WorldWideScience

Sample records for resistance welding machine

  1. Identification of Mechanical parameters for Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is simulated. The mathematical models for characterizing the mechanical ...

  2. Testing and Modeling of Machine Properties in Resistance Welding

    DEFF Research Database (Denmark)

    Wu, Pei

    The objective of this work has been to test and model the machine properties including the mechanical properties and the electrical properties in resistance welding. The results are used to simulate the welding process more accurately. The state of the art in testing and modeling machine properties...... in resistance welding has been described based on a comprehensive literature study. The present thesis has been subdivided into two parts: Part I: Mechanical properties of resistance welding machines. Part II: Electrical properties of resistance welding machines. In part I, the electrode force in the squeeze...... it is lower than the spring force. The work in part I is focused on the dynamic mechanical properties of resistance welding machines. A universal method has been developed to characterize the dynamic mechanical behaviour of C-frame machines. The method is based on a mathematical model, in which three...

  3. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  4. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  5. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  6. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  7. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...

  8. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  9. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  10. Machine for welding solar cell connections

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1977-08-09

    A machine for welding a connection wire over a solar cell electrode is described which comprises a base, a welding mount for the solar cell which is supported on the base, means for holding the solar cell on the welding mount, welding electrodes, means to lower the welding electrodes over the solar cell and the connection wire superimposed thereon, means for applying electric current pulses to said welding electrodes. It is characterized by the fact that it further comprises means for imparting to said mount an alternating transverse movement in relation to said base before and during the welding operation.

  11. Optimization of resistance spot welding parameters for microalloyed steel sheets

    Science.gov (United States)

    Viňáš, Ján; Kaščák, Ľuboš; Greš, Miroslav

    2016-11-01

    The paper presents the results of resistance spot welding of hot-dip galvanized microalloyed steel sheets used in car body production. The spot welds were made with various welding currents and welding time values, but with a constant pressing force of welding electrodes. The welding current and welding time are the dominant characteristics in spot welding that affect the quality of spot welds, as well as their dimensions and load-bearing capacity. The load-bearing capacity of welded joints was evaluated by tensile test according to STN 05 1122 standard and dimensions and inner defects were evaluated by metallographic analysis by light optical microscope. Thewelding parameters of investigated microalloyed steel sheets were optimized for resistance spot welding on the pneumatic welding machine BPK 20.

  12. The welded CNC machine tool frame

    Directory of Open Access Journals (Sweden)

    Boral Piotr

    2018-01-01

    Full Text Available Machine tools are built based on cast-iron bodies. Cast iron well dumps down vibrations and is dimensionally stable. Therefore, many conventional machine tools are modernized and modified into CNC machine tools based on the seasoned old bodies of those machine tools. Nevertheless, CNC machine tools are also manufactured based on polymer concrete, which vibration damping ability is even better. On the other hand, attempts made in the past by leading machine tool manufacturers to use welded frames in CNC machine tools failed. The revival of interest in welded frames was spurred by economic considerations, as steel systems are much thinner compared to cast-iron ones. They are able to carry the same loads. The construction of CNC machine tools with a welded steel frame undertaken at the Institute of Mechanical Technologies (ITM of the Czestochowa University of Technology is an attempt to solve this constructional problem. The machine tool frame was designed with use of CAD solid works system. The ultimate success of using the welded frame is determined not only by the frame itself, but also generally the design of the machine tool and its operation parameters. The welded frame was used for a high-accuracy three-axis milling machine. In this respect, it is equal of professional machine tools manufactured by reputed companies. It can be either a production machine tool or a test stand.

  13. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side......, as another application, the proposed method is used to measure the faying surface contact resistance....

  14. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision is in...

  15. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  16. Tool For Robotic Resistive Roll Welding

    Science.gov (United States)

    Gilber, Jeffrey L.

    1991-01-01

    Roll-welding attachment for robot simple, inexpensive device incorporating modified commercial resistance-welding gun. Modified welding gun easily attaches to end effector of robot. Robot applies welding force and moves electrode wheel along prescribed path. Resistance-welding current starts and stops automatically according to force exerted against workpiece. Used to apply brazing foil to workpiece.

  17. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...... is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in...

  18. An Experimental Study of the Electrical Contact Resistance in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2005-01-01

    Electrical contact resistance is of critical importance in resistance welding. In this article, the contact resistance is experimentally investigated for welding mild steel, stainless steel, and aluminum to themselves. A parametric study was carried out on a Gleeble® machine, investigating...

  19. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  20. 29 CFR 1910.255 - Resistance welding.

    Science.gov (United States)

    2010-07-01

    ... point of operation, shall be effectively guarded by the use of a device such as an electronic eye safety..., the secondary of all welding transformers used in multispot, projection and seam welding machines shall be grounded. This may be done by permanently grounding one side of the welding secondary current...

  1. Reliability of copper based alloys for electric resistance spot welding

    International Nuclear Information System (INIS)

    Jovanovicj, M.; Mihajlovicj, A.; Sherbedzhija, B.

    1977-01-01

    Durability of copper based alloys (B-5 and B-6) for electric resistance spot-welding was examined. The total amount of Be, Ni and Zr was up to 2 and 1 wt.% respectively. Good durability and satisfactory quality of welded spots were obtained in previous laboratory experiments carried out on the fixed spot-welding machine of an industrial type (only B-5 alloy was examined). Electrodes made of both B-5 and B-6 alloy were tested on spot-welding grips and fixed spot-welding machines in Tvornica automobila Sarajevo (TAS). The obtained results suggest that the durability of electrodes made of B-5 and B-6 alloys is more than twice better than of that used in TAS

  2. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r....... The overall presentation is supported by numerical simulations of electrode misalignment caused by the flexibility of the welding machine arms and electrical shunting due to consecutive welds in the resistance spot welding of two sheets.......This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...

  3. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...

  4. In-Space Friction Stir Welding Machine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...

  5. In-Space Friction Stir Welding Machine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...

  6. Design and Implementation of Software for Resistance Welding Process Simulations

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2003-01-01

    Based on long time engineering research and dedicated collaborations with industry, a new welding software, SORPAS, has been developed for simulation of resistance projection and spot welding processes applying the powerful finite element method (FEM). In order to make the software directly usable...... by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn and easily operate...... of work pieces and electrodes as well as process parameter settings similar to real machine settings, the software has been readily applied in industry for supporting product development and process optimization. After simulation, the dynamic process parameters are graphically displayed. The distributions...

  7. SORPAS – The Professional Software for Simulation of Resistance Welding

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2002-01-01

    Based on long time engineering research and dedicated collaborations with industry, the professional welding software, SORPAS, has been developed for simulation of resistance projection and spot welding processes applying the powerful finite element method (FEM). In order to make the software...... directly usable by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn...... and easily operate and utilize the software. With the user-friendly facilities for flexible geometric design of work pieces and electrodes as well as process parameter settings similar to real machine parameter settings, the software has been readily applied in industry for supporting product development...

  8. Visualization of Spot- welding Resistance

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2016-01-01

    Full Text Available This contribution devotes to monitoring of processes running during joining of steel sheets by incadescent so called point welding using non-destructive trial method – acoustic emission (AE. The joining process is detailed described within experimental measuring from the point of view of metallurgic effects runnig during weld creation (records obtained by means of AE method. It takes into consideration quality of joined steels within welding data of steel producer. Steel welding (determined by chemical composition during mechanical verification and firmness of welds consider results of measurement AE and fracture effect of point joints. The measurement also demonstrates conclusion about connection of metallurgic processes with material wave effects (AE measurement and their impact on firmness of joint at steel with guaranteed welding, difficult welding and at their potential combination.

  9. Research Activities at IPT, DTU on Resistance Projection Welding

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Resistance welding processes and among these especially the resistance projection welding is considered an industrially strategic process with increasing applications as alternative to other welding processes, soldering, brazing and mechanical assembling. This is due to increasing requirements as...... as regards quality assurance and the special possibilities of joining complex metal combinations and geometries using resistance projection welding.......Resistance welding processes and among these especially the resistance projection welding is considered an industrially strategic process with increasing applications as alternative to other welding processes, soldering, brazing and mechanical assembling. This is due to increasing requirements...

  10. Motion Simulation Analysis of Rail Weld CNC Fine Milling Machine

    Science.gov (United States)

    Mao, Huajie; Shu, Min; Li, Chao; Zhang, Baojun

    CNC fine milling machine is a new advanced equipment of rail weld precision machining with high precision, high efficiency, low environmental pollution and other technical advantages. The motion performance of this machine directly affects its machining accuracy and stability, which makes it an important consideration for its design. Based on the design drawings, this article completed 3D modeling of 60mm/kg rail weld CNC fine milling machine by using Solidworks. After that, the geometry was imported into Adams to finish the motion simulation analysis. The displacement, velocity, angular velocity and some other kinematical parameters curves of the main components were obtained in the post-processing and these are the scientific basis for the design and development for this machine.

  11. Neural network monitoring of resistance welding processes

    OpenAIRE

    Quero Reboul, José Manuel; Millán Vázquez de la Torre, Rafael Luis; García Franquelo, Leopoldo; Cañas, J.

    1994-01-01

    Control of weld quality is one of the most important and complex processes to be carried out on production lines. Neural networks have shown good results in fields such as modelling and control of physical processes. It is suggested in this article that a neural classifier should be used to carry out non‐destructive on‐line analysis. This system has been developed and installed at resistance welding stations. Results confirm the validity of neural networks used for this type of application.

  12. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Directory of Open Access Journals (Sweden)

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  13. Review: magnetically assisted resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. B. [Shanghai Jiao Tong Univ., Shanghai (China); Li, D. L. [Shanghai Jiao Tong Univ., Shanghai (China); Lin, Z. Q. [Shanghai Jiao Tong Univ., Shanghai (China); David, Stan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-25

    Currently, the use of advanced high strength steels (AHSSs) is the most cost effective means of reducing vehicle body weight and maintaining structural integrity at the same time. However, AHSSs present a big challenge to the traditional resistance spot welding (RSW) widely applied in automotive industries because the rapid heating and cooling procedures during RSW produce hardened weld microstructures, which lower the ductility and fatigue properties of welded joints and raise the probability of interfacial failure under external loads. Changing process parameters or post-weld heat treatment may reduce the weld brittleness, but those traditional quality control methods also increase energy consumption and prolong cycle time. In recent years, a magnetically assisted RSW (MA-RSW) method was proposed, in which an externally applied magnetic field would interact with the conduction current to produce a Lorentz force that would affect weld nugget formation. This paper is a review of an experimental MA-RSW platform, the mode of the external magnetic field and the mechanism that controls nugget shape, weld microstructures and joint performance. In conclusion, the advantages of the MA-RSW method in improving the weldability of AHSSs are given, a recent application of the MA-RSW process to light metals is described and the outlook for the MA-RSW process is presented.

  14. Welding and brazing of the JET machine components

    International Nuclear Information System (INIS)

    Walravens, M.J.

    1985-10-01

    The report covers the techniques used for joining the various parts of the machine. The difficulties encountered during the welding and brazing of similar and dissimilar metals are underlined and the solutions adopted to solve them are indicated. The vast experience gained by those involved in the processes of joining the various parts of the JET machine components, and the lessons learnt are summarized in this report. (author)

  15. Metallography of Battery Resistance Spot Welds

    Science.gov (United States)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  16. Resistance Spot Welding with Middelfrequency-Inverter Weling Gun

    DEFF Research Database (Denmark)

    Rasmussen, Mogens H.

    The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun......The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun...

  17. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  18. Microstructure and mechanical properties of resistance upset butt welded 304 austenitic stainless steel joints

    International Nuclear Information System (INIS)

    Sharifitabar, M.; Halvaee, A.; Khorshahian, S.

    2011-01-01

    Graphical abstract: Three different microstructural zones formed at different distances from the joint interface in resistance upset butt welding of 304 austenitic stainless steel. Highlights: → Evaluation of microstructure in resistance upset welding of 304 stainless steel. → Evaluation of welding parameters effects on mechanical properties of the joint. → Introducing the optimum welding condition for joining stainless steel bars. -- Abstract: Resistance upset welding (UW) is a widely used process for joining metal parts. In this process, current, time and upset pressure are three parameters that affect the quality of welded products. In the present research, resistance upset butt welding of 304 austenitic stainless steel and effect of welding power and upset pressure on microstructure, tensile strength and fatigue life of the joint were investigated. Microstructure of welds were studied using scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was used to distinguish the phase(s) that formed at the joint interface and in heat affected zone (HAZ). Energy dispersive spectroscopy (EDS) linked to the SEM was used to determine chemical composition of phases formed at the joint interface. Fatigue tests were performed using a pull-push fatigue test machine and the fatigue properties were analyzed drawing stress-number of cycles to failure (S-N) curves. Also tensile strength tests were performed. Finally tensile and fatigue fracture surfaces were studied by SEM. Results showed that there were three different microstructural zones at different distances from the joint interface and delta ferrite phase has formed in these regions. There was no precipitation of chromium carbide at the joint interface and in the HAZ. Tensile and fatigue strengths of the joint decreased with welding power. Increasing of upset pressure has also considerable influence on tensile strength of the joint. Fractography of fractured samples showed that formation of hot spots at

  19. Qualification and Start of Production of the Ultrasonic Welding Machines for the LHC Interconnections

    CERN Document Server

    Jacquemod, A; Laurent, F; Tock, J P; Vaudaux, L

    2006-01-01

    The Large Hadron Collider (LHC) is presently under installation at CERN, Geneva. The approximately 4000 superconducting corrector magnets required by the machine are powered through copper-stabilized Nb-Ti busbars. To interconnect the magnets along the machine, about 50 000 joints between superconducting cables rated at 600 A have to be performed in-situ during the interconnection activities. An ultrasonic welding technique has been developed and optimised by CERN which led to the development of a dedicated machine which was qualified during the assembly of the STRING II, a 110-m chain of cryomagnets assembled as a prototype of the LHC. The realization of the â series â interconnections together with the procurement of the tooling based on functional specifications have been contracted to a consortium of firms. Qualification tests and acceptance criteria in terms of electrical contact resistance, mechanical resistance, reliability and reproducibility have been defined by CERN. This paper presents the tes...

  20. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in

  1. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    Science.gov (United States)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  2. Ultrasonic assessment of tension shear strength in resistance spot welding

    Science.gov (United States)

    Moghanizadeh, Abbas

    2015-05-01

    Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain sizes which are able to have significant effects on the physical characteristics of the material. This research provides a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated. The results confirm that it is possible to determine the spot welding parameters for individual quality by using ultrasonic test.

  3. Online resistance spot weld NDE using infrared thermography

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2017-04-01

    A new online resistance spot weld non-destructive evaluation (NDE) technique based on infrared (IR) thermography has been developed. It is capable of both real-time online (during welding) and post-weld online/offline (after welding) inspections. The system mainly consists of an IR camera and a computer program with proprietary thermal imaging analysis algorithms integrated into existing production lines. For real-time inspection, the heat flow generated from the welding process (with temperature exceeding 1000°C) is monitored by the IR camera. For post-weld inspection, a novel auxiliary heating device is applied to locally heat the weld region, resulting in temperature changes on the order of 10°C, and the transmitted heat flow is monitored. Unlike the conventional IR NDE method that requires surface coating to reduce the influence of unknown emissivity, the new method can be applied on as-is bare metal surface thanks to the unique "thermal signatures" extracted from infrared thermal images, which positively correlates to weld quality with a high degree of confidence. The new method can be used to reliably detect weld size, surface indents and defects such as cold weld with sufficient accuracy for welds made from various combinations of materials, thickness, stack-up configuration, surface coating conditions and welding conditions.

  4. Welding complex

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.K.; Kuchuk-Yatsenko, S.I.; Sakharnov, V.A.; Galyan, B.A.; Krivenko, V.G.; Asoyants, G.B.

    1992-10-27

    A welding complex for construction of a continuous underwater pipeline is adapted to be installed aboard a ship. The complex includes a welding machine positionable at a joint of the pipeline with a pipe section to be welded, burr-removing trimmers positionable coaxially with the pipeline for displacement relative to the pipeline in the joint area, and a support device for the end part of the pipeline. A rotatably mounted holding device for setting, holding, and retaining the pipe section to be welded, the welding machine, and the trimmers is axially aligned with the end part of the pipeline. An accumulator is provided for storing and delivering successive pipe sections at a loading position laterally offset from the common axis of the pipeline and of the pipe section to be welded to it. The holding device includes a platform movable along the common axis of the pipeline and of the pipe section to be welded to it by a resistance butt welding machine, and a plate with a means for carrying the pipe section to be welded which is mounted on a pivot carried by the platform for rotation between the loading position and the aligning position. The welding complex of the invention provides for implementing resistance butt welding in construction of continuous underwater pipelines and ensures the accuracy of alignment and permanence of the gap between the edges being welded. The welding complex's structure allows handling of longer pipe sections, thus reducing the overall number of joints to be welded. 7 figs.

  5. Control of resistance plug welding using quantitative feedback theory

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, A.E. [Sandia National Lab., Albuquerque, NM (United States); Horowitz, I. [Univ. of California, Davis, CA (United States)]|[Weizmann Inst. of Science, Rehovot (Israel)]|[Wright Patterson Air Force Base, Dayton, OH (United States); Chait, Y.; Rodrigues, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-01

    Resistance welding is used extensively throughout the manufacturing industry. Variations in weld quality often result in costly post-weld inspections. Applications of feed-back control to such processes have been limited by the lack of accurate models describing the nonlinear dynamics of this process. A new system based on electrode displacement feedback is developed that greatly improves quality control of the resistance plug welding process. The system is capable of producing repeatable welds of consistent displacement (and thus consistent quality), with wide variations in weld parameters. This paper describes the feedback design of a robust controller using Quantitative Feedback Theory for this highly complex process, and the experimental results of the applied system.

  6. On-line inspection of weld quality based on dynamic resistance curve in resistance spot welding and weldbonding

    Science.gov (United States)

    Sun, Haitao; Zhang, Yansong; Lai, Xinmin; Chen, Guanlong

    2008-12-01

    In order to reduce destructive testing of car sub-assemblies, on-line inspection of weld quality has gained more and more concern in terms of both resistance spot welding (RSW) and weldbonding. Dynamic resistance directly determines the amount of heat generated by current flow and consequently reflects nugget formation and growth, which is one of the most effective technologies for quality inspection. Under the measurements of voltage and current at the secondary circuit of a welding transformer, this paper proposes a method for on-line inspection of weld quality based on two indicators from dynamic resistance curve: time to nugget initiation and durable time to nugget expansion. Firstly, during the welding process of RSW and weldbonding, the proper range of time to nugget initiation and durable time to nugget expansion for good welds is set up. Then on-line inspection of weld quality on the basis of the developed proper range of these two indicators is carried out. The experimental results show the following conclusions: it is clearly able to separate accepted welds without expulsion from the welds of unaccepted nugget size in both RSW and weldbonding; the proper range for good welds, independent of electrode wear, is obtained only for a new electrode.

  7. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  8. CHARACTERIZATION OF Pro-Beam LOW VOLTAGE ELECTRON BEAM WELDING MACHINE

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-18

    The purpose of this paper is to present and discuss data related to the performance of a newly acquired low voltage electron beam welding machine. The machine was made by Pro-Beam AG &Co. KGaA of Germany. This machine was recently installed at LANL in building SM -39; a companion machine was installed in the production facility. The PB machine is substantially different than the EBW machines typically used at LANL and therefore, it is important to understand its characteristics as well as possible. Our basic purpose in this paper is to present basic machine performance data and to compare those with similar results from the existing EBW machines. It is hoped that this data will provide a historical record of this machine’s characteristics as well as possibly being helpful for transferring welding processes from the old EBW machines to the PB machine or comparable machines that may be purchased in the future.

  9. FATIGUE WELDING JOINT RESISTANCE OF MINING DUMP TRUCK BEARING CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Rakitsky

    2010-01-01

    Full Text Available The paper investigates a possibility to apply European norms on designing of welded constructions for frames of heavy-load mining dump trucks. Comparison of results concerning tests of welding joint specimen made of local steel with recommended standards of fatigue curves is executed in the paper. The paper reveals that while forecasting resource of automotive constructions with the accepted practical accuracy it is possible to use generalized fatigue resistance characteristics of standard welding joints. 

  10. Applying of dilatometric effect for resistance welding automation

    Directory of Open Access Journals (Sweden)

    Bondarenko O. F.

    2017-06-01

    Full Text Available The important issue of resistance spot welding control to obtain high quality welded joints, especially in living tissue welding, is considered. The actual state of the issue is described and analyzed. In order to improve the quality of welded joints, the applying of dilatometric effect to control the resistance spot welding process, namely of shifting the welding electrodes, is suggested. To register the shifting, the use of modern inertial microelectromechanical sensors (MEMS is proposed. The experimental measuring system, which processes the MEMS-sensor signal and makes it suitable for use as a feedback signal, is developed. The structure and operational algorithm of the system are described. The abilities of measuring with MEMS-sensors the values of electrode shifting caused by dilatometric effect under resistance welding are assessed. These method and equipment are recommended for welding the metals, as well as for welding the living tissues. The results of preliminary studies prove the advisability and relevance of the suggested solutions.

  11. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  12. A Shape Optimization Study for Tool Design in Resistance Welding

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Bendsøe, Martin P.; Hattel, Jesper Henri

    2009-01-01

    The purpose of this study is to apply shape optimization tools for design of resistance welding electrodes. The numerical simulation of the welding process has been performed by a simplified FEM model implemented in COMSOL. The design process is formulated as an optimization problem where...

  13. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  14. Corrosion resistance of «tube – tubesheet» weld joint obtained by friction welding

    Directory of Open Access Journals (Sweden)

    RIZVANOV Rif Garifovich

    2017-08-01

    Full Text Available Shell-and-tube heat exchangers are widely applied for implementation of various processes at ventures of fuel and energy complex. Cost of production and reliability of heat exchangers of this type is to a wide extent determined by corresponding characteristics of tube bundle, «tube – tubesheet» is its typical joint in particular when welding operations are used in order to attach tubes to tubesheet in addition to expansion. When manufacturing such equipment of heat-resistant chrome-bearing or chromium-molybdenum steels including steel 15H5M, the process of fixed joint manufacturing gets significantly more complicated and costly due to the necessity to use thermal treatment before, during and after welding (this problem is particularly applicable for manufacturing of large-size equipment. One of the options to exclude thermal treatment from manufacturing process is to use «non-arc» welding methods – laser welding, explosion welding as well as friction welding. Use of each of the welding methods mentioned above during production of heat-exchange equipment has its process challenges and peculiarities. This article gives a comparative analysis of weld structure and distribution of electrode potentials of welded joints and parent metal of the joints simulating welding of tube to tubesheet of steel 15H5M using the following welding methods: shielded manual arc welding, tungsten-arc inert-gas welding and friction welding. Comparative analysis of macro- and microstructures of specific zones of the studied welded joints showed that the joints produced by arc welding methods do not exhibit evident inhomogeneity of the structure after application of thermal treatment which is explained by the correctness of thermal treatment. Joints obtained via friction welding are characterized by structural inhomogeneity of the welded joint zone metal microstructure. The ultra-fine-grained structure obtained as a result of friction welding makes it possible to

  15. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  16. Resistance Welding of Advanced Materials and Micro Components

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard

    aimed at improving the understanding of resistance welding for increasing the accuracy of numerical simulation of the process. Firstly methods for measuring and modelling mechanical and electrical properties at a wide range of temperatures is investigated, and especially the electrical contact....... Experimental measurements of contact resistance was performed on a Gleeble 1500 system, and the measurements revealed that surface hardness and film resistance interacts with the effect of pressure on the contact resistance. Numerical simulation of downscaled joints introduce problems not observed for large......With the use of the Finite Element Method it has become possible to analyse and better understand complex physical processes such as the resistance welding by numerical simulation. However, simulation of resistance welding is a very complex matter due to the strong interaction between mechanical...

  17. On the issue of particularities of design and simulation of welded constructions of machine's basic parts

    OpenAIRE

    Mihaylov, V.; Porhynov, S.

    2010-01-01

    In current conditions of machine industry competitive strength of firms effectively to make the process equipment has an essential value. It predetermines the necessity of wide application of welded constructions of machine tools basic parts. The solution of this task involves development o technique permitting to calculate and optimize the basic parts of machine tools depending on conditions in each case. In the present paper the results of research of deflected mode of machine tool basic pa...

  18. Metallographic Characteristics of Stainless Steel Overlay Weld with Resistance to Hydrogen-Induced Disbonding : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 3)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant; The Japan Steel Works, Ltd., Muroran Plant; The Japan Steel Works, Ltd., Muroran Plant

    1986-01-01

    The metallographic characteristics of the disbanding resistant stainless steel overlay weld were studied and compared with those of the conventional overlay weld. It was found that the first layer overlay weld metal of the disbanding resistant overlay weld consisted of austenite and martensite after regular post-weld heat treatment. A coarse planar grain, which strongly affects the disbanding resistance of over-lay welds, scarcely existed in the disbanding resistant overlay weld. A higher wel...

  19. Effectiveness of Podcasts as Laboratory Instructional Support: Learner Perceptions of Machine Shop and Welding Students

    Science.gov (United States)

    Lauritzen, Louis Dee

    2014-01-01

    Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…

  20. Resistance Spot Welding of Steel Sheets of the Same and Different Thickness

    Directory of Open Access Journals (Sweden)

    Milan Brožek

    2017-01-01

    Full Text Available Resistance welding ranks among progressive and in practice often used manufacturing techniques of rigid joints. It is applied in single‑part production, short‑run production as well as in mass production. The basis of this method is in the utilization of the Joulean heat, which arises at the passage of current through connected sheets at collective influence of compressive force. The aim of the carried out tests was the determination of the dependence between the rupture force of spot welds made using steel sheets of the same and different thickness for different welding conditions. For carrying out of this aim 360 assemblies were prepared. The sheets (a total of 720 pieces of dimensions 100 × 25 mm and thickness of 0.8 mm, 1.5 mm and 3.0 mm were made from low carbon steel. In the place determined for welding the test specimens were garnet blasted and then degreased with acetone. The welding of two specimens always of the same (0.8+0.8 mm, 1.5+1.5 mm a 3.0+3.0 mm and different (0.8 + 1.5 mm, 0.8+3.0 mm a 1.5+3.0 mm thickness was carried out using the welding machine type BV 2,5.21. At this type the welding current value is constant (Imax = 6.4 kA. The welding time (the time of the passage of the current was changed in the whole entirety, namely 0.10 s, 0.15 s, 0.20 s, 0.25 s, 0.3 s, 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.3 s, 1.6 s and 2.0 s. The compressive force was chosen according to the thickness of the connected sheets in the range from 0.8 to 2.4 kN. From the results of carried out tests it follows that using the working variables recommended by the producer we obtain the quality welds. But it we use the longer welding times, we can obtain stronger welds, namely up to 21 % compared to welds made using working variables recommended by the producer.

  1. Influence of welding current in resistance spot welding on the properties of Zn coated steel DX51D

    Directory of Open Access Journals (Sweden)

    Luboš Kaščák

    2016-06-01

    Full Text Available The paper deals with the resistance spot welding of three galvanized car body sheets DX51D + Z - EN 10142/2000. The quality of welded joints was evaluated by destructive tests and non-destructive tests. For evaluation of joints quality the shear tension test on spot joints according to DIN 50 124 standard was used. The influence of welding parameters on the structure of a welded joint was observed by metallographic analysis. Influence of welding current from 6.0 to 7.7 kA and influence of welding time from 10 to 12 periods on weld properties was observed. Increasing the welding current led to increased load-bearing capacity of the welded joints. The spot welded joints without any internal defects occurred in samples welded up to 7.0 kA. Increasing the welding time to 12 periods led to increased load-bearing capacity of the welded joints, within all observed values of welding current.

  2. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  3. Analysis on Development of Transverse - Sectioned Weld Zone using FEM Verified with Multipulsed Resistance Seam Welding

    Directory of Open Access Journals (Sweden)

    N Muhammad

    2013-12-01

    Full Text Available This paper details an investigation, through an experimental study, of the development of weld nuggets and a heat-affected zone (HAZ in resistance seam welding(RSEW using a numerical simulation approach. SYSWELD software for the simulation of heat treatment, welding, and welding assembly was utilized for the simulation process. The integrated Spot Weld Advisor (SWA in SYSWELD was applied to simulate the RSEW model using a two-dimensional axis-symmetric FE model with customized electrode meshing. The thermal-mechanical-electrical characteristic and contact condition were taken into account throughout this study. The developed model comprised a transverse cross section for welding two layers of low carbon steel with a thickness of 1 mm. For the experimental verification, three-pulsed RSEW with two different current stages was carried out. It was discovered that this program code, Spotweld Advisor, when used with the meshing method, was capable of offering results that were in agreement with physical experiments.

  4. Surface cracking in resistance seam welding of coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Adonyi, Y.; Kimchi, M.

