WorldWideScience

Sample records for resistant composite coating

  1. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  2. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  3. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  4. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  5. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  6. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  7. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura e Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2013-11-01

    The high corrosion rate of magnesium alloys is the main drawback to their widespread use, especially in biomedical applications. There is a need for developing new coatings that provide simultaneously corrosion resistance and enhanced biocompatibility. In this work, a composite coating containing polyether imide, with several diethylene triamine and hydroxyapatite contents, was applied on AZ31 magnesium alloys pre-treated with hydrofluoric acid by dip coating. The coated samples were immersed in Hank's solution and the coating performance was studied by electrochemical impedance spectroscopy and scanning electron microscopy. In addition, the behavior of MG63 osteoblastic cells on coated samples was investigated. The results confirmed that the new coatings not only slow down the corrosion rate of AZ31 magnesium alloys in Hank's solution, but also enhance the adhesion and proliferation of MG63 osteoblastic cells, especially when hydroxyapatite nanoparticles were introduced in the coating formulation. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  9. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  10. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    Directory of Open Access Journals (Sweden)

    Maryana Zagula-Yavorska

    2017-12-01

    Full Text Available A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a, rhodium-modified (b, and rhodium- and hafnium-modified (c. All three coatings consisted of two layers: the additive layer and the interdiffusion layer. Rhodium-doped (rhodium- and hafnium-doped β-NiAl phase was found in the additive layer of the rhodium-modified (rhodium- and hafnium-modified aluminide coating. Topologically Closed-Pack (μ and σ phases precipitated in the matrix of the interdiffusion layer. Rhodium also dissolved in the β-NiAl phase between the additive and interdiffusion layers, whereas Hf-rich particles precipitated in the (Ni,RhAl phase at the additive/interdiffusion layer interface in the rhodium- and hafnium-modified coating (c. The rhodium-modified aluminide coating (b has better oxidation resistance than the nonmodified one (a, whereas the rhodium- and hafnium-modified aluminide coating (c has better oxidation resistance than the rhodium-modified (b and nonmodified (a ones.

  11. Development of HVOF Sprayed Erosion/Oxidation Resistant Coatings for Composite Structural Components in Propulsion Systems

    Science.gov (United States)

    Knight, R.; Ivosevic, M.; Twardowski, T. E.; Kalidindi, S. R.; Sutter, James K.; Kim, D. Y.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Thermally sprayed coatings are being studied and developed as methods of enabling lightweight composites to be used more extensively as structural components in propulsion applications in order to reduce costs and improve efficiency through weight reductions. The primary goal of this work is the development of functionally graded material [FGM] polymer/metal matrix composite coatings to provide improved erosion/oxidation resistance to polyimide-based polymer matrix composite [PMC] substrates. The goal is to grade the coating composition from pure polyimide, similar to the PMC substrate matrix on one side, to 100 % WC-Co on the other. Both step-wise and continuous gradation of the loading of the WC-Co reinforcing phase are being investigated. Details of the coating parameter development will be presented, specifically the high velocity oxy-fuel [HVOF] combustion spraying of pure PMR-11 matrix material and layers of various composition PMR-II/WC-Co blends onto steel and PMR-15 composite substrates. Results of the HVOF process optimization, microstructural characterization, and analysis will be presented. The sprayed coatings were evaluated using standard metallographic techniques - optical and scanning electron microscopy [SEM]. An SEM + electron dispersive spectroscopy [EDS] technique has also been used to confirm retention of the PMR-II component. Results of peel/butt adhesion testing to determine adhesion will also be presented.

  12. Fracture resistance of composite and amalgam cores retained by pins coated with new adhesive resins.

    Science.gov (United States)

    Tjan, A H; Dunn, J R; Grant, B E

    1992-06-01

    This study determined the effects of coating pins with either Panavia EX or with 4-META (Cover-Up) materials on the fracture resistance of pin-retained amalgam and composite cores. Gold-plated stainless steel (TMS) and titanium (Filpin) self-threading pins were used. Findings of this study corroborated the findings of several other studies that the use of pins reduces the fracture resistance of restorations. However, coating the pins with adhesion promoters such as Panavia EX and 4-META materials has been found to be effective in improving the fracture resistance. Cross-preference was observed between TMS and Filpin pins; that is, Panavia material coating was more effective with TMS pins, while 4-META was more effective with Filpin pins.

  13. Ni-W coatings electrodeposited on carbon steel: Chemical composition, mechanical properties and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Arganaraz, M.P. Quiroga; Ribotta, S.B. [INQUINOA-CONICET, Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, Ayacucho 471, (4000) San Miguel de Tucuman (Argentina); Folquer, M.E., E-mail: mefolquer@fbqf.unt.edu.ar [INQUINOA-CONICET, Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, Ayacucho 471, (4000) San Miguel de Tucuman (Argentina); Gassa, L.M.; Benitez, G.; Vela, M.E.; Salvarezza, R.C. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Suc. 4, C.C. 16, (1900) La Plata (Argentina)

    2011-07-01

    Highlights: > Hard, ductile and adherent nanostructured Ni-W coatings on carbon steel. > New procedures for achieving deposits by current pulse techniques. > Current pulse frequency was the dominant factor to define coating characteristics. > Ni-W coatings protect the carbon steel from corrosion induced by sulphate anions. - Abstract: Hard, ductile and adherent nanostructured Ni-W coatings were electrodeposited on carbon steel from electrolyte solutions containing sodium tungstate, nickel sulfate and sodium citrate, using different current pulse programs. Current pulse frequency was the dominant factor to define chemical composition, grain size, thickness and hardness. According to the electrodeposition conditions the deposited coatings showed 15-30 at% W, the grain size ranged from 65 to 140 nm, and the hardness varied from 650 to 850 Hv. Tungsten carbide also present in the coating contributed to its hardness. The corrosion resistance of the Ni-W coated steel was tested by potentiodynamic polarization in a neutral medium containing sulphate ions. The Ni-W coating protected the carbon steel from localized corrosion induced by sulphate anions.

  14. Assessment of Erosion Resistance of Coated Polymer Matrix Composites for Propulsion Applications

    Science.gov (United States)

    Miyoshi, Kazuhisa; Sutter, James K.; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.

    2004-01-01

    The erosion behavior of tungsten carbide-cobalt (WC-Co) coated and uncoated polymer matrix composites (PMCs) was examined with solid particle impingement using air jets. Erosion tests were conducted with Arizona road dust impinging at 20 degrees, 60 degrees, and 90 degrees angles at a velocity of 229 meters per second at both 294 and 366 K. Noncontact optical profilometry was used to measure the wear volume loss. Results indicate that the WC-Co coating enhanced erosion resistance and reduced erosion wear volume loss by a factor of nearly 2. This should contribute to longer wear lives, reduced related breakdowns, decreased maintenance costs, and increased product reliability.

  15. Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Sohi, M. Heydarzadeh, E-mail: mhsohi@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2011-08-18

    Highlights: > This work aims to study the oxidation behavior of plasma sprayed YSZ-alumina composites coatings. > The composites TBC coatings of YSZ-alumina showed better oxidation resistance than normal YSZ. > The durability of composite coating with alumina is a novel method and has not been reported before. - Abstract: In the present work oxidation behavior of plasma sprayed YSZ-alumina composite TBC coatings on Ni-base (IN-738LC) super alloy substrate was studied and compared to normal YSZ. Cyclic oxidation process in 4 h intervals was performed in an air electrical furnace at 1100 deg. C and the specimens were cooled in the furnace during each cycle. Preliminary checking was done with naked eye and further investigation was achieved using scanning electron microscopy. If there were any cracks or spallation in the coating's edge, the tests were stopped, the time was recorded and coating microstructure was studied. YSZ-alumina composites were made by applying alumina layer at the top of YSZ or mixed with YSZ as a TBC layer on the bond coat. Composite coatings of YSZ-alumina having alumina as a top coat and the mixed YSZ-alumina layer, showed better resistance than normal YSZ in oxidation test. It was observed that alumina overlay on YSZ has promoted the oxidation resistance of the coatings for longer times by preventing infiltration of oxygen through YSZ layer.

  16. Improvement of Strength and Oxidation Resistance for SiC/graphite Composites by SiC coating

    Science.gov (United States)

    Yang, Wanli; Shi, Zhongqi; Li, Hongwei; Li, Zhen; Jin, Zhihao; Qiao, Guanjun

    2011-03-01

    SiC/graphite composites with exelent machinable properties and thermal shock behaviour were successfully fabricated by pressureless sintering at 1700°C in nitrogen atmosphere. A dipping infiltration process was applied to improve the strength and oxidation resistance of the composites. Dense SiC coating was covered on the composites' surface by heat-treating at 1400°C in nitrogen atmosphere with dipping infiltration of silica sol and phenolic resin solutions. The flexural strength of the SiC coated composites were improved from 60 MPa to 140 MPa obviously, and the weight loss of the SiC coated composites was reduced more than 20 % comparing with the uncoated composites by oxidation resistance testing at 1000 °C for 24 h in air. SEM micrographs shows that SiC coating was surrounded the surface of pores and XRD pattern revealed that the new layer was SiC.

  17. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    Science.gov (United States)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  18. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  19. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  20. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  1. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  2. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Oxidation and Ablation Resistance of Low Pressure Plasma-Sprayed ZrB2-Si Composite Coating

    Science.gov (United States)

    Niu, Yaran; Wang, Hongyan; Huang, Liping; Li, Hong; Liu, Xuanyong; Zheng, Xuebin; Ding, Chuanxian

    2014-02-01

    In the present work, ZrB2-based coating containing Si additive was prepared by low pressure plasma spray process. The chemical composition and microstructure of the ZrB2-Si coating were characterized by XRD, EDS and SEM. The oxidation behavior of the coating was investigated in ambient air for different duration time. The ablation-resistant property of the coating was carried out using a plasma flame. The results obtained indicate that the ZrB2-Si composite coating exhibited compact lamellar microstructure with a porosity less than 5%. The silicon phase was uniformly distributed in the ZrB2 matrix. The composite coating presented excellent oxidation-resistance at high temperature of 1500 °C, which resulted from the formed continuous and dense glassy silicon oxide film on its surface. The ablation resistance of the ZrB2-Si coating has been proved to be excellent, which could withstand the plasma flame (above 2000 °C, atmosphere) for 10 min.

  4. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  5. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  6. Analysis of the Effect of Surface Modification on Polyimide Composites Coated with Erosion Resistant Materials

    Science.gov (United States)

    Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)

    2003-01-01

    The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the

  7. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  8. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    International Nuclear Information System (INIS)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho

    2015-01-01

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances

  9. Contribution to the study of the influence of zinc bath composition on corrosion resistance of coatings obtained by galvanization

    International Nuclear Information System (INIS)

    Cabrillac, Claude

    1969-01-01

    This research thesis deals with the influence of zinc purity on the corrosion resistance of a coating obtained by galvanization, and on its effect on cathodic protection. This study therefore addresses methods and tests processes (notably salt spray test) aiming at assessing the efficiency of steel protection by hot galvanization, and aims at highlighting the influence of galvanization bath purity or composition on corrosion resistance of galvanized layers

  10. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials

    Science.gov (United States)

    Wang, Hongyu; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-02-01

    Heat resistant microwave absorbing materials were prepared by compression molding method, using polyimide resin as matrix and SiO2 coated carbonyl iron (CI) as filler. The SiO2 coated CI particles were prepared by Stober process. The microwave absorbing properties and the effect of heat treatment on the electromagnetic properties of SiO2 coated CI/polyimide composites were investigated. When the content of SiO2 coated CI is 60 wt%, the value of minimum reflection loss decreases from -25 dB to -33 dB with the thickness increases from 1.5 mm to 2.1 mm. According to the thermal-gravimetric analyses (TGA) curves, the polyimide matrix can be used at 300 °C for long time. The complex permittivity of the composites slightly increases while the complex permeability almost keeps constant after heat treatment at 300 °C for 10 h, which indicating that the composites can be used at elevated temperature as microwave absorbing materials at the same time have good heat resistance and microwave absorption.

  12. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  13. Radiation curable coating compositions

    International Nuclear Information System (INIS)

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  14. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  15. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  16. Formation of structure, phase composition and properties of electro explosion resistant coatings using electron-beam processing

    International Nuclear Information System (INIS)

    Romanov, Denis A.; Sosnin, Kirill V.; Budovskikh, Evgenij A.; Gromov, Viktor E.; Semin, Alexander P.

    2014-01-01

    For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB 2 Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beam processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times

  17. Mg-MOF-74/MgF₂ Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance.

    Science.gov (United States)

    Liu, Wei; Yan, Zhijie; Ma, Xiaolu; Geng, Tie; Wu, Haihong; Li, Zhongyue

    2018-03-07

    Surface modification on Mg alloys is highly promising for their application in the field of bone repair. In this study, a new metal-organic framework/MgF₂ (Mg-MOF-74/MgF₂) composite coating was prepared on the surface of AZ31B Mg alloy via pre-treatment of hydrofluoric acid and in situ hydrothermal synthesis methods. The surface topography of the composite coating is compact and homogeneous, and Mg-MOF-74 has good crystallinity. The corrosion resistance of this composite coating was investigated through Tafel polarization test and immersion test in simulated body fluid at 37 °C. It was found that Mg-MOF-74/MgF₂ composite coating significantly slowed down the corrosion rate of Mg alloy. Additionally, Mg-MOF-74/MgF₂ composite coating expresses super-hydrophilicity with the water contact angle of nearly 0°. In conclusion, on the basis of MgF₂ anticorrosive coating, the introduction of Mg-MOF-74 further improves the biological property of Mg alloys. At last, we propose that the hydrophilicity of the composite coating is mainly owing to the large number of hydroxyl groups, the high specific surface area of Mg-MOF-74, and the rough coating produced by Mg-MOF-74 particles. Hence, Mg-MOF-74 has a great advantage in enhancing the hydrophilicity of Mg alloy surface.

  18. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  19. Electroless alloy/composite coatings: A review

    Indian Academy of Sciences (India)

    The co-deposition of particulate matter or substance within the growing film has led to a new generation of electroless composite coatings, many of which possess excellent wear and corrosion resistance. This valuable process can coat not only electrically conductive materials including graphite but also fabrics, insulators ...

  20. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response

    Science.gov (United States)

    Hong, Wei; Guo, Fangwei; Chen, Jianwei; Wang, Xin; Zhao, Xiaofeng; Xiao, Ping

    2018-05-01

    To improve the osteointegration of polyetheretherketone (PEEK) spinal fusions, the 45S5 bioactive glass® (BG)-chitosan (CH) composite was used to coat the PEEK by a dip-coating method at room temperature. A robust bonding between the BG-CH composite coating and the PEEK was achieved by a combined surface treatment of sand blasting and acid etching. The effects of surface wettability and surface roughness on the adhesion of the BG-CH composite coating were characterized by fracture resistance (Gc), respectively, measured by four-point bending tests. Compared with the surface polar energy (wettability), the surface roughness (>3 μm) played a more important role for the increase in Gc values by means of crack shielding effect under the mixed mode stress. The maximum adhesion strength (σ) of the coatings on the modified PEEK measured by the tensile pull-off test was about 5.73 MPa. The in vitro biocompatibilities of PEEK, including cell adhesion, cell proliferation, differentiation, and bioactivity in the stimulated body fluid (SBF), were enhanced by the presence of BG-CH composite coatings, which also suggested that this composite coating method could provide an effective solution for the weak PEEK-bone integration.

  1. The influence of Al(OH)3-coated graphene oxide on improved thermal conductivity and maintained electrical resistivity of Al2O3/epoxy composites

    International Nuclear Information System (INIS)

    Heo, Yuseon; Im, Hyungu; Kim, Jiwon; Kim, Jooheon

    2012-01-01

    This study investigates the thermal and electrical conductivity of Al 2 O 3 /epoxy composites containing graphene oxide and Al(OH) 3 -coated graphene oxide. The functionalized graphene oxide was prepared by sol–gel method with aluminum isopropoxide (AlIP). The aluminum hydroxide layer (50–150 nm) was successfully formed on graphene oxide surface. The introduction of both graphene oxide and Al(OH) 3 -coated graphene oxide in Al 2 O 3 /epoxy composites significantly improved the thermal conductivity due to the high thermal conductivity of graphene-based materials and their role as heat conductive bridges among the Al 2 O 3 particles ( 2 O 3 /epoxy composites-containing 5 wt% graphene oxide and Al(OH) 3 -coated graphene oxide are 3.5 and 3.1 W/mK, respectively. On the other hand, the Al(OH) 3 -coated graphene oxide/Al 2 O 3 /epoxy composites exhibited the more retained electrical resistivity compared with graphene oxide/Al 2 O 3 /epoxy composite. Thus, the Al(OH) 3 -coated graphene oxide composites showed simultaneously improvements in the thermal conductivity and retention of electrical resistivity.

  2. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  3. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  4. Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants.

    Science.gov (United States)

    Kim, Sae-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jong-Ho; Lee, Sung-Mi

    2017-12-01

    The utility of a novel ceramic/polymer-composite coating with a micro-textured microstructure that would significantly enhance the functions of biodegradable Mg implants is demonstrated here. To accomplish this, bioactive hydroxyapatite (HA) micro-dots can be created by immersing a Mg implant with a micro-patterned photoresist surface in an aqueous solution containing calcium and phosphate ions. The HA micro-dots can then be surrounded by a flexible poly(l-lactic)-acid (PLLA) polymer using spin coating to form a HA/PLLA micro-textured coating layer. The HA/PLLA micro-textured coating layer showed an excellent corrosion resistance when it was immersed in a simulated body fluid (SBF) solution and good biocompatibility, which was assessed by in vitro cell tests. In addition, the HA/PLLA micro-textured coating layer had high deformation ability, where no apparent changes in the coating layer were observed even after a 5% elongation, which would be unobtainable using HA and PLLA coating layers; furthermore, this allowed the mechanically-strained Mg implant with the HA/PLLA micro-textured coating layer to preserve its excellent corrosion resistance and biocompatibility in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  6. The Study of Corrosion and Wear Resistance of Copper Composite Coatings with Inclusions of Carbon Nanomaterials in the Copper Metal Matrix

    Directory of Open Access Journals (Sweden)

    Viktorija MEDELIENĖ

    2011-07-01

    Full Text Available This paper deals with the peculiarities of the behaviour of copper nanocomposite coatings with CNMs inclusions under the free corrosion conditions in the acidic medium. The parameters of corrosion current density (jcorr, anodic dissolution current density (ia and polarization resistance (Rp have been determined. In the acidic medium a stronger oxidation of nanostructured copper nanocomposites occurred. With longer immersion periods more corrosion products are formed, resulting in a increase in the polarization resistance (Rp of corrosion. Corrosion products cover the whole surface of the coatings and the corrosion rate (jcorr tends towards a steady value of 1.7×10-3 ¸ 2.1×10-3 A·cm-2 for all copper coatings studied: 1.7×10-3 A·cm-2 for both Cu and Cu-CNM1, 1.9×10-3 A·cm-2 - for Cu-CNM2 and 2.1×10-3 A·cm-2 - for Cu-CNM3 composite coatings. It has been established that nanocomposites possess a higher wear resistance as compared to that of pure copper. The damage of metal characterized as a depth scar (đ is lower. The roughness of the composites studied was found to be the essential factor affecting their wear resistance. Therefore, the wear resistance of nanocomposites is impaired when they are deposited on a hard steel substrate.http://dx.doi.org/10.5755/j01.ms.17.2.481

  7. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  8. Coating compositions and processes

    International Nuclear Information System (INIS)

    Miller, L.S.

    1975-01-01

    A description is given of a coating composition comprising: (1) a liquid, acrylate ester resin which is curable by exposure to ionizing radiation and which, when so curing, is susceptible to inhibition of surface curing by atmospheric oxygen; and (2) from 0.1% to 10% by weight of the composition of an acidic halide soluble in or dispersible in the resin and selected from the group consisting of: (a) compounds of the formula RCOX where R is an aliphatic or aromatic group and X is Cl or Br; (b) compounds of the formula R'SO 2 X where R' is an aromatic group and X is Cl or Br; and, (c) cyanuric chloride, calcium hypochlorite and phosphorus oxychloride. (author)

  9. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  10. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  11. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  12. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  13. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  14. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  15. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  16. Novel coating compositions

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Kobayashi, Juichi; Nakamoto, Hideo.

    1969-01-01

    An acrylic coating composition rapidly hardenable by irradiating with ionizing radiations or light beams is given using hydroxyl group-containing vinyl monomers, polycarboxylic acid anhydrides, epoxy group-containing vinyl monomers and an organic solvent having a boiling point of at least 120 0 C. The process comprises the steps of first and second reactions. The first reaction takes place between one mol of a hydroxyl group of a basic polymer and at least 0.1 mol of polycarboxylic acid anhydride, wherein the basic polymer has a molecular weight ranging from 5,000 to 100,000 and consists of 1-40% by weight of vinyl monomer containing hydroxyl group, at least 30% of (meth)acrylic monomer and other vinyl monomers if required. The second reaction takes place between one mol of hydroxyl plus a carboxyl group of the thus obtained basic polymer and at least 0.1 mol of an epoxy group-containing vinyl monomer to produce a prepolymer. The prepolymer is mixed with a solvent such as ethyl benzene to produce the coating material. The electron beam accelerator energy level may be 0.1-2.0 MeV. In light beam polymerization, benzoin is particularly utilized as an intensifying substance. In one example, a basic polymer is produced by reacting 39 parts of styrene, 37 parts of ethyl acrylate, 24 parts of 2-hydroxyl ethyl acrylate, 4 parts of dimethyl amino ethyl methacrylate and others. A prepolymer is produced by reacting this basic polymer with 30 parts of glycidyl acrylate and others. (Iwakiri, K.)

  17. Corrosion-Resistant Acrylic Coatings

    Science.gov (United States)

    1992-03-31

    ester solvents include ethylene glycol acceptable for anti-corrosive compositions. Blistering in monoethyl ether acetate, diethylene glycol monoethyl ...corrosion and 0 is i inch or more methyl isobutyl ketone. diethyl ketone, and cyclohexa- creepage from the scribe. Ratings of 3 or above are none. Glycol ...45 * coating is determined in accordance with ASTM ether acetate, etc. D714-56. This method describes blister size as numbers The coating has

  18. Corrosion resistance of PLGA-coated biomaterials.

    Science.gov (United States)

    Szewczenko, Janusz; Kajzer, Wojciech; Grygiel-Pradelok, Magdalena; Jaworska, Joanna; Jelonek, Katarzyna; Nowińska, Katarzyna; Gawliczek, Maria; Libera, Marcin; Marcinkowski, Andrzej; Kasperczyk, Janusz

    2017-01-01

    The aim of the study was to determine the influence of PLGA bioresorbable polymer coating on corrosion resistance of metal biomaterial. Polymer coating deposited by immersion method was applied. Corrosion resistance of metal biomaterials (stainless steel, Ti6Al4V, Ti6Al7Nb) coated with PLGA polymer, after 90 days exposure to Ringer's solution was tested. The amount of metal ions released to the solution was also investigated (inductively coupled plasma-atomic emission spectrometry (ICP-AES) method). The surface of the samples was observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Degradation of PLGA was monitored with the use of the 1H NMR spectroscopy and GPC (Gel Permeation Chromatography). The studies were carried out for non-sterilized (NS) and sterilized (S) samples. Application of the polymer coating causes a reduction of release of metal ions to the solution. Depending on metal substrate different course of destruction of polymer layer was observed. After 90 days of incubation in Ringer's solution polymer layer was highly degraded, however, the composition of copolymer (ratio of the comonomeric units in the chain) remained unchanged during the whole process, which suggests even degradation. The polymer layer reduced degradation kinetics of the metal substrate. Moreover, degradation process did not change surface morphology of metal substrate and did not disturb its integrity. The results obtained indicate that the applied polymer layer improves corrosion resistance of the alloys being investigated. Thus, the developed implants with bioresorbable coatings could be advantageous for medical applications.

  19. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  20. Characteristics of electrocodeposited Ni–Co–SiC composite coating

    Indian Academy of Sciences (India)

    Unknown

    simplicity of operation to tailor made coatings for tribological applications. Generally, composites containing carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and high temperature oxidation resistance as compared to alloy and pure metal electroplating.

  1. Characteristics of electrocodeposited Ni–Co–SiC composite coating

    Indian Academy of Sciences (India)

    Unknown

    carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and high temperature oxidation resistance as compared to alloy and pure metal electroplating. In the present work ... test and corrosion testing of such nickel composite coatings were investigated.

  2. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  3. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  4. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  5. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    McCarty, W.H.; Nagy, F.A.; Guarino, J.P.

    1983-01-01

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  6. Characteristics of electrocodeposited Ni–Co–SiC composite coating

    Indian Academy of Sciences (India)

    Generally, composites containing carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and ... Morphological studies of Ni–Co–SiC coating were carried out with scanning electron microscopy and X-ray diffraction analysis to correlate the mechanical and ...

  7. Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO{sub 2} composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shiyan [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingswu@yeah.net [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing, 400715 (China); Zhong Xiankang; Dai Yan; Luo Fei [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-03-15

    In this paper, a protective multilayer coating, with electroless Ni coating as bottom layer and electrodeposited Ni-TiO{sub 2} composite coating as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and electrodeposition techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface, cross-section morphologies and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, open circuit potential and potentiodynamic polarization techniques. The results showed that the corrosion process of Ni-TiO{sub 2} composite coating was mainly composed of three stages in the long-term immersion test in the aggressive media, and could afford better corrosion and mechanical protection for the AZ91D magnesium alloy compared with single electroless Ni coating. The micro-hardness of the Ni-TiO{sub 2} composite coating improved more than 5 times than that of the AZ91D magnesium alloy.

  8. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO{sub 2} composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Obadele, Babatunde Abiodun, E-mail: obadele4@gmail.com [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Andrews, Anthony [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Engineering, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana (Ghana); Mathew, Mathew T. [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of orthopedics, Rush University Medical Center, Chicago, IL 60612 (United States); Olubambi, Peter Apata [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Pityana, Sisa [Institute for NanoEngineering Research, Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); National Laser Center, Council for Scientific and Industrial Research, Pretoria (South Africa)

    2015-08-01

    Highlights: • The tribocorrosion behaviour of TiNiZrO{sub 2} composite is investigated. • The effect of ZrO{sub 2} on the microstructure is discussed. • The effect of the combined action of wear and chemical process is reported. • ZrO{sub 2} addition improved the tribocorrosion property of Ti6Al4V. - Abstract: Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H{sub 2}SO{sub 4} solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO{sub 2} cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO{sub 2} particles. The results obtained show that addition of ZrO{sub 2} improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO{sub 2} addition, combination of high hardness of Ti{sub 2}Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  9. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  10. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  11. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  12. Composite Coatings of Chromium and Nanodiamond Particles on Steel

    Directory of Open Access Journals (Sweden)

    Gidikova N.

    2017-12-01

    Full Text Available Chrome plating is used to improve the properties of metal surfaces like hardness, corrosion resistance and wear resistance in machine building. To further improve these properties, an electrodeposited chromium coating on steel, modified with nanodiamond particles is proposed. The nanodiamond particles (average size 4 nm measured by TEM are produced by detonation synthesis (NDDS. The composite coating (Cr+NDDS has an increased thickness, about two times greater microhardness and finer micro-structure compared to that of unmodified chromium coating obtained under the same galvanization conditions. In the microstructure of specimen obtained from chrome electrolyte with concentration of NDDS 25 g/l or more, “minisections” with chromium shell were found. They were identified by metallographic microscope and X-ray analyser on etched section of chromium plated sample. The object of further research is the dependence of the presence of NDDS in the composite coating from the nanodiamond particles concentration in the chroming electrolyte.

  13. Nylon/Graphene Oxide Electrospun Composite Coating

    Directory of Open Access Journals (Sweden)

    Carmina Menchaca-Campos

    2013-01-01

    Full Text Available Graphite oxide is obtained by treating graphite with strong oxidizers. The bulk material disperses in basic solutions yielding graphene oxide. Starting from exfoliated graphite, different treatments were tested to obtain the best graphite oxide conditions, including calcination for two hours at 700°C and ultrasonic agitation in acidic, basic, or peroxide solutions. Bulk particles floating in the solution were filtered, rinsed, and dried. The graphene oxide obtained was characterized under SEM and FTIR techniques. On the other hand, nylon 6-6 has excellent mechanical resistance due to the mutual attraction of its long chains. To take advantage of the properties of both materials, they were combined as a hybrid material. Electrochemical cells were prepared using porous silica as supporting electrode of the electrospun nylon/graphene oxide films for electrochemical testing. Polarization curves were performed to determine the oxidation/reduction potentials under different acidic, alkaline, and peroxide solutions. The oxidation condition was obtained in KOH and the reduction in H2SO4 solutions. Potentiostatic oxidation and reduction curves were applied to further oxidize carbon species and then reduced them, forming the nylon 6-6/functionalized graphene oxide composite coating. Electrochemical impedance measurements were performed to evaluate the coating electrochemical resistance and compared to the silica or nylon samples.

  14. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  15. Internal Stresses in PVD Coated Tool Composites

    Directory of Open Access Journals (Sweden)

    Śliwa A.

