01

    The Federal Highway Administration (FHWA) and American Association of State : Highway and Transportation Offi cials (AASHTO) require that all federally funded : bridges including substructures be designed using the load and resistance : factor design...

  8. Three-dimensional thermal-hydraulic analysis of a liquid metal reactor design with the COMMIX code

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.W.

    1988-01-01

    Steady-state and transient thermal-hydraulic analysis of a liquid metal reactor (LMR) design have been performed with the COMMIX computer code and the results are discussed. The LMR design analyzed includes an inherent safety feature which enables the decay heat removal by natural convection of ambient air, and the purpose of this analysis is to evaluate the inherent safety feature of the LMR design. COMMIX is a three-dimensional thermal-hydraulic analysis computer code developed at Argonne National Laboratory. A single-phase version of COMMIX has been used. Radiation plays an important role in the overall heat transfer, and the COMMIX version used includes the radiation capability. The theoretical formulation of COMMIX, including the treatment of thermal structures and radiation, is also discussed. 6 refs., 8 figs.

  9. Benchmark of physics design of a proposed 30 MW Multi Purpose Research Reactor using a Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.

    2009-01-01

    At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)

  10. Verification of annular fuel design code 'CEPTAR'. Verification with the irradiation data of JOYO Mk-II driver fuel

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    Annual fuel design code 'CEPTAR' was verified with irradiation data of JOYO Mk-II driver fuel as part of high burn-up MOX fuel development. To estimate irradiation behavior of JOYO Mk-II driver fuel, the pellet swelling equation evaluated with the PIE data of JOYO Mk-II driver fuel and the PNC316 property equations (swelling and irradiation creep) were added to CEPTAR code. As a result of verification by using the irradiation data of JOYO Mk-II driver fuel, the calculated values with CEPTAR code were in agreement with the observed values from the result of PIEs up to pellet peak burn-up ∼76,000MWd/t. (author)

  11. Comparative analysis of an unprotected overpower transient in the KALIMER design using the SSC-K and the SAS4A/SASSYS-1 computer codes

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Hahn, Do Hee

    2002-06-01

    The purpose of this study is to validate the analysis of the Unprotected Transient Overpower (UTOP) event in the KALIMER design using the SSC-K code against the SAS4A/SASSYS-1 computer code. At the same time, the predictive performance of the SSC-K code is evaluated by doing the code-to-code comparison analyses. The SAS4A/SASSYS-1 computer code is a general purpose one-dimensional thermal-hydraulic Liquid Metal Reactor (LMR) system analysis code. SAS4A/SASSYS-1 is especially suited for evaluating off-normal reactor transients, such as protected and unprotected transients. SAS4A/SASSYS-1 has been used in support of the IFR concept and of innovative LMR designs, such as PRISM and SAFR, and test facilities, such as EBR-II and FFTF, and there exists a strong validation base for the code. The adequacy of the SSC-K calculations for the UTOP event in the KALIMER design was confirmed by independent analyses using the SAS4A/SASSYS-1 code. The code-to-code comparison analyses show that the SSC-K calculation is generally acceptable and the feedback of reactivity in the SSC-K analysis is reasonably accurate. The comparison results also indicate that the thermal-hydraulic behaviors calculated by two codes during the UTOP event show good agreements

  12. Design of Multiple Trellis-Coded Multi-h CPM Based on Super Trellis

    Directory of Open Access Journals (Sweden)

    X. Liu. A. Liu

    2012-12-01

    Full Text Available It has been shown that the multiple trellis code can perform better than the conventional trellis code over AWGN channels, at the cost of additional computations per trellis branch. Multiple trellis coded multi-h CPM schemes have been shown in the literature to have attractive power-bandwidth performance at the expense of increased receiver complexity. In this method, the multi-h format is made to be associated with the specific pattern and repeated rather than cyclically changed in time for successive symbol intervals, resulting in a longer effective length of the error event with better performance. It is well known that the rate (n-1/n multiple trellis codes combined with 2^n-level CPM have good power-bandwidth performance. In this paper, a scheme combining rate 1/2 and 2/3 multiple trellis codes with 4- and 8-level multi-h CPM is shown to have better power-bandwidth performance over the upper bound than the scheme with single-h.

  13. Design of bituminous surface mixes with high skid resistance.

    Science.gov (United States)

    1974-01-01

    The Virginia Highway Research Council has proposed a study of the skid resistance of bituminous surfaces incorporating relatively hard and expensive aggregates. The hardness of the aggregates to be used aluminum oxide (Exolon) and calcined kaolin -- ...

  14. Design of bituminous mixes with high skid resistance.

    Science.gov (United States)

    1979-01-01

    Certain highway locations need exceptionally high skid resistance because of the alignment, geometry, and drainage of the roadway and the complex turning maneuvers required. Several beam specimens made of bituminous mixes incorporating unconventional...

  15. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry; Maldonado, Ivan

    2014-01-23

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.

  16. A professionalism and safety code of conduct designed for undergraduate nursing students.

    Science.gov (United States)

    Charania, Nadia Ali Muhammad Ali; Ferguson, Diane L; Bay, Esther; Freeland, Barbara S; Bradshaw, Kimberly; Harden, Karen

    Nationally, professionalism and safety are key concepts in nursing practice. Although they are traditionally viewed as individual concepts, we believe they are closely linked to and depend on one another. Herein, professionalism and safety are developed as a paired concept with specific indicators. The purpose of this paper is to describe the process used to develop and implement a professionalism and safety Code of Conduct for undergraduate nursing students and to share the end product of this process. Based on input from students, faculty, and health system partners in our academic-service partnership, the current definition and Code include six student behavioral domains: communication, self-awareness, self-care, professional image, responsible learning, and personal accountability. Our Code of Conduct is now a program policy and published in both the Student Handbook and clinical syllabi. Compliance is expected. Still under development are progressive clinical grading rubrics for inclusion in every clinical course. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. AREVA contributions to advanced codes and design/licensing methodologies for LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arimescu, V.I., E-mail: ioan.arimescu@areva.com [AREVA Inc., Richland, WA (United States); Garnier, C.; Mailhe, P. [AREVA NP, Lyon (France); Bellanger, P. [AREVA Inc., Lynchburg (United States); Smith, M.H. [AREVA Inc., Richland, WA (United States)

    2014-07-01

    The LWR best-estimate methodology for mechanical licensing analyses (first of its kind) that was recently developed by AREVA and, which was approved by the US-NRC for BWR applications, is presented herein, together with the salient features of the advanced fuel codes at the core of the methodology. In a nutshell, the new approach consists in quantifying the uncertainties of the relevant analysis outcomes, while the previous methods relied on conservative bounding assumptions and models, in order to compensate for the lack of either phenomenological knowledge or experimental data. In addition, a critical requirement is employing a best-estimate fuel performance code that is well qualified on a comprehensive experimental database, which allows adequate quantification of code model uncertainties. The basis for the methodology is an uncertainty propagation method, which employs a best estimate fuel code and a proper definition of uncertainties associated with all significant input variables, which are then propagated through the code, the uncertainties of relevant output parameters are then determined. Non-parametric order statistics is used to estimate a certain quantile of the distribution of the outputs of interest, which is then compared to pre-set licensing acceptance limit. This technique has the advantage of being less time-consuming than other methods and is also independent of the number of input variables. Finally, the outline of the verification/validation of the fuel code as well as of the methodology is presented, emphasizing the breadth and depth of the experimental database AREVA has that covers all fuel and cladding types used by AREVA for both PWR and BWR. (author)

  18. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies

    Directory of Open Access Journals (Sweden)

    Farah Fatima

    2017-02-01

    Full Text Available Extracellular vesicles (EVs are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies.

  19. Code of practice for the design of laboratories using radioactive substances for medical purposes

    International Nuclear Information System (INIS)

    1981-01-01

    This Code has been prepared to supplement the radioactive substances acts and regulations implemented in Australia. It is intended as a guide to safe practices but is not legislation. Areas covered include siting, layout, surface finishes, laboratory furniture and fittings, ventilation, containment and release of airborne effluent and storage of radioactive substances

  20. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design.

    Science.gov (United States)

    Albanaz, Amanda T S; Rodrigues, Carlos H M; Pires, Douglas E V; Ascher, David B

    2017-06-01

    Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.

  1. The resistive wall mode and feedback control physics design in NSTX

    International Nuclear Information System (INIS)

    Sabbagh, S.A.

    2002-01-01

    The National Spherical Torus Experiment has been designed to investigate the physics of ST global mode stabilization. NSTX has R=0.86 m, a 0 p i . Sudden beta collapses have been correlated to violation of the n=1 ideal MHD beta limit using time-evolving EFIT reconstructions of experimental discharges. The resistive wall mode (RWM) was observed in experiments maximizing plasma coupling to the stabilizing conducting plates. A large rotation damping rate of -300 kHz/s was observed in RWM discharges in contrast to -75 kHz/s for plasmas exhibiting n=2 and 3 rotating modes. The computed RWM perturbed field structure from experimental equilibria was input to the VALEN code and the computed n=1 mode growth time of 4.6 ms agrees well with the experimental value of 5 ms. Increased beta improves wall coupling, and passive stabilization of an equilibrium with normalized beta of 5.2 and pressure peaking factor of 2.2 yields a growth time of 23.5 ms. This plasma would be completely stabilized by a proposed global instability feedback system. (author)

  2. Evaluation of the integrity of reactor vessels designed to ASME Code, Sections I and/or VIII

    International Nuclear Information System (INIS)

    Hoge, K.G.

    1976-01-01

    A documented review of nuclear reactor pressure vessels designed to ASME Code, Sections I and/or VIII is made. The review is primarily concerned with the design specifications and quality assurance programs utilized for the reactor vessel construction and the status of power plant material surveillance programs, pressure-temperature operating limits, and inservice inspection programs. The following ten reactor vessels for light-water power reactors are covered in the report: Indian Point Unit No. 1, Dresden Unit No. 1, Yankee Rowe, Humboldt Bay Unit No. 3, Big Rock Point, San Onofre Unit No. 1, Connecticut Yankee, Oyster Creek, Nine Mile Point Unit No. 1, and La Crosse

  3. On optimal designs of transparent WDM networks with 1 + 1 protection leveraged by all-optical XOR network coding schemes

    Science.gov (United States)

    Dao, Thanh Hai

    2018-01-01

    Network coding techniques are seen as the new dimension to improve the network performances thanks to the capability of utilizing network resources more efficiently. Indeed, the application of network coding to the realm of failure recovery in optical networks has been marking a major departure from traditional protection schemes as it could potentially achieve both rapid recovery and capacity improvement, challenging the prevailing wisdom of trading capacity efficiency for speed recovery and vice versa. In this context, the maturing of all-optical XOR technologies appears as a good match to the necessity of a more efficient protection in transparent optical networks. In addressing this opportunity, we propose to use a practical all-optical XOR network coding to leverage the conventional 1 + 1 optical path protection in transparent WDM optical networks. The network coding-assisted protection solution combines protection flows of two demands sharing the same destination node in supportive conditions, paving the way for reducing the backup capacity. A novel mathematical model taking into account the operation of new protection scheme for optimal network designs is formulated as the integer linear programming. Numerical results based on extensive simulations on realistic topologies, COST239 and NSFNET networks, are presented to highlight the benefits of our proposal compared to the conventional approach in terms of wavelength resources efficiency and network throughput.

  4. Design, decoding and optimized implementation of SECDED codes over GF(q)

    Science.gov (United States)

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-06-17

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  5. Preparation Ferrule Design Effect on EndoCrown Fracture Resistance

    Science.gov (United States)

    2016-05-01

    Resistance Major Michael L. Einhorn APPROVED: Dean, Air Force Postgraduate Dental School II Acknowledgements: Special thanks to Col Howard Roberts...permission of the copyright owner. Signature Printed Name USAF Postgraduate Dental School Keesler AFB, MS Uniformed Services University -iv...6 Figure 6, Cemented Standardized e.max Restoration

  6. Design and Analysis of Self-Healing Tree-Based Hybrid Spectral Amplitude Coding OCDMA System

    Directory of Open Access Journals (Sweden)

    Waqas A. Imtiaz

    2017-01-01

    Full Text Available This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON. Enhanced multidiagonal (EMD code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.

  7. Error-resilient design of high-fidelity scalable audio coding

    Science.gov (United States)

    Yang, Dai; Ai, Hongmei; Kyriakakis, Christos; Kuo, C.-C. Jay

    2002-06-01

    Current high quality audio coding techniques mainly focus on coding efficiency, which makes them extremely sensitive to channel noise, especially in high error rate wireless channels. In our previous work, we developed a progressive high quality audio codec, which was shown to outperform MPEG-4 version 2's scalable audio codec. In this work, we extend the error-free progressive audio codec to an error-resilient scalable audio codec by re-organizing the bitstream and modifying the noiseless coding module. A dynamic segmentation scheme is used to divide an audio bitstream into several segments. Each segment contains independently decodable data so that errors will not propagate across segment boundaries. An unequal error protection scheme is then adopted to improve error resilience of the final bitstream. The performance of the proposed algorithm is tested under different error patterns of WCDMA channels with several test audio materials. Our experimental results show that the proposed approach achieves excellent error resilience at a regular user bit rate of 64 kb/s.

  8. Design and implementation of a software tool intended for simulation and test of real time codes

    International Nuclear Information System (INIS)

    Le Louarn, C.

    1986-09-01

    The objective of real time software testing is to show off processing errors and unobserved functional requirements or timing constraints in a code. In the perspective of safety analysis of nuclear equipments of power plants testing should be carried independently from the physical process (which is not generally available), and because casual hardware failures must be considered. We propose here a simulation and test tool, integrally software, with large interactive possibilities for testing assembly code running on microprocessor. The OST (outil d'aide a la simulation et au Test de logiciels temps reel) simulates code execution and hardware or software environment behaviour. Test execution is closely monitored and many useful informations are automatically saved. The present thesis work details, after exposing methods and tools dedicated to real time software, the OST system. We show the internal mechanisms and objects of the system: particularly ''events'' (which describe evolutions of the system under test) and mnemonics (which describe the variables). Then, we detail the interactive means available to the user for constructing the test data and the environment of the tested software. Finally, a prototype implementation is presented along with the results of the tests carried out. This demonstrates the many advantages of the use of an automatic tool over a manual investigation. As a conclusion, further developments, nececessary to complete the final tool are rewieved [fr

  9. Space-Time Coded MC-CDMA: Blind Channel Estimation, Identifiability, and Receiver Design

    Directory of Open Access Journals (Sweden)

    Li Hongbin

    2002-01-01

    Full Text Available Integrating the strengths of multicarrier (MC modulation and code division multiple access (CDMA, MC-CDMA systems are of great interest for future broadband transmissions. This paper considers the problem of channel identification and signal combining/detection schemes for MC-CDMA systems equipped with multiple transmit antennas and space-time (ST coding. In particular, a subspace based blind channel identification algorithm is presented. Identifiability conditions are examined and specified which guarantee unique and perfect (up to a scalar channel estimation when knowledge of the noise subspace is available. Several popular single-user based signal combining schemes, namely the maximum ratio combining (MRC and the equal gain combining (EGC, which are often utilized in conventional single-transmit-antenna based MC-CDMA systems, are extended to the current ST-coded MC-CDMA (STC-MC-CDMA system to perform joint combining and decoding. In addition, a linear multiuser minimum mean-squared error (MMSE detection scheme is also presented, which is shown to outperform the MRC and EGC at some increased computational complexity. Numerical examples are presented to evaluate and compare the proposed channel identification and signal detection/combining techniques.

  10. Cloning and over expression of non-coding RNA rprA in E.coli and its resistance to Kanamycin without osmotic shock.

    Science.gov (United States)

    Sahni, Azita; Hajjari, Mohammadreza; Raheb, Jamshid; Foroughmand, Ali Mohammad; Asgari, Morteza

    2017-01-01

    Recent reports have indicated that small RNAs have key roles in the response of the E.coli to stress and also in the regulating of virulence factors. It seems that some small non-coding RNAs are involved in multidrug resistance. Previous studies have indicated that rprA can increase the tolerance to Kanamycin in RcsB-deficient Escherichia coli K-12 following osmotic shock. The current study aims to clone and over-express the non-coding RNA rprA in E.coli and investigate its effect on the bacterial resistance to Kanamycin without any osmotic shock. For this purpose, rprA gene was amplified by the PCR and then cloned into the PET-28a (+) vector. The recombinant plasmid was transformed into wild type E.coli BL21 (DE3). The over expression was induced by IPTG and confirmed by qRT-PCR. The resistance to the kanamycin was then measured in different times by spectrophotometry. The statistical analysis showed that the rprA can increase the resistance to Kanamycin in Ecoli K12. The interaction between rprA and rpoS was reviewed and analyzed by in silico methods. The results showed that the bacteria with over-expressed rprA were more resistant to Kanamycin. The present study is an important step to prove the role of non-coding RNA rprA in bacterial resistance. The data can be the basis for future works and can also help to develop and deliver next-generation antibiotics.

  11. Development of an optimized procedure bridging design and structural analysis codes for the automatized design of the SMART

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1998-09-01

    In this report, an optimized design and analysis procedure is established to apply to the SMART (System-integrated Modular Advanced ReacTor) development. The development of an optimized procedure is to minimize the time consumption and engineering effort by squeezing the design and feedback interactions. To achieve this goal, the data and information generated through the design development should be directly transferred to the analysis program with minimum operation. The verification of the design concept requires considerable effort since the communication between the design and analysis involves time consuming stage for the conversion of input information. In this report, an optimized procedure is established bridging the design and analysis stage utilizing the IDEAS, ABAQUS and ANSYS. (author). 3 refs., 2 tabs., 5 figs

  12. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Thomas W R Harrop

    Full Text Available Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  13. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  14. WWW design code – a new tool for colour estimation in animal studies

    Directory of Open Access Journals (Sweden)

    Berggren Åsa

    2004-10-01

    Full Text Available Abstract Background The colour of animals' skin, fur, feathers or cuticula has been estimated in a large number of studies. The methods used to do so are diverse, with some being costly and not available to all researchers. In a study to measure plumage colour in a bird species, a new method of creating a colour chart was developed. While colour-charts have their own limitations, these can be minimised when they have the following properties: 1 being readily available to the majority of biologists, 2 containing a large array of colours to allow accurate recording and differentiation of subtle colour differences, 3 low cost, 4 adhering to a world-wide standard, and 5 being available in both hard-copy and digital formats to allow for various analytical methods. The method described below satisfies all of these requirements. Results Colour charts estimated to fit the range of the species' plumage colours were created on the computer screen using web software that allowed for HTML-coding (in this case Dreamweaver™. The charts were adjusted using feathers from dead specimens until a satisfying range of darker and lighter colours were found. The resulting chart was printed out and was successfully used in the field to determine the plumage colour of hand-held birds. Conclusion Access to a computer and printer, and the software to enable the creation of a chart, is within the reach of the vast majority of biologists. The numbers of colours that can be generated should suit most studies, with the advantage of the method being that the chart can be individually tailored to the species under study. HTML colour coding is a worldwide standard, thus the colours used in studies can be described in the methods section of journal articles using the six-digit alphanumeric code. We believe this method is very useful as a low-tech method for future estimation of individual colour.

  15. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming

    Science.gov (United States)

    1976-02-01

    results. We thank Professor David Hinmelblau for providing us with a card deck ,. for these problems. 36 (T~ 4A I The current version of GRG solved all but...on a few problems. In fact, the Newell code was fastest in 10 problems, ours in 5 and GREG in 2. We are grateful to Professor David Himmelblau for...25. A. Sassoon and H. Merrill, "Some Applications of Optimization Techniques to Power Systems Problems," Proceedings of the IEEE 62, No. 7 (July 1974

  16. Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues

    Science.gov (United States)

    2011-03-01

    digital network coding ( DNC ) to distinguish it from ANC. Under 0090-6778/11$25.00 c⃝ 2011 IEEE Report Documentation Page Form ApprovedOMB No. 0704-0188...223 2596 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 many channel conditions, DNC offers enhanced performance over ANC. This...is because the decoding operation at the relay helps DNC to remove noise from the MAC phase, while the noise is amplied by the relay when ANC is used

  17. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1996-01-01

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  18. Design and construction of a graphical interface for automatic generation of simulation code GEANT4

    International Nuclear Information System (INIS)

    Driss, Mozher; Bouzaine Ismail

    2007-01-01

    This work is set in the context of the engineering studies final project; it is accomplished in the center of nuclear sciences and technologies in Sidi Thabet. This project is about conceiving and developing a system based on graphical user interface which allows an automatic codes generation for simulation under the GEANT4 engine. This system aims to facilitate the use of GEANT4 by scientific not necessary expert in this engine and to be used in different areas: research, industry and education. The implementation of this project uses Root library and several programming languages such as XML and XSL. (Author). 5 refs

  19. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  20. Embedded data collector (EDC) phase II load and resistance factor design (LRFD) : [summary].