    1994-12-31

    In this experimental work, the focus was on the understanding the electrode-wheel/coated steel surface phenomena by building operational lobes and by correlating the weld quality with static-and dynamic-contact-resistance variation during welding. Conventional AC, DC, and electrode-wire resistance-seam weldability of printed zinc-coated and hot-dipped tin-coated steel was performed in this work, as compared with traditional lead-tin (terne) coating used as reference material. Variables included steel substrate type, welding equipment type, electrode-wheel cleaning practice, and electrode-wire geometry. Optic and electron microscopy were used for the evaluation of specimens extracted from longitudinal cross-sections of representative welds. The size and morphology of surface cracks was characterized and correlated with variations in the above-mentioned parameters. It was found that the tin-coated (unpainted) steel sheet had a superior all-together performance to the zinc-coated steel and terne-coated steel, both in terms of wider weldability lobes and lesser surface cracking. The extent of surface cracking was greatly reduced by using the electrode-wire seam welding process using a longitudinally grooved wire profile, which also widened the corresponding weldability lobes. It was also found that the extent of cracking depended on the electrode knurl geometry, substrate type, and the presence of conductive paint applied on top of the metallic coating. An attempt was made to characterize the specific mechanisms governing the LME phenomenon for the lead-, zinc and tin-based coating systems and to assess the potential for crack propagation in the welds. The dynamic contact resistance was found to be a good measure of the welding process stability and an indicator of defect formation. It was found that the ratio between the static and dynamic contact resistances of the tin-coated sheet was considerably lower than similar ratios for bare and zinc-coated sheet.

  5. A new measurement method for the dynamic resistance signal during the resistance spot welding process

    International Nuclear Information System (INIS)

    Wang, Lijing; Hou, Yanyan; Zhao, Jian; Zhang, Hongjie; Xi, Tao; Qi, Xiangyang; Li, Yafeng

    2016-01-01

    To measure the dynamic resistance signal during the resistance spot welding process, some original work was carried out and a new measurement method was developed. Compared with the traditional method, using the instantaneous electrode voltage and welding current at peak current point in each half cycle, the resistance curve from the newly proposed method can provide more details of the dynamic resistance changes over time. To test the specific performance of the proposed method, a series of welding experiments were carried out and the tensile shear strengths of the weld samples were measured. Then, the measurement error of the proposed method was evaluated. Several features were extracted from the dynamic resistance curves. The correlations between the extracted features and weld strength were analyzed and the results show that these features are closely related to the weld strength and they can be used for welding quality monitoring. Moreover, the dynamic resistance curve from the newly proposed method can also be used to monitor some abnormal welding conditions. (paper)

  6. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... in this work, dealing with the coupled mechanical-electrical-thermal contact problems. The penalty method is used to impose the contact conditions in the electrical and thermal contact, as well as frictionless contact and sticking contact in the mechanical model. A node-segment contact element is the basis...

  7. Influence of welding current in resistance spot welding on the properties of Zn coated steel DX51D

    OpenAIRE

    Luboš Kaščák; Ján Viňáš; Rudolf Mišičko

    2016-01-01

    The paper deals with the resistance spot welding of three galvanized car body sheets DX51D + Z - EN 10142/2000. The quality of welded joints was evaluated by destructive tests and non-destructive tests. For evaluation of joints quality the shear tension test on spot joints according to DIN 50 124 standard was used. The influence of welding parameters on the structure of a welded joint was observed by metallographic analysis. Influence of welding current from 6.0 to 7.7 kA and infl...

  8. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Joop Pauwelussen; Nick den Uijl

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the

  9. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  10. Laser welded versus resistance spot welded bone implants: analysis of the thermal increase and strength.

    Science.gov (United States)

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    The first aim of this "ex vivo split mouth" study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength.

  11. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2014-01-01

    Full Text Available Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs’ jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant. For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant. Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength.

  12. Mechanical and electrical properties of resistance welds at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S T; Kim, S H; Kim, N S; Ludwig, H

    1979-01-01

    The mechanical and electrical properties of resistance welds at cryogenic temperatures for the large superconducting magnet such as the superconducting MHD Dipole system for the National Coal-Fired Flow Facility (CFFF SCMS) at the U. of Tennessee Space Institute are reported.

  13. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  14. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  15. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  16. STUDIES ON MACHINE PARTS MADE OF WELDED CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Constanta RADULESCU

    2016-05-01

    Full Text Available In this work it was analyzed a welded construction of a rollers which is part of a conveyor belt of a roll 84 inches. The roler taken under discussion is a roler that has an outer diameter of 89 mm and length of 504mm. The roller is accomplished up of a cylinder wherein spindles the axis of rotation are fixed with the help of some double disc by welds corner. Because it is known that the roller is requested by the concentrated force 5 kN, keeping account the dimensions of the elements and the material from which they are executed were determined requests that confronts the roler.

  17. Remote machining and robotic welding in a proton cyclotron

    International Nuclear Information System (INIS)

    Cameron, W.; Mark, C.

    1984-01-01

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capability for modification and updating of vacuum tank access ports, and for possible repairs of leaks or holes in the vacuum tank periphery

  18. Three-dimensional micro assembly of a hinged nickel micro device by magnetic lifting and micro resistance welding

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Hsu, Wensyang

    2009-01-01

    The three-dimensional micro assembly of hinged nickel micro devices by magnetic lifting and micro resistance welding is proposed here. By an electroplating-based surface machining process, the released nickel structure with the hinge mechanism can be fabricated. Lifting of the released micro structure to different tilted angles is accomplished by controlling the positions of a magnet beneath the device. An in situ electro-thermal actuator is used here to provide the pressing force in micro resistance welding for immobilizing the tilted structure. The proposed technique is shown to immobilize micro devices at controlled angles ranging from 14° to 90° with respect to the substrate. Design parameters such as the electro-thermal actuator and welding beam width are also investigated. It is found that there is a trade-off in beam width design between large contact pressure and low thermal deformation. Different dominated effects from resistivity enhancement and contact area enlargement during the welding process are also observed in the dynamic resistance curves. Finally, a lifted and immobilized electro-thermal bent-beam actuator is shown to displace upward about 27.7 µm with 0.56 W power input to demonstrate the capability of electrical transmission at welded joints by the proposed 3D micro assembly technique

  19. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  20. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  1. Impact resistance of guards on grinding machines.

    Science.gov (United States)

    Mewes, Detlef; Mewes, Olaf; Herbst, Peter

    2011-01-01

    Guards on machine tools are meant to protect persons from injuries caused by parts ejected with high kinetic energy from the machine's working zone. With respect to stationary grinding machines, Standard No. EN 13218:2002, therefore, specifies minimum wall thicknesses for guards. These values are mainly based on estimations and experience instead of systematic experimental investigations. This paper shows to what extent simple impact tests with standardizable projectiles can be used as basis for the evaluation of the impact resistance of guards, provided that not only the kinetic energy of the projectiles used but also, among others, their geometry corresponds to the abrasive product fragments to be expected.

  2. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    Science.gov (United States)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  3. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    Science.gov (United States)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  4. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  5. Research of the Resistance of Contact Welding Joint of R65 Type Rail

    Directory of Open Access Journals (Sweden)

    Kęstutis Dauskurdis

    2015-03-01

    Full Text Available In the article the R65 type rail joints that were welded by resistance welding are analysed. Survey methodology of the research consists of the following parts: visual inspection of welded joint, ultrasonic rail inspection, hardness test of upper part of the rail, fusion area research, the measurement hardness test of heat-softened area, the measurement microhardness test, microstructure research of the welded joint, impact strength experiments, chemical analysis of welded joint, wheel-rail interaction research using the finite element method (FEM. The results of the research are analysed and the quality of weld is evaluated. The conclusion is based on the results of this research.

  6. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling of mechani...

  7. Effect of Weld Current on the Microstructure and Mechanical Properties of a Resistance Spot-Welded TWIP Steel Sheet

    Directory of Open Access Journals (Sweden)

    Mumin Tutar

    2017-11-01

    Full Text Available In this study the effect of the weld current on the microstructure and mechanical properties of a resistance spot-welded twinning-induced plasticity (TWIP steel sheet was investigated using optical microscopy, scanning electron microscopy–electron back-scattered diffraction (SEM–EBSD, microhardness measurements, a tensile shear test and fractography. Higher weld currents promoted the formation of a macro expulsion cavity in the fusion zone. Additionally, higher weld currents led to a higher indentation depth, a wider heat-affected zone (HAZ, coarser grain structure and thicker annealing twins in the HAZ, and a relatively equiaxed dendritic structure in the centre of the fusion zone. The hardness values in the weld zone were lower than that of the base metal. The lowest hardness values were observed in the HAZ. No strong relationship was observed between the hardness values in the weld zone and the weld current. A higher joint strength, tensile deformation and failure energy absorption capacity were obtained with a weld current of 12 kA, a welding time of 300 ms and an electrode force of 3 kN. A complex fracture surface with both brittle and limited ductile manner was observed in the joints, while the base metal exhibited a ductile fracture. Joints with a higher tensile shear load (TSL commonly exhibited more brittle fracture characteristics.

  8. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  9. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  10. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    -, medium-, and high-energy inputs. The as-received sheet showed higher electrical contact resistance because of thicker oxide layer. Lower values were noticed with pickled surfaces, whereas the lowest electrical contact resistance was obtained when glass blasting, resulting in the roughest surface......Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld...

  11. A study of dynamic resistance during small scale resistance spot welding of thin Ni sheets

    International Nuclear Information System (INIS)

    Tan, W; Zhou, Y; Kerr, H W; Lawson, S

    2004-01-01

    The dynamic resistance has been investigated during small scale resistance spot welding (SSRSW) of Ni sheets. Electrical measurements have been correlated with scanning electron microscope images of joint development. The results show that the dynamic resistance curve can be divided into the following stages based on physical change in the workpieces: asperity heating, surface breakdown, asperity softening, partial surface melting, nugget growth and expulsion. These results are also compared and contrasted with dynamic resistance behaviour in large scale RSW

  12. Tensile Characteristics of Bond of Stainless Steel Overlay Weld after Absorption of Hydrogen : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 4)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant; The Japan Steel Works, Ltd., Muroran; The Japan Steel Works, Ltd., Muroran Plant

    1987-01-01

    The tensile characteristics of the bond of the disbanding-resistant overlay weld after absorption of hydrogen were studied and compared with those of the conventional overlay weld. It was found that the tensile strength of the bond of the conventional overlay weld was lower than that of the disbanding-resistant overlay weld. This is due to existence of the coarse planar grains in first layer overlay weld metal adjacent to the bond. The coarse planar grains strongly reduce the resistance to hy...

  13. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  14. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  15. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Science.gov (United States)

    Klimenov, V. A.; Kurgan, K. A.; Chumaevskii, A. V.; Klopotov, A. A.; Gnyusov, S. F.

    2016-01-01

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  16. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  17. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  18. Frequency Analysis of Acoustic Emission - Application to machining and welding

    Science.gov (United States)

    Snoussi, A.

    1987-01-01

    Ultrasonic acoustic waves were seized and exploited within a bandwidth ranging from 30 kHz to 55 kHz for non-destructive control when boring three kinds of steel with a digitally programmed drill. In addition, these waves were considered in soldering two steels and one aluminum using T.I.G. process. Spectrum analysis of acoustic emissions produced during the drill is closely related to the extraction of turnings from the metal. Because of the wick's progressive wearing out, the spectrum tends to be close to the machine's own noise spectrum. Meanwhile in the soldering operation of test-tubes of 2 mm thickness, the frequency analysis shows a particular frequency called signature corresponding to the flow of protection gas. Other frequencies associated to some internal defects in the soldering process as a delay in the fissure and a lack in the fusion were detected.

  19. Effect of prior machining deformation on the development of tensile residual stresses in weld-fabricated nuclear components

    International Nuclear Information System (INIS)

    Prevey, P.S.; Mason, P.W.; Hornbach, D.J.; Molkenthin, J.P.

    1996-01-01

    Austenitic alloy weldments in nuclear systems may be subject to stress-corrosion cracking (SCC) failure if the sum of residual and applied stresses exceeds a critical threshold. Residual stresses developed by prior machining and welding may either accelerate or retard SCC, depending on their magnitude and sign. A combined x-ray diffraction and mechanical procedure was used to determine the axial and hoop residual stress and yield strength distributions into the inside-diameter surface of a simulated Alloy 600 penetration J-welded into a reactor pressure vessel. The degree of cold working and the resulting yield strength increase caused by prior machining and weld shrinkage were calculated from the line-broadening distributions. Tensile residual stresses on the order of +700 MPa were observed in both the axial and the hoop directions at the inside-diameter surface in a narrow region adjacent to the weld heat-affected zone. Stresses exceeding the bulk yield strength were found to develop due to the combined effects of cold working of the surface layers during initial machining and subsequent weld shrinkage. The residual stress and cold work distributions produced by prior machining were found to influence strongly the final residual stress state developed after welding

  20. A support vector machine approach for classification of welding defects from ultrasonic signals

    Science.gov (United States)

    Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming

    2014-07-01

    Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.

  1. Countermeasure for interference of welding current during using plural machines at one time

    International Nuclear Information System (INIS)

    Morisawa, Junichiro; Matsumoto, Teruo; Kobayashi, Katsumi; Sakagami, Mitsuhiro.

    1986-01-01

    Welding power supplies for pulsed GMAW have been developed, which have two circuits such as a single-phase SCR (Silicon Controled Rectifier) bridge circuit for pulse current and a three phase SCR bridge circuit for base current. In this power supply, however, the characteristic of the SCR control system is affected with the wave form deformation of power source voltage caused by electric unbalanced load when plural machines are operated at the same time. In this case, unstable arc phenomena occurs and the weldability becomes poor. As the countermeasure for the above phenomena, upper limit of primary circuit's impedance, which is a cause of the wave form deformation power source voltage, and the relation between the impedance and unstable arc phenomena were confirmed by the theoretical calculation and experiments, and further more, pulse arc voltage feedback control system was devised so that stable welding is possible, regardless of the impedance value. (author)

  2. Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material - From Process to Performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.; Shao, H; Kimchi, Menachem; Menachem Kimchi and Wanda Newman

    2004-05-11

    This paper summarizes work to date on resistance spot welding (RSW) of aluminum alloy to mild steel from process development to performance evaluation. A cold-rolled strip material is introduced as a transition material to aid the resistance welding process. The optimal welding parameters and electrode selections were established using a combination of experimental and analytical approaches. The mechanical behaviors of welded samples was evaluated using static and dynamic strength tests and cyclic fatigue tests. A statistical analysis was also performed to analyze the effect of different failure modes on the sample's peak load and energy absorption.

  3. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    International Nuclear Information System (INIS)

    Ghazanfari, H.; Naderi, M.; Iranmanesh, M.; Seydi, M.; Poshteban, A.

    2012-01-01

    Highlights: ► Hardness mapping is a novel method to identify different phases. ► Surface hardness mapping, tabulates the hardness of a large area of weld. ► Hardness maps can be used to depict the strength map through the specimen. ► Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to calculate the ultimate tensile stress and yield stress from the weld. The calculated data were compared

  4. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    Science.gov (United States)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  5. The lack of penetration effect on fatigue crack propagation resistance of atmospheric corrosion resistant steel welded joints

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Cimini Junior, Carlos Alberto; Godefroid, Leonardo Barbosa

    2005-01-01

    The welding process introduces defects on the welded joints, as lack of fusion and penetration, porosity, between others. These defects can compromise the structures or components, relative to the crack propagation. This engagement can be studied by fatigue crack propagation tests. The efficiency of the structure, when submitted to a cyclic loading can be evaluated by these tests. The aim of this work is to study the behavior of welded joints containing defects as lack of penetration at the root or between welding passes relative to crack propagation resistance properties, and to compare these properties with the properties of the welded joints without defects. This study was accomplished from fatigue crack propagation test results, in specimens containing lack of penetration between welding passes. With the obtained results, the Paris equation coefficients and exponents that relate the crack propagation rate with the stress intensity cyclic factor for welded joints with and without defects were obtained. (author)

  6. A Comprehensive Understanding of Machine and Material Behaviors During Inertia Friction Welding

    Science.gov (United States)

    Tung, Daniel J.

    Inertia Friction Welding (IFW), a critical process to many industries, currently relies on trial-and-error experimentation to optimize process parameters. Although this Edisonian approach is very effective, the high time and dollar costs incurred during process development are the driving force for better design approaches. Thermal-stress finite element modeling has been increasingly used to aid in process development in the literature; however, several fundamental questions on machine and material behaviors remain unanswered. The work presented here aims produce an analytical foundation to significantly reduce the costly physical experimentation currently required to design the inertia welding of production parts. Particularly, the work is centered around the following two major areas. First, machine behavior during IFW, which critically determines deformation and heating, had not been well understood to date. In order to properly characterize the IFW machine behavior, a novel method based on torque measurements was invented to measure machine efficiency, i.e. the ratio of the initial kinetic energy of the flywheel to that contributing to workpiece heating and deformation. The measured efficiency was validated by both simple energy balance calculations and more sophisticated finite element modeling. For the first time, the efficiency dependence on both process parameters (flywheel size, initial rotational velocity, axial load, and surface roughness) and materials (1018 steel, Low Solvus High Refractory LSHR and Waspaloy) was quantified using the torque based measurement method. The effect of process parameters on machine efficiency was analyzed to establish simple-to-use yet powerful equations for selection and optimization of IFW process parameters for making welds; however, design criteria such as geometry and material optimization were not addressed. Second, there had been a lack of understanding of the bond formation during IFW. In the present research, an

  7. Possibilities of using welding-on technologies in crane wheel ...

    Indian Academy of Sciences (India)

    WINTEC

    wearing where surface resistance was examined according to their weight loss. Influence of a particular ele- ment on the welds-on chemical composition was examined by EDX analyses. Keywords. Traverse crane wheel; weld-on; weld-on wire; wearing. 1. Introduction. The most common causes of machine component ...

  8. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  9. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  10. Application of infrared imaging for quality inspection in resistance spot welds

    Science.gov (United States)

    Woo, Wanchuck; Chin, Charles W.; Feng, Zhili; Wang, Hsin; Zhang, Wei; Xu, Hanbing; Sklad, Philip S.

    2009-05-01

    Infrared thermal imaging method was applied for the development of a non-destructive inspection technique to determine the quality of resistance spot welds. The current work is an initial feasibility study based on post-mortem inspection. First, resistance spot welds were fabricated on dual phase steel sheets (DP 590 steel) with carefullycontrolled welding parameters. It created welds with desirable and undesirable qualities in terms of nugget size, indentation depth, and voids and cracks. Second, five different heating and cooling methods were evaluated. The heating or cooling source was applied on one side of the weld stack while the surface temperature change on the other side of the weld was recorded using an infrared camera. Correlation between the weld quality and the "thermal signature" of each weld was established. Finally, a simplified thermal finite element analysis was developed to simulate the heat flow during inspection. The thermal model provided insight into the effect of the nugget size and indentation depth on the peak temperature and heating rate. The results reported in this work indicate that the IR thermography technique is feasible for weld quality inspection due to the distinguish temperature profiles for different welds and the repeatability and consistency in measurement.

  11. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  12. Construction and final assembly of an automatic arc welding machine; Construccion y puesta a punto de una maquina automatica para soldadura remota por arco bajo atmosfera inerte

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Alvarez, J.; Diaz Diaz, J.; Diaz Diaz, J. L.

    1972-07-01

    It has been constructed a remote are welding machine, wholly transistorized, to be used in a Hot Cell of 1.000 Cu. In this work are presented the different parts of the equipment and its electronic description. Finally, some works of final preparation are shown such as ending of irradiation capsules, thermocouples welding, stainless steel cover welding. For these types of welding are quoted its relative programs. (Author)

  13. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  14. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  15. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  16. Health Effects of Electromagnetic Fields on Reproductive-Age Female Operators of Plastic Welding Machines in Fuzhou, China.

    Science.gov (United States)

    Xu, Youqiong; Zhang, Xiaoyang; Chen, Yu; Ren, Nan; Lin, Wei; Zhang, Qunwei

    2016-02-01

    The aim of this study was to investigate the health effects of electromagnetic fields (EMFs) among female operators of plastic welding machines. We examined 180 female operators in shoe factories as the exposed group, and 349 female workers from nearby supermarkets as the unexposed group. The mean radiation levels in the vicinity of the welding machines ranged from 51.3 to 368.9 V/m. The prevalence of neurovegetative symptoms increased with higher EMFs exposures (P health effects, including neurovegetative symptoms, menstrual disorder, and low level of P4.

  17. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    2024 and AA7075) are investigated for the resistance spot welding of AA1050 aluminum sheets of three different thicknesses. Microstructural and mechanical analysis demonstrates that significant improvement in weld bead morphology and strength are obtained with the addition of metal powder...

  18. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  19. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    Science.gov (United States)

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.

  20. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  1. Health problems among operators of plastic welding machines and exposure to radiofrequency electromagnetic fields.

    Science.gov (United States)

    Kolmodin-Hedman, B; Hansson Mild, K; Hagberg, M; Jönsson, E; Andersson, M C; Eriksson, A

    1988-01-01

    To study possible medical effects of high radiofrequency radiation (RF), 113 Swedish men and women were studied by means of a structured interview and rating of subjective symptoms. A test session was included in order to examine coordination and muscular function of the hands. A neurological test concerning two-point discrimination (2-PD) was also done. As referents, 23 women, sewing machine operators and assembly workers, were chosen, interviewed and likewise tested. Exposure measurements were taken of the RF fields around the welding machines. The present Swedish ceiling value of 250 W/m2 for the equivalent power density was exceeded in more than 50% of the machines. The highest leakage fields, both for electric and magnetic fields, were found near machines used in factories for ready-made clothing, which gave a high exposure to the hands. Irritative eye symptoms were reported by 23% of the men and 40% of the women. A group of 27 persons was selected for a clinical eye examination and checked by photographs, and nine persons had modest conjunctivitis. A high prevalence of numbness in hands, especially among women, was found. A significantly impaired 2-PD was found in the exposed women as compared to the referent group. The pregnancy outcome for 305 female plastic welders during 1974-1984 did not show any significant differences with the Swedish average concerning malformation or prenatal mortality.

  2. The Influence of Welding Parameters on the Nugget Formation of Resistance Spot Welding of Inconel 625 Sheets

    Science.gov (United States)

    Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh

    2015-09-01

    A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.

  3. Multi objective Taguchi optimization approach for resistance spot welding of cold rolled TWIP steel sheets

    Science.gov (United States)

    Tutar, Mumin; Aydin, Hakan; Bayram, Ali

    2017-08-01

    Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.

  4. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  5. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  6. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  7. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  8. Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy

    International Nuclear Information System (INIS)

    Malarvizhi, S.; Balasubramanian, V.

    2011-01-01

    AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW) and friction stir welding (FSW) processes. The effect of three welding processes on fatigue crack growth behaviour is reported in this paper. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the FSW joints are exhibiting superior fatigue crack growth resistance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallised grains and uniform distribution of fine precipitates in the weld region.

  9. Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Daniel Joseph [The Ohio State Univ., Columbus, OH (United States); Mahaffey, David [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Senkov, Oleg [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Semiatin, Sheldon [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States)

    2017-12-01

    Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from an analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.

  10. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...

  11. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, I.

    2016-07-01

    The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW) Dual Phase (DP) steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM) between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness. (Author)

  12. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  13. Fatigue strength of welds and welded materials of high-temperature steels resistant to pressurized hydrogen of the type 2.25% Cr/1% Mo

    International Nuclear Information System (INIS)

    Burlat, J.; Cheviet, A.; Million, A.

    1986-01-01

    The aim of the study is to examine systematically the creep strength of welded joints (base material, heat influence zone and welded seam) and of pure welding materials of the type 2 1/4-3% Cr/1% Mo. According to the AD standard rules, the rule which stipulates that the creep strength of welded seams under full stress be calculated with the strength characteristic value reduced by 20% applies to all heat-resistant steels, if no rupture stress values for the welded joints are available. Manufacturers of steel and weld fillers together with the Union of Technical Control Associations (VdTUeV) have prepared a test programme according to which on the one hand welded joints are tested at right angles to their seams, and on the other pure welding material is tested with respect to its creep strength. The development of the testes and their results have been described. The first results are available as VdTUeV material performance sheets, for 2 materials, and as provisional VdTUeV specification sheets, for 3 weld fillers. With the tested materials, it becomes practically feasible to reduce the creep strength of longitudinally welded pressure-bearing components by about 20% of wall thickness. (orig.) [de

  14. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  15. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  16. Microstructure and Tensile-Shear Properties of Resistance Spot Welded 22MnMoB Hot-Stamping Annealed Steel

    Science.gov (United States)

    Li, Yang; Cui, Xuetuan; Luo, Zhen; Ao, Sansan

    2017-01-01

    The present paper deals with the joining of 22MnMoB hot-stamping annealed steel carried out by the spot welding process. Microstructural characterization, microhardness testing and tensile-shear testing were conducted. The effects of the welding parameters, including the electrode tip diameter, welding current, welding time and electrode force upon the tensile-shear properties of the welded joints, were investigated. The results showed that a weld size of 9.6 mm was required to ensure pullout failure for the 1.8 -mm-thick hot-stamping annealed steel sheet. The welding current had the largest influence upon the tensile-shear properties of the 22MnMoB steel welded joint. The bulk resistance should play an important role in the nugget formation. In pullout failure mode, failure was initiated at the heat-affected zone, where softening occurs owing to the tempering of martensite.

  17. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  18. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    –metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... are presented together with results of numerical simulations made in the finite element computer program SORPAS® 3D, which is based on an electro-thermo-mechanical formulation. The numerical models are presented together with the specific modeling conditions leading to numerical simulations in good agreement...

  19. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  20. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  1. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  2. A knowledge-based diagnosis system for welding machine problem solving

    International Nuclear Information System (INIS)

    Bonnieres, P. de; Boutes, J.L.; Calas, M.A.; Para, S.

    1986-06-01

    This paper presents a knowledge-based diagnosis system which can be a valuable aid in resolving malfunctions and failures encountered using the automatic hot-wire TIG weld cladding process. This knowledge-based system is currently under evaluation by welding operators at the Framatome heavy fabricating facility. Extension to other welding processes is being considered

  3. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  4. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  5. Theory research of seam recognition and welding torch pose control based on machine vision

    Science.gov (United States)

    Long, Qiang; Zhai, Peng; Liu, Miao; He, Kai; Wang, Chunyang

    2017-03-01

    At present, the automation requirement of the welding become higher, so a method of the welding information extraction by vision sensor is proposed in this paper, and the simulation with the MATLAB has been conducted. Besides, in order to improve the quality of robot automatic welding, an information retrieval method for welding torch pose control by visual sensor is attempted. Considering the demands of welding technology and engineering habits, the relative coordinate systems and variables are strictly defined, and established the mathematical model of the welding pose, and verified its feasibility by using the MATLAB simulation in the paper, these works lay a foundation for the development of welding off-line programming system with high precision and quality.

  6. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    Science.gov (United States)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  7. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  8. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.

    Science.gov (United States)

    Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P

    2017-12-01

    Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.

  9. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  10. Upset Resistance Welding of Carbon Steel to Austenitic Stainless Steel Narrow Rods

    Science.gov (United States)

    Ozlati, Ashkaan; Movahedi, Mojtaba; Mohammadkamal, Helia

    2016-11-01

    Effects of welding current (at the range of 2-4 kA) on the microstructure and mechanical properties of upset resistance welds of AISI-1035 carbon steel to AISI-304L austenitic stainless steel rods were investigated. The results showed that the joint strength first increased by raising the welding current up to 3 kA and then decreased beyond it. Increasing trend was related to more plastic deformation, accelerated diffusion, reduction of defects and formation of mechanical locks at the joint interface. For currents more than 3 kA, decrease in the joint strength was mainly caused by formation of hot spots. Using the optimum welding current of 3 kA, tensile strength of the joint reached to 76% of the carbon steel base metal strength. Microstructural observations and microhardness results confirmed that there was no hard phase, i.e., martensite or bainite, at the weld zone. Moreover, a fully austenitic transition layer related to carbon diffusion from carbon steel was observed at the weld interface.

  11. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)

    2017-02-28

    Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  12. Projection welding for cost cutting

    International Nuclear Information System (INIS)

    Kuncz, F. Jr.

    1980-01-01

    Resistance projection welding is described pointing out the advantages, the machine requirements to be met, the suitability of various metals and/or metal combinations, the design considerations, the projection design requirements and their placement, and the limitations of this process

  13. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  14. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang; Jing, Hongyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Han, Yongdian; Zhao, Lei [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Zhang, Jianli [Welding laboratory, Offshore Oil Engineering (Qing Dao) Company, Qing Dao 266520 (China)

    2017-02-01

    Highlights: • N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the austenite. • Secondary austenite had higher Ni but lower Cr and Mo than primary austenite. • Pitting corrosion preferentially occurred at secondary austenite and Cr{sub 2}N. • Adding N{sub 2} in shielding gas improved pitting corrosion resistance of GTAW joint. • E2209T{sub 1} weld metal had very poor pitting corrosion resistance due to inclusions. - Abstract: The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N{sub 2} in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr{sub 2}N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitrogen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T{sub 1}). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential

  15. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  16. Studies on the Corrosion Resistance of Laser-Welded Inconel 600 and Inconel 625 Nickel-Based Superalloys

    Directory of Open Access Journals (Sweden)

    Łyczkowska K.

    2017-06-01

    Full Text Available The paper presents the results of the electrochemical corrosion tests of Inconel 600 and Inconel 625 laser-welded superalloys. The studies were conducted in order to assess the resistance to general and pitting corrosion in 3.5% NaCl solution. It was found that Inconel 600 possesses good corrosion resistance, however Inconel 625 is characterized by a greater resistance to general and also to pitting corrosion of the weld as well as the base metal.