    2016-09-01

    Full Text Available The aim of work is the investigation of the internal stresses in PVD coated metal matrix composites (MMC. Sintered MMC substrate is composed of the matrix with the chemical composition corresponding to the high-speed steel, reinforced with the TiC type hard carbide phase. Functionally graded composition of MMC providing of high ductility characteristic of steel in the core zone as well as high hardness characteristic of cemented carbides in the surface zone. Internal stresses were determined with use of finite element method in ANSYS environment. The reason of undertaking the work is necessity of develop the research of internal stresses, occurring in the coating, as well as in the adhesion zone of coating and substrate, which makes it possible to draw valuable conclusions concerning engineering process of the advisable structure and chemical composition of coatings. The investigations were carried out on cutting tool’s models containing defined zones differing in chemical composition.

  16. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  17. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Science.gov (United States)

    Zhang, Renhui; Liang, Jun; Wang, Qing

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  18. Brush seal shaft wear resistant coatings

    Science.gov (United States)

    Howe, Harold

    1995-03-01

    Brush seals suffer from high wear, which reduces their effectiveness. This work sought to reduce brush seal wear by identifying and testing several industry standard coatings. One of the coatings was developed for this work. It was a co-sprayed PSZ with boron-nitride added for a high temperature dry lubricant. Other coatings tested were a PSZ, chrome carbide and a bare rotor. Testing of these coatings included thermal shocking, tensile testing and wear/coefficient of friction testing. Wear testing consisted of applying a coating to a rotor and then running a sample tuft of SiC ceramic fiber against the coating. Surface speeds at point of contact were slightly over 1000 ft/sec. Rotor wear was noted, as well as coefficient of friction data. Results from the testing indicates that the oxide ceramic coatings cannot withstand the given set of conditions. Carbide coatings will not work because of the need for a metallic binder, which oxidizes in the high heat produced by friction. All work indicated a need for a coating that has a lubricant contained within itself and the coating must be resistant to an oxidizing environment.

  19. Electrochemical behavior of polypyrrole/chitosan composite coating on Ti metal for biomedical applications.

    Science.gov (United States)

    Rikhari, Bhavana; Pugal Mani, S; Rajendran, N

    2018-06-01

    In the present work, the corrosion resistance performance and biocompatibility of polypyrrole/chitosan (PPy/CHI) composite coated Ti was studied. The deposition of composite coating was carried out by electropolymerization method. The deposited PPy/CHI composite coatings were different in morphology, structural, surface roughness and wettability compared PPy coated Ti. The presence of composite coating was confirmed by solid 13 C NMR. The PPy/CHI composite coating showed enhanced microhardness and adhesion strength compared to the PPy coating. The corrosion protection ability of PPy/CHI composite coatings at various applied potentials was analyzed by dynamic electrochemical impedance spectroscopy (DEIS), exhibited higher impedance in all the potentials compared to uncoated and PPy coated Ti. The lower corrosion current density obtained for PPy/CHI-2 composite coating from polarization studies revealed increased corrosion protection ability in SBF solution. The stability of composite coating was confirmed by immersion studies. PPy/CHI-2 composite coating immersed in SBF solution enhances hydroxyapatite (HAp) formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Overview of PVD wear resistant coatings

    International Nuclear Information System (INIS)

    Teeter, F.J.

    1999-01-01

    The combined functionality of wear-resistant and low-friction multilayer coatings has widened application possibilities for a new generation of coated tools. For the first time tool wear mechanisms are comprehensively addressed both at the cutting edge and contact areas away from the edge where chip evacuation is facilitated. Since its recent market introduction a combined TiA1N and WC/C PVD coating has been proven to increase cutting performance in various metal cutting operations, notably drilling and tapping of steels and aluminum alloys. Significant improvements have been obtained under dry as well as with coolant conditions. The results of laboratory metal cutting tests and field trials to date will be described. Correlations between chip formation / wear mechanisms and coating properties are given to explain the effectiveness of this coating. (author)

  1. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  2. Development of Zn-SiC composite coatings: Electrochemical corrosion studies

    Directory of Open Access Journals (Sweden)

    Mudigere Krishnegowda Punith Kumar

    2015-03-01

    Full Text Available The Zn-SiC composite coatings were fabricated by using sulphate plating bath dispersed with 1, 2 and 3 g L-1 of 64.28 nm SiC nanoparticles. Appreciable influence on morphology and microstructure was observed in scanning electron microscopy, X-ray diffraction spectroscopy and texture co-efficient calculations for SiC incorporated zinc coatings. The electrochemical corrosion behavior of zinc and Zn-SiC composite coatings was studied by potentiodynamic polarization and electrochemical impedance analysis. Significant reduction in corrosion current and corrosion rate with increased charge transfer resistance was noticed for composite coatings. The SiC incorporated zinc coatings shown improved micro-hardness property to pure zinc coating. The properties of Zn-SiC composite coatings were compared with that of pure zinc coating.

  3. Corrosion-Resistant Alkyd Coatings

    Science.gov (United States)

    1992-02-18

    Glycol ester solvents include ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, etc. The coating has outstanding...hvdroxyl groups in the molecule. Examples of such alcohol. ,irc ethylene glycol . dicthylene glycol . methylc-v: jdunl. propylene glycol . dipropylene... glycol , butanediol. nco- pentyl glycol , butylene glycols . pcntanediol. 2.3-dime- thylpropanediol, hexanediols, hydrogenated

  4. Microstructure and abrasion resistance of plasma sprayed titania coatings

    Science.gov (United States)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  5. TiO2 coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings

    International Nuclear Information System (INIS)

    Zhang, Yuping; Zhu, Hongzheng; Zhuang, Chen; Chen, Shougang; Wang, Longqiang; Dong, Lihua; Yin, Yansheng

    2016-01-01

    The composite coatings of TiO 2 coated multi-wall carbon nanotube (MWCNTs)/bis-[triethoxysilylpropyl]tetrasulfide (BTESPT) with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technique and the experimental conditions were optimized to attain the appropriate volume ratio. The modified MWCNTs obviously improved the corrosion resistance of BTESPT and BTESPT/TiO 2 coatings, especially for the long-term corrosion resistance ability because of the good dispersion of MWCNTs. The geometry of composite coatings were explored by scanning electron microscopy, fourier transform infrared spectra and the surface coverage rate (θ), the results indicate that the composite coatings produce good cross-linked structure at the interfacial layer, the coating compactness increases gradually with the addition of TiO 2 and/or MWCNTs, and the composite coating effectively postpones the production of cracks with the addition of MWCNTs. - Highlights: • The composite coatings with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technology. • The formation of composite coating on AA 2024 surface considerably improved the corrosion resistance ability. • The composite coating with a TiO 2 to MWCNTs volume ratio of 4/1 shows the best corrosion resistance. • The kinetic evaluation of inhibitive behavior for different coatings against immersion time was explored.

  6. Epoxy Corrosion-Resistant Coating

    Science.gov (United States)

    1991-10-22

    diethylene glycol monoethyl ether acetate, etc. The coating was found to have outstanding perfor- mance when exposed to extreme heat conditions, high...ketone, methyl isobutyl ketone, diethyl ketone, and cyclohexa- none. Glycoi ester solvents include ethylene glycol monoethyl ether acetate...applied conttm» glycidyl ether groups. The preferred polyglyc- on a variety of substrates. **’ comP°unds" denved by the condensation reac- tions of

  7. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    OpenAIRE

    Li, Guo-lu; Li, Ya-long; Dong, Tian-shun; Wang, Hai-dou; Zheng, Xiao-dong; Zhou, Xiu-kai

    2018-01-01

    The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG) arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in th...

  8. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Wang, Congjie; Jiang, Bailing; Liu, Ming; Ge, Yanfeng

    2015-01-01

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed

  9. Characterization of Microstructure and Wear Resistance of PEO Coatings Containing Various Microparticles on Ti6Al4V Alloy

    Science.gov (United States)

    Li, Xinyi; Dong, Chaofang; Zhao, Qing; Pang, Yu; Cheng, Fasong; Wang, Shuaixing

    2018-02-01

    Titania-based composite coatings were prepared by plasma electrolytic oxidation (PEO) treatment of Ti6Al4V alloy in electrolyte with α-Al2O3, Cr2O3 or h-BN microparticles in suspension. The microstructure, composition of PEO composite coatings were analyzed by SEM, EDS and XRD. The wear resistance of composite ceramic coatings was studied by ball-on-disk wear test at ambient temperature and 300 °C. The results showed that the addition of microparticles accelerated the growth rate of PEO coating and changed the microstructure and composition of PEO coating. PEO coating was porous and mainly composed of rutile-TiO2, anatase-TiO2 and Al2TiO5. PEO/α-Al2O3 (Cr2O3 or h-BN) composite coating only had small micropores and appeared some α-Al2O3 (Cr2O3 or h-BN) phase. Besides, the addition of α-Al2O3 (Cr2O3 or h-BN) microparticles greatly improved the wear resistance of PEO coating. At ambient temperature, abrasive wear dominated the wear behavior of PEO coating, but abrasive wear and adhesive peel simultaneously happened at 300 °C. Whether at ambient temperature or 300 °C, PEO composite coating had better wear resistance than PEO coating. Besides, PEO/h-BN composite coating outperformed other composite coatings regardless of the temperature.

  10. Metallic Coatings for Graphite/Epoxy Composites

    Science.gov (United States)

    1980-08-01

    Perforated Foil-Coated Graphite/ Epoxy Panel .............. ........................... 4-6 4-4 Two-In. -Diameter 5052 Aluminum Alloy Repair Patch...The Phase I L i4-1 I1 evaluation indicated a need for a more corrosion-resistant aluminum alloy . The coating system selected was 0.0019-in. -thick 5052 ...application techniques on moisture resistance. The selected foil was 0.0025 in.-thick, 5052 aluminum alloy perforated with 0.010-in.-dlameter holes at a

  11. Oxidation corrosion resistant superalloys and coatings

    Science.gov (United States)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  12. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  13. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    Science.gov (United States)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  14. Vacuum tribological behaviour of self lubricant quasicrystalline composite coatings

    Science.gov (United States)

    Garcí de Blas, F. J.; Román, A.; de Miguel, C.; Longo, F.; Muelas, R.; Agüero, A.

    2003-09-01

    High temperature resistant self-lubricant coatings are needed in space vehicles for components that operate at high temperatures and/or under vacuum. Thick composite lubricant coatings containing quasicrystalline alloys (QC) as the hard phase for wear resistance, have been deposited by thermal spray. The coatings also comprise lubricating materials (silver and BaF2-CaF2 eutectic) and NiCr as the tough component. This paper describes the vacuum tribological properties of TH103, a coating belonging to this family, with excellent microstructural quality. The coating was deposited by HVOF and tested under vacuum on a pin-on-disc tribometer. Different loads, linear speeds and pin materials were studied. The pin scars and disc wear tracks were characterized by EDS-SEM. A minimum mean steady friction coefficient of 0.32 was obtained employing a X-750 Ni superalloy pin in vacuum conditions under 10 N load and 15 cm/s linear speed, showing moderate wear of the disc and low wear of the pin.

  15. Thermal barrier coating resistant to sintering

    Science.gov (United States)

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  16. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating

    Science.gov (United States)

    Huang, Yong; Yan, Yajing; Pang, Xiaofeng; Ding, Qiongqiong; Han, Shuguang

    2013-10-01

    To improve coating corrosion resistance and bioactivity, strontium (Sr) and gelatin (GLT) were simultaneously incorporated in calcium phosphate (Ca-P) to form Sr-Ca-P/GLT composite coating on titanium (Ti) by electrodeposition. The surface morphology, chemical composition, phase identification, bond strength, corrosion resistance, and cytocompatibility of the films were studied. Results revealed that the Sr-Ca-P/GLT layer was rough and inhomogeneous, with floral-like crystals or flake agglomerate morphology. The Sr-Ca-P crystals were Sr-doped apatite (hydroxyapatite and brushite), and Sr2+ ions and GLT were homogeneously distributed in the Ca-P coating. The thickness of the composite coating was almost 10 μm without delamination and/or cracking at the interface. The bond strength of the composite coating was 5.6 ± 1.8 MPa. The Sr-Ca-P/GLT coated Ti had lower corrosion rates than bare Ti, suggesting a protective character of the composite coating. Osteoblast cellular tests demonstrated that the Sr-Ca-P/GLT composite coating better enhanced the in vitro biocompatibility of Ti than Ca-P coating.

  17. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  18. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  19. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  20. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  1. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  2. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles

    Science.gov (United States)

    Janicki, Damian

    2017-09-01

    Inconel 625/Cr3C2 composite coatings were produced via a laser cladding process using Cr3C2 reinforcing particles presenting an open porosity of about 60%. A laser cladding system used consisted of a direct diode laser with a rectangular beam spot and the top-hat beam profile, and an off-axis powder injection nozzle. The microstructural characteristics of the coatings was investigated with the use of scanning electron microscopy and X-ray diffraction. A complete infiltration of the porous structure of Cr3C2 reinforcing particles and low degree of their dissolution have been achieved in a very narrow range of processing parameters. Crack-free composite coatings having a uniform distribution of the Cr3C2 particles and their fraction up to 36 vol% were produced. Comparative erosion tests between the Inconel 625/Cr3C2 composite coatings and the metallic Inconel 625 coatings were performed following the ASTM G 76 standard test method. It was found that the composite coatings have a significantly higher erosion resistance to that of metallic coatings for both 30° and 90° impingement angles. Additionally, the erosion performances of composite coatings were similar for both the normal and oblique impact conditions. The erosive wear behaviour of composite coatings is discussed and related to the unique microstructure of these coatings.

  3. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  4. Microstructure evolution and mechanical properties of TiCN-Cr nano/micro composite coatings prepared by reactive plasma spraying

    Science.gov (United States)

    Zhang, Fanyong; He, Jining; Chen, Kai; Qin, Yanfang; Li, Chao; Yin, Fuxing

    2018-01-01

    Nanostructured TiCN based composite coatings with various Cr content were prepared by reactive plasma spray (RPS) from mixed powder (Ti-graphite + Cr) under nitrogen atmosphere. Results showed that composite coatings consisted mainly of TiC0.7N0.3 phase and residual metal Cr. Metal Cr plates were homogeneously embedded in TiCN matrix with good interface bond. The TiCN-Cr composite coatings exhibited lower porosity than TiCN coatings, but increasing porosity with excess Cr addition (30 wt.%). The TiCN-20 wt.% Cr coating showed the highest hardness (1309 HV0.2) among composite coatings, slight lower than the TiCN matrix coating (1526 HV0.2). Compared with the TiCN matrix coating, the TiCN-Cr composite coatings showed higher variability in surface microhardness distribution. The TiCN-Cr composite coatings showed slight higher friction coefficients (0.4-0.6) than TiCN matrix coating (0.35). The wear resistance of TiCN-Cr composite coatings was improved with less mass loss compared with TiCN coating under the test load of 400 N. The TiCN-Cr composite coatings with high Cr content showed the mixture of abrasive and adhesive wear.

  5. Wear Resistance Assessment of Fluoropolymer Coated Gears

    Directory of Open Access Journals (Sweden)

    Lidia Nedeloni

    2017-11-01

    Full Text Available Power transmissions that incorporate gears dissipate a significant amount of energy and noise. Thus, any improvement in their performance contributes to reducing energy consumption and noise pollution. In recent years, the opportunities offered by conventional technologies to increase gear performance have been fully exploited. Therefore, surface depositions on gear teeth have become increasingly important technologies in achieving objectives such as: improving energy performance, providing greater protection against superficial defects, increasing load capacity and reducing acoustic emissions generated during operation. However, gear coating technologies have begun to be developed, but the investigations are still insufficient. In this study, we carried out wear resistance investigations performed on fluoropolymer coatings for different working speeds, loads and lubrication conditions. The results point out that the deterioration rate of the coating increases with the increase of the working speed and the applied load. In addition, a slight lubrication, applied at the start of testing, leads to a noticeable improvement in wear behaviour. This study represents one step further in understanding the wear process of fluoropolymer coated gears

  6. Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.

    2005-12-01

    Electroless Ag-polytetrafluoroethylene (PTFE) composite coatings were prepared on stainless steel sheets. The existence and distribution of PTFE in the coatings were analysed with an energy dispersive X-ray microanalysis (EDX). The contact angle values and surface energies of the Ag-PTFE coatings, silver coating, stainless steel, titanium and E. coli Rosetta were measured. The experimental results showed that stainless steel surfaces coated with Ag-PTFE reduced E. coli attachment by 94-98%, compared with silver coating, stainless steel or titanium surfaces. The anti-bacterial mechanism of the Ag-PTFE composite coatings was explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The anticorrosion properties of the Ag-PTFE composite coatings in 0.9% NaCl solution were studied. The results showed that the corrosion resistance of the Ag-PTFE composite coatings was superior to that of stainless steel 316L.

  7. Metal separators coated with carbon/resin composite layers for PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Shigehiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Asktechnica Corp., 1488 Ichikawadaimon, Nishi-yatsushiro 409-3601 (Japan); Uchida, Hiroyuki [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan); Watanabe, Masahiro [Clean Energy Research Center, University of Yamanashi, 4 Takeda, Kofu 400-8510 (Japan)

    2007-12-31

    A new type of metal separator coated with corrosion-resistant and electronically conductive carbon/resin composite layers has been developed. A flat, stainless steel plate was coated with a thin composite layer, and then ribs were formed of a similar composite over the thin layer as gas flow channels. The composite consisted of graphite, epoxy resin and a phenol hardener. By optimizing the combination and composition of materials, target values for the bulk electric conductivity and the chemical stability in hot water were cleared. The separator pieces exhibited a good corrosion resistance during soaking tests in 0.1 M H{sub 2}SO{sub 4} at 90 C over 2000 h or even at 120 C over 1200 h. The area-specific resistance of the separator coated with the thin protecting layer and the rib layer was less than 13.8 m{omega} cm{sup 2}. (author)

  8. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  9. Environmental Barrier Coatings for Ceramic Matrix Composites - An Overview

    Science.gov (United States)

    Lee, Kang; van Roode, Mark; Kashyap, Tania; Zhu, Dongming; Wiesner, Valerie

    2017-01-01

    SiC/SiC Ceramic Matrix Composites (CMCs) are increasingly being considered as structural materials for advanced power generation equipment because of their light weight, higher temperature capability, and oxidation resistance. Limitations of SiC/SiC CMCs include surface recession and component cracking and associated chemical changes in the CMC. The solutions pursued to improve the life of SiC/SiC CMCs include the incorporation of coating systems that provide surface protection, which has become known as an Environmental Barrier Coating (EBC). The development of EBCs for the protection of gas turbine hot section CMC components was a continuation of coating development work for corrosion protection of silicon-based monolithics. Work on EBC development for SiC/SiC CMCs has been ongoing at several national laboratories and the original gas turbine equipment manufacturers. The work includes extensive laboratory, rig and engine testing, including testing of EBC coated SiC/SiC CMCs in actual field applications. Another EBC degradation issue which is especially critical for CMC components used in aircraft engines is the degradation from glassy deposits of calcium-magnesium-aluminosilicate (CMAS) with other minor oxides. This paper addresses the need for and properties of external coatings on SiC/SiC CMCs to extend their useful life in service and the retention of their properties.

  10. Study of molybdenum/lanthanum-based composite conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yang Lihui; Li Junqing; Lin Cunguo; Zhang Milin; Wu Jianhua

    2011-01-01

    The molybdenum/lanthanum-based (Mo/La) composite conversion coating on AZ31 magnesium alloy was investigated and the corrosion resistance was evaluated as well. The morphology, composition and corrosion resistance of the coating were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis, respectively. The results revealed that the conversion coating consisted of spherical nodular particles, which was mainly composed of Mo, La, O and Mg. After conversion treatment the corrosion potential shifts about 500 mV positively, and the corrosion current density decreases two orders of magnitude. The corrosion resistance of AZ31 alloy is remarkably improved by Mo/La composite conversion coating.

  11. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  12. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H 2 SO 4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  13. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  14. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  15. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  16. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yu, Ha Na; Lim, Jun Woo; Suh, Jung Do; Lee, Dai Gil

    A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface. In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.

  17. Synthesis of dittmarite/Mg(OH){sub 2} composite coating on AZ31 using hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn; Mahmood, Waqas; Zhu, Yanying

    2016-03-30

    Highlights: • Synthesis of dittmarite Mg(OH){sub 2} coating on AZ31 alloy by hydrothermal method. • The mechanism of composite coating growth and its characterizations. • The coating is corrosion resistant significantly. • Lack of hydroxyl deposition on the coating surface. • Strong adhesion between the coating and the substrate. • The synthesized coating meets the cytotoxicity standards. - Abstract: In this work, we have used hydrothermal method for the synthesis of dittmarite/Mg(OH){sub 2} composite (DMC) layer on AZ31 alloy of magnesium. The synthesized coating was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). In a test immersion into the Hank's mixture for 31 days, the synthesized coating inhibited corrosion of AZ31 significantly and the amorphous calcium apatite precursor deposited on the coating surface. In another tape test, we noticed strong adhesion between the coating and substrate that eventually concludes that the synthesized coating is hydrophilic and a promising candidate to be used in the absorbable implant materials. Besides, the cytotoxicity of the AZ31 alloy with DMC coating, grown under different conditions on L-929 cells in vitro was examined indirectly through the growth inhibition method (MTT assay). The cytotoxicity of the deposited coating lie between 0 ∼ 1 that indicates it as a promising biomaterial.

  18. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Tamilselvi, M. [Department of Chemistry, Thiru Kolanjiappar Government Arts College, Virudhachalam 606001 (India); Kamaraj, P. [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Arthanareeswari, M., E-mail: arthanareeswari@gmail.com [Department of Chemistry, SRM University, Kattankulathur 603203 (India); Devikala, S. [Department of Chemistry, SRM University, Kattankulathur 603203 (India)

    2015-02-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO{sub 2}) required for phosphating.

  19. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  20. Corrosion and Wear Response of Oxide-Reinforced Nickel Composite Coatings

    Science.gov (United States)

    Tirlapur, Pradeep; Muniprakash, M.; Srivastava, Meenu

    2016-07-01

    Various grades of fuels are used in automobiles, as a result the engine components are continuously subjected to simultaneous action of corrosion and wear. Ni-SiC composite coating is the most widely investigated and commercialized wear-resistant coating in the automotive industry. However, this coating cannot be used at temperatures above 450 °C due to the tendency of SiC to react with Ni and form brittle silicides. An alternate approach is to use oxide-reinforced coatings. In the present study, zirconia, ZrO2 and, yttria-stabilized zirconia, YSZ-reinforced Ni composite coatings have been developed by electrodeposition method. It was observed from the microhardness studies that there is no significant difference in the values for Ni-SiC and Ni-ZrO2 coatings. The corrosion behavior was evaluated using polarization and electrochemical impedance studies. The studies showed that oxide particle-reinforced Ni coatings possessed better corrosion resistance due to their lower corrosion current density, I corr. Tribo-corrosion studies were carried out to understand the synergistic effect of wear and corrosion on the performance of Ni-based composite coatings in 0.5 M Na2SO4. Among various composite coatings, Ni-YSZ exhibited less material loss thereby showing better tribo-corrosion behavior.

  1. Clay nanotube composites for antibacterial nanostructured coatings

    Science.gov (United States)

    Boyer, Christen J.

    A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings. This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper (Cu) and silver (Ag) metal nanoparticles through electrochemical syntheses, and as a platform for nano-structured antibacterial polymer composites. Characterization of interfacial and material properties demonstrated the feasibility of electrolysis as a new efficient and replicable nano-scale surface modification route. Methods of encapsulating HNTs in nanofibers, three-dimensional printer filaments, and multifunctional polymer rubbers were also realized. The nanofabrication methods, nanoparticles, and polymer composites created in this work were novel, scalable, easy-to-replicate, and displayed antibacterial features with tunable properties.

  2. Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings.

    Science.gov (United States)

    Mirak, Mohammad; Alizadeh, Morteza; Ghaffari, Mohammad; Ashtiani, Mohammad Najafi

    2016-09-01

    Biocompatible Zinc-hydroxyapatite-titania and Zinc-hydroxyapatite nanocomposite coatings have been prepared by electrodeposition on NiTi shape memory alloy. Structures of coatings were characterized using X-ray diffraction (XRD). It was found that addition of TiO2 particles cause to reduction of crystallite size of coating. Scanning Electronic Microscope (SEM) observation showed that the Zn-HA/TiO2 coating consists of plate-like regions which can express that this plate-like structure can facilitate bone growth. X-ray photoelectron microscope (XPS) was performed to investigation of chemical state of composite coating and showed that Zinc matrix was bonded to oxygen. high-resolution transmission electron microscope (HRTEM) result illustrated the crystalline structure of nanocomposite coating. Mechanical behavior of coating was evaluated using microhardness and ball on disk wear test. The TiO2 incorporated composite coatings exhibited the better hardness and anti-wear performance than the Zn-HA coatings. Polarization measurements have been used to evaluate the electrochemical coatings performance. The Zn-HA/TiO2 composite coatings showed the highest corrosion resistance compared with Zn-HA and bare NiTi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  4. Environmentally Resistant Mo-Si-B-Based Coatings

    Science.gov (United States)

    Perepezko, J. H.; Sossaman, T. A.; Taylor, M.

    2017-06-01

    High-temperature applications have demonstrated aluminide-coated nickel-base superalloys to be remarkably effective, but are reaching their service limit. Alternate materials such as refractory (e.g., W, Mo) silicide alloys and SiC composites are being considered to extend high temperature capability, but the silica surfaces on these materials require coatings for enhanced environmental resistance. This can be accomplished with a Mo-Si-B-based coating that is deposited by a spray deposition of Mo followed by a chemical vapor deposition of Si and B by pack cementation to develop an aluminoborosilica surface. Oxidation of the as-deposited (Si + B)-pack coatings proceeds with partial consumption of the initial MoSi2 forming amorphous silica. This Si depletion leads to formation of a B-saturated Mo5Si3 (T1) phase. Reactions between the Mo and the B rich phases develop an underlying Mo5SiB2 (T2) layer. The T1 phase saturated with B has robust oxidation resistance, and the Si depletion is prevented by the underlying diffusion barrier (T2). Further, due to the natural phase transformation characteristics of the Mo-Si-B system, cracks or scratches to the outer silica and T1 layers can be repaired from the Si and B reservoirs of T2 + MoB layer to yield a self-healing characteristic. Mo-Si-B-based coatings demonstrate robust performance up to at least 1700 °C not only to the rigors of elevated temperature oxidation, but also to CMAS attack, hot corrosion attack, water vapor and thermal cycling.

  5. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  6. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    Science.gov (United States)

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  7. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  8. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  9. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Ye Xinyu; Cai Shu; Dou Ying; Xu Guohua; Huang Kai; Ren Mengguo; Wang Xuexin

    2012-01-01

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na 2 Ca 2 Si 3 O 9 , with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E corr ) form −1.60 V to −1.48 V, and a reduction of corrosion current density (i corr ) from 4.48 μA cm −2 to 0.16 μA cm −2 , due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  10. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity.

    Science.gov (United States)

    Zhong, Zhenyu; Qin, Jinli; Ma, Jun

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structure and corrosion resistance of nickel coatings containing tungsten and silicon powders

    International Nuclear Information System (INIS)

    Popczyk, Magdalena; Budniok, Antoni; Lagiewka, Eugeniusz

    2007-01-01

    Ni + W + Si coatings were prepared by nickel deposition from a bath containing a suspension of tungsten and silicon powders. These coatings were obtained at galvanostatic conditions, at the current density of j dep = - 0.100 A cm -2 and at the temperature of 338 K. For determination of the influence of phase composition and surface morphology of these coatings on changes in the corrosion resistance, these coatings were modified in an argon atmosphere by thermal treatment at 1373 K during 1 h. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS and phase composition investigations were conducted by X-ray diffraction. It was found that the as-deposited coatings consist of a three-phase structure, i.e., nickel, tungsten and silicon. The phase composition for the Ni + W + Si coatings after thermal treatment is markedly different. The main peaks corresponding to Ni and W coexist with the new phases: NiW, NiWSi and a solid solution of W in Ni. Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found that the Ni + W + Si coatings after thermal treatment are more corrosion resistant in alkaline solution than the as-deposited coatings. The reasons for this are a reduction in the amount of free nickel and tungsten, the presence of new phases (in particular polymetallic silicides), and a decrease of the active surface area of the coatings after thermal treatment

  12. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  13. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, Vishnu Shankar [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Subbiah, Ramesh [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Thangavel, Elangovan [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Arumugam, Madhankumar [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Park, Kwideok [Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejon 305-333 (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Veeraragavan, Veeravazhuthi, E-mail: vv.vazhuthi@gmail.com [PG & Research Department of Physics, PSG College of Arts & Science, Coimbatore 641 014, Tamil Nadu (India); Kim, Dae-Eun, E-mail: kimde@yonsei.ac.kr [Center for Nano-Wear, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp{sup 2} bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  14. Method and compositions for producting optically clear photocatalytic coatings

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method and compositions for producing a hydrophilic coating on a surface of a solid material. The method comprises a cleaning step and a coating step. The cleaning step may be preceded by an initial cleaning step and it may optionally be succeeded by a preconditioning...... step prior to the coating step. The cleaning step comprises cleaning and preconditioning a surface of a material by use of a first cleaning fluid composition comprising ceria (CeO2) particles. The coating step comprises treatment by use of a coating fluid composition comprising photocatalytically...