    Science.gov (United States)

    2015-07-01

    Piles that support bridge structures are designed for the specific site characteristics and loads : that the piles are expected to bear. In Florida, driven piles are monitored during installation : (dynamically tested) to assess resistance, com...

  1. Resisting Technological Gravity: Using Guiding Principles for Instructional Design

    Science.gov (United States)

    McDonald, Jason K.

    2010-01-01

    Instructional designers face tremendous pressure to abandon the essential characteristics of educational approaches, and settle instead for routine practices that do not preserve the level of quality those approaches originally expressed. Because this pressure can be strong enough to affect designers almost as gravity affects objects in the…

  2. Coding Class

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Hansbøl, Mikala

    Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017....... Coding Class projektet er et pilotprojekt, hvor en række skoler i København og Vejle kommuner har igangsat undervisningsaktiviteter med fokus på kodning og programmering i skolen. Evalueringen og dokumentationen af projektet omfatter kvalitative nedslag i udvalgte undervisningsinterventioner i efteråret...

  3. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  4. Development of NONSTA code for the design and analysis of LMR high temperature structure

    International Nuclear Information System (INIS)

    Kim, Jong Bum; Lee, H. Y.; Yoo, B.

    1999-02-01

    Liquid metal reactor(LMR) operates at high temperature (500-550 dg C) and structural materials undergo complex deformation behavior like diffusion, dislocation glide, and dislocation climb due to high temperature environment. And the material life reduces rapidly due to the interaction of cavities created inside structural materials and high temperature fatigue cracks. Thus the establishment of high temperature structure analysis techniques is necessary for the reliability and safety evaluation of such structures. The objectives of this study are to develop NONSTA code as the subprogram of ABAQUS code adopting constitutive equations which can predict high temperature material behavior precisely and to build the systematic analysis procedures. The developed program was applied to the example problems such as the tensile analysis using exponential creep model and the repetitive tensile-compression analysis using Chaboche unified viscoplastic model. In addition, the problem of a plate with a center hole subjected to tensile load was solved to show the applicability of the program to multiaxial problem and the time dependent stress redistribution was observed. (Author). 40 refs., 2 tabs., 24 figs

  5. Performance of the improved version of Monte Carlo Code A3MCNP for cask shielding design

    International Nuclear Information System (INIS)

    Hasegawa, T.; Ueki, K.; Sato, O.; Sjoden, G.E.; Miyake, Y.; Ohmura, M.; Haghighat, A.

    2004-01-01

    A 3 MCNP (Automatic Adjoint Accelerated MCNP) is a revised version of the MCNP Monte Carlo code, that automatically prepares variance reduction parameters for the CADIS (Consistent Adjoint Driven Importance Sampling) methodology. Using a deterministic ''importance'' (or adjoint) function, CADIS performs source and transport biasing within the weight-window technique. The current version of A 3 MCNP uses the 3-D Sn transport TORT code to determine a 3-D importance function distribution. Based on simulation of several real-life problems, it is demonstrated that A3MCNP provides precise calculation results with a remarkably short computation time by using the proper and objective variance reduction parameters. However, since the first version of A 3 MCNP provided only a point source configuration option for large-scale shielding problems, such as spent-fuel transport casks, a large amount of memory may be necessary to store enough points to properly represent the source. Hence, we have developed an improved version of A 3 MCNP (referred to as A 3 MCNPV) which has a volumetric source configuration option. This paper describes the successful use of A 3 MCNPV for cask neutron and gamma-ray shielding problem

  6. Calibration of 3D Woven Preform Design Code for CMC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future hypersonic vehicles will utilize thermal protection system (TPS) designs and propulsion system components that are capable of experiencing high temperatures...

  7. The safety relief valve handbook design and use of process safety valves to ASME and International codes and standards

    CERN Document Server

    Hellemans, Marc

    2009-01-01

    The Safety Valve Handbook is a professional reference for design, process, instrumentation, plant and maintenance engineers who work with fluid flow and transportation systems in the process industries, which covers the chemical, oil and gas, water, paper and pulp, food and bio products and energy sectors. It meets the need of engineers who have responsibilities for specifying, installing, inspecting or maintaining safety valves and flow control systems. It will also be an important reference for process safety and loss prevention engineers, environmental engineers, and plant and process designers who need to understand the operation of safety valves in a wider equipment or plant design context. . No other publication is dedicated to safety valves or to the extensive codes and standards that govern their installation and use. A single source means users save time in searching for specific information about safety valves. . The Safety Valve Handbook contains all of the vital technical and standards informat...

  8. Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm

    Directory of Open Access Journals (Sweden)

    Apoorva Aggarwal

    2015-12-01

    Full Text Available In this paper, an optimal design of linear phase digital finite impulse response (FIR highpass (HP filter using the L1-norm based real-coded genetic algorithm (RCGA is investigated. A novel fitness function based on L1 norm is adopted to enhance the design accuracy. Optimized filter coefficients are obtained by defining the filter objective function in L1 sense using RCGA. Simulation analysis unveils that the performance of the RCGA adopting this fitness function is better in terms of signal attenuation ability of the filter, flatter passband and the convergence rate. Observations are made on the percentage improvement of this algorithm over the gradient-based L1 optimization approach on various factors by a large amount. It is concluded that RCGA leads to the best solution under specified parameters for the FIR filter design on account of slight unnoticeable higher transition width.

  9. Increased HIV-1 sensitivity to neutralizing antibodies by mutations in the Env V3-coding region for resistance to CXCR4 antagonists.

    Science.gov (United States)

    Hikichi, Yuta; Yokoyama, Masaru; Takemura, Taichiro; Fujino, Masayuki; Kumakura, Sei; Maeda, Yosuke; Yamamoto, Naoki; Sato, Hironori; Matano, Tetsuro; Murakami, Tsutomu

    2016-09-01

    HIV-1 passage in cell culture in the presence of chemokine receptor antagonists can result in selection of viruses with env mutations that confer resistance to these inhibitors. In the present study, we examined the effect of HIV-1env mutations that confer resistance to CXCR4 antagonists on envelope (Env) sensitivity to neutralizing antibodies (NAbs). Serial passage of CXCR4-tropic HIV-1 NL4-3 in PM1/CCR5 cells under CXCR4 antagonists KRH-3955, AMD3100 and AMD070 yielded two KRH-3955-resistant, one AMD3100-resistant and one AMD070-resistant viruses. These viruses had multiple env mutations including the Env gp120 V3 region. The majority of viruses having these CXCR4 antagonist-resistant Envs showed higher sensitivity to NAbs 447-52D, b12 and 2F5 targeting the V3 region, the gp120 CD4-binding site and the gp41 membrane proximal region, respectively, compared to NL4-3 WT virus. Recombinant NL4-3 viruses with the V3-coding region replaced with those derived from the CXCR4 antagonist-resistant viruses showed increased sensitivity to NAbs b12, 2F5 and 447-52D. Molecular dynamics simulations of Env gp120 outer domains predicted that the V3 mutations increased levels of fluctuations at the tip and stem of the V3 loop. These results indicate that mutations in the V3-coding region that result in loss of viral sensitivity to CXCR4 antagonists increase viral sensitivity to NAbs, providing insights into our understanding of the interplay of viral Env accessibility to chemokine receptors and sensitivity to NAbs.

  10. Social Reproduction and Resistance in Four Infant/Toddler Daycare Settings: An Ethnographic Study of Social Relations and Sociolinguistic Codes.

    Science.gov (United States)

    Miller, Darla F.; Ginsburg, Mark B.

    1989-01-01

    Examines sociolinguistic codes and social relations in daycare settings populated by children of four different social classes. Observations suggest that particular forms of social relations and attendant social control mechanisms do not have a one-to-one correspondence with particular sociolinguistic codes. Discusses links between gender…

  11. Design criteria for small coded aperture masks in gamma-ray astronomy

    International Nuclear Information System (INIS)

    Sembay, S.; Gehrels, N.

    1990-01-01

    Most theoretical work on coded aperture masks in X-ray and low-energy γ-ray astronomy has concentrated on masks with large numbers of elements. For γ-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyse by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. In this paper we develop a particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns. We then present the results of such a computer analysis for masks up to dimension 5x5 unit cell and conclude that there is a great deal of flexibility in one's choice of mask pattern for each dimension. (orig.)

  12. ASSESSMENT OF BURNABLE ABSORBER FUEL DESIGN BY UWB1 DEPLETION CODE

    Directory of Open Access Journals (Sweden)

    Martin Lovecky

    2016-12-01

    Full Text Available UWB1 depletion code is being developed as a fast computational tool for the study of burnable absorbers in University of West Bohemia in Pilsen, Czech Republic. Research of fuel depletion aims at development and introduction of advanced types of burnable absorbers in nuclear fuel. Burnable absorbers compensate for the initial excess reactivity and consequently allow for lower power peaking factors and longer fuel cycles with higher fuel enrichments. The paper describes the depletion calculations of CANDU, PWR and SFR nuclear fuel doped with rare earth oxides as burnable absorber. Uniform distribution of burnable absorber in the fuel is assumed. Based on performed depletion calculations, rare earth oxides are divided into two groups, suitable burnable absorbers and poisoning absorbers. Moreover, basic economic comparison is performed based on actual stock prices.

  13. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  14. Design of a Code-Maker Translator Assistive Input Device with a Contest Fuzzy Recognition Algorithm for the Severely Disabled

    Directory of Open Access Journals (Sweden)

    Chung-Min Wu

    2015-01-01

    Full Text Available This study developed an assistive system for the severe physical disabilities, named “code-maker translator assistive input device” which utilizes a contest fuzzy recognition algorithm and Morse codes encoding to provide the keyboard and mouse functions for users to access a standard personal computer, smartphone, and tablet PC. This assistive input device has seven features that are small size, easy installing, modular design, simple maintenance, functionality, very flexible input interface selection, and scalability of system functions, when this device combined with the computer applications software or APP programs. The users with severe physical disabilities can use this device to operate the various functions of computer, smartphone, and tablet PCs, such as sending e-mail, Internet browsing, playing games, and controlling home appliances. A patient with a brain artery malformation participated in this study. The analysis result showed that the subject could make himself familiar with operating of the long/short tone of Morse code in one month. In the future, we hope this system can help more people in need.

  15. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  16. Virtual machine provisioning, code management, and data movement design for the Fermilab HEPCloud Facility

    Science.gov (United States)

    Timm, S.; Cooper, G.; Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Grassano, D.; Tiradani, A.; Krishnamurthy, R.; Vinayagam, S.; Raicu, I.; Wu, H.; Ren, S.; Noh, S.-Y.

    2017-10-01

    The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores. This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.

  17. Virtual Machine Provisioning, Code Management, and Data Movement Design for the Fermilab HEPCloud Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timm, S. [Fermilab; Cooper, G. [Fermilab; Fuess, S. [Fermilab; Garzoglio, G. [Fermilab; Holzman, B. [Fermilab; Kennedy, R. [Fermilab; Grassano, D. [Fermilab; Tiradani, A. [Fermilab; Krishnamurthy, R. [IIT, Chicago; Vinayagam, S. [IIT, Chicago; Raicu, I. [IIT, Chicago; Wu, H. [IIT, Chicago; Ren, S. [IIT, Chicago; Noh, S. Y. [KISTI, Daejeon

    2017-11-22

    The Fermilab HEPCloud Facility Project has as its goal to extend the current Fermilab facility interface to provide transparent access to disparate resources including commercial and community clouds, grid federations, and HPC centers. This facility enables experiments to perform the full spectrum of computing tasks, including data-intensive simulation and reconstruction. We have evaluated the use of the commercial cloud to provide elasticity to respond to peaks of demand without overprovisioning local resources. Full scale data-intensive workflows have been successfully completed on Amazon Web Services for two High Energy Physics Experiments, CMS and NOνA, at the scale of 58000 simultaneous cores. This paper describes the significant improvements that were made to the virtual machine provisioning system, code caching system, and data movement system to accomplish this work. The virtual image provisioning and contextualization service was extended to multiple AWS regions, and to support experiment-specific data configurations. A prototype Decision Engine was written to determine the optimal availability zone and instance type to run on, minimizing cost and job interruptions. We have deployed a scalable on-demand caching service to deliver code and database information to jobs running on the commercial cloud. It uses the frontiersquid server and CERN VM File System (CVMFS) clients on EC2 instances and utilizes various services provided by AWS to build the infrastructure (stack). We discuss the architecture and load testing benchmarks on the squid servers. We also describe various approaches that were evaluated to transport experimental data to and from the cloud, and the optimal solutions that were used for the bulk of the data transport. Finally, we summarize lessons learned from this scale test, and our future plans to expand and improve the Fermilab HEP Cloud Facility.

  18. Calibration of 3D Woven Preform Design Code for CMC Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical and thermal performance of CMC components benefit from low part count, integrally fabricated designs of 3D woven reinforcement. The advantages of these...

  19. ROXIE A Computer Code for the Integrated Design of Accelerator Magnets

    CERN Document Server

    Russenschuck, Stephan

    1998-01-01

    The paper describes the ROXIE software program package which has been developed for the design of the superconducting magnets for the LHC at CERN. The software is used as an approach towards the integrated design of superconducting magnets including feature-based coil geometry creation, conceptual design using genetic algorithms, optimization of the coil and iron cross-sections using a reduced vector-potential formulation, 3-D coil end geometry and field optimization using deterministic vector-optimization techniques, tolerance analysis, production of drawings by means of a DXF interface, end-spacer design with interfaces to CAD-CAM for the CNC machining of these pieces, and the tracing of manufacturing errors using field quality measurements.

  20. Design prediction of pavement skid resistance from laboratory tests

    Science.gov (United States)

    Parcells, W. H.; Metheny, T. M.; Maag, R. G.

    1980-08-01

    Methods for preevaluating aggregates and paving mixtures so that predictions can be made covering skid resistance properties of proposed and in service pavement types are discussed. A correlation was established between the field testing using the data from the British Portable Tester and the Locked Wheel Pavement Friction Trailer at speeds of 40 and 55 mph. Core samples were extracted from the Locked Wheel Tester Skid Path and subjected to wear on the small wheel circular track with periodic surface friction testing. The final step was to remix and remold the cored pavement samples or make samples with new materials to obtain an 'as new' surface and again subject these samples to wear on the small wheel circular track with periodic testing.

  1. Development and verification test of integral reactor major components - Development of MCP impeller design, performance prediction code and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung Kyoon; Oh, Woo Hyoung; Song, Jae Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    The present study is aimed at developing a computational code for design and performance prediction of an axial-flow pump. The proposed performance prediction method is tested against a model axial-flow pump streamline curvature method. The preliminary design is made by using the ideal velocity triangles at inlet and exit and the three dimensional blade shape is calculated by employing the free vortex design method. Then the detailed blading design is carried out by using experimental database of double circular arc cambered hydrofoils. To computationally determine the design incidence, deviation, blade camber, solidity and stagger angle, a number of correlation equations are developed form the experimental database and a theorical formula for the lift coefficient is adopted. A total of 8 equations are solved iteratively using an under-relaxation factor. An experimental measurement is conducted under a non-cavitating condition to obtain the off-design performance curve and also a cavitation test is carried out by reducing the suction pressure. The experimental results are very satisfactorily compared with the predictions by the streamline curvature method. 28 refs., 26 figs., 11 tabs. (Author)

  2. 18T resistive magnet development. Conceptual design second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, K.L.; Burgeson, J.E.; Gurol, H.; Mancuso, A.; Michels, P.H.

    1985-10-01

    This report documents the work performed on a normal conducting magnet during fiscal year 1985. Emphasis, during the study, was on refinement of the structural design and optimization of the coil current density distribution for either maximum field generation or minimum power consumption. The results have shown that one can generate a 4.4 tesla field using 6.14 megawatts or 3.1 tesla at 1.43 megawatts. The structural design has been modified to stiffen the outer turn of the conductor. The modification was confirmed to be structurally adequate by both analysis and test. 37 figs., 21 tabs.

  3. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.

    Science.gov (United States)

    Jiang, Jun; Zhou, Zongtan; Yin, Erwei; Yu, Yang; Liu, Yadong; Hu, Dewen

    2015-11-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) allow disabled individuals to control external devices voluntarily, helping us to restore lost motor functions. However, the number of control commands available in MI-based BCIs remains limited, limiting the usability of BCI systems in control applications involving multiple degrees of freedom (DOF), such as control of a robot arm. To address this problem, we developed a novel Morse code-inspired method for MI-based BCI design to increase the number of output commands. Using this method, brain activities are modulated by sequences of MI (sMI) tasks, which are constructed by alternately imagining movements of the left or right hand or no motion. The codes of the sMI task was detected from EEG signals and mapped to special commands. According to permutation theory, an sMI task with N-length allows 2 × (2(N)-1) possible commands with the left and right MI tasks under self-paced conditions. To verify its feasibility, the new method was used to construct a six-class BCI system to control the arm of a humanoid robot. Four subjects participated in our experiment and the averaged accuracy of the six-class sMI tasks was 89.4%. The Cohen's kappa coefficient and the throughput of our BCI paradigm are 0.88 ± 0.060 and 23.5bits per minute (bpm), respectively. Furthermore, all of the subjects could operate an actual three-joint robot arm to grasp an object in around 49.1s using our approach. These promising results suggest that the Morse code-inspired method could be used in the design of BCIs for multi-DOF control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. WIPP conceptual design report. Addendum L. Mine safety code review for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-06-01

    An initial review of New Mexico and Federal mining standards and regulations has been made to determine their applicability to the WIPP conceptual design. These standards and regulations are reviewed point by point and the enclosed listing includes comments and recommendations for those which will affect the design and/or eventual operations of WIPP. The majority of the standards, both federal and state, are standard safe mining practices. Those standards are listed which are thought should be emphasized for development of the design; also those that would increase the hazard risk by strict compliance. Because the WIPP facility is different in many respects from mines for which the regulations were intended, strict compliance in some respects would provide an increased hazard, while in other instances the regulations are less strict than is desirable. These are noted in the attached review

  5. SENSIT: a cross-section and design sensitivity and uncertainty analysis code. [In FORTRAN for CDC-7600, IBM 360

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1980-01-01

    SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections of standard multigroup cross section sets and for secondary energy distributions (SEDs) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross section uncertainty analyses are performed for three types of input data uncertainties: cross-section covariance matrices for pairs of multigroup reaction cross sections, spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and covariance matrices for energy-dependent response functions. For all three types of data uncertainties SENSIT computes the resulting variance and estimated standard deviation in an integral response of interest, on the basis of generalized perturbation theory. SENSIT attempts to be more comprehensive than earlier sensitivity analysis codes, such as SWANLAKE.

  6. Apolux : an innovative computer code for daylight design and analysis in architecture and urbanism

    Energy Technology Data Exchange (ETDEWEB)

    Claro, A.; Pereira, F.O.R.; Ledo, R.Z. [Santa Catarina Federal Univ., Florianopolis, SC (Brazil)

    2005-07-01

    The main capabilities of a new computer program for calculating and analyzing daylighting in architectural space were discussed. Apolux 1.0 was designed to use three-dimensional files generated in graphic editors in the data exchange file (DXF) format and was developed to integrate an architect's design characteristics. An example of its use in a design context development was presented. The program offers fast and flexible manipulation of video card models in different visualization conditions. The algorithm for working with the physics of light is based on the radiosity method representing the surfaces through finite elements divided in small triangular units of area which are fully confronted to each other. The form factors of each triangle are determined in relation to all others in the primary calculation. Visible directions of the sky are also included according to the modular units of a subdivided globe. Following these primary calculations, the different and successive daylighting solutions can be determined under different sky conditions. The program can also change the properties of the materials to quickly recalculate the solutions. The program has been applied in an office building in Florianopolis, Brazil. The four stages of design include initial discussion with the architects about the conceptual possibilities; development of a comparative study based on 2 architectural designs with different conceptual elements regarding daylighting exploitation in order to compare internal daylighting levels and distribution of the 2 options exposed to the same external conditions; study the solar shading devices for specific facades; and, simulations to test the performance of different designs. The program has proven to be very flexible with reliable results. It has the possibility of incorporating situations of the real sky through the input of the Spherical model of real sky luminance values. 3 refs., 14 figs.