  17. Studies on the Corrosion Resistance of Laser-Welded Inconel 600 and Inconel 625 Nickel-Based Superalloys

    OpenAIRE

    Łyczkowska K.; Michalska J.

    2017-01-01

    The paper presents the results of the electrochemical corrosion tests of Inconel 600 and Inconel 625 laser-welded superalloys. The studies were conducted in order to assess the resistance to general and pitting corrosion in 3.5% NaCl solution. It was found that Inconel 600 possesses good corrosion resistance, however Inconel 625 is characterized by a greater resistance to general and also to pitting corrosion of the weld as well as the base metal.

  18. Numerical and experimental analysis of resistance projection welding of square nuts to sheets

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Martins, Paulo A.F.

    2014-01-01

    Projection welding of nuts to sheets is a widely utilized manufacturing process in the automotive industry. The process entails challenges due the necessity of joining different sheet thicknesses and nut sizes made from dissimilar materials, and due to the fact of experiencing large local...... materials and applications require a new level of understanding of the process by combining finite element modelling and experimentation. This paper draws from the challenge of developing a three-dimensional computer program for electro-thermo-mechanical modeling of resistance welding and presents, as far...

  19. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  20. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  1. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    International Nuclear Information System (INIS)

    Pessi, P.

    2009-01-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  2. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  3. Novel Robot Solutions for Carrying out Field Joint Welding and Machining in the Assembly of the Vacuum Vessel of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pessi, P.

    2009-07-01

    It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were

  4. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  5. Influence of Electrical Resistivity and Machining Parameters on Electrical Discharge Machining Performance of Engineering Ceramics

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  6. Resistance to wear and microstructure of martensitic welds deposits for recharge

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; Vedia, Luis A

    2006-01-01

    This work studied the welding metal for a martensitic steel (alloyed to Cr, Mn, Mo, V and W), deposited with a tubular metal-cored wire with gaseous protection of 82%Ar-18%Co 2 on a low carbon steel using the semi-automatic welding process. Transverse pieces were cut from the welded coupon for microstructural characterization, measurement of hardness profiles, determination of the chemical composition and wear trials. The microstructural characterization was done using optic and scanning electronic microscopes, X-rays diffraction and energy-dispersive X-ray spectroscopy and Vicker microhardness (1 kg.) was measured. The wear trials (metal-metal) were performed in an Amsler machine under pure flow conditions. Different loads were used and the reference material was a SAE 1020 steel. The temperatures for each case were measured and the weight loss curves were defined as a function of the distance run and of the load. After testing the wear surfaces and the debris were measured. The microstructure of the welded deposit mostly consists of martensite and some retained austenite, with a pattern of dendritic segregation, and a hardness on the surface of 612 HVI. A lineal variation between the weight loss and the load applied was obtained as a response to the wear. The following phenomena were observed: abrasion, plastic deformation, oxidation and adhesion to the wear surfaces, as well as a tempering effect in the condition of the biggest load. The wear mechanisms acting on both surfaces were identified (CW)

  7. Application of Pre-heating to Improve the Consistency and Quality in AA5052 Resistance Spot Welding

    Science.gov (United States)

    Luo, Zhen; Ao, Sansan; Chao, Yuh Jin; Cui, Xuetuan; Li, Yang; Lin, Ye

    2015-10-01

    Making consistent resistance spot welds of aluminum alloy with good quality and at high volume has several obstacles in automotive industry. One of the difficult issues arises from the presence of a tough non-conducting oxide film on the aluminum sheet surface. The oxide film develops over time and often is non-uniform across the surface of the aluminum alloy sheet, which makes the contact resistance characteristics irregular at the faying interface during welding. The consistency in quality of the final spot welds is therefore problematic to control. To suppress the effect of the irregular oxide film on the spot weld quality, application of a pre-heating treatment in the welding schedule for aluminum alloy 5052 is investigated in this present work. The current level of the pre-heating required to reduce the scatter of the contact resistance at the W/W (workpiece-to-workpiece) faying interface is quantified experimentally. The results indicate that the contact resistance at the W/W faying interface with a pre-heating treatment becomes much consistent and can be reduced by two orders of magnitude. Having the uncertain variation of the contact resistance at the W/W faying surface virtually reduced or removed, the quality of the spot welds in terms of the peak load and nugget diameter is examined and shows a great improvement. The proposed method may provide a robust method for high-volume spot welding of aluminum alloy sheets in auto industry.

  8. Influence of the welding process choice on the pitting corrosion resistance of 304 L type stainless steels

    International Nuclear Information System (INIS)

    Carbonell, L.

    2002-01-01

    This document gives indications and information on process and welding parameters optimization to improve the pitting corrosion resistance of 304 L type stainless steels, used in industrial piping. (A.L.B.)

  9. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    International Nuclear Information System (INIS)

    Vilpas, M.; Haenninen, H.

    1999-01-01

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  10. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  11. Development of a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets

    OpenAIRE

    Rethmeier, Michael; Suwala, Hubert

    2014-01-01

    In this study a test method for determining the cracking susceptibility of resistance spot welded high strength steel sheets was investigated. The development of a suitable test procedure is based on the External-Loaded Hot Crack Test (PVC-Test). The test modification for resistance spot welding contains a constant tensile force load. The test method for determining the cracking susceptibility was experimentally verified for a high strength steel, a transformation induced plasticity steel (TR...

  12. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    Science.gov (United States)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  13. Analysis of fatigue resistance of continuous and non-continuous welded rectangular frame intersections by finite element method

    International Nuclear Information System (INIS)

    McCoy, M. L.; Moradi, R.; Lankarani, H. M.

    2011-01-01

    Agricultural and construction equipment are commonly implemented with rectangular tubing in their structural frame designs. A typical joining method to fabricate these frames is by welding and the use of ancillary structural plating at the connections. This aids two continuous members to pass through an intersection point of the frame with some degree of connectivity, but the connections are highly unbalanced as the tubing centroids exhibit asymmetry. Due to the practice of welded continuous member frame intersections in current agricultural equipment designs, a conviction may exist that welded continuous member frames are superior in structural strength over that of structural frame intersections implementing welded non-continuous members where the tubing centroids lie within two planes of symmetry, a connection design that would likely fabricating a more fatigue resistant structural frame. Three types of welded continuous tubing frame intersections currently observed in the designs of agricultural equipment were compared to two non-continuous frame intersection designs. Each design was subjected to the same loading condition and then examined for stress levels using the Finite Element Method to predict fatigue life. Results demonstrated that a lighter weight, non-continuous member frame intersection design was two magnitudes superior in fatigue resistance than some current implemented frame designs when using Stress-Life fatigue prediction methods and empirical fatigue strengths for fillet welds. Stress-Life predictions were also made using theoretical fatigue strength calculations for the fatigue strength at the welds for comparison to the empirical derived weld fatigue strength

  14. Intermetallic Cu3Sn Phase Layer on Electrode’s Tip of Galvanized Resistance Spot Welding

    Directory of Open Access Journals (Sweden)

    Muhammad Anis

    2010-10-01

    Full Text Available A resistance spot welding method is commonly used in automotive industries application. In a resistance spot welding method, the copper electrode has a significant role as an electric current carrier for joining thin metal sheet. This research was focused on studying the effect of tin layer at the electrode tip for joining galvanized steel sheet. The main variable of this research is in the thickness of the intermetallic Cu3Sn layer. The result showed that the introduction of tin layer less than 1 μm in thickness on the electrode tip gives a comparable shear strength and nugget diameter distribution with the unplated electrode tip.

  15. Biological effects of emissions from resistance spot welding of zinc-coated material after controlled exposure of healthy human subjects.

    Science.gov (United States)

    Gube, Monika; Kraus, Thomas; Lenz, Klaus; Reisgen, Uwe; Brand, Peter

    2014-06-01

    Do emissions from a resistance spot welding process of zinc-coated materials induce systemic inflammation in healthy subjects after exposure for 6 hours? Twelve healthy male subjects were exposed once for 6 hours either to filtered ambient air or to welding fume from resistance spot welding of zinc-coated material (mass concentration approximately 100 μg m). Biological effects were measured before, after, and 24 hours after exposure. At the concentrations used in this study, however, the suspected properties of ultrafine particles did not lead to systemic inflammation as reflected by high-sensitivity C-reactive protein or other endpoint parameters under consideration. Ultrafine particles from a resistance spot welding process of zinc-covered materials with a number concentration of about 10 cm and a mass concentration of about 100 μg m did not induce systemic inflammation.

  16. Laser welding engineering

    International Nuclear Information System (INIS)

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  17. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    Science.gov (United States)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  18. Expanding Options. A Model to Attract Secondary Students into Nontraditional Vocational Programs. For Emphasis in: Building Trades, Electronics, Health Services, Machine Shop, Welding.

    Science.gov (United States)

    Good, James D.; DeVore, Mary Ann

    This model has been designed for use by Missouri secondary schools in attracting females and males into nontraditional occupational programs. The research-based strategies are intended for implementation in the following areas: attracting females into building trades, electronics, machine shop, and welding; and males into secondary health…

  19. Machinability of magnesium and aluminium alloys. Part I: cutting resistance

    International Nuclear Information System (INIS)

    Balout, B.; Songmene, V.; Masounave, J.

    2002-01-01

    Aluminium (2.7 g/cm 3 ) and magnesium (1.7 g/cm 3 ) are two competing light metals with similar mechanical properties and excellent possibilities for recycling. The forming of magnesium is often seen as an impediment to its use. New forming techniques using magnesium shavings are being developed, particularly in Japan. The machining of magnesium alloys by removal of metal raises safety concerns (risk of fire), which limits many potential applications of magnesium. The purpose of this work is to clarify and compare the machining properties of these two types of metal and better understand the mechanisms that may explain the differences in behaviour. Such a comparison could eventually provide an estimate of the cost of producing shavings for the manufacture of aluminium and magnesium parts through forging and extrusion, which would limit environmental pollution. Based on an analysis of cutting resistance during machining, it was demonstrated that magnesium alloys are easier to machine than similar aluminium alloys. Magnesium shavings are shorter than those of 6061-T6, but are especially more regular than those of A356, and their size is independent of cutting speed. It was also demonstrated that the fragility of materials can be characterized based on the results of cutting resistance produced during drilling

  20. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  1. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  2. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds

    Science.gov (United States)

    Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-01-01

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262

  3. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.

    Science.gov (United States)

    Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-12-18

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.

  4. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    Energy Technology Data Exchange (ETDEWEB)

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

  5. 3D modelling of plug failure in resistance spot welded shear-lab specimens (DP600-steel)

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile plug failure of resistance spot welded shear-lab specimens is studied by full 3D finite element analysis, using an elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids to coalescence (The Gurson model). Tensile properties and damage parameters...... it possible to numerically relate the weld diameter to the tensile shear force (TSF) and the associated displacement, u (TSF) , respectively. Main focus in the paper is on modelling the localization of plastic flow and the corresponding damage development in the vicinity of the spot weld, near the HAZ...

  6. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  7. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    International Nuclear Information System (INIS)

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-01-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties

  8. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-01-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  9. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  10. Development of Magnetorheological Resistive Exercise Device for Rowing Machine

    Directory of Open Access Journals (Sweden)

    Vytautas Grigas

    2016-01-01

    Full Text Available Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.

  11. Development of a suitable weld geometry for pressure resistance welding of the leader test assembly (LTA's) 16NGF fuel assembly fuel rod at Angra-1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fabio da Silva; Silva, Josue Ribeiro, E-mail: fabiojunqueira@inb.gov.br, E-mail: josueribeiro@inb.gov.br [Industrias Nucleares do Brasil (GEPRDN/INB), Rio de Janeiro, RJ (Brazil). Gerencia do Produto

    2013-07-01

    The purpose of this work is to develop suitable weld geometry for pressure resistance welding of the zircaloy-4 end plug to the special zirconium alloy cladding tube, Ø 9,14mm, for demonstration at Angra-1 Nuclear Plant. Weld geometry development was carried out in two steps: at the first one, the influence caused by the variation of the welding process key parameters, the axial compression strength of the end plug against the cladding tube, projection of the cladding tube into the welding chamber and the welding current have been evaluated; at the second step, the influence of the variation of end-plug weld geometry area was checked. For the combination of welding parameters, the technique of factorial design was used. Results from mechanical and metallographic tests have indicated a strong and direct influence of weld geometry dimensional variation on the weld mechanical resistance, and a modest influence in relation to the range of key parameters used to carry out tests. (author)

  12. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  13. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  14. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  15. Electrochemical machining of burn-resistant Ti40 alloy

    Directory of Open Access Journals (Sweden)

    Xu Zhengyang

    2015-08-01

    Full Text Available This study investigates the feasibility of using electrochemical machining (ECM to produce critical aeroengine components from a new burn-resistant titanium alloy (Ti40, thereby reducing costs and improving efficiency relative to conventional mechanical machining. Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of 1 kHz rather than a direct current. Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration. By optimizing these parameters, a surface roughness of 0.371 μm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A·min.

  16. Joining of the AMC Composites Reinforced with Ti3Al Intermetallic Particles by Resistance Butt Welding

    Directory of Open Access Journals (Sweden)

    Adamiak M.

    2016-06-01

    Full Text Available The introduction of new reinforcing materials continues to be investigated to improve the final behaviour of AMCs as well as to avoid some drawbacks of using ceramics as reinforcement. The present work investigates the structure, properties and ability of joining aluminium EN-AW 6061 matrix composite materials reinforced with Ti3Al particles by resistance butt welding as well as composite materials produced by mechanical milling, powder metallurgy and hot extrusion techniques. Mechanically milled and extruded composites show finer and better distribution of reinforcement particles, which leads to better mechanical properties of the obtained products. Finer microstructure improves mechanical properties of obtained composites. The hardness increases twice in the case of mechanically milled composites also, a higher reinforcement content results in higher particle dispersion hardening, for 15 wt.% of intermetallics reinforcement concentration composites reach about 400 MPa UTS. Investigation results of joints show that best hardness and tensile properties of joints can be achieved by altering soft conditions of butt welding process e.g. current flow time 1.2 s and current 1400 A. To improve mechanical properties of butt welding joints age hardening techniques can also be used.

  17. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  18. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  19. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    International Nuclear Information System (INIS)

    Sinhmar, S.; Dwivedi, D.K.

    2017-01-01

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  20. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    Directory of Open Access Journals (Sweden)

    Brytan Z.

    2016-06-01

    Full Text Available This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature.

  1. An inexpensive electron beam annealing apparatus with line focus, made from a converted electron welding machine

    International Nuclear Information System (INIS)

    Krimmel, E.F.; Lutsch, AG.K.; Meyer, H.P.; Theron, S.B.K.

    1985-01-01

    Electron beam annealing has, after an active period of research, become an established technology in the production of semiconductor devices, since high quality restoration practically without out-diffusion, can be achieved. Many universities and research institutions cannot afford to purchase a dedicated electron beam annealing apparatus. In the following a conversion of an industrial electron beam welding apparatus into an annealing apparatus with line focus is described, which could easily be copied by interested institutions. A magnetic quadrupole-lens is described which converts the point into a line focus. Standard-TV deflections with a special generator circuit for the X and Y deflection are used. Electron currents of 4 to 5 mA cause silicon to melt (1415 deg C). Annealing results obtained with the apparatus are discussed. (author)

  2. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  3. Structural state and geometric representation of a laser-welded joint between corrosion-resistant steel and titanium alloy with copper insert

    Science.gov (United States)

    Michurov, N. S.; Veretennikova, I. A.; Pugacheva, N. B.; Smirnova, E. O.

    2017-12-01

    The paper shows a characteristic structure of a welded joint between titanium alloy and corrosion-resistant steel, with a copper insert, produced by carbon dioxide laser welding. In the formation of the joint, the materials being welded are dissolved and mixed in the copper interlayer. The material of the welded joint is an oversaturated solid solution of Fe, Ni, Cr and Ti in the copper lattice with distributed TiFe, Ti(Fe, Cr)2 and CuTi2 intermetallic particles. A 10-150 µm thick diffusion zone with an altered chemical composition appears at the boundary with the steel, and a 50- 100 µm thick zone of the kind is formed at the boundary with the titanium alloy. The phase composition is determined and recrystallization maps at the boundaries of the welded joint are obtained. A geometric representation of a laser welded joint between titanium alloy and corrosion-resistant steel with a copper insert is constructed.

  4. Resistance Upset Welding of ODS Steel Fuel Claddings—Evaluation of a Process Parameter Range Based on Metallurgical Observations

    Directory of Open Access Journals (Sweden)

    Fabien Corpace

    2017-08-01

    Full Text Available Resistance upset welding is successfully applied to Oxide Dispersion Strengthened (ODS steel fuel cladding. Due to the strong correlation between the mechanical properties and the microstructure of the ODS steel, this study focuses on the consequences of the welding process on the metallurgical state of the PM2000 ODS steel. A range of process parameters is identified to achieve operative welding. Characterizations of the microstructure are correlated to measurements recorded during the welding process. The thinness of the clad is responsible for a thermal unbalance, leading to a higher temperature reached. Its deformation is important and may lead to a lack of joining between the faying surfaces located on the outer part of the join which can be avoided by increasing the dissipated energy or by limiting the clad stick-out. The deformation and the temperature reached trigger a recrystallization phenomenon in the welded area, usually combined with a modification of the yttrium dispersion, i.e., oxide dispersion, which can damage the long-life resistance of the fuel cladding. The process parameters are optimized to limit the deformation of the clad, preventing the compactness defect and the modification of the nanoscale oxide dispersion.

  5. The softened heat-affected zone in resistance spot welded tailor hardened boron steel: a material model for crash simulation

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Geijselaers, Hubertus J.M.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2016-01-01

    A hardness-based model for tailor hardened boron steel is presented that takes into account the softened heat-affected zone of resistance spot welds. The computational model is designed for crashworthiness simulation of fully and partially hardened components obtained by tailored tooling. Five

  6. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  7. Study of Proper Time Range for Current Flow to Resistance Spot Welding Inspected by Mechanical Property and Metallurgy Testing

    International Nuclear Information System (INIS)

    Pearsura, Prachya

    2007-08-01

    Full text: This research used the mechanical property and metallurgy testing to identify the proper time range for current flow. The specimen tested was 1 mm thick mild steel. The welded specimens were tested by Tensile Shear testing following JIS Z 3136: 1999 and Macro Structure testing follow by JIS Z 3139: 1978. Subsequently, the results from analyzing were compared with standard JIS Z 3140. The results show that the suitable current flow is 8 to 10 cycles. This technique can be applied to monitor the process and the quality of resistance spot welding

  8. Innovative Technology of Mechanized Wet Underwater Welding of High-Alloy Corrosion Resistant Steel

    Directory of Open Access Journals (Sweden)

    Kakhovskyi, M.Yu.

    2015-07-01

    Full Text Available The results of the practice of welding-repair technology using self-shielded flux-cored wire for wet underwater welding of high-alloy stainless steels type 18-10 are presented. The application of the technology allows reducing human participation in welding process under the extreme conditions. The practical value of the technology consists in the possibility of welding-repair works directly under water without any additional assembly works.

  9. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  10. Effect of post weld heat treatments on the resistance to the hydrogen embrittlement of soft martensitic stainless steel

    International Nuclear Information System (INIS)

    Hazarabedian, Alfredo; Ovejero Garcia, Jose; Bilmes, P.; Llorente, C.

    2003-01-01

    The effect of external hydrogen on the tensile properties of an all weld sample of a soft martensitic stainless steel was studied. The material was tested in the as weld condition and after tempered conditions modifying the austenite content, and changing the quantity, type and distribution of precipitates. Hydrogen was introduced by cathodic charge or by immersion in an acid brine saturated whit 1 atm hydrogen sulphide, during the mechanical test. The as weld condition showed a good resistance in the hydrogen sulphide, were the tempered samples were embrittled. Under cathodic charge, all samples were susceptible to hydrogen damage. The embritting mechanisms were the same in both environments. When the austenite content, was below 10% the crack path is on the primary austenite grain boundary. At higher austenite content, the crack is transgranular. (author)

  11. High temperature corrosion resistance of candidate nickel-based weld overlay alloys in a low NOx environment

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, R.M.; Du Pont, J.N.; Marder, A.R. [Lehigh University, Bethlehem, PA (United States)

    2007-07-15

    Changes in environmental regulations have led many fossil fuel-fired boiler operators to alter their combustion practices (low NOx, burning), thereby lowering plant emissions. This change has led to unacceptable wastage of carbon and low alloy steel waterwall tubes and expensive shutdowns due to severe corrosion. One favored solution is to weld overlay a more corrosion resistant alloy on top of existing tubes. Two nickel-based alloys developed for such applications were tested alongside the commercially available alloy 622 in a simulated low NOx, environment. Electron probe microanalysis (EPMA) examination of the weld overlays and corrosion scales demonstrated that microsegregation of molybdenum occurred in one of the candidate alloys and alloy 622. This microsegregation had a detrimental effect on the corrosion resistance of these alloys. The candidate alloy with higher chromium concentration, low nominal molybdenum concentration, and corresponding minimum molybdenum segregation, exhibited the best corrosion resistance of the examined alloys.

  12. High temperature corrosion resistance of candidate nickel-based weld overlay alloys in a low NO {sub x} environment

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, R.M. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States)], E-mail: rmd3@lehigh.edu; DuPont, J.N. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States); Marder, A.R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015 (United States)

    2007-07-15

    Changes in environmental regulations have led many fossil fuel-fired boiler operators to alter their combustion practices (low NO {sub x} burning), thereby lowering plant emissions. This change has led to unacceptable wastage of carbon and low alloy steel waterwall tubes and expensive shutdowns due to severe corrosion. One favored solution is to weld overlay a more corrosion resistant alloy on top of existing tubes. Two nickel-based alloys developed for such applications were tested alongside the commercially available alloy 622 in a simulated low NO {sub x} environment. Electron probe microanalysis (EPMA) examination of the weld overlays and corrosion scales demonstrated that microsegregation of molybdenum occurred in one of the candidate alloys and alloy 622. This microsegregation had a detrimental effect on the corrosion resistance of these alloys. The candidate alloy with higher chromium concentration, low nominal molybdenum concentration, and corresponding minimum molybdenum segregation, exhibited the best corrosion resistance of the examined alloys.

  13. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  14. CrN-based wear resistant hard coatings for machining and forming tools

    International Nuclear Information System (INIS)

    Yang, S; Cooke, K E; Teer, D G; Li, X; McIntosh, F

    2009-01-01

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  15. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    Science.gov (United States)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  16. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  17. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  18. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    Science.gov (United States)

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α . The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota , which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  19. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  20. Contribution to the Study of Effects of Surface State of Welded Joints in Stainless Steel Upon Resistance Towards Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    Juraga, I.

    2007-01-01

    Full Text Available Successful corrosion resistance of stainless steels is based on their natural ability of passivation, i.e. formation of film of chromium oxides that prevents corrosion in many environments. Any nonuniformity of surface layers may be initial spot for corrosion processes and damages. In this contribution, beside real corrosion damages occurred in practice, results of testing of pitting corrosion resistance of weld beads made applying TIG process on AISI 316L steel grade are presented. SEM and EDX testing, as well as electrochemical corrosion testing confirmed adverse effects of heat tints zones upon corrosion resistance of stainless steels.

  1. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Pardal, J.M.; Lima, L.D.; Bastos, I.N.; Nascimento, A.M.; Souza, J.A. de

    2007-01-01

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H 2 SO 4 media

  2. The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using ultrasonic vibration assisted welding process

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng

    2017-12-01

    The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5  ±  3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261  ±  7.5 MPa and fracture occurs near the heat affected zone of the joint.

  3. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  4. Safety of stationary grinding machines - impact resistance of work zone enclosures.

    Science.gov (United States)

    Mewes, Detlef; Adler, Christian

    2017-09-01

    Guards on machine tools are intended to protect persons from being injured by parts ejected with high kinetic energy from the work zone of the machine. Stationary grinding machines are a typical example. Generally such machines are provided with abrasive product guards closely enveloping the grinding wheel. However, many machining tasks do not allow the use of abrasive product guards. In such cases, the work zone enclosure has to be dimensioned so that, in case of failure, grinding wheel fragments remain inside the machine's working zone. To obtain data for the dimensioning of work zone enclosures on stationary grinding machines, which must be operated without an abrasive product guard, burst tests were conducted with vitrified grinding wheels. The studies show that, contrary to widely held opinion, narrower grinding wheels can be more critical concerning the impact resistance than wider wheels although their fragment energy is smaller.

  5. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    Science.gov (United States)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  6. Effectiveness of Hamstring Knee Rehabilitation Exercise Performed in Training Machine vs. Elastic Resistance Electromyography Evaluation Study

    DEFF Research Database (Denmark)

    Jakobsen, M. D.; Sundstrup, E.; Andersen, C. H.

    2014-01-01

    Objective The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Design Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded.......001) during hamstring curl performed with elastic resistance (7.58 +/- 0.08) compared with hamstring curl performed in a machine (5.92 +/- 0.03). Conclusions Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more...... inclinometers. Results Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine...

  7. AISI 304 Welding Fracture Resistance by a Charpy Impact Test with a High Speed Sampling Rate

    Directory of Open Access Journals (Sweden)

    Bambang Riyanta

    2017-12-01

    Full Text Available The purpose of this study was to evaluate fracture resistance in AISI 304. The J-R curve was constructed from data, which resulted from an impact test by Charpy Impact machine equipped with high-speed sampling rate data acquisition equipment. The critical values of fracture resistance in fusion zones (FZ, high temperature heat affected zones (HTHAZ, low temperature heat affected zones (LTHAZ and unaffected base metals (UBM were obtained by calculation methods using some formulas and by graphical methods. Laboratory experiments demonstrated the relationships among the values of energy absorption along the impact test with the obstruction of dislocation movement due to the presence of chromium interstitial solute in all zones and chromium rich carbide precipitates in fusion zones and heat affected zones.

  8. Arc and resistance welding and tumours of the endocrine glands: a Swedish case-control study with focus on extremely low frequency magnetic fields.

    Science.gov (United States)

    Håkansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B

    2005-05-01

    Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985-94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields.

  9. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  10. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy.

    Science.gov (United States)

    Chen, Qingqiang; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Tao, Kai

    2018-02-06

    In this study, the effects of cerium (Ce) addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg 17 Al 12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg 17 Al 12 , while generating Al₄Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  11. Effect of Load Range on Probabilistic Fatigue Crack Growth Resistance in Flux Cored Arc Welded Api 2w GR. Steel

    Science.gov (United States)

    Kim, Seon-Jin; Sohn, Sang-Hoon; Sohn, Hye-Jeong

    The aim of this paper is to investigate the effects of the load range on the spatial variation of fatigue crack growth resistance in three different zones, WM, HAZ and BM for flux cored arc welded API 2W Gr. 50 steel using the stochastic model based on reliability theory. Experimental fatigue crack growth tests were performed on ASTM standard CT specimens. The results indicates that the load range has strong dependency on probabilistic fatigue crack growth for the three different zones WM, HAZ and BM, and also the spatial variation of fatigue crack growth resistance.

  12. Analysis of Nugget Formation During Resistance Spot Welding on Dissimilar Metal Sheets of Aluminum and Magnesium Alloys

    Science.gov (United States)

    Luo, Yi; Li, Jinglong

    2014-10-01

    The nugget formation of resistance spot welding (RSW) on dissimilar material sheets of aluminum and magnesium alloys was studied, and the element distribution, microstructure, and microhardness distribution near the joint interface were analyzed. It was found that the staggered high regions at the contact interface of aluminum and magnesium alloy sheets, where the dissimilar metal melted together, tended to be the preferred nucleation regions of nugget. The main technical problem of RSW on dissimilar metal sheets of aluminum and magnesium alloys was the brittle-hard Al12Mg17 intermetallic compounds distributed in the nugget, with hardness much higher than either side of the base materials. Microcracks tended to generate at the interface of the nugget and base materials, which affected weld quality and strength.

  13. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for

  14. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  15. Quality status display for a vibration welding process

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-03-28

    A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.

  16. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  17. An experimental study on fracture toughness of resistance spot welded galvanized and ungalvanized DP 450 steel sheets used in automotive body

    Directory of Open Access Journals (Sweden)

    Sevim, Ibrahim

    2016-09-01

    Full Text Available The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW Dual Phase (DP steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness.El objetivo de este estudio es determinar la tenacidad de fractura de los aceros dual (DP soldados por puntos de resistencia (RSW. En la máquina de soldadura por puntos se realizó la soldadura de láminas de acero DP 450 galvanizado y sin galvanizar. A partir de los ensayos de tracción-cizallamiento, se calculó la tenacidad a la fractura de las uniones del acero DP 450 galvanizado y sin galvanizar. Aplicando el método de mínimos cuadrados (LSM se desarrollaron nuevas ecuaciones empíricas entre el porcentaje de energía liberada, la tenacidad de fractura y el tamaño de grieta crítica en función de la relación entre los valores de tenacidad de fractura y de dureza. Los resultados indicaron que la tenacidad de fractura de las uniones soldadas por RSW aumentó exponencialmente, mientras que la dureza disminuyó. Además, el porcentaje de energía liberada de las láminas de acero DP 450 galvanizadas y soldadas fueron menores que en el caso de las láminas sin galvanizar a valores iguales de dureza.

  18. On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis

    Science.gov (United States)

    Afshari, D.; Sedighi, M.; Karimi, M. R.; Barsoum, Z.