  15. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation are described which contain as binding agents a mixture of at least 1 unsaturated olefin compound containing urethane groups, and at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound containing the urethane groups is a reaction product of a compound containing carboxylic acid groups and a compound containing at least 1 isocyanate group where the mixture of the two olefins may contain conventional additives of the lacquer industry. 6 claims, no drawings

  16. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  17. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  18. Tribology Study of High-Technological Composite Coatings Applied Using High Velocity Oxy-Fuel

    Science.gov (United States)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Ivanov, Pl; Kalichin, Zh

    2018-01-01

    In the work are studied the differential parameters of wear and wear resistance of high-tech composite coatings of powder superalloys with nickel matrix, WC-12Co and mixed compositions. Coatings were created and applied to a substrate of steel with a different flame velocity - 700 m/s and 1000 m/s without preheating the substrate and with preheating the substrate to 650° C. The wear is carried out with a "thumb-disk" tribotester under dry surface friction with fixed black corundum abrasive particles. Comparative results were obtained for the microstructure and texture of the pre- and post- friction coating, the porosity, roughness, hardness, the dependence of mass wear, the speed and wear intensity and the wear resistance of the coatings on the number of friction cycles. Influence of the flame rate and substrate temperature on wear resistance and differential wear parameters has been determined.

  19. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Litong, E-mail: guolitong810104@163.com [China University of Mining and Technology, Xuzhou 221116 (China); ustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei [China University of Mining and Technology, Xuzhou 221116 (China); Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai [China University of Mining and Technology, Xuzhou 221116 (China)

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO{sub 2} nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO{sub 2} content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO{sub 2} content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. - Highlights: • Surface roughness of Ti was increased by surface modification of Ti. • Corrosion resistance was enhanced by surface modification of Ti. • Porous nano-composite coatings were synthesized on Ti by sol–gel process. • TiO{sub 2} nanoparticles were added into the coating to avoid formation of cracks. • The nano-composite coatings increased the bonding strength of about 24%.

  20. Investigation of graded Ni-Cu-P-PTFE composite coatings with antiscaling properties

    Science.gov (United States)

    Zhao, Q.; Liu, Y.

    2004-05-01

    Water scale on heat transfer surfaces is an important problem during heat transfer to water. In this paper, a graded electroless Ni-Cu-P-PTFE composite coating with non-stick and corrosion-resistant properties was applied to reduce the formation of CaSO 4 deposits on the heat transfer surfaces. The effects of the concentrations of Cu 2+, cationic surfactant and PTFE in the plating solution on the coating rate and the PTFE content in the coatings were investigated. The thickness and the compositions of the coatings were measured using a digital micrometer and an energy dispersive X-ray microanalysis (EDX), respectively. Surface morphology of the coatings was analysed by a scanning electron microscope (SEM). The experimental results showed that the Ni-Cu-P-PTFE coatings inhibited the formation of CaSO 4 scale on the heat transfer surfaces significantly.

  1. Investigation of graded Ni-Cu-P-PTFE composite coatings with antiscaling properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Q.; Liu, Y

    2004-05-15

    Water scale on heat transfer surfaces is an important problem during heat transfer to water. In this paper, a graded electroless Ni-Cu-P-PTFE composite coating with non-stick and corrosion-resistant properties was applied to reduce the formation of CaSO{sub 4} deposits on the heat transfer surfaces. The effects of the concentrations of Cu{sup 2+}, cationic surfactant and PTFE in the plating solution on the coating rate and the PTFE content in the coatings were investigated. The thickness and the compositions of the coatings were measured using a digital micrometer and an energy dispersive X-ray microanalysis (EDX), respectively. Surface morphology of the coatings was analysed by a scanning electron microscope (SEM). The experimental results showed that the Ni-Cu-P-PTFE coatings inhibited the formation of CaSO{sub 4} scale on the heat transfer surfaces significantly.

  2. Structures and properties of the polyacrylonitrile fabric coated with ZnO-Ag composites

    International Nuclear Information System (INIS)

    Shao Dongfeng; Gao Dawei; Wei Qufu; Zhu Hong; Tao Lizhen; Ge Mingqiao

    2010-01-01

    The polyacrylonitrile (PAN) fabric coated with ZnO-Ag composite was achieved by hydrothermal synthesis techniques and photochemical method. The PAN fabrics coated with ZnO-Ag composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-vis spectrophotometer and fabric induced static tester, respectively. The SEM images revealed the formation of the coating aggregates on the fiber surface. The FT-IR spectra and XRD patterns revealed the chemical structures of the coatings on the PAN fabrics. The results of UV-vis test showed that there was an obvious increase in ultraviolet resistant properties after coating. The antistatic properties results revealed the improvement in the antistatic performance of coated fabrics, attributed to the superior electrical and optical properties of ZnO and Ag.

  3. Effects of Co contents on the microstructures and properties of the electrodeposited NiCo–Zr composite coatings

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Zhao, Yuantao; Ji, Vincent

    2015-01-01

    Highlights: • The novel NiCo–Zr coatings were prepared by electro-deposition. • Surface morphology, crystal structure, grain size and microstrain were examined. • Texture, residual stress and corrosion resistance were investigated. • Addition of Co increased the hardness and corrosion resistance of the coatings. - Abstract: In this study, the NiCo–Zr composite coatings were prepared from the electrolytes with different Co 2+ concentrations by electrodeposition method. The effects of Co contents on the crystal structure, surface morphology, grain size, microstrain and residual stress were examined by X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and atomic force microscope (AFM). The corrosion resistance of the composite coatings was also examined by the potentiodynamic polarization and electrochemical impedance (EIS) measurements. The results revealed that the crystal structures of the coatings were dependent on the Co contents and addition of Co content of 58 wt% resulted in the formation of hexagonal (hcp) Co. The increasing Co contents in the NiCo–Zr composite coatings resulted in the smoother and more compact surface, decreased the grain size and increased the microstrain. The micro-hardness and residual stress also increased with increasing Co contents. The addition of Co increased the corrosion resistance of the NiCo–Zr composite coatings compared with the Ni–Zr coating while the corrosion resistance of the NiCo–Zr composite coatings decreased as the Co contents increased

  4. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  5. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  6. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  7. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable ...

  8. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    The corrosion resistant oxide coatings, developed and applied by the conventional vitreous enamelling techniques, showed superior resistance to a range of mineral acids at various strengths and temperatures, alkaline solutions, boiling water and chrome plating solutions. These coatings possess considerable abrasion ...

  9. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  10. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  11. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  12. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse

    2011-11-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  13. INVESTIGATION OF PLASMA WEAR RESISTANCE COATING STRUCTURE ON BASIS OF OXIDE CERAMICS WITH INCLUSIONS OF SOLID LUBRICATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2013-01-01

    Full Text Available The paper describes an investigation of the structure, chemical and phase composition of wear resistance coatings on the basis of  oxide ceramics with inclusions of  solid lubrication.

  14. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  15. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  16. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  17. Coating compositions hardenable by ionization beams

    International Nuclear Information System (INIS)

    Chaudhari, D.; Haering, E.; Dobbelstein, A.; Hoselmann, W.

    1976-01-01

    Coating compositions hardenable by ionizing radiation comprise as binding agents a mixture of A. at least 1 unsaturated olefin compound containing urethane groups, and B. at least 1 further unsaturated olefin compound that may be copolymerized. The unsaturated olefin compound A. containing the urethane groups in a reaction product of (a) a compound of the general formula (CHR 1 = CR 2 COOCH 2 CH(OH)CH 2 O CO-)/sub n/R where n is 1 or 2, where R stands for a straight chain or branched alkyl group of valence n, where R 1 is hydrogen, methyl; or the group -COOCH 2 CH(OH)CH 2 OCOR 3 - where R 3 is a monovalent alkyl residue and where R 2 is hydrogen or methyl, and (b) a compound containing at least 1 isocyanate group where the mixture of (A) and (B) may contain conventional additives of the lacquer industry. 6 claims

  18. The impact of coating architecture on the hardness, friction and wear resistance of hard and tribological nanocomposite coatings

    Science.gov (United States)

    Endrino, Jose Luis

    Future generations of mechanical systems will place new demands on the tribological performance of interacting surfaces. Vapor-deposited surface coatings can provide extended lifetimes, increased efficiencies and energy savings for mechanical components and tools. These benefits can also be extended to space mechanisms and satellites with the use of vacuum solid lubricants. The material properties of surface coatings such as hardness, friction, and wear resistance in a particular environment are influenced by the characteristics of the coating microstructure which include density, grain size, grain boundary chemistry, porosity, and grain orientation. In this research effort bias sputter deposition, co-sputtering, and magnetron sputtering-pulsed laser deposition are used to deposit and control the formation of composite coating architectures. The developed microstructures were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical and tribological tests included nanoindentation and pin-on-disk. Results were analyzed in relation to the coatings' chemical composition and microstructure with the objective of establishing structure-property relations for these films. Hard coatings presented in this thesis include carbides that form a solid solution (Ti-Hf-C) as well as carbides that form composite microstructures (WC-SiC, HfC-SiC). Hardness measurements on these films indicated the potential of transition metal carbide-silicon carbide composites to be utilized as protective coatings. With the use of a substrate bias potential, a hardness of over 35 GPa was achieved for some HfC-SiC samples. By co-depositing from carbide and silver targets, composite tribological coatings (e.g. SiC-Ag, WC-Ag, TiC-Ag, HfC-Ag) were developed. These systems revealed how critical materials selection can be in the determination of a coating's architecture, and how carbide-silver films can be used to provide low friction

  19. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    Science.gov (United States)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  20. Radiation resistant ceramic matrix composites

    International Nuclear Information System (INIS)

    Jones, R.H.; Steiner, D.; Heinisch, H.L.; Newsome, G.A.; Kerch, H.M.

    1997-01-01

    Ceramic matrix composites are of interest for nuclear applications because of their high-temperature properties, corrosion resistance, fracture toughness relative to monolithic ceramics, and low neutron activation and after heat. Evaluations of the radiation resistance of commercially available SiC/SiC composites have revealed their promise for this application, but also the need for further development to achieve the desired performance. This paper summarizes the results of a workshop cosponsored by the Offices of Fusion Energy and Basic Energy Sciences of the US Department of Energy and Lockheed-Martin Corporation with forty attendees from national laboratories, universities and industry. A number of promising routes for optimizing the radiation stability of ceramic matrix composites were identified at this workshop. These routes included the newer, more stoichiometric fibers and alternate fiber/matrix interfaces and matrix processing routes. (orig.)

  1. Investigation on wear resistance and corrosion resistance of electron beam cladding co-alloy coating on Inconel617

    Science.gov (United States)

    Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi

    2018-04-01

    To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.

  2. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Heydarzadeh Sohi, M., E-mail: mhsohi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2010-09-10

    In the present work hot corrosion behavior of plasma sprayed zirconia-alumina coatings on Ni-base, IN-738, super alloy substrate was studied compared with normal zirconia. Hot corrosion resistance of the coatings was measured at 1050 {sup o}C using an atmospheric electrical furnace and a fused mixture of vanadium pentoxide and sodium sulfate salt. The hot corrosion test duration was 4 h in each cycle, while the specimens were cooled in the furnace. The general and peripheral conditions of the specimens were inspected. If there were any cracks or spallation in coating wedge the test was stopped, the time was recorded and coating microstructure was studied. Composite coatings of zirconia-alumina having alumina as a top coat or a mixed zirconia-alumina layer, showed better resistance in hot corrosion tests. It was concluded that alumina overlay on zirconia has promoted the hot corrosion resistance of the coatings.

  3. Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

    Directory of Open Access Journals (Sweden)

    Fathi MH.

    2002-08-01

    Full Text Available Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS, cobalt-chromium alloy (Vit and commercial pure titanium (cpTi were chosen as metallic substrates and hydroxyapatite coating (HAC were performed by plasma-spraying (PS process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morpholgy and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocmpatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS

  4. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    Science.gov (United States)

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  6. Durable superamphiphobic nano-silica/epoxy composite coating via coaxial electrospraying method

    Science.gov (United States)

    Li, Xiaoyan; Li, Hui; Huang, Kai; Zou, Hua; Dengguang, Yu; Li, Ying; Qiu, Biwei; Wang, Xia

    2018-04-01

    In this study, a durable superamphiphobic nano-silica and epoxy composite coating with good environment resistant was successfully fabricated. Fluorinated nano-silica with low surface energy was prepared by in situ sol-gel method, which can be stably dispersed in the solution. Applying fluorinated nano-silica dispersion as sheath and epoxy solution as core, fluorinated nano-silica/epoxy superamphiphobic composite coating was prepared by a coaxial electrospraying method. Fluorinated nano-silica with uniform nano-size was distributed evenly on the micro epoxy particles, showing a special micro-nano hierarchical structure. Nano-indentation shows evident improvement in modulus and hardness of fluorinated nano-silica/epoxy composite coating than that of raw epoxy. In addition, durability of the superamphiphobic coating was assessed by performing harsh chemical environments immersion and scotch tape test.

  7. Microstructure and elevated temperature wear behavior of induction melted Fe-based composite coating

    Science.gov (United States)

    Hu, Ge; Meng, Huimin; Liu, Junyou

    2014-10-01

    Fe-based composite coating prepared onto the component of guide wheel using ultrasonic frequency inductive cladding (UFIC) technique has been investigated in terms of microstructure, phase constitutions, microhardness and elevated temperature wear behavior by scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Vickers microhardness tester and ball-on-disc wear tester. The results indicated that the primary phase in the coating contained austenite γ-Fe, eutectic γ-Fe/(Cr,Fe)2B, boride (Cr,Fe)2B and precipitation enriched in Mo. The average microhardness of the coating was 760 ± 10 HV0.2, which was three times higher than that of the substrate. With increasing temperature, the friction coefficients of the coating and high-chromium cast iron decreased gradually while the wear rates increased during dry sliding wear condition. The relative wear resistance of the coating was 1.63 times higher than that of the high-chromium cast iron at 500 °C, which was ascribed to the hard borides with high thermal stability uniformly embedded in the coating and the formation of dense transfer layer formed onto the worn surface. The high temperature wear mechanism of the coating was dominated by mild abrasive wear. The study revealed that Fe-based composite coating had excellent high temperature wear resistance under dry sliding wear condition.

  8. Multilayer composition coatings for cutting tools: formation and performance properties

    Science.gov (United States)

    Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.

    2018-03-01

    The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.

  9. Restoration of the wear-resistant coatings on a GTE compressor airfoil shroud platform

    Science.gov (United States)

    Abraimov, N. V.; Geikin, V. A.; Chekalova, E. A.; Lukina, V. V.

    2017-06-01

    The deposition of a VT20 alloy onto the airfoil shroud platform of a compressor in an argon atmosphere and the composition, the structure, and the properties of a restored wear-resistant VK-25M coating are studied. The coating deposited onto the built-up material is found to contain (%) 3-4 C, 72-74 W, and 23-24 Co. This coating does not undergo cracking when a diamond pyramid is indented at a load of 50 kg or a diamond cone is indented at a load of 100 kg at a layer thickness of 0.15, 0.25, and 0.38 mm.

  10. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  11. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    International Nuclear Information System (INIS)

    Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz

    2014-01-01

    Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix

  12. Metal coated functionalized single-walled carbon nanotubes for composite applications

    Science.gov (United States)

    Zeng, Qiang

    This study is considered as a method for producing multifunctional composite materials by using metals coated Single-walled Carbon Nanotubes (SWCNTs). In this research, various metals (Ni, Cu, Ag) were successfully deposited onto the surface of SWCNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coatings on SWCNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified SWCNTs and creates more nucleation sites for subsequent metal deposition. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Raman spectroscopy, fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). Bulk copper/aluminum-SWNT composites were processed by powder metallurgy with wet mixing techniques. Coated SWCNTs were well dispersed in the metal matrix. Cold pressing followed by sintering was applied to control porosity. The relationships between hardness and SWCNTs addition were discussed. Ni-SWCNTs composite coatings were prepared by electro-composite deposition. SWCNTs were suspended in a Ni deposition electrolyte and deposited together with nickel during electrodeposition. SWCNTs concentrations in the coatings were found to be related to the SWCNTs concentration in the solution, current density and agitation rate. The microstructure of the coatings has been examined by electron microscopy. Ni coated SWCNTs were also incorporated into the high temperature Bismaleimide (BMI)/graphite composite to improve Electromagnetic Interference (EMI) shielding and surface conductivity. The vacuum assisted resin transfer molding (VARTM) was used to process these composites. Surface and volume resistivity and EMI shielding effectiveness of the composites

  13. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  14. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mingming, E-mail: lan_mingming@163.com [College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002 (China); Zhang, Deyuan; Cai, Jun; Hu, Yanyan; Yuan, Liming [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2014-07-01

    In this paper, helical silver-coated Spirulina cells were used as conductive fillers for the fabrication of polymeric composites. The morphology and composition of the coated Spirulina cells were analyzed with scanning electron microscope and energy dispersive X-ray spectrometer. The densities of silver-coated Spirulina cells were measured using the standard Archimedes method with distilled water. The electrical resistivity was measured by four-probe technique using ammeter and voltmeter whereas electromagnetic interference shielding effectiveness was measured by four-port method using vector network analyzer and coaxial-airline sample holder. The results showed that the silver-coated Spirulina cells with different coating thickness were lightweight fillers compared to the other typical conductive particles. The polymeric composites could achieve good conductivity at the lower content of silver-coated Spirulina cells owing to their helical shape. The shielding effectiveness of polymeric composites had a strong dependence on their conductivity. At the coating thickness of 0.96 μm and the content of 40 vol%, the shielding effectiveness could reach above 74.3 dB in entire test wave band.

  15. Mechanical behavior of nanocellulose coated jute/green epoxy composites

    Science.gov (United States)

    Jabbar, A.; Militký, J.; Ali, A.; Usman Javed, M.

    2017-10-01

    The present study was aimed to investigate the effect of nanocellulose coating on the mechanical behavior of jute/green epoxy composites. Cellulose was purified from waste jute fibers, converted to nanocellulose by acid hydrolysis and subsequently 3, 5 and 10 wt % of nanocellulose suspensions were coated over woven jute reinforcement. The composites were prepared by hand layup and compression molding technique. The surface topologies of treated jute fibers, jute cellulose nanofibrils (CNF), nanocellulose coated jute fabrics and fractured surfaces of composites were characterized by scanning electron microscopy (SEM). The prepared composites were evaluated for tensile, flexural, fatigue and fracture toughness properties. The results revealed the improvement in tensile modulus, flexural strength, flexural modulus, fatigue life and fracture toughness of composites with the increase in concentration of nanocellulose coating over jute reinforcement except the decrease in tensile strength.

  16. Fiber Finishes for Improving Galvanic Resistance of Imide-Based Composites

    National Research Council Canada - National Science Library

    Allred, R. E

    1998-01-01

    The objective of this program is the development and demonstration of galvanic corrosion resistant carbon/ BMI composites through the use of reactive finishes to form coatings that isolate the carbon...

  17. Bio-based coatings for reducing water sorption in natural fibre reinforced composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-10-01

    Full Text Available on the composites and compared with a water resistant market product. Uncoated and coated samples were conditioned at 90 °C and relative humidity of 90% for three days and the relative moisture content and mechanical properties after conditioning were analysed...

  18. Surface cracking in resistance seam welding of coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Adonyi, Y.; Kimchi, M.

    1994-12-31

    In this experimental work, the focus was on the understanding the electrode-wheel/coated steel surface phenomena by building operational lobes and by correlating the weld quality with static-and dynamic-contact-resistance variation during welding. Conventional AC, DC, and electrode-wire resistance-seam weldability of printed zinc-coated and hot-dipped tin-coated steel was performed in this work, as compared with traditional lead-tin (terne) coating used as reference material. Variables included steel substrate type, welding equipment type, electrode-wheel cleaning practice, and electrode-wire geometry. Optic and electron microscopy were used for the evaluation of specimens extracted from longitudinal cross-sections of representative welds. The size and morphology of surface cracks was characterized and correlated with variations in the above-mentioned parameters. It was found that the tin-coated (unpainted) steel sheet had a superior all-together performance to the zinc-coated steel and terne-coated steel, both in terms of wider weldability lobes and lesser surface cracking. The extent of surface cracking was greatly reduced by using the electrode-wire seam welding process using a longitudinally grooved wire profile, which also widened the corresponding weldability lobes. It was also found that the extent of cracking depended on the electrode knurl geometry, substrate type, and the presence of conductive paint applied on top of the metallic coating. An attempt was made to characterize the specific mechanisms governing the LME phenomenon for the lead-, zinc and tin-based coating systems and to assess the potential for crack propagation in the welds. The dynamic contact resistance was found to be a good measure of the welding process stability and an indicator of defect formation. It was found that the ratio between the static and dynamic contact resistances of the tin-coated sheet was considerably lower than similar ratios for bare and zinc-coated sheet.

  19. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    are meas- ured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment.

  20. Effects of Hybrid Fibre Reinforcement on Fire Resistance Performance and Char Morphology of Intumescent Coating

    Directory of Open Access Journals (Sweden)

    Amir N.

    2016-01-01

    Full Text Available Recent researches of fire retardant intumescent coatings reinforced by single Rockwool and single glass wool fibre at various weight percentages and lengths showed some improvements to the mechanical properties of the coatings and the char produced. Therefore, in this research the fibres were combined together in intumescent coating formulation at several weight percentages and fibre lengths to study their effects towards fire resistance performance and char morphology. The hybrid fibre reinforced intumescent coatings were subjected to two types of fire tests; Bunsen burner at 1000°C and the electric furnace at 800°C for 1 hour, respectively. Steel temperature of the coated samples during Bunsen burner test was recorded to determine the fire resistance performance. Thermal stability of the intumescent coatings and chars was determined by Thermogravimetric Analysis (TGA. The morphology of the coatings and char was then examined by using Scanning Electron Microscopy (SEM and Energy Dispersive Spectrometry (EDS was conducted to obtain elemental composition of the samples. This research concluded that long-hybrid fibre at 12-mm length and 0.6% fibre-weight produced the top performing hybrid fibre intumescent formulation. The hybrid fibres form survived at elevated temperature, hence helped to provide structure and strengthen the char with the highest fire resistance was recorded at steel temperature of 197°C.

  1. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  2. The self-healing composite anticorrosion coating

    Science.gov (United States)

    Yang, Zhao; Wei, Zhang; Le-ping, Liao; Hong-mei, Wang; Wu-jun, Li

    Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest for the researchers. In the article, effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resindroplets. Characteristics of these capsules were studied by scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and particle size analyzer. The model system of self-healing antisepsis coating consists of an epoxy resin matrix, 10 wt% microencapsulated healing agent, 2wt% catalyst solution. The self-healing function of this coating system is evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples. Electrochemical testing provides further evidence of passivation of the substrate by self-healing coatings.

  3. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    Brack, K.

    1976-01-01

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  4. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    Science.gov (United States)

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electroless Ni–P–ferrite composite coatings for microwave ...

    Indian Academy of Sciences (India)

    posite coating, namely, Ni–P–ferrite, nanosized ferrite particles are co-deposited in the Ni–P matrix. The composite coating with thickness less than ∼0.1 mm has been produced and found to exhibit about 20 db of absorption of microwave in the range of 12–18 GHz, which can be exploited for radar applications. 2.

  6. Effect of plasma nitriding on electrodeposited Ni–Al composite coating

    DEFF Research Database (Denmark)

    Daemi, N.; Mahboubi, F.; Alimadadi, Hossein

    2011-01-01

    In this study plasma nitriding is applied on nickel–aluminum composite coating, deposited on steel substrate. Ni–Al composite layers were fabricated by electro-deposition process in Watt’s bath containing Al particles. Electrodeposited specimens were subjected to plasma atmosphere comprising of N2......–20% H2, at 500°C, for 5h. The surface morphology investigated, using a scanning electron microscope (SEM) and the surface roughness was measured by use of contact method. Chemical composition was analyzed by X-ray fluorescence spectroscopy and formation of AlN phase was confirmed by X-ray diffraction....... The corrosion resistance of composite coatings was measured by potentiodynamic polarization in 3.5% NaCl solution. The obtained results show that plasma nitriding process leads to an increase in microhardness and corrosion resistance, simultaneously....

  7. Influence of substrate composition on the formation of phytic acid conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cui, X.; Wang, F. [School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Jin, G.; Liu, E.; Ding, M.; Li, Q. [School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin (China)

    2012-03-15

    In this paper, the formation and corrosion resistance of the phytic acid conversion coatings on Mg, Al, and AZ91D magnesium alloy were contrastively investigated using scanning electronic microscopy (SEM), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR), electronic probe microscopic analyzer (EPMA), electronic balance, and electrochemical methods. The influence of phytic acid conversion coating as a middle layer on the properties of the paint on magnesium alloys was also investigated. The results show that the formation process of the conversion coatings is evidently influenced by the compositions of the substrate. The coating on pure aluminum is thinner and compacter than that on pure magnesium and the coating formed on {alpha} phase in AZ91D magnesium alloy is thinner but denser than that on {beta} phase. The phytic acid conversion coatings formed on Mg, Al, and AZ91D magnesium alloy can all increase their corrosion resistance. The active functional groups of hydroxyl and phosphate radical are rich in the conversion coatings, which can improve the bonding between the organic paint and magnesium alloy and then improve their corrosion resistance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Composite Coatings of Alumina-based Ceramics and Stainless Steel Manufactured by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Neufuss, Karel; Zahálka, F.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 108-114 ISSN 1392-1320 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.299, year: 2009 http://internet.ktu.lt/en/science/journals/medz/medz0-97.html#Composite_Coatings_

  9. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  10. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  11. Fabrication and characterization of Ni–Zr composite coatings using electrodepositing technique

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Zhang, Zhongquan; Muttini, Enzo; Fu, Peng; Zhao, Yuantao; Ji, Vincent

    2015-01-01

    Highlights: • A novel Ni–Zr coatings with higher Zr content were fabricated. • Increasing Zr content resulted in the (1 1 1) preferred orientation. • The (1 1 1) preferred orientation increased the corrosion resistance. • Relationship between corrosion and Zr content, grain and texture was discussed. - Abstract: The main goal of this research is to prepare Ni–Zr composite coatings with different amounts of Zr micro-particles by using electrodeposition technology. Different characterization techniques including X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray Spectroscopy (EDX) were used to investigate the effects of Zr micro-particle contents on the surface morphology, texture, grain size, residual stress and hardness of the Ni–Zr composite coatings. The electrochemical impedance and potentiodynamic polarization measurements were also used to examine the corrosion resistance. As the Zr contents in the Ni–Zr composite coating increased, the (2 0 0) texture changed to the (1 1 1) texture, the grain size decreased, the residual stress and hardness increased. The anti-corrosion properties of the Ni–Zr composite coatings could be linked to several reasons such as the amount of Zr micro-particles in the deposits, a decrease in grain size, and a change in the texture of the deposits

  12. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications

    Science.gov (United States)

    Huang, Yong; Han, Shuguang; Pang, Xiaofeng; Ding, Qionqion; Yan, Yajing

    2013-04-01

    A novel method of electrolytic porous hydroxyapatite/calcium silicate (HA/CaSiO3) composite coating was conducted on pure titanium in a mixed solution of nano-SiO2, Ca(NO3)2 and NH4H2PO4. SEM observation showed that the composite layer was porous, thereby providing abundant sites for the osteoblast adhesion. XRD results showed that the composite coating was mainly composed of HA and CaSiO3. Bond strength testing exhibited that HA-CaSiO3/Ti had higher bond strength than HA/Ti. The HA/CaSiO3 coating was more corrosion resistant than the HA coating based on the polarization tests. In vitro cell experiments demonstrated that both the HA and HA/CaSiO3 coatings showed better cell response than the bared titanium. In addition, the proliferation of MC3T3-E1 osteoblast cells grown on the HA/CaSiO3 coating were remarkably higher than those on the bared Ti and pure HA coating.

  13. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong; Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: pxf2012@yahoo.com.cn [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China); Ding, Qionqion; Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-04-15

    A novel method of electrolytic porous hydroxyapatite/calcium silicate (HA/CaSiO{sub 3}) composite coating was conducted on pure titanium in a mixed solution of nano-SiO{sub 2}, Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. SEM observation showed that the composite layer was porous, thereby providing abundant sites for the osteoblast adhesion. XRD results showed that the composite coating was mainly composed of HA and CaSiO{sub 3}. Bond strength testing exhibited that HA-CaSiO{sub 3}/Ti had higher bond strength than HA/Ti. The HA/CaSiO{sub 3} coating was more corrosion resistant than the HA coating based on the polarization tests. In vitro cell experiments demonstrated that both the HA and HA/CaSiO{sub 3} coatings showed better cell response than the bared titanium. In addition, the proliferation of MC3T3-E1 osteoblast cells grown on the HA/CaSiO{sub 3} coating were remarkably higher than those on the bared Ti and pure HA coating.

