WorldWideScience

Sample records for resistance transgene flow

  1. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  2. Benefits of Transgenic Insect Resistance in Brassica Hybrids under Selection

    Directory of Open Access Journals (Sweden)

    Cynthia L. Sagers

    2015-01-01

    Full Text Available Field trials of transgenic crops may result in unintentional transgene flow to compatible crop, native, and weedy species. Hybridization outside crop fields may create novel forms with potential negative outcomes for wild and weedy plant populations. We report here the outcome of large outdoor mesocosm studies with canola (Brassica napus, transgenic canola, a sexually compatible weed B. rapa, and their hybrids. Brassica rapa was hybridized with canola and canola carrying a transgene for herbivore resistance (Bt Cry1Ac and grown in outdoor mesocosms under varying conditions of competition and insect herbivory. Treatment effects differed significantly among genotypes. Hybrids were larger than all other genotypes, and produced more seeds than the B. rapa parent. Under conditions of heavy herbivory, plants carrying the transgenic resistance were larger and produced more seeds than non-transgenic plants. Pollen derived gene flow from transgenic canola to B. rapa varied between years (5%–22% and was not significantly impacted by herbivory. These results confirm that canola-weed hybrids benefit from transgenic resistance and are aggressive competitors with congeneric crops and ruderals. Because some crop and crop-weed hybrids may be competitively superior, escapees may alter the composition and ecological functions of plant communities near transgenic crop fields.

  3. [Effect of transgenic insect-resistant rice on biodiversity].

    Science.gov (United States)

    Zhang, Lei; Zhu, Zhen

    2011-05-01

    Rice is the most important food crops in maintaining food security in China. The loss of China's annual rice production caused by pests is over ten million tons. Present studies showed that the transgenic insect-resistant rice can substantially reduce the application amount of chemical pesticides. In the case of no pesticide use, the pest density in transgenic rice field is significantly lower than that in non-transgenic field, and the neutral insects and natural enemies of pests increased significantly, indicating that the ecological environment and biodiversity toward the positive direction. The gene flow frequency from transgenic rice is dramatically reduced with the distance increases, reaching less than 0.01% at the distance of 6.2 m. Application of transgenic insect-resistant rice in China has an important significance for ensuring food security, maintaining sustainable agricultural development, and protecting the ecological environment and biodiversity. This review summarized the research progress in transgenic insect-resistant rice and its effect on biodiversity. The research directions and development trends of crop pest controlling in future are discussed. These help to promote better use of transgenic insect-resistant rice.

  4. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  5. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  6. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI in transgenic rice field.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    Full Text Available BACKGROUND: The spread of insect-resistance transgenes from genetically engineered (GE rice to its coexisting weedy rice (O. sativa f. spontanea populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Field performance of fitness-related traits was assessed in advanced hybrid progeny of F(4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent. In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. CONCLUSIONS/SIGNIFICANCE: Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen.

  7. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes (Bt/CpTI) in transgenic rice field.

    Science.gov (United States)

    Yang, Xiao; Wang, Feng; Su, Jun; Lu, Bao-Rong

    2012-01-01

    The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Field performance of fitness-related traits was assessed in advanced hybrid progeny of F(4) generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen.

  8. Production of homozygous transgenic rainbow trout with enhanced disease resistance

    Science.gov (United States)

    Previous studies conducted in our laboratory showed that transgenic medaka expressing cecropin B transgenes exhibited resistant characteristic to fish bacterial pathogens, Pseudomonas fluorescens and Vibrio anguillarum. To confirm whether antimicrobial peptide gene will also exhibit antibacterial an...

  9. Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa.

    Science.gov (United States)

    Londo, Jason P; Bollman, Michael A; Sagers, Cynthia L; Lee, E Henry; Watrud, Lidia S

    2011-08-01

    Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow. No claim to original US government works. New Phytologist © 2011 New Phytologist Trust.

  10. DEVELOPMENT OF MOLECULAR MONITORING TECHNOLOGIES TO MEASURE TRANSGENE FLOW AND INTROGRESSION IN CROP AND NON-CROP PLANT SPECIES

    Science.gov (United States)

    The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...

  11. Assessment of Bollgard II cotton pollen mediated transgenes flow to ...

    African Journals Online (AJOL)

    Assessment of Bollgard II cotton pollen mediated transgenes flow to conventional cotton in the farming conditions of Burkina Faso. Bourgou Larbouga, Sanfo Denys, Tiemtore C Bernard, Traore Oula, Sanou Jacob, Traore Karim ...

  12. Transgene flow: Facts, speculations and possible countermeasures

    Science.gov (United States)

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  13. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  14. Rice transgene flow: its patterns, model and risk management.

    Science.gov (United States)

    Jia, Shirong; Yuan, Qianhua; Pei, Xinwu; Wang, Feng; Hu, Ning; Yao, Kemin; Wang, Zhixing

    2014-12-01

    Progress has been made in a 12 year's systemic study on the rice transgene flow including (i) with experiments conducted at multiple locations and years using up to 21 pollen recipients, we have elucidated the patterns of transgene flow to different types of rice. The frequency to male sterile lines is 10(1) and 10(3) higher than that to O. rufipogon and rice cultivars. Wind speed and direction are the key meteorological factors affecting rice transgene flow. (ii) A regional applicable rice gene flow model is established and used to predict the maximum threshold distances (MTDs) of gene flow during 30 years in 993 major rice producing counties of southern China. The MTD0.1% for rice cultivars is basically ≤5 m in the whole region, despite climate differs significantly at diverse locations and years. This figure is particularly valuable for the commercialization and regulation of transgenic rice. (iii) The long-term fate of transgene integrated into common wild rice was investigated. Results demonstrated that the F1 hybrids of transgenic rice/O. rufipogon gradually disappeared within 3-5 years, and the Bt or bar gene was not detectable in the mixed population, suggesting the O. rufipogon may possess a strong mechanism of exclusiveness for self-protection. (iv) The flowering time isolation and a 2-m-high cloth-screen protection were proved to be effective in reducing transgene flow. We have proposed to use a principle of classification and threshold management for different types of rice. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Competitive performance of transgenic wheat resistant to powdery mildew.

    Directory of Open Access Journals (Sweden)

    Olena Kalinina

    Full Text Available Genetically modified (GM plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis or chitinase and glucanase genes from barley (resistance against fungi in general were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes or the actin promoter from rice (glucanase gene. Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree

  16. Transgenic strategies for improving rice disease resistance | Zhang ...

    African Journals Online (AJOL)

    Improvement of virus resistance can be achieved by generating transgenic rice lines with expression of genes encoding viral coat protein or replication enzymes, expression of RNA interference constructs and suppression of insect vectors. Varieties with improved resistance against fungal and bacterial pathogens can be ...

  17. Transgenic resistance of eggplants to the Colorado potato beetle

    NARCIS (Netherlands)

    Arpaia, S.

    1999-01-01

    The subject of this thesis is the use of transgenic plant resistance as a method to control the Colorado potato beetle, Leptinotarsa decemlineata Say in eggplant. The gene conferring resistance is coding for a Cry3B toxin and it is a synthetic version of a wild-type

  18. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Directory of Open Access Journals (Sweden)

    Wei WANG

    2011-03-01

    Full Text Available Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis were integrated into Oryza sativa L. subsp. japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  19. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  20. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0% compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  1. Transgenic strategies for improving rice disease resistance

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... proteins of both plant origin and non-plant origin that positively regulates the signaling of systemic acquired resistance, which provides broad-spectrum resistance against viruses, bacteria, and fungi, will be useful sources for genetic engineering of broad-spectrum resistance in rice against multiple types of ...

  2. Migratory beekeeping practices contribute insignificantly to transgenic pollen flow among fields of alfalfa produced for seed

    Science.gov (United States)

    Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially iso...

  3. Detailed characterization of Mirafiori lettuce virus-resistant transgenic lettuce.

    Science.gov (United States)

    Kawazu, Yoichi; Fujiyama, Ryoi; Noguchi, Yuji; Kubota, Masaharu; Ito, Hidekazu; Fukuoka, Hiroyuki

    2010-04-01

    Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed 'Kaiser' cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of 'Kaiser,' but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T(3), T(4), and T(5) generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant 'Pacific' cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T(1) and T(2) generations, and that the transgenic T(3) generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T(1) generation, but the full length npt II gene was not detected in the T(2) or T(3) generation. The segregation pattern of the CP and npt II genes in the T(1) generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T(1) plant selected in our study did

  4. Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars.

    Science.gov (United States)

    Hu, Jiahuai; Telenko, Darcy E P; Phipps, Patrick M; Grabau, Elizabeth A

    2014-08-06

    This study presents the results of a comparison that includes an analysis of variance and a canonical discriminant analysis to determine compositional equivalence and similarity between transgenic, sclerotinia blight-resistant and non-transgenic, susceptible cultivars of peanut in 3 years of field trials. Three Virginia-type cultivars (NC 7, Wilson, and Perry) and their corresponding transgenic lines (N70, W73, and P39) with a barley oxalate oxidase gene were analyzed for differences in key mineral nutrients, fatty acid components, hay constituents, and grade characteristics. Results from both analyses demonstrated that transgenic lines were compositionally similar to their non-transgenic parent cultivar in all factors as well as market-grade characteristics and nutritional value. Transgenic lines expressing oxalate oxidase for resistance to sclerotinia blight were substantially equivalent to their non-transgenic parent cultivar in quality and compositional characteristics.

  5. Transgenic approaches for development of disease resistance in banana

    International Nuclear Information System (INIS)

    Shekhawat, Upendra K.S.; Ghag, Siddhesh B.; Ganapathi, Thumballi R.

    2014-01-01

    Banana (Musa spp.) is an important food and cash crop worldwide. Diseases and pests pose the most serious constraint to banana cultivation. Among the diseases, Fusarium wilt and Banana Bunchy Top Virus (BBTV) are the most important economically. We have explored different transgenic approaches for development of efficient resistance in banana against these two diseases. For countering Fusarium wilt, we have over expressed Petunia floral defensins using a strong constitutive promoter in transgenic banana plants. We have also tested a host induced gene silencing strategy targeting two vital fungal genes to obtain Fusarium resistant banana plants. For development of BBTV resistant banana plants also, we have used a host-induced gene silencing approach utilizing the full and partial coding sequence of the viral replication initiation protein. Successful bioassays performed in controlled greenhouse conditions have shown the efficacy of using these strategies to develop disease resistant banana plants. (author)

  6. Risk assessment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo.

    Science.gov (United States)

    Laughlin, Karen D; Power, Alison G; Snow, Allison A; Spencer, Lawrence J

    2009-07-01

    The development of crops genetically engineered for pathogen resistance has raised concerns that crop-to-wild gene flow could release wild or weedy relatives from regulation by the pathogens targeted by the transgenes that confer resistance. Investigation of these risks has also raised questions about the impact of gene flow from conventional crops into wild plant populations. Viruses in natural plant populations can play important roles in plant fecundity and competitive interactions. Here, we show that virus-resistance transgenes and conventional crop genes can increase fecundity of wild plants under virus pressure. We asked how gene flow from a cultivated squash (Cucurbita pepo) engineered for virus resistance would affect the fecundity of wild squash (C. pepo) in the presence and absence of virus pressure. A transgenic squash cultivar was crossed and backcrossed with wild C. pepo from Arkansas. Wild C. pepo, transgenic backcross plants, and non-transgenic backcross plants were compared in field plots in Ithaca, New York, USA. The second and third generations of backcrosses (BC2 and BC3) were used in 2002 and 2003, respectively. One-half of the plants were inoculated with zucchini yellow mosaic virus (ZYMV), and one-half of the plants were maintained as healthy controls. Virus pressure dramatically decreased the fecundity of wild C. pepo plants and non-transgenic backcross plants relative to transgenic backcross plants, which showed continued functioning of the virus-resistance transgene. In 2002, non-transgenic backcross fecundity was slightly higher than wild C. pepo fecundity under virus pressure, indicating a possible benefit of conventional crop alleles, but they did not differ in 2003 when fecundity was lower in both groups. We detected no fitness costs of the transgene in the absence of the virus. If viruses play a role in the population dynamics of wild C. pepo, we predict that gene flow from transgenic, virus-resistant squash and, to a much lesser

  7. Antibiotic-resistant soil bacteria in transgenic plant fields

    OpenAIRE

    Demaneche, S.; Sanguin, H.; Pote, J.; Navarro, Elisabeth; Bernillon, D.; Mavingui, P.; Wildi, W.; Vogel, T. M.; Simonet, P.

    2008-01-01

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-y...

  8. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation.

    Science.gov (United States)

    Rushworth, David; Mathews, Amber; Alpert, Amir; Cooper, Laurence J N

    2015-09-18

    Methotrexate (MTX) is an anti-folate that inhibits de novo purine and thymidine nucleotide synthesis. MTX induces death in rapidly replicating cells and is used in the treatment of multiple cancers. MTX inhibits thymidine synthesis by targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS). The use of MTX to treat cancer also causes bone marrow suppression and inhibits the immune system. This has led to the development of an MTX-resistant DHFR, DHFR L22F, F31S (DHFR(FS)), to rescue healthy cells. 5-Fluorouracil-resistant TYMS T51S, G52S (TYMS(SS)) is resistant to MTX and improves MTX resistance of DHFR(FS) in primary T cells. Here we find that a known mechanism of MTX-induced increase in DHFR expression persists with DHFR(FS) and cis-expressed transgenes. We also find that TYMS(SS) expression of cis-expressed transgenes is similarly decreased in an MTX-inducible manner. MTX-inducible changes in DHFR(FS) and TYMS(SS) expression changes are lost when both genes are expressed together. In fact, expression of the DHFR(FS) and TYMS(SS) cis-expressed transgenes becomes correlated. These findings provide the basis for an unrecognized post-transcriptional mechanism that functionally links expression of DHFR and TYMS. These findings were made in genetically modified primary human T cells and have a clear potential for use in clinical applications where gene expression needs to be regulated by drug or maintained at a specific expression level. We demonstrate a potential application of this system in the controlled expression of systemically toxic cytokine IL-12. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Science.gov (United States)

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  10. Sustainability of insect resistance management strategies for transgenic Bt corn.