    2013-12-01

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  19. Vibration analysis of resistance spot welding joint for dissimilar plate structure (mild steel 1010 and stainless steel 304)

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Alawi, D. A. J.

    2017-09-01

    Resistance spot welding (RSW) is a proficient joining method commonly used for sheet metal joining and become one of the oldest spot welding processes use in industry especially in the automotive. RSW involves the application of heat and pressure without neglecting time taken when joining two or more metal sheets at a localized area which is claimed as the most efficient welding process in metal fabrication. The purpose of this project is to perform model updating of RSW plate structure between mild steel 1010 and stainless steel 304. In order to do the updating, normal mode finite element analysis (FEA) and experimental modal analysis (EMA) have been carried out. Result shows that the discrepancies of natural frequency between FEA and EMA are below than 10 %. Sensitivity model updating is evaluated in order to make sure which parameters are influences in this structural dynamic modification. Young’s modulus and density both materials are indicate significant parameters to do model updating. As a conclusion, after perform model updating, total average error of dissimilar RSW plate is improved significantly.

  20. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    Science.gov (United States)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  1. Dictionary: Welding, cutting and allied processes. Pt. 2

    International Nuclear Information System (INIS)

    Kleiber, A.W.

    1987-01-01

    The dictionary contains approximately 40 000 entries covering all aspects of welding technology. It is based on the evaluation of numerous English, American and German sources. This comprehensive and up to date dictionary will be a reliable and helpful aid in evaluation and translating. The dictionary covers the following areas: Welding: gas welding, arc welding, gas shielded welding, resistance welding, welding of plastics, special welding processes; Cutting: flame cutting, arc cutting and special thermal cutting processes; Soldering: brazing and soldering; Other topics: thermal spraying, metal to metal adhesion, welding filler materials and other consumables, test methods, plant and equipment, accessories, automation, welding trade, general welding terminology. (orig./HP) [de

  2. Evaluation of commercial production A533-B plates and weld deposits tailored for improved radiation embrittlement resistance

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Koziol, J.J.; Byrne, S.T.

    1974-01-01

    A cooperative AEC/C-E/NRL research program is exploring trends in radiation effects for commercially produced ASTM A533-B steel plates, weld deposits, and weld heat affected zones with three controlled levels of impurity copper content. The primary objective is to establish the trend of improved 550 0 F (288 0 C) radiation performance with progressive reductions in allowable copper content. Objectives are to develop information assisting the formulation of special specifications for steels for nuclear service and the delineation of associated embrittlement trends for vessel design and operation. This report summarizes findings on the radiation resistance of two of three series of A533-B plates and weldments. Series 1 materials contained greater than or equal to 0.15 percent Cu, typical of nonimproved steel production (pre-1971). Series 2 materials contained 0.10 percent Cu max, representative of improved steel production (current practice). Radiation resistance was assessed from Charpy-V (Cv) notch ductility changes with irradiation to two fluence levels: 2-3 x 10 19 and 4.5 x 10 19 n/cm 2 greater than 1 MeV. Data trends indicate a marked improvement in radiation resistance with the specification of 0.10 percent max Cu. The improvement is evident both in a smaller increase in Cv 30 ft-lb transition temperature and in a smaller decrease in Cv upper shelf energy with irradiation. New ASTM and AWS specifications proposing to restrict the copper, phosphorous and sulfur contents of A533-B plates and weld deposits for nuclear service are reviewed and appear well formulated from the experimental findings presented here. The effectiveness of postirradiation 650 F (343 C)-168 hour heat treatment for notch toughness recovery was also explored. 12 fig, 6 tables

  3. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Michael

    2016-04-04

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO{sub 2} emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized

  4. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    International Nuclear Information System (INIS)

    Rhode, Michael

    2016-01-01

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO 2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized with

  5. Circumferential welding applied for inox steel super duplex UNS S32750 using the process MIG using CMT® control

    International Nuclear Information System (INIS)

    Invernizzi, Bruno Pizol

    2017-01-01

    This study carried out circumferential welding experiments in UNS S32750 Super Duplex Stainless Steel tubes using diameters of 19,05 mm and 48,20 mm. Welds were performed using various welding parameters on a MIG machine with Cold Metal Transfer® CMT control. The weld joints were evaluated by visual and dimensional inspection in addition to the Vickers microhardness and traction tests, as well as the microstructural analysis in conjunction with phase precipitation analysis, which was performed according to practice A of ASTM A923, and corrosion test in accordance with practice A of ASTM G48 in conjunction with ASTM A923. The results indicated that welds performed in pipes with a diameter of 19.05 mm showed a weld joint with unacceptable dimensions according to the standard, this condition being attributed the use of a high wire diameter for the welding conditions used. Welding performed for pipes with a diameter of 48.20 mm showed a lack of penetration under the conditions employed when welded by the conventional CMT® process. In the case of the use of CMT® combined with pulsed arc, under conditions that generated greater heat input during welding, this resulted in total penetration of the joint and adequate surface finish. The results indicated that welding using the CMT® process combined with pulsed arc, under the conditions (parameters) employed generated good surface finish, combined mechanical properties, meeting standards requirements, as well as a balanced microstructure and high resistance to corrosion. (author)

  6. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  7. Spot Welding of Honeycomb Structures

    Science.gov (United States)

    Cohal, V.

    2017-08-01

    Honeycomb structures are used to prepare meals water jet cutting machines for textile. These honeycomb structures are made of stainless steel sheet thickness of 0.1-0.2 mm. Corrugated sheet metal strips are between two gears with special tooth profile. Hexagonal cells for obtaining these strips are welded points between them. Spot welding device is three electrodes in the upper part, which carries three welding points across the width of the strip of corrugated sheet metal. Spot welding device filled with press and advance mechanisms. The paper presents the values of the regime for spot welding.

  8. Effectiveness of hamstring knee rehabilitation exercise performed in training machine vs. elastic resistance: electromyography evaluation study.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Persson, Roger; Zebis, Mette K; Andersen, Lars L

    2014-04-01

    The aim of this study was to evaluate muscle activity during hamstring rehabilitation exercises performed in training machine compared with elastic resistance. Six women and 13 men aged 28-67 yrs participated in a crossover study. Electromyographic (EMG) activity was recorded in the biceps femoris and the semitendinosus during the concentric and the eccentric phase of hamstring curls performed with TheraBand elastic tubing and Technogym training machines and normalized to maximal voluntary isometric contraction-EMG (normalized EMG). Knee joint angle was measured using electronic inclinometers. Training machines and elastic resistance showed similar high levels of muscle activity (biceps femoris and semitendinosus peak normalized EMG >80%). EMG during the concentric phase was higher than during the eccentric phase regardless of exercise and muscle. However, compared with machine exercise, slightly lower (P machine (5.92 ± 0.03). Hamstring rehabilitation exercise performed with elastic resistance induces similar peak hamstring muscle activity but slightly lower EMG values at more extended knee angles and with higher perceived loading as hamstring curls using training machines.

  9. Determination of Maximum Follow-up Speed of Electrode System of Resistance Projection Welders

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2004-01-01

    The maximum follow-up speed of electrode system represents the dynamic mechanical response capacity of resistance projection welding machines, which is important to make the diffrernce from one machine to the other and to consider the individual behavior of machines in designing or optimizing the...

  10. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    Science.gov (United States)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  11. Determination of Thermal Contact Resistances for Small TENV Electrical Machine

    OpenAIRE

    Olfa MEKSI; Mohd Azri Hizami RASID; Alejandro OSPINA; Vincent LANFRANCHI

    2016-01-01

    In this paper, a thermal study of Synchronous Reluctant motor is proposed. A specific experimental method is applied in order to identify the thermal parameters, this method focus on the study of contact resistances and total thermal capacity. Generally, in the classical thermal modeling, the thermal contact resistance (TCR) is estimated by empirical values and the thermal capacities are calculated by analytical solutions. The originality of the proposed model is based on the complementarity ...

  12. Tube Alinement for Machining

    Science.gov (United States)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  13. Effect of Capping Front Layer Materials on the Penetration Resistance of Q&T Steel Welded Joints Against 7.62-mm Armor-Piercing Projectile

    Science.gov (United States)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.; Parameswaran, P.

    2013-09-01

    In the present investigation, an attempt has been made to study the effect of capping front layers on the ballistic performance of shielded metal arc-welded armor steel joints which were fabricated with a chromium carbide-rich hardfaced middle layer on the buttered/beveled edge. Two different capping front layer materials were chosen for achieving better ballistic performance, namely, low hydrogen ferritic (LHF) and austenitic stainless steel (SS) fillers. On the other hand, the bottom layers are welded with SS filler for both joints. The consequent sandwiched joint served the dual purpose of weld integrity and penetration resistance of the bullet. It is observed that the penetration resistance is due to the high hardness of the hardfacing layer on the one hand and the energy-absorbing capacity of the soft backing SS weld deposits on the other hand. The complementary effect of layers successfully provided resistance to the projectile penetration. On a comparative analysis, the joint fabricated using the LHF filler capping front layer offered superior ballistic performance with respect to depth of penetration. This is mainly due to the presence of acicular ferrite along the bainitic structure in the LHF capping front layer, which caused a shallow hardness gradient along the weld center line.

  14. Machinability of Stellite 6 hardfacing

    Directory of Open Access Journals (Sweden)

    Dudzinski D.

    2010-06-01

    Full Text Available This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  15. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  16. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  17. GE Hitachi Nuclear Energy (GEH) PWR repair technology - FineLine{sup TM} Welding, Weld Overlay, and ReNew{sup TM} Surface Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Offer, Henry P.; Horn, Ron M.; Pao, Hsuehwen [GEH Nuclear Energy, San Jose (United States)

    2008-04-15

    This paper discusses GEH technologies for fabrication, maintenance, and repair of welded components in nuclear reactors. Each process increases margins against PWSCC in PWRs (and SCC in BWRs) by controlling residual stress, alloy chemistry, and microstructure. First, FineLine{sup TM} Welding automated welding technology produces compressive stresses in the weld root regions. The narrow weld joint design improves fabrication productivity and reduces weld shrinkage distortion. The low heat input, combined with special welding parameters, also limits heat affected zone (HAZ) residual strains and sensitization in addition to the compressive stresses, which will further prevent PWSCC. Second, Weld Overlays (WOLs) for cracking mitigation are presented, including those for stainless steels, nickel alloys, and low alloy steel. WOLs for stainless steels have been successfully applied for many decades in BWRs for mitigation of existing-cracks. More recently, WOLs are being used pre-emotively, especially in PWRs, where mitigation of cracking in nozzle and butt welds are currently being implemented using nickel-base Alloy 52M. For hard enable Low Alloy Steels such as the P V nozzles, a Temper Bead welding process in used, which is now qualified for both dry and wetted IDs. Thirdly, a new PWSCC mitigation technology, ReNew{sup TM} Surface Improvement, puts the surface of SCC-susceptible weld areas into compression, removes cold work from fabrication grinding/machining, removes aging degradation from service exposure, while improving the surface finish to further resist SCC initiation. Re New utilizes flexible abrasive media that is applied underwater with automated delivery tooling. Laboratory testing has been conducted to show that after application of Re New, a significant Factor of Improvement on component life can be achieved for nickel-base Alloy 182 subjected to a BWR environment. Similar life improvement is expected for PWRs welds. This technology can also be combined

  18. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    Science.gov (United States)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  19. Comparative Studies on microstructure, mechanical and corrosion behaviour of DMR 249A Steel and its welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    DMR249A Medium strength (low carbon) Low-alloy steels are used as structural components in naval applications due to its low cost and high availability. An attempt has been made to weld the DMR 249A steel plates of 8mm thickness using shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). Welds were characterized for metallography to carry out the microstructural changes, mechanical properties were evaluated using vickers hardness tester and universal testing machine. Potentio-dynamic polarization tests were carried out to determine the pitting corrosion behaviour. Constant load type Stress corrosion cracking (SCC) testing was done to observe the cracking tendency of the joints in a 3.5%NaCl solution. Results of the present study established that SMA welds resulted in formation of relatively higher amount of martensite in ferrite matrix when compared to gas tungsten arc welding (GTAW). It is attributed to faster cooling rates achieved due to high thermal efficiency. Improved mechanical properties were observed for the SMA welds and are due to higher amount of martensite. Pitting corrosion and stress corrosion cracking resistance of SMA welds were poor when compared to GTA welds.

  20. Machining efficiency and wear resistance of nickel-titanium endodontic files.

    Science.gov (United States)

    Kazemi, R B; Stenman, E; Spångberg, L S

    1996-05-01

    Nickel-titanium endodontic files are more flexible than stainless steel. Little information is reported concerning machining efficiency and wear resistance of nickel titanium. This study assessed the dentin-machining ability and wear resistance of nickel titanium endodontic files in vitro. The method described earlier to assess machining efficiency and wear resistance of stainless steel files was used. Eight different types and brands of nickel titanium files were studied: Ultra-Flex Hedström, Ultra-Flex K, Mity Hedstrom, Mity K, Mity Turbo, Hedstrom Naviflex NT, NiTiFlex, and Hyflex X-file. Thirty files of each brand were evaluated. One-way ANOVA and t tests were performed to analyze the data. Considerable variation was found in matching efficiency and wear. The best initial machining ability of all nickel titanium instruments was recorded for the Hyflex-X file (0.60 +/- 0.16 mm2); the poorest performance was for the Mity Turbo file, which machined less than one third of the best performing instrument (0.19 +/- 0.12 mm2). We compared our results with results of a previous study of stainless steel endodontic files and concluded that nickel titanium instruments are as aggressive as or better than stainless steel instruments in removing dentin. They are also more durable than their stainless steel counterparts.

  1. Swiss ball abdominal crunch with added elastic resistance is an effective alternative to training machines

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H

    2012-01-01

    to induce high level of muscle activation. PURPOSE: To compare muscle activation as measured by electromyography (EMG) of global core and thigh muscles during abdominal crunches performed on Swiss ball with elastic resistance or on an isotonic training machine when normalized for training intensity. METHODS......BACKGROUND: Swiss ball training is recommended as a low intensity modality to improve joint position, posture, balance, and neural feedback. However, proper training intensity is difficult to obtain during Swiss ball exercises whereas strengthening exercises on machines usually are performed......: 42 untrained individuals (18 men and 24 women) aged 28-67 years participated in the study. EMG activity was measured in 13 muscles during 3 repetitions with a 10 RM load during both abdominal crunches on training ball with elastic resistance and in the same movement utilizing a training machine...

  2. Aerosol characterization and pulmonary responses in rats after short-term inhalation of fumes generated during resistance spot welding of galvanized steel

    Directory of Open Access Journals (Sweden)

    James M. Antonini

    Full Text Available Resistance spot welding is a common process to join metals in the automotive industry. Adhesives are often used as sealers to seams of metals that are joined. Anti-spatter compounds sometimes are sprayed onto metals to be welded to improve the weldability. Spot welding produces complex aerosols composed of metal and volatile compounds (VOCs which can cause lung disease in workers. Male Sprague-Dawley rats (n = 12/treatment group were exposed by inhalation to 25 mg/m3 of aerosol for 4 h/day × 8 days during spot welding of galvanized zinc (Zn-coated steel in the presence or absence of a glue or anti-spatter spray. Controls were exposed to filtered air. Particle size distribution and chemical composition of the generated aerosol were determined. At 1 and 7 days after exposure, bronchoalveolar lavage (BAL was performed to assess lung toxicity. The generated particles mostly were in the submicron size range with a significant number of nanometer-sized particles formed. The primary metals present in the fumes were Fe (72.5% and Zn (26.3%. The addition of the anti-spatter spray and glue did affect particle size distribution when spot welding galvanized steel, whereas they had no effect on metal composition. Multiple VOCs (e.g., methyl methacrylate, acetaldehyde, ethanol, acetone, benzene, xylene were identified when spot welding using either the glue or the anti-spatter spray that were not present when welding alone. Markers of lung injury (BAL lactate dehydrogenase and inflammation (total BAL cells/neutrophils and cytokines/chemokines were significantly elevated compared to controls 1 day after exposure to the spot welding fumes. The elevated pulmonary response was transient as lung toxicity mostly returned to control values by 7 days. The VOCs or the concentrations that they were generated during the animal exposures had no measurable effect on the pulmonary responses. Inhalation of galvanized spot welding fumes caused acute lung toxicity

  3. Microstructural Stability of Dissimilar Weld Joint of Creep -Resistant Steels with Increased Nitrogen Content at 500-900oC

    Czech Academy of Sciences Publication Activity Database

    Zlámal, B.; Foret, R.; Buršík, Jiří; Svoboda, Milan

    2007-01-01

    Roč. 263, - (2007), s. 195-200 ISSN 1012-0386 Institutional research plan: CEZ:AV0Z20410507 Keywords : creep-resistant steel * weld joint * structural analyses Subject RIV: JG - Metallurgy Impact factor: 0.483, year: 2005

  4. Application of Hard Metal Weld Deposit in the Area of Mixing Organic Materials

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Any machine part is subject to degradation processes. Intensive wear occurs either when two bearing surfaces come into contact or when loose particles rub the function surface of a machine part. Soil processing machines are a good example. A similar process of abrasive wear occurs also in mixing machines or lines for material transport, such as worm-conveyors. The experiment part of this paper analyses hard metal weld deposit dedicated for renovation of abrasive stressed surfaces. In order to prolong the service life of a blade disc in a mixing machine Kreis-Biogas-Dissolver, the technology of hard surfacing by an electric arc was used. Tested hard metal electrodes were applied on a steel tape class 11 373. To eliminate mixing with the base material, weld beads were applied in two layers. Firstly, the weld bead was visually analyzed on a binocular microscope. Further, weld bead as well as the base material was analyzed from the metallographic point of view, whose aim was to identify the structure of weld metal and the origin of microcracks in weld bead. Moreover, there was also measured microhardness of weld metal. Abrasive resistance was tested according to the norm ČSN 01 5084, which is an abrasive cloth test. As in the mixing process also erosion wear occurs, there was also processed a test on a Bond device simulating stress of test samples by loose abrasive particles. The abrading agents were formed by broken stones of 8–16 mm in size. Based on the results of the individual tests, the recommendation of usage hard metal electrodes for prolonging service life of machine parts will be made.

  5. Optimization of the Closure-Weld Region of cylindrical Containers for Long-Term Corrosion Resistance

    International Nuclear Information System (INIS)

    Zekai Ceylan; Mohamed B. Trabia

    2001-01-01

    Welded cylindrical containers are susceptible to stress corrosion cracking (SCC) in the closure-weld area. An induction coil heating technique may be used to relieve the residual stresses in the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The parameters of the design are tuned to maximize the compressive stress from the outer surface to a depth that is equal to the long-term general corrosion rate of Alloy 22 (Appendix A) multiplied by the desired container lifetime. The problem is subject to geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, off-the-shelf optimization software is used to obtain an optimum solution. These results are not satisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search. Examples and discussion are included

  6. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  7. Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints

    International Nuclear Information System (INIS)

    Zhang, Hongqiang; Wei, Ajuan; Qiu, Xiaoming; Chen, Jianhe

    2014-01-01

    Highlights: • We examine changes of microstructure of dissimilar thickness DP600/DP780 joints. • The hardness profile of RSW joints can be predicted by the equation. • Failure modes, peak load and energy describes the mechanical properties of joints. • The nugget diameter is the key factor of transition between the failure modes. - Abstract: In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints

  8. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...... in the overall welding process; one of these factors are the ability of the welding machine to control the process. The internal control algorithms in GMAW machines are the topic of this PhD project. Basically, the internal control includes an algorithm which is able to keep the electrode at a given distance...

  9. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  10. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-01-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit

  11. Artificial neural networks for prediction of quality in resistance spot welding; Redes neuronales artificiales para la prediccion de la calidad en soldadura por resistencia por puntos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, O.; Lopez, M.; Martin, F.

    2006-07-01

    An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality is determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation). (Author) 44 refs.

  12. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    Emygdio, Paulo Roberto Oliveira; Zeemann, Annelise; Almeida, Luiz Henrique de

    1996-01-01

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  13. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    to the effects of coating water absorption on skin friction. Furthermore, to investigate the effects of welding seam height and density (number of welding seams per five meters of ship side) on drag resistance, a new flexible rotor was designed and used for experimentation. It was found, under the conditions...... selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption...... experiments showed that water absorption of the FR coating did not result in any significant impacts on skin friction. On the other hand, water absorption was found to actually lower the skin friction of AF coatings. This may be attributed to a smoothening of the coating surface. The effects of welding seam...

  14. Stereoscopic Video Weld-Seam Tracker

    Science.gov (United States)

    Kennedy, Larry Z.

    1991-01-01

    Stereoscopic video camera and laser illuminator operates in conjunction with image-data-processing computer to locate weld seam and to map surface features in vicinity of seam. Intended to track seams to guide placement of welding torch in automatic welding system and to yield information on qualities of welds. More sensitive than prior optical seam trackers and suitable for use in production environment. Tracks nearly invisible gap between butted machined edges of two plates.

  15. Welding of large-size embelled fittings in NPP construction

    International Nuclear Information System (INIS)

    Semenov, N.A.; Savinov, O.A.

    1988-01-01

    Drawbacks of the accepted technology for peoducing embedded fittings are considered. Activities on modernization of the standard ADF-2001 automatic welding machine are described. Results of testing the samples of welded joints performed using the modernized automatic welding machine, and economic effect caused by its introduction at the balakovo NPP second unit construction are presented

  16. Nugget formation and its mechanism of resistance spot welded joints in DP600 dual-phase and DC54D ultralow carbon steel

    Science.gov (United States)

    Li, Ci; Yuan, Xinjian; Wu, Kanglong; Wang, Haodong; Hu, Zhan; Pan, Xueyu

    2017-05-01

    Resistance spot welded joints in different configurations of DP600 and DC54D were investigated to elucidate the nugget formation process and mechanical properties of the resultant joints. Results show that, when the welding time was less than 4 cycles, the fusion zone (FZ) was not formed, but the heat-affected zone (HAZ) occurred with a "butterfly" shape. In 4 cycles, the FZ in dissimilar sheets occurred with an "abnormal butterfly" shape because of nugget shift. When the welding time increased to 14 cycles, the FZ exhibited a "bread loaf" shape and the weld shifted to "dog bones." The nugget can be divided into three regions, namely, FZ, HAZ1, and HAZ2, and the FZ consisted of lath martensite. The micro hardness of DP600 FZ was lower than that of HAZ because of the dilution of DC54D. The failure mode of B changed from interfacial failure to plug failure during the nugget formation process. The tensile-shear load of sound weld is 6.375, 6.016, and 19.131 kN.

  17. Effect of Postweld Aging Treatment on Fatigue Behavior of Pulsed Current Welded AA7075 Aluminum Alloy Joints

    Science.gov (United States)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-04-01

    This article reports the effect of postweld aging treatment on fatigue behavior of pulsed current welded AA 7075 aluminum alloy joints. AA7075 aluminum alloy (Al-Zn-Mg-Cu alloy) has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers, and railway transport systems. The preferred welding processes of AA7075 aluminum alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 10 mm thickness have been used as the base material for preparing multipass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt.%)) grade aluminum alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW), and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Rotary bending fatigue testing machine has been used to evaluate fatigue behavior of the welded joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. Grain refinement is accompanied by an increase in fatigue life and endurance limit. Simple postweld aging treatment applied to the joints is found to be beneficial to enhance the fatigue performance of the welded joints.

  18. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  19. Sheet resistivity of silicon wafers implanted with a high current machine

    International Nuclear Information System (INIS)

    Steeples, K.

    1985-01-01

    Silicon wafers, as used in the integrated circuits and semiconductor device industry, have been implanted with all the common dopants using Eaton Corporation's commercially available 'NV' series of high current implanters. Most detailed studies of the implanted wafers have focused on using arsenic and boron as dopants since the transport of these dopants in silicon has been found to be more compatible with the trend towards shrinking device dimensions. Four point probe measurements have been taken on implanted wafers with subsequent annealing to indicate the quality and effect of the implant. The variation of sheet resistance with dose and energy have been studied using a machine in standard condition over the range of 10 14 -10 16 ions/cm 2 and over an energy range of 5-180 keV for arsenic and boron implants into bare wafers and wafers with screen oxides. Dose control at low doses in the Eaton High Current Implanter has been studied over a range of 10 10 -10 13 ions/cm 2 using MOS devices and other measurements. Repeatability of the machines has been obtained by tracking the manufacture of over one hundred machines for nearly three years. With the use of an Eaton Standard Test Implant Procedure for each machine before shipment, it has been shown that the dose repeatability can be as good as 2% (including furnace and four point probe variations) for machine to machine. The repeatability within a single machine was found to be better than 0.5%. Arsenic ion beams have shown excellent independence of end station pressure, as may occur during photoresist outgassing or controlled gas leaks. Boron beams have a higher electron capture cross-section than other commonly used beams and require a dose control compensation for high end station pressure implants to give agreement with the low pressure regime. (orig./TW)

  20. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  1. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  2. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  3. Wear resistance of machine tools' bionic linear rolling guides by laser cladding

    Science.gov (United States)

    Wang, Yiqiang; Liu, Botao; Guo, Zhengcai

    2017-06-01

    In order to improve the rolling wear resistance (RWR) of linear rolling guides (LRG) as well as prolong the life of machine tools, various shape samples with different units spaces ranged from 1 to 5 mm are designed through the observation of animals in the desert and manufactured by laser cladding. Wear resistance tests reproducing closely the real operational condition are conducted by using a homemade linear reciprocating wear test machine, and wear resistance is evaluated by means of weight loss measurement. Results indicate that the samples with bionic units have better RWR than the untreated one, of which the reticulate treated sample with unit space 3 mm present the best RWR. More specifically, among the punctuate treated samples, the mass loss increases with the increase of unit space; among the striate treated samples, the mass loss changes slightly with the increase of unit space, attaining a minimum at the unit space of 4 mm; among the reticulate treated samples, with the increase of unit space, the mass loss initially decreases, but turns to increase after reaching a minimum at the unit space of 3 mm. Additionally, the samples with striate shape perform better wear resistance than the other shape groups on the whole. From the ratio value of laser treated area to contacted area perspective, that the samples with ratio value between 0.15 and 0.3 possess better wear resistance is concluded.

  4. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    International Nuclear Information System (INIS)

    Salonen, T.

    2014-05-01

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  5. New generation of welded semiautomatic for production of structures out of steels and aluminium alloys

    International Nuclear Information System (INIS)

    Belousov, A.N.; Poloskov, S.I.; Efanov, V.A.; Sedov, Yu.S.; Bukhta, O.Ya.

    1988-01-01

    Analysis of the type of semiautomatic welding machines, produced in our country and abroad, is presented. New designs, realized in the 80th, are described. Design of KOMBI-500 and PRM-4M semiautomatic welding machines is described

  6. Predicting response to antiretroviral treatment by machine learning: the EuResist project.

    Science.gov (United States)

    Zazzi, Maurizio; Incardona, Francesca; Rosen-Zvi, Michal; Prosperi, Mattia; Lengauer, Thomas; Altmann, Andre; Sonnerborg, Anders; Lavee, Tamar; Schülter, Eugen; Kaiser, Rolf

    2012-01-01

    For a long time, the clinical management of antiretroviral drug resistance was based on sequence analysis of the HIV genome followed by estimating drug susceptibility from the mutational pattern that was detected. The large number of anti-HIV drugs and HIV drug resistance mutations has prompted the development of computer-aided genotype interpretation systems, typically comprising rules handcrafted by experts via careful examination of in vitro and in vivo resistance data. More recently, machine learning approaches have been applied to establish data-driven engines able to indicate the most effective treatments for any patient and virus combination. Systems of this kind, currently including the Resistance Response Database Initiative and the EuResist engine, must learn from the large data sets of patient histories and can provide an objective and accurate estimate of the virological response to different antiretroviral regimens. The EuResist engine was developed by a European consortium of HIV and bioinformatics experts and compares favorably with the most commonly used genotype interpretation systems and HIV drug resistance experts. Next-generation treatment response prediction engines may valuably assist the HIV specialist in the challenging task of establishing effective regimens for patients harboring drug-resistant virus strains. The extensive collection and accurate processing of increasingly large patient data sets are eagerly awaited to further train and translate these systems from prototype engines into real-life treatment decision support tools. Copyright © 2012 S. Karger AG, Basel.

  7. Diffusion welding of metals

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Yamada, Takeshi

    1978-01-01

    Recently, the materials with high heat resistance, corrosion resistance or strength have been developed, and some of them cannot be welded by ordinary method. Thereupon solid phase joining method is noticed, the mechanism of which is entirely different from conventional fusion welding. Among various solid phase joining methods, diffusion welding has many features. In case of joining same material, the joint can be made chemically and mechanically same as the parent material, and in case of joining different materials, joining can be made without forming any harmful compound, and the embrittlement of joints can be avoided. Kawasaki Heavy Industries Corp. has carried out a series of research on the diffusion welding of various metals, but in this paper, the characteristics of the joints of same material and different materials in titanium alloys are reported. The diffusion welding apparatus used adopts radiation heating using a tungsten heater and a hydraulic cylinder for pressing. The atmosphere of welded materials is kept in vacuum. The tested materials were industrial pure titanium TB 35 and Ti-6 Al-4 V alloy. The weldability of these materials by diffusion welding was studied, and it was confirmed that the joint efficiency of 100% was able to be obtained. However, for the practical application, more studies are required. (Kako, I.)