  14. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  15. Comparison of W–TiC composite coatings fabricated by atmospheric plasma spraying and supersonic atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hou, Qing Yu; Luo, Lai Ma; Huang, Zhen Yi; Wang, Ping; Ding, Ting Ting; Wu, Yu Cheng

    2016-01-01

    Highlights: • W–TiC composite coatings were fabricated by APS and SAPS technologies. • TiC had filling effect on pores and coating/fixing effect on un-melted particles. • Porosity and oxygen content in SAPS coating were lower than that in APS coating. • Thermal conductivity of SAPS coating was higher than that of APS coating. • SAPS coating has better ability to resist to elastic fracture than APS coating does. - Abstract: Tungsten coatings with 1.5 wt.% TiC (W/TiC) were fabricated by atmospheric plasma spraying (APS) and supersonic atmospheric plasma spraying (SAPS) techniques, respectively. The results showed that the typical lamellar structure of plasma spraying and columnar crystalline grains formed in the coatings. Pores located mainly at lamellar gaps in association with oxidation were also observed. TiC phase, distributed at lamellar gaps filled the gaps; and that distributed around un-melted tungsten particles and splashed debris coated the particles or debris that were linked with the TiC at lamellar gaps. The coating and linking of the retained TiC phase prevented the tungsten particles to come off from the coatings. The porosity and the oxygen content of the SAPS-W/TiC were lower than those of the APS-W/TiC coating. The mechanical response of the coatings was strongly dependent on the H/E* ratio (H and E* are the hardness and effective Young’s modulus, respectively). The SAPS-W/TiC coating with a higher H/E* ratio had a better ability to resist to elastic fracture and better fracture toughness as compared with the APS-W/TiC coating with a smaller H/E* ratio. The thermal conductivity of the SAPS-W/TiC coating was greater than that of the APS-W/TiC coating.

  16. Hybrid laser technology for composite coating and medical applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Písařík, Petr; Mikšovský, Jan; Remsa, Jan; Mihailescu, I. N.; Kopeček, Jaromír

    2014-01-01

    Roč. 10, č. 1 (2014), s. 1-8 ISSN 1823-3430 R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : hybrid technology * pulsed laser deposition * biocompatible composites * doped coating * composite coating Subject RIV: BM - Solid Matter Physics ; Magnetism http://web.usm.my/jes/pastIssue.html

  17. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Nainaparampil, Jose

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL's feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  18. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    Science.gov (United States)

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  19. Analysis of Properties of Hard Coatings and Wear Resistance of Chemical Vapour Deposition (PVD Coated Technology

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2015-01-01

    Full Text Available Modern coating methods are having become an important part of industry. Wear resistance, durability, toughness (breakage resistance and hot hardness (high hardness and chemical stability at high temperature are the four main technological properties necessary for durability and long life time. These proprieties are for productivity, economy and ecology very important point. This resource deals with the analysis of properties of hard coatings and wear resistance of chemical vapour deposition (PVD coated technology. It focuses on the preparation, execution and evaluation of test coatings on the front ball-milling cutters. Examination of these characteristic properties may give into an insight to the reason why some systems show excellent wear characteristic.

  20. Ti-O-N/Ti composite coating on Ti-6Al-4V: surface characteristics, corrosion properties and cellular responses.

    Science.gov (United States)

    Cao, Xiao-Lin; Sun, Tao; Yu, Yonghao

    2015-03-01

    To enhance the corrosion resistance of Ti-6Al-4V and extend its lifetime in medical applications, Ti-O-N/Ti composite coating was synthesized on the surface via plasma immersion ion implantation and deposition (PIIID). Surface morphology and cross sectional morphology of the composite coating were characterized using atomic force microscopy and scanning electron microscopy, respectively. Although X-ray photoelectron spectroscopic analysis revealed that the Ti-O-N/Ti composite coating was composed of non-stoichiometric titanium oxide, titanium nitride and titanium oxynitride, no obvious characteristic peak corresponding to the crystalline phases of them was detected in the X-ray diffraction pattern. In accordance with Owens-Wendt equation, surface free energy of the uncoated and coated samples was calculated and compared. Moreover, the corrosion behavior of uncoated and coated samples was evaluated by means of electrochemical impedance spectroscopy measurement, and an equivalent circuit deriving from Randles model was used to fit Bode plots and describe the electrochemical processes occurring at the sample/electrolyte interface. On the basis of the equivalent circuit model, the resistance of the composite coating was 4.7 times higher than that of the passive layer on uncoated samples, indicating the enhanced corrosion resistance after PIIID treatment. Compared to uncoated Ti-6Al-V, Ti-O-N/Ti-coated samples facilitated ostoblast proliferation within 7 days of cell culture, while there was no statistically significant difference in alkaline phosphate activity between uncoated and coated samples during 21 days of cell culture.

  1. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  2. RF surface resistance study of non-evaporable getter coatings

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Gurran, Lewis [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Engineering, Lancaster University, Cockcroft Institute, Lancaster (United Kingdom); Goudket, Philippe; Marinov, Kiril [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Wilde, Stuart [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Loughborough University, Loughborough (United Kingdom); Valizadeh, Reza [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Burt, Graeme [Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Engineering, Lancaster University, Cockcroft Institute, Lancaster (United Kingdom)

    2017-02-01

    In many particle accelerators the beam parameters could be affected by the beam pipe wakefield impedance. It is vital to understand how the wakefield impedance might vary due to various coatings on the surface of the vacuum chamber, and this can be derived from surface resistance measurements. The bulk conductivity of two types of NEG films (dense and columnar) is determined. This is achieved by measuring the surface resistance of NEG-coated samples using an RF test cavity and fitting the experimental data to a standard theoretical model. The conductivity values obtained are then used to compare resistive wall wakefield effects in beam pipes coated with either of the two types of film. - Highlights: • The surface resistance two types of non-evaporable getter film was measured. • The bulk conductivity of two types of NEG films (dense and columnar) was determined. • The obtained conductivity values were applied for various RF frequencies.

  3. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  4. Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating

    Science.gov (United States)

    Hu, Haibo; Kong, Jian

    2013-11-01

    B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10-6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.

  5. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    Science.gov (United States)

    Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  6. Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives

    Science.gov (United States)

    Punith Kumar, M. K.; Srivastava, Chandan

    2014-10-01

    In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are "green" and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

  7. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  8. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    Science.gov (United States)

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  9. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  10. Laser clad NiCrBSi alloy wear-resistance coating with RE addition on heavy duty spur gear flank

    Science.gov (United States)

    Zhao, N.; Tao, L.; Guo, H.; Zhang, M. Q.

    2017-10-01

    In this research the wear-resistance composite coating successfully produced on heavy duty gear work surface by laser was reported. The coating containing 99 wt.% NiCrBSi alloy and 1 wt.% RE (rare earth element) oxidation powder. The RE addition coupled with laser operating parameters optimization caused elimination of both cracks and pores meanwhile further enhanced comprehensive properties of the laser layer. The coating microhardness, microstructure, phase construction and wear behaviors were tested by hardness tester, SEM equipped with EDS, XRD and tribometer, respectively. The results reflected the fact that the RE addition enhanced the coating ability of wear resistance and laser clad layer properly bonded with the gear flank. The wear volume loss rate of coating was half of that of the gear flank metal the COF curve of coating kept bellow that of the gear flank steel.

  11. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  12. Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.

    Science.gov (United States)

    Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao

    2016-02-02

    A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.

  13. Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance

    Science.gov (United States)

    Zhang, Lashuang; Jiang, Yue; Zai, Wei; Li, Guangyu; Liu, Shaocheng; Lian, Jianshe; Jiang, Zhonghao

    2017-12-01

    A novel superhydrophobic calcium phosphate coating was prepared on a magnesium alloy substrate by a highly effective chemical conversion process and subsequent chemical modification. Different methods were employed to characterize the surface morphology and chemical composition as well as measure the wettability of the coating. It was demonstrated that the as-prepared superhydrophobic calcium phosphate coating has a typical three-level hierarchical structure consisted of micro-protrusions, submicro-lumps and nano-grains, conferring excellent superhydrophobicity with a water contact angle of 159°. The electrochemical measurements and appropriate equivalent circuit revealed that the corrosion-resistant performance of the superhydrophobic calcium phosphate coating was significantly improved as compared with that of the substrate, the corrosion potential of the superhydrophobic coating increases from -1.56 to -1.36 V, and its corrosion current density decreases from 1.29 × 10-4 to 1.3 × 10-6 A/cm2. The anti-corrosion mechanism of the superhydrophobic coating was also discussed. It can be indicated that the corrosion inhibitive properties of the coating are in accordance with its hydrophobicity, which is owing to the presence of a protective layer of air trapped in the grooves of the coating surface to isolate the underlying materials from the external environment.

  14. [Preparation and Characterization of Manganese and Fluorine Co-Modified Hydroxyapatite Composite Coating].

    Science.gov (United States)

    Zhang, Xue-jiao; Hao, Min; Qiao, Hai-xia; Zhang, Xiao-yun; Huang, Yong; Nian, Xiao-feng; Pang, Xiao-feng

    2016-03-01

    Titanium and titanium alloys have been widely used as orthopedic, dental implants and cardiovascular stents owing to their superior physical properties. However, titanium surface is inherently bio-inert, thus could not form efficient osseointegration with surrounding bone tissue. Therefore, to improve the surface property of titanium implant is significantly important in clinical application. Manganese and fluorine co-doped hydroxyapatite (FMnHAP) coatings were prepared on titanium substrate by electrochemical deposition technique. The as-prepared coatings were examined by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) tests. The results indicated that the FMnHAP coatings take the morphology of nanoscale-villous-like, the composite coating becomes more compact. The FTIR test indicated that the symmetry of bending vibration modes of hydroxyl changed, simulated body fluid immersion test proved that the FMnHAP coatings had induce carbonate-apatite formation, indicating that the composite coating possess excellent biocompatibility. In the electrochemical corrosion testing, the FMnHAP coatings showed stronger corrosion resistance than pure Ti.

  15. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  16. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  17. Preparation and properties of electrodeposited Ni-TiO2 composite coating

    Directory of Open Access Journals (Sweden)

    Sukhdev Singh Bhogal

    2015-03-01

    Full Text Available Mechanical properties of cutting tool like microhardness, coating adhesiveness & corrosion resistance are some important parameters, which affects the tool life and further indirectly affects the component cost. In this paper Ni-TiO2 composite coating was prepared through electrocodeposition in order to improve the mechanical properties of tungsten carbide cutting tools. Microhardness of Ni-TiO2 composite layer have been studied by varying input current density (mA, pH vale of electrolyte & particle concentration of TiO2 in electrolyte bath. Microstructure and phase structure of composite layer were investigated using atomic force microscope (AFM, scanning electronic microscope (SEM and X-ray diffraction (XRD. Surface morphology of Ni-TiO2 coated layer shows fine grained structures is obtained at low currents with higher microhardness of composite coating. Maximum microhardness 1483 HV of coated layer is found at 15mA of current and at 4.5 pH of watt’s solution. It has also been seen that with the increase of Ti, microhardness of the layer is also increases.  

  18. Cytotoxicity of coated and uncoated fibre-reinforced composites.

    Science.gov (United States)

    Frese, Cornelia; Wolff, Diana; Zingler, Sebastian; Krueger, Tanja; Stucke, Kathrin; Lux, Christopher J; Staehle, Hans Joerg; Erber, Ralf

    2014-07-01

    Currently, there are many fibre-reinforced composites (FRCs) available which differ in the type and volume fraction of fibres, pre-treatment of fibres and matrix composition. The aims of this in vitro investigation were to determine whether there is a difference in biocompatibility of FRCs and if coating FRCs with resin composites influences their cytotoxic potential. Five different FRC materials were tested which were either uncoated or coated with flowable or viscous resin composite. Artificial saliva extracts were prepared according to USP-XXIII and ISO-10993 to determine cytotoxicity by testing cell viability and growth of primary human gingival fibroblasts (HGF) using MTT assay, LIVE/DEAD(®) assay and cell proliferation assay. The influence of eluates on fibres of the cytoskeleton was investigated by vimentin, tubulin and actinin immunostainings. A two-way ANOVA followed by Scheffe's post-hoc test, which included the factors FRC material and coating procedure, was performed to assess cytotoxicity. All extracts of FRC materials displayed minor cytotoxic potential on HGF cell viability, cell proliferation and integrity of the cytoskeleton. The type of FRC material significantly influenced cell viability (MTT assay) (p material resulted in altered cell viability. Distribution and organization of cytosolic fibres was not affected after HGF exposure to eluates. There is a lack of knowledge about the leaching behaviour of commonly available fully pre-impregnated FRCs and their interactions with coating materials. The coating of FRCs with resin composite materials did not impact biocompatibility.

  19. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    Science.gov (United States)

    Sutter, James K.

    2000-01-01

    The advantages of replacing metals in aircraft turbine engines with high-temperature polymer matrix composites (PMC's) include weight savings accompanied by strength improvements, reduced part count, and lower manufacturing costs. Successfully integrating high-temperature PMC's into turbine engines requires several long-term characteristics. Resistance to surface erosion is one rarely reported property of PMC's in engine applications because PMC's are generally softer than metals and their erosion resistance suffers. Airflow rates in stationary turbine engine components typically exceed 2.3 kg/sec at elevated temperatures and pressures. In engine applications, as shown in the following photos, the survivability of PMC components is clearly a concern, especially when engine and component life-cycle requirements become longer. Although very few publications regarding the performance of erosion coatings on PMC's are available particularly in high-temperature applications the use of erosion-resistant coatings to significantly reduce wear on metallic substrates is well documented. In this study initiated by the NASA Glenn Research Center at Lewis Field, a low-cost (less than $140/kg) graphite-fiber-reinforced T650 35/PMR 15 sheet-molding compound was investigated with various coatings. This sheet-molding compound has been compression molded into many structurally complicated components, such as shrouds for gas turbine inlet housings and gearboxes. Erosion coatings developed for PMC s in this study consisted of a two-layered system: a bondcoat sprayed onto a cleaned PMC surface, followed by an erosion-resistant, hard topcoat sprayed onto the bondcoat as shown in following photomicrograph. Six erosion coating systems were evaluated for their ability to withstand harsh thermal cycles, erosion resistance (ASTM G76 83 "Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets") using Al2O3, and adhesion to the graphite fiber polyimide

  20. Cyclotriphosphazene and TiO2 reinforced nanocomposite coated on mild steel plates for antibacterial and corrosion resistance applications

    Science.gov (United States)

    Krishnadevi, Krishnamoorthy; Selvaraj, Vaithilingam

    2016-03-01

    The mild steel surface has been modified to impart anticorrosion and antibacterial properties through a dip coating method followed by thermal curing of a mixture containing amine terminated cyclotriphosphazene and functionalized titanium dioxide nanoparticles reinforced benzoxazine based cyanate ester composite (ATCP/FTiO2/Bz-CE). The corrosion resistance behavior of coating material has been investigated by electrochemical and antibacterial studies by disc diffusion method. The nanocomposites coated mild steels have displayed a good chemical stability over long immersion in a corrosive environment. The protection efficiency has found to be high for ATCP/FTiO2/Bz-CE composites, which can be used in microelectronics and marine applications.

  1. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    International Nuclear Information System (INIS)

    Cheng, Feng; Jiang, Shuyun

    2014-01-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  2. CORROSION RESISTANT SOL–GEL COATING ON 2024-T3 ALUMINUM

    Directory of Open Access Journals (Sweden)

    S. Yazdani

    2016-06-01

    Full Text Available The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion resistance system. Historically these corrosion resistance coatings were based on the use of chemicals containing Cr (VI compounds. Silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In this study, hydrophobic coating sol was prepared with methyltriethoxysilane (MTES, methanol (MeOH, and water (as 7M NH4OH at a molar ratio of 1:25:4.31 respectively. The coatings were applied by a dip-technique to 2024-T3 Al alloy, and subsequently cured at room temperature and there after heat treated in an oven at 150°C. The anticorrosion properties of the coatings within 3.5 wt% NaCl solution were studied by Tafel polarization technique. The sol–gel coating exhibited good anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The surface properties were characterized by water contact angle measurement, scanning electron microscopy (SEM, and the composition was studied by Fourier transform infrared spectroscopy (FTIR.

  3. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  4. Electroless Ni-P-CNT composite coating on aluminum powder

    Science.gov (United States)

    Abbasipour, Benyamin; Monirvaghefi, Sayed Mahmoud; Niroumand, Behzad

    2012-12-01

    Ni-P-CNT composite coatings were deposited on micro-sized aluminum particles using electroless plating technique and the effect of different process parameters on the microstructural characteristics of the produced composite coatings were investigated. The results showed that a uniform Ni-P-CNT composite coating could be successfully deposited on the aluminum particles provided the electroless processing parameters were adjusted carefully. The most favorable coating quality was achieved at bath temperature of 80 °C, bath pH of 5.5 and CNT concentration of 1.25 g/lit. While a higher CNT concentration resulted in increased CNT agglomeration and poor CNT distribution in the Ni-P matrix, a lower CNT concentration resulted in fewer incorporated CNTs. Higher bath temperatures intensified the hydrogen gas evolution during the process and resulted in poor uniformity and presence of porosity in the coating. Low bath pH resulted in poor CNT incorporation and distribution in the Ni-P matrix and clustering of a large part of CNTs out of the coating.

  5. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  6. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  7. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    Science.gov (United States)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  8. Fire resistance of structural composite lumber products

    Science.gov (United States)

    Robert H. White

    2006-01-01

    Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber...

  9. Coatings for directional eutectics. [for corrosion and oxidation resistance

    Science.gov (United States)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  10. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A. [Sandia National Labs., Albuquerque, NM (United States); Stoner, G.E. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Materials Science

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  11. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties.

    Science.gov (United States)

    Karbowniczek, Joanna; Cordero-Arias, Luis; Virtanen, Sannakaisa; Misra, Superb K; Valsami-Jones, Eugenia; Tuchscherr, Lorena; Rutkowski, Bogdan; Górecki, Kamil; Bała, Piotr; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R

    2017-08-01

    To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  13. Microstructure and Wear Resistance of Al2O3 Coatings on Functional Structure

    Directory of Open Access Journals (Sweden)

    Jiang Chao-Ping

    2016-01-01

    Full Text Available To enhance the wear properties of function structure, Al2O3-13%TiO2 (AT13 coatings were plasma sprayed on 45 steel functional structure using micro and nano powders. The microstructures and phase compositions of the coatings were investigated by scanning electron microscopy and X-ray diffraction, respectively. Results show that the nano powder coating consists of fully-melted region and partially-melted region. The fully-melted regions show a lamellar structure, while the partially-melted regions retain the powders structure. The phases of coatings are α-A12O3 and TiO2.The wear test was carried out on a ML-10 friction and wear tester under dry sliding condition. It is found that the wear resistance of the micro powder coating is higher than that of nano powder coating. This is mainly ascribe to the breakage of the nano powder coating resulted from low agglomerated binding force.

  14. FIRE-RESISTANT SHIELDING COATING BASED ON SHUNGITE-CONTAINING PAINT

    OpenAIRE

    BELOUSOVA Elena Sergeevna; NASONOVA Natalia Viktorovna; LYNKOV Leonid Mihailovich; BORBOTKO Timofei Valentinovich; LISOVSKIY Dmitriy Nikolaevich

    2013-01-01

    Today when specific shielded facilities are designed the construction materials and shields should meet a range of fire safety requirements. A composite coating on the basis of a water-based fire-resistant paint filled with shungite nanopowder can be applied onto walls, floors, ceilings and other surfaces in the shielded areas to reduce electromagnetic radiation and simultaneously to ensure fire safety. Shungit is a mineral with multilayer carbon fullerene globules which diameter is 10–30 nm....

  15. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    coatings without alteration to the existing plating process. Glen Slater, Cirrus Materials | Stephen Flint, Auckland UniServices Ltd Report...ADDRESS(ES) University of Auckland ,Cirrus Materials, Auckland , New Zealand, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...JiA/ g THE UNIVERSITY ’-" OF AUCKLAND NEW ZEALAND Te Whare Wanan a o Thmaki Makaurau ~"""’ • ........,." ... Southwest Pacific Basin . p

  16. METAL-MATRIX COMPOSITES AND THERMAL SPRAY COATINGS FOR EARTH MOVING MACHINES

    Energy Technology Data Exchange (ETDEWEB)

    D. Trent Weaver; Matthew T. Kiser; Frank W. Zok; Carlos G. Levi; Jeffrey Hawk

    2004-02-01

    In an effort to realize minimum of a 2x increase in wear life of ground engaging components used on mining machines, two potentially cost effective processes were explored for the production of tailored, highly abrasion resistant materials: (1) hybrid pressure casting of steel composites, and (2) arc lamp fusing of thermal spray coatings. Steel composites comprised of cermet or oxide hard particles were successfully produced using pressure casting processes, although a cost effective process has not yet been identified for oxide particles. Both composites achieved project wear targets in high stress gouging wear, but the cermet composites did not meet the targets in impact wear, due to poor matrix toughness resulting from particle dissolution. Oxide composites had superior toughness and are expected to meet impact wear goals. Arc lamp processing of thermal spray coatings was successfully demonstrated to produce a metallurgical bond at the coating interface. Functionally graded materials were developed and successfully fused to allow for the accommodation of thermal process stresses in an intermediate layer. Ultimately, three functionally graded materials were identified as having high stress, three-body abrasion resistance sufficient to exceed project goals.

  17. Polyurethane/polysiloxane ceramer coatings: Corrosion resistant unicoat system for aircraft application

    Science.gov (United States)

    Ni, Hai

    New organic/inorganic ceramer coating system was developed using polyurethane as an organic phase and polysiloxane as the inorganic phase. The objective of the study was to develop a unicoat corrosion resistant coating which strongly adheres to aluminum substrates. The pre-ceramic silicon-oxo clusters react with the metal substrate, protecting it from oxidation, whereas the organic composition functions as a binder providing mechanical properties, optical properties, and chemical, wear and fluid resistance. The new ceramer coatings were evaluated as a replacement for chromate based coatings. The alkoxysilane-functionalized coupling agent was prepared from hexamethylene diisocyanate (HDI) isocyanurate and 3-aminopropyltriethoxysilane. The functionalized isocyanurate was characterized by 1H, 13C and 29Si NMR and electrospray ionization-mass spectrometry. An organic/inorganic hybrid coating system was formulated using the alkoxysilane-functionalized isocyanurate and HDI isocyanurate. The coating properties indicated that alkoxysilane-functionalized isocyanurate enhanced adhesion up to 500%. Based on the hybrid polyurea/alkoxysilane system, the polyurea/polysiloxane ceramer coating system was formulated with tetraethyl orthosilicate (TEOS) oligomers. Evaluation of ceramer coatings showed that coating properties were affected by both the concentration of TEOS oligomers and alkoxysilane functionalized isocyanurate. In addition, the para-toluene sulfonic acid was used to catalyze the moisture curing process for the ceramer coating system. The addition of acid catalyst further increased the adhesion. A series of high solids cycloaliphatic polyesters were synthesized to improve the UV-resistance for the organic/inorganic unicoat system. The polyurethane/polysiloxane ceramer coatings were formulated with the addition of the cycloaliphatic polyesters into the polyurea/polysiloxane system. The investigation of the polyurethane ceramer coatings indicated that the film

  18. Abrasion resistance of alloy coatings deposited by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Lescoffit, A.-E.; Teboul, B.; Neufuss, Karel; Voleník, Karel

    2009-01-01

    Roč. 54, č. 2 (2009), s. 113-126 ISSN 0001-7043 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * alloy coatings * slurry abrasion * hardness and microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  19. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    trochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–. Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical ...

  20. Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles

    CERN Document Server

    Pinchuk, A

    2003-01-01

    Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.

  1. Coating compositions and method for the treatment of metal surfaces

    International Nuclear Information System (INIS)

    Das, N.; Stastny, P.M.

    1984-01-01

    An aqeuous acidic composition provides improved coating for aluminum. The composition comprises from about 10 to about 150 ppm zirconium, from about 20 to about 250 ppm fluoride, from 30 to about 125 ppm tannin, from about about 15 to about 100 ppm phosphate and from about 5 to about 50 ppm zinc, said coating solution having a tannin to phosphate ratio in the range of at least about 1:1 to about 2:1 and a pH in the range of about 2.3 to about 2.95

  2. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    Science.gov (United States)

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  3. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  4. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  5. In vitro degradation behavior and cytocompatibility of biodegradable AZ31 alloy with PEO/HT composite coating.

    Science.gov (United States)

    Tian, Peng; Liu, Xuanyong; Ding, Chuanxian

    2015-04-01

    Biodegradable magnesium-based implants have attracted much attention recently in orthopedic applications because of their good mechanical properties and biocompatibility. However, their rapid degradation in vivo will not only reduce their mechanical strength, but also induce some side effects, such as local alkalization and gas cavity, which may lead to a failure of the implant. In this work, a hydroxyapatite (HA) layer was prepared on plasma electrolytic oxidization (PEO) coating by hydrothermal treatment (HT) to fabricate a PEO/HT composite coating on biodegradable AZ31 alloy. The in vitro degradation behaviors of all samples were evaluated in simulated body fluid (SBF) and their surface cytocompatibility was also investigated by evaluating the adhesion and proliferation of osteoblast cells (MC3T3-E1). The results showed that the HA layer consisted of a dense inner layer and a needle-like outer layer, which successfully sealed the PEO coating. The in vitro degradation tests showed that the PEO/HT composite coating improved the corrosion resistance of AZ31 alloy in SBF, presenting nearly no severe local alkalization and hydrogen evolution. The lasting corrosion resistance of the PEO/HT composite coating may attribute to the new hydroxyapatite formation during the degradation process. Moreover, compared with AZ31 alloy and PEO coating, PEO/HT composite coating was more suitable for cells adhesion and proliferation, indicating improved surface cytocompatibility. The results show that the PEO/HT composite coating is promising as protective coating on biodegradable magnesium-based implants to enhance their corrosion resistance as well as improve their surface cytocompatibility for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characteristics of electrocodeposited Ni–Co–SiC composite coating

    Indian Academy of Sciences (India)

    Generally, composites containing carbides (like SiC) are preferred for high wear resistance along with increased hardness, improved corrosion resistance, and high temperature oxidation resistance as compared to alloy and pure metal electroplating. In the present work, electrolytic codeposition technique was adopted in ...

  7. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  8. Mechanical Properties of Low-Density SiC-Coated Carbon-Bonded Carbon Fiber Composites

    Czech Academy of Sciences Publication Activity Database

    Ahmed, A. S.; Chlup, Zdeněk; Dlouhý, Ivo; Rawlings, R. D.; Boccaccini, A. R.

    2012-01-01

    Roč. 9, č. 2 (2012), s. 401-412 ISSN 1546-542X R&D Projects: GA ČR GA101/09/1821 Institutional research plan: CEZ:AV0Z20410507 Keywords : SiC coating * Carbon bonded * Carbon Fiber Composites * Fracture Toughness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.153, year: 2012

  9. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  10. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  11. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  12. Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review

    Science.gov (United States)

    Olakanmi, E. O.; Doyoyo, M.

    2014-06-01

    Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.

  13. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    International Nuclear Information System (INIS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-01-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect

  14. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites.

    Science.gov (United States)

    Liu, Shoujie; Li, Hejun; Su, Yangyang; Guo, Qian; Zhang, Leilei

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86±1.43MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization on C/SiC Ceramic Matrix Composites with Novel Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne; Kiser, J. Douglas; McCue, Terry; Verrilli, Michael

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate materials in the aerospace industry due to their high specific strength, low density and higher temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites offer high- strength carbon fibers and a high modulus, oxidation-resistant matrix. For comparison, two types of carbon fibers were processed with novel types of interface coatings (multilayer and pseudoporous). For RLV propulsion applications, environmental durability will be critical. The coatings show promise of protecting the carbon fibers from the oxidizing environment. The strengths and microstructures of these composite materials are presented.

  16. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  17. Corrosion Resistance of Copper Coatings Deposited by Cold Spraying

    Science.gov (United States)

    Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.

    2017-12-01

    In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.

  18. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  19. Cement matrix composite construction features for production of waterproofing coatings

    OpenAIRE

    Суханевич, Марина Володимирівна

    2014-01-01

    It is investigated the properties of the matrix based on Portland cement, slag-contain and fly-ash- slag-contain cements modified with the addition of natural zeolite and complex additives consisting of carbon nanotubes in C-3 solution plasticizer as the main component of composite waterproofing material that is applied to wet concrete in the form of thin-layer coatings.

  20. Radiation curable compounds for use in coating compositions

    International Nuclear Information System (INIS)

    Friedlander, C.B.; McMullen, J.C.

    1979-01-01

    Radiation curable compounds are disclosed which are derived from the reaction of a siloxy-containing carbinol, a polyisocyanate and polyfunctional compound having hydroxy and acrylic functional groups. The compounds have high cure rates, are compatible with other components of radiation curable, film forming compositions and impart good slip and other properties to cured film coatings. (author)

  1. Defect Detection in Composite Coatings by Computational Simulation Aided Thermography

    Science.gov (United States)

    Almeida, R. M.; Souza, M. P. V.; Rebello, J. M. A.

    2010-02-01

    Thermography is based on the measurement of superficial temperature distribution of an object inspected subjected to tension, normally thermal heat. This measurement is performed with a thermographic camera that detects the infrared radiation emitted by every object. In this work thermograph was simulated by COMSOL software for optimize experimental parameters in composite material coatings inspection.