    Science.gov (United States)

    Glaser, John A; Matten, Sharlene R

    2003-12-01

    Increasing interest in the responsible management of technology in the industrial and agricultural sectors of the economy has been met thorough the development of broadly applicable tools to assess the "sustainability" of new technologies. An arena ripe for application of such analysis is the deployment of transgenic crops. The new transgenic pesticidal or plant-incorporated protectant (PIP) crops have seen widespread application in the United States based on the features of higher yield, lower applications of insecticides, and control of mycotoxin content. However, open rejection of these new crops in Europe and in other countries has been a surprising message and has limited their worldwide acceptance. The US Environmental Protection Agency's (USEPA) Office of Pesticide Programs (OPP) has worked on the development and analysis of insect resistance management (IRM) strategies and has mandated specific IRM requirements for Bacillus thuringiensis (Bt) crops since 1995 under the Food, Fungicide, Insecticide, and Rodenticide Act. Improvement of data quality and sustainability of IRM strategies have been targeted in an ongoing partnership between the USEPA Office of Research and Development and the Office of Pesticide Programs that will further enhance the agency's ability to develop sustainable insect resistance management strategies for transgenic field corn (Bt corn) producing B. thuringiensis (Bt) insecticidal proteins.

  11. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    Science.gov (United States)

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-04

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  12. Potential shortfall of pyramided transgenic cotton for insect resistance management

    OpenAIRE

    Brévault, Thierry; Heuberger, Shannon; Zhang, Min; Ellers-Kirk, Christa; Ni, Xinzhi; Masson, Luke; Li, Xianchiun; Tabashnik, Bruce E.; Carrière, Yves

    2013-01-01

    To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the “pyramid” strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favori...

  13. Flow resistance in rod assemblies

    International Nuclear Information System (INIS)

    Korsun, A.S.; Sokolova, M.S.

    2000-01-01

    The general form of relation between the resistance force and the velocity vector, resistance tensor structure and possible types of anisotropy in the flow thorough such structures as rod or tube assemblies are under discussion. Some questions of experimental determination of volumetric resistance force tensor are also under consideration. (author)

  14. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    Science.gov (United States)

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  15. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms.

    Science.gov (United States)

    Jiang, Liang; Wang, Genhong; Cheng, Tingcai; Yang, Qiong; Jin, Shengkai; Lu, Gai; Wu, Fuquan; Xiao, Yang; Xu, Hanfu; Xia, Qingyou

    2012-07-01

    Transgenic technology is a powerful tool for improving disease-resistant species. Bmlipase-1, purified from the midgut juice of Bombyx mori, showed strong antiviral activity against B. mori nucleopolyhedrovirus (BmNPV). In an attempt to create an antiviral silkworm strain for sericulture, a transgenic vector overexpressing the Bmlipase-1 gene was constructed under the control of a baculoviral immediate early-1 (IE1) promoter. Transgenic lines were generated via embryo microinjection. The mRNA level of Bmlipase-1 in the midguts of the transgenic line was 27.3 % higher than that of the non-transgenic line. After feeding the silkworm with different amounts of BmNPV, the mortality of the transgenic line decreased to approximately 33 % compared with the non-transgenic line when the virus dose was 10(6) OB/larva. These results imply that overexpressing endogenous antiviral genes can enhance the antiviral resistance of silkworms.

  16. Potential gene flow from transgenic rice (Oryza sativa L.) to different weedy rice (Oryza sativa f. spontanea) accessions based on reproductive compatibility.

    Science.gov (United States)

    Song, Xiaoling; Liu, Linli; Wang, Zhou; Qiang, Sheng

    2009-08-01

    The possibility of gene flow from transgenic crops to wild relatives may be affected by reproductive capacity between them. The potential gene flow from two transgenic rice lines containing the bar gene to five accessions of weedy rice (WR1-WR5) was determined through examination of reproductive compatibility under controlled pollination. The pollen grain germination of two transgenic rice lines on the stigma of all weedy rice, rice pollen tube growth down the style and entry into the weedy rice ovary were similar to self-pollination in weedy rice. However, delayed double fertilisation and embryo abortion in crosses between WR2 and Y0003 were observed. Seed sets between transgenic rice lines and weedy rice varied from 8 to 76%. Although repeated pollination increased seed set significantly, the rank of the seed set between the weedy rice accessions and rice lines was not changed. The germination rates of F(1) hybrids were similar or greater compared with respective females. All F(1) plants expressed glufosinate resistance in the presence of glufosinate selection pressure. The frequency of gene flow between different weedy rice accessions and transgenic herbicide-resistant rice may differ owing to different reproductive compatibility. This result suggests that, when wild relatives are selected as experimental materials for assessing the gene flow of transgenic rice, it is necessary to address the compatibility between transgenic rice and wild relatives.

  17. Use of RNAi technology to develop a PRSV-resistant transgenic papaya.

    Science.gov (United States)

    Jia, Ruizong; Zhao, Hui; Huang, Jing; Kong, Hua; Zhang, Yuliang; Guo, Jingyuan; Huang, Qixing; Guo, Yunling; Wei, Qing; Zuo, Jiao; Zhu, Yun J; Peng, Ming; Guo, Anping

    2017-10-03

    Papaya ringspot virus (PRSV) seriously limits papaya (Carica papaya L.) production in tropical and subtropical areas throughout the world. Coat protein (CP)- transgenic papaya lines resistant to PRSV isolates in the sequence-homology-dependent manner have been developed in the U.S.A. and Taiwan. A previous investigation revealed that genetic divergence among Hainan isolates of PRSV has allowed the virus to overcome the CP-mediated transgenic resistance. In this study, we designed a comprehensive RNAi strategy targeting the conserved domain of the PRSV CP gene to develop a broader-spectrum transgenic resistance to the Hainan PRSV isolates. We used an optimized particle-bombardment transformation system to produce RNAi-CP-transgenic papaya lines. Southern blot analysis and Droplet Digital PCR revealed that line 474 contained a single transgene insert. Challenging this line with different viruses (PRSV I, II and III subgroup) under greenhouse conditions validated the transgenic resistance of line 474 to the Hainan isolates. Northern blot analysis detected the siRNAs products in virus-free transgenic papaya tissue culture seedlings. The siRNAs also accumulated in PRSV infected transgenic papaya lines. Our results indicated that this transgenic papaya line has a useful application against PRSV in the major growing area of Hainan, China.

  18. Influence of coat protein transgene copy number on resistance in transgenic line 63-1 against Papaya ringspot virus isolates

    NARCIS (Netherlands)

    Souza, M.T.; Níckel, O.; Gonsalves, D.

    2005-01-01

    Line 63-1 is a 'Sunset'-derived transgenic papaya expressing the coat protein (CP) gene from a mild mutant of a Hawaiian isolate of Papaya ringspot virus (PRSV). Previous work showed that line 63-1 R, plants exhibited a range of resistance to severe PRSV isolates from Hawaii (HA), Jamaica (JA),

  19. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    Science.gov (United States)

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  20. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants.

    Science.gov (United States)

    Ko, Moonkyung; Cho, Jung Hyun; Seo, Hyo-Hyoun; Lee, Hyun-Hwa; Kang, Ha-Young; Nguyen, Thai Son; Soh, Hyun Cheol; Kim, Young Soon; Kim, Jeong-Il

    2016-08-01

    Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling

  1. RESISTANCE EVALUATION ON POPULATIONS OF CROSSES BETWEEN TRANSGENIC POTATO KATAHDIN RB AND NON-TRANSGENIC ATLANTIC AND GRANOLA TO LATE BLIGHT (Phytophthora infestans IN CONFINED FIELD TRIAL

    Directory of Open Access Journals (Sweden)

    Alberta Dinar Ambarwati

    2011-04-01

    Full Text Available Late blight resistance gene (RB gene isolated from Solanum bulbocastanum, is a broad resistance gene against all races of Phytophthora infestans. The gene was transformed into Katah-din event SP904 and SP951 using Agrobacterium tumefaciens and these transgenic plants have been crossed with susceptible potato cultivars Atlantic and Granola. Populations of the crosses have been molecularly characterized for the integration of the RB transgene. The study aimed to evaluate the resistance of the populations of crosses between transgenic Katahdin RB  and susceptible non-transgenic parents (Atlantic and Granola to late blight in a confined field trial at Pasir Sarongge, Cianjur, West Java. A total of 84 clones originated from four popula-tions were evaluated for resistance to late blight. These included 22 clones of Atlantic x transgenic Katahdin SP904, 16 clones of Atlantic x transgenic Katahdin SP951, 19 clones of Granola x transgenic Katahdin SP904, and 27 clones of Granola x transgenic Katahdin SP951. Observations of the late blight infection were conducted when late blight symptoms were detected, i.e. at 56, 60, 63, 70, and 77 days after planting (DAP. The result showed there were high variations in the resistance level of all the 84 clones tested. Clones of crosses between susceptible parents (Atlantic or Granola and resistant parents (transgenic Katahdin SP904 or Katahdin SP951 showed a similar pattern based on the area under disease progress curve (AUDPC value, i.e. 377.2 greater than the AUDPC of the resistant parents (180.1, but smaller than that of the susceptible parents (670.7. Observation at 77 DAP resulted four resistant potato clones having resistance score of 7.0-7.6, higher than the transgenic parents Katahdin SP904 (4.6 and Katahdin SP951 (6.8, i.e. clone B8 (Atlantic x transgenic Katahdin SP951 with resistance score of 7.6 and clones B26 (Atlantic x transgenic Katahdin SP951, C183 (Granola x transgenic Katahdin SP904, and D89

  2. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4

    OpenAIRE

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-01-01

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, ...

  3. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda)

    Science.gov (United States)

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm is a devastating pest controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein. However, fall armyworm populations ...

  4. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies.

    Science.gov (United States)

    Fuchs, Marc; Gonsalves, Dennis

    2007-01-01

    Potential safety issues have been raised with the development and release of virus-resistant transgenic plants. This review focuses on safety assessment with a special emphasis on crops that have been commercialized or extensively tested in the field such as squash, papaya, plum, grape, and sugar beet. We discuss topics commonly perceived to be of concern to the environment and to human health--heteroencapsidation, recombination, synergism, gene flow, impact on nontarget organisms, and food safety in terms of allergenicity. The wealth of field observations and experimental data is critically evaluated to draw inferences on the most relevant issues. We also express inside views on the safety and benefits of virus-resistant transgenic plants, and recommend realistic risk assessment approaches to assist their timely deregulation and release.

  5. Gene flow and simulation of transgene dispersal from hybrid poplar plantations.

    Science.gov (United States)

    DiFazio, Stephen P; Leonardi, Stefano; Slavov, Gancho T; Garman, Steven L; Adams, W Thomas; Strauss, Steven H

    2012-03-01

    Gene flow is a primary determinant of potential ecological impacts of transgenic trees. However, gene flow is a complex process that must be assessed in the context of realistic genetic, management, and environmental conditions. We measured gene flow from hybrid poplar plantations using morphological and genetic markers, and developed a spatially explicit landscape model to simulate pollination, dispersal, establishment, and mortality in the context of historical and projected disturbance and land-use regimes. Most pollination and seed establishment occurred within 450 m of the source, with a very long tail. Modeled transgene flow was highly context-dependent, strongly influenced by the competitive effects of transgenes, transgenic fertility, plantation rotation length, disturbance regime, and spatial and temporal variation in selection. The use of linked infertility genes even if imperfect, substantially reduced transgene flow in a wide range of modeled scenarios. The significance of seed and vegetative dispersal was highly dependent on plantation size. Our empirical and modeling studies suggest that transgene spread can be spatially extensive. However, the amount of spread is highly dependent on ecological and management context, and can be greatly limited or prevented by management or mitigation genes such as those that cause sexual infertility. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase.

    Science.gov (United States)

    Dowd, P F; Lagrimini, L M; Herms, D A

    1998-07-01

    Leaves of transgenic sweetgum (Liquidambar styraciflua) trees that expressed tobacco anionic peroxidase were compared with leaves of L. styraciflua trees that did not express the tobacco enzyme. Leaves of the transgenic trees were generally more resistant to feeding by caterpillars and beetles than wild-type leaves. However, as for past studies with transgenic tobacco and tomato expressing the tobacco anionic peroxidase, the degree of relative resistance depended on the size of insect used and the maturity of the leaf. Decreased growth of gypsy moth larvae appeared mainly due to decreased consumption, and not changes in the nutritional quality of the foliage. Transgenic leaves were more susceptible to feeding by the corn earworm, Helicoverpa zea. Thus, it appears the tobacco anionic peroxidase can contribute to insect resistance, but its effects are more predictable when it is expressed in plant species more closely related to the original gene source.

  7. Production of transgenic brassica juncea with the synthetic chitinase gene (nic) conferring resistance to alternaria brassicicola

    International Nuclear Information System (INIS)

    Munir, I.; Hussan, W.; Kazi, M.; Mian, A.

    2016-01-01

    Brassica juncea is an important oil seed crop throughout the world. The demand and cultivation of oil seed crops has gained importance due to rapid increase in world population and industrialization. Fungal diseases pose a great threat to Brassica productivity worldwide. Absence of resistance genes against fungal infection within crossable germplasms of this crop necessitates deployment of genetic engineering approaches to produce transgenic plants with resistance against fungal infections. In the current study, hypocotyls and cotyledons of Brassica juncea, used as explants, were transformed with Agrobacterium tumefacien strain EHA101 harboring binary vector pEKB/NIC containing synthetic chitinase gene (NIC), an antifungal gene under the control of cauliflower mosaic virus promoter (CaMV35S). Bar genes and nptII gene were used as selectable markers. Presence of chitinase gene in trangenic lines was confirmed by PCR and southern blotting analysis. Effect of the extracted proteins from non-transgenic and transgenic lines was observed on the growth of Alternaria brassicicola, a common disease causing pathogen in brassica crop. In comparison to non-transgenic control lines, the leaf tissue extracts of the transgenic lines showed considerable resistance and antifungal activity against A. brassicicola. The antifungal activity in transgenic lines was observed as corresponding to the transgene copy number. (author)

  8. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens.