  8. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld

  9. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  10. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  11. Swiss ball abdominal crunch with added elastic resistance is an effective alternative to training machines.

    Science.gov (United States)

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H; Jay, Kenneth; Andersen, Lars L

    2012-08-01

    Swiss ball training is recommended as a low intensity modality to improve joint position, posture, balance, and neural feedback. However, proper training intensity is difficult to obtain during Swiss ball exercises whereas strengthening exercises on machines usually are performed to induce high level of muscle activation. To compare muscle activation as measured by electromyography (EMG) of global core and thigh muscles during abdominal crunches performed on Swiss ball with elastic resistance or on an isotonic training machine when normalized for training intensity. 42 untrained individuals (18 men and 24 women) aged 28-67 years participated in the study. EMG activity was measured in 13 muscles during 3 repetitions with a 10 RM load during both abdominal crunches on training ball with elastic resistance and in the same movement utilizing a training machine (seated crunch, Technogym, Cesena, Italy). The order of performance of the exercises was randomized, and EMG amplitude was normalized to maximum voluntary isometric contraction (MVIC) EMG. When comparing between muscles, normalized EMG was highest in the rectus abdominis (Pexercises.

  12. Circumferential welding applied for inox steel super duplex UNS S32750 using the process MIG using CMT® control; Soldagem circunferencial do aço inoxidável super duplex UNS S32750 pelo processo MIG com controle CMT®

    Energy Technology Data Exchange (ETDEWEB)

    Invernizzi, Bruno Pizol

    2017-07-01

    This study carried out circumferential welding experiments in UNS S32750 Super Duplex Stainless Steel tubes using diameters of 19,05 mm and 48,20 mm. Welds were performed using various welding parameters on a MIG machine with Cold Metal Transfer® CMT control. The weld joints were evaluated by visual and dimensional inspection in addition to the Vickers microhardness and traction tests, as well as the microstructural analysis in conjunction with phase precipitation analysis, which was performed according to practice A of ASTM A923, and corrosion test in accordance with practice A of ASTM G48 in conjunction with ASTM A923. The results indicated that welds performed in pipes with a diameter of 19.05 mm showed a weld joint with unacceptable dimensions according to the standard, this condition being attributed the use of a high wire diameter for the welding conditions used. Welding performed for pipes with a diameter of 48.20 mm showed a lack of penetration under the conditions employed when welded by the conventional CMT® process. In the case of the use of CMT® combined with pulsed arc, under conditions that generated greater heat input during welding, this resulted in total penetration of the joint and adequate surface finish. The results indicated that welding using the CMT® process combined with pulsed arc, under the conditions (parameters) employed generated good surface finish, combined mechanical properties, meeting standards requirements, as well as a balanced microstructure and high resistance to corrosion. (author)

  13. A Contribution to the Parameters Optimization of a Spot Resistance Welding Transformer from an Aspect of the Working Regimes

    International Nuclear Information System (INIS)

    Chundeva, Snezhana

    2001-01-01

    The main goal of the thesis is to carry out an optimization of a spot resistance welding transformer, by Genetic Algorithm as the most powerful representative of contemporary stochastic optimization tools. Before the optimization process is going to be performed, an extensive and complex investigation of the transformer is required. These include set of experimental investigation, mathematical and numerical modeling of the transformer. An adequate analytical model of the transformer accurately reproducing all the experimentally derived parameters is developed. It is used to calculate the most relevant transformer parameters that can not be derived easily by measurements. Using the most extensively dynamic simulation programs, such as SIMULINK and PSPICE, accurate simulation models of the transformer are derived. Numerical calculation of the electromagnetic field is done by applying finite element method (FEM), while for the thermal analysis the transmission line matrix approach coupled with the FEM results is applied. The various results are verified with the -corresponding experimental and analytically obtained data. In the next step the derived transformer mathematical model is implemented in the Genetic Algorithm suitable for optimization purposes. The optimization process is performed for different electrical and magnetic transformer parameters, different objective functions and various mapping ranges of the design variables. Only the optimized solution which best matches the following criteria: increased duty factor at the nominal position; maintained or slightly decreased secondary current; decreased transformer dimension and thus decreased total weight with maintained transformer efficiency is nominated as optimal, and chosen for detail investigation. The Genetic Algorithm is further used as a tool for optimal designing of concept ally different original mod el of resistance welding transformer - having decreased number of top positions and unique primary

  14. Evaluation of the resistance of API 5L-X80 girth welds to sulphide stress corrosion cracking and hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Forero, Adriana [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil); Ponciano, Jose A. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia; Bott, Ivani de S. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    2009-07-01

    The susceptibility of pipeline steels to stress corrosion cracking (SCC) depends on a series of factors ranging from the manufacture of the steel, the pipe fabrication and the assembly of the pipeline to the type of substances to be transported. The welding procedures adopted during the production and construction of the pipelines (field welding), can modify the properties of the base metal in the heat affected zone (HAZ), potentially rendering this region susceptible to SCC. This study evaluates the resistance of girth welds, in API 5L X80 pipes, to hydrogen embrittlement and to stress corrosion cracking in the presence of sulphides. The evaluation was performed according to NACE TM0177/96, Method A, applying the criterion of fracture/no fracture, and Slow Strain Rate Tensile tests (SSRT) were undertaken using a sodium thiosulphate solution according to the ASTM G129-00 Standard. According NACE requirements, the base metal was approved. The weld metal exhibited susceptibility to SCC in the presence of sulphides, failing in a period of less than 720h. This was confirmed by SSR tensile tests, where a significant decrease in the ultimate tensile strength, the elongation and the time to fracture were observed. The mechanism of fracture was transgranular. (author)

  15. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  16. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  17. effect of post-weld heat treatment on the microstructure

    African Journals Online (AJOL)

    user

    microstructure of the as- welded and post- weld heated samples was characterised by means of optical microscopy while the hardness, toughness and tensile properties of the samples were determined by using Indentec universal hardness testing machine, Izod impact testing machine and Denison tensile testing machine ...

  18. DRPPP: A machine learning based tool for prediction of disease resistance proteins in plants.

    Science.gov (United States)

    Pal, Tarun; Jaiswal, Varun; Chauhan, Rajinder S

    2016-11-01

    Plant disease outbreak is increasing rapidly around the globe and is a major cause for crop loss worldwide. Plants, in turn, have developed diverse defense mechanisms to identify and evade different pathogenic microorganisms. Early identification of plant disease resistance genes (R genes) can be exploited for crop improvement programs. The present prediction methods are either based on sequence similarity/domain-based methods or electronically annotated sequences, which might miss existing unrecognized proteins or low similarity proteins. Therefore, there is an urgent need to devise a novel machine learning technique to address this problem. In the current study, a SVM-based tool was developed for prediction of disease resistance proteins in plants. All known disease resistance (R) proteins (112) were taken as a positive set, whereas manually curated negative dataset consisted of 119 non-R proteins. Feature extraction generated 10,270 features using 16 different methods. The ten-fold cross validation was performed to optimize SVM parameters using radial basis function. The model was derived using libSVM and achieved an overall accuracy of 91.11% on the test dataset. The tool was found to be robust and can be used for high-throughput datasets. The current study provides instant identification of R proteins using machine learning approach, in addition to the similarity or domain prediction methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  20. Welding of refractory alloys

    International Nuclear Information System (INIS)

    Lessmann, G.G.

    1984-01-01

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  1. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  3. Welding data adquisition based on FPGA

    OpenAIRE

    Millán Vázquez de la Torre, Rafael Luis; Quero Reboul, José Manuel; García Franquelo, Leopoldo

    1997-01-01

    This paper presents the use of FPGA in data acquisition and digital preprocessing of the electric current signal of resistance welding stations. This work demonstrates that electric current has enough information to classify this kind of welds in mass production industries. Parameters extracted with the FPGA excite a classifier that accept o reject the welding junction. This system has been developed using a neural classifier and installed in a welding station of General Motors in Cádiz (Spai...

  4. Diffusion welding

    International Nuclear Information System (INIS)

    Daniault, J.; Gillet, R.

    1969-01-01

    After a brief recall of the principle, and of the advantages of the method, we give some examples of metallic bonding in a first part where we describe preliminary trials: Ta-Mo, Zr-Zr, Zr-Nb, Nb-stainless steel, Mo-stainless steel, aluminium-aluminium (A5-A5). The second part of the note is devoted to trials on construction elements: on tubular elements for bonding between Mo or Nb on one hand, and stainless steel on the other hand (We indicate in what conditions the bonding are tight and what are their mechanical strength and their resistance to thermic cycles). We indicate, in this chapter, a method to obtain radiation windows in Be welded on an element made of stainless steel. (authors) [fr

  5. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.

    Science.gov (United States)

    Belekar, Vilas; Lingineni, Karthik; Garg, Prabha

    2015-01-01

    The breast cancer resistant protein (BCRP) is an important transporter and its inhibitors play an important role in cancer treatment by improving the oral bioavailability as well as blood brain barrier (BBB) permeability of anticancer drugs. In this work, a computational model was developed to predict the compounds as BCRP inhibitors or non-inhibitors. Various machine learning approaches like, support vector machine (SVM), k-nearest neighbor (k-NN) and artificial neural network (ANN) were used to develop the models. The Matthews correlation coefficients (MCC) of developed models using ANN, k-NN and SVM are 0.67, 0.71 and 0.77, and prediction accuracies are 85.2%, 88.3% and 90.8% respectively. The developed models were tested with a test set of 99 compounds and further validated with external set of 98 compounds. Distribution plot analysis and various machine learning models were also developed based on druglikeness descriptors. Applicability domain is used to check the prediction reliability of the new molecules.

  6. Fatigue behaviour of post weld heat treated electron beam welded AA2219 aluminium alloy joints

    International Nuclear Information System (INIS)

    Malarvizhi, S.; Raghukandan, K.; Viswanathan, N.

    2008-01-01

    This paper reports the effect of post weld heat treatment on fatigue behaviour of electron beam welded AA2219 aluminium alloy. An attempt has been made to enhance the fatigue strength of the electron beam welded joints through post weld heat treatment methods such as solution treatment, artificial aging, solution treatment and artificial aging. Electron beam welding machine with 100 kV capacity has been used to fabricate the square butt joints. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN has been used to evaluate the fatigue life of the welded joints. Of the three post weld heat treated joints, the solution treated and aged joints are enduring higher number of cycles under the action of cyclic loads

  7. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  8. Effect of groove design on mechanical and metallurgical properties of quenched and tempered low alloy abrasion resistant steel welded joints

    International Nuclear Information System (INIS)

    Sharma, Varun; Shahi, A.S.

    2014-01-01

    Highlights: • Effect of weld groove design on Q and T steel welded joints is investigated. • Groove design influences heat dissipation characteristics of welded joints. • Double-V groove joint possesses maximum yield strength and UTS. • C-groove joint possesses highest impact energy, both at room temperature and 0 °C. • A wide variation in microhardness exists across different zone of the weldments. - Abstract: Experimental investigations were carried out to study the influence of three different groove designs on mechanical and metallurgical properties of 15 mm thick Q and T (quenched and tempered) steel welded joints. Welding heat input variation corresponding to each joint configuration was kept to a minimal such that the objective of investigating, exclusively, the effect of varied weld volume on the mechanical and metallurgical performance of these joints could be accomplished. Mechanical performance of these joints was evaluated by subjecting them to transverse tensile testing, and Charpy V-notch impact testing of the weld zones at room temperature and 0 °C. The results of this study reveal that among all types of groove formations used for welding, double-V groove joint possessed maximum YS (yield strength) and UTS (ultimate tensile strength), besides maximum strength ratio (YS/UTS) that was followed by U-groove joint and C-groove joint, respectively. However, weld zone tested individually, for the cover as well as the root pass of the C-groove joint possessed highest CVN (Charpy V-notch) values, both at room temperature and 0 °C. Extensive microhardness studies of these weldments showed a wide variation in the microhardness values of the weld zone and the HAZ (heat affected zone). It was concluded that each groove formation/design exerted a significant influence on the heat dissipation characteristics of these joints, which is evident from different morphological features as revealed through optical microscopy. Scanning electron microscopic

  9. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  10. Strength analysis of welded corners of PVC window profiles

    Science.gov (United States)

    Postawa, P.; Stachowiak, T.; Gnatowski, A.

    2017-08-01

    The article presents the results of researches which main purpose was to define the influence of welding parameters on strength of welded corners of PVC window profile. PVC profiles of a branded name GENEO® produced by Rehau Company were used for this research. The profiles were made by using a co-extrusion method. The surface of the profile was made of PVC mixture with no additives. Its main task was to get a smooth surface resistant to a smudge. The use of an unfilled polyester provides an aesthetic look and improves the resistance of extrudate to water getting into inner layers. The profile's inner layers have been filled up with glass fibre in order to improve its stiffness and mechanical properties. Window frames with cut corners used for this research, were produced on technological line of EUROCOLOR Company based in Pyskowice (Poland). The main goal of this analysis was to evaluate the influence of the main welding parameter (temperature upsetting) on hardness of welds we received in whole process. A universal testing machine was used for the research.

  11. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  12. ITER lip seal welding and cutting developments

    Energy Technology Data Exchange (ETDEWEB)

    Levesy, B.; Cordier, J.J.; Jokinen, T. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kujanpää, V.; Karhu, M. [VTT Technical Research Centre of Finland (Finland); Le Barbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Määttä, T. [VTT Technical Research Centre of Finland (Finland); Martins, J.P.; Utin, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Different TIG and Laser welding techniques are tested. • Twin spot laser welding techniques is the best. • Limited heat input gives a stable weld pool in all positions. • Penetrations is achieved. • Lip seal welding and cutting with a robotic arm is successfully performed on a representative mock-up. - Abstract: The welded lip seals form part of the torus primary vacuum boundary in between the port plugs and the vacuum vessel, and are classified as Protection Important Component. In order to refurbish the port plugs or the in-vessel components, port plugs have to be removed from the machine. The lip seal design must enable up to ten opening of the vacuum vessel during the life time operation of the ITER machine. Therefore proven, remote reliable cutting and re-welding are essential, as these operations need to be performed in the port cells in a nuclear environment, where human presence will be restricted. Moreover, the combination of size of the components to be welded (∼10 m long vacuum compatible thin welds) and the congested environment close to the core of the machine constraint the type and size of tools to be used. This paper describes the lip seal cutting and welding development programme performed at the VTT Technical Research Centre, Finland. Potential cutting and welding techniques are analyzed and compared. The development of the cutting, TIG and laser welding techniques on samples are presented. Effects of lip seal misalignments and optimization of the 2 welding processes are discussed. Finally, the manufacturing and test of the two 1.2 m × 1 m representative mock-ups are presented. The set-up and use of a robotic arm for the mock-up cutting and welding operations are also described.

  13. Impact resistance of materials for guards on cutting machine tools--requirements in future European safety standards.

    Science.gov (United States)

    Mewes, D; Trapp, R P

    2000-01-01

    Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.

  14. Measurement of residual stresses in welded sample of dissimilar materials

    International Nuclear Information System (INIS)

    Mansur, Tanius Rodrigues; Gomes, Paulo de Tarso Vida; Scaldaferri, Denis Henrique Bianchi; Martins, Geraldo Antonio Scoralick; Atanazio Filho, Nelson do Nascimento

    2008-01-01

    The welding of dissimilar metals has several applications in the industry. Especially in the nuclear industry, this joint type, common between carbon steel and stainless steel, it is always reason of analysis and special cares tends in view the need to maintain the integrity of the equipment. Residual stresses are introduced in the material as a result of processes as welding, machining, sanding and polishing that can to produce deformation in the proximities of the surface of the material. Residual compressive stresses can be introduced in the material through the jetting process (bombardment of the surface for small glass spheres, dry sand or steel). That procedure allows a fine subsurface layer to suffer yielding, compressing the superficial layer and reducing the formation of areas of concentration of traction stresses, increasing the resistance of the material to the fatigue. The welding process introduces residual stresses due to the geometry resulting from the fusion of the material welded and of the heterogeneous cooling. Besides the microstructural alteration and chemical composition of the material in the affected area for the heat, introduced by the welding, it is also had the effect of the discontinuity of the passes and the formation of bubbles and emptiness that can contribute to the cracks nucleation, reducing the resistance to the fatigue. In the great majority of the times residual stresses are harmful and there are many documented cases which US these stresses went predominant factors for the failure for fatigue. A particularly dangerous aspect of the residual stresses is that their presence is not usually observed, what usually happens with an applied load to the structure. The knowledge of the surface residual stresses is important to predict the emergence of failure when the component or structure is requested. In nuclear power plants it is common to welding of piping of stainless steels with mouthpieces of carbon steel of pressure vases of

  15. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  16. Development of a wear-resistant flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system for deposit welding of mining equipment parts

    Science.gov (United States)

    Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.

    2017-09-01

    The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.

  17. Formation of structure and properties in welded joints of oil line pipes

    Science.gov (United States)

    Vyboishchik, L. M.; Ioffe, A. V.

    2013-01-01

    The effect of welding and heat treatment modes on mechanical properties and corrosion resistance of welded joints of oil line pipes is studied. It is shown that high-frequency welding followed by high-temperature annealing provides strength and corrosion properties in welds of pipes from low-carbon low-alloy steels at the level of the welded metal.

  18. Investigation of fracture in pressurized gas metal arc welded beryllium

    International Nuclear Information System (INIS)

    Heiple, C.R.; Merlini, R.J.; Adams, R.O.

    1976-01-01

    Premature failures during proof testing of pressurized-gas-metal-arc (PGMA) welded beryllium assemblies were investigated. The failures were almost entirely within the beryllium (a forming grade, similar to HP-10 or S-240), close to and parallel to the weld interface. The aluminum-silicon weld filler metal deposit was not centered in the weld groove in the failed assemblies, and failure occurred on the side of the weld opposite the bias in the weld deposit. Tensile tests of welded samples demonstrated that the failures were unrelated to residual machining damage from cutting the weld groove, and indicated small lack-of-fusion areas near the weld start to be the most likely origin of the failures. Acoustic emission was monitored during tensile tests of the welds. The majority of acoustic emission was probably from crack propagation through the weld filler metal. Tensile bars cut from the region of the weld start behaved differently; they failed at lower loads and exhibited an acoustic emission behavior believed to be from cracking in the weld metal-beryllium interface. Improvement in the quality of these and similar beryllium welds can therefore most likely be made by centering the weld deposit and reducing the size of the weld start defect. 21 fig

  19. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  20. DEVELOPMENT OF GEOLOGICAL DISTRIBUTION PRESUMPTION METHOD USING OIL PRESSURE RESISTANCE OF THE PLASTIC BOARD DRAIN MACHINE

    Science.gov (United States)

    Hirata, Masafumi; Shiraga, Shinichiro; Shimizu, Hideki; Fukuda, Jun; Kawanabe, Shuu; Nomura, Tadaaki

    Plastic board drain (PBD) method is a consolidation method which can accelerate consolidation by placing a lot of PBD into the soft ground. It is important for PBD method to get information about the layer thickness of soft ground and geological distribution, before designing the optimal arrangement of PBD. However, it is difficult to get the accurate information by soil exploration with an only few samples. In this paper, the simplified estimating equation is proposed that evaluates cone bearing capacity by using oil pressure resistance of placing PBD machine during operating. Furthermore, the system is proposed that can evaluate the distribution in three dimensions of ground strength by using estimated cone bearing capacity. Finally, it was confirmed that this proposed system could evaluate the layer thickness of soft ground and geological distribution accurately.

  1. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  2. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  3. FRICTION WELDING OF DISSIMILAR AISI 304 AND AISI 8640 STEELS

    OpenAIRE

    BATI, Serkan; KILIÇ, Musa; KIRIK, İhsan

    2016-01-01

    This study investigates the joinability of AISI 8640 heat treatable steel and AISI 304 austenitic stainless steel combined with friction welding. These steels have completely different properties and widely used in industrial applications. Welding is applied on steels with the parameters of 1800 rev/min turning speed, 50 MPa friction pressure and 2, 4, 6, 8 and 10 sec friction time by using continuously driven friction welding machine. After the welding process, tensile and hardness testing a...

  4. Zircaloy welding in OPAL reactor reflector vessel

    International Nuclear Information System (INIS)

    Ortiz, L.; Martinez, R.

    2006-01-01

    Full text: Full text: This paper describes the development of the Zircaloy 4 welding processes applied in the fabrication of the Reflector Vessel for the OPAL reactor. As an introduction, a brief description is made of the geometric design of the Reflector Vessel, which is very complex, as it has many irradiation positions, beams tubes, channels, outer connections, and reinforcements. The complexity of this component demanded different welded joints and a careful manufacturing sequence, which comprised welding, machining, heat treatments, and quality control operations. Design and fabrication of different ad-hoc devices was also required, some of which are described in the present paper. For the purposes of issuing reliable welding procedures, the joints were previously set up through tests using samples and mock-ups. Procedures and welders were qualified in accordance with the ASME Code, Section IX. The welding methods used in the fabrication were GTAW (Gas Tungsten Arc Welding) and PAW (Plasma Arc Welding), processes deemed adequate to weld these alloys, as they do not contaminate the material, for they are carried out within an inert gas atmosphere. Contrary to other welding methods commonly used for other materials, no welding fluxes or chemically-active gases are applied in these two processes. The advantages of both methods used are discussed. The welds were carried out in manual, orbital, or mechanized mode depending on the type of joint

  5. EFFECT OF POST-WELD HEAT TREATMENT ON THE ...

    African Journals Online (AJOL)

    The microstructure of the as- welded and post- weld heated samples was characterised by means of optical microscopy while the hardness, toughness and tensile properties of the samples were determined by using Indentec universal hardness testing machine, Izod impact testing machine and Denison tensile testing ...

  6. Fracture toughness of partially welded joints of SUS316 stainless steel at 4 K by large bend tests

    International Nuclear Information System (INIS)

    Nishimura, A.; Tobler, R.L.; Tamura, H.; Imagawa, S.; Mito, T.; Yamamoto, J.; Motojima, O.; Takahashi, H.; Suzuki, S.

    1996-01-01

    Austenitic stainless steels in relatively thick sections are specified in support structure designs for huge superconducting magnets in fusion energy machines such as the Large Helical Device (LHD). In the LHD under construction at the National Institute for Fusion Science (NIFS) in Japan, partial welding of SUS 316 stainless steel is employed to fabricate the 100-mm thick coil can and coil support structures. Partial welding lowers the heat input and reduces residual deformation after welding. The main disadvantage is that a sizable crack-like defect remains embedded in the unwelded portion of the primary structural component. Here, SUS 316 stainless steel bars were partially welded and tested in 3-point bending to evaluate the effect of natural cracks on fusion zone toughness at 4 K. The specimens had a cross-section 87.5 mm x 175 mm and were fractured in liquid helium using a 10 MN cryogenic mechanical testing machine. In two tests, unstable fracture occurred at maximum load and at critical stress intensity factors K max = 227 and 228 MPa√m. Results indicate a high resistance to fracture initiation but no stable tearing. Therefore, no resistance to crack propagation may exist in a fusion zone at a weld root under cryogenic temperature

  7. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    Science.gov (United States)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  8. DEFORMATION INFLUENCE ON A LIFETIME OF WELDING ELECTRODE TIPS

    Directory of Open Access Journals (Sweden)

    Ján Viňáš

    2009-02-01

    Full Text Available The contribution deals with the influence of welding electrode tips deformation on their lifetime. The influence of material properties, production technology and the intensity of welding electrodes load on their lifetime are presented. The electrode tips of the most used type of CuCr1Zr alloy of three basic standard shapes before and after the process of welding are evaluated. The process of welding is realized with low, middle and maximum welding parameters on programmable pneumatic spot welding machine VTS BPK 20. The influence of welding parameters on chosen material characteristics of welding tips is observed. Through the use of upsetting test, dependency of forming strength and deformation of material on used technology of welding tip production is observed.

  9. Analysed a defective of the machine for a cap-tube nuclear fuel element ME-27 from its electricity point of view

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2009-01-01

    It has been analysed a defective of the machine for a cap-tube nuclear fuel element ME-27 from its electricity point of view. The machine uses magnetic force resistance welding technique. A short circuit was happened within the machine because the nut for tightening high voltage cable for welding transformer was broken so that the cable touched the machine body and produced the short circuit. This condition made both the primary circuit breaker in the building down and produced high voltage pulse induction to the electronic circuit within the machine so that one of its electronic components was defective. This case becomes warnings on how important of tightening a nut according to its strength specification (using wrench torque) and the necessity of voltage transient limitation circuit to be installed. Both of the warnings are necessary for any equipment consuming high electric current oriented such as the ME-27 machine. (author)

  10. Long-Wearing Wire Guide For Welding Torch

    Science.gov (United States)

    Gutow, David A.; Burley, Richard K.; Gilbert, Jeffrey L.; Fogel, Irving

    1992-01-01

    Insert for wire-guide tube on tungsten/inert-gas welding apparatus extends life of guide tube and increases accuracy of weld. Hardened insert resists wear by sliding tungsten wire. Chamfer guides wire into insert.

  11. The welding characteristics of Fe-based shape memory alloys

    International Nuclear Information System (INIS)

    Lin, H.C.; Lin, K.M.; Chuang, Y.C.; Chen, F.H.

    2000-01-01

    After TIG and laser welding, the microstructure, shape memory effect and chemical corrosion resistance of Fe-30Mn-6Si and Fe-30Mn-6Si-5Cr shape memory alloys have been investigated. Experimental results show that the welded zones exhibit dendrite structures. The as-welded alloys still have an excellent shape memory effect. The corrosion resistance of welded zones is found to be worse than that of the base-material for both Fe-30Mn-6Si and Fe-30Mn-6Si-5Cr alloys. The degradation of corrosion resistance is more obvious for laser-welded zone than that for TIG-welded zone. After annealing treatment of 1100 C x 2h for these welded alloys, the dendrite structures in the welded zones disappear and the corrosion resistance is improved. (orig.)

  12. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  13. Robotic Vision for Welding

    Science.gov (United States)

    Richardson, R. W.

    1986-01-01

    Vision system for robotic welder looks at weld along axis of welding electrode. Gives robot view of most of weld area, including yet-unwelded joint, weld pool, and completed weld bead. Protected within welding-torch body, lens and fiber bundle give robot closeup view of weld in progress. Relayed to video camera on robot manipulator frame, weld image provides data for automatic control of robot motion and welding parameters.

  14. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  15. Improvement of cross-tension strength using concave electrode in resistance spot welding of high-strength steel sheets

    Science.gov (United States)

    Watanabe, Goro; Amago, Tatsuyuki; Ishii, Yasuhiro; Takao, Hisaaki; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    In the spot welding of ultrahigh-strength steel sheets, the generation of expulsion could be suppressed and large-diameter nuggets could be formed by using a concave electrode. The expulsion was suppressed because the clearance for expansion was formed when using the concave electrode. Thus, nuggets with a diameter of ≥4√t (lowest for securing joint strength, t = 1 mm) were obtained without expulsion in a greater welding current range than the range when using a conventional electrode. Furthermore, nuggets with a diameter of approximately 6.5 mm were formed with a large current of 8 kA, which could not be set when using the conventional electrode. In addition, a transition from partial interfacial fracture to pullout fracture occurred as the nugget diameter increased, and the cross-tension strength (CTS) tended to increase. A value of about 8 kN was obtained for a nugget with a diameter of 6.5 mm, which is approximately 1.5 times larger than the value (approximately 5.5 kN) obtained with the conventional electrode. The electrode life test indicated little deterioration in the CTS after 1400 welds. Thus, we propose using a concave electrode to improve the joint strength in the spot welding of high-strength steel sheets.

  16. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  17. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue.

    Science.gov (United States)

    Yang, Rui; Arola, Dwayne; Han, Zhihui; Zhang, Xiuyin

    2014-10-01

    Mechanical and thermal fatigue may affect ceramic restorations in the oral environment. The purpose of this study was to determine the influence of thermal and mechanical cycling on the fracture load and fracture patterns of 3 machinable ceramics. Seventy-two human third molar teeth were prepared for bonding ceramic specimens of Sirona CEREC Blocs, IPS e.maxCAD, or inCoris ZI meso blocks. The 24 specimens of each ceramic were divided into 4 groups (n=6), which underwent no preloading (control), thermocycling (5°C-55°C, 2000 cycles), mechanical cycling (10(5) cycles, 100 N), and thermocycling (5°C-55°C, 2000 cycles) plus mechanical cycling (10(5) cycles, 100 N). The specimens were subsequently loaded to failure, and both stereomicroscopy and scanning electron microscopy were used to investigate the fracture patterns. The data were analyzed with 2-way ANOVA and the Fisher exact probability test (α=.05). Mechanical and thermal cycling had a significant influence on the critical load to failure of the 3 ceramics. No significant difference was found between mechanical cycling for 10(5) times and thermocycling for 2000 times within the same ceramic. The specimens of inCoris ZI experienced significantly higher fracture loads for all the groups. The fracture patterns of the 3 machinable ceramics showed that failure mainly occurred at the cement-dentin interface. The effects of combined thermal and mechanical cycling on the fracture load of ceramics were more significant than any individual mode of cyclic fatigue. Overall, the inCoris ZI resisted thermal and mechanical fatigue better than the Sirona CEREC and IPS e.maxCAD. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Development of Novel Pre-alloyed PM Steels for Optimization of Machinability and Fatigue Resistance of PM Components

    Science.gov (United States)

    Mardan, Milad; Blais, Carl

    2016-03-01

    It is well known that a large proportion of ferrous PM components require secondary machining operations for dimensional conformance or for producing geometrical features that cannot be generated during die compaction. Nevertheless, the machining behavior of PM parts is generally characterized as being "difficult" due to the presence of residual porosity that lowers thermal conductivity and induces interrupted cutting. Several admixed additives such as MnS and BN-h can be used to improve the machining behavior of PM steels. Nevertheless, their negative effect on mechanical properties, especially fatigue resistance, makes their utilization uninteresting for the fabrication of high-performance PM steel components. This article summarizes the work carried out to develop a novel PM steel that was especially engineered to form machinability enhancing precipitates. This new material is pre-alloyed with tin (Sn) in order to form Cu-Sn (Cu(α)) precipitates during transient liquid phase sintering. The newly developed material presents machinability improvement of 165% compared to reference material used in the PM industry as well as increases in toughness and fatigue resistance of 100% and 13%, respectively.