  2. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  3. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  4. Effect of probe sonication and sodium hexametaphosphate on the microhardness and wear behavior of electrodeposited Ni–SiC composite coating

    International Nuclear Information System (INIS)

    Aruna, S.T.; Anandan, C.; Grips, V.K. William

    2014-01-01

    Highlights: • Sodium hexametaphosphate (SHMP) explored as dispersant for SiC in Ni-bath. • SHMP and probe sonication (PS) enhances SiC incorporation in Ni matrix. • SHMP and PS enhances wear resistance and microhardness of Ni–SiC. - Abstract: Electrodeposited Ni–SiC composite coating is the most widely used engineering coating. Ni–SiC coating is bestowed with higher wear resistance and microhardness compared to plain nickel. In this study, the feasibility of using sodium hexametaphosphate as a dispersant in the electrodeposition of Ni–SiC composite coating has been investigated. The effect of sodium hexametaphosphate and probe sonication on the microhardness, microstructure and wear resistance of the electrodeposited Ni–SiC composite coating has been studied. X-ray photoelectron spectroscopy analysis of the coatings showed the absence of Na and P elements from sodium hexametaphosphate in the bath. Ni–SiC coating deposited using probe sonication followed by the addition of sodium hexametaphosphate exhibited microhardness as high as 680 HK. The microstructure of the coatings varied with probe sonication and SHMP addition and Ni–SiC–PS–SHMP coating possessed lowest roughness. This study has revealed that a synergistic combination of probe sonication of the electrolyte bath containing particles followed by sodium hexametaphosphate addition enhances the co-deposition of finer SiC particles and thereby enhances the coating properties like microhardness and wear resistance

  5. High Gloss Corrosion-Resistant Coatings

    Science.gov (United States)

    1991-08-27

    ethylene. since the "pot life" of the composition is short. The 35 glycol „,0noetl.yI ether acetate, and diethylene glycol polyisocyanate (NCO) reacts...that phthalic anhydride, isophthalic acid, etc., and a diol or heating is required. triol. such as ethylene glycol , diethylene glycol . propy- Tne...with the hydroxyl groups monoethyl ether acetate. of the polyol at room temperature and above. Regard- jhe particular zinc phosphate used in preparing

  6. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-01-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  7. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  8. Bioinspired Composite Coating with Extreme Underwater Superoleophobicity and Good Stability for Wax Prevention in the Petroleum Industry.

    Science.gov (United States)

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Yang, Xin; Xu, Chang; Liu, Huicong

    2015-10-13

    Wax deposition is a detrimental problem that happens during crude oil production and transportation, which greatly reduces transport efficiency and causes huge economic losses. To avoid wax deposition, a bioinspired composite coating with excellent wax prevention and anticorrosion properties is developed in this study. The prepared coating is composed of three films, including an electrodeposited Zn film for improving corrosion resistance, a phosphating film for constructing fish-scale morphology, and a silicon dioxide film modified by a simple spin-coating method for endowing the surface with superhydrophilicity. Good wax prevention performance has been investigated in a wax deposition test. The surface morphology, composition, wetting behaviors, and stability are systematically studied, and a wax prevention mechanism is proposed, which can be calculated from water film theory. This composite coating strategy which shows excellent properties in both wax prevention and stability is expected to be widely applied in the petroleum industry.

  9. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay.

    Science.gov (United States)

    Floroian, L; Samoila, C; Badea, M; Munteanu, D; Ristoscu, C; Sima, F; Negut, I; Chifiriuc, M C; Mihailescu, I N

    2015-06-01

    A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys.

  10. Radiation polymerizable coating composition containing an unsaturated phosphoric ester

    International Nuclear Information System (INIS)

    Dickie, R.A.; Cassatta, J.C.

    1976-01-01

    A radiation polymerizable protective coating composition or paint consists essentially of a binder solution of: (1) between about 90 and about 10 parts of a saturated, thermoplastic vinyl polymer prepared from at least about 85 weight percent of monofunctional vinyl monomers; (2) between about 10 and about 90 parts of vinyl solvent monomers for the vinyl polymer, at least about 10 weight percent, preferably at least about 30 weight percent, of the solvent monomers being selected from the group consisting of divinyl monomers, trivinyl monomers, tetravinyl monomers and mixtures of these; and (3) between about 1.0 and about 15.0 parts per 100 parts of the total of the thermoplastic vinyl polymer and the vinyl solvent monomers of a triester of phosphoric acid bearing one or more sites of vinyl unsaturation. The composition exhibits excellent quality and good adhesion to a variety of substrates, in particular metals, including vapor deposited metals. Preferred articles bearing such a coating are prepared by applying a base coat to a substrate and curing the same; vapor depositing a coating of metal over the surface of the base coat; and applying to and curing on the surface of the deposited metal the radiation polymerizable topcoat, preferably with little or no pigment contained therein. 7 claims, no drawings

  11. Tropical Weather Resistant Galvanized Steel Coated and Uncoated

    Directory of Open Access Journals (Sweden)

    Suárez-Corrales Xenia Isbel

    2014-01-01

    Full Text Available The corrosion behavior of coated and uncoated galvanized steel products is determined by exposing them to accelerated and natural climatic test. Accelerated tests were carried out in climatic chambers and natural atmospheric test in a marine-coastal station (Cojimar. The influence of tropical humid climate on these products is determined. Adhesion is an important property for a good performance, from the decorative point of view or as an additional protection. The evaluation indicates that 95% of the galvanized steel products show a good corrosion resistance; although 71% of coated galvanized products and 100% of painted galvanized products do not cover the requirements with respect to the mechanical and corrosion protection aspects. For a good efficiency and economic performance of metal mechanical industry, a correct surface treatment and coating application is required. A key point is to increase the quality by improving a better corrosion protective performance respecting uncoated galvanized steel.

  12. Electroless Ni-P-ferrite composite coatings for microwave applications

    Science.gov (United States)

    Agarwala, Ramesh Chandra

    2005-11-01

    Electroless, EL coating technique is one of the elegant ways of coating by controlling the temperature and pH of the coating bath in which there is no usage of electric current. It is estimated that the market for this chemistry will increase at a rate of about 15% per year. Use of microwave energy for synthesis of material with novel microstructures is an exciting new field in material science with enormous application. In this investigation, nanograined BaZn_{2-y}Co_yFe_{16}O_{27} (y=0.0, 0.4, 0.8, 1.2, 1.6 and 2.0) powders have been synthesized by citrate precursor method followed by heat treatment at various specified temperatures like 650, 750 and 850^{circ}C for 3 h in the furnace. In addition heat treatments are also carried out in the microwave oven of the power rating of 760 W. The powders thus produced have been characterized by SEM, EPMA, VSM, XRD and thermal analysis techniques. As a forward step towards EL nano-composite coatings, Ni-P-X (X = BaZn_{2-y} Co_yFe_{16}O_{27}) coatings with thickness less than sim0.1 mm thick has been produced. Such coating exhibits absorption of microwave in the range of 12-18 GHz up to about 20 db depending upon the volume fraction of the ferrite particles embedded in the Ni-P matrix.

  13. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  14. Polymer derived ceramic composites as environmental barrier coatings on steel

    Science.gov (United States)

    Torrey, Jessica D.

    Polymer derived ceramics have shown promise as a novel way to process low-dimensional ceramics such as fibers and coatings. They offer advantages over traditional ceramic processing routes including lower pyrolysis temperatures and the ability to employ polymeric processing techniques. The main drawback to preceramic polymers is that they undergo a shrinkage during pyrolysis that can be greater than 50-volume%. One way to overcome this shrinkage is to add filler particles, usually elemental or binary metals, which will expand upon reaction with the pyrolysis atmosphere, thereby compensating for the shrinkage of the polymer. The aim of this study is to develop a polymer derived ceramic composite coating on steel as a barrier to oxidation and carburization, while concurrently gaining insight as to the fundamental mechanisms for compositional and microstructural evolution within the system. A systematic approach to selecting the preceramic polymer and expansion agents was taken. Six commercially available poly(silsesquioxane) polymers and a polysiloxane were studied. Several metals and an intermetallic were considered as potential expansion agents. The most desirable polymer/expansion agent combination was achieved with poly(hydridomethylsiloxane) as the matrix and titanium disilicide as the filler. Processing parameters have been optimized and a relationship derived to predict final coating thickness based on slurry viscosity and dip coating withdrawal speed. Microstructural analysis reveals an amorphous composite coating of oxidized filler particles in a silica matrix. A diffusion layer is visible at the coating-steel interface, indicating good bonding. The optimized coatings are ˜18mum thick, have some residual porosity and a density of 2.57g/cm3. A systematic study of the phase transformations and microstructural changes in the coating and its components during pyrolysis in air is also presented. The system evolves from a polymer filled with a binary metal at

  15. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  16. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  17. Annealing effect on corrosion resistance of Bi{sub x}Ti{sub y}O{sub z} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, M. J.; Alfonsoa, J. E.; Olaya, J. J. [Universidad Nacional de Colombia, Grupo de Ciencia de Materiales y Superficies, Bogota AA 14490 (Colombia); Pineda Vargas, C. A., E-mail: jealfonsoo@unal.edu.co [iThemba LABS, Materials Research Department, PO Box 722, Somerset West 7129 (South Africa)

    2016-11-01

    Bismuth titanate (Bi-xTi{sub y}O{sub z}) has received widespread attention due to the fact that during recent times it has found important applications in strategic research fields such as optics and optoelectronic, and more recently studies have shown how their physicochemical properties may be harnessed in order to be able to use Bi{sub x}Ti{sub y}O{sub z}, as an anti corrosive coating. In this work bismuth titanate (Bi{sub x}Ti{sub y}O{sub z}) coatings were grown on titanium alloy (Ti6A14V) substrates, using RF magnetron sputtering at room temperature. The main objectives of the work were quantify the evolution of crystallographic phase formation, as a function of the annealing temperature, and establish the chemical composition in order to characterize the behaviour of the bismuth titanate coating as a protective coating of the corrosion. The morphology of the coating was observed via scanning electronic microscopy (Sem); the crystalline structure was characterized by X-ray diffraction (XRD) and the chemical composition was analyzed by Rutherford Backscattering Spectrometry (RBS). The corrosion resistance of the coatings was studied by potentiodynamic polarization (Pp) test (Tafel extrapolation). Sem results showed that the surface roughness of the coatings changed when the temperature of annealing increased. Similar change occurred after Pp tests. The XRD analysis revealed a change in the coatings microstructure as a function of the annealing temperature, since they evolved from a completely amorphous phase to a polycrystalline phase. RBS results indicate that coatings growing at high temperature have a complex chemical composition. Finally, the electrochemical analysis showed that the corrosion resistance of the coating is much better in the amorphous phases of bismuth titanate than in the polycrystalline phases. (Author)

  18. Characterization of Tape Adhesion to Chemical Agent Resistant Coatings

    Science.gov (United States)

    2015-01-01

    Performance criterion for tape adhesion has been set by the CARC Commodity Manager at 80 inch ounce-force using IAW ASTM D 3330, Peel Adhesion of Pressure ...D3330M-04(2010). “Standard Test Method for Peel Adhesion of Pressure -Sensitive Tape ”. Aunnu. Book ASTM Stand. 2010. 14 Wave Matrix. Computer...ARL-RP-0517 ● JAN 2015 US Army Research Laboratory Characterization of Tape Adhesion to Chemical Agent Resistant Coatings by

  19. Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Tao, E-mail: taosun@hotmail.com.hk [Institute of Microelectronics, Agency for Science, Technology and Research - A*STAR, Singapore 117685 (Singapore); Xue, Ning [Institute of Microelectronics, Agency for Science, Technology and Research - A*STAR, Singapore 117685 (Singapore); Liu, Chao, E-mail: msm-liu@126.com [School of Electronics Science, Northeast Petroleum University, Daqing 163318 (China); Wang, Chao [Institute of Microelectronics, Agency for Science, Technology and Research - A*STAR, Singapore 117685 (Singapore); He, Jin, E-mail: jin.he@whu.edu.cn [Institute of Microelectronics, Agency for Science, Technology and Research - A*STAR, Singapore 117685 (Singapore); School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2015-11-30

    Graphical abstract: - Highlights: • A novel (Si, O, N)/(Ti, O, N)/Ti composite coating was fabricated on NiTi shape memory alloy via PIIID followed by magnetron sputtering. • The multifunctional protective coating is capable of improving bioactivity, wear and corrosion resistance. • The potential mechanisms behind the improved bioactivity, wear and corrosion resistance were discussed. - Abstract: In this investigation, (Si, O, N)/(Ti, O, N)/Ti composite coating was synthesized on a NiTi shape memory alloy (SMA) substrate (50.8 at.% Ni) via plasma immersion ion implantation and deposition (PIIID) followed by magnetron sputtering, with the aim of promoting bioactivity and biocompatibility of NiTi SMAs. Nano featured (Si, O, N)/(Ti, O, N)/Ti coating was approximate 0.84 ± 0.05 μm in thickness, and energy dispersive X-ray (EDX) spectroscopy showed that Ni element was depleted from the surface of coated samples. X-ray diffraction (XRD) did not identify the phase composition of the (Si, O, N)/(Ti, O, N)/Ti coating, probably due to its thin thickness and poor crystalline resulting from low-temperature coating processes (<200 °C). X-ray photoelectron spectroscopy (XPS) analyses confirmed that a Ni-free surface was formed and Si element was incorporated into the composite coating via the magnetron sputtering process. Additionally, phase transformation behaviors of uncoated and coated NiTi SMA samples were characterized using differential scanning calorimetry (DSC). Wear and corrosion resistance of uncoated and coated NiTi SMA samples were evaluated using ball-on-disc tests and potentio-dynamic polarization curves, respectively. The (Si, O, N)/(Ti, O, N)/Ti coated NiTi SMA samples showed enhanced wear and corrosion resistance. Furthermore, the (Si, O, N)/(Ti, O, N)/Ti composite coating facilitated apatite formation in simulated body fluid (SBF) and rendered NiTi SMA bioactivity.

  20. Structure and Abrasive Wear of Composite HSS M2/WC Coating

    Directory of Open Access Journals (Sweden)

    S. F. Gnyusov

    2012-01-01

    Full Text Available Features of phase-structure formation and abrasive wear resistance of composite coatings “WC-M2 steel” worn against tungsten monocarbide have been investigated. It was established that adding 20 wt.% WC to the deposited powder mixture leads to the increase in M6C carbide content. These carbides show a multimodal size distribution consisting of ~5.9 μm eutectic carbides along the grain boundaries, ~0.25 μm carbides dispersed inside the grains. Also a greater amount of metastable austenite (~88 vol.% is found. The high abrasive wear resistance of these coatings is provided by γ→α′-martensitic transformation and multimodal size distribution of reinforcing particles.

  1. THERMAL COMPOSITE COATINGS IMPROVING QUALITY OF TECHNICAL MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Andrzej POSMYK

    2015-06-01

    Full Text Available The paper presents the thermal properties of composite insulating material designed for producing of technical means of transport. This material can be coated on most of engineering materials. The matrix of this material is an acrylic resin ant non porous ceramic microspheres made of alumina are the reinforcing phase. Thanks to that into the spheres almost vacuum (0,13 Pa dominants and a big amount of spheres pro thickness unit is it possible to achieve low thermal conductivity. Usage of these coatings for producing of cooling cabins on vehicles let us to reduce of fuel for maintain of given temperature. Usage of these coatings in planes flying on high altitudes (temperature up to -60 allows to reduce of fuel consumption for heating. It has an important influence on transport quality and quality costs.

  2. Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance.

    Science.gov (United States)

    Sak, Anita; Moskalewicz, Tomasz; Zimowski, Sławomir; Cieniek, Łukasz; Dubiel, Beata; Radziszewska, Agnieszka; Kot, Marcin; Łukaszczyk, Alicja

    2016-06-01

    Polyetheretherketone (PEEK) coatings of 70-90μm thick were electrophoretically deposited from a suspension of PEEK powder in ethanol on near-β Ti-13Nb-13Zr titanium alloy. In order to produce good quality coatings, the composition of the suspension (pH) and optimized deposition parameters (applied voltage and time) were experimentally selected. The as-deposited coatings exhibited the uniform distribution of PEEK powders on the substrate. The subsequent annealing at a temperature above the PEEK melting point enabled homogeneous, semi-crystalline coatings with spherulitic morphology to be produced. A micro-scratch test showed that the coatings exhibited very good adhesion to the titanium alloy substrate. Coating delamination was not observed even up to a maximal load of 30N. The PEEK coatings significantly improved the tribological properties of the Ti-13Nb-13Zr alloy. The coefficient of friction was reduced from 0.55 for an uncoated alloy to 0.40 and 0.12 for a coated alloy in a dry sliding and sliding in Ringer's solution, respectively. The PEEK coatings exhibited excellent wear resistance in both contact conditions. Their wear rate was more than 200 times smaller compared with the wear rate of the uncoated Ti-13Nb-13Zr alloy. The obtained results indicate that electrophoretically deposited PEEK coatings on the near-β titanium alloy exhibit very useful properties for their prospective tribological applications in medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    Science.gov (United States)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  4. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  5. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  6. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  7. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni–P/BN(h) composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-I., E-mail: s1322509@gmail.com [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemistry and Material Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Wang, Gao-Liang, E-mail: wanggl@takming.edu.tw [Department of Marketing Management, Takming University of Science and Technology, Taipei, Taiwan (China)

    2015-12-01

    Highlights: • The Ni-P-BN(h) coatings were prepared by electroless plating techniques in this research. • Surfactant CTAB resulting in a uniform dispersion of particles in Ni-P coating. • CTAB with a positive effect on the tribological performance of Ni–P/BN(h) coatings. • Frictional tests results show that optimal friction coefficient would be decreased 75%. • Wear resistance of the Ni-P/BN(h) coating is higher about 10 times Ni–P coatings. - Abstract: Ni–P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni–P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni–P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni–P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni–P composites is approximately 10 times higher than Ni–P coating.

  8. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini

    2017-01-01

    •Protective action of dense and porous spinel coatings on Crofer 22 APU was compared. •Reduction and re-oxidation produces denser coatings than heat treating in air only. •Coating density has minor influence on oxidation resistance at 800 °C in air. •Dense coating resulted in three times lower Cr...

  9. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  10. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  11. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  12. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.

    Science.gov (United States)

    Zhang, Jialei; Gu, Changdong; Tu, Jiangping

    2017-03-29

    Biomimetic slippery liquid-infused porous surfaces (SLIPSs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and susceptibility to frosting. Herein, we fabricated a double-layered SLIPS coating on the AZ31 Mg alloy for corrosion protection and anti-icing application. The porous top layer was infused by lubricant, and the compact underlayer was utilized as a corrosion barrier. The water-repellent SLIPS coating exhibits a small sliding angle and durable corrosion resistance compared with the SHS coating. Moreover, the SLIPS coating delivers durable anti-icing performance for the Mg alloy substrate, which is obviously superior to the SHS coating. Multiple barriers in the SLIPS coating, including the infused water-repellent lubricant, the self-assembled monolayers coated porous top layer, and the compact layered double hydroxide-carbonate composite underlayer, are suggested as being responsible for the enhanced corrosion resistance and anti-icing performance. The robust double-layered SLIPS coating should be of great importance to expanding the potential applications of light metals and their alloys.

  13. STATICS AND BUCKLING ANALYSIS OF ALUMINUM BEAMS WITH COMPOSITE COATS

    OpenAIRE

    CUNEDİOĞLU, Yusuf

    2017-01-01

       In this study, static andbuckling analysis of an aluminum beam coated with fiber reinforced composite material was investigated. Solution of the problemobtained via finite element method by using Euler-Bernoulli beam theory. Finiteelement simulation code is developed in MATLAB to calculate the displacementand buckling loads. The effect of surface and core layer thickness, compositematerial volume ratio, fiber orientation angle, different beam configurationsand different aspect ratios on di...

  14. Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys.

    Science.gov (United States)

    Tan, Cui; Zhang, Xiaoxu; Li, Qing

    2017-08-28

    Two major problems with magnesium (Mg) alloy biomaterials are the poor corrosion resistance and infection associated with implantation. In this study, a novel calcium phosphate (CaP)/tetracycline (TC) composite coating for Mg implants that can both improve the corrosion resistance of Mg and release a drug in a durable way is reported. Scanning electron microscope (SEM) images showed that TC additives make the CaP coating more compact and uniform. Electrochemical tests indicated CaP/TC coatings can provide excellent corrosion protection for Mg alloy substrates. Besides, TC additives can also provide effective prevention of bone infection and inflammation due to its broad-spectrum antibacterial properties. The one-step hydrothermal process reported here greatly simplified the multi-step fabrication of smart coatings reported previously.

  15. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    International Nuclear Information System (INIS)

    Rathnayake, R.M.N.M.; Mantilaka, M.M.M.G.P.G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H.W.M.A.C.; Yoshimura, Masamichi; Pitawala, H.M.T.G.A.

    2017-01-01

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O 2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g −1 , which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.

  16. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  17. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  18. Metal matrix coated fiber composites and the methods of manufacturing such composites

    Science.gov (United States)

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  19. Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Science.gov (United States)

    Kohlman, Lee W.; Bakis, Charles; Williams, Tiffany S.; Johnston, James C.; Kuczmarski, Maria A.; Roberts, Gary D.

    2014-01-01

    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg.

  20. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  1. SYNTHESIS AND CORROSION PROTECTION BEHAVIOR OF EPOXYTiO2-MICACEOUS IRON OXIDE NANO - COMPOSITE COATING ON St-37

    Directory of Open Access Journals (Sweden)

    M. R. Khorram

    2016-03-01

    Full Text Available The micro layers micaceous iron oxide and nano-TiO 2 were incorporated into the epoxy resin by mechanical mixing and sonication process. Optical micrographs showed that the number and diameter size of nanoparticle agglomerates were decreased by sonication. The structure and composition of the nanocomposite was determined using transmission electron microscopy which showed the presence of dispersed nano-TiO 2 in the polymer matrix. The anticorrosive properties of the synthesized nano-composites coating were investigated using salt spray, electrochemical impedance spectroscopy and polarization measurement. The EIS results showed that coating resistance increased by addition of micaceous iron oxide micro layers and nano-TiO 2 particles to the epoxy coatings. It was observed that higher corrosion protection of nanocomposite coatings obtained by the addition of 3 %wt micaceous iron oxide and 4%wt nano-TiO 2 into epoxy resin.

  2. Fabrication and evaluation of atmospheric plasma spraying WC-Co-Cu-MoS{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Jianhui [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai, 200050 (China); Zhu Yingchun, E-mail: yzhu@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai, 200050 (China); Zheng Xuebing; Ji Heng; Yang Tao [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai, 200050 (China)

    2011-02-03

    Research highlights: > Protective WC-Co-based coatings containing solid lubricant Cu and MoS{sub 2} used in wear applications were investigated in this study. > It was found that the MoS{sub 2} composition in the feed powder was kept in WC-Co-Cu-MoS{sub 2} coatings, and the decomposition and decarburization of WC in APS process were improved. > Combining the wear resistance of WC with the lubricating properties of Cu and MoS{sub 2} has an extremely beneficial effect on improving the tribological performance of the resulting coating. - Abstract: Protective WC-Co-based coatings containing solid lubricant Cu and MoS{sub 2} used in wear applications were investigated in this study. These coatings were deposited on mild steel substrates by atmospheric plasma spraying (APS). The feedstock powders were prepared by mechanically mixing the solid lubricant powders and WC-Co powder, followed by sintering and crushing the mixtures to avoid different particle flighting trajectories at plasma. The tribological properties of the coatings against stainless steel balls were examined by ball-on-disk (BOD) tribometer under normal atmospheric condition. The microstructure of the coatings was studied by optical microscope, scanning electron microscope and X-ray diffraction. It was found that the MoS{sub 2} composition in the feed powder was kept in WC-Co-Cu-MoS{sub 2} coatings, and the decomposition and decarburization of WC in APS process were improved, which were attributed to the protection of Cu around them. The friction and wear behaviors of all the WC-Co-Cu-MoS{sub 2} coatings were superior to that of WC-Co coating. Such behavior was associated to different wear mechanisms operating for WC-Co coating and the WC-Co-Cu-MoS{sub 2} coatings.

  3. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li Qingfen [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li Ying; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Jin Guo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: jg97721@yahoo.com.cn; Ding Minghui [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-12-30

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  4. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  5. Organo-Aluminate Polymeric Materials as Advanced Erosion/Corrosion Resistant Thin Film Coatings

    National Research Council Canada - National Science Library

    Cook, Ronald

    1997-01-01

    ...) and hazardous air pollutants (HAPs). The coating system is based on the development of carboxylato- alumoxane precursors for fabrication of corrosion resistant oxide barrier layers and alumoxane-epoxy based primer coats...

  6. Microstructure development in particulate composite coatings by cryo-SEM

    Science.gov (United States)

    Luo, Hui

    Understanding microstructure development starting from dispersion to a final coating during drying is critical to achieve desirable microstructures and coating properties. Cryo-SEM technique is used to study the microstructure evolutions of three particulate composite coating systems: aqueous latex/ceramic nanoparticle coatings, ordered latex/ceramic nanoparticle coatings, and non-aqueous magnetic coatings. In the first study, cryo-SEM images reveal different colloidal states of two latex/ceramic nanoparticle dispersions, which confirm the DLVO theory-based calculations of total interaction energies from past research. Moreover, images at different drying stages show how nanoparticles segregate in interstitial spaces among large latex particles. As water evaporates, the latex particles consolidate, and the nanoparticles concentrate in interstitial spaces between the latex particles. With continued drying, the latex particles compact, and the nanoparticles are forced to pack more closely in the interstitial spaces. Finally, the latex particles partially coalesce to form a coherent coating. Ordered latex/nanoparticle coatings with a nanoparticle-rich surface and a latexrich body were developed by drying dispersions of monodispersed latex and nanosized ceramic particles. The nanoparticles uniformly occupy the interstitial spaces among the orderly packed latex particles near the surface, but are absent from the compacted latex structure beneath. Cryo-SEM images captured at successive drying times document two important sequences to form this unique structure. Latex particles consolidate at the airwater interface at an early drying stage, and the curved menisci among them create a pressure difference to drive a convective flow. This vertical flow then transports nanoparticles to the evaporating surface. The mechanism is supported by other evidence. The cryo-SEM technique was also applied to a non-aqueous system consisting of a solvent mixture of toluene, cyclohexanone

  7. Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    ZHENG Shun-li

    2017-10-01

    Full Text Available Aluminum (Al can be easily contaminated or damaged after exposure in damp environments, which can adversely affect its aesthetic appearance and desired functionalities. To improve its corrosion resistance, a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid. The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope (FESEM with attached energy dispersive X-ray spectrum (EDS. The surface wettability, mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system, sandblasting test and electrochemical measurements. The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of (155.2±0.5° and a sliding angle of (3.5±1.3° is obtained at the anodization voltage of 20V. The corresponding corrosion current density (Icorr is reduced by 2 orders of magnitude and the corrosion potential (Ecorr shifts from -0.629V to -0.570V compared to the bare Al substrate, indicating excellent corrosion resistance. Besides, the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.

  8. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy); Perero, S.; Miola, M.; Vernè, E. [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy); Rosiello, A.; Ferrazzo, V.; Valletta, G. [Aero Sekur S.p.A., Aprilia, via delle Valli 46, 04011 (Italy); Sanchez, J.; Ohrlander, M. [Bactiguard AB, Biblioteksgatan 25, Box 5070, SE-10242, Stockholm (Sweden); Tjörnhammar, S.; Fokine, M.; Laurell, F. [KTH Royal Institute of Technology, Department of Applied Physics, Roslagstullsbacken 21, SE-106 91 Laserphysics, Stockholm (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44, Stockholm (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, Box 5607, SE-114 86, Stockholm (Sweden); Skoglund, S.; Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44, Stockholm (Sweden); Ferraris, M. [Politecnico di Torino, Torino, C.so Duca degli Abruzzi 24, 10129 (Italy)

    2014-10-30

    Highlights: • Silver nanoclusters-silica composite coatings were deposited on textiles. • Textiles for NBC protection suites and for aerospace applications were considered. • The coating process conferred all textiles a good antibacterial activity. • The coating does not alter the properties of bare textiles. - Abstract: This work describes the chemical, mechanical and antibacterial properties of a novel silver nanocluster/silica composite coating, obtained by sputtering, on textiles for use in nuclear bacteriological and chemical (NBC) protection suites and for aerospace applications. The properties of the coated textiles were analyzed in terms of surface morphology, silver concentration and silver release in artificial sweat and synthetic tap water, respectively. No release of silver nanoparticles was observed at given conditions. The water repellency, permeability, flammability and mechanical resistance of the textiles before and after sputtering demonstrated that the textile properties were not negatively affected by the coating. The antibacterial effect was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus and compared with the behavior of uncoated textiles. The coating process conferred all textiles a good antibacterial activity. Optimal deposition conditions were elaborated to obtain sufficient antibacterial action without altering the aesthetical appearance of the textiles. The antibacterial coating retained its antibacterial activity after one cycle in a washing machine only for the Nylon based textile.

  9. Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications

    International Nuclear Information System (INIS)

    Ferraris, S.; Perero, S.; Miola, M.; Vernè, E.; Rosiello, A.; Ferrazzo, V.; Valletta, G.; Sanchez, J.; Ohrlander, M.; Tjörnhammar, S.; Fokine, M.; Laurell, F.; Blomberg, E.; Skoglund, S.; Odnevall Wallinder, I.; Ferraris, M.