    Science.gov (United States)

    Rivero, Mercedes; Furman, Nicolás; Mencacci, Nicolás; Picca, Pablo; Toum, Laila; Lentz, Ezequiel; Bravo-Almonacid, Fernando; Mentaberry, Alejandro

    2012-01-20

    Solanum tuberosum plants were transformed with three genetic constructions expressing the Nicotiana tabacum AP24 osmotine, Phyllomedusa sauvagii dermaseptin and Gallus gallus lysozyme, and with a double-transgene construction expressing the AP24 and lysozyme sequences. Re-transformation of dermaseptin-transformed plants with the AP24/lysozyme construction allowed selection of plants simultaneously expressing the three transgenes. Potato lines expressing individual transgenes or double- and triple-transgene combinations were assayed for resistance to Erwinia carotovora using whole-plant and tuber infection assays. Resistance levels for both infection tests compared consistently for most potato lines and allowed selection of highly resistant phenotypes. Higher resistance levels were found in lines carrying the dermaseptin and lysozyme sequences, indicating that theses proteins are the major contributors to antibacterial activity. Similar results were obtained in tuber infection tests conducted with Streptomyces scabies. Plant lines showing the higher resistance to bacterial infections were challenged with Phytophthora infestans, Rhizoctonia solani and Fusarium solani. Considerable levels of resistance to each of these pathogens were evidenced employing semi-quantitative tests based in detached-leaf inoculation, fungal growth inhibition and in vitro plant inoculation. On the basis of these results, we propose that stacking of these transgenes is a promising approach to achieve resistance to both bacterial and fungal pathogens. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Paraquat resistance of transgenic tobacco plants over-expressing the Ochrobactrum anthropi pqrA gene.

    Science.gov (United States)

    Jo, Jinki; Won, Sung-Hye; Son, Daeyoung; Lee, Byung-Hyun

    2004-09-01

    Transgenic tobacco plants over-expressing the Ochrobactrum anthropi pqrA gene, which encodes a membrane transporter mediating resistance to paraquat, were generated. Transgenic plants displayed higher resistance against paraquat than wild-type plants, as estimated by plant viability, ion leakage and chlorophyll loss, but no resistance against other active oxygen generators, such as H2O2 and menadione. Moreover, lower levels of paraquat accumulated in transgenic plants, compared to wild-type plants, indicating that the PqrA protein detoxifies paraquat either via increased efflux or decreased uptake of the herbicide, but not by removing active oxygen species. The results collectively demonstrate that the bacterial paraquat resistance gene, pqrA, can be functionally expressed in plant cells, and utilized for the development of paraquat-resistant crop plants.

  10. Gene flow from transgenic rice to red rice (Oryza sativa L.) in the field.

    Science.gov (United States)

    Busconi, M; Baldi, G; Lorenzoni, C; Fogher, C

    2014-01-01

    In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide-resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance.

    Science.gov (United States)

    Keller, H; Pamboukdjian, N; Ponchet, M; Poupet, A; Delon, R; Verrier, J L; Roby, D; Ricci, P

    1999-02-01

    The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.

  12. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera.

    Science.gov (United States)

    Ghosh, Gourab; Ganguly, Shreeparna; Purohit, Arnab; Chaudhuri, Rituparna Kundu; Das, Sampa; Chakraborti, Dipankar

    2017-07-01

    Independent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations. Lepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T 0 transformants were selected on the basis of PCR and protein expression profile. T 1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T 1 transgenic events was 0.140-0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second-fourth instar larvae of H. armigera and ultimately 80-100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T 2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T 3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T 0 , T 1, and T 2 ). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.

  13. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    Science.gov (United States)

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred

  14. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events

    OpenAIRE

    Santos-Amaya, Oscar F.; Rodrigues, Jo?o V. C.; Souza, Thadeu C.; Tavares, Cl?bson S.; Campos, Silverio O.; Guedes, Raul N.C.; Pereira, Eliseu J.G.

    2015-01-01

    Transgenic crop ?pyramids? producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the ?pyramid? resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to...

  15. Comparison of the physiological characteristics of transgenic insect-resistant cotton and conventional lines.

    Science.gov (United States)

    Li, Xiaogang; Ding, Changfeng; Wang, Xingxiang; Liu, Biao

    2015-03-04

    The introduction of transgenic insect-resistant cotton into agricultural ecosystems has raised concerns regarding its ecological effects. Many studies have been conducted to compare the differences in characteristics between transgenic cotton and conventional counterparts. However, few studies have focused on the different responses of transgenic cotton to stress conditions, especially to the challenges of pathogens. The aim of this work is to determine the extent of variation in physiological characteristics between transgenic insect-resistant cotton and the conventional counterpart infected by cotton soil-borne pathogens. The results showed that the difference in genetic backgrounds is the main factor responsible for the effects on biochemical characteristics of transgenic cotton when incubating with cotton Fusarium oxysporum. However, genetic modification had a significantly greater influence on the stomatal structure of transgenic cotton than the effects of cotton genotypes. Our results highlight that the differences in genetic background and/or genetic modifications may introduce variations in physiological characteristics and should be considered to explore the potential unexpected ecological effects of transgenic cotton.

  16. RNAi-mediated resistance to SMV and BYMV in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Lo Thi Mai Thu

    2016-09-01

    Full Text Available Soybean mosaic virus (SMV and bean yellow mosaic virus (BYMV are two typical types of viruses that cause mosaic in soybean plants. Multiple viral infections at the same site can lead to 66% to 80% yield reduction. We have aimed to improve SMV and BYMV resistance in Vietnamese soybeans using gene transfer techniques under the mechanism of RNAi. In this study, we present newly generated transgenic tobacco plants carrying RNAi [CPi (SMV-BYMV] resistance to the two types of viruses; 73.08% of transgenic tobacco lines proved to be fully resistant to SMV and BYMV. In addition, the number of virus copies in transgenic tobacco plants was reduced on average by more than 51% compared to the control plants (wild type. This promising result shows the potential of transerring the CPi (SMV-BYMV structure in soybean to increase resistance of soybean to SMV and BYMV and advance the aims of antiviral soybean breeding in Vietnam.

  17. A study on compatibilities on transgenic herbicide-resistant rice with wild relatives by using autoradiography of 32P labeled pollen

    International Nuclear Information System (INIS)

    Liu Linli; Qiang Sheng; Song Xiaoling

    2004-01-01

    To evaluate the possibility of gene flow through observation of the sexual compatibilities of transgenic herbicide-resistant rice with wild relative by using isotope tracer to label pollen grains, the experiments on radioactivity, tracer mode, autoradiography film and time were conducted. Better procedure was to label pollen grains of transgenic herbicide-resistant rice by culturing the rice in a 1.48 x 10 7 Bq/L 32 P nutrient liquid, to pollinate the labelled pollen grains on the stigmas of barnyard grass (Echinochloa crusgalli var. mitis), Oryza officinalis and weedy rice (Oryza sativa) respectively, and then 3 hour later, to fix these pistils on a piece of glass plate and cover the film of Luck 400 on it for autoradiography. The autoradiographs show that the tube of the transgenic rice's pollens cannot penetrate the stigma of barnyard grass and arrive at embryo sacs to fertilize, so that the possibility of gene flow between them is the lowest; the tube of the labelled pollens can penetrate the stigma of O officinalis and enter the style but can not arrive at embryo sacs to fertilize, so the possibility of gene flow between them is relatively low; and the pollen tube can arrive at the embryo sacs of the weedy rice, so that the possibility of gene flow is relatively high from transgenic herbicide-resistant rice to weedy rice. (authors)

  18. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates.

    Science.gov (United States)

    Li, Xiaogang; Liu, Biao; Wang, Xingxiang; Han, Zhengmin; Cui, Jinjie; Luo, Junyu

    2012-03-01

    Impacts on soil invertebrates are an important aspect of environmental risk assessment and post-release monitoring of transgenic insect-resistant plants. The purpose of this study was to research and survey the effects of transgenic insect-resistant cottons that had been planted over 10 years on the abundance and community structure of soil invertebrates under field conditions. During 3 consecutive years (2006-2008), eight common taxa (orders) of soil invertebrates belonging to the phylum Arthropoda were investigated in two different transgenic cotton fields and one non-transgenic cotton field (control). Each year, soil samples were taken at four different growth stages of cotton (seedling, budding, boll forming and boll opening). Animals were extracted from the samples using the improved Tullgren method, counted and determined to the order level. The diversity of the soil fauna communities in the different fields was compared using the Simpson's, Shannon's diversity indices and evenness index. The results showed a significant sampling time variation in the abundance of soil invertebrates monitored in the different fields. However, no difference in soil invertebrate abundance was found between the transgenic cotton fields and the control field. Both sampling time and cotton treatment had a significant effect on the Simpson's, Shannon's diversity indices and evenness index. They were higher in the transgenic fields than the control field at the growth stages of cotton. Long-term cultivation of transgenic insect-resistant cottons had no significant effect on the abundance of soil invertebrates. Collembola, Acarina and Araneae could act as the indicators of soil invertebrate in this region to monitor the environmental impacts of transgenic plants in the future. This journal is © The Royal Society of Chemistry 2012

  19. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina.

    Science.gov (United States)

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2018-03-01

    Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.

  20. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    Science.gov (United States)

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  2. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes.

    Science.gov (United States)

    Schaefer, Scott C; Gasic, Ksenija; Cammue, Bruno; Broekaert, Willem; van Damme, Els J M; Peumans, Willy J; Korban, Schuyler S

    2005-11-01

    Genes coding for an iris ribosomal-inactivating protein (I-RIP), a maize beta-glucanase (M-GLU), and a Mirabilis jalapa antimicrobial peptide (Mj-AMP1) were separately introduced into tomato (Lycopersicon esculentum cv. Sweet Chelsea) cotyledons via Agrobacterium tumefaciens-mediated transformation. Transgenic lines carrying each of the transgenes were confirmed for integration into the tomato genome using Southern blot hybridization. Transcription of I-RIP, M-GLU, and Mj-AMP1 genes in various transgenic lines was determined using Northern blot analysis. Plants of selected transgenic lines were inoculated with a 2-3x10(4) conidial spores/ml suspension of the fungal pathogen Alternaria solani, the causal agent of tomato early blight. Compared to control (non-transformed) plants, two transgenic lines carrying either a M-GLU or Mj-AMP1 showed enhanced resistance to early blight disease. None of the four lines carrying the I-RIP transgene showed increased resistance to early blight.

  3. Development of transgenic sweet potato with multiple virus resistance in South Africa (SA).

    Science.gov (United States)

    Sivparsad, B J; Gubba, A

    2014-04-01

    Multiple infections of Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus G (SPVG) and Sweet potato mild mottle virus (SPMMV) cause a devastating synergistic disease complex of sweet potato (Ipomoea batatas Lam.) in KwaZulu-Natal, South Africa. In order to address the problem of multiple virus infections and synergism, this study aimed to develop transgenic sweet potato (cv. Blesbok) plants with broad virus resistance. Coat protein gene segments of SPFMV, SPCSV, SPVG and SPMMV were used to induce gene silencing in transgenic sweet potato. Transformation of apical tips of sweet potato cv. Blesbok was achieved by using Agrobacterium tumefaciens strain LBA4404 harboring the expression cassette. Polymerase chain reaction and Southern blot analyses showed integration of the transgenes occurred in six of the 24 putative transgenic plants and that all plants seemed to correspond to the same transformation event. The six transgenic plants were challenged by graft inoculation with SPFMV, SPCSV, SPVG and SPMMV-infected Ipomoea setosa Ker. Although virus presence was detected using nitrocellulose enzyme-linked immunosorbent assay, all transgenic plants displayed delayed and milder symptoms of chlorosis and mottling of lower leaves when compared to the untransformed control plants. These results warrant further investigation on resistance to virus infection under field conditions.

  4. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    Science.gov (United States)

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.

  5. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide.

    Science.gov (United States)

    Wang, Wei; Xia, Hui; Yang, Xiao; Xu, Ting; Si, Hong Jiang; Cai, Xing Xing; Wang, Feng; Su, Jun; Snow, Allison A; Lu, Bao-Rong

    2014-04-01

    Understanding evolutionary interactions among crops and weeds can facilitate effective weed management. For example, gene flow from crops to their wild or weedy relatives can lead to rapid evolution in recipient populations. In rice (Oryza sativa), transgenic herbicide resistance is expected to spread to conspecific weedy rice (Oryza sativa f. spontanea) via hybridization. Here, we studied fitness effects of transgenic over-expression of a native 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) gene developed to confer glyphosate resistance in rice. Controlling for genetic background, we examined physiological traits and field performance of crop-weed hybrid lineages that segregated for the presence or absence of this novel epsps transgene. Surprisingly, we found that transgenic F2 crop-weed hybrids produced 48-125% more seeds per plant than nontransgenic controls in monoculture- and mixed-planting designs without glyphosate application. Transgenic plants also had greater EPSPS protein levels, tryptophan concentrations, photosynthetic rates, and per cent seed germination compared with nontransgenic controls. Our findings suggest that over-expression of a native rice epsps gene can lead to fitness advantages, even without exposure to glyphosate. We hypothesize that over-expressed epsps may be useful to breeders and, if deployed, could result in fitness benefits in weedy relatives following transgene introgression. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  7. Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil.