  7. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  8. Computational design of heat resistant steels with evolving and time-independent strengthening factors

    NARCIS (Netherlands)

    Lu, Q.

    2015-01-01

    Alloy design by the traditional trial and error approach is known to be a time consuming and a highly cost procedure, especially for the design of heat resistant steel where the feedback time is intrinsically long. The significant developments in computational simulation techniques in the last

  9. Optimal Topology Design of Discrete Structures Resisting Degradation Effects

    DEFF Research Database (Denmark)

    Achtziger, W.; Bendsøe, Martin P.

    1999-01-01

    In this technical note we treat the problem of finding the optimal topology of a truss, so that stiffness after degradation is maximized. It is shown that for the problem setting at hand, the optimal topology has uniform relative degradation in all bars and the topology is unchanged from the topo...... the topology for a truss not undergoing degradation. As is well-known such a design can be realized as a fully stressed, statically determinate truss....

  10. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.

    Science.gov (United States)

    Ojewole, Adegoke; Lowegard, Anna; Gainza, Pablo; Reeve, Stephanie M; Georgiev, Ivelin; Anderson, Amy C; Donald, Bruce R

    2017-01-01

    Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749-754, 2015), we used our OSPREY (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of OSPREY with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of OSPREY. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme's catalytic function but selectively ablate binding of an inhibitor.

  11. Application of Error Correcting Codes in Fault-Tolerant Logic Design for VLSI Circuits

    Science.gov (United States)

    1992-08-14

    computing, pp 258-265, test conf., Philadelphia, PA. pp 435-445, Oct. 1983. 1983. 10. Sandip Kundu,"Design of multioutput CMOS 3. J.P. Hayes,"ault Modellin...34T 151 F. 1. Ferguson and 1. P. Shen. "Extraction and simulation of realistic 1101 S Kundu. "Deign of multioutput CMOS combinational ogi. :r. CMOS

  12. Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb3Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb3Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, located alo...

  13. Yield Frequency Spectra and seismic design of code-compatible RC structures: an illustrative example

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Vamvatsikos, Dimitrios

    2017-01-01

    The seismic design of an 8-story reinforced concrete space frame building is undertaken using a Yield Frequency Spectra (YFS) performance-based approach. YFS offer a visual representation of the entire range of a system’s performance in terms of the mean annual frequency (MAF) of exceeding...

  14. Specification of PWR UO2 pellet design parameters with the fuel performance code FRAPCON-1

    International Nuclear Information System (INIS)

    Silva, A.T.; Marra Neto, A.

    1988-08-01

    UO 2 pellet design parameters are analysed to verify their influence in the fuel basic properties and in its performance under irradiation in pressurized water reactors. Three groups of parameters are discussed: 1) content of fissionable and impurity materials; 2) stoichiometry; 3) density pore morpholoy, and microstructure. A methodology is applied with the fuel performance program FRAPCON-1 to specify these parameters. (author [pt

  15. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  16. Intrusion resistant underground structure (IRUS) : design and operations

    International Nuclear Information System (INIS)

    Lange, B.A.

    1997-01-01

    The safety case for the IRUS low-level radioactive waste disposal facility is based on the fact that IRUS will contain three specific types of wastes only. The types of these wastes are baled wastes, bituminized incinerator ash, and bituminized reverse osmosis concentrate. IRUS will be a below-ground vault consisting of an open bottom reinforced-concrete structure (approximate dimensions 30m x 20m x 8m) with a reinforced-concrete roof. This paper covers the vault design and construction and operational features. 2 tabs

  17. Intrusion resistant underground structure (IRUS) : design and operations

    Energy Technology Data Exchange (ETDEWEB)

    Lange, B.A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-12-31

    The safety case for the IRUS low-level radioactive waste disposal facility is based on the fact that IRUS will contain three specific types of wastes only. The types of these wastes are baled wastes, bituminized incinerator ash, and bituminized reverse osmosis concentrate. IRUS will be a below-ground vault consisting of an open bottom reinforced-concrete structure (approximate dimensions 30m x 20m x 8m) with a reinforced-concrete roof. This paper covers the vault design and construction and operational features. 2 tabs.

  18. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Narayan, Pradush; Jesuraj, Fenedit; Raju, M.R.; Dinesh Kumar, M.

    2010-01-01

    This investigation aims to design a practical multi-leaf collimator (MLC) system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC) method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC), Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA) was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed. (author)

  19. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    Directory of Open Access Journals (Sweden)

    Ayyangar Komanduri

    2010-01-01

    Full Text Available This investigation aims to design a practical multi-leaf collimator (MLC system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC, Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60 Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed.

  20. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

    OpenAIRE

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-01-01

    PURPOSE The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the f...

  1. Design of a horizontal penetrometer for measuring on-the-go soil resistance.

    Science.gov (United States)

    Topakci, Mehmet; Unal, Ilker; Canakci, Murad; Celik, Huseyin Kursat; Karayel, Davut

    2010-01-01

    Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System). The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on-line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications.

  2. Design of a Horizontal Penetrometer for Measuring On‑the‑Go Soil Resistance

    Directory of Open Access Journals (Sweden)

    Davut Karayel

    2010-10-01

    Full Text Available Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System. The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on‑line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications.

  3. Design of the core of a breed/burn fast reactor with the deterministic code KANEXT

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2014-10-01

    The breeding fast reactors are interesting because they generate more plutonium than they consume, however, the fuel has to be reprocessed for the generated plutonium is used in another reactor. In a breed/burn reactor (BBR) the plutonium is generated and used -in situ- inside the same reactor, reducing this way costs and the proliferation possibility. In this work, the core of a BBR was designed; cooled by sodium that consists of 210 active assemblies and 7 spaces for control rods, each assembly consists of 169 pines. The design differs from other BBR it includes a blanket in the reactor center. The above-mentioned was to take advantage of the fact by geometry that the population of fast and epithermal neutrons will be high in the area, due to the fissions in adjacent fissile areas. Favorable results were obtained, although not definitive with exchange scheme of spent fuel. Efforts should be made in the future to homogenize the power generation within the reactor and replace the spent assemblies more efficiently. (Author)

  4. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    Directory of Open Access Journals (Sweden)

    Stafford Phillip

    2009-09-01

    Full Text Available Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. Results ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. Conclusion ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  5. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites.

    Science.gov (United States)

    Li, Chao; Li, Yuhua; Zhang, Xiangmin; Stafford, Phillip; Dinu, Valentin

    2009-09-11

    Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences. ICRPfinder is applied to find or create restriction enzyme recognition sites by introducing silent mutations. The algorithm is shown capable of mapping existing cut-sites but importantly it also can generate specified new unique cut-sites within a specified region that are guaranteed not to be present elsewhere in the DNA sequence. ICRPfinder is a powerful tool for finding or creating specific DNA patterns in a given target coding sequence. ICRPfinder finds or creates patterns, which can include restriction enzyme recognition sites, without changing the translated protein sequence. ICRPfinder is a browser-based JavaScript application and it can run on any platform, in on-line or off-line mode.

  6. Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs

    Science.gov (United States)

    Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong

    2016-12-01

    In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.

  7. Enhancement of the damage resistance of ultra-fast optics by novel design approaches.

    Science.gov (United States)

    Willemsen, Thomas; Jupé, Marco; Gyamfi, Mark; Schlichting, Sebastian; Ristau, Detlev

    2017-12-11

    Dielectric components are essential for laser applications. Chirped mirrors are applied to compress the temporal pulse broadening crucial in the femtosecond regime. However, the design sensitivity and the electric field distribution of chirped mirrors is complex often resulting in low laser induced damage resistances. An approach is presented to increase the damage resistance of pulse compressing mirrors up to 190% in the NIR spectral range. Layers with critical high field intensity of a binary mirror design are substituted by ternary composites and quantized nanolaminates, respectively. The deposition process is improved by an in situ technique monitoring the phase of reflectance.

  8. Fracture resistance of different metal substructure designs for implant-supported porcelain-fused-to-metal (PFM crowns

    Directory of Open Access Journals (Sweden)

    Chau-Hsiang Wang

    2013-09-01

    Conclusion: These results confirm that the conventional design had the best fracture resistance, and an excessively thick porcelain layer can cause crown fracture. However, there was no obvious proof that the wrinkled design had better fracture resistance than the conventional design. Therefore, the theory that PFM can provide better support requires further corroboration.

  9. Knockdown of long non-coding RNA Taurine Up-Regulated 1 inhibited doxorubicin resistance of bladder urothelial carcinoma via Wnt/β-catenin pathway.

    Science.gov (United States)

    Xie, Dalong; Zhang, Hui; Hu, Xuanhao; Shang, Chao

    2017-10-24

    In genitourinary system, bladder cancer (BC) is the most common and lethal malignant tumor, which most common type is bladder urothelial carcinoma (BUC). Long non-coding RNA (lncRNA) Taurine Up-Regulated 1 (TUG1) gene is high-expressed in several malignant tumors, including BC. In this study, over-expression of TUG1 was found in BUC tissues and cell line resistant to doxorubicin (Dox). Knockdown of TUG1 inhibited the Dox resistance and promoted the cytotoxicity induced by Dox in T24/Dox cells. TUG1 knockdown also depressed the Wnt/β-catenin pathway, and the activation the Wnt/β-catenin pathway partly reversed the inhibitory effects of TUG1 knockdown on Dox resistance in T24/Dox cells. In conclusion, up-regulation of lncRNA TUG1 was related with the poor response of BUC patients to Dox chemotherapy, knockdown of TUG1 inhibited the Dox resistance of BUC cells via Wnt/β-catenin pathway. These findings might assist in the discovery of novel potential diagnostic and therapeutic target for BUC, thereby improve the effects of clinical treatment in patients.

  10. Design and performance analysis for several new classes of codes for optical synchronous CDMA and for arbitrary-medium time-hopping synchronous CDMA communication systems

    Science.gov (United States)

    Kostic, Zoran; Titlebaum, Edward L.

    1994-08-01

    New families of spread-spectrum codes are constructed, that are applicable to optical synchronous code-division multiple-access (CDMA) communications as well as to arbitrary-medium time-hopping synchronous CDMA communications. Proposed constructions are based on the mappings from integer sequences into binary sequences. We use the concept of number theoretic quadratic congruences and a subset of Reed-Solomon codes similar to the one utilized in the Welch-Costas frequency-hop (FH) patterns. The properties of the codes are as good as or better than the properties of existing codes for synchronous CDMA communications: Both the number of code-sequences within a single code family and the number of code families with good properties are significantly increased when compared to the known code designs. Possible applications are presented. To evaluate the performance of the proposed codes, a new class of hit arrays called cyclical hit arrays is recalled, which give insight into the previously unknown properties of the few classes of number theoretic FH patterns. Cyclical hit arrays and the proposed mappings are used to determine the exact probability distribution functions of random variables that represent interference between users of a time-hopping or optical CDMA system. Expressions for the bit error probability in multi-user CDMA systems are derived as a function of the number of simultaneous CDMA system users, the length of signature sequences and the threshold of a matched filter detector. The performance results are compared with the results for some previously known codes.

  11. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  12. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  13. Software requirements, design, and verification and validation for the FEHM application - a finite-element heat- and mass-transfer code

    International Nuclear Information System (INIS)

    Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.

    1997-07-01

    The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered

  14. THE CEYHAN EARTHQUAKE OF JUNE 27, 1998 AND DESIGN OF EARTQUAKE RESISTING BUILDINGS

    Directory of Open Access Journals (Sweden)

    Hasan Kaplan

    1998-03-01

    Full Text Available Our country is under risk of earthquake, and it has lost extensive economical goods. In addition to this, the reality of buildings those had not been constructed earthquake resisting on seismic regions have come out. It is true that those kind of building have been constructed all over the country. In this paper the design of earthquake resisting buildings have been taken up. It is dwelled upon the buildings had damages in Adana-Ceyhan earthquake at 27th July 1998 and reasons of damages. The damages on the buildings are appreciated under the lights of principles of design of earthquake resisting. The important precautions that have to taken are grouped for not living those kind of tragic earthquake disasters.

  15. pKJ1, a naturally occurring conjugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K.; Nishi, T.

    1980-08-01

    Pseudomonas sp. TA8 isolated by m-toluate enrichment from an aqueous sample metabolized toluene and m- and p-xylenes via the meta cleavage pathway, and manifested specific resistance to streptomycin and sulfonamides. A variety of experiments revealed that the pKJ1 plasmid of about 150 megadaltons carried by TA8 specified both the toluene and xylene degradative function (the Tol function) and streptomycin/sulfonamide resistance. The deletion of a segment of pKJ1 (about 22 megadaltons) resulted in the loss of the Tol function. pKJ1 was not assigned to Pseudomonas incompatibility group P-1, P-2, P-3, or P-9.

  16. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  17. Towards appropriate design solutions for drug-resistant TB facilities in SA

    CSIR Research Space (South Africa)

    Parsons, SA

    2010-07-01

    Full Text Available South Africa has a high and increasing burden of both drugs-susceptible and drug-resistant tuberculosis. This disease has been declared an emergency in Africa. South Africa has committed itself to addressing this national crises by designing...

  18. Fatigue and fracture resistance of zirconia crowns prepared with different finish line designs

    NARCIS (Netherlands)

    Aboushelib, M.N.

    2012-01-01

    Purpose: The aim of this study was to evaluate the effect of finish line design on the fatigue, fracture resistance, and failure type of veneered zirconia restorations. Materials and Methods: A CAD/CAM system (Cercon) was used to prepare zirconia frameworks (0.5 mm thick) for a maxillary central

  19. Relationship of margin design for fiber-reinforced composite crowns to compressive fracture resistance.

    Science.gov (United States)

    Maghrabi, Abdulhamaid A; Ayad, Mohamed F; Garcia-Godoy, Franklin

    2011-07-01

    Fiber-reinforced composite restorations provide excellent esthetics; however, little is known regarding the influence of margin design on marginal fit and fracture resistance for this type of crown. This study evaluated the effect of variations in tooth-preparation design on the marginal fit and compressive fracture resistance of fiber-reinforced composite crowns. Three metal dies with a total convergence of 5° and different margin designs (0.5-mm light chamfer, 1.0-mm deep chamfer, and 1.0-mm shoulder) were prepared. Sixty standardized crowns (FibreKor) were made on duplicated base metal alloy dies (n = 20 for each margin design). Marginal fit was stereoscopically evaluated by measuring the distances between each of the four pairs of indentations on the crowns and on the dies. The specimens were then subjected to a compressive fracture-loading test using a universal testing machine. The data were analyzed with one-way analysis of variance (ANOVA) followed by Ryan-Einot-Gabriel-Welsch multiple-range test (α = 0.05). Analysis of marginal fit and fracture resistance disclosed a statistically significant difference for tooth-preparation design (p crowns was adversely affected by tooth-preparation design. The marginal gaps were greater for the shoulder margin specimens than in the light or deep chamfer margin specimens; however, the fracture strength of the chamfer margin specimens was greater than that of the shoulder margin specimens. © 2011 by the American College of Prosthodontists.

  20. Future-Proofed Energy Design Approaches for Achieving Low-Energy Homes: Enhancing the Code for Sustainable Homes

    Directory of Open Access Journals (Sweden)

    Maria Christina Georgiadou

    2014-09-01

    Full Text Available Under the label “future-proofing”, this paper examines the temporal component of sustainable construction as an unexplored, yet fundamental ingredient in the delivery of low-energy domestic buildings. The overarching aim is to explore the integration of future-proofed design approaches into current mainstream construction practice in the UK, focusing on the example of the Code for Sustainable Homes (CSH tool. Regulation has been the most significant driver for achieving the 2016 zero-carbon target; however, there is a gap between the appeal for future-proofing and the lack of effective implementation by building professionals. Even though the CSH was introduced as the leading tool to drive the “step-change” required for achieving zero-carbon new homes by 2016 and the single national standard to encourage energy performance beyond current statutory minima, it lacks assessment criteria that explicitly promote a futures perspective. Based on an established conceptual model of future-proofing, 14 interviews with building practitioners in the UK were conducted to identify the “feasible” and “reasonably feasible” future-proofed design approaches with the potential to enhance the “Energy and CO2 Emissions” category of the CSH. The findings are categorised under three key aspects; namely: coverage of sustainability issues; adopting lifecycle thinking; and accommodating risks and uncertainties and seek to inform industry practice and policy-making in relation to building energy performance.

  1. Polymorphisms of the coding region of Slc11a1 (Nramp1 gene associated to natural resistance against bovine brucellosis

    Directory of Open Access Journals (Sweden)

    T.A. Paixão

    2012-08-01

    Full Text Available Brucelose bovina causada por Brucella abortus é uma importante doença zoonótica, caracterizada pela ocorrência de aborto durante o último trimestre da gestação, o que resulta em diminuição da fertilidade da produção de leite em vacas. A identificação de genes associados à resistência natural contra brucelose tem sido investigada com o objetivo de selecionar animais resistentes à doença. Em bovinos, é controversa a resistência natural contra B. abortus associada ao polimorfismo da região 3' UTR do gene Slc11A1 (Nramp1. Polimorfismos localizados na sequência codificadora de Slc11A1 têm sido identificados em bovinos, contudo a influência sobre a resistência natural contra brucelose não é conhecida. No presente estudo, três novos polimorfismos do gene Slc11A1 foram genotipados por análise conformacional de fita simples em vacas experimentalmente ou naturalmente infectadas por B. Abortus, e foram avaliadas a frequência de cada genótipo e sua associação com o fenótipo de resistência ou susceptibilidade à brucelose bovina. Os resultados deste estudo demonstram que alguns genótipos foram mais frequentes em animais considerados fenotipicamente susceptiveis à brucelose.

  2. Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach

    Science.gov (United States)

    Larsen, Curtis E.; Raju, Ivatury S.

    2016-01-01

    Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.

  3. Design of Potent and Selective Inhibitors to Overcome Clinical Anaplastic Lymphoma Kinase Mutations Resistant to Crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua; Johnson, Ted W.; Bailey, Simon; Brooun, Alexei; Bunker, Kevin D.; Burke, Benjamin J.; Collins, Michael R.; Cook, Andrew S.; Cui, J.Jean; Dack, Kevin N.; Deal, Judith G.; Deng, Ya-Li; Dinh, Dac; Engstrom, Lars D.; He, Mingying; Hoffman, Jacqui; Hoffman, Robert L.; Johnson, Patrick S.; Kania, Robert S.; Lam, Hieu; Lam, Justine L.; Le, Phuong T.; Li, Qiuhua; Lingardo, Laura; Liu, Wei; Lu, Melissa West; McTigue, Michele; Palmer, Cynthia L.; Richardson, Paul F.; Sach, Neal W.; Shen, Hong; Smeal, Tod; Smith, Graham L.; Stewart, Albert E.; Timofeevski, Sergei; Tsaparikos, Konstantinos; Wang, Hui; Zhu, Huichun; Zhu, Jinjiang; Zou, Helen Y.; Edwards, Martin P. (Pfizer)

    2014-02-27

    Crizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients. Under pressure of crizotinib treatment, point mutations arise in the kinase domain of ALK, resulting in resistance and progressive disease. The successful application of both structure-based and lipophilic-efficiency-focused drug design resulted in aminopyridine 8e, which was potent across a broad panel of engineered ALK mutant cell lines and showed suitable preclinical pharmacokinetics and robust tumor growth inhibition in a crizotinib-resistant cell line (H3122-L1196M).

  4. Development of LMR basic design technology - Development of 3-D multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1996-07-01

    A development project of 3-dimensional kinetics code for ALMR has three level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. A code showed very good results for the static analysis as well as for the kinetics problems. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation in ALMR transients analysis. This code is coupled with kinetics code. A sodium property table was programmed and tested to the KAERI data and thermal feedback model was developed and coupled in code. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, reactivity feedback model for structure thermal expansion is developed and added to the code. At present, basic model was studied. However, code development in now on going. Benchmarking of this model developed can not be done because of lack of data. 31 refs., 17 tabs., 38 figs. (author)

  5. Development of a computer code for thermal–hydraulic design and analysis of helically coiled tube once-through steam generator

    Directory of Open Access Journals (Sweden)

    Yaoli Zhang

    2017-10-01

    Full Text Available The Helically coiled tube Once-Through Steam Generator (H-OTSG is a key piece of equipment for compact small reactors. The present study developed and verified a thermal–hydraulic design and performance analysis computer code for a countercurrent H-OTSG installed in a small pressurized water reactor. The H-OTSG is represented by one characteristic tube in the model. The secondary side of the H-OTSG is divided into single-phase liquid region, nucleate boiling region, postdryout region, and single-phase vapor region. Different heat transfer correlations and pressure drop correlations are reviewed and applied. To benchmark the developed physical models and the computer code, H-OTSGs developed in Marine Reactor X and System-integrated Modular Advanced ReacTor are simulated by the code, and the results are compared with the design data. The overall characteristics of heat transfer area, temperature distributions, and pressure drops calculated by the code showed general agreement with the published data. The thermal–hydraulic characteristics of a typical countercurrent H-OTSG are analyzed. It is demonstrated that the code can be utilized for design and performance analysis of an H-OTSG.