    2014-01-01

    Highlights: • Silver nanoclusters-silica composite coatings were deposited on textiles. • Textiles for NBC protection suites and for aerospace applications were considered. • The coating process conferred all textiles a good antibacterial activity. • The coating does not alter the properties of bare textiles. - Abstract: This work describes the chemical, mechanical and antibacterial properties of a novel silver nanocluster/silica composite coating, obtained by sputtering, on textiles for use in nuclear bacteriological and chemical (NBC) protection suites and for aerospace applications. The properties of the coated textiles were analyzed in terms of surface morphology, silver concentration and silver release in artificial sweat and synthetic tap water, respectively. No release of silver nanoparticles was observed at given conditions. The water repellency, permeability, flammability and mechanical resistance of the textiles before and after sputtering demonstrated that the textile properties were not negatively affected by the coating. The antibacterial effect was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus and compared with the behavior of uncoated textiles. The coating process conferred all textiles a good antibacterial activity. Optimal deposition conditions were elaborated to obtain sufficient antibacterial action without altering the aesthetical appearance of the textiles. The antibacterial coating retained its antibacterial activity after one cycle in a washing machine only for the Nylon based textile

  10. Pulsed laser synthesis of ceramic-metal composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-01-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  11. Pulsed laser synthesis of ceramic-metal composite coating on steel

    Science.gov (United States)

    Du, Baoshuai; Samant, Anoop N.; Paital, Sameer R.; Dahotre, Narendra B.

    2008-12-01

    A pulsed Nd:YAG laser was employed to modify the surface properties of AISI 1010 steel with precursor of TiB 2 + Al. A set of samples were prepared with different laser processing parameters and compositions of the precursor in order to study the effect of Al on the coating. Thermal modeling was performed to quantitatively evaluate the maximum temperature and the range of cooling rate for the melting pool. Phase constituents and microstructure were characterized using X-ray diffractometer, optical microscopy, and scanning electron microscopy. Results show that TiB 2 dissociated when the Al content reached 30 wt.% or more. The composite coating with the presence of TiB 2 shows acicular TiB 2 particles embedded in the α-Fe matrix. Coatings produced using precursor of high-Al content reveals a refined cellular structure due to the high-cooling rate induced by short pulse duration. Compared with the steel substrate, microhardness and wear resistance of the coating are improved significantly.

  12. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  13. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers

    Science.gov (United States)

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-02-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  14. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers.

    Science.gov (United States)

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-12-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  15. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zomorodian, A., E-mail: amir.zomorodian@ist.utl.pt [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Garcia, M.P. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Moura e Silva, T. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL, Department of Mechanical Engineering, 1959-007 Lisboa (Portugal); Fernandes, J.C.S. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Fernandes, M.H. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Montemor, M.F. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation.

  16. Characterization and Properties of Ni-W-ZrO2 Composite Coating by Ultrasonic Electrodeposition

    Science.gov (United States)

    Niu, Qingwei; Li, Zili; Liu, Guodong; Ran, Chaofan

    2018-01-01

    Ni-W-ZrO2 composite coating was prepared on N80 steel plate by composite electrodeposition in the Ni-W bath with ZrO2 nanoparticles. The microstructure of the coating was observed by scanning electron microscopy, and the micro-hardness of the coating was measured as well. The results showed that the optimum working current density of composite electrodeposition was 1.5A/dm2. Lower current density will cause the nonuniform coating, and higher current density will cause the coating to crack. The addition of ZrO2 nanoparticles in the composite coating significantly improved the micro-hardness of the coating. When the concentration of ZrO2 nanoparticles in the bath was 10 g/L, the surface of the composite coating was more compact and the micro-hardness was higher.

  17. FIRE-RESISTANT SHIELDING COATING BASED ON SHUNGITE-CONTAINING PAINT

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-08-01

    Full Text Available Today when specific shielded facilities are designed the construction materials and shields should meet a range of fire safety requirements. A composite coating on the basis of a water-based fire-resistant paint filled with shungite nanopowder can be applied onto walls, floors, ceilings and other surfaces in the shielded areas to reduce electromagnetic radiation and simultaneously to ensure fire safety. Shungit is a mineral with multilayer carbon fullerene globules which diameter is 10–30 nm. Due to the high conductivity shungite is able to weaken electromagnetic radiation. A coating made of schungite-containing paint on a cellulose substrate was subjected to the open flame under the temperature of 1700° C for 3 minutes and 40 seconds. That resulted in the formation of insulating foam layer without mechanical damage of the substrate. The XRD diffraction analysis of the powder obtained in the process of flame influence on the coating showed the formation of the such substances as orthoclase, barite, rutile, etc. Carbon contained in shungit and used as a filler for the fireproof paint wasn’t detected. This fact indicates carbon oxidation as the result of its burning out. The shielding efficiency of the composite coating after open flame exposure was measured for the frequency range 8…12 GHz with the use of the panoramic attenuation meter and voltage standing wave ratio meter YA2R-67-61 with a sweep generator and waveguides. After that the reflection and transmission coefficients were calculated. The results of measurements and calculations showed decrease of the reflection and transmission coefficients due to conductivity decrease and dielectric losses changes of the composite coating provided by silica content increase and carbon percentage decrease.

  18. Measurements of Erosion Wear Volume Loss on Bare and Coated Polymer Matrix Composites

    Science.gov (United States)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard J.; Bowman, Cheryl; Ma, Kong; Horan, Richard A.; Naik, Subhash K.; Cupp, Randall J.

    2003-01-01

    An investigation was conducted to examine the erosion behavior of uncoated and coated polymer matrix composite (PMC) specimens subjected to solid particle impingement using air jets. The PMCs were carbon-Kevlar (DuPont, Wilmington, DE) fiber-epoxy resin composites with a temperature capability up to 393 K (248 F). Tungsten carbide-cobalt (WC-Co) was the primary topcoat constituent. Bondcoats were applied to the PMC substrates to improve coating adhesion; then, erosion testing was performed at the University of Cincinnati. All erosion tests were conducted with Arizona road-dust (ARD), impinging at angles of 20 and 90 on both uncoated and two-layer coated PMCs at a velocity of 229 m/s and at a temperature of 366 K (200 F). ARD contains primarily 10-m aluminum oxide powders. Vertically scanning interference microscopy (noncontact, optical profilometry) was used to evaluate surface characteristics, such as erosion wear volume loss and depth, surface topography, and surface roughness. The results indicate that noncontact, optical interferometry can be used to make an accurate determination of the erosion wear volume loss of PMCs with multilayered structures while preserving the specimens. The two-layered (WC-Co topcoat and metal bondcoat) coatings on PMCs remarkably reduced the erosion volume loss by a factor of approximately 10. The tenfold increase in erosion resistance will contribute to longer PMC component lives, lower air friction, reduced related breakdowns, decreased maintenance costs, and increased PMC reliability. The decrease in the surface roughness of the coated vanes will lead to lower air friction and will subsequently reduce energy consumption. Eventually, the coatings could lead to overall economic savings.

  19. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... of these applications, but the use of recycled aluminium compromises this due to the presence of increased levels of impurity and alloying elements. Knowledge on how different alloying elements affect the optical appearance might therefore increase the applicability of recycled aluminium. It was investigated how...... the optical appearance is affected by the alloy composition, surface morphology, and the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. It was found...

  20. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni-P/BN(h) composite coatings

    Science.gov (United States)

    Hsu, Chih-I.; Hou, Kung-Hsu; Ger, Ming-Der; Wang, Gao-Liang

    2015-12-01

    Ni-P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni-P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni-P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni-P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni-P composites is approximately 10 times higher than Ni-P coating.

  1. Nutrient composition of Dacryodes edulis seed and seed coat mixture

    Directory of Open Access Journals (Sweden)

    C.U. OGUNKA-NNOKA

    2017-07-01

    Full Text Available This study investigated the nutrient composition of D. edulis seed and seed coat mixture. Qualitative and quantitative phytochemicals, proximate, and vitamin compositions were evaluated using standard methods. Saponins were very high, alkaloids, flavonoids, and tannins were high, while terpenoids were low, and glycosides, aldehydes, and steroids were absent. The quantitative phytochemical determination followed the order; saponin > kaempferol > rutin > catechin > tannin > sapogenin > lunamarine > phenol > ribalinidine > anthocyanin > oxalate > phytate. For the proximate composition, carbohydrates had the highest concentration, followed by lipids and fibre, while, protein concentration was the lowest. Vitamin E (5.42 mg/100g, vitamin C (3.24 mg/100g, and vitamin A (2.84 mg/100g were the highest occurring constituent vitamins while vitamin B12 (0.035 mg/100g and vitamin B2 (0.075 mg/100g were the least occurring vitamins. This study has shown the rich phytochemical composition of D. edulis seed and seed coat mixture while showing deficiencies in proteins, distinct vitamins, and ash contents.

  2. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  3. Highly defective oxides as sinter resistant thermal barrier coating

    Science.gov (United States)

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  4. Microstructure and Wear Resistance of Chromium Carbide Coating IN SITU Synthesized by VEB

    Science.gov (United States)

    Lu, Binfeng; Li, Liping; Lu, Fenggui; Tang, Xinhua

    2014-08-01

    In this paper, (Cr, Fe)7C3(M7C3)/γ-Fe composite layer has been in situ fabricated on a low carbon steel surface by vacuum electron beam irradiation (VEB). Three kinds of powder mixtures were placed on a low carbon steel substrate, which was then irradiated with electron beam in vacuum condition. The microstructure and wear resistance of the composite layers has been studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and tribological tester. The chemical composition of all specimens were carefully analyzed using energy-dispersive X-ray spectroscopy (EDAX) technique. Depending on three different powder mixtures, hypereutectic and hypoeutectic microstructures were obtained on surface composite layers. No pores and cracks were found on the coatings. The amount of carbides formed in the surface composite layer was mainly determined by carbon concentration. The microstructure close to the fusion line was largely primary austenite dendrite. The hardness and wear resistance of the surface composite layer has been greatly improved due to the extensive distribution of carbides.

  5. Properties and applications of electroless nickel composite coatings; Eigenschaften und Anwendungen von Chemisch Nickel-Dispersionsschichten

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. [ESK Ceramics GmbH and Co. KG, Kempten (Germany)

    2008-12-15

    This paper discusses the variety of composite electroless coatings used in different industrial applications. The inclusion of particulate matter within electroless nickel deposits can add entirely new properties to the plated layer. Composites with hard particles like diamond, silicon carbide and boron carbide provide greater wear resistance and the possibility for adjustable friction properties. Composite electroless nickel with diamond or ceramics has found wide applications in the textile, automotive and mechanical engineering industry. Friction joints in automotive engines constitute an important field of application for diamond coatings. Modern internal combustion engine designs require that the crankshaft and camshaft be fitted at a specific relative angle. In order to establish the correct angle during assembly and maintain it over the life of the engine, axial press-fit joints in combination with centrally located retention bolts are employed. Failure of either the joints or the bolts can result in serious damage to the engine. The torque transfer ability of these engine components can be significantly increased by incorporating a friction foil that is diamond-coated on both sides. Composite coatings with coarser diamond particles can be used for the coating of precision tools in the semiconductor industry. Enhanced lubricity can be achieved by incorporating solid lubricants in electroless nickel deposits. Composite coatings with PTFE or PFA offers non-stick surfaces with antiadhesive properties and good resistance against adhesive wear. Because of the temperature and softness limitations these coatings are best suited for lower temperature and light loading applications. Electroless nickel boron nitride coatings can withstand temperatures up to 600 C. This coating reduces coefficient of friction and wear in dynamic applications. A further application is the coating of molds for rubber and plastic components. (Abstract Copyright [2008], Wiley Periodicals

  6. Spray-Coated Multiwalled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells.

    Science.gov (United States)

    Holubowitch, Nicolas E; Landon, James; Lippert, Cameron A; Craddock, John D; Weisenberger, Matthew C; Liu, Kunlei

    2016-08-31

    Spray-coated multiwalled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) composite electrodes, scCNTs, with varying CNT compositions (2 to 70 wt %) are presented for use in a simple thermal energy-scavenging cell (thermocell) based on the ferro/ferricyanide redox couple. Their utility for direct thermal-to-electrical energy conversion is explored at various temperature differentials and cell orientations. Performance is compared to that of buckypaper, a 100% CNT sheet material used as a benchmark electrode in thermocell research. The 30 to 70 wt % scCNT composites give the highest power output by electrode area-seven times greater than buckypaper at ΔT = 50 °C. CNT utilization is drastically enhanced in our electrodes, reaching 1 W gCNT(-1) compared to 0.036 W gCNT(-1) for buckypaper. Superior performance of our spray-coated electrodes is attributed to both wettability with better use of a large portion of electrochemically active CNTs and minimization of ohmic and thermal contact resistances. Even composites with as low as 2 wt % CNTs are still competitive with prior art. The MWCNT/PVDF composites developed herein are inexpensive, scalable, and serve a general need for CNT electrode optimization in next-generation devices.

  7. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    Science.gov (United States)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  8. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  9. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  10. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  11. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available . (A) PP, (B) 15% Sisal, (C) 15% Sisal/WG, (D) 15% Sisal/WG/MAPP ? It is clear from Figure 3 above that the polymer structure changed from a smooth regular structure to an irregular structure with the addition of fibre and water glass. ? The 15...?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal...

  12. Development of bacterially resistant polyurethane for coating medical devices

    International Nuclear Information System (INIS)

    Roohpour, Nima; Moshaverinia, Alireza; Wasikiewicz, Jaroslaw M; Paul, Deepen; Vadgama, Pankaj; Wilks, Mark; Millar, Michael

    2012-01-01

    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  13. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    Science.gov (United States)

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-01-01

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products. PMID:28829393

  14. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  15. Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings.

    Science.gov (United States)

    Amadeh, A; Ebadpour, R

    2013-02-01

    Metal-ceramic composite coatings are widely used in automotive and aerospace industries as well as micro-electronic systems. Electrodeposition is an economic method for application of these coatings. In this research, nickel-cobalt coatings reinforced by nano WC particles were applied on carbon steel substrate by pulse electrodeposition from modified Watts bath containing different amounts of cobalt sulphate as an additive. Saccharin and sodium dodecyl sulphate (SDS) were also added to electroplating bath as grain refiner and surfactant, respectively. The effect of cobalt content on wear and corrosion behavior of the coatings was investigated. Wear and corrosion properties were assessed by pin-on-disk and potentiodynamic polarization methods, respectively. Phase analysis was performed by X-ray diffraction (XRD) using CuK(alpha) radiation and the worn surfaces were studied by means of Scanning Electron Microscopy (SEM). The results showed that the addition of cobalt improved the wear resistance of the coatings. In the presence of 18 g/L cobalt in electrodeposition bath, the wear rate of the coating decreased to 0.002 mg/m and the coefficient of friction reduced to 0.695 while they were 0.004 mg/m and 0.77 in the absence of cobalt, respectively. This improvement in wear properties can be attributed to the formation of hcp phase in metallic matrix. Meanwhile, the corrosion resistance of the coatings slightly reduced because cobalt is more active metal with respect to nickel.

  16. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  17. Fabrication of durable fluorine-free superhydrophobic polyethersulfone (PES) composite coating enhanced by assembled MMT-SiO2 nanoparticles

    Science.gov (United States)

    Zhang, Xiguang; Wang, Huaiyuan; Liu, Zhanjian; Zhu, Yixing; Wu, Shiqi; Wang, Chijia; Zhu, Yanji

    2017-02-01

    A durable fluorine-free polyethersulfone (PES) superhydrophobic composite coating with excellent wear-resistant and anti-corrosion properties has been successfully fabricated by combining sol-gel and spray technology. The robust micro/nano-structures of the prepared surface were established by introducing binary montmorillonite-silica (MMT-SiO2) assembled composite particles, which were formed by in-situ growth of SiO2 on MMT surfaces via sol-gel. Combined with the low surface energy of amino silicon oil (APDMS), the fluorine-free superhydrophoic PES coating was obtained with high water contact angle 156.1 ± 1.1° and low sliding angle 4.8 ± 0.7°. The anti-wear of the final PES/APDMS/MMT-SiO2 superhydrophobic coating can reach up to 60,100 cycles, which is outdistancing the pure PES coating (6800 cycles) and the PES/MMT/SiO2 coating prepared by simple physical mixture (18,200 cycles). The enhanced wear resistance property can be mainly attributed to the lubrication performance of APDMS and stable interface bonding force between the MMT surface and SiO2. Simultaneously, potentiodynamic polarization curves and electrochemical impedance spectroscopy exhibited the outstanding anti-corrosion property of PES/APDMS/MMT-SiO2 composite coating, with low corrosion current (1.6 × 10-10 A/cm2) and high protection efficiency (99.999%) even after 30 d immersion process. These test results show that this durable superhydrophobic PES composite coating can be hopefully to provide the possibility of industrial application.

  18. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  19. Oxygen plasma treatment and deposition of CNx on a fluorinated polymer matrix composite for improved erosion resistance

    International Nuclear Information System (INIS)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-01-01

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN x coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN x was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN x coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN x reduced the erosion rate by an order of magnitude for normally incident particles

  20. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  1. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  2. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  3. Characterization of C/SiC Ceramic Matrix Composites (CMCs) with Novel Interface Fiber Coatings

    Science.gov (United States)

    Petko, Jeanne F.; Kiser, J. Douglas; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Ceramic Matrix Composites (CMCs) are attractive candidate aerospace materials due to their high specific strength, low density and high temperature capabilities. The National Aeronautics and Space Administration (NASA) is pursuing the use of CMC components in advanced Reusable Launch Vehicle (RLV) propulsion applications. Carbon fiber-reinforced silicon carbide (C/SiC) is the primary material of interest for a variety of RLV propulsion applications. These composites consist of high-strength carbon fibers and a high modulus, oxidation resistant matrix. For RLV propulsion applications, environmental durability will be critical. Two types of carbon fibers were processed with both standard (pyrolytic carbon) and novel (multilayer and pseudoporous) types of interface coatings as part of a study investigating various combinations of constituents. The benefit of protecting the composites with a surface sealant was also investigated. The strengths, durability in oxidizing environments, and microstructures of these developmental composite materials are presented. The novel interface coatings and the surface sealant show promise for protecting the carbon fibers from the oxidizing environment.

  4. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  5. Oxidation resistance of the nanostructured YSZ coating on the IN-738 superalloy

    Directory of Open Access Journals (Sweden)

    Ahmad Keyvani

    2014-12-01

    Full Text Available Conventional and nanostructured YSZ coatings were deposited on the IN-738 Ni super alloy by the atmospheric plasma spray technique. The oxidation was measured at 1100°C in an atmospheric electrical furnace. According to the experimental results the nanostructured coatings showed a better oxidation resistance than the conventional ones. The improved oxidation resistance of the nanocoating could be explained by the change in structure to a dense and more packed structure in this coating. The mechanical properties of the coatings were tested using the thermal cyclic, nanoindentation and bond strength tests, during which the nanostructured YSZ coating showed a better performance by structural stability.

  6. Study on the nano-composite electroless coating of Ni-P/Ag

    International Nuclear Information System (INIS)

    Ma Hongfang; Tian Fang; Li Dan; Guo Qiang

    2009-01-01

    The nano-composite coating of Ni-P/Ag was obtained by adding silver nanoparticles to the Ni-P electroless plating solutions. The properties of the coating were tested by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and microsclerometer. Silver nanoparticles changed the properties of the composite coating. The Ni-P electroless coating contains 12.23 wt.% P while the composite coating of Ni-P/Ag contains 11.17 wt.% P and 0.24 wt.% Ag. The hardness of the composite coating is bigger than that of Ni-P alloy coating. Differential scanning calorimeter studies showed the amorphous to crystalline transition with precipitation of Ni 3 P and Ni around 335 deg. C

  7. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    Directory of Open Access Journals (Sweden)

    Rongjuan Yang

    2013-02-01

    Full Text Available The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  8. Rolling-contact and wear resistance of hard coatings on bearing-steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.

    1992-02-01

    Ever-increasing needs for high-performance ball- and roller-bearing components that can endure extreme applications have led to a growing interest in hard coatings for improved fatigue life and wear resistance. In particular, hard TiN and TiC coatings and, quite recently, diamond like carbon films have attracted much attention from manufacturers that produce bearing systems for both rolling- and sliding-contact applications. This paper presents an overview that highlights recent incremental progress in achieving improved fatigue and wear resistance in bearing steels through the use of hard coatings. Effects of coating adhesion, thickness, and morphology on fatigue and wear resistance of hard coatings are discussed in detail. Specific references are made to a few mechanistic models that correlate coating thickness and adhesion to improved fatigue life and wear resistance.

  9. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  10. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  11. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...... for the automotive industry, off-shore construction or component and devices used in harsh industrial environments. The ER monitoring makes it possible to study the corrosion rate on-line in remote locations as a function of temperature, relative humidity and changes in the composition of the atmosphere. Different...

  12. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  13. Microstructure and abrasive wear studies of laser clad Al-Si/SiC composite coatings

    NARCIS (Netherlands)

    Anandkumar, R.; Colaco, R.; Ocelik, V.; De Hosson, J. Th. M.; Vilar, R.; Gyulai, J; Szabo, PJ

    2007-01-01

    Surface coatings of Al-Si/SiC metal-matrix composites were deposited on Al-7 wt. % Si alloy substrates by laser cladding. The microstructure of the coatings was characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of the coating

  14. AlTiN layer effect on mechanical properties of Ti-doped diamond-like carbon composite coatings

    International Nuclear Information System (INIS)

    Pang Xiaolu; Yang Huisheng; Gao Kewei; Wang Yanbin; Volinsky, Alex A.

    2011-01-01

    Ti/Ti-doped diamond-like carbon (DLC) and Ti/AlTiN/Ti-DLC composite coatings were deposited by magnetron sputtering on W18Cr4V high speed steel substrates. The effect of the AlTiN support layer on the properties of these composite coatings was investigated through microstructure and mechanical properties characterization, including hardness, elastic modulus, coefficient of friction and wear properties measured by scanning electron microscopy, Raman spectroscopy, scratch and ball-on-disk friction tests. Ti and AlTiN interlayers have a columnar structure with 50-80 nm grains. The hardness and elastic modulus of Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings is 25.9 ± 0.4, 222.2 ± 6.3 GPa and 19.3 ± 1, 205.6 ± 6.7 GPa, respectively. Adhesion of Ti-DLC, Ti/AlTiN/Ti-DLC and AlTiN/Ti-DLC coatings expressed as the critical lateral force is 26.5 N, 38.2 N, and 47.8 N, respectively. Substrate coefficient of friction without coatings is 0.44, and it is 0.1 for Ti/Ti-DLC and Ti/AlTiN/Ti-DLC coatings. Wear resistance of Ti/AlTiN/Ti-DLC composite coatings is much higher than Ti/Ti-DLC coatings based on the wear track width of 169.8 and 73.2 μm, respectively, for the same experimental conditions.

  15. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  16. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  17. Impact of a diamond coating on tool wear behaviour during dry machining of a multidirectional composite materials

    Science.gov (United States)

    Iliescu, D.; Géhin, D.; Nouari, M.; Girot, F.

    2006-08-01

    High mechanical performances and lightweight are the principal characteristics of composite materials. However, the main problems encountered when machining these materials are their poor machinability and the short timelife of the tools. Hard diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. In the current study, damage mechanisms of the uncoated tungsten carbide are compared to the coated one. Tool wear behaviour was investigated at different cutting conditions when dry machining the multidirectional carbon/epoxy composite T300/914. The purpose is to determine the effect of the cutting parameters (cutting conditions, forces, temperature, etc.) on the tool-workpiece interface (surface integrity, roughness). The experiments have been carried out under orthogonal cutting configuration for both tools: uncoated and coated cemented carbide WC-Co. Different coatings have been tested: diamond coating (thin and thick diamond layer), and Diamond-Like Carbon (DLC coating). Three rake angles of 0circ, 15circ and 30circ, two cutting speeds of 6 and 60 m/min and three feeds rates of 0.05, 0.1, 0.2 mm were tested. The tool surface topography was analyzed using complementary techniques such as white light interferometry, scanning electron microscopy (SEM) and Auger electron spectroscopy (AES).

  18. Microstructure and Tribological Performance of TiB2-NiCr Composite Coating Deposited by APS

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-12-01

    Full Text Available Nickel chromium (NiCr powders with different titanium diboride (TiB2 additions (20, 40 and 60 wt % were prepared with a mechanical alloying method and then sprayed using an air plasma spraying technology. The microstructure and phase composite of the powders and the cross-sections of deposited coatings were analyzed with a scanning electronic microscope and X-ray diffraction. The tribological performance of the coatings was studied using a pin-on-disk tribometer at room temperature. The weight loss of the as-sprayed coating was measured by using a high accuracy weighing balance. Cr3C2-25NiCr coating was produced and tested for comparison. The morphologies of the worn surface were then investigated. Parts of debris with some scratches were found, presenting typical signs of abrasive wear and showing slight adhesive wear on the surface. The 20 wt % additive TiB2 coating demonstrated the highest microhardness and the lowest coefficient of friction. The wear resistance of the metal-ceramic composites coatings was enhanced with the addition of TiB2.

  19. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    Science.gov (United States)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  20. Use of microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 2. wear resistance of cemented carbide coatings

    Science.gov (United States)

    Factor, Michael; Roman, Itzhak

    2002-12-01

    A selection of WC-Co and Cr3C2-25%NiCr coatings produced by plasma spray and high velocity oxygen fuel (HVOF) deposition techniques were subjected to various wear tests designed to simulate abrasion, cavitation, sliding, and particle erosion type wear mechanisms. All of the coatings were at least 200 µm thick and were deposited onto stainless steel substrates. In Part 1 of this contribution, the microstructures of the coatings were characterized and their mechanical properties were assessed using microindentation procedures. In this second part of the article, the behavior of the coatings when subjected to the various wear tests is reported and the utility of microhardness testing as an indication of relative wear resistance is discussed. It is shown that correctly performed, appropriate microhardness measurements are a good indication of abrasion resistance and sliding wear resistance, and also correlate well with cavitation resistance in Cr3C2-NiCr. The measurements were less useful for predicting erosion resistance for both Cr3C2-NiCr and WC-Co, however, and for abrasion resistance when WC-Co was ground against SiC. Here the contribution of micromechanisms involving fracturing and brittle failure is greater than that indicated by the coating microhardness, which is essentially a measurement of resistance to plastic deformation under equilibrium conditions.

  1. Effect of composition on the polarization and ohmic resistances of ...

    Indian Academy of Sciences (India)

    However, the ohmic resistance was highest for the same composition and amounted to 60% of the total resistance value. Compositional dependence of resistances has been explained based on the variations of the triple phase boundaries and width of the O 2 −ion migration path with the composition of the electrode.

  2. Improved corrosion and wear resistance of laser alloyed Zn-Sn-Ti composite coatings on UNS G10150 steel in 0.5 M H2SO4 solution

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-03-01

    Full Text Available Surface deterioration by corrosion is one of the complications associated with ageing facilities and components especially under some service environments. The research work examines the corrosion behavior of laser alloyed UNS-G10150 steel; coatings...

  3. New oxide-composite coatings for difficult metal-cutting tasks

    International Nuclear Information System (INIS)

    Westphal, H.; Berg, H. van den; Sottke, V.; Tabersky, R.

    2001-01-01

    The changes in today's metal working technology are driven by increasing cutting speeds, heavy/hard machining and an enormous amount by changes in work piece materials. These applications are asking for more tailor made cutting tool solutions. Together with the well established multi component coating technology a new approach of composite coatings is giving solutions for the tough demands of the cutting tool market. In this paper is presented composite coatings of AI 2 O 3 /ZrO-2/TiO x made by CVD. The coating is like high performance oxide ceramics for cutting applications. The coating is used in combination with MT CVD coatings and different carbide substrates. The CVD coating has optimum stress for cutting applications, low friction and very high thermal isolation. The outstanding performance of this coating is demonstrated in different applications. (author)

  4. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath ...

  5. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    Science.gov (United States)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  6. Properties of nano structured Ag-TiO{sub 2} composite coating on stainless steel using RF sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Bakar, S. Abu; Jamuna-Thevi, K.; Abu, N.; Mohd Toff, M. R. [Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi- Tech 2/3, Kulim Hi-Tech Park, 09000 Kulim (Malaysia)

    2012-07-02

    RF Sputtering system is one of the Physical Vapour Deposition (PVD) methods that have been widely used to produce hard coating. This technique is used to deposit thin layers of metallic substrates such as stainless steel (SS). From this process, a good adhesiveness and wear resistance coating can be produced for biomedical applications. In this study, RF sputtering method was used to deposit TiO{sub 2}-Ag composite coatings via various deposition parameters. The parameters are RF power of 350W, gas composition (Ar: O{sub 2}) 50:5 and deposition time at 1, 2, 4 and 6 hours. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize surface area of coated samples. The formation of nanocrystalline thin film and the surface morphology were examined using SEM. The crystallite size of TiO{sub 2}-Ag composite coatings were estimated between 20-60 nm based on XRD analysis using Scherer equation and SEM evaluation. The Raman and XRD results suggested that the structure of the TiO{sub 2}-Ag consist of anatase and rutile phases. It also showed that the intensity of anatase peaks increased after samples undergone annealing process at 500 Degree-Sign C.