    Science.gov (United States)

    Abud, S; de Souza, P I M; Vianna, G R; Leonardecz, E; Moreira, C T; Faleiro, F G; Júnior, J N; Monteiro, P M F O; Rech, E L; Aragão, F J L

    2007-06-30

    Evaluation of transgenic crops under field conditions is a fundamental step for the production of genetically engineered varieties. In order to determine if there is pollen dispersal from transgenic to nontransgenic soybean plants, a field release experiment was conducted in the Cerrado region of Brazil. Nontransgenic plants were cultivated in plots surrounding Roundup Ready transgenic plants carrying the cp4 epsps gene, which confers herbicide tolerance against glyphosate herbicide, and pollen dispersal was evaluated by checking for the dominant gene. The percentage of cross-pollination was calculated as a fraction of herbicide-tolerant and -nontolerant plants. The greatest amount of transgenic pollen dispersion was observed in the first row, located at one meter from the central (transgenic) plot, with a 0.52% average frequency. The frequency of pollen dispersion decreased to 0.12% in row 2, reaching 0% when the plants were up to 10 m distance from the central plot. Under these conditions pollen flow was higher for a short distance. This fact suggests that the management necessary to avoid cross-pollination from transgenic to nontransgenic plants in the seed production fields should be similar to the procedures currently utilized to produce commercial seeds.

  8. Comparative analysis of nutritional compositions of transgenic RNAi-mediated virus-resistant bean (event EMB-PV051-1) with its non-transgenic counterpart.

    Science.gov (United States)

    Carvalho, José L V; de Oliveira Santos, Juliana; Conte, Carmine; Pacheco, Sidney; Nogueira, Elsa O P L; Souza, Thiago L P O; Faria, Josias C; Aragão, Francisco J L

    2015-10-01

    Golden mosaic is among the most economically important diseases that severely reduce bean production in Latin America. In 2011, a transgenic bean event named Embrapa 5.1 (EMB-PV051-1), resistant to bean golden mosaic virus, was approved for commercial release in Brazil. The aim of this study was to measure and evaluate the nutritional components of the beans, as well as the anti-nutrient levels in the primary transgenic line and its derived near-isogenic lines after crosses and backcrosses with two commercial cultivars. Nutritional assessment of transgenic crops used for human consumption is an important aspect of safety evaluations. Results demonstrated that the transgenic bean event, cultivated under field conditions, was substantially equivalent to that of the non-transgenic bean plants. In addition, the amounts of the nutritional components are within the range of values observed for several bean commercial varieties grown across a range of environments and seasons.

  9. Simultaneous activation of salicylate production and fungal resistance in transgenic chrysanthemum producing caffeine

    Science.gov (United States)

    Kim, Yun-Soo; Lim, Soon; Yoda, Hiroshi; Choi, Chang-Sun; Choi, Yong-Eui

    2011-01-01

    Caffeine functions in the chemical defense against biotic attackers in a few plant species including coffee and tea. Transgenic tobacco plants that endogenously produced caffeine by expressing three N-methyltransferases involved in the caffeine biosynthesis pathway exhibited a strong resistance to pathogens and herbivores. Here we report that transgenic Chrysanthemum, which produced an equivalent level of caffeine as the tobacco plants at approximately 3 µg g−1 fresh tissues, also exhibited a resistance against grey mold fungal attack. Transcripts of PR-2 gene, a marker for pathogen response, were constitutively accumulated in mature leaves without pathogen attack. The levels of salicylic acid and its glucoside conjugate in mature leaves of the transgenic lines were found to be 2.5-fold higher than in the wild type control. It is suggested that endogenous caffeine stimulated production and/or deposition of salicylates, which possibly activated a series of defense reactions even under non-stressed conditions. PMID:21346420

  10. The utility of flow sorting to identify chromosomes carrying a single copy transgene in wheat

    Czech Academy of Sciences Publication Activity Database

    Cápal, Petr; Endo, Takashi R.; Vrána, Jan; Kubaláková, Marie; Karafiátová, Miroslava; Komínková, Eva; Mora-Ramirez, I.; Weschke, W.; Doležel, Jaroslav

    2016-01-01

    Roč. 12, APR 25 (2016), s. 24 ISSN 1746-4811 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : Transgene localization * Flow cytometric sorting * Single chromosome amplification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.510, year: 2016

  11. Line 63-1: A New Virus-resistant Transgenic Papaya

    NARCIS (Netherlands)

    Tennant, P.; Souza, M.T.; Fitch, M.M.; Manshardt, R.; Slightom, J.L.; Gonsalves, D.

    2005-01-01

    The disease resistance of a transgenic line expressing the coat protein (CP) gene of the mild strain of the papaya ringspot virus (PRSV) from Hawaii was further analyzed against PRSV isolates from Hawaii and other geographical regions. Line 63-1 originated from the same transformation experiment

  12. Field resistance of transgenic plantain to nematodes has potential for future African food security.

    Science.gov (United States)

    Tripathi, Leena; Babirye, Annet; Roderick, Hugh; Tripathi, Jaindra N; Changa, Charles; Urwin, Peter E; Tushemereirwe, Wilberforce K; Coyne, Danny; Atkinson, Howard J

    2015-01-30

    Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.

  13. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  14. Kanamycin resistance during in vitro development of pollen from transgenic tomato plants

    NARCIS (Netherlands)

    Bino, R.J.; Hille, J.; Franken, J.

    1987-01-01

    Effects of kanamycin on pollen germination and tube growth of pollen from non-transformed plants and from transgenic tomato plants containing a chimaeric kanamycin resistance gene were determined. Germination of pollen was not affected by the addition of kanamycin to the medium in both genotypes.

  15. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Science.gov (United States)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  16. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    Science.gov (United States)

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  17. Protection and coexistence of conventional papaya productions with PRSV resistant transgenic papaya

    Science.gov (United States)

    Papaya ringspot virus (PRSV) is a devastating disease that has a detrimental impact on both commercial papaya production and Caricaceae germplasm conservation. Transgenic line 55-1 and derived progeny ‘SunUp’ and ‘Rainbow’ are resistant to PRSV and have saved the papaya industry in Hawaii. In small...

  18. Transgenic potato plants expressing cry3A gene confer resistance to Colorado potato beetle.

    Science.gov (United States)

    Mi, Xiaoxiao; Ji, Xiangzhuo; Yang, Jiangwei; Liang, Lina; Si, Huaijun; Wu, Jiahe; Zhang, Ning; Wang, Di

    2015-07-01

    The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  19. Establishment of a rice transgene flow model for predicting maximum distances of gene flow in southern China.

    Science.gov (United States)

    Yao, Kemin; Hu, Ning; Chen, Wanlong; Li, Renzhong; Yuan, Qianhua; Wang, Feng; Qian, Qian; Jia, Shirong

    2008-01-01

    We aimed to establish a rice gene flow model based on (i) the Gaussian plume model, (ii) data from a three-location x 3-yr field experiment on transgene flow to common rice cultivars (Oryza sativa), male sterile (ms) lines (O. sativa) and common wild rice (Oryza rufipogon), and (iii) 32-yr historical meteorological data collected from 38 meteorological stations in southern China during the rice flowering period. The concept of the gene flow coefficient (GFC) is proposed; that is, the ratio of the transgene flow frequency (G%) obtained from field experiments to the aggregated pollen dispersal frequency (P%) calculated based on the pollen dispersal model. The maximum distances of gene flow (MDGF) to traditional rice cultivars, ms lines, and common wild rice at a threshold value of either 1.0 or 0.1% were determined. The MDGF and its spatial distribution in southern China show that the gene flow pattern is significantly affected by the monsoon climate, the topography, and the outcrossing ability of recipients. We believe that the information provided in this study will be useful for the risk assessment of transgenic rice in other rice-growing regions.

  20. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. A built-in mechanism to mitigate the spread of insect-resistance and herbicide-tolerance transgenes into weedy rice populations.

    Science.gov (United States)

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m(2), which is approximately the recommended dose for the field application to control common rice weeds, killed all F(2) plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations.

  2. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    Science.gov (United States)

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  4. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  5. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood.

    Science.gov (United States)

    Marrelli, Mauro T; Li, Chaoyang; Rasgon, Jason L; Jacobs-Lorena, Marcelo

    2007-03-27

    The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgenic mosquitoes when fed on noninfected mice. Here we show that when fed on mice infected with P. berghei, these transgenic mosquitoes are more fit (higher fecundity and lower mortality) than sibling nontransgenic mosquitoes. In cage experiments, transgenic mosquitoes gradually replaced nontransgenics when mosquitoes were maintained on mice infected with gametocyte-producing parasites (strain ANKA 2.34) but not when maintained on mice infected with gametocyte-deficient parasites (strain ANKA 2.33). These findings suggest that when feeding on Plasmodium-infected blood, transgenic malaria-resistant mosquitoes have a selective advantage over nontransgenic mosquitoes. This fitness advantage has important implications for devising malaria control strategies by means of genetic modification of mosquitoes.

  6. Influence of planting papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity.

    Science.gov (United States)

    Hsieh, Yi-Ting; Pan, Tzu-Ming

    2006-01-11

    To investigate the influence of papaya ringspot virus resistant transgenic papaya on soil microorganisms, upper (0-15 cm) and lower layers (15-30 cm) of soil samples were collected around transgenic papaya planting area and nontransgenic papaya planting area and from soils in which plants had not been grown. The moisture content, pH value, total organic carbon content, and total nitrogen content were not significantly different among groups. The populations of total count, fungi, and actinomycete were highest in upper layer soils around transgenic papaya planting area and lowest in lower layer soils in which plants had not been grown. The microbial populations were all higher in upper layer of soils. Amplified fragment length polymorphism, amplified ribosomal DNA restriction analysis, terminal restriction fragment length polymorphism, and denaturing gradient gel electrophoresis analyses indicated that the similarity of soil microorganisms of upper layer soils around transgenic papaya planting area and around nontransgenic papaya planting area was >80%. A similar result was observed in lower layer soils. Thus, planting transgenic papayas does have a limited impact on soil microorganisms.

  7. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  8. Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of zucchini yellow mosaic virus

    Science.gov (United States)

    H. E. Simmons; Holly Prendeville; J. P. Dunham; M. J. Ferrari; J. D. Earnest; D. Pilson; G. P. Munkvold; E. C. Holmes; A. G. Stephenson

    2015-01-01

    Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic...

  9. Transgenic tomato hybrids resistant to tomato spotted wilt virus infection.

    NARCIS (Netherlands)

    Haan, de P.; Ultzen, T.; Prins, M.; Gielen, J.; Goldbach, R.; Grinsven, van M.

    1996-01-01

    Tomato spotted wilt virus (TSWV) infections cause significant economic losses in the commercial culture of tomato (Lycopersicon esculentum). Culture practices have only been marginally effective in controlling TSWV. The ultimate way to minimize losses caused by TSWV is resistant varieties. These can

  10. Transgenic resistance confers effective field level control of bacterial spot disease in tomato.

    Directory of Open Access Journals (Sweden)

    Diana M Horvath

    Full Text Available We investigated whether lines of transgenic tomato (Solanum lycopersicum expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides.

  11. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  12. THE SEGREGATION PATTERN OF INSECT RESISTANCE GENES IN THE PROGENIES AND CROSSES OF TRANSGENIC ROJOLELE RICE

    Directory of Open Access Journals (Sweden)

    Satoto Satoto

    2016-10-01

    Full Text Available Successful application of genetic transformation technique, especially in developing rice variety resistant to brown plant hopper and stem borer, will depend on transgene being expressed and the gene inherited in a stable and predictable manner. This study aimed to analyse transgene segregation pattern of the progenies and the crosses of transgenic rice cv. Rojolele harboring cry1Ab and gna genes. The third generation (T2 of fivetransgenic Rojolele events containing gna and/or cry1Ab were evaluated for two generations to identify the homozygous lines and to study their inheritance. The homozygous lines were selected based on the result of PCR technique. The segregation patterns of gna and cry1Ab were studied in eight F2 populations derived from Rojolele x transgenic Rojolele homozygous for cry1Ab and or gna and their reciprocal crosses. Data  resulted from PCR of F2 population were analysed using a Chi Square test. The study obtained six homozygous lines for gna, namely A22- 1-32, A22-1-37, C72-1-9, F11-1-48, K21-1-39, K21-1-48, and two homozygous lines for cry1Ab, namely K21-1-39 and K21- 1-48. Both cry1Ab and gna transgenes had been inherited through selfing and crossing with their wild type as indicated from the F1 containing gna and cry1Ab as many as 48.4% and 47.4%, respectively. In six of the eight crosses, gna was inherited in a 3:1 ratio consistent with Mendelian inheritance of a single dominant locus, while in the remaining two crosses, gna was segregated in a 1:1 ratio. The presence of cry1Ab in F2 populations also showed a 3:1 segregation ratio in all crosses. In the F2 population derived from F1 plant containing cry1Ab and gna, both transgenes segregated in a 9:3:3:1 dihybrid segregation ratio. This study will add to the diversity of genetic sources for insect resistance and allow further use of these transgenic lines for pyramiding resistance to brown plant hopper and stem borer or  separately in rice breeding programs whenever

  13. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants.

    Science.gov (United States)

    Ghag, Siddhesh B; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2014-07-04

    In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc. Published by Oxford University Press

  14. Inheritance and effectiveness of two transgenes determining PVY resistance in progeny from crossing independently transformed tobacco lines.

    Science.gov (United States)

    Czubacka, Anna; Sacco, Ermanno; Olszak-Przybyś, Hanna; Doroszewska, Teresa

    2017-05-01

    Genetic transformation of plants allows us to obtain improved genotypes enriched with the desired traits. However, if transgenic lines were to be used in breeding programs the stability of inserted transgenes is essential. In the present study, we followed the inheritance of transgenes in hybrids originated from crossing two transgenic tobacco lines resistant to Potato virus Y (PVY): MN 944 LMV with the transgene containing Lettuce mosaic virus coat protein gene (LMV CP) and AC Gayed ROKY2 with PVY replicase gene (ROKY2). Progeny populations generated by successive self-pollination were analyzed with respect to the transgene segregation ratio and resistance to Potato virus Y in tests carried out under greenhouse conditions. The presence of the virus in inoculated plants was detected by DAS-ELISA method. The results demonstrated the Mendelian fashion of inheritance of transgenes which were segregated independently and stably. As a result, we obtained T 4 generation of hybrid with both transgenes stacked and which was highly resistant to PVY.