  19. Experimental Studies of Welding Effects on Damping for Undersea Warfare Applications

    National Research Council Canada - National Science Library

    Carey, Agustin

    2002-01-01

    .... The purpose of this research is to study the effects that welding has on damping. Measurements and comparisons of the damping ratios of two welded stiffened plates, two flat plates and one machined stiffened plate are undertaken...

  20. Linear friction welding for constructing and repairing rail for high speed and intercity passenger service rail : final report.

    Science.gov (United States)

    2016-08-01

    This project developed a solid-state welding process based on linear friction welding (LFW) technology. While resistance flash welding or : thermite techniques are tried and true methods for joining rails and performing partial rail replacement repai...

  1. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  2. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning.

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Rentfro, Anne R; Fisher-Hoch, Susan P; McCormick, Joseph B

    2011-01-01

    The lack of standardized reference range for the homeostasis model assessment-estimated insulin resistance (HOMA-IR) index has limited its clinical application. This study defines the reference range of HOMA-IR index in an adult Hispanic population based with machine learning methods. This study investigated a Hispanic population of 1854 adults, randomly selected on the basis of 2000 Census tract data in the city of Brownsville, Cameron County. Machine learning methods, support vector machine (SVM) and Bayesian Logistic Regression (BLR), were used to automatically identify measureable variables using standardized values that correlate with HOMA-IR; K-means clustering was then used to classify the individuals by insulin resistance. Our study showed that the best cutoff of HOMA-IR for identifying those with insulin resistance is 3.80. There are 39.1% individuals in this Hispanic population with HOMA-IR>3.80. Our results are dramatically different using the popular clinical cutoff of 2.60. The high sensitivity and specificity of HOMA-IR>3.80 for insulin resistance provide a critical fundamental for our further efforts to improve the public health of this Hispanic population.

  3. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning.

    Directory of Open Access Journals (Sweden)

    Hui-Qi Qu

    Full Text Available The lack of standardized reference range for the homeostasis model assessment-estimated insulin resistance (HOMA-IR index has limited its clinical application. This study defines the reference range of HOMA-IR index in an adult Hispanic population based with machine learning methods.This study investigated a Hispanic population of 1854 adults, randomly selected on the basis of 2000 Census tract data in the city of Brownsville, Cameron County. Machine learning methods, support vector machine (SVM and Bayesian Logistic Regression (BLR, were used to automatically identify measureable variables using standardized values that correlate with HOMA-IR; K-means clustering was then used to classify the individuals by insulin resistance.Our study showed that the best cutoff of HOMA-IR for identifying those with insulin resistance is 3.80. There are 39.1% individuals in this Hispanic population with HOMA-IR>3.80.Our results are dramatically different using the popular clinical cutoff of 2.60. The high sensitivity and specificity of HOMA-IR>3.80 for insulin resistance provide a critical fundamental for our further efforts to improve the public health of this Hispanic population.

  4. Influence of stress relieve heat treatment on fatigue crack propagation in structural steel resistant to atmospheric corrosion welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Rabello, Emerson Giovani [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: gpm@cdtn.br; jjv@cdtn.br; egr@cdtn.br; Cimini Junior, Carlos Alberto[Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: cimini@demet.ufmg.br; Godefroid, Leonardo Barbosa [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Metalurgia]. E-mails: leonardo@demet.em.ufop.br

    2007-07-01

    In this work, the influence of stress relieve heat treatment (SRHT) on the fatigue crack propagation in USI-SAC 50 structural welded joints at the heat affected zone (HAZ) region was studied. Hardness measurements before and after the SRHT were made and crack propagation tests in specimens as welded (AW) and in specimens that were submitted to SRHT, which were accomplished. A reduction in hardness at the regions of HAZ and melted zone (MZ) after the SRHT were observed. It were also verified that the crack propagation rates (da/dN) versus DK on the specimens AW presented regions of retardation on the crack propagation rate, and in the specimens that were submitted to SRHT the crack propagation rate were homogeneous. (author)

  5. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  6. Monitoring and intelligent control of electrode wear based on a measured electrode displacement curve in resistance spot welding

    Science.gov (United States)

    Zhang, Y. S.; Wang, H.; Chen, G. L.; Zhang, X. Q.

    2007-03-01

    Advanced high strength steels are being increasingly used in the automotive industry to reduce weight and improve fuel economy. However, due to increased physical properties and chemistry of high strength steels, it is difficult to directly substitute these materials into production processes currently designed for mild steels. New process parameters and process-related issues must be developed and understood for high strength steels. Among all issues, endurance of the electrode cap is the most important. In this paper, electrode wear characteristics of hot-dipped galvanized dual-phase (DP600) steels and the effect on weld quality are firstly analysed. An electrode displacement curve which can monitor electrode wear was measured by a developing experimental system using a servo gun. A neuro-fuzzy inference system based on the electrode displacement curve is developed for minimizing the effect of a worn electrode on weld quality by adaptively adjusting input variables based on the measured electrode displacement curve when electrode wear occurs. A modified current curve is implemented to reduce the effects of electrode wear on weld quality using a developed neuro-fuzzy system.

  7. Feasibility study of inside automatic welding system of cooling pipe of divertors for FER

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Adachi, J.; Morishita, H.; Kakudate, S.; Taguchi, H.; Tada, E.

    1995-01-01

    In order to replace divertors for FER, cooling pipes of divertors should be cut and welded since they are too long to be replaced with divertors via horizontal maintenance ports. An inside cutting and welding system is also required because of an accessibility to pipes. A combination of an inside disc-cutting machine and an inside TIG-welding machine has been proposed as a candidate of the systems. We have made tests to confirm possibility to weld pipes which were cut with the disc-cutting machine. Possibility of welding has been proven. The tests result is described in the paper. (orig.)

  8. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  9. Muscle fatigue induced by two different resistances: Elastic tubing versus weight machines.

    Science.gov (United States)

    Melchiorri, G; Rainoldi, A

    2011-12-01

    Elastic tubes are devices relatively inexpensive, easy to use, portable and safe, which are claimed to provide advantages with respect to training with free weights or weight machine. The aim of this work was to assess neuromuscular modification induced by the use of two different muscle contraction modalities (elastic versus weight resistances) until exhaustion. Fourteen healthy physically active male students (age: 28±6 years; body mass 72.1±11.0kg; height: 173.5±6.9cm) were recruited. They were requested to reach exhaustion with dynamic contraction at 70% of their own One Repetition Maximal (1RM) using, in two different days and in random order, Thera Band® tubes or traditional weight plates on an arm machine designed and built for those tasks. Before and after such contractions a standardized fatiguing isometric test (3 Maximal Voluntary Contractions, MVC plus 60s at 60% MVC) was requested to assess differences induced by the exhaustion sessions. During fatiguing tests surface EMG signals were recorded from biceps brachii muscle with linear arrays of eight electrodes (silver bars 10mm apart, 5mm long, and 1mm diameter) in single differential configuration. Initial values and rates of change of Average Rectified Value (ARV), MeaN power Frequency (MNF) and muscle fiber Conduction Velocity (CV) were calculated to compare the effects of the two contraction modalities. No differences were found between "elastic session" and "weight session" PRE MVCs (31.9±8.8 and 29.9±8.3nm, respectively) and endurance times (28±6 and 26±7s, respectively). The same was observed for POST values. During the post-contraction isometric fatigue test, the only parameters influenced by the contraction modality were the initial CV and the rate of change in CV which were 12% and 37% greater (pmuscle activation; moreover, they highlight a sort of "muscle conditioning" after that specific contraction modality which requires the use of faster motor units. It is thus possible to consider

  10. Electromyographic Comparison of Elastic Resistance and Machine Exercises for High-Intensity Strength Training in Patients With Chronic Stroke.

    Science.gov (United States)

    Vinstrup, Jonas; Calatayud, Joaquin; Jakobsen, Markus D; Sundstrup, Emil; Jay, Kenneth; Brandt, Mikkel; Zeeman, Peter; Jørgensen, Jørgen R; Andersen, Lars L

    2016-03-01

    To investigate whether elastic resistance training can induce comparable levels of muscle activity as conventional machine training in patients with chronic stroke. Comparative study. Outpatient rehabilitation facility. Stroke patients (N=18) with hemiparesis (mean age, 57 ± 8y). Patients performed 3 consecutive repetitions at 10 repetition maximum of unilateral knee extension and flexion using elastic resistance and conventional machine training. Surface electromyography was measured in vastus lateralis, vastus medialis, biceps femoris, and semitendinosus and was normalized to maximal electromyography (% of max) of the nonparetic leg. In the paretic leg, agonist muscle activity ranged from 18% to 24% normalized electromyography (% of max) (nEMG) during knee flexion and from 32% to 40% nEMG during knee extension. For knee extension, vastus lateralis nEMG was higher during machine exercise than during elastic resistance exercise (40% [95% confidence interval {CI}, 33-47] vs 32% [95% CI, 25-39]; P=.003). In the nonparetic leg, agonist muscle activity ranged from 54% to 61% during knee flexion and from 52% to 68% during knee extension. For knee flexion semitendinosus nEMG was higher (61% [95% CI, 50-71] vs 54% [95% CI, 44-64]; P=.016) and for knee extension vastus medialis nEMG was higher (68% [95% CI, 60-76] vs 56% [95% CI, 48-64]; Ptraining appears to induce slightly higher levels of muscle activity in some of the investigated muscles compared to elastic resistance during lower limb strength training in patients with chronic stroke. The higher level of coactivation during knee flexion when performed using elastic resistance suggests that elastic resistance exercises are more difficult to perform. This is likely due to a higher level of movement instability. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Improved design bases of welded joints in seawater

    DEFF Research Database (Denmark)

    Ólafsson, Ólafur Magnús

    different environments, i.e. under in-air conditions and in a corrosion environment. Welded structures of all sizes and shapes exhibit fatigue failure primarily in the welded region, rather than in the base material, due to imperfections and flaws relating to the welding procedure. The welded region has...... thickness on the fatigue resistance of welded joints and is generally included in design rules by scaling the fatigue strength with a recommended factor. The existing database of experiments that relate to the thickness effect is comprehensive and the effect is well proven experimentally and theoretically...... for various types of welded joints. However, in the case of large butt-welded joints there is room for improvement as details, quality and precise data which can influence the fatigue life of the welded joint is often lacking and severely lacking in truly thick joints. Additionally, as-welded SAW specimens...

  12. Welding Characteristics of Variable Cross Section Beta Titanium Wires

    Directory of Open Access Journals (Sweden)

    Raghunandan Chunduri

    2011-01-01

    Conclusion : Resistance spot-welding (RSW of various sizes of TMA wire results in weld joints having strengths and ductilities comparable to those for the unwelded base material. This greatly extends and validates the use of TMA welded auxiliaries for many clinical applications.

  13. Stress corrosion life experience of 182 and 82 welds in French PWRs

    International Nuclear Information System (INIS)

    Amzallag, C.; Pages, C.; Gimond, C.

    2002-01-01

    Large Components of Pressurized Water Reactors (PWR) include many parts fabricated from alloy 600 welded with 182 and 82 alloys. Long-term operating experience shows that the alloy 600 is susceptible to Stress Corrosion Cracking in primary water at high temperature (PWSCC). In the 1980's the first indications were detected in steam generator tubes, and then in pressurizer nozzles. In the 1990's, the vessel head penetrations were in turn affected. In such components, stress corrosion cracks initiated in the base metal and, in some cases propagated in the weld metal. For this reason, much attention has been paid to the behavior of the base metal. In comparison, relatively few studies have been carried out on the weld metal, essentially because of the better service experience and experimental difficulties. Alloy 182 is susceptible to stress corrosion cracking in PWR primary water only if the applied stress exceeds the yield stress. Most of the welds in alloys 182 and 82 of EDF plants are ground and stress relieved with the exception of vessel head penetrations and the weld between the divider plate and the partition stub of the steam generator channel head. The stress-relief at 600 deg. C, primarily used for stress-relieving low alloy components, has a favorable effect in reducing the residual stresses but does not modify the intrinsic PWSCC resistance of the welds. Up to now, the service behavior of 182 welds in EDF plants appears to be better than the components in alloy 600. It can be explained by the following causes -the SCC threshold is generally higher for alloy 182 than for alloy 600, - in alloy 182, the manufacturing processes (final welding, grinding) rarely induce applied stresses higher than yield stress, whereas in alloy 600, various manufacturing processes (expansion, deformations caused by welding, machining) sometimes induce applied stresses higher than yield stress. Due to the recent incidents reported on CRDM nozzles and safe-end welds, significant

  14. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  15. Maintenance service for major component of PWR plant. Replacement of pressurizer safe end weld

    International Nuclear Information System (INIS)

    Miyoshi, Yoshiyuki; Kobayashi, Yuki; Yamamoto, Kazuhide; Ueda, Takeshi; Suda, Naoki; Shintani, Takashi

    2017-01-01

    In October 2016, MHI completed the replacement of safe end weld of pressurizer (Pz) of Ringhals unit 3, which was the first maintenance work for main component of pressurized water reactor (PWR) plant in Europe. For higher reliability and longer lifetime of PWR plant, MHI has conducted many kinds of maintenance works of main components of PWR plants in Japan against stress corrosion cracking due to aging degradation. Technical process for replacement of Pz safe end weld were established by MHI. MHI has experienced the work for 21 PWR units in Japan. That of Ringhals unit 3 was planned and conducted based on the experiences. In this work, Alloy 600 used for welds of nozzles of Pz was replaced with Alloy 690. Alloy 690 is more corrosive-resistant than Alloy 600. Specially designed equipment and technical process were developed and established by MHI to replace safe end weld of Pz and applied for the Ringhals unit 3 as a first application in Europe. The application had been performed in success and achieved the planned replacement work duration and total radiation dose by using sophisticated machining and welding equipment designed to meet the requirements to be small, lightweight and remote-controlled and operating by well skilled MHI personnel experienced in maintenance activities for major components of PWR plant in Japan. The success shows that the experience, activities and technology developed in Japan for main components of PWR plant shall be applicable to contribute reliable operations of nuclear power plants in Europe and other countries. (author)

  16. Resistance evaluation of distillation tower welded metal plate linings to corrosion caused by heavy crude oil; Avaliacao da resistencia a corrosao causada por petroleo pesado em chapas soldadas utilizadas em 'linings' de torres de destilacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleiton Carvalho; Farias, Jesualdo Pereira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais], e-mail: cleitonufc@yahoo.com.br, e-mail: jpf@secrel.com.br; Sant' Ana, Hosilberto Batista de [' Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Quimica], e-mail: hbs@ufc.br

    2008-04-15

    This study evaluated the microstructures and the resistance of AISI 316L, 410S and 444 stainless steel welded joints to heavy crude oil corrosion, using the AWS E309MoL-16 electrode. The above mentioned stainless steel plates were welded applying three energy levels (6; 9 and 12kJ/cm). Experimental sample forms were obtained from the welded plates, which were thermally treated at 200 and 300 deg C and immersed (annealed) in heavy crude oil. The techniques of optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were employed to make the microstructure evaluation, in addition to the surface characterization and the corrosion product identification. It was concluded that the welding thermal cycle is sufficient to cause metallurgic alterations in the region of the heat-affected zone (HAZ), making the region more susceptible to corrosion. It was also observed that the rate of corrosion varied according to the welding parameters applied. (author)

  17. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  18. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Pavel Kovačócy

    2011-10-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  19. THE EFFECT OF THE ANNEALING TEMPERATURE ON THE CORROSION RESISTANCE OF WELD JOINT OF AISI 310 STEEL - SHORT COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Martina Nerádová

    2012-02-01

    Full Text Available The article presents samples of weld joint of AISI 310 austenitic steel which were subjected to solution annealing at various temperature - time exposures. The objective of the experiment was to determine the annealing temperature so that the steel should not be sensitized. Tendency to intercrystalline corrosion was analysed by means of a corrosion test in 10 % oxalic acid according to ASTM A 262. At the temperatures of 1000 and 1100°C held for 15 min. the steel was not sensitized. At the temperature of 850°C the steel was sensitized, i.e. susceptible to intercrystalline corrosion.

  20. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  1. Fully Automatic Spot Welding System for Application in Automotive Industry

    Directory of Open Access Journals (Sweden)

    Peter Puschner

    2015-12-01

    Full Text Available Abstract A Virtual Machine has led to a fully automatic spot welding system. All necessary parameters are created by measuring systems and algorithms running in the Virtual Machine. A hybrid operating circuit allows the Virtual Machine to read the exact process voltage between the tips of the electrodes every 50 µs. Actual welding voltage and current allow for the first time reading process impedance, electric power and total energy being transferred to the spot weld. Necessary energy input is calculated by a calorimetric model after measuring the total thickness of the materials to be welded as soon as the welding gun is positioned at the workpiece. A precision potentiometer implemented in the gun delivers the total material thickness within the 0.1 mm range during the pre-pressure phases. The internal databank of the Virtual Machine controls all essential parameters to guide the total welding process. Special generator characteristics of the welding power unit are created by the Virtual Machine just during the upslope and the welding phases. So the process will be initialized in differentiating the kind of material, mild steel or high strengthen steel. This will affect the kind of energy input and current decrease during the upslope and downslope phases.

  2. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  3. Cold-pressure-welded joints in large multifilamentary Nb--Ti superconductors

    International Nuclear Information System (INIS)

    Cornish, D.N.; Deis, D.W.; Zbasnik, J.P.

    1977-01-01

    A number of mechanical and electrical measurements were made on joints in typical conductors for the proposed mirror fusion test facility (MFTF) and high field test facility (HFTF). For such measurements, a commercially available cold-pressure-welding machine was used. For joints in the MFTF conductor, which has a large proportion of superconductor, joint strength approached conductor strength. For the HFTF conductor, where the Cu-to-superconductor ratio is 4.33/1, the joint is stronger than the conductor. Electrically, the joints were not superconducting.. While the resistance is higher than might be achieved by other forms of joining, we feel that the cold-weld joint has the advantages of simplicity, speed, reliability, and reproducibility. This makes the method attractive for MFTF, where resistance losses will be small compared with the total 4 K refrigeration requirements

  4. A 1993 review of welding in Japan

    Science.gov (United States)

    1994-07-01

    This paper describes a prospect on Japanese welding technologies available in 1993. Amid the increasing research publications on non-ferrous metals as structural materials, publications are also increasing on steel materials as to their fracture and welding mechanics, and structural control. Studies are being made on ceramics with respect to its bonding, interface reaction mechanisms, and mechanical characteristics. The paper describes the progress and improvement in conventional technologies in welding and cutting processes. Especially active is the study on solid face welding such as pressure welding and diffusion. A considerable decrease is seen in reports on thermal spraying. The paper also introduces surface processing and hydrostatic pressure processing as new processing techniques. In the area of welding devices, practical use of arc welding robots has come to near a completion stage. Technological development and cost reduction are indispensable to transfer to visual sensing with a higher intelligence level. With respect to the performance of joints, a large number of research has been reported on welding deformation and residual stress. The paper also dwells on corrosion resistance and welding cracks. Quality assurance, inspection, and related standards are described. Details are given on application of welding to different industrial fields.

  5. MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri

    2013-09-03

    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.

  6. Influence of "in series" elastic resistance on muscular performance during a biceps-curl set on the cable machine.

    Science.gov (United States)

    García-López, David; Herrero, Azael J; González-Calvo, Gustavo; Rhea, Matthew R; Marín, Pedro J

    2010-09-01

    This study aimed to investigate the role of elastic resistance (ER) applied "in series" to a pulley-cable (PC) machine on the number of repetitions performed, kinematics parameters, and perceived exertion during a biceps-curl set to failure with a submaximal load (70% of the 1 repetition maximum). Twenty-one undergraduate students (17 men and 4 women) performed, on 2 different days, 1 biceps-curl set on the PC machine. Subjects were randomly assigned to complete 2 experimental conditions in a cross-over fashion: conventional PC mode or ER + PC mode. Results indicate ER applied "in series" to a PC machine significantly reduces (p tension could have been achieved throughout the range of movement, leading to greater fatigue that could explain the lower number of maximal repetitions achieved. The application of force in a smooth, consistent fashion during each repetition of an exercise, while avoiding active deceleration, is expected to enhance the benefits of the resistance exercise, especially for those seeking greater increases in muscular hypertrophy.

  7. Today's status of application of high power electron beam welding to heavy electric machinery

    International Nuclear Information System (INIS)

    Kita, Hisanao; Okuni, Tetsuo; Sejima, Itsuhiko.

    1980-01-01

    The progress in high energy welding is remarkable in recent years, and electron beam welding is now widely used in heavy industries. However, there are number of problems to be solved in the application of high power electron beam welding to ultra thick steel plates (over 100 mm). The following matters are described: the economy of high power electron beam welding; the development of the welding machines; the problems in the actual application; the instances of the welding in a high-pressure spherical gas tank, non-magnetic steel structures and high-precision welded structures; weldor training; etc. For the future rise in the capacities of heavy electric machinery, the high efficiency by high power electron beam welding will be useful. The current status is its applications to the high-precision welding of large structures with 6 m diameter and the high-quality welding of heavy structures with 160 mm thickness. (J.P.N.)

  8. High temperature fatigue of austenitic stainless steel welds and weldments

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Srinivasan, V.S.; Mannan, S.L.

    1997-01-01

    A comparative evaluation of LCF lives and cyclic stress response of type 304 SS base metal, 308 SS weld metal and 304/308 SS weld joints, prepared by manual metal arc welding process, has been carried out at 823 and 923 K. Further, a comparative evaluation of LCF behaviour of 316L(N) SS base metal, 316 SS weld metal and 316L(N)/316 weld joint has also been conducted at 773 and 873 K. A detailed examination of the microstructural changes and crack initiation and propagation behaviour has been studied with a view to understanding the features which influence the cyclic stress response and fatigue lives of base metal, weld metal and composite specimens. In particular, the role of delta ferrite on the LCF life has been examined. The LCF resistance of 304 SS and its welds were in the order, 304 SS base metal > 308 SS weld metal > 304/308 weld joint, whereas the LCF resistance of 316 SS weld metal was found to be better than that of 316L(N) base metal. 316L(N)/316 weld joints displayed the least fatigue resistance. Detailed investigations have also been performed for assessing the importance of weld discontinuities such as porosity and slag inclusions, on strain controlled LCF behaviour of 308 SS welds. Porosity on the specimen surface has been found to be particularly harmful and caused a life reduction by a factor of seven relative to sound weld metal. Defect combination of porosity and slag inclusions was found to be more deleterious than the case when either the slag inclusions or porosity was present alone. The higher volume fraction of δ-ferrite in weld metal was found to be harmful for fatigue life. Creep-fatigue interaction behaviour of 304 SS base metal, 308 SS weld metal has also been evaluated at 923 K. (author). 6 refs, 16 figs, 4 tabs

  9. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  10. Precipitates Segmentation from Scanning Electron Microscope Images through Machine Learning Techniques

    OpenAIRE

    João P. Papa; Clayton R. Pereira; Victor H.C. de Albuquerque; Cleiton C. Silva; Alexandre X. Falcão; João Manuel R. S.Tavares

    2011-01-01

    The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Supp...

  11. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  12. Quality status display for a vibration welding process

    Science.gov (United States)

    Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn

    2017-11-28

    A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The method may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.

  13. Effect of vanadium of mechanical behavior, machinability and wear resistance of aluminium grain refined by Ti+B

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Hamid, A.A.A.

    1999-01-01

    It is well established that aluminum and its alloys are industrially grain refined by adding either Ti or Ti-B to improve their mechanical behavior and surface finish. In a previous paper, it was found that the grain refining efficiency of aluminum master alloys containing Ti or Ti+B was enhanced by addition of small amounts of other elements including vanadium. V. Therefore, it is anticipated that such an element will improve mechanical behavior, machinability and wear resistance of aluminum and its alloys. In this paper, the effect of vanadium addition, up to 0.3% on mechanical behavior is investigated. Machinability was assessed under different cutting conditions: speed, feed and depth of cut and finally the wear resistance was determined at different loads and speeds. The results indicated that improvement in hardness and mechanical strength were achieved by the addition of V that addition of more than 0.2%V resulted in little or no improvement. Similarly, addition of V resulted in improvement of surface quality under the different cutting conditions of speed, feed and depth of cut, and resistance to wear. However addition of more than 0.2% V resulted in increase of wear rate and change of wear mechanisms. (author)

  14. Effect of flux powder SiO 2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    Three input machine parameters namely current, welding speed and gas flow rate at three different levels have been considered in order to find out the influence of parameters on weld bead geometry, i.e. weld bead width, penetration and angular distortion. Taguchi method has been used in order to analyse the effect of ...

  15. Innovative Tools Advance Revolutionary Weld Technique

    Science.gov (United States)

    2009-01-01

    (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.

  16. Study of post-weld heat treatment cracking of Nickel base super alloy (Udimet 520) in gas tungsten arc welding method

    International Nuclear Information System (INIS)

    Kokabi, A. H.; Nematzadeh, F.

    2003-01-01

    In this paper, the mechanism and the cause and the ways for eliminating the decrease of post-weld heat treatment cracking in welding of Nickel base super alloy (Udimet 520) in gas tungsten arc welding method has been studied. For this study, X-ray diffraction machine and quantometery has been used. Increasing of Al, Ti percentage and residual stress are the main causes of cracking post-weld heat treatment. The results from quantometery tests demonstrate that decreasing tendency to post-weld heat treatment cracking is due to the decrease of Al, Ti percentage of welding. Result of X-ray diffraction tests show the tendency toward increasing of post-weld heat treatment cracking for existing of strenghed residual stresses. Finally, it is illustrated that alloy welding Udimet 520 in Ti G method is not sensitive to post-weld heat treatment cracking

  17. Experimental study of mechanical properties of friction welded AISI ...

    Indian Academy of Sciences (India)

    Amit Handa and Vikas Chawla. Heating Phase. Figure 4. Photograph showing heating phase of the friction welding process. Forge Phase. Figure 5. Photograph showing forge phase of the friction welding process. ... pared samples. The reading was directly taken from C scale on of the meter of hardness testing machine. 4.

  18. Machine for studying fatigue resistance of metals under conditions of separate and combined bending and torsional strain

    International Nuclear Information System (INIS)

    Belkin, M.Ya.; Rulev, V.I.; Filimonov, G.N.; Belkin, V.M.; Rud', Yu.M.

    1985-01-01

    A machine is described for fatigue tests of specimens with a diameter up to 50 mm under separate and combined action of cyclic torsion and bending. A design and operation of the tester are considered. Results of the experimental study on fatigue resistance of 38KhN3MFA steel specimens with pressed-on bushings are presented. Cyclic torsion stresses applied on cyclic bending eastresses are shown to decrse bending strength limit of the specimens the more, the highher is the relative level of the torsion stress

  19. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  20. Real Time Ultrasonic Aluminum SPOT Weld Monitoring System

    Science.gov (United States)

    Regalado, W. Pérez; Chertov, A. M.; Maev, R. Gr.

    2010-02-01

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  1. Precision welding unit

    International Nuclear Information System (INIS)

    Wanke, R.

    1982-01-01

    The advantages of mechanized orbital-welding in TIG-pulse-technique are exact calculated heat input welding data adapted the certain welding position, reproducibility, high quality standard, lower physical, requirements of the operator. (orig.)

  2. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  3. Friction stir welding of 6061 aluminium alloy

    International Nuclear Information System (INIS)

    Abdel Rahman, M.A.M.S.

    2009-01-01

    6061 AA (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio and good corrosion resistance such as marine frames, pipelines, storage tanks, and aircraft components [1]. It is also used for the manufacturing of fuel elements in the nuclear research reactors. Compared to many of the fusion welding processes that are routinely used for joining structural alloys, friction stir welding (FSW) is a solid state joining process in which the material that is being welded is not melted and recast [2]. The welding parameters such as tool rotational speed, welding traverse speed, and tool profile play a major role in deciding the weld quality. Several FSW tools (differ from each other in pin angle, shoulder diameter, and shoulder concavity) have been used to fabricate a number of joints in order to obtain a tool with which a sound weld can be produced. It was found that the FSW tool with tapered cone pin, concave shoulder, and shoulder diameter equal to four times the welded plate thickness is suitable to produce a sound weld. The effect of the traverse speed on the global and local tensile properties of friction stir welded joints has been investigated in the 6061-T6 AA. The global tensile properties of the FSW joints were improved with increasing the traverse speed at constant rotation rate. It is found that the global tensile strength of the FSW joint is limited by the local tensile strength of the nearest region to the weld center at which the cross section is composed mainly of the HAZ. The effect of the initial butt surface on the formation of the zigzag line on the tensile properties of the welds was examined by using three types of welding samples differ in the preparation of the initial butt surface. The first type of samples welded without removing the oxide layer from the initial butt surface (uncleaned butt surfaces joint). In the second type of samples the oxide layer was removed from

  4. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  5. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  6. Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness

    Science.gov (United States)

    Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro

    2017-10-01

    This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.