  6. Design, implementation and verification of software code for radiation dose assessment based on simple generic environmental model

    International Nuclear Information System (INIS)

    I Putu Susila; Arif Yuniarto

    2017-01-01

    Radiation dose assessment to determine the potential of radiological impacts of various installations within nuclear facility complex is necessary to ensure environmental and public safety. A simple generic model-based method for calculating radiation doses caused by the release of radioactive substances into the environment has been published by the International Atomic Energy Agency (IAEA) as the Safety Report Series No. 19 (SRS-19). In order to assist the application of the assessment method and a basis for the development of more complex assessment methods, an open-source based software code has been designed and implemented. The software comes with maps and is very easy to be used because assessment scenarios can be done through diagrams. Software verification was performed by comparing its result to SRS-19 and CROM software calculation results. Dose estimated by SRS-19 are higher compared to the result of developed software. However, these are still acceptable since dose estimation in SRS-19 is based on conservative approach. On the other hand, compared to CROM software, the same results for three scenarios and a non-significant difference of 2.25 % in another scenario were obtained. These results indicate the correctness of our implementation and implies that the developed software is ready for use in real scenario. In the future, the addition of various features and development of new model need to be done to improve the capability of software that has been developed. (author)

  7. Creativity of Junior High School’s Students in Designing Earthquake Resistant Buildings

    Science.gov (United States)

    Fitriani, D. N.; Kaniawati, I.; Ramalis, T. R.

    2017-09-01

    This research was stimulated by the present the territory of Indonesia is largely an area prone to earthquakes and the issue that human resources and disaster response planning process is still less competent and not optimal. In addition, the construction of houses and public facilities has not been in accordance with earthquake-resistant building standards. This study aims to develop students’ creativity through earthquake resistant building model’s projects. The research method used is descriptive qualitative method. The sample is one of the 7th grades consisting of 32 students in one of the junior high schools, Indonesia. Data was collected using an observation sheets and student worksheet. Results showed that students’ creativity in designing earthquake resistant building models varies greatly and yields new solutions to solve problems.

  8. Codes of Commitment to Crime and Resistance: Determining Social and Cultural Factors over the Behaviors of Italian Mafia Women.

    Science.gov (United States)

    Cayli, Baris

    2016-01-02

    This article categorizes thirty-three women in four main Italian Mafia groups and explores social and cultural behaviors of these women. This study introduces the feminist theory of belief and action. The theoretical inquiry investigates the sometimes conflicting behaviors of women when they are subject to systematic oppression. I argue that there is a cultural polarization among the categorized sub-groups. Conservative radicals give their support to the Mafia while defectors and rebels resist the Mafia. After testing the theory, I assert that emancipation of women depends on the strength of their beliefs to perform actions against the Mafiosi culture.

  9. Codes of Commitment to Crime and Resistance: Determining Social and Cultural Factors over the Behaviors of Italian Mafia Women

    Science.gov (United States)

    Cayli, Baris

    2016-01-01

    ABSTRACT This article categorizes thirty-three women in four main Italian Mafia groups and explores social and cultural behaviors of these women. This study introduces the feminist theory of belief and action. The theoretical inquiry investigates the sometimes conflicting behaviors of women when they are subject to systematic oppression. I argue that there is a cultural polarization among the categorized sub-groups. Conservative radicals give their support to the Mafia while defectors and rebels resist the Mafia. After testing the theory, I assert that emancipation of women depends on the strength of their beliefs to perform actions against the Mafiosi culture. PMID:26806988

  10. Design options for the NET vacuum vessel and its resistive elements

    International Nuclear Information System (INIS)

    Fauser, F.; Annandale, R.; Casci, C.; Collier, D.; Malavasi, G.; Pavan, B.; Salpietro, E.; Harrison, R.M.; Hughes, W.; Gouton, B.

    1989-01-01

    The vacuum vessel acts as vacuumtight containment for the plasma and as shielding for the superconducting coils system and is sectioned in 16 parallel and 16 wedge segments, bolted together to form a rigid toroidal structure. A water cooling system is designed for heat loads up to 100 MW. 16 thinwalled resistive elements bridge the electrically insulated parallel segments to obtain a total toroidal resistance of 10 -4 Ohm, needed to allow fast penetration of the poloidal field during plasma initiation. The system has to withstand the electromagnetic forces during disruptions, accidental ovrepressures and thermal stresses caused by the pulsed nuclear and thermal heat radiation. Due to the nuclear activation and contamination all assembly, disassembly and repair must be carried out remotely. The paper reports results of industrial feasibility study contracts showing two different design solutions for the vacuum vessel segments and its cooling system as well as the resistive elements. Points discussed are the manufacturing of the vacuum vessel segments from thick plates by welding, problems for bolts and joints created by thermal transients and the high precision required for assembly. Also a test device for resistive element test panels is shown. (author). 6 refs.; 10 figs.; 1 tab

  11. Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding.

    Science.gov (United States)

    Xu, Yun; Muhamadali, Howbeer; Sayqal, Ali; Dixon, Neil; Goodacre, Royston

    2016-10-28

    Partial least squares (PLS) is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R) or a classification model (PLS-DA). However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a "pure" regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.

  12. Partial Least Squares with Structured Output for Modelling the Metabolomics Data Obtained from Complex Experimental Designs: A Study into the Y-Block Coding

    Directory of Open Access Journals (Sweden)

    Yun Xu

    2016-10-01

    Full Text Available Partial least squares (PLS is one of the most commonly used supervised modelling approaches for analysing multivariate metabolomics data. PLS is typically employed as either a regression model (PLS-R or a classification model (PLS-DA. However, in metabolomics studies it is common to investigate multiple, potentially interacting, factors simultaneously following a specific experimental design. Such data often cannot be considered as a “pure” regression or a classification problem. Nevertheless, these data have often still been treated as a regression or classification problem and this could lead to ambiguous results. In this study, we investigated the feasibility of designing a hybrid target matrix Y that better reflects the experimental design than simple regression or binary class membership coding commonly used in PLS modelling. The new design of Y coding was based on the same principle used by structural modelling in machine learning techniques. Two real metabolomics datasets were used as examples to illustrate how the new Y coding can improve the interpretability of the PLS model compared to classic regression/classification coding.

  13. Comparison study on flexible pavement design using FAA (Federal Aviation Administration) and LCN (Load Classification Number) code in Ahmad Yani international airport’s runway

    Science.gov (United States)

    Santoso, S. E.; Sulistiono, D.; Mawardi, A. F.

    2017-11-01

    FAA code for airport design has been broadly used by Indonesian Ministry of Aviation since decades ago. However, there is not much comprehensive study about its relevance and efficiency towards current situation in Indonesia. Therefore, a further comparison study on flexible pavement design for airport runway using comparable method has become essential. The main focus of this study is to compare which method between FAA and LCN that offer the most efficient and effective way in runway pavement planning. The comparative methods in this study mainly use the variety of variable approach. FAA code for instance, will use the approach on the aircraft’s maximum take-off weight and annual departure. Whilst LCN code use the variable of equivalent single wheel load and tire pressure. Based on the variables mentioned above, a further classification and rated method will be used to determine which code is best implemented. According to the analysis, it is clear that FAA method is the most effective way to plan runway design in Indonesia with consecutively total pavement thickness of 127cm and LCN method total pavement thickness of 70cm. Although, FAA total pavement is thicker that LCN its relevance towards sustainable and pristine condition in the future has become an essential aspect to consider in design and planning.

  14. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration.

    Science.gov (United States)

    Liu, Xiaozhou; Fok, Alex; Li, Haiyan

    2014-03-01

    This study aimed to evaluate the effects of the restorative material and cavity design on the facture resistance of inlay restorations under a compressive load using acoustic emission (AE) measurement. Two restorative materials, a composite resin (MZ100, 3M ESPE) and a ceramic (IPS Empress CAD, Ivoclar Vivadent), and two cavity designs, non-proximal box and proximal box, were studied. Thirty-two extracted human third molars were selected and divided into 4 groups. The restorative materials and cavity designs used for the four groups were: (1) composite and non-proximal box; (2) ceramic and non-proximal box; (3) composite and proximal box; (4) ceramic and proximal box. The restored molars were loaded in a MTS machine via a loading head of diameter 10mm. The rate of loading was 0.1mm/min. During loading, an AE system was used to monitor the debonding and fracture of the specimens. The load corresponding to the first AE event, the final maximum load sustained, as well as the total number of AE events recorded were used to evaluate the fracture resistance of the restored teeth. For the initial fracture load, Group 2 (236.15N)Group 2 (1685)>Group 3 (239)>Group 1 (221). The differences from pairwise comparisons in the initial fracture load and final load were mostly insignificant statistically (p>0.05), the only exception being that between Groups 2 and 3 in the initial fracture load (p=0.039). For the total number of AE events, statistically significant differences (pinlays, the use of composite resin as the restorative material may provide higher fracture resistance than using ceramic. Using a proximal box design for the cavity may further improve the fracture resistance of the inlay restoration, although the improvement was not statistically significant under axial compression. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    Science.gov (United States)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  16. Panda code

    International Nuclear Information System (INIS)

    Altomare, S.; Minton, G.

    1975-02-01

    PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)

  17. DESIGN AND IMPLEMENTATION OF IMPROVED SUPERIMPOSED CYCLIC OPTICAL ORTHOGONAL CODES (SCOOC BASED OPTICAL ENCODER/DECODER STRUCTURE FOR 1GBPS OPTICAL CDMA SYSTEM

    Directory of Open Access Journals (Sweden)

    GURJIT KAUR

    2010-12-01

    Full Text Available In this paper, an improved form of two dimensional optical orthogonal codes is introduced for optical CDMA system by using just six lasers. This new technique not only reduces the length of the code but also improves the bit error rate (BER performance of the system. The uniqueness of this coding architecture is that the two adjacent codes are not only different by their time slots but have different wavelength combination as well. The encoder and decoder structure has been designed with the help of filters and optical delay lines. An OCDMA system at 1 Gbps bit rate is designed for above codes and performance is evaluated and compared for various parameters i.e. number of simultaneous users, bit error rate, quality factor. The OCDMA system can accommodate 25 users for permissible BER of 10-9, with -15db received power at 1 Gbps bit rate respectively. If received power is kept low i.e. -22db, the OCDMA system can support 16 users with extremely low BER of 1.58e-41 for 1G bps bit rate.

  18. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  19. Theoretical basis, principles of design, and experimental study of the prototype of perfect AFCS transmitting signals without coding

    Science.gov (United States)

    Platonov, A.; Zaitsev, Ie.; Opalski, L. J.

    2017-08-01

    The paper presents an overview of design methodology and results of experiments with a Prototype of highly efficient optimal adaptive feedback communication systems (AFCS), transmitting low frequency analog signals without coding. The paper emphasizes the role of the forward transmitter saturation as the factor that blocked implementation of theoretical results of pioneer (1960-1970s) and later research on FCS. Deepened analysis of the role of statistical fitting condition in adequate formulation and solution of AFCS optimization task is given. Solution of the task - optimal transmission/reception algorithms is presented in the form useful for elaboration of the hardware/software Prototype. A notable particularity of the Prototype is absence of the encoding/decoding units, whose functions are realized by the adaptive pulse amplitude modulator (PAM) of the forward transmitter (FT) and estimating/controlling algorithm in the receiver of base station (BS). Experiments confirm that the Prototype transmits signals from FT to BS "perfectly": with the bit rate equal to the capacity of the system, and with limit energy [J/bit] and spectral [bps/Hz] efficiency. Another, not less important and confirmed experimentally, particularity of AFCS is its capability to adjust parameters of FT and BS to the characteristics of scenario of application and maintain the ideal regime of transmission including spectralenergy efficiency. AFCS adjustment can be made using BS estimates of mean square error (MSE). The concluding part of the paper contains discussion of the presented results, stressing capability of AFCS to solve problems appearing in development of dense wireless networks.

  20. [Courtship behavior, communicative sound production and resistance to stress in Drosophila mutants with defective agnostic gene, coding for LIMK1].

    Science.gov (United States)

    Popov, A V; Kaminskaia, A N; Savvateeva-Popova, E V

    2009-01-01

    To elucidate the role of one of the main elements of signal cascade of actin remodeling--LIM-kinase 1 (LIMK1)--in the control of animal behavior we studied the characteristics of courtship behavior, parameters of acoustic communicative signals and their resistance to heat shock (HS, 37 degrees C, 30 min) in Drosophila melanogaster males from the strain with mutation in locus agnostic (agn(ts3)) containing gene CG1848 for LIMK1. The data obtained was compared with the results of our previous similar investigation on wild type CS males (Popov et al., 2006). Flies were divided into 4 groups. The males of control groups were not subjected to heat shock. The rest of males were subjected to heat shock either at the beginning of larval development when predominantly mushroom body neuroblasts are dividing (groups HS1), or at the prepupal stage when the brain central complex is developing (groups HS2), or at the imago stage one hour before the test (groups HS3). All males were tested at the age of 5 days. Virgin and fertilized CS females were used as courtship objects. Comparison of control groups of the two strains--CS and agnostic--have shown that the mutation agn(ts3) has no influence on the main parameters of courtship behavior of intact (not subjected to HS) males (courtship latency, the rapidity of achieving copulation, courtship efficiency) but leads to lowering of their sexual activity, increase of duration of sound trains in the songs and to slight increase of rate and stability of working of singing pacemakers. Agnostic males in comparison to wild type males are more resistant to HS given 1 hour before the test. After HS their courtship intensity does not decrease and the main parameters of their courtship behavior and communicative sound signals in comparison tu wild type males either do not change, or appear to be even better stabilized. The frequency of distorted sound pulses (an indicator of frequency of impairments in the activity pattern of neuro

  1. Development of a Non-Linear Element Code for the Improvement of Piezoelectric Actuator Design and Reliability

    National Research Council Canada - National Science Library

    Lynch, Christopher S; Landis, Chad

    2006-01-01

    .... The code has been used to conduct simulations of geometries in which the field distribution is inhomogeneous and results in local consentrations such as for interdigitated electrodes, for cofired...

  2. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  3. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  4. Development of LMR basic design technology - Development of 3-D. multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1995-07-01

    A development project of 3-dimensional kinetics code for ALMR has four level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. At this point code showed very good results for the static analysis. However, kinetics routine has not been benchmarked because exact benchmark problem was not found. For the artificial benchmark problem, code showed satisfying results. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation ALMR transients analysis. A sodium property table was programmed and tested to the KAERI data. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, combining of two code should be done. A reactivity feedback model for structure thermal expansion is also developed at this stage. The third and fourth level is planned to be done next year. At this point, work progress is kept right on time. 24 refs., 12 tabs., 15 figs. (author)

  5. Bionic Design for Reducing Adhesive Resistance of the Ridger Inspired by a Boar's Head

    Science.gov (United States)

    Li, Jianqiao; Yan, Yunpeng; Chirende, Benard; Wu, Xuejiao; Wang, Zhaoliang

    2017-01-01

    The main feature of the boar's head used to root around for food is the front part, which is similar to the ridger in terms of function, load, and environment. In this paper, the boar's head was selected as the biological prototype for developing a new ridger. The point cloud of the head was captured by a 3D scanner, and then, the head surface was reconstructed using 3D coordinates. The characteristic curves of the front part of the boar's head were extracted, and then, five cross-sectional curves and one vertical section curve were fitted. Based on the fitted curves, five kinds of bionic ridgers were designed. The penetrating resistances of the bionic ridgers and traditional ridger were tested at different speeds in an indoor soil bin. The test results showed that bionic ridger B had the best penetrating resistance reduction ratio of 16.67% at 4.2 km/h velocity. In order to further evaluate the performance of the best bionic ridger (bionic ridger B), both the bionic ridger and traditional ridger were tested in a field under the same working conditions. The field results indicate that the bionic ridger reduces penetrating resistance by 6.91% compared to the traditional ridger, and the test results validate that the bionic ridger has an effect on reducing penetrating resistance. PMID:28757796

  6. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  7. Comparison of Chamfer and Deep Chamfer Preparation Designs on the Fracture Resistance of Zirconia Core Restorations

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2011-06-01

    Full Text Available Background and aims. One of the major problems of all-ceramic restorations is their probable fracture under occlusal force. The aim of the present in vitro study was to compare the effect of two marginal designs (chamfer and deep chamfer on the fracture resistance of all-ceramic restorations, CERCON. Materials and methods. This in vitro study was carried out with single-blind experimental technique. One stainless steel die with 50’ chamfer finish line design (0.8 mm deep was prepared using a milling machine. Ten epoxy resin dies were prepared. The same die was retrieved and 50' chamfer was converted into a deep chamfer design (1 mm. Again ten epoxy resin dies were prepared from the deep chamfer die. Zirconia cores with 0.4 mm thickness and 35 µm cement space were fabricated on the epoxy resin dies (10 chamfer and 10 deep chamfer samples. The zirconia cores were cemented on the epoxy resin dies and underwent a fracture test with a universal testing machine and the samples were investigated from the point of view of the origin of the failure. Results. The mean values of fracture resistance for deep chamfer and chamfer samples were 1426.10±182.60 and 991.75±112.00 N, respectively. Student’s t-test revealed statistically significant differences between the groups. Conclusion. The results indicated a relationship between the marginal design of zirconia cores and their fracture resistance. A deep chamfer margin improved the biomechanical performance of posterior single zirconia crown restorations, which might be attributed to greater thickness and rounded internal angles in deep chamfer margins.

  8. Seismic resistance of equipment and building service systems: review of earthquake damage design requirements, and research applications in the USA

    International Nuclear Information System (INIS)

    Skjei, R.E.; Chakravartula, B.C.; Yanev, P.I.

    1979-01-01

    The history of earthquake damage and the resulting code design requirements for earthquake hazard mitigation for equipment in the USA is reviewed. Earthquake damage to essential service systems is summarized; observations for the 1964 Alaska and the 1971 San Fernando, California, earthquakes are stressed, and information from other events is included. USA building codes that reflect lessons learned from these earthquakes are discussed; brief summaries of widely used codes are presented. In conclusion there is a discussion of the desirability of adapting advanced technological concepts from the nuclear industry to equipment in conventional structures. (author)

  9. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    International Nuclear Information System (INIS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-01-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400Ωcm, which is at least one order of magnitude greater than the typical value (1–10Ωcm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported

  10. Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2013-03-01

    Full Text Available High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No. 2 and no. 3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences ‘fly over’ phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

  11. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    Science.gov (United States)

    Chung, D. C.; Choi, H. S.; Lee, N. Y.; Nam, G. Y.; Cho, Y. S.; Sung, T. H.; Han, Y. H.; Kim, B. S.; Lim, S. H.

    2007-10-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 × 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 × 2 MFCL module and a 3 × 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m × n MFCL.

  12. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    International Nuclear Information System (INIS)

    Chung, D.C.; Choi, H.S.; Lee, N.Y.; Nam, G.Y.; Cho, Y.S.; Sung, T.H.; Han, Y.H.; Kim, B.S.; Lim, S.H.

    2007-01-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 x 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 x 2 MFCL module and a 3 x 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m x n MFCL

  13. Randomized Clinical Trial Design to Assess Abatacept in Resistant Nephrotic Syndrome.

    Science.gov (United States)

    Trachtman, Howard; Gipson, Debbie S; Somers, Michael; Spino, Cathie; Adler, Sharon; Holzman, Lawrence; Kopp, Jeffrey B; Sedor, John; Overfield, Sandra; Elegbe, Ayanbola; Maldonado, Michael; Greka, Anna

    2018-01-01

    Treatment-resistant nephrotic syndrome is a rare form of glomerular disease that occurs in children and adults. No Food and Drug Administration-approved treatments consistently achieve remission of proteinuria and preservation of kidney function. CD80 (B7-1) can be expressed on injured podocytes, and administration of abatacept (modified CTLA4-Ig based on a natural ligand to CD80) has been associated with sustained normalization of urinary protein excretion and maintenance of glomerular filtration rate in experimental and clinical settings. In this report, we describe the rationale for and design of a randomized, placebo-controlled, clinical trial of abatacept in patients with treatment-resistant nephrotic syndrome caused by focal segmental glomerulosclerosis or minimal change disease. The design is a hybrid of a parallel-group and crossover design (switchover) with the primary objectives assessed in the first period of the study and the secondary objectives assessed using data from both periods. All participants will receive the active agent in 1 of the periods. The duration of treatment will be 4 months per period. The primary outcome will be improvement in nephrotic-range proteinuria to subnephrotic range, that is, reduction from baseline to 4 months in urine protein:creatinine ratio ≥ 50% and to a level precision medicine-based approach to this serious kidney condition in which the selection of a therapeutic agent is guided by the underlying disease mechanism operating in individual patients.