  15. Transgenic plants: resistance to abiotic and biotic stresses

    Directory of Open Access Journals (Sweden)

    Akila Wijerathna-Yapa

    2017-06-01

    Full Text Available Today’s crop breeding combined with improved agricultural management has brought substantial increases in food production. But irrigation, fertilizers pest management requires a high energy input that creates a drain on the already scare fossil fuels. It is thus clear that different strategy has to be adopted to increase crop productivity further to meet the needs of rapidly increasing world population. Crop breeders are endeavoring to meet this challenge by developing crops with higher yield, better resistance to pest, disease and weedicides, tolerance to various stress conditions.

  16. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Hongryul Ahn

    2017-06-01

    Full Text Available This study was designed to investigate at the molecular level how a transgenic version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT and a transgenic version (erf71 that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.

  17. Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.

    Science.gov (United States)

    Guo, Jinlong; Gao, Shiwu; Lin, Qinliang; Wang, Hengbo; Que, Youxiong; Xu, Liping

    2015-01-01

    As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  18. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  19. Control of Pollen-Mediated Gene Flow in Transgenic Trees[W][OA

    Science.gov (United States)

    Zhang, Chunsheng; Norris-Caneda, Kim H.; Rottmann, William H.; Gulledge, Jon E.; Chang, Shujun; Kwan, Brian Yow-Hui; Thomas, Anita M.; Mandel, Lydia C.; Kothera, Ronald T.; Victor, Aditi D.; Pearson, Leslie; Hinchee, Maud A.W.

    2012-01-01

    Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees. PMID:22723085

  20. Tobacco OPBP1 Enhances Salt Tolerance and Disease Resistance of Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Xujun Chen

    2008-12-01

    Full Text Available Osmotin promoter binding protein 1 (OPBP1, an AP2/ERF transcription factor of tobacco, has been demonstrated to function in disease resistance and salt tolerance in tobacco. To increase stress tolerant capability of rice, we generated rice plants with an OPBP1 overexpressing construct. Salinity shock treatment with 250 mM NaCl indicated that most of the OPBP1 transgenic plants can survive, whereas the control seedlings cannot. Similar recovery was found by using the seedlings grown in 200 mM NaCl for two weeks. The OPBP1 transgenic and control plants were also studied for oxidative stress tolerance by treatment with paraquat, showing the transgenic lines were damaged less in comparison with the control plants. Further, the OPBP1 overexpression lines exhibited enhanced resistance to infections of Magnaporthe oryzae and Rhizoctonia solani pathogens. Gene expressing analysis showed increase in mRNA accumulation of several stress related genes. These results suggest that expression of OPBP1 gene increase the detoxification capability of rice.

  1. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Science.gov (United States)

    Cao, Xiuling; Lu, Yingui; Di, Dianping; Zhang, Zhiyan; Liu, He; Tian, Lanzhi; Zhang, Aihong; Zhang, Yanjing; Shi, Lindan; Guo, Bihong; Xu, Jin; Duan, Xifei; Wang, Xianbing; Han, Chenggui; Miao, Hongqin; Yu, Jialin; Li, Dawei

    2013-01-01

    Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  2. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  3. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.

    Science.gov (United States)

    Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo

    2017-01-01

    Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.

  4. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants.

    Science.gov (United States)

    Shimada, Takehiko; Endo, Tomoko; Rodríguez, Ana; Fujii, Hiroshi; Goto, Shingo; Matsuura, Takakazu; Hojo, Yuko; Ikeda, Yoko; Mori, Izumi C; Fujikawa, Takashi; Peña, Leandro; Omura, Mitsuo

    2017-05-01

    In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Detection of stress resistance genes in transgenic maize by multiplex and touchdown polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Bannikova M. A.

    2015-10-01

    Full Text Available Aim. To develop a methodology for detection of the genes of resistance to the stress factors in transgenic maize by multiplex (mPCR and touchdown polymerase chain reactions. Methods. isolation of total DNA by CTAB method, purification of DNA from RNA and proteins, electrophoresis of total DNA and amplification products in agarose gel, polymerase chain reaction. Results. The protocol of multiplex and touchdown polymerase chain reactions has been developed for simultaneous verification of the quality of total DNA extracted from the studied maize plant samples and detection of the following genes that determine resistance to the stress factors in the transgenic maize and maize transformation events: BT176, MON810, MON88017, DAS1507, DAS59122, MIR604, GA21, NK603 (mPCR, Bt11, MON863, MON89034, T25 (touchdown PCR. The multiplex PCR and touchdown PCR were developed using the reference samples. Conclusions. The proposed protocol of mPCR and touchdown PCR reactions can be used for mass analysis of maize samples to detect the genes of tolerance/resistance to herbicides and genes of resistance to insects reliably, authentically, quickly and cheaply.

  6. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm.

    Science.gov (United States)

    Wan, Peng; Xu, Dong; Cong, Shengbo; Jiang, Yuying; Huang, Yunxin; Wang, Jintao; Wu, Huaiheng; Wang, Ling; Wu, Kongming; Carrière, Yves; Mathias, Andrea; Li, Xianchun; Tabashnik, Bruce E

    2017-05-23

    Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F 1 ) hybrid progeny and sowing the second-generation (F 2 ) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm ( Pectinophora gossypiella ) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.

  7. Probabilistic tools for assessment of pest resistance risk associated to insecticidal transgenic crops

    Directory of Open Access Journals (Sweden)

    Maia Aline de Holanda Nunes

    2004-01-01

    Full Text Available One of the main risks associated to transgenic crops expressing Bacillus thuringiensis (Bt toxins is the evolution of pest resistance. The adoption of Bt crops requires environmental risk assessment that includes resistance risk estimation, useful for definition of resistance management strategies aiming to delay resistance evolution. In this context, resistance risk is defined as the probability of the Bt toxin resistance allele frequency (RFreq exceeding a critical value (CriticalFreq. Mathematical simulation models have been used to estimate (RFreq over pest generations. In 1998, Caprio developed a deterministic simulation model with few parameters that can be used to obtain RFreq point estimates from point information about model parameters and decision variables involved in that process. In this work, the resistance risk was estimated using Caprio´s model, by incorporating uncertainty to the resistance allele initial frequency (InitialFreq. The main objective was to evaluate the influence of different probability distribution functions on the risk estimates. The simulation results showed that the influence of InitialFreq input distributions on the risk estimates changes along pest generations. The risk estimates considering input Normal distribution for InitialFreq are similar to those ones obtained considering Triangular distribution if their variances are equal. The use of Uniform distribution instead the Normal or Triangular due to the lack of information about InitialFreq leads to an overestimation of risk estimates for the initial generations and sub estimation for the generations after the one for which the critical frequency is achieved.

  8. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants.

    Science.gov (United States)

    Anderson, J M; Palukaitis, P; Zaitlin, M

    1992-01-01

    Nicotiana tabacum cv. Turkish Samsun NN plants were transformed with a modified and truncated replicase gene encoded by RNA-2 of cucumber mosaic virus strain Fny. The replicase gene had been modified by deleting a 94-base-pair region spanning nucleotides 1857-1950; the deletion also caused a shift in the open reading frame, resulting in a truncated translation product approximately 75% as large as the full-length protein. Upon transformation via Agrobacterium tumefaciens, transgenic plants were obtained that were resistant to virus disease when challenged with either cucumber mosaic virus virions or RNA at concentrations up to 500 micrograms/ml or 50 micrograms/ml, respectively, the highest concentrations tested. This resistance was absolute, as neither symptoms nor virus could be detected in uninoculated leaves, even after prolonged incubation (120 days after inoculation). These data suggest, therefore, that such a "replicase-mediated" resistance strategy may be applicable to other plant and animal viruses. Images PMID:1528890

  9. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    Science.gov (United States)

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  10. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  11. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis).

    Science.gov (United States)

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-06-01

    Bacillus thuringiensis is a major source of insecticidal genes imparting insect resistance in transgenic plants. Level of expression of transgenes in transgenic plants is important to achieve desirable level of resistance against target insects. In order to achieve desirable level of expression, rice chloroplast transit peptide sequence was fused with synthetic cry2AX1 gene to target its protein in chloroplasts. Sixteen PCR positive lines of rice were generated by Agrobacterium mediated transformation using immature embryos. Southern blot hybridization analysis of T 0 transgenic plants confirmed the integration of cry2AX1 gene in two to five locations of rice genome and ELISA demonstrated its expression. Concentration of Cry2AX1 in transgenic rice events ranged 5.0-120 ng/g of fresh leaf tissue. Insect bioassay of T 0 transgenic rice plants against neonate larvae of rice leaffolder showed larval mortality ranging between 20 and 80 % in comparison to control plant. Stable inheritance and expression of cry2AX1 gene was demonstrated in T 1 progenies through Southern and ELISA. In T 1 progenies, the highest concentration of Cry2AX1 and mortality of rice leaffolder larvae were recorded as 150 ng/g of fresh leaf tissue and 80 %, respectively. The Cry2AX1 expression even at a very low concentration (120-150 ng/g) in transgenic rice plants was found effective against rice leaffolder larvae.

  12. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Weiguo Fang

    Full Text Available The low survival of microbial pest control agents exposed to UV is the major environmental factor limiting their effectiveness. Using gene disruption we demonstrated that the insect pathogenic fungus Metarhizium robertsii uses photolyases to remove UV-induced cyclobutane pyrimidine dimers (CPD and pyrimidine (6-4 photoproducts [(6-4PPs] from its DNA. However, this photorepair is insufficient to fix CPD lesions and prevent the loss of viability caused by seven hours of solar radiation. Expression of a highly efficient archaeal (Halobacterium salinarum CPD photolyase increased photorepair >30-fold in both M. robertsii and Beauveria bassiana. Consequently, transgenic strains were much more resistant to sunlight and retained virulence against the malaria vector Anopheles gambiae. In the field this will translate into much more efficient pest control over a longer time period. Conversely, our data shows that deleting native photolyase genes will strictly contain M. robertsii to areas protected from sunlight, alleviating safety concerns that transgenic hypervirulent Metarhizium spp will spread from mosquito traps or houses. The precision and malleability of the native and transgenic photolyases allows design of multiple pathogens with different strategies based on the environments in which they will be used.

  13. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi.

    Science.gov (United States)

    Fang, Weiguo; St Leger, Raymond J

    2012-01-01

    The low survival of microbial pest control agents exposed to UV is the major environmental factor limiting their effectiveness. Using gene disruption we demonstrated that the insect pathogenic fungus Metarhizium robertsii uses photolyases to remove UV-induced cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) photoproducts [(6-4)PPs] from its DNA. However, this photorepair is insufficient to fix CPD lesions and prevent the loss of viability caused by seven hours of solar radiation. Expression of a highly efficient archaeal (Halobacterium salinarum) CPD photolyase increased photorepair >30-fold in both M. robertsii and Beauveria bassiana. Consequently, transgenic strains were much more resistant to sunlight and retained virulence against the malaria vector Anopheles gambiae. In the field this will translate into much more efficient pest control over a longer time period. Conversely, our data shows that deleting native photolyase genes will strictly contain M. robertsii to areas protected from sunlight, alleviating safety concerns that transgenic hypervirulent Metarhizium spp will spread from mosquito traps or houses. The precision and malleability of the native and transgenic photolyases allows design of multiple pathogens with different strategies based on the environments in which they will be used.

  14. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  15. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus.

    Science.gov (United States)

    Fuentes, Alejandro; Carlos, Natacha; Ruiz, Yoslaine; Callard, Danay; Sánchez, Yadira; Ochagavía, María Elena; Seguin, Jonathan; Malpica-López, Nachelli; Hohn, Thomas; Lecca, Maria Rita; Pérez, Rosabel; Doreste, Vivian; Rehrauer, Hubert; Farinelli, Laurent; Pujol, Merardo; Pooggin, Mikhail M

    2016-03-01

    RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.

  16. A hybrid Bacillus thuringiensis delta-endotoxin gene gives resistance against a coleopteran and a lepidopteran pest in transgenic potato

    NARCIS (Netherlands)

    Naimov, S.; Dukiandjiev, S.; Maagd, de R.A.

    2003-01-01

    Expression of Bacillus thuringiensis delta-endotoxins has proven to be a successful strategy for obtaining insect resistance in transgenic plants. Drawbacks of expression of a single resistance gene are the limited target spectrum and the potential for rapid adaptation of the pest. Hybrid toxins

  17. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  18. Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L.

    Science.gov (United States)

    Londo, J P; Bollman, M A; Sagers, C L; Lee, E H; Watrud, L S

    2011-01-01

    Increasingly, genetically modified crops are being developed to express multiple ‘stacked' traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and tolerance to environmental stresses. The release of crops that express multiple traits could result in ecological changes in weedy environments if feral crop plants or hybrids formed with compatible weeds results in more competitive plants outside of agriculture. To examine the effects of combining transgenes, we developed a stacked line of canola (Brassica napus L.) from a segregating F2 population that expresses both transgenic glyphosate resistance (CP4 EPSPS) and lepidopteran insect resistance (Cry1Ac). Fitness-associated traits were evaluated between this stacked genotype and five other Brassica genotypes in constructed mesocosm plant communities exposed to insect herbivores (Plutella xylostella L.) or glyphosate-drift. Vegetative biomass, seed production and relative fecundity were all reduced in stacked trait plants when compared with non-transgenic plants in control treatments, indicating potential costs of expressing multiple transgenes without selection pressure. Although costs of the transgenes were offset by selective treatment, the stacked genotype continued to produce fewer seeds than either single transgenic line. However, the increase in fitness of the stacked genotype under selective pressure contributed to an increased number of seeds within the mesocosm community carrying unselected, hitchhiking transgenes. These results demonstrate that the stacking of these transgenes in canola results in fitness costs and benefits that are dependent on the type and strength of selection pressure, and could also contribute to changes in plant communities through hitchhiking of unselected traits. PMID:21427753

  19. Dissimilarity of contemporary and historical gene flow in a wild carrot (Daucus carota) metapopulation under contrasting levels of human disturbance: implications for risk assessment and management of transgene introgression.

    Science.gov (United States)

    Rong, Jun; Xu, Shuhua; Meirmans, Patrick G; Vrieling, Klaas

    2013-11-01

    Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression. Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively. The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation. Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration.