  7. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    Science.gov (United States)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-08-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  8. Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials

    Science.gov (United States)

    Lee,Kang

    2001-01-01

    The upper use temperature of current Environmental Barrier Coatings (EBC's) based on mullite and BSAS (EPM EBC's) is limited to -255 F due to silica volatility, chemical reactions, and high thermal conductivity. Therefore, new EBC s having low CTE, good chemical compatibility, and high melting point (greater than 2700 F ) are being investigated. Sinter-resistant, low thermal conductivity EBC s are strongly desired to achieve the UEET EBC goal of 270 F EBC surface temperature and 30 F AT over long exposures (greater than 1000 hr). Key areas affecting the upper temperature limit of current EBC s as well as the ongoing efforts to develop next generation EBC s in the UEET Program will be discussed.

  9. Facile fabrication of a lotus-effect composite coating via wrapping silica with polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Su Changhong, E-mail: suchhnju@yahoo.com.cn [Department of Material Science, School of Material Science and Engineering, Shandong University of Technology, Zhangzou Road 22, Zibo 255049 (China)

    2010-01-15

    A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168 deg. and the sliding angle is as low as 0.5 deg. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.

  10. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  11. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  12. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Maqbool, Adnan, E-mail: adnanmaqbool247@gmail.com [Faculty of Materials Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640, KP (Pakistan); School of Nano and Advanced Material Engineering, Changwon National University, Gyeongnam 641-773 (Korea, Republic of); Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi [Faculty of Materials Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640, KP (Pakistan); Hussain, Ali; Kim, Myong Ho [School of Nano and Advanced Material Engineering, Changwon National University, Gyeongnam 641-773 (Korea, Republic of)

    2013-12-15

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%.

  13. Improved corrosion resistance of AZ91D magnesium alloy by a zinc–yttrium coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongxia; Yu, Bin; Wang, Weiwei [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Ren, Guangxiao [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liang, Wei, E-mail: liangwei@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Zhang, Jinshan [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China)

    2014-01-05

    Highlights: • A zinc–yttrium coating can be formed on the surface of AZ91D magnesium alloy. • The coating contains a large amount of intermetallic compound Mg{sub 5}Al{sub 2}Zn{sub 2}. • The microhardness values of the coating are much higher than that of the substrate. • The coating can improve the corrosion resistance of the substrate effectively. -- Abstract: A zinc–yttrium coating on AZ91D magnesium alloy was conducted by diffusion treatment in order to improve its corrosion resistance and wear resistance. The microstructures and phase constituents of the zinc–yttrium coating were investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrum (EDS). The results reveal that a zinc–yttrium coating has been formed on the surface of magnesium specimens by the solidification of the liquid layer formed between the AZ91D magnesium alloy and the Zn, Y mixed powders. The microstructure of the zinc–yttrium coating is typical eutectic structure, which contains a large amount of intermetallic compound, such as Mg{sub 5}Al{sub 2}Zn{sub 2}. In addition, the microhardness values of the intermetallic compounds are much higher than those of the substrate and this would greatly contribute to the enhancement of wear resistance. The results of electrochemical corrosion tests in 3.5 wt.% NaCl solution show that the corrosion resistance of the coated specimens has been increased significantly.

  14. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    Science.gov (United States)

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  16. A novel biodegradable nicotinic acid/calcium phosphate composite coating on Mg-3Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingwei, E-mail: ywsong@imr.ac.cn; Shan, Dayong; Han, En-Hou

    2013-01-01

    A novel biodegradable composite coating is prepared to reduce the biodegradation rate of Mg-3Zn alloy. The Mg-3Zn substrate is first immersed into 0.02 mol L{sup -1} nicotinic acid (NA) solution, named as vitamin B{sub 3}, to obtain a pretreatment film, and then the electrodeposition of calcium phosphate coating with ultrasonic agitation is carried out on the NA pretreatment film to obtain a NA/calcium phosphate composite coating. Surface morphology is observed by scanning electron microscopy (SEM). Chemical composition is determined by X-ray diffraction (XRD) and EDX. Protection property of the coatings is evaluated by electrochemical tests. The biodegradable behavior is investigated by immersion tests. The results indicate that a thin but compact bottom layer can be obtained by NA pretreatment. The electrodeposition calcium phosphate coating consists of many flake particles and ultrasonic agitation can greatly improve the compactness of the coating. The composite coating is biodegradable and can reduce the biodegradation rate of Mg alloys in stimulated body fluid (SBF) for twenty times. The biodegradation process of the composite coating can be attributed to the gradual dissolution of the flake particles into chippings. - Highlights: Black-Right-Pointing-Pointer NA/calcium phosphate composite coating is prepared to protect Mg-3Zn alloy implant. Black-Right-Pointing-Pointer Nicotinic acid (vitamin B{sub 3}) is available to obtain a protective bottom film. Black-Right-Pointing-Pointer Ultrasonic agitation greatly improves the compactness of calcium phosphate coating. Black-Right-Pointing-Pointer The composite coating can reduce the biodegradation rate of Mg-3Zn twenty times. Black-Right-Pointing-Pointer The composite coating is biodegraded by the dissolution of flakes into chippings.

  17. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings

    International Nuclear Information System (INIS)

    Kang Yingke; Chen Xinhua; Song Shiyong; Yu Laigui; Zhang Pingyu

    2012-01-01

    Hydrophilic silica nanoparticles (abridged as nano-SiO 2 ) surface-capped with epoxide were dispersed in the solution of epoxy resin (abridged as EP) in tetrahydrofuran under magnetic stirring. Resultant suspension of nano-SiO 2 in EP was then coated onto the surface of glass slides and dried at 80 °C in a vacuum oven for 2 h, generating epoxy resin-nanosilica composite coatings (coded as EP/nano-SiO 2 ). EP coating without nano-SiO 2 was also prepared as a reference in the same manner. A water contact angle meter and a surface profiler were separately performed to measure the water contact angles and surface roughness of as-prepared EP/nano-SiO 2 composite coatings. The friction and wear behavior of as-prepared EP/nano-SiO 2 composite coatings sliding against steel in a ball-on-plate contact configuration under unlubricated condition was evaluated. Particularly, the effect of coating composition on the friction and wear behavior of the composite coatings was highlighted in relation to their microstructure and worn surface morphology examined by means of scanning electron microscopy. Results indicate that EP/nano-SiO 2 composite coatings have a higher surface roughness and water contact angle than EP coating. The EP-SiO 2 coatings doped with a proper amount of hydrophilic SiO 2 nanoparticles show lower friction coefficient than EP coating. However, the introduction of surface-capped nanosilica as the filler results in inconsistent change in the friction coefficient and wear rate of the filled EP-matrix composites; and it needs further study to achieve well balanced friction-reducing and antiwear abilities of the composite coatings for tribological applications.

  18. Zirconia / Alumina Composite Foams with Calcium Phosphate Coating

    Directory of Open Access Journals (Sweden)

    Lenka Novotná

    2016-06-01

    Full Text Available In this study, mechanical properties of calcium phosphate foams were enhanced by zirconia/alumina porous cores prepared by polymer replica technique. This technique was chosen to ensure interconnected pores of optimal size for cell migration and attachment. The porosity of ZA cores (50 – 99% was controlled by multistep impregnation process, the size of pore windows was 300 – 500 μm. Sintered ZA cores were impregnated by hydroxyapatite or β-tricalcium phosphate slurry to improve bioactivity. The bone like apatite layer was formed on coatings when immersed in a simulated body fluid. Neither of tested materials was cytotoxic. Thus, the composite foam can be potentially used as a permanent substitute of cancellous bone.

  19. Kinetics of the development of a nonchromate conversion coating for magnesium alloys and magnesium-based metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Nunez, M.A.; Skeldon, P.; Thompson, G.E.; Karimzadeh, H.

    1999-12-01

    Kinetics of the development of a conversion coating from a stannate bath on commercial purity magnesium (Mg{sup comm}), magnesium-based alloys ZC71 and WE43, and a metal matrix composite (MMC), comprising a ZC71 alloy matrix and 12 vol% silicon carbide (SiC) particles were studied using linear polarization resistance, potential-time, potentiodynamic polarization, x-ray diffraction, Rutherford backscattering spectroscopy, and microscopic examination. The coating, typically {approximately}3 {micro}m to 5 {micro}m thick, was composed largely of crystalline magnesium tin oxide (MgSnO{sub 3} {center{underscore}dot} 3H{sub 2}O), and developed by a nucleation and growth process through an initial corrosion film on the substrate. Nucleation probably occurred on regions where a critical concentration of magnesium ions was reached for coating crystals to form. Specific sites of nucleation, such as particles of eutectic phase and of reinforcement, were revealed in some cases, but frequently the precise sites of nucleation were not disclosed. A longer treatment time (at least 35 min) was suggested by polarization resistance data for improved coverage of the substrate than the previously recommended time of 20 min. The coating continuity on the substrates, after a particular time of treatment, depends upon ally composition increasing in order: Mg{sup comm}, 12% (SiC)p/ZC71 alloy MMC, ZC71 alloy, and WE43 alloy. Polarization resistance (R{sub p}) changed systematically with coating development, showing a decrease in R{sub p} in the early stages of the coating process, related to the initial corrosion.

  20. Effect of Al-B2O3-TiO2 Exothermic System on Performances of Fly Ash Glass/Ceramic Composite Coating

    Directory of Open Access Journals (Sweden)

    Yajun An

    2018-01-01

    Full Text Available Glass/ceramic composite coatings were prepared on 40Cr steel matrix by thermo-chemical reaction with fly ash and a small amount of SiO2, Al2O3, MgO, and albite as main raw materials. On this basis, adding 10% Al-TiO2-B2O3 exothermic system, the morphology, phase, thermal shock resistance, and corrosion resistance of the coating were tested, and the influence of exothermic system on the structure and properties of the composite coating was studied. The experimental results show that the addition of exothermic system can promote the formation of NaB15, TiB2, Na2B4O7, Ca2Al2SiO7, and other new phases by thermo-chemical reaction; when compared to the composite coating without addition of exothermic system, combined with a good interface, higher compactness, and lower porosity. The highest micro hardness can be reached 725HV0.1. The number of thermal shock from 700 °C to room temperature can reach more than 50 times; acid, salt, oil immersion corrosion test, composite coating with exothermic system relative to the matrix increased by 27.40 times, 3.97 times, and 1.88 times, respectively. The overall performance is better than that of the composite coating without exothermic system.

  1. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development of Silica Glass Coatings on 316L SS and Evaluation of its Corrosion Resistance Behavior in Ringer's Solution

    Science.gov (United States)

    Vijayalakshmi, U.; Rajeswari, S.

    2012-12-01

    Sol-gel derived silica glasses have many promising features, including low-temperature preparation as well as chemical and physical stability. Two silica glasses with Si100 and Si80 composition were prepared to understand the factors contributing to the rate of bioactivity. The effects of pH, solution aging temperature, and molar ratio of H2O/tetraethyl orthosilicate (TEOS) were studied, and the obtained powder sample was characterized by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy. The synthesized silica glasses were deposited on 316L SS by the spin coating method at the optimized speed of 2000 revolutions per minute. The corrosion resistance behavior of the coatings was determined by (1) open-circuit potential vs time of exposure, (2) electrochemical impedance spectroscopy, and (3) cyclic polarization in Ringer's solution. A higher breakdown potential ( E b) and repassivation potential ( E p) value with lower current density was obtained from cyclic polarization. Similar results were observed from impedance analysis with higher charge transfer resistance ( R ct) and lower double layer capacitance ( C dl) indicating the corrosion resistance behavior of the coatings compared with the uncoated 316L stainless steel. From the results, it was observed that both Si100 and Si80 glass coatings had a positive effect on the corrosion resistance behavior. An adhesive strength of 46 MPa and 45 MPa was obtained for the Si100 and Si80 coatings, respectively. An accelerated leach out study was carried out by impressing the potential at their breakdown potential to determine the effect of glass coating for long-term contact between the implant and a normal biological medium.

  3. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  4. Effect of the quality of powder materials on the properties of the wear-resistant coatings on the rotor blades in an aviation gas-turbine engine compressor

    Science.gov (United States)

    Abraimov, N. V.; Ryabenko, B. V.; Kryukov, M. A.

    2015-06-01

    The physicomechanical properties, the structures of a wear-resistant WC-Co coating on a VT3-1 titanium alloy and the powder materials used for their deposition by gas-detonation method are studied. The VK-25M coatings are found to inherit the chemical and phase compositions of the powders. The properties of the coating are substantially dependent on the shape, the sizes, and the ratio of carbide WC granules in commercial powder materials. A high content of coarse lamellar WC fractions is accompanied by an increase in the hardness and a decrease in the ductility and the fracture toughness of the coatings. The tensile stresses in the VK-25M coating on the VT3-1 titanium alloy and the fracture toughness decrease as the coating thickness increases or annealing is applied.

  5. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  6. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  7. Effect of fiber coatings on room and elevated temperature mechanical properties of Nicalon trademark fiber reinforced Blackglas trademark ceramic matrix composites (CMCs)

    International Nuclear Information System (INIS)

    Aly, E.I.; Freitag, D.W.; Littlefield, J.E.

    1993-01-01

    With the development of silicon organometallic preceramic polymers as precursors for producing oxidation resistant ceramic matrices, through the polymer pyrolysis route, the fabrication of lightweight, complex advanced aircraft and missile structures from fiber reinforced composites is increasingly becoming more feasible. Besides refinement of processing techniques, the potential for achieving this objective depends upon identifying and developing the proper debond barrier coating layer, between the fiber and the matrix, for optimization of strength, toughness, and durability properties. Blackglas trademark based CMC's reinforced with Nicalon trademark SiC fibers with different types of coatings were fabricated. Coating schemes evaluated include CVD applied single layer boron nitride (BN) composition, dual-layer coatings of BN/SiC, and triple-layer coatings of SiC BN/SiC. Results of tensile and flexural property tests, scanning electron microscopy (SEM) of fracture surfaces, and auger electron spectroscopy (AES) microanalysis of the fiber/matrix interface have been discussed

  8. ZnS/diamond composite coatings for infrared transmission applications formed by the aerosol deposition method

    Science.gov (United States)

    Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.

    2013-06-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.

  9. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    Science.gov (United States)

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  10. Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Etula, Jarkko; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, 00076 Espoo (Finland); Novikov, Serguei [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, 00076 Aalto (Finland)

    2016-05-14

    Single walled carbon nanotube networks (SWCNTNs) were coated by tetrahedral amorphous carbon (ta-C) to improve the mechanical wear properties of the composite film. The ta-C deposition was performed by using pulsed filtered cathodic vacuum arc method resulting in the generation of C+ ions in the energy range of 40–60 eV which coalesce to form a ta-C film. The primary disadvantage of this process is a significant increase in the electrical resistance of the SWCNTN post coating. The increase in the SWCNTN resistance is attributed primarily to the intrinsic stress of the ta-C coating which affects the inter-bundle junction resistance between the SWCNTN bundles. E-beam evaporated carbon was deposited on the SWCNTNs prior to the ta-C deposition in order to protect the SWCNTN from the intrinsic stress of the ta-C film. The causes of changes in electrical resistance and the effect of evaporated carbon thickness on the changes in electrical resistance and mechanical wear properties have been studied.

  11. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy

    Science.gov (United States)

    Zhao, Yan-Bin; Liu, Han-Peng; Li, Chang-Yang; Chen, Yong; Li, Shuo-Qi; Zeng, Rong-Chang; Wang, Zhen-Lin

    2018-03-01

    A polyvinylpyrrolidone (PVP)/polyacrylic acid (PAA) layer-by-layer (LbL) assembled composite coating with a multilayer structure for the corrosion protection of AZ31 magnesium alloy was prepared by a novel spin-casting method. The microstructure and composition of this coating were investigated by means of SEM, XRD and FT-IR measurements. Moreover, electrochemical, immersion and scratch tests in vitro were performed to measure the corrosion performance and the adhesion strength. These results indicated that the (PVP/PAA)10 composite coating with defect-free, dense and uniform morphologies could be successfully deposited on the surface of magnesium alloy. The coating had excellent corrosion resistance and adhesion strength.

  12. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    900°C. Subsequently, the coatings were heat-treated at 698°C for 1 h. The coating materials were analysed by differential thermal analysis (DTA) and thermogravimetric analysis. (TGA) techniques (Netzsch STA 409C model instrument).

  13. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  14. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  15. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Raj, V., E-mail: alaguraj2@rediffmail.com; Mohan Raj, R., E-mail: chem_mohan@rediffmail.com

    2016-12-15

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  16. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    International Nuclear Information System (INIS)

    Raj, V.; Mohan Raj, R.

    2016-01-01

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  17. Effect of Graphene Coating on the Heat Transfer Performance of a Composite Anti-/Deicing Component

    Directory of Open Access Journals (Sweden)

    Long Chen

    2017-09-01

    Full Text Available The thermal conductivity of a graphene coating for anti-/deicing is rarely studied. This paper presents an improved anti-/deicing efficiency method for composite material anti-/deicing by using the heat-transfer characteristic of a graphene coating. An anti-/deicing experiment was conducted using the centrifugal force generated by a helicopter rotor. Results showed that the graphene coating can accelerate the internal heat transfer of the composite material, thereby improving the anti-icing and deicing efficiency of the helicopter rotor. The spraying process parameters, such as coating thickness and spraying pressure, were also studied. Results showed that reducing coating thickness and increasing spraying pressure are beneficial in preparing a graphene coating with high thermal conductivity. This study provides an experimental reference for the application of a graphene coating in anti-/deicing.

  18. Synthesis and electrochemical properties of composite galvanic Ni with carbon nanomaterials and PVD Mo coatings

    International Nuclear Information System (INIS)

    Drozdovich, V.B.; Chayeuski, V.V.; Zhdanok, S.A.; Barkovskaya, M.M.

    2011-01-01

    Double layer coatings Ni – Mo were obtained by electrolytic deposition of galvanic Ni and following arc PVD deposition of molybdenum. The ion plating coatings Mo on Ni foil and composition electrolytic Ni coatings with carbon nanomaterials (CNM) deposited on mild steel has been also investigated. Composite galvanic Ni coatings with CNM and ion plating coatings Mo contain separately obtained cubic α-Mo phase as well as fragmentary solid solution Mo in Ni. Such coatings exclude hydrogenation of Ni foundation in alkaline solution and possess enlarged electrocatalytic properties while emitting hydrogen and oxygen. Availability of carbon based nanomaterials in combined coatings is cause of an active absorption hydrogen after cathodic polarization. A formation on the surface layer of nanostructure solid solution (Ni, Mo) after compression plasma flows treatment with fixed parameters of patterns Mo/Ni/ mild steel take place. (authors)

  19. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  20. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength.

    Science.gov (United States)

    Khurana, Rajneet; Singh, Kuldeep; Sapra, Bharti; Tiwary, A K; Rana, Vikas

    2014-02-15

    Tablet coating is the most useful method to improve tablet texture, odour and mask taste. Thus, the present investigation was aimed at developing an industrially acceptable aqueous tablet coating material. The physico-chemical, electrical and SEM investigations ensures that blending of Tamarindus indica (Linn.) pectin (TP) with chitosan gives water resistant film texture. Therefore, CH-TP (60:40) spray coated tablets were prepared. The evaluation of CH-TP coated tablets showed enhanced adhesive force strength (between tablet surface to coat) and negligible cohesive force strength (between two tablets) both evaluated using texture analyzer. The comparison of CH-TP coated tablets with Eudragit coated tablets further supported superiority of the former material. Thus, the findings pointed towards the potential of CH-TP for use as a tablet coating material in food as well as pharmaceutical industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ultra-Broadband THz Antireflective Coating with Polymer Composites

    Directory of Open Access Journals (Sweden)

    Bin Cai

    2017-11-01

    Full Text Available Achieving an ultra-broadband range is an essential development direction in terahertz techniques; however, a method to cover the full terahertz band by using a highly efficient antireflection (AR coating that could greatly increase the efficiency of terahertz radiation is still lacking. It is known that structures possessing a graded-index profile can offer a broadband AR effect, and such structures have been widely used, especially in the visible range. In this paper, first, we tuned the refractive index of a cyclo-olefin polymer (COP by using a TiO2 dopant, and a polymer–TiO2 composite with a refractive index of 3.1 was achieved. We then fabricated a surface-relief structure with a graded-index profile by using a hot-embossing method. The structure on the silicon substrate can provide an excellent AR effect, but the working band is still limited by its scale of sag and swell. To obtain an ultra-broadband AR effect, we then proposed a flat six-layer structure; a graded-index profile was obtained by casting epoxy–TiO2 composites in the order of a high index to lower indices. With a very well controlled refractive index and thickness of each layer, we achieved an AR effect of <2% in the ultra-broadband of 0.2–20 THz.

  2. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

    International Nuclear Information System (INIS)

    PalDey, S.; Deevi, S.C.

    2003-01-01

    We review the status of (Ti,Al)N based coatings obtained by various physical vapor deposition (PVD) techniques and compare their properties. PVD techniques based on sputtering and cathodic arc methods are widely used to deposit wear resistant (Ti,Al)N coatings. These techniques were further modified to improve the metal ionization rate and to eliminate macrodroplets from plasma streams. We summarize manufacture of target/cathode, substrate materials for deposition of coatings, deposition parameters, and the effect of deposition parameters on the physical and mechanical properties of (Ti,Al)N coatings. It is shown that (Ti,Al)N coatings by PVD enhance the wear, thermal, and oxidation resistance of a wide variety of tool materials. We discuss the wear resistant properties of (Ti,Al)N for various machining applications as compared with coatings such as TiN, Ti(C,N) and (Ti,Zr)N. High hardness (∼28-32 GPa), relatively low residual stress (∼5 GPa), superior oxidation resistance, high hot hardness, and low thermal conductivity make (Ti,Al)N coatings most desirable in dry machining and machining of abrasive alloys at high speeds. Multicomponent coatings based on different metallic and nonmetallic elements combine the benefit of individual components leading to a further refinement of coating properties. Alloying additions such as Cr and Y drastically improve the oxidation resistance, Zr and V improve the wear resistance, whereas, Si increases the hardness and resistance to chemical reactivity of the film. Addition of boron improves the abrasive wear behavior of Ti-Al based coatings due to the formation of TiB 2 and BN phases depending on the deposition conditions. Hafnium based nitrides and carbides have potential for resistance to flank and crater wear. The presence of a large number of interfaces between individual layers of a multilayered structure results in a drastic increase in hardness and strength. (Ti,Al)N multilayer super lattice coatings with lattice

  3. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  6. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  7. CrN-based wear resistant hard coatings for machining and forming tools

    International Nuclear Information System (INIS)

    Yang, S; Cooke, K E; Teer, D G; Li, X; McIntosh, F

    2009-01-01

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  8. Electroless Ni–P–ferrite composite coatings for microwave ...

    Indian Academy of Sciences (India)

    Abstract. Electroless, EL coating technique is one of the elegant ways of coating by controlling the temperature and pH of the coating bath in which there is no usage of electric current. It is estimated that the market for this chemistry will increase at a rate of about 15% per year. Use of microwave energy for synthesis of ...

  9. Electroless Ni–P–ferrite composite coatings for microwave ...

    Indian Academy of Sciences (India)

    Electroless, EL coating technique is one of the elegant ways of coating by controlling the temperature and pH of the coating bath in which there is no usage of electric current. It is estimated that the market for this chemistry will increase at a rate of about 15% per year. Use of microwave energy for synthesis of material with ...

  10. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  11. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    Science.gov (United States)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  12. The Effect of Compositional Tailoring on the Thermal Expansion and Tribological Properties of PS300: A Solid Lubricant Composite Coating

    Science.gov (United States)

    DellaCorte, C.; Fellenstein, J. A.

    1996-01-01

    This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring.

  13. Preparation and characterization of dense graphite/glassy carbon composite coating for sealing application

    Science.gov (United States)

    Wang, Yang; Chen, Zhaofeng; Yu, Shengjie; Pan, Ning; Liao, Jiahao

    2017-09-01

    Glassy carbon (GC), characterized by a homogeneous structure and glass-like fracture surface once broken, has attracted increasing attention because of its excellent performance. In this paper, a dense graphite/glassy carbon composite coating with low gas permeability was introduced. In this composite coating, small graphite particles acting as second phase were wrapped by glassy carbon matrix. The composite coatings with different mass fractions of graphite particles were prepared. The mass loss of phenolic resin was determined by TG (thermogravimetry) analysis to determine the pyrolysis process. Raman spectrum analysis indicates that graphite content in composite coatings affected the G/D ratio significantly. The permeability of composite coatings with 50% and 100% graphite particles was almost same, which was ranged from 6  ×  10-13 m3 · µm/m2 · s · Pa to 3  ×  10-13 m3 · µm/m2 · s · Pa within the differential pressure from 100 kPa to 70 kPa. While the composite coating with 150% graphite particles had higher gas permeability due to the tiny micro-cracks and micro-pores produced. What was more, the densification mechanism of graphite/glassy carbon composite coating was also discussed in detail.

  14. Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating.

    Science.gov (United States)

    Sun, Youhong; He, Linkai; Zhang, Chi; Meng, Qingnan; Liu, Baochang; Gao, Ke; Wen, Mao; Zheng, Weitao

    2017-09-06

    Boron carbide (B 4 C) coating on diamond particle is synthesized by heating diamond particles in a powder mix of H 3 BO 3 and B in Ar atmosphere. The composition, bond state and coverage fraction of boron carbide coating on diamond particles are investigated. The boron carbide coating favors to grow on diamond (100) surface rather than on diamond (111) surface. Cu matrix composites reinforced with B 4 C-coated diamond particles were made by powder metallurgy. The addition of B 4 C coating gave rise to a dense composite. The influence of B 4 C coating on both tensile strength and thermal conductivity of the composite were investigated. When the B 4 C fully covered on diamond particles, the composite exhibited a greatly increase in tensile strength (115 MPa) which was much higher than that for uncoated-diamond/Cu (60 MPa) composites. Meanwhile, a high thermal conductivity of 687 W/mK was achieved in the B 4 C-coated-diamond/Cu composites.

  15. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  16. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  17. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  18. Novel biodegradable calcium phosphate/polymer composite coating with adjustable mechanical properties formed by hydrothermal process for corrosion protection of magnesium substrate.

    Science.gov (United States)

    Kaabi Falahieh Asl, Sara; Nemeth, Sandor; Tan, Ming Jen

    2016-11-01

    Ceramic type coatings on metallic implants, such as calcium phosphate (Ca-P), are generally stiff and brittle, potentially leading to the early failure of the bone-implant interface. To reduce material brittleness, polyacrylic acid and carboxymethyl cellulose were used in this study to deposit two types of novel Ca-P/polymer composite coatings on AZ31 magnesium alloy using a one-step hydrothermal process. X-ray diffraction and scanning electron microscopy showed that the deposited Ca-P crystal phase and morphology could be controlled by the type and concentration of polymer used. Incorporation of polymer in the Ca-P coatings reduced the coating elastic modulus bringing it close to that of magnesium and that of human bone. Nanoindentation test results revealed significantly decreased cracking tendency with the incorporation of polymer in the Ca-P coating. Apart from mechanical improvements, the protective composite layers had also enhanced the corrosion resistance of the substrate by a factor of 1000 which is sufficient for implant application. Cell proliferation studies indicated that the composite coatings induced better cell attachment compared with the purely inorganic Ca-P coating, confirming that the obtained composite materials could be promising candidates for surface protection of magnesium for implant application with the multiple functions of corrosion protection, interfacial stress reduction, and cell attachment/cell growth promotion. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1643-1657, 2016. © 2015 Wiley Periodicals, Inc.

  19. Evaluation of Chemical Agent Resistant Coatings that are Exposed to Ultraviolet Radiation

    National Research Council Canada - National Science Library

    Lum, William S; Kidd, Jr., James A

    2007-01-01

    .... In striving to optimize coating durability and to extend the life cycle of vehicles and weapon systems that use CARC materials, ARL evaluated several CARC topcoats for ultraviolet (UV) resistance...

  20. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  1. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  2. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate

    Science.gov (United States)

    Li, G. J.; Li, J.; Luo, X.

    2015-01-01

    The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.

  3. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    International Nuclear Information System (INIS)

    Dubey, K.A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K.S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan

    2011-01-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  4. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating

    International Nuclear Information System (INIS)

    Xie Youtao; Liu Xuanyong; Ding Chuanxian; Chu, Paul K.

    2005-01-01

    Dicalcium silicate (C 2 S)/yttria stabilized zirconia (YSZ) composite coatings possessing better durability and more superior mechanical properties than pure C 2 S coatings were produced by atmospheric plasma spraying. The microstructure and phase composition of the composite coatings were determined by scanning electron microscopy and X-ray diffraction. The bioconductivity of the coatings was evaluated in vitro by incubating in simulated body fluids (SBF). Apatite was observed to precipitate even on coatings comprising more than 70% YSZ after immersion in SBF for 7 days. The changes of the mechanical properties of the composite coatings due to immersion in SBF were also investigated. The durability was found to increase with a larger YSZ content in the coatings. Deterioration of the mechanical properties can be attributed to the degraded interlamellar or cohesive bonding due to fast dissolution of C 2 S. This study reveals factors affecting the durability of the C 2 S/YSZ composite coatings in simulated physiological environment and suggests means for improvement to address clinical needs

  5. A Nanolayer Copper Coating for Prevention Nosocomial Multi-Drug Resistant Infections

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-2-0066 TITLE: A Nanolayer Copper Coating for Prevention Nosocomial Multi- drug Resistant Infections PRINCIPAL...SUBTITLE A Nanolayer Copper Coating for Prevention Nosocomial Multi- drug Resistant Infections 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-2-0066 5c...for in vitro antimicrobial efficacy and mammalian cell cytotoxicity potential using standardized assays that are approved by the Food and Drug

  6. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    Science.gov (United States)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  7. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  8. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-01-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. family name are correctly identified, especially for the author "A. Chitharanjan Hegde"." ->The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  9. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings

    Directory of Open Access Journals (Sweden)

    Laura Floroian

    2016-06-01

    Full Text Available In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release

  10. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  11. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    OpenAIRE

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulate...