  14. A STUDY ON THE EARTHQUAKE RESPONSE AND EARTHQUAKE RESISTANT DESIGN METHOD OF AN OPEN TYPE WHARF WITH PNEUMATIC CAISSONS

    Science.gov (United States)

    Oishi, Masahiko; Nagao, Takashi; Shigeki, Kouji; Ouchi, Masatoshi; Sato, Yuske; Kinomiya, Osamu

    Seismic response of an open type wharf with pneumatic caisson was clarified using a dynamic finite element method. As a result, rocking behavior of caisson foundations were observed and applicability of a frame model analysis to the earthquake resistant design of a wharf was suggested. Authors proposed the framework of earthquake resistant design method of the wharf including the evaluation method of response acceleration of the wharf.

  15. Conceptual Design of Object Oriented Program (OOP) for Pilot Code of Two-Fluid, Three-field Model with C++ 6.0

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Lee, Young Jin

    2006-01-01

    Engineering software for design purpose in nuclear industries have been developed since early 1970s, and well established in 1980s. The most popular and common language for the software development has been FORTRAN series, until the more sophisticated GUI and software coupling is needed. The advanced computer language, such as C++, C has been developed to help the programming for the easy GUI need and reuse of well developed routines, with adopting the objective oriented program. A recent trend of programming becomes objective-oriented since the results are often more intuitive and easier to maintain than procedure program. The main motivation of this work is to capture objective oriented concepts for conventional safety analysis programs which consist of many functions and procedure oriented structures. In this work, the new objective programming with C++ 6.0 language has been tried for the PILOT code written in FORTRAN language, and conceptual OOP design of the system safety analysis code has been done

  16. User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants

    Energy Technology Data Exchange (ETDEWEB)

    Dellin, T.A.; Fish, M.J.; Yang, C.L.

    1981-08-01

    DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

  17. Development of a modular systems code to analyse the implications of physics assumptions on the design of a demonstration fusion power plant

    International Nuclear Information System (INIS)

    Hartmann, Tobias

    2013-01-01

    The successful development and operation of a demonstration power plant (DEMO) is the next important step on roadmaps for fusion energy after ITER that is currently constructed in France. In the first phase of the development process for such devices, the conceptual design phase, the primary aim is to identify coherent designs that are composed of self-consistent sets of values for all key parameters like machine size, plasma current or magnetic field strength. This multidimensional parameter space can be explored with systems codes in order to identify areas that seem to be suited for more detailed investigation. Systems codes are composed of simplified models for all crucial systems of fusion devices that take into account all requirements and constraints of each component. This thesis is about the development of a new systems code called TREND (Tokamak Reactor code for the Evaluation of Next-step Devices). TREND is implemented with modular code architecture and consists of modules for geometry, core plasma physics, divertor, power flow, technology and costing. The main focus has been on the core physics module, since the development of TREND was done in parallel to work on physics design guidelines for DEMO. Moreover, the validation of TREND in terms of benchmarks with other European and Japanese systems codes is discussed. For these benchmarks, specific parameter sets were selected and the observed deviations were traced back to differences concerning the individual modellings. One of these parameter sets constitutes also the basis for parameter studies that were conducted with TREND. The general idea behind these studies is the analysis of implications that arise from specific assumptions on selected key parameters. Besides constant fusion power and constant additional heating power, the plasma density is fixed with respect to the Greenwald limit. The benchmarks helped particularly to detect shortages in the modellings of all involved systems codes

  18. Recent developments and improvements in the code system for the neutronic design of fast breeder reactors at CEA

    International Nuclear Information System (INIS)

    Giacometti; Estiot, J.C.; Palmiotti, G.; Grondein, C.; Le Cardinal, G.; Ravier, M.

    1982-09-01

    The new modular system has been developed using software tools ALOS, which give effectiveness and flexibility. Second step is the application of new algorithms to improve the resolution of diffusion equation. The state of art for the realisation of the new code system is briefly described

  19. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  20. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration

    Science.gov (United States)

    Stabile, Alessandro; Aglietti, Guglielmo S.; Richardson, Guy; Smet, Geert

    2017-01-01

    Active control techniques are often required to mitigate the micro-vibration environment existing on board spacecraft. However, reliability issues and high power consumption are major drawbacks of active isolation systems that have limited their use for space applications. In the present study, an electromagnetic shunt damper (EMSD) connected to a negative-resistance circuit is designed, modelled and analysed. The negative resistance produces an overall reduction of the circuit resistance that results in an increase of the induced current in the closed circuit and thus the damping performance. This damper can be classified as a semi-active damper since the shunt does not require any control algorithm to operate. Additionally, the proposed EMSD is characterised by low required power, simplified electronics and small device mass, allowing it to be comfortably integrated on a satellite. This work demonstrates, both analytically and experimentally, that this technology is capable of effectively isolating typical satellite micro-vibration sources over the whole temperature range of interest.

  1. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  2. An Assessment of Some Design Constraints on Heat Production of a 3D Conceptual EGS Model Using an Open-Source Geothermal Reservoir Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Yidong Xia; Mitch Plummer; Robert Podgorney; Ahmad Ghassemi

    2016-02-01

    Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation angle for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.

  3. Image coding design considerations for cascaded encoding-decoding cycles and image editing: analysis of JPEG 1, JPEG 2000, and JPEG XR / HD Photo

    Science.gov (United States)

    Sullivan, Gary J.; Sun, Shijun; Regunathan, Shankar; Schonberg, Daniel; Tu, Chengjie; Srinivasan, Sridhar

    2008-08-01

    This paper discusses cascaded multiple encoding/decoding cycles and their effect on image quality for lossy image coding designs. Cascaded multiple encoding/decoding is an important operating scenario in professional editing industries. In such scenarios, it is common for a single image to be edited by several people while the image is compressed between editors for transit and archival. In these cases, it is important that decoding followed by re-encoding introduce minimal (or no) distortion across generations. A significant number of potential sources of distortion introduction exist in a cascade of decoding and re-encoding, especially if such processes as conversion between RGB and YUV color representations, 4:2:0 resampling, etc., are considered (and operations like spatial shifting, resizing, and changes of the quantization process or coding format). This paper highlights various aspects of distortion introduced by decoding and re-encoding, and remarks on the impact of these issues in the context of three still-image coding designs: JPEG, JPEG 2000, and JPEG XR. JPEG XR is a draft standard under development in the JPEG committee based on Microsoft technology known as HD Photo. The paper focuses particularly on the JPEG XR technology, and suggests that the design of the draft JPEG XR standard has several quite good characteristics in regard to re-encoding robustness.

  4. Determination of the radioactive inventory of a fuel assembly from a U3O8 design core using ORIGEN 2.1 code

    International Nuclear Information System (INIS)

    Castro, Jose; Ticona, Braulio; Madariaga, Marcelo

    2014-01-01

    This paper shows a methodology to determine the radioactive inventory of a fuel assembly of the RP-10 design core, which was proposed in 1988, using the ORIGEN 2.1 code, which allows to determine the activity of the 52 most characteristic fission products, its growth in activity during reactor operation under the terms of the design and evolution of decay of the fission products after 4 hours after the reactor shutdown, which conservatively, a fuel element represents an average fraction of the considered power in the radioactive inventory assessment. (authors).

  5. Stimulus-response bindings code both abstract and specific representations of stimuli: evidence from a classification priming design that reverses multiple levels of response representation.

    Science.gov (United States)

    Horner, A J; Henson, R N

    2011-11-01

    Repetition priming can be caused by the rapid retrieval of previously encoded stimulus-response (S-R) bindings. S-R bindings have recently been shown to simultaneously code multiple levels of response representation, from specific Motor-actions to more abstract Decisions ("yes"/"no") and Classifications (e.g., "man-made"/"natural"). Using an experimental design that reverses responses at all of these levels, we assessed whether S-R bindings also code multiple levels of stimulus representation. Across two experiments, we found effects of response reversal on priming when switching between object pictures and object names, consistent with S-R bindings that code stimuli at an abstract level. Nonetheless, the size of this reversal effect was smaller for such across-format (e.g., word-picture) repetition than for within-format (e.g., picture-picture) repetition, suggesting additional coding of format-specific stimulus representations. We conclude that S-R bindings simultaneously represent both stimuli and responses at multiple levels of abstraction.

  6. DLLExternalCode

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  7. Computational design and performance prediction of creep-resistant ferritic superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Wang, Shao-Yu [Univ. of Tennessee, Knoxville, TN (United States); Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautum [Northwestern Univ., Evanston, IL (United States); Song, Gian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rawlings, Michael [Univ. of Tennessee, Knoxville, TN (United States); Baik, Sung Il [Northwestern Univ., Evanston, IL (United States)

    2017-12-04

    Ferritic superalloys containing the B2 phase with the parent L21 phase precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate-strengthened ferritic alloy (HPSFA), had been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by adding Ti into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). Following with the concept of HPSFAs, in the present research, a systematic investigation on adding other elements, such as Hf and Zr, and optimizing the Ti content within the alloy system, has been conducted, in order to further improve the creep resistance of the model alloys. Studies include advanced experimental techniques, first-principles calculations on thermodynamic and mechanical properties, and numerical simulations on precipitation hardening, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of alloys. The experimental techniques include transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), neutron diffraction (ND), and atom-probe tomography (APT), which provide the detailed microstructural information of the model alloys. Systematic tension/compression creep tests have also been conducted in order to verify the creep resistance of the potential alloy compositions. The results show that when replacing Ti with Hf and Zr, it does not form the L21 phase. Instead, the hexagonal Laves phase forms and distributes majorly along the grain boundary, or large segregation within grains. Since the Laves phase does not form parent to the B2-phase precipitates, it cannot bring the strengthening effect of HPSFAs. As a result, the FBB8 + 2 wt. % Hf and FBB8 + 2 wt. % Zr alloys have similar mechanical properties to the original FBB8. The FBB8 + Ti series alloys had also been studied, from the creep tests and microstructural characterizations, the FBB8 + 3.5 wt.% Ti

  8. Computational Design of Creep-Resistant Alloys and Experimental Validation in Ferritic Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter

    2014-12-31

    A new class of ferritic superalloys containing B2-type zones inside parent L21-type precipitates in a disordered solid-solution matrix, also known as a hierarchical-precipitate strengthened ferritic alloy (HPSFA), has been developed for high-temperature structural applications in fossil-energy power plants. These alloys were designed by the addition of the Ti element into a previously-studied NiAl-strengthened ferritic alloy (denoted as FBB8 in this study). In the present research, systematic investigations, including advanced experimental techniques, first-principles calculations, and numerical simulations, have been integrated and conducted to characterize the complex microstructures and excellent creep resistance of HPSFAs. The experimental techniques include transmission-electron microscopy, scanningtransmission- electron microscopy, neutron diffraction, and atom-probe tomography, which provide detailed microstructural information of HPSFAs. Systematic tension/compression creep tests revealed that HPSFAs exhibit the superior creep resistance, compared with the FBB8 and conventional ferritic steels (i.e., the creep rates of HPSFAs are about 4 orders of magnitude slower than the FBB8 and conventional ferritic steels.) First-principles calculations include interfacial free energies, anti-phase boundary (APB) free energies, elastic constants, and impurity diffusivities in Fe. Combined with kinetic Monte- Carlo simulations of interdiffusion coefficients, and the integration of computational thermodynamics and kinetics, these calculations provide great understanding of thermodynamic and mechanical properties of HPSFAs. In addition to the systematic experimental approach and first-principles calculations, a series of numerical tools and algorithms, which assist in the optimization of creep properties of ferritic superalloys, are utilized and developed. These numerical simulation results are compared with the available experimental data and previous first

  9. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  10. Structural evaluation method for class 1 vessels by using elastic-plastic finite element analysis in code case of JSME rules on design and construction

    International Nuclear Information System (INIS)

    Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto

    2008-01-01

    A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)

  11. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  12. Identification of Long Non‐Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    Directory of Open Access Journals (Sweden)

    Ehsan Malek

    2016-10-01

    Full Text Available While the clinical benefit of proteasome inhibitors (PIs for multiple myeloma (MM treatment remains unchallenged, dose‐limiting toxicities and the inevitable emergence of drug resistance limit their long‐term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy‐induced, which accounts for the majority of tumor relapses and MM‐related deaths. Non‐coding RNAs (ncRNAs are a broad class of RNA molecules, including long non‐coding RNAs (lncRNAs, that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome‐wide profiling identified lncRNAs that were significantly deregulated in all three PIresistant cell lines relative to the drug‐sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI‐resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM.

  13. Development of cubic Bezier curve and curve-plane intersection method for parametric submarine hull form design to optimize hull resistance using CFD

    Science.gov (United States)

    Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon

    2015-12-01

    Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.

  14. Toward a Theoretical Model of Decision-Making and Resistance to Change among Higher Education Online Course Designers

    Science.gov (United States)

    Dodd, Bucky J.

    2013-01-01

    Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…

  15. 77 FR 44307 - In the Matter of the Review of the Designation of the Islamic Resistance Movement (Hamas and...

    Science.gov (United States)

    2012-07-27

    ... Islamic Resistance Movement (Hamas and Other Aliases) As a Foreign Terrorist Organization pursuant to... maintain the designation of the aforementioned organization as a foreign terrorist organization have not changed in such a manner as to warrant revocation of the designation and that the national security of the...

  16. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  17. Coding Class

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Hansbøl, Mikala

    Sammenfatning af de mest væsentlige pointer fra hovedrapporten: Dokumentation og evaluering af Coding Class......Sammenfatning af de mest væsentlige pointer fra hovedrapporten: Dokumentation og evaluering af Coding Class...

  18. Case study of the propagation of a small flaw under PWR loading conditions and comparison with the ASME code design life. Comparison of ASME Code Sections III and XI

    International Nuclear Information System (INIS)

    Yahr, G.T.; Gwaltney, R.C.; Richardson, A.K.; Server, W.L.

    1986-01-01

    A cooperative study was performed by EG and G Idaho, Inc., and Oak Ridge National Laboratory to investigate the degree of conservatism and consistency in the ASME Boiler and Pressure Vessel Code Section III fatigue evaluation procedure and Section XI flaw acceptance standards. A single, realistic, sample problem was analyzed to determine the significance of certain points of criticism made of an earlier parametric study by staff members of the Division of Engineering Standards of the Nuclear Regulatory Commission. The problem was based on a semielliptical flaw located on the inside surface of the hot-leg piping at the reactor vessel safe-end weld for the Zion 1 pressurized-water reactor (PWR). Two main criteria were used in selecting the problem; first, it should be a straight pipe to minimize the computational expense; second, it should exhibit as high a cumulative usage factor as possible. Although the problem selected has one of the highest cumulative usage factors of any straight pipe in the primary system of PWRs, it is still very low. The Code Section III fatigue usage factor was only 0.00046, assuming it was in the as-welded condition, and fatigue crack-growth analyses predicted negligible crack growth during the 40-year design life. When the analyses were extended past the design life, the usage factor was less than 1.0 when the flaw had propagated to failure. The current study shows that the criticism of the earlier report should not detract from the conclusion that if a component experiences a high level of cyclic stress corresponding to a fatigue usage factor near 1.0, very small cracks can propagate to unacceptable sizes

  19. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  20. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    Science.gov (United States)

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Design, technology, and science: Sites for learning, resistance, and social reproduction in urban schools

    Science.gov (United States)

    Seiler, Gale; Tobin, Kenneth; Sokolic, Joseph

    2001-09-01

    The teaching of science through activities that emphasize design and technology has been advocated as a vehicle for accomplishing science for all students. This study was situated in an inner7-city neighborhood school populated mainly by African American students from life worlds characterized by poverty. The article explores the discourse and practices of students and three coteachers as a curriculum was enacted to provide opportunities for students to learn about the physics of motion through designing, building, and testing a model car. Some students participated in ways that led to their building viable model cars and interacting with one another in ways that suggest design and technological competence. However, there also was evidence of resistance from students who participated sporadically and refused to cooperate with teachers as they endeavored to structure the environment in ways that would lead to a deeper understanding of science. Analysis of in-class interactions reveals an untapped potential for the emergence of a sciencelike discourse and diverse outcomes. Among the challenges explored in this article is a struggle for respect that permeates the students' lives on the street and bleeds into the classroom environment. Whereas teachers enacted the curriculum as if learning was the chief goal for students, it is apparent that students used the class opportunistically to maintain and earn the respect of peers.

  2. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W. (GSU)

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  3. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design

    International Nuclear Information System (INIS)

    Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R.

    2016-01-01

    N-methylol dimethyl phosphono propionamide (MDPA) is one of the most utilized fire resistant (FR) finishes for cotton fabrics, utilized as part of a formulation with trimethylol melamine (TMM) to acquire better crosslinking and enhanced FR properties. The system parameters of the finishing treatment were upgraded for better FR properties and low mechanical loss to the fabric by the response surface methodology utilizing Box-Behnken statistical designed experimental strategy. The impacts of concentration on the cotton fabric’s properties (fire resistance and mechanical properties) were assessed with the regression equations. The optimum conditions by predicting the FR reagents focusing intact mechanical properties of the fabric were additionally studied. It was found that the parameters of crosslinking agents in the FR formulation have a prime role in the general FR properties of the cotton fabrics. The R-squared estimations of the considerable number of responses were above 92%, demonstrating the level of relationship between the predicted values by the Box-Behnken frameworks and the real test results.

  4. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    International Nuclear Information System (INIS)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-01-01

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425 (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes

  5. Design and properties of position-sensitive proportional counters using resistance--capacitance position encoding

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Kopp, M.K.

    1975-01-01

    The construction and signal processing methods of several experimental gas-filled, position-sensitive proportional counters (PSPCs) using resistance--capacitance (RC) position encoding are described, and guidelines for the design and operation of these counters are given. Using these guidelines, we were able to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty in the position measurement was reduced to 28 μ FWHM for alpha particles and 100 μ FWHM for low-energy x rays (2--6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have widened the field of application of the RC position encoding method for position measurements of low-energy photons, neutrons, and charged particles in a wide variety of nuclear physics experiments, in nuclear medicine imaging, and in low-dose, medium-resolution radiography. (AIP)

  6. Irradiation Resistivity and Mitigation Measurement Design for Xilinx Kintex-7 FPGAs

    CERN Document Server

    AUTHOR|(CDS)2102127; Pichler, Michael

    For the upgrade in the Ring-Imaging Cherenkov Detector (RICH) in the LHCb detector, Xilinx Kintex-7 FPGAs are projected to be taken into operation as data acquisition devices for the measurement taken by the photosensors. They will be placed in the immediate surrounding area of the particle collision and hence have to face severe radiation. In order to have a prediction on the working reliability of the devices, irradiation tests will be performed to determine upset probability and effectiveness of mitigation techniques. The thesis deals with the question of designing an irradiation resistivity and mitigation measurement FPGA, its simulation, implementation and verification. To ensure reliable communication during radiation tests between the device-under-test and the DAQ module despite radioactive environment and limited cable resources, a custom protocol is examined and defined.

  7. Stability analysis criteria in landfill design based on the Spanish code; Criterios de estabilidad en el diseno de un vertedero, basado en la normativa espanola

    Energy Technology Data Exchange (ETDEWEB)

    Estaire Gepp, J.; Pardo de Santayana, F.