  20. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance

    Directory of Open Access Journals (Sweden)

    Ma Hao

    2011-10-01

    Full Text Available Abstract Background Tomato spotted wilt virus (TSWV has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX in tomato and petunia is related to TSWV resistance. Results The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. Conclusion In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.

  1. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene.

    Science.gov (United States)

    Tougou, Makoto; Yamagishi, Noriko; Furutani, Noriyuki; Shizukawa, Yoshiaki; Takahata, Yoshihito; Hidaka, Soh

    2007-11-01

    We transformed a construct containing the sense coat protein (CP) gene of Soybean dwarf virus (SbDV) into soybean somatic embryos via microprojectile bombardment to acquire SbDV-resistant soybean plants. Six independent T(0) plants were obtained. One of these transgenic lines was subjected to further extensive analysis. Three different insertion patterns of Southern blot hybridization analysis in T(1) plants suggested that these insertions introduced in T(0) plants were segregated from each other or co-inherited in T(1) progenies. These insertions were classified into two types, which overexpressed SbDV-CP mRNA and accumulated SbDV-CP-specific short interfering RNA (siRNA), or repressed accumulation of SbDV-CP mRNA and siRNA by RNA analysis prior to SbDV inoculation. After inoculation of SbDV by the aphids, most T(2) plants of this transgenic line remained symptomless, contained little SbDV-specific RNA by RNA dot-blot hybridization analysis and exhibited SbDV-CP-specific siRNA. We discuss here the possible mechanisms of the achieved resistance, including the RNA silencing.

  2. Validating RNAi phenotypes in Drosophila using a synthetic RNAi-resistant transgene.

    Directory of Open Access Journals (Sweden)

    Vincent Jonchere

    Full Text Available RNA interference (RNAi is a powerful and widely used approach to investigate gene function, but a major limitation of the approach is the high incidence of non-specific phenotypes that arise due to off-target effects. We previously showed that RNAi-mediated knock-down of pico, which encodes the only member of the MRL family of adapter proteins in Drosophila, resulted in reduction in cell number and size leading to reduced tissue growth. In contrast, a recent study reported that pico knockdown leads to tissue dysmorphology, pointing to an indirect role for pico in the control of wing size. To understand the cause of this disparity we have utilised a synthetic RNAi-resistant transgene, which bears minimal sequence homology to the predicted dsRNA but encodes wild type Pico protein, to reanalyse the RNAi lines used in the two studies. We find that the RNAi lines from different sources exhibit different effects, with one set of lines uniquely resulting in a tissue dysmorphology phenotype when expressed in the developing wing. Importantly, the loss of tissue morphology fails to be complemented by co-overexpression of RNAi-resistant pico suggesting that this phenotype is the result of an off-target effect. This highlights the importance of careful validation of RNAi-induced phenotypes, and shows the potential of synthetic transgenes for their experimental validation.

  3. Stability and loss of a virus resistance phenotype over time in transgenic mosquitoes harbouring an antiviral effector gene.

    Science.gov (United States)

    Franz, A W E; Sanchez-Vargas, I; Piper, J; Smith, M R; Khoo, C C H; James, A A; Olson, K E

    2009-10-01

    Transgenic Aedes aegypti were engineered to express a virus-derived, inverted repeat (IR) RNA in the mosquito midgut to trigger RNA interference (RNAi) and generate resistance to dengue virus type 2 (DENV2) in the vector. Here we characterize genotypic and phenotypic stabilities of one line, Carb77, between generations G(9) and G(17). The anti-DENV2 transgene was integrated at a single site within a noncoding region of the mosquito genome. The virus resistance phenotype was strong until G(13) and suppressed replication of different DENV2 genotypes. From G(14)-G(17) the resistance phenotype to DENV2 became weaker and eventually was lost. Although the sequence of the transgene was not mutated, expression of the IR effector RNA was not detected and the Carb77 G(17) mosquitoes lost their ability to silence the DENV2 genome.

  4. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants.

    Science.gov (United States)

    Wu, G; Shortt, B J; Lawrence, E B; Levine, E B; Fitzsimmons, K C; Shah, D M

    1995-09-01

    Plant defense responses to pathogen infection involve the production of active oxygen species, including hydrogen peroxide (H2O2). We obtained transgenic potato plants expressing a fungal gene encoding glucose oxidase, which generates H2O2 when glucose is oxidized. H2O2 levels were elevated in both leaf and tuber tissues of these plants. Transgenic potato tubers exhibited strong resistance to a bacterial soft rot disease caused by Erwinia carotovora subsp carotovora, and disease resistance was sustained under both aerobic and anaerobic conditions of bacterial infection. This resistance to soft rot was apparently mediated by elevated levels of H2O2, because the resistance could be counteracted by exogenously added H2O2-degrading catalase. The transgenic plants with increased levels of H2O2 also exhibited enhanced resistance to potato late blight caused by Phytophthora infestans. The development of lesions resulting from infection by P. infestans was significantly delayed in leaves of these plants. Thus, the expression of an active oxygen species-generating enzyme in transgenic plants represents a novel approach for engineering broad-spectrum disease resistance in plants.

  5. Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance.

    Science.gov (United States)

    Cervera, Magdalena; Esteban, Olga; Gil, Maite; Gorris, M Teresa; Martínez, M Carmen; Peña, Leandro; Cambra, Mariano

    2010-12-01

    Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40-60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.

  6. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    Science.gov (United States)

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  7. Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance

    Directory of Open Access Journals (Sweden)

    Wei-wei SHEN

    2011-03-01

    Full Text Available Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb., a pair of specific PCR primers FZ14P1/FZ14P2 was designed to isolate candidate disease resistance gene. The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC library derived from Z. latifolia. A positive TAC clone (ZR1 was obtained and confirmed by sequence analysis. The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase 1a, kinase 2, kinase 3a and GLPL (Gly-Leu-Pro-Leu, suggesting that it could be a portion of NBS-LRR type of resistance gene. Using Agrobacterium-mediated transformation of Nipponbare mature embryo, a total of 48 independent transgenic T0 plants were obtained. Among them, 36 plants were highly resistant to the virulent bacterial blight strain PXO71. The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.

  8. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm

    Science.gov (United States)

    Dively, Galen P.

    2017-01-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop–pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996–2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes. PMID:28680673

  9. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  10. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  11. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  12. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  13. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Science.gov (United States)

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K

    2014-01-01

    Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  14. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL for enhanced resistance against major sap-sucking pests.

    Directory of Open Access Journals (Sweden)

    Chakravarthy S K Vajhala

    Full Text Available Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL and herbicide tolerance gene (BAR were introduced into an elite cotton inbred line (NC-601 employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.

  15. Development of transgenic lines from a male-sterile potato variety, with potential resistance to Tecia solanivora Povolny

    Directory of Open Access Journals (Sweden)

    Emy Shilena Torres

    2012-08-01

    Full Text Available Male sterility is a very important characteristic for environmental safety in genetically modified (GM plants, particularly in the release of transgenic plants in the centers of origin or high biodiversity areas. In order to contribute to the development of environmentally safe agricultural technologies that allow the proper use of transgenic potato crops in Colombia, this project developed transgenic potato cry1Ac of Bacillus thuringiensis (Bt, lines that are potentially resistant to T. solanivora, from the male-sterile variety Pastusa Suprema (PS (Solanum tuberosum ssp. andigena. Modifications were made to the Agrobacterium tumefaciens mediated-transformation protocol which allowed the genetic transformation of leaves of in vitro plants, with transformation efficiencies of 22 and 37%. Cry1Ac protein levels in transgenic leaves ranged from 88 to 639 ng mg-1 of fresh leaf tissue, suggesting a better potential plant resistance. This is the first report on transgenic lines with potential resistance to T. solanivora from a male-sterile variety of S. tuberosum ssp. andigena

  16. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    Science.gov (United States)

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    Background Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. Methodology/Major Findings We present field monitoring data using Cry1Ab (1996–2016) and Cry1A.105+Cry2Ab2 (2010–2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab—event Bt11, and Cry1A.105+Cry2Ab2—event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. Conclusions/Significance After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt

  17. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.

    Science.gov (United States)

    Dively, Galen P; Venugopal, P Dilip; Finkenbinder, Chad

    2016-01-01

    Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. We present field monitoring data using Cry1Ab (1996-2016) and Cry1A.105+Cry2Ab2 (2010-2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab-event Bt11, and Cry1A.105+Cry2Ab2-event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt sweet corn provide strong evidence of field-evolved resistance in H

  18. From noxiustoxin to scorpine and possible transgenic mosquitoes resistant to malaria.

    Science.gov (United States)

    Possani, Lourival D; Corona, Miguel; Zurita, Mario; Rodríguez, Mario H

    2002-01-01

    Scorpion venom contains different types of peptides toxic to a variety of organisms whose molecular targets have been described as mainly ion-channels of excitable cells where they cause impairment of function. Based on mouse, cricket, and crustacean bioassays, specific toxins for each group of animals have been found. Chromatographic techniques were used to isolate and chemically characterize these peptides. One of the best-studied peptides is noxiustoxin, a 39-amino acid residue-long peptide specific for K(+)-channels. Hadrurin is another scorpion venom peptide whose activity was shown to be bactericidal to a variety of species. Structural similarities of a newly discovered peptide (scorpine) with those of defensins and cecropins showed that scorpion venom contains peptides toxic to microorganisms and malaria parasites. Scorpine was shown to disrupt the sporogonic development of Plasmodium berghei. Using this system as a model for malaria, we introduced the gene of scorpine into a vector for generation of transgenic flies resistant to the infection by Plasmodium. The final aim of this work is to incorporate this gene under the promoter of proteolytic enzymes of digestive tract of mosquitoes for synthesis and liberation of toxic peptide(s) into stomach of freshly fed mosquitoes potentially carrying Plasmodium gametes. In this manner, a putative transgenic mosquito with these characteristics would secrete a toxic peptide with digestive enzymes into midgut, impairing proper development of Plasmodium, hence controlling malaria, one of the most important tropical diseases worldwide.

  19. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    Science.gov (United States)

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  20. TRANSGENIC PLANTS OF RAPE (BRASSICA NAPUS L. WITH GENE OSMYB4 HAVE INCREASED RESISTANCE TO SALTS OF HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Raldugina G.N.

    2012-08-01

    fact that at very high concentrations of salts non-transformed plants died after 12-13 days, whereas the transgenic oilseed rape remained alive long enough time. Thus, the incorporation of the plant gene transcription factor OSMYB4 increased the resistance of transgenic plants to the stress effect of HM.

  1. Laminar flow resistance in short microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Phares, D.J. [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering; Smedley, G.T.; Zhou, J. [Glaukos Corp., Laguna Hills, CA (United States). Dept. of Research and Development

    2005-06-01

    We have measured the pressure drop for the flow of liquid through a series of short microtubes ranging from 80 to 150 {mu}m in diameter with aspect ratios between L/D = 2 and L/D = 5. These dimensions were selected to resemble lumens of implantable microstents that are under consideration for the treatment of glaucoma. For physiologically relevant pressure drops and flow rates, we have determined that a fully-developed laminar pipe flow may be assumed throughout the microtube when (L/D) > 0.20Re, where Re is the Reynolds number based on the diameter, D, and L is the length of the tube. We have examined flow rates between 0.1 and 10 {mu}L/s, corresponding to Reynolds numbers between 1 and 150. For smooth microtubes, no difference from macroscopic flow is observed for the tube sizes considered. However, flow resistance is found to be sensitive to the relative surface roughness of the tube walls. (author)

  2. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues

    NARCIS (Netherlands)

    Kleter, G.A.; Unsworth, J.B.; Harris, C.A.

    2011-01-01

    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide

  3. Flow resistance of textile materials. Part II: Multifilament Fabrics

    NARCIS (Netherlands)

    Gooijer, H.; Gooijer, H.; Warmoeskerken, Marinus; Groot Wassink, J.

    2003-01-01

    Part I of this series presented a new model for predicting the flow resistance of monofilament fabrics. In this part, the model is applied to the flow resistance of multi filament fabrics. Experiments show that flow resistance in multifilament fabrics can be modeled in general, but it appears that

  4. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco.

    Science.gov (United States)

    Senthilkumar, Rajendran; Cheng, Chiu-Ping; Yeh, Kai-Wun

    2010-01-01

    Protease inhibitors provide a promising means of engineering plant resistance against attack by insects and pathogens. Sporamin (trypsin inhibitor) from sweet potato and CeCPI (phytocystatin) from taro were stacked in a binary vector, using pMSPOA (a modified sporamin promoter) to drive both genes. Transgenic tobacco lines of T0 and T1 generation with varied inhibitory activity against trypsin and papain showed resistance to both insects and phytopathogens. Larvae of Helicoverpa armigera that ingested tobacco leaves either died or showed delayed growth and development relative to control larvae. Transgenic tobacco-overexpressing the stacked genes also exhibited strong resistance against bacterial soft rot disease caused by Erwinia carotovora and damping-off disease caused by Pythium aphanidermatum. Thus, stacking protease-inhibitor genes, driven by the wound and pathogen responsive pMSPOA promoter, is an effective strategy for engineering crops to resistance against insects and phytopathogens.

  5. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    Directory of Open Access Journals (Sweden)

    Srećko Jelenić

    2003-01-01

    Full Text Available Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosphotransferase II gene (nptII, which confers resistance to the antibiotics kanamycin and neomycin. The nptII gene is present in GM crops as a marker gene to select transformed plant cells during the first steps of the transformation process. The use of antibiotic-resistance genes is subject to controversy and intense debate, because of the likelihood that clinical therapy could be compromised due to inactivation of the oral dose of the antibiotic from consumption of food derived from the transgenic plant, and because of the risk of gene transfer from plants to gut and soil microorganisms or to consumer’s cells. The present article discusses these possibilities in the light of current scientific knowledge.

  6. Update on the development of virus-resistant papaya: virus-resistant transgenic papaya for people in rural communities of Thailand.