  12. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    DEFF Research Database (Denmark)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.

    2016-01-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids,...

  13. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  14. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  15. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.

    Science.gov (United States)

    Gaur, Swati; Singh Raman, R K; Khanna, A S

    2014-09-01

    A silane-based biodegradable coating was developed and investigated to improve corrosion resistance of an Mg-6Zn-Ca magnesium alloy to delay the biodegradation of the alloy in the physiological environment. Conditions were optimized to develop a stable and uniform hydroxide layer on the alloys surface-known to facilitate silane-substrate adhesion. A composite coating of two silanes, namely, diethylphosphatoethyltriethoxysilane (DEPETES) and bis-[3-(triethoxysilyl) propyl] tetrasulfide (BTESPT), was developed, by the sol-gel route. Corrosion resistance of the coated alloy was characterized in a modified-simulated body fluid (m-SBF), using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The silane coating provided significant and durable corrosion resistance. During the course of this, hydrogen evolution and pH variation, if any, were monitored for both bare and coated alloys. The coating morphology was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) and the cross-linking in the coating was studied using Fourier transform infrared spectroscopy (FTIR). As indicated by X-ray diffraction (XRD) results, an important finding was the presence of hydrated magnesium phosphate on the sample that was subjected to immersion in m-SBF for 216h. Magnesium phosphate is reported to support osteoblast formation and tissue healing. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  17. Preliminary study on nano- and micro-composite sol-gel based alumina coatings on structural components of lead-bismuth eutectic cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Dou, Peng; Kasada, Ryuta

    2011-01-01

    In order to protect the structural components of lead-bismuth eutectic cooled fast breeder reactors from liquid metal corrosion, Al 2 O 3 nano- and micro-composite coatings were developed using an improved sol-gel process, which includes dipping specimens in a sol-gel solution dispersed with fine α-Al 2 O 3 powders prepared by mechanical milling. Accelerated corrosion tests were conducted on coated specimens in liquid lead-bismuth eutectic at 500 o C under dynamic conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the coatings are composed of α-Al 2 O 3 and they are about 10 μm thick. After the corrosion tests, no spallation occurred on the coatings, and neither Pb nor Bi penetrated into the coatings, which indicates that the coatings possess an enhanced dynamic LBE corrosion resistance to lead-bismuth eutectic corrosion. The nano-structured composite particles integrated into the coatings play an important role in achieving such superior lead-bismuth eutectic corrosion resistance.

  18. Influence of the modes of laser cladding on bond strength and wear resistance of coatings

    Science.gov (United States)

    Birukov, V. P.; Tatarkin, D. Yu; Chriptovish, E. V.; Fichkov, A. A.

    2017-12-01

    The paper presents the results of metallographic studies and laboratory comparative tests on the adhesion strength of the coating to the substrate and abrasion on the scheme Brinell-Haworth cladding powder coatings on Nickel-based and samples of steel 40X. Strength of adhesion of the first coating layer with a hardness of HRC 38–42 was 400–480 MPa. It is shown that when the hardness of the deposited layer HRC 58–61 wear resistance of the coatings is higher than 40X steel in the normalized and improved in 10 and 4.6 times, respectively.

  19. Microstructure and Oxidation Resistance of Laser Remelted Plasma Sprayed Nicraly Coating

    Directory of Open Access Journals (Sweden)

    Niemiec D.

    2016-06-01

    Full Text Available The article presents results of research relating to the impact of laser treatment done to the surface of plasma sprayed coatings NiCrAlY. Analysis consisted microstructure and oxidation resistance of coatings subjected to two different laser melting surfaces. The test were performed at a temperature 1000°C the samples were removed from the furnace after 25, 300, 500, 750 and 1000 hours. The investigations range included analysis of top surface of coatings by XRD characterization oxides formed types and microscopic investigations of coatings morphology

  20. COMPOSITION AND METHOD FOR COATING A CERAMIC BODY

    Science.gov (United States)

    Blanchard, M.K.

    1958-11-01

    A method is presented for protecting a beryllium carbide-graphite body. The method consists in providing a ceramic coating which must contain at least one basic oxide component, such as CaO, at least one amphoteric oxide component, such as Al/sub 2/O/sub 3/, and at least one acidic oxide component, such as SiO/ sub 2/. Various specific formulations for this ceramic coating are given and the coating is applied by conventional ceramic techniques.

  1. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  2. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    Science.gov (United States)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-03-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  3. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    International Nuclear Information System (INIS)

    Sarin, V.K.

    1991-01-01

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer

  4. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    Science.gov (United States)

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  5. Influence of dilution level on oxidation resistance of plasma transferred arc NiCrAlC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Benegra, M.; Farina, A.B.; Goldenstein, H. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Materiais e Engenharia Metalurgica; Oliveira, A.S.C.M. d' [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Departamento de Engenharia Mechanica

    2010-07-01

    NICRALC coatings processed by Plasma Transferred Arc (PTA) are a new proposal to protect the components exposed to high-temperature oxidation environments. This study evaluated the relationship between the compositional changes in the coatings due to the different levels of dilution, and the morphology and phase constitution of the developing protective oxide scale. Elementary powders were mixed and deposited by PTA welding onto AISI 316L stainless steel, varying current intensity (100 and 130 A). The microstructure of specimens was characterized by means of scanning electron microscopy with local chemical analysis and by X-Ray diffraction. The coatings were subjected to thermo-gravimetric balance (TGA), using temperatures range of 700-1,000 °C during 5 hours. Results revealed the alumina formation, independent on the compositional variation. For low dilution level transient q-alumina was observed, while for high dilution level resulted in a stable a-alumina. This difference was attributed to the complexity of aluminum diffusion in intermetallic structures. The accumulated mass were smaller than other materials employed to high-temperature, such as as-cast NiCrAlC, indicating better oxidation resistance of the tested coatings. (author)

  6. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    Science.gov (United States)

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  7. Corrosion Resistance of Ni-Based WC/Co Coatings Deposited by Spray and Fuse Process Varying the Oxygen Flow

    Science.gov (United States)

    Jiménez, H.; Olaya, J. J.; Alfonso, J. E.; Mtshali, C. B.; Pineda-Vargas, C. A.

    2017-10-01

    In this work, the effect of oxygen flow variation in the corrosion behavior of Ni-based WC/Co coatings deposited by spray and fuse process was investigated. The coatings were deposited on gray cast iron substrates using a Superjet Eutalloy thermal spraying gun. The morphology of the coatings was analyzed using scanning electron microscopy. The crystallographic phases were registered by x-ray diffraction (XRD), the diffraction patterns show the crystalline phases of the powder components with principal reflections for Ni and WC, the increase in flame temperature, due to the oxygen flow variation, generated amorphization in the nickel and an important crystallization of the planes (111) and (222) of WC as well as the decarburization of WC in W2C and W metallic. The corrosion behavior was investigated at room temperature in a 3.5% w/w aqueous solution of NaCl via potentiodynamic polarization. Electrochemical corrosion test showed that the coatings deposited under neutral flame conditions with an oxygen flow of 12.88 SCFH evidenced higher corrosion resistance. The chemical composition of the coatings and corrosion areas were analyzed by particle-induced x-ray emission, this technique permitting the corroboration of the decarburization process of WC determined by XRD and the formation of Cl structures.

  8. On the composition analysis of nc-TiC/a-C : H nanocomposite coatings

    NARCIS (Netherlands)

    Chechenin, N.G.; Chernykh, P.N.; Kulikauskas, V.S.; Pei, Y.T.; Vainshtein, D.; Hosson, J.Th.M. De

    2008-01-01

    Using a set of ion beam analysis (IBA) techniques the compositions of hydrogenated diamond-like carbon (DLC) nanocomposite coatings are scrutinized, including the hydrogen content. The coatings are composed of two constituents: amorphous hydrocarbon matrix (a-C : H) and nanocrystalline titanium

  9. Improved stability of plasma-sprayed dicalcium silicate/zirconia composite coating

    International Nuclear Information System (INIS)

    Xie Youtao; Liu Xuanyong; Zheng Xuebin; Ding Chuanxian; Chu, Paul K.

    2006-01-01

    Dicalcium silicate/zirconia composite coatings were produced on Ti-6Al-4V substrates using atmospheric plasma spraying. Different weight ratios of zirconia (50 wt.%, 70 wt.%, 90 wt.%) were mechanically blended with dicalcium silicate (C 2 S) powders as feedstocks. The composite coatings were immersed in a simulated body fluid (SBF) and a Tris-HCl solution for the in vitro appraisement of stability and long-term performance in a biological environment. The ion concentration changes of Ca, Si, and P in SBF and Tris-HCl solution were monitored using inductively-coupled plasma atomic emission spectroscopy (ICP-AES). Compared to the pure C 2 S coating, our results show that the dissolution rate of the composite coatings is effectively reduced and the stability is improved by the addition of zirconia. The high content of zirconia in the coatings ensures the long-term performance in biological environment, while dissolution of C 2 S in the coatings results in a higher Ca ion concentration in SBF and rapid precipitation of bone-like apatite on the composite coating surfaces indicating good bioconductivity of the coatings

  10. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance

    NARCIS (Netherlands)

    Urquia Edreira, E.R.; Wolke, J.G.C.; Aldosari, A.A.; Al-Johany, S.S.; Anil, S.; Jansen, J.A.; Beucken, J.J.J.P van den

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings have been used to enhance the biocompatibility and osteoconductive properties of metallic implants. The chemical composition of these ceramic coatings is an important parameter, which can influence the final bone performance of the implant. In this study, the

  11. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry......, with a comparison to alternative resistant materials based on metals or ceramics. In addition, coating degradation phenomena, caused by acid exposure, are mapped to the extent possible, and analysis methods for detecting coating degradation type and severity are listed and discussed. It is concluded that more...

  12. Synthesis and behavior of silyl group-containing acrylic resins as weather resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, I.M. [Myongji University, Yongin (Korea); Kim, S.K. [Sam-Hwa Paints Ind. Co. Ltd., Ansan (Korea); Wu, J.P.; Kim, M.S.; Park, H.S. [Myongji University, Yongin (Korea)

    2001-05-01

    Silyl group-containing acrylic resins were synthesized to prepare weather resistant coatings. Acrylic copolymer was synthesized by the addition copolymerization of n-butyl acrylate and 3-methacryloxypropyl trimethoxysilane (MPTS). Acrylic copolymer were synthesized such that their T{sub g}'s were adjusted to 20 deg. C and their MPTS contents were varied to 10, 20 and 30 wt%. As the content of MPTS increase, viscosity of coatings increased and thermal stability at the high temperature was improved. Coatings was prepared by blending the synthesized resins with a white pigment. The adhesion performance of coatings was superior with various substrates and their other properties were on the whole suitable. Weather ability was tested by outdoor exposure test, WOM test and QU test. It was proved that resin with 30 wt% MPTS was suitable as the binder for weather resistant coatings. (author). 14 refs., 7 tabs., 11 figs.

  13. Calcium phosphorus bio-coating on carbon/carbon composites: Preparation, shear strength and bioactivity

    Science.gov (United States)

    Su, Yangyang; Li, Kezhi; Zhang, Leilei; Liu, Shoujie; Yuan, Ye; He, Song

    2017-10-01

    Microwave hydrothermal (MH) combining supersonic atmospheric plasma sprayed (SAPS) calcium phosphorus (Ca-P) bio-coatings on carbon/carbon (C/C) composite has been widely used due to their osteoconductivity and osteoproductivity. However, the erratic shear strength between coatings prepared only by SAPS (outer coating) and C/C substrates has attached more attention over the implant failure. Adding a coating prepared by MH (inner coating) before SAPS can possess superior shear strength to conventional outer coating. The inner coating with fine Ca-P particles was prepared through a unique MH method under different concentrations (10, 500 and 1000 mmol/L). The influence of concentration on microstructure, phase composition, roughness and shear strength are investigated in this paper. In particularly, the roughness of inner coatings on C/C substrates was found to related to the morphologies and particle size. Results showed that inner coatings have higher roughness which was beneficial for the promotion of shear strength between the obtained Ca-P bio-coating and the C/C substrates. Subsequently, the specimens were immersed in a simulated body fluid (SBF) to investigate the bioactivity.

  14. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haibo; Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Geng, Zhenhua; Yin, Yan; Hang, Ruiqiang; Huang, Xiaobo; Yao, Xiaohong; Tang, Bin

    2014-07-01

    Antibacterial TiO{sub 2} coatings with different concentrations of Cu (Cu–TiO{sub 2}) were prepared by micro-arc oxidation (MAO) on pre-sputtered CuTi films. The effect of Cu concentrations in CuTi films on the MAO process was investigated. The Cu–TiO{sub 2} coatings were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Cu–TiO{sub 2} coatings was evaluated via potentiodynamic polarization method. The antibacterial properties were assessed by two methods: spread plate method and fluorescence staining. The experimental results demonstrate that the coatings are porous and consist of anatase phase, rutile phase and unoxidized titanium. The CuTi films are almost completely oxidized and the thickness of all MAO coatings is about 5–10 μm. Cu mainly exists as CuO in the TiO{sub 2} coatings. The Cu–TiO{sub 2} coatings exhibit excellent antibacterial activities, and the antibacterial rate gradually rise with the increase in Cu concentration in the MAO coatings. The corrosion resistance of MAO coatings is also improved slightly.

  15. Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings

    International Nuclear Information System (INIS)

    Wu, Haibo; Zhang, Xiangyu; Geng, Zhenhua; Yin, Yan; Hang, Ruiqiang; Huang, Xiaobo; Yao, Xiaohong; Tang, Bin

    2014-01-01

    Antibacterial TiO 2 coatings with different concentrations of Cu (Cu–TiO 2 ) were prepared by micro-arc oxidation (MAO) on pre-sputtered CuTi films. The effect of Cu concentrations in CuTi films on the MAO process was investigated. The Cu–TiO 2 coatings were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Cu–TiO 2 coatings was evaluated via potentiodynamic polarization method. The antibacterial properties were assessed by two methods: spread plate method and fluorescence staining. The experimental results demonstrate that the coatings are porous and consist of anatase phase, rutile phase and unoxidized titanium. The CuTi films are almost completely oxidized and the thickness of all MAO coatings is about 5–10 μm. Cu mainly exists as CuO in the TiO 2 coatings. The Cu–TiO 2 coatings exhibit excellent antibacterial activities, and the antibacterial rate gradually rise with the increase in Cu concentration in the MAO coatings. The corrosion resistance of MAO coatings is also improved slightly.

  16. 2-Mercaptobenzothiazole doped chitosan/11-alkanethiolate acid composite coating: Dual function for copper protection

    International Nuclear Information System (INIS)

    Bao Qi; Zhang Dun; Wan Yi

    2011-01-01

    Chitosan (CS) hydrogel loaded with the well-known corrosion inhibitor 2-mercaptobenzothiazole (MBT) has been introduced into a composite coating to improve copper protection. This composite coating, which has both anticorrosion and antibacterial properties, was fabricated onto the surface of copper by combining a simple self-assembled monolayer technique with a sol-gel method. The anti-corrosion ability of the coating in 3.5 wt.% NaCl solution was investigated by electrochemical methods including potentiodynamic polarization and electrochemical impedance spectroscopy. The protection efficiency of the coating is 97.70%, calculated on the basis of the corrosion current density. The stability and integrity of the composite coating were evaluated by field emission scanning electron microscopy (FESEM) and energy dispersive spectrometry (EDS). The FESEM and EDS results suggest that the composite coating endows the copper substrate with antibacterial properties, as untreated bare copper underwent microbiologically influenced corrosion in the presence of sulphate reducing bacteria (SRB). This antibacterial feature was further confirmed by the SRB culture method. In a 3.5% NaCl solution and highly corrosive SRB culture media, the as-prepared CS based composite coating gave corrosion protection by exhibiting better barrier effects against the attack of aggressive environments.

  17. A novel combinatorial approach for the realization of advanced cBN composite coating

    International Nuclear Information System (INIS)

    Russell, W.C.; Yedave, S.N.; Sundaram, N.; Brown, W.D.; Malshe, A.P.

    2001-01-01

    The paper reports a novel coating process for the synthesis of hard material composite coatings. It consists of electrostatic spray coating (ESC) of powder particles (of micron-nanometer size) followed by chemical vapor infiltration (CVI) of a suitable binder phase. This novel approach enables fabrication of unique compositions such as cubic boron nitride (cBN) and titanium nitride (TiN) in a coating form. Recently, we have demonstrated the success of this technology by first coating a uniform over-layer (in excess of ∼ 10 μm) of cBN particles an carbide cutting tool inserts using ESC, followed by infiltration of particulate cBN matrix with TiN from its vapor phase using CVI to synthesize cBN-TiN a composite coating. The composite has shown excellent cBN-to-TiN and composite coating-to-carbide substrate adhesion. One of the main emphases of the paper is to discuss optimization and scale up of the ESC technology to achieve the desired microstructure and tailor the thickness across the cutting tool for better performance. Further, the cutting tools have been successfully tested for advanced machining applications. (author)

  18. The characterization of an oxide interfacial coating for ceramic matrix composites

    International Nuclear Information System (INIS)

    Coons, Timothy P.; Reutenauer, Justin W.; Mercado, Andrew; Kmetz, Michael A.; Suib, Steven L.

    2013-01-01

    This work focused on the use of metal organic chemical vapor deposition (MOCVD) to deposit a zinc oxide (ZnO) coating on ceramic fibers as an interfacial system for continuous fiber reinforced ceramic matrix composites (CFR-CMCs). ZnO coatings were deposited on ceramic grade (CG) Nicalon ™ , Hi-Nicalon ™ , and Hi-Nicalon ™ Type S fabric by the thermal decomposition of zinc acetate dihydrate in a low pressure hot wall CVD reactor. A duplex SiO 2 coating was also deposited in order to protect the ZnO layer from the reducing conditions during composite fabrication. Tow testing was used to evaluate the effect of the ZnO coating on the strength retention of the ceramic fabrics. Single strand unidirectional mini composites were fabricated by infiltrating SiC into the ZnO/SiO 2 duplex coated tows in order to understand the interfacial properties of the ZnO coating. The mini composite utilizing Hi-Nicalon ™ Type S produced the highest ultimate tensile strength (UTS) of 330 MPa. The coated fabrics and the mini composites were characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and scanning Auger microscopy (SAM)

  19. Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

    International Nuclear Information System (INIS)

    Lee, Dongho; Park, Jinhwan; Shon, Minyoung

    2012-01-01

    The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments

  20. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  1. Characteristics and in vitro biological assessment of (Ti, O, N)/Ti composite coating formed on NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Sun Tao; Wang Langping; Wang Min; Tong, Ho-Wang; Lu, William W.

    2011-01-01

    In this investigation, plasma immersion ion implantation and deposition (PIIID) was used to fabricate a (Ti, O, N)/Ti coating on NiTi shape memory alloy (SMA) to improve its long-term biocompatibility and wear resistance. The surface morphology, composition and roughness of uncoated and coated NiTi SMA samples were examined. Energy dispersive X-ray elemental mapping of cross-sections of (Ti, O, N)/Ti coated NiTi SMA revealed that Ni was depleted from the surface of coated samples. No Ni was detected by X-ray photoelectron spectroscopy on the surface of coated samples. Furthermore, three-point bending tests showed that the composite coating could undergo large deformation without cracking or delamination. After 1 day cell culture, SaOS-2 cells on coated samples spread better than those on uncoated NiTi SMA samples. The proliferation of SaOS-2 cells on coated samples was significantly higher at day 3 and day 7 of cell culture.

  2. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    Science.gov (United States)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  3. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    Science.gov (United States)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  4. Effect of process parameters on coating composition of cathodic ...

    Indian Academy of Sciences (India)

    which is a sign of trans-polyacetylene and can appear only in grain boundaries of nanostructured carbon coatings [30]. The presence of this band in Cu 6 can be a witness to the smaller grain structure of coating than in other samples (figure 5f). The high thermal gradient in bulk electrolyte and vicinity of the cathode during ...

  5. Super-low friction behavior of nanostructured DLC composite coatings

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Advanced TiC/a-C:H nanocomposite coatings have been produced via reactive deposition in a closed-field unbalanced magnetron sputtering system (Hauzer HTC-1000). This work concentrates on a detailed mechanical and tribological characterization of the TiC/a-C:H nanocomposite coatings, in particular

  6. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Binghong [Chemical; Key, Baris [Chemical; Lapidus, Saul H. [Chemical; Garcia, Juan C. [Chemical; Iddir, Hakim [Chemical; Vaughey, John T. [Chemical; Dogan, Fulya [Chemical

    2017-11-14

    Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this paper, we systematically studied the effect of the composition of Ni-rich LiNixMnyCo1–x–yO2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi0.5Mn0.3Co0.2O2 (NMC532) to LiNi0.6Mn0.2Co0.2O2 (NMC622) and LiNi0.8Mn0.1Co0.1O2 (NMC811) was found to facilitate the diffusion of surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials. These results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.

  7. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V., E-mail: vdaditya1000@gmail.com [Department of Electrical Engineering,College of Technology and Engineerin, MPUAT Udaipur, 313001,India (India); Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com [Department of Farm Machinery and Power Engineering, MPUAT Udaipur, 313001,India (India); Sanger, A., E-mail: amitsangeriitr@gmail.com; Kumar, A., E-mail: 01ashraj@gmail.com; Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2016-04-13

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  8. Self-sealing multilayer coating for SiC/SiC composites

    International Nuclear Information System (INIS)

    Ferraris, M.; Appendino Montorsi, M.; Salvo, M.; Isola, C.; Kohyama, A.

    1997-01-01

    A double layer coating for SiC/SiC for fusion applications is proposed: the first layer consists in a homogeneous, crack free, glass-ceramic with high characteristic temperatures and thermal expansion coefficient compatible to the composite one; the second layer is amorphous and shows self-sealing properties above 700degC. The glass and the glass-ceramic materials used for this double layer coating do not contain lithium and boron oxide, making them particularly interesting for thermonuclear fusion applications. The self-sealing property of the double layer coating was valued by inducing cracks on the coatings and observing their reparation after heating. (author)

  9. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    International Nuclear Information System (INIS)

    Indyka, P; Beltowska-Lehman, E; Bigos, A

    2012-01-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al 2 O 3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al 2 O 3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al 2 O 3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al 2 O 3 composite coatings have been determined.

  10. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  11. Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites

    Science.gov (United States)

    Kumar, Kundan; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P. M.

    2015-08-01

    Carbon fibres (Cf) are one of the most important reinforced materials for ceramic matrix composites such as Cf - SiC composites and they are generally sought for high temperature applications in as space application, nuclear reactor and automobile industries. But the major problem arise when Cf reinforced composites exposed to high temperature in an oxidizing environment, Cf react with oxygen and burnt away. In present work, we have studied the effect of silica (SiO2) coating as a protective coating on Cf for the Cf / SiC composites. The silica solution prepared by the sol-gel process and coating on Cf is done by dip coating technique with varying the withdrawing speed i.e. 2, 5, 8 mm/s with fixed dipping cycle (3 Nos.). The uniform silica coating on the Cf is shown by the Scanning Electron Microscope (SEM) analysis. The tensile test shows the increase in tensile strength with respect to increase in withdrawing speed. The isothermal oxidation analysis confirmed enhancement of oxidation resistance of silica coated Cf as compared tothe uncoated Cf.

  12. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by ...

  13. Scratch- and mar-resistant refinish two-pack clear coats – linear versus branched acrylics

    Czech Academy of Sciences Publication Activity Database

    Huybrechts, J.; Vaes, A.; Dušek, Karel; Dušková, Miroslava; Barsotti, R. J.

    2006-01-01

    Roč. 89, B4 (2006), s. 275-283 ISSN 1476-4865 Institutional research plan: CEZ:AV0Z40500505 Keywords : scratch resistance * mar resistance * refinishing two-pack clear coats Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.338, year: 2006

  14. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  15. Structure and phase composition of titanium nitride coating on austenitic steel

    International Nuclear Information System (INIS)

    Dubovitskaya, N.V.; Kolenchenko, L.D.; Larikov, L.N.

    1989-01-01

    Structure and phase composition of titanium nitride coating deposited on 08Kh18N10T steel substrate using ''Bulat'' device are studied. Use of complex investigation methods permitted despite small coating thickness (1μm) to aquire information on hardness, porosity, to study phase composition in all coating thickness. The surface layer (∼0.1 μm) consists of ε-Ti 2 N, TiN 0.6 , TiC 0.35 , that is formed with carbon participation from oil vacuum. In more deeper layers beside ε-Ti 2 N TiC 0.14 N 0.77 is present. Effect of carbon diffusion from substrate to forming coating is stated. Gradient of element concentrations in the substrate-coating interface causes recrystallization of austenite

  16. Effect of fibre coating and geometry on the tensile properties of hybrid carbon nanotube coated carbon fibre reinforced composite

    International Nuclear Information System (INIS)

    Shazed, M.A.; Suraya, A.R.; Rahmanian, S.; Mohd Salleh, M.A.

    2014-01-01

    Highlights: • Growth of CNT on carbon fibre (CF) was conducted via floating catalyst CVD process. • CNT-coated CF reinforced polypropylene composites were fabricated and characterized. • Theoretical prediction of composite tensile properties was conducted via mathematical approach. • Acceptable validation was found between experimental and estimated tensile properties. - Abstract: Hierarchically structured hybrid composites are ideal engineered materials to carry loads and stresses due to their high in-plane specific mechanical properties. Growing carbon nanotubes (CNTs) on the surface of high performance carbon fibres (CFs) provides a means to tailor the mechanical properties of the fibre–resin interface of a composite. The growth of CNT on CF was conducted via floating catalyst chemical vapor deposition (CVD). The mechanical properties of the resultant fibres, carbon nanotube (CNT) density and alignment morphology were shown to depend on the CNT growth temperature, growth time, carrier gas flow rate, catalyst amount, and atmospheric conditions within the CVD chamber. Carbon nanotube coated carbon fibre reinforced polypropylene (CNT-CF/PP) composites were fabricated and characterized. A combination of Halpin–Tsai equations, Voigt–Reuss model, rule of mixture and Krenchel approach were used in hierarchy to predict the mechanical properties of randomly oriented short fibre reinforced composite. A fractographic analysis was carried out in which the fibre orientation distribution has been analyzed on the composite fracture surfaces with Scanning Electron Microscope (SEM) and image processing software. Finally, the discrepancies between the predicted and experimental values are explained

  17. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2016-09-01

    Full Text Available Epoxy resin modified with nano scale fillers offers excellent combination of properties such as enhanced dimensional stability, mechanical and electrical properties, which make them ideally suitable for a wide range of applications. However, the studies about functionalized nano-hybrid for coating applications still require better insight. In the present work we have developed silane treated nanoparticles and to reinforce it with diglycidyl epoxy resin to fabricate surface functionalized nano-hybrid epoxy coatings. The effect of inorganic nano particles on the corrosion and fouling resistance properties was studied by various (1, 3, 5 and 7 wt% filler loading concentrations. Diglycidyl epoxy resin (DGEBA commonly was used for coating. 3-Aminopropyltriethoxysilane (APTES was used as a coupling agent to surface treats the TiO2 nanoparticles. The corrosion and fouling resistant properties of these coatings were evaluated by electrochemical impedance and static immersion tests, respectively. Nano-hybrid coating (3 wt% of APTES–TiO2 showed corrosion resistance up to 108 Ω cm2 after 30 days immersion in 3.5% NaCl solution indicating an excellent corrosion resistance. Static immersion test was carried out in Bay of Bengal (Muttukadu which has reflected good antifouling efficiency of the 3 wt% APTES–TiO2 loaded nano-hybrid coating up to 6 months.

  18. Corrosion and wear resistance study of Ni-P and Ni-P-PTFE nanocomposite coatings

    Science.gov (United States)

    Ankita, Sharma; Singh, Ajay

    2011-09-01

    This article reports on the corrosion and wear resistance of Ni-P and Ni-P-PTFE nanocomposite coatings deposited on mild steel substrates using the electroless plating technique. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive analysis of X-Ray (EDAX), and X-ray diffractometry (XRD). The coatings were smooth and had thicknesses between 7 and 23 µm. They contained Ni, P, and additionally, F, in the case of the Ni-P-PTFE films. A broadening of the Ni peak in XRD was attributed to the amorphous nature and/or fine grain size of the films. Corrosion resistance was measured using immersion and electrochemical polarization tests in 3.5% NaCl solution whereas wear resistance was determined by the pin-on-disc method. Both Ni-P and Ni-P-PTFE coatings exhibited significant improvement in corrosion (in salty media) and w