    2014-02-01

    The design of a landfill requires performing stability analyses. To perform such analyses it is necessary to define different design situations and their corresponding safety factors. Geo synthetics are normally used to construct the lining system of the landfills, causing critical slip surfaces to pass along one of the different geo synthetic interfaces. Determination of the shear strength of such critical interfaces is, therefore, an extremely important issue. In this paper, these aspects are analysed based on what is set in the Spanish codes and in the technical literature. As a result of the study, some tables are presented which relate the different design situations (normal, accidental or extraordinary) to the shear strength of the lining system to be used (peak or residual) and define the minimum factor of safety to be accomplished. (Author)

  8. Fracture resistance of three ceramic inlay-retained fixed partial denture designs. An in vitro comparative study.

    Science.gov (United States)

    Mohsen, Cherif A

    2010-10-01

    The fracture resistance of ceramic inlay-retained fixed partial dentures (CIRFPDs) was studied. Thirty CIRFPDs were constructed using ice zircon milled ceramic material. Specimens were divided into three groups, 10 specimens each, according to the abutment preparation: inlay-shaped (occluso-proximal inlay + proximal box), tub-shaped (occluso-proximal inlay), and proximal box-shaped preparations. Each group was then subdivided into two subgroups of five specimens each, according to the span of the edentulous area representing a missing premolar or molar. All specimens were subjected to a fracture resistance test. CIRFPDs with inlay-shaped retainers showed the highest fracture resistance values for missing premolars and molars. CIRFPDs with box-shaped retainers showed lower fracture resistance values. Statistical analysis revealed a significant difference between the three tested CIRFPD designs. There was a statistically significant difference between CIRFPDs constructed for the replacement of molars and those constructed for the replacement of premolars. The CIRFPD constructed for the replacement of molars gave lower fracture resistance values with the three tested designs. All the fracture resistance values obtained in this study were superior to the assumed maximum mastication forces. Failure mode was delamination and chipping of the veneering material. There was a statistically significant difference between the three designs of CIRPFDs tested. There was a statistically significant difference between CIRFPDs constructed for the replacement of molars than those constructed for the replacement of premolars. The CIRFPDs constructed for the replacement of molars gave lower fracture resistance values with the three tested designs. All fracture resistance values obtained in this study were superior to the assumed maximum mastication forces. © 2010 by The American College of Prosthodontists.

  9. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  10. Determination of the decay power for a U3O8 designed core using the ORIGEN 2.1 code

    International Nuclear Information System (INIS)

    Castro, Jose; Gallardo, Alberto; Madariaga, Marcelo

    2014-01-01

    After the operation of a nuclear research reactor at a higher power (more than 300 kW), a cooling time is required to remove the residual heat from the core due to the heat produced by the energy emitted by fission products, this fact is common in reactors. There is a short time where the heat output falls to 6 % after the reactor shutdown, the importance of knowing this power is because of the accidental events that this power could cause and affect the fuel after a sudden shutdown in the cooling system of the reactor and there is any other refrigeration system, only that one surrounding the reactor core. This report shows the results of the calculation of the U 3 O 8 core residual power a for the RP-10, using the ORIGEN 2.1 calculation code, verifying the safety of the proposed core within the safety limits accepted for the reactor. (authors).

  11. Looking back on 10 years of the ATLAS Metadata Interface. Reflections on architecture, code design and development methods.

    CERN Document Server

    Fulachier, J; The ATLAS collaboration; Albrand, S; Lambert, F

    2014-01-01

    The “ATLAS Metadata Interface” framework (AMI) has been developed in the context of ATLAS, one of the largest scientific collaborations. AMI can be considered to be a mature application, since its basic architecture has been maintained for over 10 years. In this paper we will briefly describe the architecture and the main uses of the framework within the experiment (TagCollector for release management and Dataset Discovery). These two applications, which share almost 2000 registered users, are superficially quite different, however much of the code is shared and they have been developed and maintained over a decade almost completely by the same team of 3 people. We will discuss how the architectural principles established at the beginning of the project have allowed us to continue both to integrate the new technologies and to respond to the new metadata use cases which inevitably appear over such a time period.

  12. Looking back on 10 years of the ATLAS Metadata Interface. Reflections on architecture, code design and development methods

    Science.gov (United States)

    Fulachier, J.; Aidel, O.; Albrand, S.; Lambert, F.; Atlas Collaboration

    2014-06-01

    The "ATLAS Metadata Interface" framework (AMI) has been developed in the context of ATLAS, one of the largest scientific collaborations. AMI can be considered to be a mature application, since its basic architecture has been maintained for over 10 years. In this paper we describe briefly the architecture and the main uses of the framework within the experiment (TagCollector for release management and Dataset Discovery). These two applications, which share almost 2000 registered users, are superficially quite different, however much of the code is shared and they have been developed and maintained over a decade almost completely by the same team of 3 people. We discuss how the architectural principles established at the beginning of the project have allowed us to continue both to integrate the new technologies and to respond to the new metadata use cases which inevitably appear over such a time period.

  13. Looking back on 10 years of the ATLAS Metadata Interface. Reflections on architecture, code design and development methods

    International Nuclear Information System (INIS)

    Fulachier, J; Albrand, S; Lambert, F; Aidel, O

    2014-01-01

    The 'ATLAS Metadata Interface' framework (AMI) has been developed in the context of ATLAS, one of the largest scientific collaborations. AMI can be considered to be a mature application, since its basic architecture has been maintained for over 10 years. In this paper we describe briefly the architecture and the main uses of the framework within the experiment (TagCollector for release management and Dataset Discovery). These two applications, which share almost 2000 registered users, are superficially quite different, however much of the code is shared and they have been developed and maintained over a decade almost completely by the same team of 3 people. We discuss how the architectural principles established at the beginning of the project have allowed us to continue both to integrate the new technologies and to respond to the new metadata use cases which inevitably appear over such a time period.

  14. Evaluation procedure of the structural integrity of a pipe of nuclear use. Application of codes for design and service. Case study

    International Nuclear Information System (INIS)

    Sanzi, H.; Asta, E.

    2009-01-01

    In the present work, we are presenting the most important results of the local stresses occurred in the cracked pipes with a axial through-wall, under Failure Concept 0.1A, using Finite Element Method and Fracture Mechanics. As requested, the component has been verified based 3D FE plastic analysis, under the postulated failure loading, assuring with this method a high degree of accuracy in the results. Codes used by Design and Service, as ASME Section III Div. 1 and API 579, have been used in the analysis. (author)

  15. Design and simulations of a spectral efficient optical code division multiple access scheme using alternated energy differentiation and single-user soft-decision demodulation

    Science.gov (United States)

    A. Garba, Aminata

    2017-01-01

    This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.

  16. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...

  17. Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups

    Directory of Open Access Journals (Sweden)

    Singh Nagendra

    2009-03-01

    Full Text Available Abstract Background Completely sequenced plant genomes provide scope for designing a large number of microsatellite markers, which are useful in various aspects of crop breeding and genetic analysis. With the objective of developing genic but non-coding microsatellite (GNMS markers for the rice (Oryza sativa L. genome, we characterized the frequency and relative distribution of microsatellite repeat-motifs in 18,935 predicted protein coding genes including 14,308 putative promoter sequences. Results We identified 19,555 perfect GNMS repeats with densities ranging from 306.7/Mb in chromosome 1 to 450/Mb in chromosome 12 with an average of 357.5 GNMS per Mb. The average microsatellite density was maximum in the 5' untranslated regions (UTRs followed by those in introns, promoters, 3'UTRs and minimum in the coding sequences (CDS. Primers were designed for 17,966 (92% GNMS repeats, including 4,288 (94% hypervariable class I types, which were bin-mapped on the rice genome. The GNMS markers were most polymorphic in the intronic region (73.3% followed by markers in the promoter region (53.3% and least in the CDS (26.6%. The robust polymerase chain reaction (PCR amplification efficiency and high polymorphic potential of GNMS markers over genic coding and random genomic microsatellite markers suggest their immediate use in efficient genotyping applications in rice. A set of these markers could assess genetic diversity and establish phylogenetic relationships among domesticated rice cultivar groups. We also demonstrated the usefulness of orthologous and paralogous conserved non-coding microsatellite (CNMS markers, identified in the putative rice promoter sequences, for comparative physical mapping and understanding of evolutionary and gene regulatory complexities among rice and other members of the grass family. The divergence between long-grained aromatics and subspecies japonica was estimated to be more recent (0.004 Mya compared to short

  18. Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys

    International Nuclear Information System (INIS)

    Mansur, L.K.; Lee, E.H.

    1991-01-01

    Essential aspects of the theory of radiation-induced swelling are reviewed. In particular, concepts central to the understanding of experimental data and the control of swelling by alloy design are discussed. The knowledge that a critical number of gas atoms is required in a cavity before point defect-driven swelling can begin is a most important contribution of theory. The mathematical expression that have been derived for calculating this critical quantity are given in terms of materials parameters and irradiation conditions. After swelling begins, its magnitude as a function of dose is governed strongly by the relative sink strengths for point defects of dislocations and cavities, expressed in terms of an index of the microstructure, Q. Hich swelling and low swelling microstructures can be categorized into four types based on this index. Wide ranges of experimental swelling results covering ferritic/martensite and austenitic alloys, neutron and ion irradiations and a variety of compositions and irradiation conditions are analyzed and found to be explained consistently within this framework. Based on the understanding gained, approaches to alloy design for swelling resistance are recommended. (orig.)

  19. Design of model alloys for martensitic/ferritic super heat-resistant 650 C steels

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, V.; Vilk, J.; Inden, G.; Sauthoff, G.; Agamennone, R.; Blum, W.

    2001-07-01

    The key to high creep strength of steels, besides solid solution strengthening, are fine distributions of stable precipitates which block the movement of subgrain boundaries and dislocations and delay coarsening of microstructure. The aim of the present study is to design new super heat-resistant 12%Cr ferritic steels using basic principles and concepts of physical metallurgy, to test and optimise model alloys and to investigate and clarify their behaviour under long-term creep conditions with emphasis on microstructural stability. Taking into consideration recent world-wide developments of 9-12%Cr steels with screening of available data, a series of model alloys is designed, which is supported by theoretical calculations and simulations of the expected phase transformations and precipitation processes. The alloys are prepared and tested mechanically. The effects of different types of precipitates as well as alloying elements on mechanical long-term properties are investigated. In particular the Laves phase is studied, which precipitates during service and which is to strengthen the alloys when M{sub 23}C{sub 6} precipitate particles besides finely distributed other carbides and nitrides become less effective. The effects of various austenite-forming alloying elements are also studied. (orig.)

  20. Design of Instrument Approach Procedure Charts Comprehension Speed of Missed Approach Instructions Coded in Text or Icons

    Science.gov (United States)

    1992-02-01

    Instrument approach procedure (IAP) charts are often cluttered and confusing. The quantified effects of chart design : changes on information transfer are needed by chart manufacturers to make changes uhich will enhance information transfer : and hum...

  1. Study on a new design of Tehran Research Reactor for radionuclide production based on fast neutrons using MCNPX code.

    Science.gov (United States)

    Zandi, Nadia; Afarideh, Hossein; Aboudzadeh, Mohammad Reza; Rajabifar, Saeed

    2018-02-01

    The aim of this work is to increase the magnitude of the fast neutron flux inside the flux trap where radionuclides are produced. For this purpose, three new designs of the flux trap are proposed and the obtained fast and thermal neutron fluxes compared with each other. The first and second proposed designs were a sealed cube contained air and D 2 O, respectively. The results of calculated production yield all indicated the superiority of the latter by a factor of 55% in comparison to the first proposed design. The third proposed design was based on changing the surrounding of the sealed cube by locating two fuel plates near that. In this case, the production yield increased up to 70%. Copyright © 2017. Published by Elsevier Ltd.

  2. Designing Multiagent Dental Materials for Enhanced Resistance to Biofilm Damage at the Bonded Interface.

    Science.gov (United States)

    Melo, Mary Anne; Orrego, Santiago; Weir, Michael D; Xu, Huakun H K; Arola, Dwayne D

    2016-05-11

    The oral environment is considered to be an asperous environment for restored tooth structure. Recurrent dental caries is a common cause of failure of tooth-colored restorations. Bacterial acids, microleakage, and cyclic stresses can lead to deterioration of the polymeric resin-tooth bonded interface. Research on the incorporation of cutting-edge anticaries agents for the design of new, long-lasting, bioactive resin-based dental materials is demanding and provoking work. Released antibacterial agents such as silver nanoparticles (NAg), nonreleased antibacterial macromolecules (DMAHDM, dimethylaminohexadecyl methacrylate), and released acid neutralizer amorphous calcium phosphate nanoparticles (NACP) have shown potential as individual and dual anticaries approaches. In this study, these agents were synthesized, and a prospective combination was incorporated into all the dental materials required to perform a composite restoration: dental primer, adhesive, and composite. We focused on combining different dental materials loaded with multiagents to improve the durability of the complex dental bonding interface. A combined effect of bacterial acid attack and fatigue on the bonding interface simulated the harsh oral environment. Human saliva-derived oral biofilm was grown on each sample prior to the cyclic loading. The oral biofilm viability during the fatigue performance was monitored by the live-dead assay. Damage of the samples that developed during the test was quantified from the fatigue life distributions. Results indicate that the resultant multiagent dental composite materials were able to reduce the acidic impact of the oral biofilm, thereby improving the strength and resistance to fatigue failure of the dentin-resin bonded interface. In summary, this study shows that dental restorative materials containing multiple therapeutic agents of different chemical characteristics can be beneficial toward improving resistance to mechanical and acidic challenges in oral

  3. Development of Code for Simulation of Acceleration of Ions from Internal Source to End of Extraction System in Cyclotrons and Preliminary Design Study of 8MeV Cyclotron for Production of Radioisotopes

    CERN Document Server

    Kostromin, Sergey

    2006-01-01

    Development of Code for Simulation of Acceleration of Ions from Internal Source to End of Extraction System in Cyclotrons and Preliminary Design Study of 8MeV Cyclotron for Production of Radioisotopes

  4. A validation report for the KALIMER core design computing system by the Monte Carlo transport theory code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung

    2004-05-01

    In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy.

  5. To Design or Not to Design (Part Five): Doctrine and Design: How Analogies and Design Theory Resist the Military Ritual of Codification

    Science.gov (United States)

    2011-04-15

    discipline and reduce academic discourse. “Rather than getting a continuous and coherent picture, we are getting fragments- remarkably detailed but...Students that merely plagiarize by imitating existing successful designs do not learn, while students that combine novel creativity with

  6. Web Survey Design in ASP.Net 2.0: A Simple Task with One Line of Code

    Science.gov (United States)

    Liu, Chang

    2007-01-01

    Over the past few years, more and more companies have been investing in electronic commerce (EC) by designing and implementing Web-based applications. In the world of practice, the importance of using Web technology to reach individual customers has been presented by many researchers. This paper presents an easy way of conducting marketing…

  7. Rotating electrical machines - Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) - Classification

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2000-01-01

    Gives definitions for standard degrees of protection provided by enclosures; protection of machines against harmful effects due to the ingress of water; protection of machines against ingress of solid foreign objects; Protection of persons against contact with or approach to live parts and against contact with moving parts. Gives designations for these protective degrees and tests to verify that the machines meet the requirements.

  8. Designing Networks for Innovation

    Science.gov (United States)

    Laskowski, Paul Luke

    2009-01-01

    The last decades have seen tremendous growth and transformation in the Internet's commercial landscape. Underneath this success, however, the underlying network architecture has shown a marked resistance to change; it is now described as stagnant and ossified. Numerous design proposals have been developed by researchers, implemented in code, and…

  9. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    Science.gov (United States)

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-07

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the

  10. ICRPfinder: a fast pattern design algorithm for coding sequences and its application in finding potential restriction enzyme recognition sites

    OpenAIRE

    Li, Chao; Li, Yuhua; Zhang, Xiangmin; Stafford, Phillip; Dinu, Valentin

    2009-01-01

    Abstract Background Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder...

  11. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.

    Science.gov (United States)

    Unrean, Pornkamol

    2017-04-01

    We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.

  12. Network Coding

    Indian Academy of Sciences (India)

    message symbols downstream, network coding achieves vast performance gains by permitting intermediate nodes to carry out algebraic oper- ations on the incoming data. In this article we present a tutorial introduction to network coding as well as an application to the e±cient operation of distributed data-storage networks.

  13. The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances

    Directory of Open Access Journals (Sweden)

    Helder Marjolein

    2012-09-01

    Full Text Available Abstract Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3. Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.

  14. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  15. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    Science.gov (United States)

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.

    2017-06-01

    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  16. Establishing and evaluating bar-code technology in blood sampling system: a model based on human centered human-centered design method.

    Science.gov (United States)

    Chou, Shin-Shang; Yan, Hsiu-Fang; Huang, Hsiu-Ya; Tseng, Kuan-Jui; Kuo, Shu-Chen

    2012-01-01

    This study intended to use a human-centered design study method to develop a bar-code technology in blood sampling process. By using the multilevel analysis to gather the information, the bar-code technology has been constructed to identify the patient's identification, simplify the work process, and prevent medical error rates. A Technology Acceptance Model questionnaire was developed to assess the effectiveness of system and the data of patient's identification and sample errors were collected daily. The average scores of 8 items users' perceived ease of use was 25.21(3.72), 9 items users' perceived usefulness was 28.53(5.00), and 14 items task-technology fit was 52.24(7.09), the rate of patient identification error and samples with order cancelled were down to zero, however, new errors were generated after the new system deployed; which were the position of barcode stickers on the sample tubes. Overall, more than half of nurses (62.5%) were willing to use the new system.

  17. Designing and comparison study of rapid detection methods of resistance to injectable drugs in clinical strains of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Fatemeh Salehi

    2012-01-01

    Full Text Available Introduction: In this study, some molecular methods were designed for rapid detection of resistance to kanamycin and amikacin.Materials and methods: Among 120 clinical isolates of mycobacterium tuberculosis, 70 strains were selected for evaluation of possible mutations. A PCR-RFLP method was designed for detection of wild type (using enzyme ajii and mutant from (BstFNI enzyme of the isolates. Furthermore, allele specific method (as PCR was designed for detection mutations in codons 1401 and 1402 gene rrs. Some selected isolates were sequenced.Results: In PCR-RFLP method, among the 70 strains examined by BstFNI enzyme, could detect 17 mutant strains among 24 phenotypicaly resistant and 44 non-mutant isolates from 46 susceptible isolates. The sensitivity of this method was %70.83 and specificity was %95.65 on the other hand, 12 mutant from 20 resistant strains and 29 non-mutant strains from 32 susceptible strains were detected by AjiI enzyme. The sensitivity and specificity of this method was 60 and %90.62, respectively. In MAS PCR, 3 mutants from 6 resistant strains and 12 non-mutants from 17 resistant strains were detected. The sensitivity of this method was 50 and specificity was 70.58. Results of sequencing method confirmed the results of molecular methods.Discussion and conclusion: PCR-RFLP method by BstFNI enzyme was the best method for rapid detection of Mycobacterium tuberculosis resistant to second-line injectable drugs and was recommended for routine use.

  18. Coded Random Access

    DEFF Research Database (Denmark)

    Paolini, Enrico; Stefanovic, Cedomir; Liva, Gianluigi

    2015-01-01

    The rise of machine-to-machine communications has rekindled the interest in random access protocols as a support for a massive number of uncoordinatedly transmitting devices. The legacy ALOHA approach is developed under a collision model, where slots containing collided packets are considered...... as waste. However, if the common receiver (e.g., base station) is capable to store the collision slots and use them in a transmission recovery process based on successive interference cancellation, the design space for access protocols is radically expanded. We present the paradigm of coded random access......, in which the structure of the access protocol can be mapped to a structure of an erasure-correcting code defined on graph. This opens the possibility to use coding theory and tools for designing efficient random access protocols, offering markedly better performance than ALOHA. Several instances of coded...

  19. Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT accelerators and interpret CT numbers

    CERN Document Server

    Wysocka-Rabin, A

    2013-01-01

    The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...

  20. Reliability and code level

    NARCIS (Netherlands)

    Kasperski, M.; Geurts, C.P.W.

    2005-01-01

    The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the

  1. Testing and design of radon resisting membranes based on the experience from the Czech Republic

    International Nuclear Information System (INIS)

    Jiranek, M.

    2004-01-01

    Testing of barrier properties of insulating materials against radon is usually based on the measurement of the radon diffusion coefficient. Presented report summarizes results of radon diffusion coefficients measurements in more than 120 insulating materials obtained throughout Europe. All measurements were performed by the Czech Technical University, Faculty of Civil Engineering in cooperation with the Radiation Protection Institute. We have found out that great differences exist in diffusion properties, because the diffusion coefficients vary within eight orders from 10 -15 m 2 /s to 10 -8 m 2 /s. For each material category of different chemical composition statistical evaluation of results is presented. Possibilities of usage of the radon diffusion coefficient for the design of radon resisting membranes are discussed. Based on the experience from the Czech Republic the paper is trying to show that controlling applicability of membranes by setting of the upper limit for the radon diffusion coefficient is not a convenient approach. The main reason is that it is almost impossible to choose correctly one limit value for the whole Europe. The second reason is that a great number of common waterproofing materials have their radon diffusion coefficients above the probable limit value. As a consequence of this the protection against radon will be solved preferably by materials with Al foils, which is from the technical point of view meaningless, because membranes with Al foils have very low elongation and therefore they can very easily loose their barrier properties by destroying of the Al foil. The paper will show that it seems to be reasonable to replace strict limits by the real design of the insulation in dependence on particular building and soil characteristics. The design is proposed to be based on the calculation of the insulation thickness according to the formula: d ≥ l.arc sinh ((α 1 .l.λ.C S .(A f + A w ))/C dif .n.V)) (in m), where C S is the third

  2. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design.