    Science.gov (United States)

    Sakuanrungsirikul, S; Sarindu, N; Prasartsee, V; Chaikiatiyos, S; Siriyan, R; Sriwatanakul, M; Lekananon, P; Kitprasert, C; Boonsong, P; Kosiyachinda, P; Fermin, G; Gonsalves, D

    2005-12-01

    Papaya (Carica papaya L.) is one of the most important and preferred crops in rural communities in Thailand. Papaya ringspot virus (PRSV) is a serious disease of papaya throughout Thailand. Efforts to control the virus by various methods either have not been successful or have not resulted in sustainable control. In 1995, collaborative research by the Department of Agriculture of Thailand and Cornell University to develop transgenic papaya resistant to PRSV was initiated. Two local Thai cultivars were transformed by microprojectile bombardment with the use of a nontranslatable coat protein gene of PRSV from Khon Kaen. Numerous kanamycin-resistantplants were regenerated and were inoculated with the PRSV Khon Kaen isolate for selection of resistant lines. Since 1997, promising RO transgenic lines have been transferred to the research station at Thapra for subsequent screenhouse tests and selection of the most PRSV-resistant lines. In selection set 1, three R3 lines initially derived from Khaknuan papaya showed excellent resistance to PRSV (97% to 100%) and had a yield of fruit 70 times higher than nontransgenic Khaknuan papaya. In selection set 2, one R3 line initially derived from Khakdam papaya showed 100% resistance. Safety assessments of these transgenic papayas have so far found no impact on the surrounding ecology. No natural crossing between transgenic and nonmodified papaya was observed beyond a distance of 10 m from the test plots. Analysis of the nutritional composition found no differences in nutrient levels in comparison with the nonmodified counterparts. Molecular characterization by Southern blotting revealed three copies of the transgene presented; however, no coat protein product was expressed. Data on additional topics, such as the effects offeeding the transgenic papaya to rats and the stability of the gene inserts, are currently being gathered.

  7. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  8. Flow resistance in a compound gravel-bed bend

    Indian Academy of Sciences (India)

    centrifugal force having a lateral momentum transfer. This force disappears after leaving a bend exit. Thus, the turbulent shear stress is the resistance that the flow has to overcome in transforming from a primary flow into a secondary flow pattern and vice versa. The increase in flow resistance in a meandering path can be ...

  9. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.

    Science.gov (United States)

    Narendran, M; Deole, Satish G; Harkude, Satish; Shirale, Dattatray; Nanote, Asaram; Bihani, Pankaj; Parimi, Srinivas; Char, Bharat R; Zehr, Usha B

    2013-08-01

    Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ). Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

  10. [Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].

    Science.gov (United States)

    Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

    2013-08-01

    The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance.

  11. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli).

    Science.gov (United States)

    Wang, Feng; Yuan, Qian-Hua; Shi, Lei; Qian, Qian; Liu, Wu-Ge; Kuang, Ba-Geng; Zeng, Da-Li; Liao, Yi-Long; Cao, Bin; Jia, Shi-Rong

    2006-11-01

    The introgression of transgenes into wild relatives or weeds through pollen-mediated gene flow is a major concern in environmental risk assessment of transgenic crops. A large-scale (1.3-1.8 ha) rice gene flow study was conducted using transgenic rice containing the bar gene as a pollen donor and Oryza rufipogon as a recipient. There was a high frequency of transgene flow (11%-18%) at 0-1 m, with a steep decline with increasing distance to a detection limit of 0.01% by 250 m. To our knowledge, this is the highest frequency and longest distance of gene flow from transgenic rice to O. rufipogon reported so far. On the basis of these data, an adequate isolation distance from both conventional and transgenic rice should be taken for in situ conservation of common wild rice. Meanwhile, there is no evidence of transgene introgression into barnyard grass, even when it has coexisted with transgenic rice containing the bar gene for five successive years. Thus, the environmental risk of gene flow to this weedy species is of little concern.

  12. Resistance of transgenic eggplant carrying the oryzacystatin gene to Mechanitis polymnia and Mechanitis lysimnia - DOI: 10.4025/actasciagron.v27i4.1345

    OpenAIRE

    Ribeiro, Ana Paula de Oliveira; UFV; Otoni, Wagner Campos; UFV; Picanço, Marcelo Coutinho; Universidade Federal de Viçosa, Centro de Ciências Biológicas e da Saúde; Galvan, Tederson Luiz; UFV; Pereira, Eliseu José Guedes; UFV; Picoli, Edgard Augusto de Toledo; UFV; Silva, Derly José Henriques da; UFV

    2008-01-01

    This research aimed to evaluate the resistance of transgenic eggplant (Solanum melongena) carrying the oryzacystatin gene to Mechanitis polymnia L. and Mechanitis lysimnia Fabr. (Lepidoptera: Nymphalidae). The leaf area consumed, the mortality and duration of the larval and pupal phases of M. polymnia and M. lysimnia were evaluated. Results showed the transgenic eggplant is not resistant to Lepidoptera M. polymnia and M. lysimnia Esta pesquisa objetivou avaliar a resistência da berinjela (...

  13. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Science.gov (United States)

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  14. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available Although glutathione S-transferases (GST, EC 2.5.1.18 are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  15. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    Science.gov (United States)

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  17. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  18. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection.

    Science.gov (United States)

    Lipsky, Alexander; Joshi, Janak Raj; Carmi, Nir; Yedidia, Iris

    2016-11-20

    The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    Science.gov (United States)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  20. [Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance].

    Science.gov (United States)

    Xuan, Ning; Zhao, Chuanzhi; Peng, Zhenying; Chen, Gao; Bian, Fei; Lian, Mingzheng; Liu, Guoxia; Wang, Xingjun; Bi, Yuping

    2015-09-01

    Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA.

  1. Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives.

    Science.gov (United States)

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2016-12-01

    The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.

  2. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus.

    Directory of Open Access Journals (Sweden)

    Guixia Hao

    Full Text Available Citrus Huanglongbing (HLB associated with 'Candidatus Liberibacter asiaticus' (Las and citrus canker disease incited by Xanthomonas citri are the most devastating citrus diseases worldwide. To control citrus HLB and canker disease, we previously screened over forty antimicrobial peptides (AMPs in vitro for their potential application in genetic engineering. D2A21 was one of the most active AMPs against X. citri, Agrobacterium tumefaciens and Sinorhizobium meliloti with low hemolysis activity. Therefore, we conducted this work to assess transgenic expression of D2A21 peptide to achieve citrus resistant to canker and HLB. We generated a construct expressing D2A21 and initially transformed tobacco as a model plant. Transgenic tobacco expressing D2A21 was obtained by Agrobacterium-mediated transformation. Successful transformation and D2A21 expression was confirmed by molecular analysis. We evaluated disease development incited by Pseudomonas syringae pv. tabaci in transgenic tobacco. Transgenic tobacco plants expressing D2A21 showed remarkable disease resistance compared to control plants. Therefore, we performed citrus transformations with the same construct and obtained transgenic Carrizo citrange. Gene integration and gene expression in transgenic plants were determined by PCR and RT-qPCR. Transgenic Carrizo expressing D2A21 showed significant canker resistance while the control plants showed clear canker symptoms following both leaf infiltration and spray inoculation with X. citri 3213. Transgenic Carrizo plants were challenged for HLB evaluation by grafting with Las infected rough lemon buds. Las titer was determined by qPCR in the leaves and roots of transgenic and control plants. However, our results showed that transgenic plants expressing D2A21 did not significantly reduce Las titer compared to control plants. We demonstrated that transgenic expression of D2A21 conferred resistance to diseases incited by P. syringae pv. tabaci and X. citri

  3. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda).

    Science.gov (United States)

    Banerjee, Rahul; Hasler, James; Meagher, Robert; Nagoshi, Rodney; Hietala, Lucas; Huang, Fangneng; Narva, Kenneth; Jurat-Fuentes, Juan Luis

    2017-09-07

    Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.

  4. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    Science.gov (United States)

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  5. A 2-year field study shows little evidence that the long-term planting of transgenic insect-resistant cotton affects the community structure of soil nematodes.

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    Full Text Available Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010, we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages, collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical 'real world' conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects-adverse or otherwise-on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants.

  6. Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome.

    Science.gov (United States)

    Babujia, Letícia Carlos; Silva, Adriana Pereira; Nakatani, André Shigueyoshi; Cantão, Mauricio Egidio; Vasconcelos, Ana Tereza Ribeiro; Visentainer, Jesuí Vergilio; Hungria, Mariangela

    2016-08-01

    The transgenic soybean [Glycine max (L.) Merrill] occupies about 80 % of the global area cropped with this legume, the majority comprising the glyphosate-resistant trait (Roundup Ready(®), GR or RR). However, concerns about possible impacts of transgenic crops on soil microbial communities are often raised. We investigated soil chemical, physical and microbiological properties, and grain yields in long-term field trials involving conventional and nearly isogenic RR transgenic genotypes. The trials were performed at two locations in Brazil, with different edaphoclimatic conditions. Large differences in physical, chemical and classic microbiological parameters (microbial biomass of C and N, basal respiration), as well as in grain production were observed between the sites. Some phyla (Proteobacteria, Actinobacteria, Acidobacteria), classes (Alphaproteobacteria, Actinomycetales, Solibacteres) and orders (Rhizobiales, Burkholderiales, Myxococcales, Pseudomonadales), as well as some functional subsystems (clustering-based subsystems, carbohydrates, amino acids and protein metabolism) were, in general, abundant in all treatments. However, bioindicators related to superior soil fertility and physical properties at Londrina were identified, among them a higher ratio of Proteobacteria:Acidobacteria. Regarding the transgene, the metagenomics showed differences in microbial taxonomic and functional abundances, but lower in magnitude than differences observed between the sites. Besides the site-specific differences, Proteobacteria, Firmicutes and Chlorophyta were higher in the transgenic treatment, as well as sequences related to protein metabolism, cell division and cycle. Although confirming effects of the transgenic trait on soil microbiome, no differences were recorded in grain yields, probably due to the buffering capacity associated with the high taxonomic and functional microbial diversity observed in all treatments.

  7. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    Science.gov (United States)

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  8. RNAi-mediated transgenic tospovirus resistance broken by intraspecies NSs complementation

    NARCIS (Netherlands)

    Hassani-Mehraban, A.; Brenkman, A.B.; Broek, N.F.J.; Goldbach, R.W.; Kormelink, R.J.M.

    2009-01-01

    Extension of an inverted repeat transgene cassette, containing partial nucleoprotein (N) gene sequences from four different tomato-infecting Tospovirus spp. with a partial N gene sequence from the tomato strain of Tomato yellow ring virus (TYRV-t), renders transgenic Nicotiana benthamiana plants

  9. Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus.

    Science.gov (United States)

    Bau, H-J; Kung, Y-J; Raja, J A J; Chan, S-J; Chen, K-C; Chen, Y-K; Wu, H-W; Yeh, S-D

    2008-07-01

    A virus identified as a new pathotype of Papaya leaf distortion mosaic virus (PLDMV, P-TW-WF) was isolated from diseased papaya in an isolated test-field in central Taiwan, where transgenic papaya lines resistant to Papaya ringspot virus (PRSV) were evaluated. The infected plants displayed severe mosaic, distortion and shoe-stringing on leaves; stunting in apex; and water-soaking on petioles and stems. This virus, which did not react in enzyme-linked immunosorbent assay with the antiserum to the PRSV coat protein, infected only papaya, but not the other 18 plant species tested. Virions studied under electron microscope exhibited morphology and dimensions of potyvirus particles. Reverse transcription-polymerase chain reaction conducted using potyvirus-specific primers generated a 1,927-nucleotide product corresponding to the 3' region of a potyvirus, showing high sequence identity to the CP gene and 3' noncoding region of PLDMV. Search for similar isolates with the antiserum against CP of P-TW-WF revealed scattered occurrence of PLDMV in Taiwan. Phylogenetic analysis of PLDMV isolates of Taiwan and Japan indicated that the Taiwan isolates belong to a separate genetic cluster. Since all the Taiwan isolates infected only papaya, unlike the cucurbit-infecting Japanese P type isolates, the Taiwan isolates are considered a new pathotype of PLDMV. Susceptibility of all our PRSV-resistant transgenic papaya lines to PLDMV indicates that the virus is an emerging threat for the application of PRSV-resistant transgenic papaya in Taiwan and elsewhere.

  10. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants.

    Directory of Open Access Journals (Sweden)

    Siddhesh B Ghag

    Full Text Available Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana.

  11. Generation of Resistance to the Diphenyl Ether Herbicide, Oxyfluorfen, via Expression of the Bacillus subtilis Protoporphyrinogen Oxidase Gene in Transgenic Tobacco Plants.

    Science.gov (United States)

    Choi, K W; Han, O; Lee, H J; Yun, Y C; Moon, Y H; Kim, M; Kuk, Y I; Han, S U; Guh, J O

    1998-01-01

    In an effort to develop transgenic plants resistant to diphenyl ether herbicides, we introduced the protoporphyrinogen oxidase (EC 1.3.3.4) gene of Bacillus subtilis into tobacco plants. The results from a Northern analysis and leaf disc assay indicate that the expression of the B. subtilis protoporphyrinogen oxidase gene under the cauliflower mosaic virus 35S promoter generated resistance to the diphenyl ether herbicide, oxyfluorfen, in transgenic tobacco plants.

  12. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

    Science.gov (United States)

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang

    2013-09-15

    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  13. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants.