  7. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  8. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  9. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy.

    Science.gov (United States)

    Peng, He; Chen, Daolun; Jiang, Xianquan

    2017-04-25

    The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique-ultrasonic spot welding (USW)-at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT) crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with "river-flow" patterns and characteristic fatigue striations.

  10. Microstructure and Mechanical Properties of an Ultrasonic Spot Welded Aluminum Alloy: The Effect of Welding Energy

    Directory of Open Access Journals (Sweden)

    He Peng

    2017-04-01

    Full Text Available The aim of this study is to evaluate the microstructures, tensile lap shear strength, and fatigue resistance of 6022-T43 aluminum alloy joints welded via a solid-state welding technique–ultrasonic spot welding (USW–at different energy levels. An ultra-fine necklace-like equiaxed grain structure is observed along the weld line due to the occurrence of dynamic crystallization, with smaller grain sizes at lower levels of welding energy. The tensile lap shear strength, failure energy, and critical stress intensity of the welded joints first increase, reach their maximum values, and then decrease with increasing welding energy. The tensile lap shear failure mode changes from interfacial fracture at lower energy levels, to nugget pull-out at intermediate optimal energy levels, and to transverse through-thickness (TTT crack growth at higher energy levels. The fatigue life is longer for the joints welded at an energy of 1400 J than 2000 J at higher cyclic loading levels. The fatigue failure mode changes from nugget pull-out to TTT crack growth with decreasing cyclic loading for the joints welded at 1400 J, while TTT crack growth mode remains at all cyclic loading levels for the joints welded at 2000 J. Fatigue crack basically initiates from the nugget edge, and propagates with “river-flow” patterns and characteristic fatigue striations.

  11. Residual stress in repair welds measured with neutron diffraction with and without post weld heat treatment

    International Nuclear Information System (INIS)

    Price, J.W.H.; Paradowska, A.M.; Finlayson, T.

    2010-01-01

    In welding, residual stresses (RS) are formed in the structure as the result of differential contractions which occur as the weld metal solidifies and cools to ambient temperature. The tensile stresses can have significant effects on the susceptibility of a material to degradation mechanisms such as fatigue, corrosion, fracture resistance, and creep. Welding repairs have increasingly become a structural integrity concern for aging pressure vessel and piping components. Both the repair procedure and the subsequent safety assessment, such as BS7910 and R6 require a better understanding of the welding effect on structural components. The use of a neutron beam as a non-destructive method of measuring residual stress due to repair welding has been explored. Two types of full penetration butt weld repairs on 25 mm ferritic steel were examined. From the findings of this research in terms of residual stress, temper bead welding repair may not be better than stringer bead welding. Post-weld heat treatment may be still advisable for temper bead weld repairs on ferritic steel.

  12. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  13. Effect of Weld Schedule on the Residual Stress Distribution of Boron Steel Spot Welds

    Science.gov (United States)

    Raath, N. D.; Norman, D.; McGregor, I.; Dashwood, R.; Hughes, D. J.

    2017-06-01

    Press-hardened boron steel has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. Boron steel spot welds exhibit a soft heat-affected zone which is surrounded by a hard nugget and outlying base material. This soft zone reduces the strength of the weld and makes it susceptible to failure. Additionally, different welding regimes lead to significantly different hardness distributions, making failure prediction difficult. Boron steel sheets, welded with fixed and adaptive schedules, were characterized. These are the first experimentally determined residual stress distributions for boron steel resistance spot welds which have been reported. Residual strains were measured using neutron diffraction, and the hardness distributions were measured on the same welds. Additionally, similar measurements were performed on spot welded DP600 steel as a reference material. A correspondence between residual stress and hardness profiles was observed for all welds. A significant difference in material properties was observed between the fixed schedule and adaptively welded boron steel samples, which could potentially lead to a difference in failure loads between the two boron steel welds.

  14. Effect of post weld impact treatment (PWIT) on mechanical properties of spot-welded joint

    Science.gov (United States)

    Ghazali, F. A.; Salleh, Z.; Hyie, K. M.; Rozlin, N. M. Nik; Hamidi, S. H. Ahmad; Padzi, M. M.

    2017-12-01

    This paper focuses on the study of improvement for spot welding on the tensile shear and hardness by applying post weld impact treatment (PWIT) on the welded joint. The main objective of the research is to characterize and improve the mechanical properties of the joint. The method of PWIT used on the welded joint was Pneumatic Impact Treatment (PIT). The concept of PIT on spot welding is that it improves the mechanical properties of the welded zone. The working sample was undergoing a resistance spot welding of joining two similar in dimension and material of a steel plate before treated. The dimension of both plate are 110 mm × 45 mm × 1.2 mm and the material used were low carbon steel (LCS). All the welded samples were tested for its mechanical properties by performing the tensile-shear and hardness test. Tensile-shear test was conducted on the spot welded, both treated and as-welded samples using crosshead speed of 2 mm/min, while hardness test was performed using 1kgf load via Vickers hardness indenter. The effects of PIT on tensile-shear properties and hardness were evaluated and found that the implementation of PIT has increased tensile shear and hardness significantly.

  15. WELDING PROCESS

    Science.gov (United States)

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  16. Adaptive Machining Of Large, Somewhat Flexible Parts

    Science.gov (United States)

    Gutow, David; Wagner, Garrett; Gilbert, Jeffrey L.; Deily, David

    1996-01-01

    Adaptive machining is method of machining large, somewhat flexible workpieces to close tolerances. Devised for machining precise weld lands on aft skirts of rocket nozzles, but underlying concept generally applicable to precise machining of any of large variety of workpieces deformed by thermal, gravitational, and/or machining forces. For example, in principle, method used to bore precise hole on unanchored end of long cantilever beam.

  17. Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminium alloy joints

    International Nuclear Information System (INIS)

    Temmar, M.; Hadji, M.; Sahraoui, T.

    2011-01-01

    Highlights: → The effects of post-weld aging treatment on the properties of joints is studied. → The post-weld aging treatment increases the tensile strength of TIG welded joints. → The strengthening is due to a balance of dissolution, reversion and precipitation. → Simple post-weld aging at 140 o C enhances the properties of the welded joints. -- Abstract: This paper reports the influence of post-weld aging treatment on the microstructure, tensile strength, hardness and Charpy impact energy of weld joints low thickness 7075 T6 aluminium alloy welded by Tungsten Inert Gas (TIG). Hot cracking occurs in aluminium welds when high levels of thermal stress and solidification shrinkage are present while the weld is undergoing various degrees of solidification. Weld fusion zones typically exhibit microstructure modifications because of the thermal conditions during weld metal solidification. This often results in low weld mechanical properties and low resistance to hot cracking. It has been observed that the mechanical properties are very sensitive to microstructure of weld metal. Simple post-weld aging treatment at 140 o C applied to the joints is found to be beneficial to enhance the mechanical properties of the welded joints. Correlations between microstructures and mechanical properties were discussed.

  18. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria.

    Science.gov (United States)

    Rehberg, L; Frontzek, A; Melhus, Å; Bockmühl, D P

    2017-12-01

    To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. © 2017 The Society for

  19. Low-cycle fatigue and cyclic deformation behavior of Type 16-8-2 weld metal at elevated temperature

    International Nuclear Information System (INIS)

    Raske, D.T.

    1977-01-01

    The low-cycle fatigue behavior of Type 16-8-2 stainless steel ASA weld metal at 593 0 C was investigated, and the results are compared with existing data for Type 316 stainless steel base metal. Tests were conducted under axial strain control and at a constant axial strain rate of 4 x 10 -3 s -1 for continuous cyclic loadings as well as hold times at peak tensile strain. Uniform-gauge specimens were machined longitudinally from the surface and root areas of 25.4-mm-thick welded plate and tested in the as-welded condition. Results indicate that the low-cycle fatigue resistance of this weld metal is somewhat better than that of the base metal for continuous-cycling conditions and significantly better for tension hold-time tests. This is attributed to the fine duplex delta ferrite-austenite microstructure in the weld metal. The initial monotonic tensile properties and the cyclic stress-strain behavior of this material were also determined. Because the cyclic changes in mechanical properties are strain-history dependent, a unique cyclic stress-strain curve does not exist for this material

  20. Electron Beam Welding of Gear Wheels by Splitted Beam

    Directory of Open Access Journals (Sweden)

    Dřímal Daniel

    2014-06-01

    Full Text Available This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max..

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. The corrosion resistance of composite arch wire laser-welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein.

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect.

  3. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  4. Automatic monitoring of the alignment and wear of vibration welding equipment

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, John Patrick; Cai, Wayne W.; Chakraborty, Debejyo; Mink, Keith

    2017-05-23

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host machine, a check station, and a welding robot. At least one displacement sensor is positioned with respect to one of the welding equipment and the check station. The robot moves the horn and anvil via an arm to the check station, when a threshold condition is met, i.e., a predetermined amount of time has elapsed or a predetermined number of welds have been completed. The robot moves the horn and anvil to the check station, activates the at least one displacement sensor, at the check station, and determines a status condition of the welding equipment by processing the received signals. The status condition may be one of the alignment of the vibration welding equipment and the wear or degradation of the vibration welding equipment.

  5. Assessment of Welding System Modification of The Candu and PWR Fuel Element Types end Plug

    International Nuclear Information System (INIS)

    Sibarani, M

    1998-01-01

    To anticipate future possibility of a nuclear fuel element industry in Indonesia, research on other types of nuclear fuel element beside Cirene type has to be done. It can be accomplished, one of them, by modifying the already available equipment. Based on the sheath material, the sheath dimension and the welding process parameters such as welding current and welding cycles, the available Magnetic Force Welding can be used for welding end plug of Candu nuclear fuel element by modifying some of its components (tube clamp, plug clamp, etc). The available Pellet drying and element filling furnace with its supporting system with includes helium gas filling, welding chamber, argon gas supply, vacuum system, sheath clamp and sheath driving system can be used for welding end plug with sheath of PWR nuclear fuel element by adding og Tungsten inert Gas (TIG) welding machine in the welding chamber and modifying a few components (seal clamp, sheath clamp)

  6. INFLUENCE OF SURFACE MACHINING OF SAWING DISK BLANKS ON ABRASIVE ABILITY AND WEAR RESISTANCE OF FORMED DIAMOND-CONTAINING СОATING

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2010-01-01

    Full Text Available The paper proposes methods for preliminary machining of sawing disk lateral surfaces before their charging that  provide formation of micro-relief grains on them which are favorable for introduction. The experimental data reflect influence of accepted methods for machining initial disk blanks on abrasive ability and wear resistance of diamond-containing coatings which are obtained on them with the help of charging.

  7. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  8. Automatization of welding for nuclear power equipments and facilities

    International Nuclear Information System (INIS)

    Tamai, Yasumasa; Matsumoto, Teruo; Koyama, Takaichi

    1980-01-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained. (Kako, I.)

  9. Discontinuity Detection in the Shield Metal Arc Welding Process.

    Science.gov (United States)

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-05-10

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.

  10. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  11. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  12. FFTF report: FFTF piping installation and welding techniques

    International Nuclear Information System (INIS)

    Gilles, J.

    1975-01-01

    The main sodium piping with a diameter of 16'' or 28 '' is being installed at the FFTF construction site starting in December 1974. The supplier and authority demarcations are: Combustion Engineering supplies the reactor vessel, guard vessel and adjoining pipes and uses the machine welding equipment ''Dimetrics''; for the piping system of the primary and secondary loops the pipes manufactured by Rollmet at HUICO, Pasco, were delivered and prefabricated there, as far as compatible with the installation. ''Astroarc'' welding machines are used by Bechtel for the piping prefabrication in the weld laboratory as well as on site at the construction site. Technical welding problems occurring during the course of the installation at the construction site and several during this time are described. At present 6 weld seams in the reactor and 14 weld seams in the secondary loop are accepted. The requirement exists to carry out as many welds as possible automatically, in order to produce sodium pipe welds of high technical quality and which are reproducible. The welding equipment is described

  13. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    Science.gov (United States)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  14. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  15. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  16. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  17. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  18. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    Science.gov (United States)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  19. The analysis of spot welding joints of steel sheets with closed profile by ultrasonic method

    OpenAIRE

    Dariusz Ulbrich; Jakub Kowalczyk; Marian Jósko; Jarosław Selech

    2015-01-01

    Resistance spot welding is widely used in the fabrication of vehicle bodies and parts of their equipment. The article presents the methodology and the results of non-destructive ultrasonic testing of resistance spot welded joints of thin steel sheet with closed profile. Non-destructive test results were verified on the basis of welded joint area after destructive testing. The obtained results were used to develop an assessment technique for spot welded joints of closed profile with steel shee...

  20. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Science.gov (United States)

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  1. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent ...... regain the corrosion resistance by desensitization.......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser...

  2. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  3. Investigation of flux-powder wire’s components-stabilizers on welding and technological properties in underwater welding

    Directory of Open Access Journals (Sweden)

    М. Ю. Каховський

    2015-03-01

    Full Text Available Based on long-term experience of welding by mechanized flux-cored wires, the E.O. Paton Electric Welding Institute investigated a self-protecting flux-cored wire for wet underwater welding of stainless steels type 18-10. It allows to perform welding of butt, fillet and overlapped joints in flat and vertical positions of high-alloy corrosion-resistant steels type of 18-10 (AISI 304L, 308L, 347 and 321. The article presents results of development of welding-repair technology using self-shielded flux-cored wire for wet underwater welding of high-alloy stainless steels type 18-10. Also, the article describes a method of increasing the process stability of the arc in wet underwater welding high corrosion resistant steels type 18-10 by self-shielded flux cored wire. Studied welding characteristics of the weld metal with the introduction of the charge wire components stabilizers. The application of this technology allows partially or completely reducing the human participation in welding process under the extreme conditions: at large depth, in radioactive environments (in case of NPS and also gaining a significant economic effect due to greater efficiency (productivity of welding-repair works. The practical value of this technology consists in possibility of welding-repair works directly under water without any additional assembly works. As to its properties the developed self-shielding wire for underwater welding of high-alloy corrosion resistant steel meets completely the requirements of class (B of the International standard ANSI/AWS D3.6 on underwater welding

  4. Long-time rupture strength and creep behaviour of welded joints on heat-resistant CrMoV steels with 1 and 12% chrome

    International Nuclear Information System (INIS)

    Maier, G.; Maile, K.; Theofel, H.

    1985-01-01

    Power plant components in the creep range are damaged frequently in the weld joint zones. The investigation concentrated therefore on the reliability of the information supplied by tests on small- and large-size samples. Creep rupture tests of dissimilar welded joints (1% with 12% chrome) with variations of heat input and weld metal have been conducted. At creep rupture times of about 10 4 h all joints failed in the outside heat affected zone of the weaker base metal. Large-size samples, proved in comparison at same stresses, showed distinctly longer times to rupture. (orig.) [de

  5. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub-project 2 - Ex-serviced 2.25Cr1M0 weld metal and cross weld repairs

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Feilitzen, Carl von

    2007-12-15

    Weld repair has been carried out in an ex-serviced 10 CrMo 9 10 pipe by using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables. Application of current welding procedure and consumables results in an over matched weld repair. This is verified by both creep tests and the creep simulations at even lower stresses than tested. Creep specimens have been extracted from ex-serviced 10 CrMo 9 10 parent metal (PM) and weld metal (WM), from virgin 10 CrMo 9 10 WM, from virgin 13 CrMo 4 4 WM, and from virgin 15 Mo 3 WM. In addition, cross weld specimens including weld metal, heat affected zone (HAZ) and parent metal have been taken from the ex-serviced 10 CrMo 9 10 weld joint, and from three weld repairs. In total, there are nine test series. The sequence of creep lifetime at 540 deg C at given stresses is; virgin 10 CrMo 9 10 weld metal > virgin 15 Mo 3 weld metal approx virgin 13 CrMo 4 4 weld metal approx ex-serviced 10 CrMo 9 10 weld metal >> ex-serviced 10 CrMo 9 10 parent metal > ex-serviced 10 CrMo 9 10 cross weld approx 10 CrMo 9 10 cross weld repair approx 13 CrMo 4 4 cross weld repair approx and 15 Mo 3 cross weld repair. All the series show good creep ductility. The ex-serviced 10 CrMo 9 10 parent metal shows a creep lifetime about one order of magnitude shorter than that for both the virgin parent metal and the ex-serviced 10 CrMo 9 10 weld metal, independent of stresses. Differences in creep lifetime among the ex-serviced 10 CrMo 9 10 cross weld and other cross weld repairs are negligible, simply because rupture always occurred in the ex-serviced 10 CrMo 9 10 parent metal, approximately 10 mm from HAZ, for all the cross welds. Necking is frequently observed in the ex-serviced 10 CrMo 9 10 parent metal at the opposite side of the fracture. Creep damage to a large and a small extend is found adjacent to the fracture and at the necking area, respectively. Other parts of the weld joint like weld metal and HAZ are damage-free, independent of stress, weld metal and

  6. Micro Structure and Hardness Analysis of Brass Metal Welded

    Science.gov (United States)

    Lukman Faris, N.; Muljadi; Djuhana

    2018-01-01

    Brass metals are widely used for plumbing fittings. High tensile brasses are more highly alloyed and find uses in marine engineering. The welding of brass metal has been done by using electrical weld machine (SMAW). The microstructure of brass metal welded was observed by optical microscope. The result can see that the microstructure has been changed due to heat from welding. The microstructure of original brass metal is seen a fine laminar stucture, but the microstructure at HAZ appears bigger grains and some area at HAZ is seen coarser microstructure. The microstructure at weld zone can be seen that it was found some of agglomeration of materials from reaction between brass metal and electrode coating wire. According the hardness measurement, it is found highest hardness value about 301.92 HV at weld zone, and hardness value at base metal is 177.84 HV

  7. Torsional and Cyclic Fatigue Resistance of a New Nickel-Titanium Instrument Manufactured by Electrical Discharge Machining.

    Science.gov (United States)

    Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto

    2016-01-01

    The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P  .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. CRADA Final Report: Weld Predictor App

    Energy Technology Data Exchange (ETDEWEB)

    Billings, Jay Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2018-01-25

    Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortion is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld

  9. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  10. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example...

  11. Specificity of machine, barbell, and water-filled log bench press resistance training on measures of strength.

    Science.gov (United States)

    Langford, George A; McCurdy, Kevin W; Ernest, James M; Doscher, Michael W; Walters, Stacey D

    2007-11-01

    The purpose of this study was to compare the effects of 10 weeks of resistance training with an isotonic bench press machine and 2 types of free-weight bench press exercises on several measures bench press strength. Specificity was investigated by comparing the ability to transfer strength gained from a type of training that differed from the mode of testing. Forty-nine men participated in the study. The subjects completed a pretest on the machine (MB), barbell (BB), isokinetic (IB), and log (LB) bench press to determine baseline strength and completed 10 weeks of training on the MB, BB, or LB. The 3 groups were tested to see whether differential training effects occurred from pre- to posttest scores on the BB, MB, LB, and peak force on the IB. By multivariate analysis, the trial-by-group interaction was not statistically significant. The multivariate and subsequent univariate analyses of variance tests indicated statistically significant effects from pre- to posttest for peak force on the IB test and the BB, MB, and LB. Correlations among the strength tests were high (0.92 > or = r or = r < pr = 0.83). Mean 3 repetition maximum MB strength was 8% higher than BB strength, which was 3% higher than LB strength, indicating differences in the amount of stabilization required to control the resistance. The findings of this study showed that all 3 training groups significantly improved in strength during short-term training on the MB, BB, and LB. These data lend evidence that improved strength after training on the MB, BB, and LB equally transfers to strength gains on any of the 4 modes of testing. These results should be considered when including similar exercises varying in stability into the training program to improve strength.

  12. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    testing machine in order to determine fatigue crack propagation life. The fatigue crack propagation life of weld-repaired specimens was compared to un-welded and as-welded specimens. At the end of fatigue test, samples were cut from the fracture surfaces of typical welded and weld-repaired specimens and are examined under Scanning Electron Microscope (SEM) and characteristics features from these micrographs are explained.

  13. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    Science.gov (United States)

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  14. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  15. Numerical microstructural analysis of automotive-grade steels when joined with an array of welding processes

    International Nuclear Information System (INIS)

    Gould, J.E.; Khurana, S.P.; Li, T.

    2004-01-01

    Weld strength, formability, and impact resistance for joints on automotive steels is dependent on the underlying microstructure. A martensitic weld area is often a precursor to reduced mechanical performance. In this paper, efforts are made to predict underlying joint microstructures for a range of processing approaches, steel types, and gauges. This was done first by calculating cooling rates for some typical automotive processes [resistance spot welding (RSW), resistance mash seam welding (RMSEW), laser beam welding (LBW), and gas metal arc welding (GMAW)]. Then, critical cooling rates for martensite formation were calculated for a range of automotive steels using an available thermodynamically based phase transformation model. These were then used to define combinations of process type, steel type, and gauge where welds could be formed avoiding martensite in the weld area microstructure

  16. Preventive maintenance technique by temper bead welding for reactor vessel

    International Nuclear Information System (INIS)

    Narita, Ryuichi; Kamo, Kazuhiko; Nishimura, Moritatsu; Nakamura, Yasuo; Hirano, Shinro

    2011-01-01

    Pressurized Water Reactor (PWR) plant has some dissimilar weld joint between main components which are made of Low Alloy Steel and piping which is made of Stainless Steel. Previous plants' dissimilar weld joints are made of Alloy 600 which is low resistance to Primary Water Stress Corrosion Cracking (PWSCC). It is reported that PWSCC is occurred in some plants. The preventive maintenance technique against PWSCC is needed immediately. One solution is the improvement of the material, for example, the inner surface of Alloy 600 is replaced by welding Alloy 690 which is high resistance to PWSCC. Generally, Heat Affected Zone (HAZ) of low alloy steel after welding is required Post Weld Heat Treatment (PWHT), but it is so hard that this operation has to be accomplished in site. So it is necessary to attempt the improvement of HAZ by temper bead welding which isn't needed PWHT. Temper bead welding is that HAZ of 1st weld layer is appropriately covered with heat of after 2nd weld layer, then the mechanical performance of HAZ is improved as well as PWHT. Conventional temper bead welding is required pre-heat and post-heat treatment. However it is impossible to set up the heater due to environment around the dissimilar weld joint in some plants, the development of ambient temperature temper bead welding technique which isn't needed pre-heat and post-heat treatment is expected. It is confirmed that the mechanical performance and the material texture are improved by setting the appropriate welding condition with many welding test pieces. Then, the preventive maintenances called INLAY method are completed in some actual plants. (author)

  17. Summary of Results of Tests Made by Aluminum Research Laboratories of Spot-welded Joints and Structural Elements

    Science.gov (United States)

    HARTMANN E C; Stickley, G W

    1942-01-01

    Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.

  18. Numerical and experimental investigation of geometric parameters in projection welding

    DEFF Research Database (Denmark)

    Kristensen, Lars; Zhang, Wenqi; Bay, Niels

    2000-01-01

    Resistance projection welding is widely used for joining of workpieces with almost any geometric combination. This makes standardization of projection welding impossible. In order to facilitate industrial applications of projection welding, systematic investigations are carried out on the geometric...... parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...... welding a disc to a ring with a triangular ring projection has been carried out to study the influence of the geometric parameters in various metal combinations. In these studies, SORPAS has been used as a supporting tool to understand the relationship of the parameters and the phenomena occurring...

  19. Welding processes for Inconel 718- A brief review

    Science.gov (United States)

    Tharappel, Jose Tom; Babu, Jalumedi

    2018-03-01

    Inconel 718 is being extensively used for high-temperature applications, rocket engines, gas turbines, etc. due to its ability to maintain high strength at temperatures range 450-700°C complimented by excellent oxidation and corrosion resistance and its outstanding weldability in either the age hardened or annealed condition. Though alloy 718 is reputed to possess good weldability in the context of their resistance to post weld heat treatment cracking, heat affected zone (HAZ) and weld metal cracking problems persist. This paper presents a brief review on welding processes for Inconel 718 and the weld defects, such as strain cracking during post weld heat treatment, solidification cracking, and liquation cracking. The effect of alloy chemistry, primary and secondary processing on the HAZ cracking susceptibility, influence of post/pre weld heat treatments on precipitation, segregation reactions, and effect of grain size etc. discussed and concluded with future scope for research.

  20. Analysis of Welding Joint on Handling High Level Waste-Glass Canister

    International Nuclear Information System (INIS)

    Herlan Martono; Aisyah; Wati

    2007-01-01

    The analysis of welding joint of stainless steel austenitic AISI 304 for canister material has been studied. At the handling of waste-glass canister from melter below to interim storage, there is a step of welding of canister lid. Welding quality must be kept in a good condition, in order there is no gas out pass welding pores and canister be able to lift by crane. Two part of stainless steel plate in dimension (200 x 125 x 3) mm was jointed by welding. Welding was conducted by TIG machine with protection gas is argon. Electric current were conducted for welding were 70, 80, 90, 100, 110, 120, 130, and 140 A. Welded plates were cut with dimension according to JIS 3121 standard for tensile strength test. Hardness test in welding zone, HAZ, and plate were conducted by Vickers. Analysis of microstructure by optic microscope. The increasing of electric current at the welding, increasing of tensile strength of welding yields. The best quality welding yields using electric current was 110 A. At the welding with electric current more than 110 A, the electric current influence towards plate quality, so that decreasing of stainless steel plate quality and breaking at the plate. Tensile strength of stainless steel plate welding yields in requirement conditions according to application in canister transportation is 0.24 kg/mm 2 . (author)

  1. The effect of microstructure and geometry on the fatigue behaviour of bundle assembly welds

    International Nuclear Information System (INIS)

    Surette, B.A.; Gabbani, M.

    1997-01-01

    Cracking of end plates, in the Darlington NGS, was attributed to high-cycle fatigue resulting from flow-induced vibrations. Because the cracks were predominantly associated with the bundle assembly welds and with certain element positions, a program was initiated to study whether the microstructure and geometry of the weld zone affected the fatigue behaviour of the assembly welds. Assembly weld samples were subjected to different heat treatments, resulting in different microstructures of the weld zone. Results of fatigue testing suggest that heat treatment of the welds (i.e., microstructure) had little effect on the fatigue life. Assembly welds were also produced with different weld notch geometries, and compared with samples having notches produced by machining (instead of welding). The results of these tests showed that geometry of the weld had a significant effect on fatigue life. However, the geometry of the weld notch required to significantly improve fatigue life is not achievable using the current assembly welding process. A small improvement in fatigue life of welded samples appears possible by increasing the weld diameter. (author)

  2. Laser weld jig

    Science.gov (United States)

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  3. corrosion and wear resistant ternary Cr-C-N coatings deposited by the ARC PVD process for machining tools and machining parts

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Zimmermann, H.; Bobzin, K.

    1997-01-01

    With the deposition of PVD hard coatings on the tools applied in machining operations it is possible to achieve significant improvements in the performance and quality of the machining processes. Depending on the machined material and the operating principle, e.g. turning, milling or drilling, not only different machining parameters but also different coating materials are necessary. In interrupted cut machining of tempered steel, for example, the life time of Ti-C-N coated inserts is several times greater than the Ti-C-N coated ones. This is a result of the favourable thermophysical and tribological properties of Ti-N-C. The potential for tool protection by CrN coatings is a result of the high ductility and low internal stress of this coating materials. CrN films can be deposited with greater film thickness, still maintaining very good adhesion. This paper presents the development of new arc PVD coatings in the system Cr-C-N. Owing to the carbon content in the coating an increased hardness and a better wear behavior in comparison to CrN was expected. The effects of various carbon carrier gases on the coating properties were examined. The coating properties were investigated by mechanical tests. X-ray diffraction, SEM analysis and corrosion tests. Some of the coatings were tested in machining tests. The results of these tests are presented in this paper. (author)

  4. PRGPred: A platform for prediction of domains of resistance gene analogue (RGA in Arecaceae developed using machine learning algorithms

    Directory of Open Access Journals (Sweden)

    MATHODIYIL S. MANJULA

    2015-12-01

    Full Text Available Plant disease resistance genes (R-genes are responsible for initiation of defense mechanism against various phytopathogens. The majority of plant R-genes are members of very large multi-gene families, which encode structurally related proteins containing nucleotide binding site domains (NBS and C-terminal leucine rich repeats (LRR. Other classes possess' an extracellular LRR domain, a transmembrane domain and sometimes, an intracellular serine/threonine kinase domain. R-proteins work in pathogen perception and/or the activation of conserved defense signaling networks. In the present study, sequences representing resistance gene analogues (RGAs of coconut, arecanut, oil palm and date palm were collected from NCBI, sorted based on domains and assembled into a database. The sequences were analyzed in PRINTS database to find out the conserved domains and their motifs present in the RGAs. Based on these domains, we have also developed a tool to predict the domains of palm R-genes using various machine learning algorithms. The model files were selected based on the performance of the best classifier in training and testing. All these information is stored and made available in the online ‘PRGpred' database and prediction tool.