    Science.gov (United States)

    El-Halfawy, Omar M; Valvano, Miguel A

    2012-10-01

    Infections by multidrug-resistant bacteria are of great concern worldwide. In many cases, resistance is not due to the presence of specific antibiotic-modifying enzymes, but rather associated with a general impermeability of the bacterial cell envelope. The molecular bases of this intrinsic resistance are not completely understood. Moreover, horizontal gene transfers cannot solely explain the spread of intrinsic resistance among bacterial strains. This review focuses on the increased intrinsic antibiotic resistance mediated by small molecules. These small molecules can either be secreted from bacterial cells of the same or different species (e.g., indole, polyamines, ammonia, and the Pseudomonas quinolone signal) or be present in the bacterial cell milieu, whether in the environment, such as indole acetic acid and other plant hormones, or in human tissues and body fluids, such as polyamines. These molecules are metabolic byproducts that act as infochemicals and modulate bacterial responses toward antibiotics leading to increasing or decreasing resistance levels. The non-genetic mechanisms of antibiotic response modulation and communication discussed in this review should reorient our thinking of the mechanisms of intrinsic resistance to antibiotics and its spread across bacterial cell populations. The identification of chemical signals mediating increased intrinsic antibiotic resistance will expose novel critical targets for the development of new antimicrobial strategies.

  3. Update to UFC 3-340-02 for Blast Resistant Design of Masonry Components

    Science.gov (United States)

    2010-07-01

    resistance to cause fixity at the bottom of a reinforced masonry wall than granular soil. The resisting moment from cohesive soil in Figure 1 is calculated...Dowels cause fixity in unreinforced wall 14 14 Moment Restraint Provided by Foundation Clay Soil (Brom’s Method) Granular Soil (Rankine’s Method) 15 15

  4. Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Li, Baochen

    2014-08-25

    We demonstrate that all parameters of optical lightwave can be simultaneously designed as keys in security system. This multi-dimensional property of key can significantly enlarge the key space and further enhance the security level of the system. The single-shot off-axis digital holography with orthogonal polarized reference waves is employed to perform polarization state recording on object wave. Two pieces of polarization holograms are calculated and fabricated to be arranged in reference arms to generate random amplitude and phase distribution respectively. When reconstruction, original information which is represented with QR code can be retrieved using Fresnel diffraction with decryption keys and read out noise-free. Numerical simulation results for this cryptosystem are presented. An analysis on the key sensitivity and fault tolerance properties are also provided.

  5. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [OSAP-1 code; OTEC Steady-State Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Arthur

    1978-12-04

    The following appendices are included: highlights of direction and correspondence; user manual for OTEC Steady-State Analysis Program (OSAP-1); sample results of OSAP-1; surface condenser installations; double-clad systems; aluminum alloy seawater piping; references searched for ammonia evaluation; references on stress-corrosion for ammonia; references on anhydrous ammonia storage; references on miscellaneous ammonia items; OTEC materials testing; test reports; OTEC technical specification chlorination system; OTEC technical specification AMERTAP system; OTEC optimization program users guide; concrete hull construction; weight and stability estimates; packing factor data; machinery and equipment list; letter from HPTI on titanium tubes; tables on Wolverine Korodense tubes; evaporator and condenser enhancement tables; code weld titanium tube price, weight tables Alcoa tubing tables; Union Carbide tubing pricing tables; turbotec tubing pricing tables; Wolverine tubing pricing tables; Union Carbide tubing characteristics and pricing; working fluids and turbines for OTEC power system; and hydrodynamic design of prototype OTEC cold and warm seawater pumps. (WHK)

  6. Design principles of the sparse coding network and the role of sister cells in the olfactory system of Drosophila

    Directory of Open Access Journals (Sweden)

    Danke eZhang

    2013-10-01

    Full Text Available Sensory systems face the challenge to represent sensory inputs in a way to allow easy readout of sensory information by higher brain areas. In the olfactory system of the fly drosopohila melanogaster, projection neurons (PNs of the antennal lobe (AL convert a dense activation of glomeruli into a sparse, high-dimensional firing pattern of Kenyon cells (KCs in the mushroom body (MB. Here we investigate the design principles of the olfactory system of drosophila in regard to the capabilities to discriminate odor quality from the MB representation and its robustness to different types of noise. We focus on understanding the role of highly correlated homotypic projection neurons (sister cells found in the glomeruli of flies. These cells are coupled by gap-junctions and receive almost identical sensory inputs, but target randomly different KCs in MB. We show that sister cells might play a crucial role in increasing the robustness of the MB odor representation to noise. Computationally, sister cells thus might help the system to improve the generalization capabilities in face of noise without impairing the discriminability of odor quality at the same time.

  7. Effect of different semimonolithic designs on fracture resistance and fracture mode of translucent and high-translucent zirconia crowns

    Science.gov (United States)

    Bakitian, Fahad; Seweryniak, Przemek; Papia, Evaggelia; Larsson, Christel; Vult von Steyern, Per

    2018-01-01

    Purpose The aim of this study was to describe different designs of semimonolithic crowns made of translucent and high-translucent zirconia materials and to evaluate the effect on fracture resistance and fracture mode. Methods One hundred crowns with different designs were produced and divided into five groups (n=20): monolithic (M), partially veneered monolithic (semimonolithic) with 0.3 mm buccal veneer (SM0.3), semimonolithic with 0.5 mm buccal veneer (SM0.5), semimonolithic with 0.5 mm buccal veneer supported by wave design (SMW), and semimonolithic with 0.5 mm buccal veneer supported by occlusal cap design (SMC). Each group was divided into two subgroups (n=10) according to the materials used, translucent and high-translucent zirconia. All crowns underwent artificial aging before loading until fracture. Fracture mode analysis was performed. Fracture loads and fracture modes were analyzed using two-way ANOVA and Fisher’s exact probability tests (P≤0.05). Results SM0.3 design showed highest fracture loads with no significant difference compared to M and SMW designs (P>0.05). SM0.5 design showed lower fracture loads compared to SMW and SWC designs. Crowns made of translucent zirconia showed higher fracture loads compared to those made of high-translucent zirconia. M, SM0.3, and all but one of the SMC crowns showed complete fractures with significant differences in fracture mode compared to SMW and SM0.5 crowns with cohesive veneer fractures (P≤0.05). Conclusion Translucent and high-translucent zirconia crowns might be used in combination with 0.3 mm microcoating porcelain layer with semimonolithic design to enhance the esthetic properties of restorations without significantly decreasing fracture resistance of the crowns. If 0.5 mm porcelain layer is needed for a semimonolithic crown, wave design or cap design might be used to increase fracture resistance. In both cases, fracture resistance gained is likely to be clinically sufficient as the registered

  8. Effect of different semimonolithic designs on fracture resistance and fracture mode of translucent and high-translucent zirconia crowns

    Directory of Open Access Journals (Sweden)

    Bakitian F

    2018-03-01

    Full Text Available Fahad Bakitian,1,2 Przemek Seweryniak,3 Evaggelia Papia,1 Christel Larsson,1 Per Vult von Steyern1 1Department of Materials Science and Technology, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia; 3Commercial Dental Laboratory, Malmö, Sweden Purpose: The aim of this study was to describe different designs of semimonolithic crowns made of translucent and high-translucent zirconia materials and to evaluate the effect on fracture resistance and fracture mode.Methods: One hundred crowns with different designs were produced and divided into five groups (n=20: monolithic (M, partially veneered monolithic (semimonolithic with 0.3 mm buccal veneer (SM0.3, semimonolithic with 0.5 mm buccal veneer (SM0.5, semimonolithic with 0.5 mm buccal veneer supported by wave design (SMW, and semimonolithic with 0.5 mm buccal veneer supported by occlusal cap design (SMC. Each group was divided into two subgroups (n=10 according to the materials used, translucent and high-translucent zirconia. All crowns underwent artificial aging before loading until fracture. Fracture mode analysis was performed. Fracture loads and fracture modes were analyzed using two-way ANOVA and Fisher’s exact probability tests (P≤0.05.Results: SM0.3 design showed highest fracture loads with no significant difference compared to M and SMW designs (P>0.05. SM0.5 design showed lower fracture loads compared to SMW and SWC designs. Crowns made of translucent zirconia showed higher fracture loads compared to those made of high-translucent zirconia. M, SM0.3, and all but one of the SMC crowns showed complete fractures with significant differences in fracture mode compared to SMW and SM0.5 crowns with cohesive veneer fractures (P≤0.05.Conclusion: Translucent and high-translucent zirconia crowns might be used in combination with 0.3 mm microcoating porcelain layer with

  9. Coding Labour

    Directory of Open Access Journals (Sweden)

    Anthony McCosker

    2014-03-01

    Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.

  10. A Technique to Estimate the Equivalent Loss Resistance of Grid-Tied Converters for Current Control Analysis and Design

    DEFF Research Database (Denmark)

    Vidal, Ana; Yepes, Alejandro G.; Fernandez, Francisco Daniel Freijedo

    2015-01-01

    by means of an equivalent series resistance. This paper proposes a method to identify the VSC equivalent loss resistance for the proper tuning of the current control loop. It is based on analysis of the closed-loop transient response provided by a synchronous proportional-integral current controller......, according to the internal model principle. The method gives a set of loss resistance values linked to working conditions, which can be used to improve the tuning of the current controllers, either by online adaptation of the controller gains or by open-loop adaptive adjustment of them according to prestored......Rigorous analysis and design of the current control loop in voltage source converters (VSCs) requires an accurate modeling. The loop behavior can be significantly influenced by the VSC working conditions. To consider such effect, converter losses should be included in the model, which can be done...

  11. Beam-dynamics codes used at DARHT

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  12. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections.

    Science.gov (United States)

    He, Yongkang; He, Xiaofeng

    2016-09-01

    Antimicrobial peptides (AMPs) have been the focus of intense research towards the finding of a viable alternative to current small-molecule antibiotics, owing to their commonly observed and naturally occurring resistance against pathogens. However, natural peptides have many problems such as low bioavailability and high allergenicity that largely limit the clinical applications of AMPs. In the present study, an integrative protocol that combined chemoinformatics modeling, molecular dynamics simulations, and in vitro susceptibility test was described to design AMPs containing unnatural amino acids (AMP-UAAs). To fulfill this, a large panel of synthetic AMPs with determined activity was collected and used to perform quantitative structure-activity relationship (QSAR) modeling. The obtained QSAR predictors were then employed to direct genetic algorithm (GA)-based optimization of AMP-UAA population, to which a number of commercially available, structurally diverse unnatural amino acids were introduced during the optimization process. Subsequently, several designed AMP-UAAs were confirmed to have high antibacterial potency against two antibiotic-resistant strains, i.e. multidrug-resistant Pseudomonas aeruginosa (MDRPA) and methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) < 10 μg/ml. Structural dynamics characterizations revealed that the most potent AMP-UAA peptide is an amphipathic helix that can spontaneously embed into an artificial lipid bilayer and exhibits a strong destructuring tendency associated with the embedding process. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 746-756, 2016. © 2016 Wiley Periodicals, Inc.

  13. Design and test of a novel isolator with negative resistance electromagnetic shunt damping

    International Nuclear Information System (INIS)

    Yan, Bo; Zhang, Xinong; Niu, Hongpan

    2012-01-01

    This paper proposes a negative resistance electromagnetic shunt damping vibration isolator and investigates the effectiveness of the isolator. The isolator consists of a shunt circuit and a pair of electromagnet and permanent magnets that are pasted onto a box-shaped spring. A kind of negative resistance shunt impedance is proposed to cancel the inherent resistance of the electromagnet. The electromechanical coupling coefficient and the electromagnetic damping force calculation formula are obtained by Biot–Savart’s law and Ampère’s law, respectively. A single degree of freedom system is employed to verify the performance of the proposed isolator. The governing equation is established. The performance of the proposed isolator under a half-cycle sine pulse is investigated and discussed. Experiments were carried out and the results agreed well with the numerical predictions. Both the results demonstrate that the negative resistance electromagnetic shunt damping vibration isolator could suppress vibration transmitted to the structure effectively. (paper)

  14. Designing a low-cost drug resistance database for viral hepatitis.

    Science.gov (United States)

    Kuiken, Carla

    2010-01-01

    Plans are outlined for a new database for hepatitis antiviral drug resistance mutations that will be closely linked to existing sequence databases. The new database will contain an infrastructure to store all available information on drug resistance mutations for the virus and a mutation can be searched by itself or in conjunction with the sequence information. Self-maintaining and self-updating sequence databases already exist for several viruses. The resistance mutation database would be annotated by authorized users, recruited from among clinicians and researchers familiar with each virus. The new database would provide a central location to find known drug resistance mutations for HBV and HCV; the ability to search the sequence database for each (combination of) mutations, retrieve alignments of relevant sections, and analyse mutation context and other background information; and rapid inclusion of newly found mutations without the need to wait for a publication.

  15. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  16. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  17. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Zhaohui Ni

    2017-02-01

    Full Text Available As one of the most influential and troublesome human pathogens, Acinetobacter baumannii (A. baumannii has emerged with many multidrug-resistant strains. After collecting 33 complete A. baumannii genomes and 84 representative antibiotic resistance determinants, we used the Vaxign reverse vaccinology approach to predict classical type vaccine candidates against A. baumannii infections and new type vaccine candidates against antibiotic resistance. Our genome analysis identified 35 outer membrane or extracellular adhesins that are conserved among all 33 genomes, have no human protein homology, and have less than 2 transmembrane helices. These 35 antigens include 11 TonB dependent receptors, 8 porins, 7 efflux pump proteins, and 2 fimbrial proteins (FilF and CAM87009.1. CAM86003.1 was predicted to be an adhesin outer membrane protein absent from 3 antibiotic-sensitive strains and conserved in 21 antibiotic-resistant strains. Feasible anti-resistance vaccine candidates also include one extracellular protein (QnrA, 3 RND type outer membrane efflux pump proteins, and 3 CTX-M type β-lactamases. Among 39 β-lactamases, A. baumannii CTX-M-2, -5, and -43 enzymes are predicted as adhesins and better vaccine candidates than other β-lactamases to induce preventive immunity and enhance antibiotic treatments. This report represents the first reverse vaccinology study to systematically predict vaccine antigen candidates against antibiotic resistance for a microbial pathogen.

  18. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology.

    Science.gov (United States)

    Ni, Zhaohui; Chen, Yan; Ong, Edison; He, Yongqun

    2017-02-21

    As one of the most influential and troublesome human pathogens, Acinetobacter baumannii ( A. baumannii ) has emerged with many multidrug-resistant strains. After collecting 33 complete A. baumannii genomes and 84 representative antibiotic resistance determinants, we used the Vaxign reverse vaccinology approach to predict classical type vaccine candidates against A. baumannii infections and new type vaccine candidates against antibiotic resistance. Our genome analysis identified 35 outer membrane or extracellular adhesins that are conserved among all 33 genomes, have no human protein homology, and have less than 2 transmembrane helices. These 35 antigens include 11 TonB dependent receptors, 8 porins, 7 efflux pump proteins, and 2 fimbrial proteins (FilF and CAM87009.1). CAM86003.1 was predicted to be an adhesin outer membrane protein absent from 3 antibiotic-sensitive strains and conserved in 21 antibiotic-resistant strains. Feasible anti-resistance vaccine candidates also include one extracellular protein (QnrA), 3 RND type outer membrane efflux pump proteins, and 3 CTX-M type β-lactamases. Among 39 β-lactamases, A. baumannii CTX-M-2, -5, and -43 enzymes are predicted as adhesins and better vaccine candidates than other β-lactamases to induce preventive immunity and enhance antibiotic treatments. This report represents the first reverse vaccinology study to systematically predict vaccine antigen candidates against antibiotic resistance for a microbial pathogen.

  19. Infrared nondestructive measurement of thermal resistance between liner and engine block: design of experiment

    Energy Technology Data Exchange (ETDEWEB)

    Laloue, P.; L' Ecolier, J.; Nigon, F. [PSA Peugeot Citroen, Laboratoire Optique et Thermique, 45 rue Jean-Pierre Timbaud, 78 300 Poissy (France); Bissieux, C.; Henry, J.-F.; Pron, H. [Universite de Reims, Unite de Thermique et Analyse Physique, EA 3802, Laboratoire de Thermophysique, UFR Sciences, Moulin de la Housse, BP 1039, 51 687 Reims Cedex 2 (France)

    2008-03-15

    Thermal resistances between liners and engine blocks are nondestructively studied by photothermal infrared thermography. Under controlled sinusoidal light irradiation, the thermal response of the sample is measured by means of an infrared camera. A numerical lock-in procedure yields amplitude and absolute phase maps of the thermal field periodic component. Then, apart from classical qualitative detection of air layers, a quantitative characterization of thermal resistance becomes available. An analytical modeling, associated with an inverse procedure using the Gauss-Newton parameter estimation method, allows to identify the thermal resistance on academic samples representative of the liner-engine block interface. Simply joined cast iron and aluminum plates present thermal resistances about 2 x 10{sup -3} K m{sup 2} W{sup -1}. The implementation of a numerical modeling allows to study two-dimensional defects. When the samples are pressed on their periphery, thus straightened, contact resistances ranging from 2 x 10{sup -4} to 7 x 10{sup -4} K m{sup 2} W{sup -1} have been measured. Then, the method is applied to liner-engine block interfaces where the thermal resistances fall to about 2 x 10{sup -5} K m{sup 2} W{sup -1}, matching the values obtained when a cast iron plate is locally pressed against an aluminum plate. (author)

  20. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    Science.gov (United States)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  1. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  2. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Pries-Heje, Lene; Dahlgaard, Bente

    2013-01-01

    A classic way to choose a supplier is through a bidding process where tenders from competing companies are evaluated in relation to the customer’s requirements. If the customer wants to hire an agile software developing team instead of buying a software product, a new approach for comparing tenders...... is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  3. Code Disentanglement: Initial Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  4. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  5. NSURE code

    International Nuclear Information System (INIS)

    Rattan, D.S.

    1993-11-01

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  6. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and softwa...... expression in the public realm. The book’s line of argument defends language against its invasion by economics, arguing that speech continues to underscore the human condition, however paradoxical this may seem in an era of pervasive computing....

  7. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions.

    Science.gov (United States)

    Zhang, Chi; Sunarso, Jaka; Liu, Shaomin

    2017-05-22

    CO 2 resistance is an enabling property for the wide-scale implementation of oxygen-selective mixed ionic-electronic conducting (MIEC) membranes in clean energy technologies, i.e., oxyfuel combustion, clean coal energy delivery, and catalytic membrane reactors for greener chemical synthesis. The significant rise in the number of studies over the past decade and the major progress in CO 2 -resistant MIEC materials warrant systematic guidelines on this topic. To this end, this review features the pertaining aspects in addition to the recent status and advances of the two most promising membrane materials, perovskite and fluorite-based dual-phase materials. We explain how to quantify and design CO 2 resistant membranes using the Lewis acid-base reaction concept and thermodynamics perspective and highlight the relevant characterization techniques. For perovskite materials, a trade-off generally exists between CO 2 resistance and O 2 permeability. Fluorite materials, despite their inherent CO 2 resistance, typically have low O 2 permeability but this can be improved via different approaches including thin film technology and the recently developed minimum internal electronic short-circuit second phase and external electronic short-circuit decoration. We then elaborate the two main future directions that are centralized around the development of new oxide compositions capable of featuring simultaneously high CO 2 resistance and O 2 permeability and the exploitation of phase reactions to create a new conductive phase along the grain boundaries of dual-phase materials. The final part of the review discusses various complimentary characterization techniques and the relevant studies that can provide insights into the degradation mechanism of oxide-based materials upon exposure to CO 2 .

  8. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  9. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness.