  5. Equipment to weld fuel rods of mixed oxides

    International Nuclear Information System (INIS)

    Aparicio, G.; Orlando, O.S.; Olano, V.R.; Toubes, B.; Munoz, C.A.

    1987-01-01

    Two welding outfits system T1G were designed and constructed to weld fuel rods with mixed oxides pellets (uranium and plutonium). One of them is connected to a glove box where the loading of sheaths takes place. The sheaths are driven to the welder through a removable plug pusher in the welding chamber. This equipment was designed to perform welding tests changing the parameters (gas composition and pressure, welding current, electrode position, etc.). The components of the welder, such as plug holder, chamber closure and peripheral accessories, were designed and constructed taking into account the working pressures in the machine, which is placed in a controlled area and connected to a glove box, where special safety conditions are necessary. The equipment to weld fuel bars is complemented by another machine, located in cold area, of the type presently used in the fuel elements factory. This equipment has been designed to perform some welding operations in sheaths and mixed oxide rods of the type Atucha I and II. Both machines have a programmed power supply of wide range and a vacuum, and pressurizing system that allows the change of parameters. Both systems have special features of handling and operation. (Author)

  6. Metal Cutting Theory and Friction Stir Welding Tool Design

    Science.gov (United States)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  7. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  8. Automatic welding of fuel elements

    International Nuclear Information System (INIS)

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  9. Computer modeling of the stress-strain state of a linear friction welded disk

    Directory of Open Access Journals (Sweden)

    V. Bychkov

    2015-09-01

    Full Text Available The paper is dedicated to design issues of tooling for linear friction welding (LFW machine. Computer model of a LFW machine was built. As a result of computer simulation, the stress-strain state of the machine and disk module for linear friction welding of aluminum alloy blisks also was obtained. On the basis of the results of computer simulation a module with a replaceable unit and a new variant fixing of disc in the module were designed.

  10. Effect of stress concentration on the fatigue strength of A7N01S-T5 welded joints

    Science.gov (United States)

    Zhang, Mingyue; Gou, Guoqing; Hang, Zongqiu; Chen, Hui

    2017-07-01

    Stress concentration is a key factor that affects the fatigue strength of welded joints. In this study, the fatigue strengths of butt joints with and without the weld reinforcement were tested to quantify the effect of stress concentration. The fatigue strength of the welded joints was measured with a high-frequency fatigue machine. The P-S-N curves were drawn under different confidence levels and failure probabilities. The results show that butt joints with the weld reinforcement have much lower fatigue strength than joints without the weld reinforcement. Therefore, stress concentration introduced by the weld reinforcement should be controlled.

  11. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

    Science.gov (United States)

    Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam

    2016-01-01

    The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and

  12. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data

    Directory of Open Access Journals (Sweden)

    Mitchell Pesesky

    2016-11-01

    Full Text Available The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitate initial use of empiric (frequently broad-spectrum antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0% and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance

  13. Characterisation of microstructure, mechanical and corrosion properties of pulsed MIG welded modified P91 steel weld metal

    Science.gov (United States)

    Sundararaj, P.; Muthukumar, M.

    2018-02-01

    Varying the shielding gas composition with argon and carbon dioxide influences the properties of the weldments which are evaluated using microstructural, micro-hardness and corrosion studies. The modified P91 steel samples are welded by Pulsed Metal Inert Gas welding process with different shielding gas mixture, i.e., 95%Ar-5%CO2, 80%Ar-20%CO2 and 60%Ar- 40%CO2. The welded steels are studied metallographically by observing microstructures at three different regions namely at the base metal, Heat Affected Zone (HAZ) and the Weld zone. Hardness measurements are also done using Vicker’s micro-hardness tester. Corrosion studies in acidic media (sulphuric and nitric acid media of four different normalities 0.5, 1.0,1.5 and 2.0) are done in the welded region and the parent metal to compare the corrosion resistance. Of all the welded samples, welds made with the shielding gas composition of 95%Ar-5%CO2 exhibits good corrosion resistance over the other two welds while the weld made with the shielding gas composition of 60%Ar -40%, shows very poor corrosion resistance.

  14. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning.

    Science.gov (United States)

    Dorman, Stephanie N; Baranova, Katherina; Knoll, Joan H M; Urquhart, Brad L; Mariani, Gabriella; Carcangiu, Maria Luisa; Rogan, Peter K

    2016-01-01

    Increasingly, the effectiveness of adjuvant chemotherapy agents for breast cancer has been related to changes in the genomic profile of tumors. We investigated correspondence between growth inhibitory concentrations of paclitaxel and gemcitabine (GI50) and gene copy number, mutation, and expression first in breast cancer cell lines and then in patients. Genes encoding direct targets of these drugs, metabolizing enzymes, transporters, and those previously associated with chemoresistance to paclitaxel (n = 31 genes) or gemcitabine (n = 18) were analyzed. A multi-factorial, principal component analysis (MFA) indicated expression was the strongest indicator of sensitivity for paclitaxel, and copy number and expression were informative for gemcitabine. The factors were combined using support vector machines (SVM). Expression of 15 genes (ABCC10, BCL2, BCL2L1, BIRC5, BMF, FGF2, FN1, MAP4, MAPT, NFKB2, SLCO1B3, TLR6, TMEM243, TWIST1, and CSAG2) predicted cell line sensitivity to paclitaxel with 82% accuracy. Copy number profiles of 3 genes (ABCC10, NT5C, TYMS) together with expression of 7 genes (ABCB1, ABCC10, CMPK1, DCTD, NME1, RRM1, RRM2B), predicted gemcitabine response with 85% accuracy. Expression and copy number studies of two independent sets of patients with known responses were then analyzed with these models. These included tumor blocks from 21 patients that were treated with both paclitaxel and gemcitabine, and 319 patients on paclitaxel and anthracycline therapy. A new paclitaxel SVM was derived from an 11-gene subset since data for 4 of the original genes was unavailable. The accuracy of this SVM was similar in cell lines and tumor blocks (70-71%). The gemcitabine SVM exhibited 62% prediction accuracy for the tumor blocks due to the presence of samples with poor nucleic acid integrity. Nevertheless, the paclitaxel SVM predicted sensitivity in 84% of patients with no or minimal residual disease. Copyright © 2015 Federation of European Biochemical Societies

  15. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Abstract. In this study, mechanical properties of resistance spot welding of DP450 and DP600, galvanized and ungalvanized automotive sheets have been investigated. The specimens have been joined by resistance spot welding at different weld currents and times. Welded specimens have been examined for their ...

  16. 75 FR 74083 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Welding...

    Science.gov (United States)

    2010-11-30

    ...; Welding, Cutting and Brazing ACTION: Notice. SUMMARY: The Department of Labor (DOL) hereby announces the... request (ICR) titled, ``Welding, Cutting and Brazing,'' to the Office of Management and Budget (OMB) for... inspection of resistance welding equipment be made by qualified maintenance personnel and that a...

  17. Microstructure characterization in the weld metals of HQ130 + QJ63 ...

    Indian Academy of Sciences (India)

    Unknown

    2002-11-27

    Nov 27, 2002 ... under 80% Ar + 20% CO2 gas shielded metal arc welding and different weld heat inputs, was carried out by means of scanning ... Keywords. Microstructure characterization; high strength steel; weld metals. 1. Introduction .... measured by V-type notch impact test is as low as 72 J. In order to resist cold ...

  18. Análise da resistência ao desgaste de revestimento duro aplicado por soldagem em facas picadoras de cana-de-açúcar Analysis of wear resistance of hardfacing applied by welding in sugarcane shredder knife

    Directory of Open Access Journals (Sweden)

    Aldemi Coelho Lima

    2010-06-01

    cost is high due to metallic losses by wear. This paper studies the application of hardfacings by flux cored arc welding on the wear resistance of sugarcane shredder knives comparing laboratory and field-test results. Four types of consumable were used: three selfshielded flux cored wires of diameter 1.6 mm of alloys FeCrC, FeCrC+Nb and FeCrC+Ti and a covered electrode of FeCrC alloy of diameter 4.0 mm. The base metal is SAE 1020 steel. Test specimens were evaluated using rubber wheel abrasion tests (ASTM G65. Sugarcane shredder knives hardfaced in the same welding conditions were also tested on a shredder in an alcohol distillery. Wear evaluation is by mass loss. The flux cored wires were welded in short-circuit transfer mode with the same current and voltage values. The wire with Nb had the highest wear resistance in laboratory test but due to cracks and spalling had the least wear resistance in field test. The FeCrC and FeCrC+Ti wires presented the worst results in laboratory tests and the best results in field test, respectively. In comparison with the covered electrode, the FeCrC+Nb wire presented similar performance in laboratory and the FeCrC+Ti wire presented similar performance in field tests.

  19. Microhardness Testing of Aluminum Alloy Welds

    Science.gov (United States)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  20. Design of automatic tracking system for electron beam welding

    International Nuclear Information System (INIS)

    He Chengdan; Chinese Academy of Space Technology, Lanzhou; Li Heqi; Li Chunxu; Ying Lei; Luo Yan

    2004-01-01

    The design and experimental process of an automatic tracking system applied to local vacuum electron beam welding are dealt with in this paper. When the annular parts of an exactitude apparatus were welded, the centre of rotation of the electron gun and the centre of the annular weld are usually not superposed because of the machining error, workpiece's setting error and so on. In this teaching process, a little bundle of electron beam is used to scan the weld groove, the amount of the secondary electrons reflected from the workpiece is different when the electron beam scans the both sides and the centre of the weld groove. The difference can indicate the position of the weld and then a computer will record the deviation between the electron beam spot and the centre of the weld groove. The computer will analyze the data and put the data into the storage software. During the welding process, the computer will modify the position of the electron gun based on the deviation to make the electron beam spot centered on the annular weld groove. (authors)

  1. Concurrent laser welding and annealing exploiting robotically manipulated optical fibers

    Science.gov (United States)

    Abdullah, Hussein A.; Siddiqui, Rafiq A.

    2002-12-01

    Present investigation reports on the effects of incorporating pre- and post-heating on the mechanical properties of laser-welded joints, in normal air condition. Two common types of steels, i.e. mild steel, and stainless steel were welded with Lumonic's MS 830 Nd 3+:YAG laser machine, with an output capacity of 400 W. Due to the low integrated energy input required for laser welded joints, the welded region are often cooled too rapidly via conduction to the surrounding material and atmosphere, which leads to hardness discontinuities in the fusion and heat affected zone. The effects of in-process laser annealing on the mechanical properties and microstructure of laser-welded joints are important in any manufacturing operation. To improve the poor weld characteristics, this work investigates the use of automated dual-beam delivery system to implement a pre- or post-heating technique, simultaneously with the welding process. The results show that proper selection of the control parameters for the pre- or post-heating can reduce the hardness of the weld significantly and improve the welded joints mechanical properties, such as higher tensile strength and better durability.

  2. Electron beam welding of copper lids. Status report up to 2001-12-31

    International Nuclear Information System (INIS)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant

  3. Electron beam welding of copper lids. Status report up to 2001-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant.

  4. Heat input effect of friction stir welding on aluminum alloy AA 6061-T6 welded joint

    Czech Academy of Sciences Publication Activity Database

    Sedmak, A.; Kumar, R.; Chattopadhyaya, S.; Hloch, Sergej; Tadić, S.; Djurdjević, A. A.; Čeković, I. R.; Dončeva, E.

    2016-01-01

    Roč. 20, č. 2 (2016), s. 637-641 ISSN 0354-9836 Institutional support: RVO:68145535 Keywords : friction stir welding * defect * heat input * maximum temperature Subject RIV: JQ - Machines ; Tools Impact factor: 1.093, year: 2016 http://www.doiserbia.nb.rs/img/doi/0354-9836/2016/0354-98361500147D.pdf

  5. Welding of duplex and super-duplex stainless steels

    International Nuclear Information System (INIS)

    Van Nassau, L.; Meelker, H.; Hilkes, J.

    1994-01-01

    After a recall of the commercial designation of duplex or super-duplex steels (22-27% Cr, 4-8% Ni, 0.1-0.3% N with or without Mo (1.5-4%)) and of some metallurgical properties (phase diagrams, microstructure, ferrite determination, heat treatment and aging), welding technologies are synthetically presented (advantages-disadvantages of each process, metals filler, parameters of the welding processes, heat treatments after welding, cleaning, passivation, properties (mechanical, corrosion resistance) of the welded pieces). (A.B.). 28 refs. 5 figs., 15 tabs., 1 annexe

  6. Welding Course Curriculum.

    Science.gov (United States)

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  7. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  8. Development of LABGENE's steam generators tube to tubesheet welding qualification procedure

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Renato Del [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mail: delpozzo@ctmsp.mar.mil.br; Vieira, Guilherme Godinho [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Centro Experimental ARAMAR; Patineti Filho, Eloi [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: epatineti@yahoo.com.br

    2007-07-01

    The welding qualification procedure of LABGENE's Nuclear Electric Generation Laboratory - Steam Generators has special characteristics due to nuclear class 1 requirements, reduced dimensions of the LABGENE's equipment and combination of the materials involved with the tube to tubesheet welding. The welding procedure was performed using an automatic orbital welding machine without material addition. The weld joint was simulated using a sample made of a tube (ext. 12,7 BWG 18 x 90 mm) in SB-163 N08800 material and a plate (48 x 330 x 55 mm) in 20MnMoNi55 material, covered with 8 mm AWS E NiCrFe-3 cladding. For the development of the welding procedure, a lot of welding simulations were performed using machines and special devices designed for the dimensions of the pieces. Procedures related with operating, handling and cleaning conditions, essential to avoid the contamination of the pieces were issued. It was also developed a mixture of gases which contributed for the homogenising of the welding and also to avoid the appearance of cracks and defects on the weld joint. The results obtained with the performed tests fulfilled the requirements of the applied specifications and standards. The welding procedure was developed testing a lot of specimens removed from samples that were representatives of the equipment's tube to tubesheet welding. (author)

  9. Research on the Mechanical Properties of the Weld Seams of Constructional Steel Using Vibration Energy Method During Welding

    Directory of Open Access Journals (Sweden)

    Laurynas Rumbutis

    2011-02-01

    Full Text Available The paper analyzes changes in the mechanical properties of the welded joints of steel S355J2 (LST EN 10025 using vibration energy method during welding done by applying semi automatic equipment under CO2 environment using supplementary wire ESAB OK 12.51. When welding, several levels of vibration energy are applied. For vibration treatment, proprietary equipment “MetaLax 2725” produced by the U.S. Company “Bonal” was employed. To investigate the effects of vibration energy on the weld seam, radiographic control and mechanical experiments on tensile, hardness distribution and impact resistance were performed.Article in Lithuanian

  10. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  11. Effects of vitamin D receptor gene polymorphisms on low-resistance training using exercise machines: the 'Power Rehabilitation' program.

    Science.gov (United States)

    Murakami, Shin-Ichiro; Otsuki, Takemi; Maeda, Megumi; Miura, Yoshie; Morii, Seiko; Kiyokane, Kenji; Hayakawa, Shin-Ichi; Maeda, Atsushi; Imakawa, Takayo; Harada, Shunpei; Handa, Torataro; Nishimura, Yasumitsu; Murakami, Shuko; Kumagai, Naoko; Hayashi, Hiroaki; Chen, Ying; Suemori, Shin-Ichiro; Fukushima, Yumiko; Nishida, Seikoh; Fukushima, Keisuke

    2009-01-01

    The enhancement and promotion of health is necessary to maintain the quality of life (QOL) of the aged population in developed nations such as Japan where the number of elderly has been increasing rapidly. For this purpose, low-resistance training using exercise machines ('Power Rehabilitation') has been established as a rehabilitation program. To investigate the individual factors which influence the effects of 'Power Rehabilitation', single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene and the ciliary neurotrophic factor (CNTF) gene were analyzed, and the relationship between SNP patterns and the effects of 'Power Rehabilitation' was evaluated. 'Power Rehabilitation' had an effect on the physiological functions involved in the activities of daily life (ADL) rather than muscle strength and size. In addition, certain SNP patterns showed better improvement of parameters associated with the effects of 'Power Rehabilitation' as analyzed by comparison between SNP patterns and factor analysis. Large scale analyses are required to ensure this tendency and to discover individual factors which may help to promote the health and QOL of the aged population.

  12. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  13. Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-12-01

    Full Text Available This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.

  14. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  15. Ground Reaction Force and Mechanical Differences Between the Interim Resistive Exercise Device (iRED) and Smith Machine While Performing a Squat

    Science.gov (United States)

    Amonette, William E.; Bentley, Jason R.; Lee, Stuart M. C.; Loehr, James A.; Schneider, Suzanne

    2004-01-01

    Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.

  16. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  17. Measuring penetration depth of electron beam welds. Final report

    International Nuclear Information System (INIS)

    Hill, J.W.; Collins, M.C.; Mentesana, C.P.; Watterson, C.E.

    1975-07-01

    The feasibility of evaluating electron beam welds using state-of-the-art techniques in the fields of holographic interferometry, micro-resistance measurements, and heat transfer was studied. The holographic study was aimed at evaluating weld defects by monitoring variations in weld strength under mechanical stress. The study, along with successful work at another facility, proved the feasibility of this approach for evaluating welds, but it did not assign any limitations to the technique. The micro-resistance study was aimed at evaluating weld defects by measuring the electrical resistance across the weld junction as a function of distance along the circumference. Experimentation showed this method, although sensitive, is limited by the same factors affecting other conventional nondestructive tests. Nevertheless, it was successful at distinguishing between various depths of penetration. It was also shown to be a sensitive thickness gage for thin-walled parts. The infrared study was aimed at evaluating weld defects by monitoring heat transfer through the weld under transient thermal conditions. Experimentation showed that this theoretically sound technique is not workable with the infrared equipment currently available at Bendix Kansas City. (U.S.)

  18. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  19. Development of safe optimized welding procedures for high strength Q&T steel welded with austenitic consumables Desenvolvimento de procedimentos de soldagem seguros e otimizados para aços temperados e revenido de alta resistência com consumíveis austeníticos

    Directory of Open Access Journals (Sweden)

    Lenka Kuzmikova

    2013-06-01

    Full Text Available High strength quenched and tempered (Q&T steels offer obvious economic benefits originating from their advantageous strength to price and weight ratios. These steels are usually welded using ferritic consumables and for this combination the risk of hydrogen assisted cold cracking (HACC is high. The use of austenitic stainless steel (ASS consumables has great potential to significantly improve this issue. Yet, there are no guidelines for determination of safe level of preheat for welding ferritic steels with ASS consumables. For this reason manufacturers adopt this parameter from procedures developed for conventional ferritic consumables thus significantly limiting the benefits ASS consumables are capable to deliver. Productivity could be further enhanced by identifying the upper interpass temperature threshold, thus reducing the stand-off times. Aim of this work is to develop safe highly optimised procedures for welding of high strength Q&T steel with ASS consumable.Aços temperados e revenidos de alta resistência (Q&T oferecem vantagens econômicas óbvias originadas de sua benéfica razão resistência e custo ou peso. Estes aços são normalmente soldados com consumíveis ferríticos e, por esta causa, apresentam alto risco de trinca de hidrogênio. O uso de consumíveis de aços inoxidáveis austeníticos representa um grande potencial para melhorar este aspecto. Entretanto, não há recomendações técnicas para determinar um nível seguro de temperatura de pré-aquecimento para soldagens de aços ferríticos com consumíveis austeníticos. Por isto, fabricantes adotam para este parâmetro os tirados de procedimentos desenvolvidos para consumíveis ferríticos convencionais, consequentemente reduzindo os benefícios que os consumíveis austeníticos poderiam fornecer. Produtividade poderia ser intensificada pela identificação da temperatura de interpasse, reduzindo os tempos mortos. O objetivo do presente trabalho foi o de desenvolver

  20. Phase transformation and local mechanical properties of TRIP steel in a simulated and real resistance spot weld process; Phasenumwandlung und lokale mechanische Eigenschaften von TRIP Stahl beim simulierten und realen Widerstandspunktschweissprozess

    Energy Technology Data Exchange (ETDEWEB)

    Brauser, Stephan

    2013-06-01

    TRIP steels give high strength along with good ductility owing to metastable austenite to martensite phase transformation (TRIP effect) caused by mechanical load. Under the extreme process-specific heating and cooling rates of resistance spot welding, these materials may undergo modifications in their austenite portion resulting in changed mechano- technological performance locally. The prime objective of this study was therefore to carry out microstructure analyses of the spot weld area in order to identify the modified portion of austenite and the resulting changes in local mechanical performance with special consideration of the TRIP effect. First, the metastable austenite portion in the unprocessed parent metal was quantified by in-situ diffraction using high energy synchrotron radiation. Next, the basic aspects of temperature dependent austenite transformation in the heating and cooling process were investigated in furnace experiments under defined temperature profiles. Continuative Gleeble tests and furnace experiments were conducted using various temperature profiles with different peaks occurring locally in the spot welding process in order to enable systematic assessment of the influence of temperature and of heating and cooling conditions on the austenite content under real conditions. Correlation experiments between the mechanical characteristics of thermally prepared tensile specimens and the metallographically and roentgenographically determined austenite contents allowed it to ascertain the metastable, i.e. transformable austenite portions. Finally, the results were evaluated concerning their transferability to real resistance spot welds. It was demonstrated that the austenite to martensite phase transformation can come into action only in a strongly localized material area in the transition zone between heat-affected zone and base metal. Consequently, the TRIP effect does not significantly affect the strength and ductility performance in the joining

  1. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    Science.gov (United States)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  2. Gimballed Shoulders for Friction Stir Welding

    Science.gov (United States)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  3. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    Science.gov (United States)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  4. Monitoring of the submerged arc welding process using current and voltage transducers

    International Nuclear Information System (INIS)

    Barrera, G.; Velez, M.; Espinosa, M.A.; Santos, O.; Barrera, E.; Gomez, G.

    1996-01-01

    Welding by fusion is one of the most used techniques to join materials in the manufacture industry. given the increase in applications of this welding process and the demand of more quality in the welding deposits, these welding processes are good candidates for the improvement of their instrumentation and control. Any improvement in the control technique will have a positive effect in the quality and productivity of the welding process. Some of the most significant variables in the submerged arc welding process are: current, voltage and torch speed. For the instrumentation of this research work, two transducers were designed, one for CD current monitoring and one for CD voltage monitoring of the welding machine. The design of both transducers includes an isolation amplifier. Graphical programming and the concept of virtual instrumentation were the main tools used for the design of the data acquisition system and the signal processing task. (Author) 9 refs

  5. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  6. Eddy current testing system for bottom mounted instrumentation welds - 15206

    International Nuclear Information System (INIS)

    Kobayashi, N.; Ueno, S.; Suganuma, N.; Oodake, T.; Maehara, T.; Kasuya, T.; Ichikawa, H.

    2015-01-01

    We have demonstrated the scanning of eddy current testing (ECT) probe on the welds area including the nozzle, the J-welds and the buildup welds of the Bottom Mounted Instrumentation (BMI) mock-up using the developed ECT system and procedure. It is difficult to scan the probe on the BMI welds area because the area has a complex curved surface shape and narrow spaces. We made the space coordinates and the normal vectors on the scanning points as the scanning trajectory of probe on the welds area based on the measured results of welds surface shape on the mock-up. The multi-axis robot was used to scan the probe on the welds surface. Each motion axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. The BMI mock-up test was performed using the cross coil probe in the differential mode. The artificial stress corrosion cracking and the electrical discharge machining slits given on the mock-up surface were detected. The results show that the ECT can detect a defect of approximately 2.3 mm in length, 0.5 mm in depth and 0.2 mm in width for the BMI welds. From the output voltage of single coil, we estimated that the average and the maximum probe tilt angles on the mock-up surface under scanning were 2.6 degrees and 8.5 degrees, respectively

  7. Influence of process parameters on the weld lines of a micro injection molded component

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2007-01-01

    was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly influenced...

  8. Welding of zircalloy-2 and zircalloy-4 by CO2 laser and by TIG

    International Nuclear Information System (INIS)

    Ram, V.

    1990-01-01

    This study deals with the welding of zircaloy-2 and zircaloy-4 by means of two techniqes, namely tungsten inert gas welding and CO 2 laser welding. Suitable devices and jigs were developed and manufactured to allow the welding of flat specimens and cylindrical specimens. The optimal welding parameters for the two welding methods were determined. The quality of the welds was determined by tensile strength tests at room temperature and by determining the corrosion resistance to steam at temprature of 450 deg C, 550 deg C, and at 650 deg C. The influence of the weld on the microstructure of the material, on its composition and its crystallographic structure was investigated. Analysis of fracture surfaces of the tensile specimens was carried out with a scanning electron microscope. (author)

  9. Effects of the Substitution of the Mo Element W of Super Duplex Stainless Steel Weld on the Secondary Phase Formation and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ji; Lee, Hae-Woo [Dong-A University, Busan (Korea, Republic of)

    2014-03-15

    To investigate the effect of tungsten substitution of molybdenum on the formation of the second phase in Super Duplex Stainless Steel Weldments, welding wires with a composition of 3 wt% Mo, 2.2 wt% Mo-2.2 wt% W were designed for the flux cored arc welding process. As a result, the precipitation of the χ phase and σ phase increased in proportion to the decrease in the amount of δ ferrite content because the reaction, δ ferrite → σ + γ2, proceeded as the temperature rose. Under the same experimental conditions, the precipitation of the second phase, which degrades the properties of the material, was significantly reduced in the W substitution specimens compared to the Mo-only specimens. A polarization test conducted in a salt solution revealed that the pitting potential of the W substitution specimens was higher than that of the Mo-only specimens.

  10. Improving Joint Properties of Friction Welded Joint of High Tensile Steel

    Science.gov (United States)

    Kimura, Masaaki; Kusaka, Masahiro; Seo, Kenji; Fuji, Akiyoshi

    This report describes the improvements in the joint properties of friction welded joint of 780MPa class high tensile steel. Welded joint made by a continuous drive friction welding machine, the conventional method, had not obtained 100% joint efficiency despite applying forge pressure. This was due to the softening of the welded interface zone for heat input during braking times. Therefore, we developed a continuous drive friction welding machine with an electromagnetic clutch to prevent heat input during braking time. We proposed the process as “The Low Heat Input Friction Welding Method (the LHI method).” In this case, the joint had the same tensile strength as the base metal at friction time when the friction torque reached the initial peak torque. That is, the welded joint obtained 100% joint efficiency by using only the friction stage up to the initial peak torque without the forge (upsetting) stage, despite the existence of a slightly softened region adjacent to the welded interface. Furthermore, the softened region was hardly generated when this joint was made by applying forge pressure at the initial peak torque. In conclusion, a welded joint of high tensile steel made by only the friction stage of the LHI method had excellent joint properties. The LHI method has a lot of advantages for joining such materials as super fine grain steel with which conventional fusion welding processes have difficulty.

  11. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    OpenAIRE

    Vargas-Arista, Benjamín; Albiter, Apolinar; García-Vázquez, Felipe; Mendoza-Camargo, Óscar; Hallen, José Manuel

    2014-01-01

    A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ), weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discon...

  12. Welding skate with computerized controls

    Science.gov (United States)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  13. Impact testing of welded samples

    Science.gov (United States)

    Lundeen, Calvin D.

    1992-01-01

    The objective of this paper is to demonstrate how welding practice and joint design affect the performance of the joint. Also demonstrated is the importance of weld inspection to ensure quality welds.

  14. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-11-01

    Full Text Available In the present study, aluminum alloy T-joints were welded using the laser stake-welding process. In order to improve the welding quality of the T-joints, an external electric current was used to aid the laser stake-welding process. The effects of the process parameters on the weld morphology, mechanical properties, and microstructure of the welded joints were analyzed and discussed in detail. The results indicate that the aided electric current should be no greater than a certain maximum value. Upon increasing the aided electric current, the weld width at the skin and stringer faying surface obviously increased, but there was an insignificant change in the penetration depth. Furthermore, the electric current and pressing force should be chosen to produce an expected weld width at the faying surface, whereas the laser power and welding speed should be primarily considered to obtain an optimal penetration depth. The tensile shear specimens failed across the faying surface or failed in the weld zone of the skin. The specimens that failed in the weld of the skin could resist a higher tensile shear load compared with specimens that failed across the faying surface. The microstructural observations and microhardness results demonstrated that the tensile shear load capacity of the aluminum alloy welded T-joint was mainly determined by the weld width at the faying surface.

  15. Development of Alternative Technology to PWHT in Site Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W

    2007-04-15

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition.

  16. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    V Shankar et al. Although much research experience exists on the nature of hot cracking in stainless steels ... that crack-resistant weld deposits could be produced if the composition is adjusted to result in 5–35% fer- .... A large volume of literature is devoted to the prediction and measurement of δ-ferrite in stainless steel ...

  17. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  18. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  19. Development of Technology and Equipment of the Automated Laser Welding for Manufacturing Heat Exchanger Details of Marine Engines

    Directory of Open Access Journals (Sweden)

    Shelyagin, V.D.

    2014-09-01

    Full Text Available Based on the developed automated laser welding technology for flat tubes of copper-nickel alloys laser welding complex technological equipment, which can be applied on the enterprises of machine building, aerospace, shipbuilding and automobile industries, was designed and created. To control the integrity of welded flat tubes a technique, which consists in testing sample pressure and finding defective sections by laser interferometry in the automated mode, was developed. Specialized welding head was designed and manufactured for the industrial use of the developed laser welding technology.

  20. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.