    Science.gov (United States)

    Taha, Doaa; Spintzyk, Sebastian; Schille, Christine; Sabet, Ahmed; Wahsh, Marwa; Salah, Tarek; Geis-Gerstorfer, Jürgen

    2017-12-11

    The purpose of this in vitro study was to assess the effect of varying the margin designs and the occlusal thicknesses on the fracture resistance and mode of failures of endodontically treated teeth restored with polymer infiltrated ceramic endocrown restorations. Root canal treated mandibular molars were divided into four groups (n=8) and were prepared to receive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) fabricated polymer infiltrated ceramic endocrowns (ENAMIC blocks). Group B2 represents teeth prepared with a butt joint design receiving endocrowns with 2mm occlusal thickness and the same for group B3.5 but with 3.5mm occlusal thickness. Group S2 represents teeth prepared with 1mm shoulder finish line receiving endocrowns with 2mm occlusal thickness and the same for group S3.5 but with 3.5mm occlusal thickness. After cementation and thermal aging, fracture resistance test was performed and failure modes were observed. Group S3.5 showed the highest mean fracture load value (1.27±0.31kN). Endocrowns with shoulder finish line had significantly higher mean fracture resistance values than endocrowns with butt margin (p<0.05). However, the results were not statistically significant regarding the restoration thickness. Evaluation of the fracture modes revealed no statistically significant difference between the modes of failure of tested groups. For the restoration of endodontically treated teeth, adding a short axial wall and shoulder finish line can increase the fracture resistance. However, further investigations, especially the fatigue behavior, are needed to ensure this effect applies with small increases of restoration thickness. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. ANIMAL code

    Energy Technology Data Exchange (ETDEWEB)

    Lindemuth, I.R.

    1979-02-28

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables.

  11. Network Coding

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...

  12. ANIMAL code

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  13. Expander Codes

    Indian Academy of Sciences (India)

    Codes and Channels. A noisy communication channel is illustrated in Fig- ... nication channel. Suppose we want to transmit a message over the unreliable communication channel so that even if the channel corrupts some of the bits we are able to recover ..... is d-regular, meaning thereby that every vertex has de- gree d.

  14. Expander Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.

  15. Network Coding

    Indian Academy of Sciences (India)

    Network coding is a technique to increase the amount of information °ow in a network by mak- ing the key observation that information °ow is fundamentally different from commodity °ow. Whereas, under traditional methods of opera- tion of data networks, intermediate nodes are restricted to simply forwarding their incoming.

  16. The Effect of Preparation Design on the Fracture Resistance of Zir-Conia Crown Copings (Computer Associated Design/Computer Associated Machine, CAD/CAM System

    Directory of Open Access Journals (Sweden)

    B. Atashkar

    2011-09-01

    Full Text Available Objective: One of the major problems of all ceramic restorations is their probable fracture against the occlusal force. The aim of the present in-vitro study is was to compare the effect of two marginal designs (chamfer & shoulder on the fracture resistance of zirconia copings, CERCON (CAD/CAM.MATERIALS AND METHODS: This in vitro study was done with single blind experimental technique. One stainless steel dye with 50’ chamfer finish line design (0.8 mm depth was prepared using milling machine. Ten epoxy resin dyes were made, The same dye was retrieved and 50' chamfer was converted into shoulder (1 mm.again ten epoxy resin dyes were made from shoulder dyes. Zirconia cores with 0.4 mm thickness and 35 µm cement Space fabricated on the20 epoxy resin dyes (10 samples chamfer and 10 samples shoulder in a dental laboratory. Then the zirconia cores were cemented on the epoxy resin dyes and underwent a fracture test with a universal testing machine (GOTECH AI-700LAC, Arson, USA and samples were investigated from the point of view of the origin of the failure.RESULT: The mean value of fracture resistance for shoulder margins were 788.90±99.56 N and for the chamfer margins were 991.75±112.00 N. The student’s T-test revealed a statistically significant difference between groups (P=0.001.CONCLUSION: The result of this study indicates that marginal design of the zirconia cores effects on their fracture resistance. A chamfer margin could improve the biomechanical performance of posterior single zirconia crown restorations. This may be because of strong unity and round internal angle in chamfer margin.

  17. Load and resistance factor design of bridge foundations accounting for pile group-soil interaction.

    Science.gov (United States)

    2015-11-01

    Pile group foundations are used in most foundation solutions for transportation structures. Rigorous and reliable pile design methods are : required to produce designs whose level of safety (probability of failure) is known. By utilizing recently dev...

  18. Fatigue Resistant Design Criteria for MD SHA Cantilevered Mast Arm Signal Structure

    Science.gov (United States)

    2017-12-01

    The fatigue design of the mast arm structures and connections vary significantly based on the Category of Importance factor adopted and the load cases for fatigue design loads. Consideration should include the cost and size of the structures for both...

  19. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2016-09-01

    Full Text Available Epoxy resin modified with nano scale fillers offers excellent combination of properties such as enhanced dimensional stability, mechanical and electrical properties, which make them ideally suitable for a wide range of applications. However, the studies about functionalized nano-hybrid for coating applications still require better insight. In the present work we have developed silane treated nanoparticles and to reinforce it with diglycidyl epoxy resin to fabricate surface functionalized nano-hybrid epoxy coatings. The effect of inorganic nano particles on the corrosion and fouling resistance properties was studied by various (1, 3, 5 and 7 wt% filler loading concentrations. Diglycidyl epoxy resin (DGEBA commonly was used for coating. 3-Aminopropyltriethoxysilane (APTES was used as a coupling agent to surface treats the TiO2 nanoparticles. The corrosion and fouling resistant properties of these coatings were evaluated by electrochemical impedance and static immersion tests, respectively. Nano-hybrid coating (3 wt% of APTES–TiO2 showed corrosion resistance up to 108 Ω cm2 after 30 days immersion in 3.5% NaCl solution indicating an excellent corrosion resistance. Static immersion test was carried out in Bay of Bengal (Muttukadu which has reflected good antifouling efficiency of the 3 wt% APTES–TiO2 loaded nano-hybrid coating up to 6 months.

  20. Randomized Clinical Trial Design to Assess Abatacept in Resistant Nephrotic Syndrome

    Directory of Open Access Journals (Sweden)

    Howard Trachtman

    2018-01-01

    Conclusion: This study advances efforts to validate CD80 as a therapeutic target for treatment-resistant nephrotic syndrome, and implements a precision medicine-based approach to this serious kidney condition in which the selection of a therapeutic agent is guided by the underlying disease mechanism operating in individual patients.

  1. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  2. Designing Nanoscale Precipitates in Novel Cobalt-based Superalloys to Improve Creep Resistance and Operating Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dunand, David C. [Northwestern Univ., Evanston, IL (United States); Seidman, David N. [Northwestern Univ., Evanston, IL (United States); Wolverton, Christopher [Northwestern Univ., Evanston, IL (United States); Saal, James E. [Northwestern Univ., Evanston, IL (United States); Bocchini, Peter J. [Northwestern Univ., Evanston, IL (United States); Sauza, Daniel J. [Northwestern Univ., Evanston, IL (United States)

    2014-10-01

    High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-base superalloys, whose strength and creep resistance can be attributed to microstructures consisting of a large volume fraction of ordered (L12) γ'-precipitates embedded in a disordered’(f.c.c.) γ-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement are nearing the theoretical limit of their operating temperatures. Conventional Co-base superalloys are solid-solution or carbide strengthened; although they see industrial use, these alloys are restricted to lower-stress applications because the absence of an ordered intermetallic phase places an upper limit on their mechanical performance. In 2006, a γ+γ' microstructure with ordered precipitates analogous to (L12) Ni3Al was first identified in the Co-Al-W ternary system, allowing, for the first time, the development of Co-base alloys with the potential to meet or even exceed the elevated-temperature performance of their Ni-base counterparts. The potential design space for these alloys is complex: the most advanced Ni-base superalloys may contain as many as 8-10 minor alloying additions, each with a specified purpose such as raising the γ' solvus temperature or improving creep strength. Our work has focused on assessing the effects of alloying additions on microstructure and mechanical behavior of γ'-strengthened Co-base alloys in an effort to lay the foundations for understanding this emerging alloy system. Investigation of the size, morphology, and composition of γ' and other relevant phases is investigated utilizing scanning electron microscopy (SEM) and 3-D picosecond ultraviolet local electrode atom probe tomography (APT). Microhardness, compressive yield stress at ambient and elevated temperatures, and compressive high-temperature creep measurements are employed to

  3. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  4. Corporate governance through codes

    NARCIS (Netherlands)

    Haxhi, I.; Aguilera, R.V.; Vodosek, M.; den Hartog, D.; McNett, J.M.

    2014-01-01

    The UK's 1992 Cadbury Report defines corporate governance (CG) as the system by which businesses are directed and controlled. CG codes are a set of best practices designed to address deficiencies in the formal contracts and institutions by suggesting prescriptions on the preferred role and

  5. Contribution to the design and realisation of a specific circuit to code the information coming from the calorimeter of the LHC

    International Nuclear Information System (INIS)

    Chambert-Hermel, V.

    1996-01-01

    LHC (Large Hadron Collider) signals required a sampling system with excess of 16 bit dynamic range and 8 hit precision. The sampling frequency is 40 MHz. The use of a floating point format which fits the precision of the calorimeter is proposed. The dynamic range is divided into 8 positive sub-ranges and 5 negative ones and so a conversion into 8 plus 1 (sign) bits mantissa and 4 bits exponent is proposed. The design is built around three main blocks: a range converter which computes the three exponent bits and the sign, a set of amplifiers controlled by the range converter and a classical 8 bit ADC for the mantissa. The main effort was concentrated on the range converter as this is the most sensitive part o the architecture which sees the whole dynamic range. To minimize the problems of perturbations on the signal and reference lines, we have chosen a fully differential sample and hold, differential latched comparators and the coding logic using the AMS BICMOS 1..2 micron technology. We present the floating point format we use, the converter architecture, the elementary circuits steps of conception, the simulation results, the layout and tests results on prototypes. (author)

  6. Influence of different composite materials and cavity preparation designs on the fracture resistance of mesio-occluso-distal inlay restoration.

    Science.gov (United States)

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-01-01

    The aim of the study to evaluate the fracture resistance of a computer-aided design/computer-aided manufacturing (CAD/CAM) and three indirect composite materials for three different mesio-occluso-distal (MOD) inlay cavity designs. A total of 120 mandibular third molar were divided into three groups: (G1) non-proximal box, (G2) 2-mm proximal box, and (G3) 4-mm proximal box. Each cavity design received four composite materials: Estenia, Epricord (Kuraray, Japan), Tescera (Bisco, USA), and Cerasmart CAD/CAM blocks (GC, USA). The specimens were subjected to a compressive load at a crosshead speed of 1 mm/min. The data was analyzed using the two-way analysis of variance and Bonferroni post hoc test (pinlay restoration.

  7. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    Science.gov (United States)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  8. Design of martensitic/ferritic heat-resistant steels for application at 650 deg. C with supporting thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, V.; Balun, J. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany); Sauthoff, G. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany)], E-mail: g.sauthoff@mpie.de; Inden, G.; Schneider, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40074 Duesseldorf (Germany)

    2008-03-25

    In view of developing novel heat-resisting steels for applications in conventional power plants with service temperatures of 650 deg. C, a series of martensitic/ferritic model steels with 12 wt.%Cr were studied to achieve an increased creep resistance through additional alloying with various elements for controlled precipitation of M{sub 23}C{sub 6} carbides, MX carbonitrides and intermetallic Laves phase. The alloy design relied on thermodynamic simulation calculations using Thermo-Calc and DICTRA. The mechanical testing concentrated on creep at 650 deg. C for up to 8000 h. The alloy optimization resulted in creep rupture strengths above those of the martensitic/ferritic P92 steel. The work was part of a cooperative project within the German MARCKO program.

  9. Introduction of SCIENCE code package

    International Nuclear Information System (INIS)

    Lu Haoliang; Li Jinggang; Zhu Ya'nan; Bai Ning

    2012-01-01

    The SCIENCE code package is a set of neutronics tools based on 2D assembly calculations and 3D core calculations. It is made up of APOLLO2F, SMART and SQUALE and used to perform the nuclear design and loading pattern analysis for the reactors on operation or under construction of China Guangdong Nuclear Power Group. The purpose of paper is to briefly present the physical and numerical models used in each computation codes of the SCIENCE code pack age, including the description of the general structure of the code package, the coupling relationship of APOLLO2-F transport lattice code and SMART core nodal code, and the SQUALE code used for processing the core maps. (authors)

  10. Development of the negative-tone molecular resists for EB/EUVL having high EUV absorption capacity and molecular design method

    Science.gov (United States)

    Sato, Takashi; Takigawa, Tomoaki; Togashi, Yuta; Toida, Takumi; Echigo, Masatoshi; Harada, Tetsuo; Watanabe, Takeo; Kudo, Hiroto

    2017-10-01

    In this paper, we designed the synthesis of negative-type molecular resist materials for EB and EUVL exposure tools, and their properties were examined. The resist materials for EUVL have been required showing higher sensitivity for high throughput in the lithographic process, and expecting lower shot noise to improve a roughness. In EUVL process, the resist materials must be ionized by absorbing EUV to emit more secondary electrons. The EUV absorption of the synthesized resist materials was measured using their thin films on the silicon wafer, and it was observed that the ratio of EUV absorption of the synthesized resist was higher than in the comparison of that of PHS as a reference., i.e., 2.4 times higher absorption was shown. Furthermore, we examined the relationship between the ratios of EUV absorptions and functional groups of the resist materials. As the result, the sensitivity of resist materials under EUV exposure tool was consistent with their structures.

  11. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns.

    Science.gov (United States)

    Harada, Akio; Nakamura, Keisuke; Kanno, Taro; Inagaki, Ryoichi; Örtengren, Ulf; Niwano, Yoshimi; Sasaki, Keiichi; Egusa, Hiroshi

    2015-04-01

    The aim of this study was to investigate whether different fabrication processes, such as the computer-aided design/computer-aided manufacturing (CAD/CAM) system or the manual build-up technique, affect the fracture resistance of composite resin-based crowns. Lava Ultimate (LU), Estenia C&B (EC&B), and lithium disilicate glass-ceramic IPS e.max press (EMP) were used. Four types of molar crowns were fabricated: CAD/CAM-generated composite resin-based crowns (LU crowns); manually built-up monolayer composite resin-based crowns (EC&B-monolayer crowns); manually built-up layered composite resin-based crowns (EC&B-layered crowns); and EMP crowns. Each type of crown was cemented to dies and the fracture resistance was tested. EC&B-layered crowns showed significantly lower fracture resistance compared with LU and EMP crowns, although there was no significant difference in flexural strength or fracture toughness between LU and EC&B materials. Micro-computed tomography and fractographic analysis showed that decreased strength probably resulted from internal voids in the EC&B-layered crowns introduced by the layering process. There was no significant difference in fracture resistance among LU, EC&B-monolayer, and EMP crowns. Both types of composite resin-based crowns showed fracture loads of >2000 N, which is higher than the molar bite force. Therefore, CAD/CAM-generated crowns, without internal defects, may be applied to molar regions with sufficient fracture resistance. © 2015 Eur J Oral Sci.

  12. THE USE OF A CODED HEALING ABUTMENT AS AN IMPRESSION COPING TO DESIGN AND MILL AN INDIVIDUALIZED ANATOMIC ABUTMENT : A CLINICAL REPORT

    NARCIS (Netherlands)

    Telleman, Gerdien; Raghoebar, Gerry M.; Vissink, Arjan; Meijer, Henny J. A.

    A coded implant healing abutment makes an impression at the implant level no longer necessary. An impression is made of the healing abutment, which is placed onto the implant directly after implant placement. The codes embedded in the occlusal surface of the healing abutment provide essential

  13. Conception et optimisation de codes AL-FEC : les codes GLDPC-Staircase

    OpenAIRE

    Mattoussi, Ferdaouss

    2014-01-01

    This work is dedicated to the design, analysis and optimization of Application-Level Forward Erasure Correction (AL-FEC) codes. In particular, we explore a class of Gen- eralized LDPC (GLDPC) codes, named GLDPC-Staircase codes, involving the LDPC- Staircase code (base code) as well as Reed-Solomon (RS) codes (outer codes). In the first part of this thesis, we start by showing that RS codes having “quasi” Han- kel matrix-based construction are the most suitable MDS codes to obtain the structur...

  14. Microstructural design of PCA austenitic stainless steel for improved resistance to helium embrittlement under HFIR irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Several variants of Prime Candidate Alloy (PCA) with different preirradiation thermal-mechanical treatments were irradiated in HFIR and were evaluated for embrittlement resistance via disk-bend tensile testing. Comparison tests were made on two heats of 20%-cold-worked type 316 stainless steel. None of the alloys were brittle after irradiation at 300 to 400 0 C to approx. 44 dpa and helium levels of 3000 to approx.3600 at. ppm. However, all were quite brittle after similar exposure at 600 0 C. Embrittlement varied with alloy and pretreatment for irradiation to 44 dpa at 500 0 C and to 22 dpa at 600 0 C. Better relative embrittlement resistance among PCA variants was found in alloys which contained prior grain boundary MC carbide particles that remained stable under irradiation

  15. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    Science.gov (United States)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  16. Randomized Clinical Trial Design to Assess Abatacept in Resistant Nephrotic Syndrome

    OpenAIRE

    Howard Trachtman; Debbie S. Gipson; Michael Somers; Cathie Spino; Sharon Adler; Lawrence Holzman; Jeffrey B. Kopp; John Sedor; Sandra Overfield; Ayanbola Elegbe; Michael Maldonado; Anna Greka

    2018-01-01

    Introduction Treatment-resistant nephrotic syndrome is a rare form of glomerular disease that occurs in children and adults. No Food and Drug Administration−approved treatments consistently achieve remission of proteinuria and preservation of kidney function. CD80 (B7-1) can be expressed on injured podocytes, and administration of abatacept (modified CTLA4-Ig based on a natural ligand to CD80) has been associated with sustained normalization of urinary protein excretion and maintenance of glo...

  17. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Sommer, Morten

    2013-01-01

    collateral sensitivity and resistance profiles, revealing a complex collateral sensitivity network. On the basis of these data, we propose a new treatment framework-collateral sensitivity cycling-in which drugs with compatible collateral sensitivity profiles are used sequentially to treat infection...... pathogens. These results provide proof of principle for collateral sensitivity cycling as a sustainable treatment paradigm that may be generally applicable to infectious diseases and cancer....

  18. Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments.

    Science.gov (United States)

    Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2015-07-01

    Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P  .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P crowns cemented on solid abutments showed sufficient resistance to withstand normal chewing forces. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All

  19. Silencing long non-coding RNA ROR improves sensitivity of non-small-cell lung cancer to cisplatin resistance by inhibiting PI3K/Akt/mTOR signaling pathway.

    Science.gov (United States)

    Shi, Hui; Pu, Jin; Zhou, Xiao-Li; Ning, Yun-Ye; Bai, Chong

    2017-05-01

    This study aimed to investigate the effects of long non-coding RNA ROR (regulator of reprogramming) on cisplatin (DDP) resistance in patients with non-small-cell lung cancer by regulating PI3K/Akt/mTOR signaling pathway. Human cisplatin-resistant A549/DDP cell lines were selected and divided into control group, negative control group, si-ROR group, ROR over-expression group, Wortmannin group, and ROR over-expression + Wortmannin group. MTT assay was used to determine the optimum inhibitory concentration of DDP. Quantitative real-time polymerase chain reaction and western blotting were applied to detect expressions of long non-coding RNA ROR, PI3K, Akt, and mTOR. Colony-forming assay, scratch test, Transwell assay, and flow cytometry were conducted to detect cell proliferation, migration, invasion, and apoptosis, respectively. Tumor-formation assay was performed to detect the growth of transplanted tumors. Long non-coding RNA ROR expression was high in human A549/DDP cell lines. Compared with the control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, whereas the mRNA and protein expression of bax and the sensitivity of cells to DDP significantly increased. Cell proliferation, migration, and invasion abilities decreased in the si-ROR and Wortmannin groups. In comparison with control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 increased, whereas the mRNA and protein expressions of bax decreased, the sensitivity of cells to DDP significantly increased, and cell proliferation, migration, and invasion abilities decreased in the ROR over-expression group. For nude mice in tumor-formation assay, compared with control and negative control groups, the tumor weight was found to be lighter (1.03 ± 0.15) g, the protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, and the protein expression of bax increased in the si-ROR group. Long non-coding RNA ROR may affect

  20. Principles of speech coding

    CERN Document Server

    Ogunfunmi, Tokunbo

    2010-01-01

    It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the