    Science.gov (United States)

    Rajasekaran, Kanniah; Cary, Jeffrey W; Jaynes, Jesse M; Cleveland, Thomas E

    2005-11-01

    Fertile, transgenic cotton plants expressing the synthetic antimicrobial peptide, D4E1, were produced through Agrobacterium-mediated transformation. PCR products and Southern blots confirmed integration of the D4E1 gene, while RT-PCR of cotton RNA confirmed the presence of D4E1 transcripts. In vitro assays with crude leaf protein extracts from T0 and T1 plants confirmed that D4E1 was expressed at sufficient levels to inhibit the growth of Fusarium verticillioides and Verticillium dahliae compared to extracts from negative control plants transformed with pBI-d35S(Omega)-uidA-nos (CGUS). Although in vitro assays did not show control of pre-germinated spores of Aspergillus flavus, bioassays with cotton seeds in situ or in planta, inoculated with a GFP-expressing A. flavus, indicated that the transgenic cotton seeds inhibited extensive colonization and spread by the fungus in cotyledons and seed coats. In planta assays with the fungal pathogen, Thielaviopsis basicola, which causes black root rot in cotton, showed typical symptoms such as black discoloration and constriction on hypocotyls, reduced branching of roots in CGUS negative control T1 seedlings, while transgenic T1 seedlings showed a significant reduction in disease symptoms and increased seedling fresh weight, demonstrating tolerance to the fungal pathogen. Significant advantages of synthetic peptides in developing transgenic crop plants that are resistant to diseases and mycotoxin-causing fungal pathogens are highlighted in this report.

  14. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  15. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  16. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple

    Directory of Open Access Journals (Sweden)

    Tina Schäfer

    2012-01-01

    Full Text Available This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF. We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova and transgenic lines (M9/T386 and M9/T389 were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  17. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple.

    Science.gov (United States)

    Schäfer, Tina; Hanke, Magda-Viola; Flachowsky, Henryk; König, Stephan; Peil, Andreas; Kaldorf, Michael; Polle, Andrea; Buscot, François

    2012-04-01

    This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.

  18. Flow resistance of textile materials. Part I: Monofilament fabrics

    NARCIS (Netherlands)

    Gooijer, H.; Gooijer, H.; Warmoeskerken, Marinus; Groot Wassink, J.

    2003-01-01

    This paper describes the relation between the flow resistance of a textile material and its geometry. A literature survey reveals that the orifice model is most suited to modeling the flow resistance of woven fabrics, but applications of this model were, until now, restricted to relatively open

  19. Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood

    OpenAIRE

    Marrelli, Mauro T.; Li, Chaoyang; Rasgon, Jason L.; Jacobs-Lorena, Marcelo

    2007-01-01

    The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgeni...

  20. Flow resistance equations for mountain rivers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alonso, R.; Barragan Fernandez, J.; Colomer Cugat, M. A.

    2009-07-01

    Three models of flow resistance (a Keulegan-type logarithmic law and two models developed for large-scale roughness conditions: the full logarithmic law and a model based on an inflectional velocity profile) were calibrated, validated and compared using an extensive database (N = 1,533) from rivers and flumes, representative of a wide hydraulic and geomorphologic range in the field of gravel-bed and mountain channels. It is preferable to apply the model based on an inflectional velocity profile in the relative submergence (y/d90) interval between 0.5 and 15, while the full logarithmic law is preferable for values below 0.5. For high relative submergence, above 15, either the logarithmic law or the full logarithmic law can be applied. The models fitted to the coarser percentiles are preferable to those fitted to the median diameter, owing to the higher explanatory power achieved by setting a model, the smaller difference in the goodness-of-fit between the different models and the lower influence of the origin of the data (river or flume). (Author) 28 refs.

  1. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin.

    Science.gov (United States)

    Wegier, A; Piñeyro-Nelson, A; Alarcón, J; Gálvez-Mariscal, A; Alvarez-Buylla, E R; Piñero, D

    2011-10-01

    Over 95% of the currently cultivated cotton was domesticated from Gossypium hirsutum, which originated and diversified in Mexico. Demographic and genetic studies of this species at its centre of origin and diversification are lacking, although they are critical for cotton conservation and breeding. We investigated the actual and potential distribution of wild cotton populations, as well as the contribution of historical and recent gene flow in shaping cotton genetic diversity and structure. We evaluated historical gene flow using chloroplast microsatellites and recent gene flow through the assessment of transgene presence in wild cotton populations, exploiting the fact that genetically modified cotton has been planted in the North of Mexico since 1996. Assessment of geographic structure through Bayesian spatial analysis, BAPS and Genetic Algorithm for Rule-set Production (GARP), suggests that G. hirsutum seems to conform to a metapopulation scheme, with eight distinct metapopulations. Despite evidence for long-distance gene flow, genetic variation among the metapopulations of G. hirsutum is high (He = 0.894 ± 0.01). We identified 46 different haplotypes, 78% of which are unique to a particular metapopulation, in contrast to a single haplotype detected in cotton cultivars. Recent gene flow was also detected (m = 66/270 = 0.24), with four out of eight metapopulations having transgenes. We discuss the implications of the data presented here with respect to the conservation and future breeding of cotton populations and genetic diversity at its centre of crop origin. © 2011 Blackwell Publishing Ltd.

  2. Resistance to multiple viruses in transgenic tobacco expressing fused, tandem repeat, virus-derived double-stranded RNAs.

    Science.gov (United States)

    Chung, Bong Nam; Palukaitis, Peter

    2011-12-01

    Transgenic tobacco plants expressing fused, tandem, inverted-repeat, double-stranded RNAs derived either from the three viruses [potato virus Y (PVY), potato virus A (PVA), and potato leafroll virus (PLRV)] or the five viruses [PVY, PVA, PLRV as well as tobacco rattle virus (TRV), and potato mop-top virus (PMTV)] were generated in this study to examine whether resistance could be achieved against these three viruses or five viruses, respectively, in the same plant. The transgenic lines were engineered to produce 600- or 1000-bp inverted hairpin transcripts with an intron, in two orientations each, which were processed to silencing-inducing RNAs (siRNAs). Fewer lines were regenerated from the transformants with either 1000-bp inverted hairpin transcripts, or a sense-intron-antisense orientation versus antisense-intron-sense orientation. Resistances to PVA and two strains of PVY (-O and -N) were achieved in plants from most of lines examined, as well as resistance to co-infection by a mixture of PVY-O and PVA, applied to the plants by either rub inoculation or using aphids. This was regardless of the orientation of the inserted sequences for the 600-bp insert lines, but only for one orientation of the 1000-bp insert lines. The lines containing the 1000-bp inserts also showed resistance to infection by TRV inoculated by rub inoculation and PMTV inoculated by grafting. However, all the lines showed only low-to-moderate (15-43%) resistance to infection by PLRV transmitted by aphids. The resistances to the various viruses correlated with the levels of accumulation of siRNAs, indicating that the multiple resistances were achieved by RNA silencing.

  3. Combined Metabonomic and Quantitative RT-PCR Analyses Revealed Metabolic Reprogramming Associated with Fusarium graminearum Resistance in Transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fangfang Chen

    2018-01-01

    Full Text Available Fusarium head blight disease resulting from Fusarium graminearum (FG infection causes huge losses in global production of cereals and development of FG-resistant plants is urgently needed. To understand biochemistry mechanisms for FG resistance, here, we have systematically investigated the plant metabolomic phenotypes associated with FG resistance for transgenic Arabidopsis thaliana expressing a class-I chitinase (Chi, a Fusarium-specific recombinant antibody gene (CWP2 and fused Chi-CWP2. Plant disease indices, mycotoxin levels, metabonomic characteristics, and expression levels of several key genes were measured together with their correlations. We found that A. thaliana expressing Chi-CWP2 showed higher FG resistance with much lower disease indices and mycotoxin levels than the wild-type and the plants expressing Chi or CWP2 alone. The combined metabonomic and quantitative RT-PCR analyses revealed that such FG-resistance was closely associated with the promoted biosynthesis of secondary metabolites (phenylpropanoids, alkanoids and organic osmolytes (proline, betaine, glucose, myo-inositol together with enhanced TCA cycle and GABA shunt. These suggest that the concurrently enhanced biosyntheses of the shikimate-mediated secondary metabolites and organic osmolytes be an important strategy for A. thaliana to develop and improve FG resistance. These findings provide essential biochemical information related to FG resistance which is important for developing FG-resistant cereals.

  4. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function[S

    Science.gov (United States)

    Berisha, Stela Z.; Brubaker, Greg; Kasumov, Takhar; Hung, Kimberly T.; DiBello, Patricia M.; Huang, Ying; Li, Ling; Willard, Belinda; Pollard, Katherine A.; Nagy, Laura E.; Hazen, Stanley L.; Smith, Jonathan D.

    2015-01-01

    HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice. PMID:25561462

  5. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease.

    Science.gov (United States)

    Ban, Huifang; Chai, Xinli; Lin, Yongjun; Zhou, Ying; Peng, Donghai; Zhou, Yi; Zou, Yulan; Yu, Ziniu; Sun, Ming

    2009-12-01

    Amorphophallus konjac is an important economic crop widely used in health products and biomaterials. However, this monocotyledonous plant's production is seriously restricted by soft rot disease. Some Bacillus thuringiensis strains generate an endocellular acyl homoserine lactonase (AiiA), which has inhibitory effect on soft rot pathogen through disrupting the signal molecules (N-acylhomoserine lactones, AHL) of their Quorum Sensing system. The aim of our study is to obtain transgenic A. konjac expressing AiiA protein and exhibiting resistance to soft rot. But till now, there is not any report about exogenous gene transformation in A. konjac. In this research, an Agrobacterium-mediated genetic transformation system was constructed. An aiiA gene was synthesized according to the codon usage in A. konjac. Embryogenic callus was infected with the A. tumefaciens strain EHA105 harboring the plant transformation plasmid pU1301 plus synthesized aiiA gene. After antibiotics screening, 34 plants were obtained. PCR analysis showed that positive amplified fragments were present in 21 out of these 34 lines. Southern blot analysis indicated that aiiA gene had integrated into the genome of A. konjac. Western blotting demonstrated that the target protein of interest was reactive with the antibody against AiiA. Further disease resistance detection revealed that all of the tested transgenic A. konjac lines exhibited high resistance to soft rot bacteria Erwinia carotovora subsp. Carotovora (Ecc) SCG1. The protocol is useful for the quality improvement of A. konjac through genetic transformation.

  6. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. 'Nellie White'.

    Science.gov (United States)

    Vieira, Paulo; Wantoch, Sarah; Lilley, Catherine J; Chitwood, David J; Atkinson, Howard J; Kamo, Kathryn

    2015-06-01

    Lilium longiflorum cv. 'Nellie White' assumes a great economic importance as cut flowers, being one of the most valuable species (annual pot plants value above $20,000,000) in terms of wholesales in the US. The root lesion nematode Pratylenchus penetrans (RLN) constitutes one of the main pests for lily producers due to the significant root damage it causes. Our efforts have focused on the generation of soybean hairy roots (as a transient test model) and stable transgenic lilies overexpressing a modified rice cystatin (Oc-IΔD86) transgene and challenged with root lesion nematodes. Lily transformation was achieved by gene gun co-bombardment using both a pBluescript-based vector containing the cystatin gene and pDM307 that contains a bar gene for phosphinothricin selection. Both soybean hairy roots and lilies overexpressing the OcIΔD86 transgene exhibited enhanced resistance to RLN infection by means of nematode reduction up to 75 ± 5% on the total number of nematodes. In addition, lily plants overexpressing OcIΔD86 displayed an increase of plant mass and better growth performance in comparison to wild-type plants, thereby demonstrating an alternative strategy for increasing the yield and reducing nematode damage to this important floral crop.

  7. Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish.

    Science.gov (United States)

    Lin, Cheng-Yung; Yang, Ping-Hsi; Kao, Chia-Ling; Huang, Han-I; Tsai, Huai-Jen

    2010-03-01

    Zebrafish (Danio rerio) was used as a bioreactor to produce bovine lactoferricin (LFB), which has wide-ranging antimicrobial activity. We constructed an expression plasmid in which LFB was fused with green fluorescent protein (GFP) and driven by zebrafish beta-actin promoter. After microinjection, six transgenic founders were screened on the basis of GFP appearance. Among them, a stable ZBL-5 line was selected by the ubiquitous and strong expression of GFP. Using PCR and Western blot analysis, we confirmed that the recombinant LFB-GFP protein was produced by the F2 progeny derived from the ZBL-5 line. The bactericidal agar plate assay proved that the functional domain of LFB was released from the LFB-GFP fusion protein, resulting in strong bactericidal activity against Escherichia coli, Edwardsiella tarda and Aeromonas hydrophila. Furthermore, adult zebrafish were given one feeding of fifty 72-hpf transgenic embryos. The treated fish were then immersed in freshwater containing 1 x 10(5) CFU ml(-1)E. tarda for 7 days. The survival rate of the treated zebrafish was significantly higher than that of fish fed with fifty wild-type embryos (75 +/- 12.5% versus 4 +/- 7.2%). This line of evidence suggested that pathogen resistance can be enhanced by using transgenic embryos containing LFB-GFP as a food supplement for fish, while, at the same time, reducing the demand of chemical antibiotics. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Overexpressing the Sedum alfredii Cu/Zn Superoxide Dismutase Increased Resistance to Oxidative Stress in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-06-01

    Full Text Available Superoxide dismutase (SOD is a very important reactive oxygen species (ROS-scavenging enzyme. In this study, the functions of a Cu/Zn SOD gene (SaCu/Zn SOD, from Sedum alfredii, a cadmium (Cd/zinc/lead co-hyperaccumulator of the Crassulaceae, was characterized. The expression of SaCu/Zn SOD was induced by Cd stress. Compared with wild-type (WT plants, overexpression of SaCu/Zn SOD gene in transgenic Arabidopsis plants enhanced the antioxidative defense capacity, including SOD and peroxidase activities. Additionally, it reduced the damage associated with the overproduction of hydrogen peroxide (H2O2 and superoxide radicals (O2•-. The influence of Cd stress on ion flux across the root surface showed that overexpressing SaCu/Zn SOD in transgenic Arabidopsis plants has greater Cd uptake capacity existed in roots. A co-expression network based on microarray data showed possible oxidative regulation in Arabidopsis after Cd-induced oxidative stress, suggesting that SaCu/Zn SOD may participate in this network and enhance ROS-scavenging capability under Cd stress. Taken together, these results suggest that overexpressing SaCu/Zn SOD increased oxidative stress resistance in transgenic Arabidopsis and provide useful information for understanding the role of SaCu/Zn SOD in response to abiotic stress.

  9. Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids.

    Science.gov (United States)

    Mi, Xiaoxiao; Liu, Xue; Yan, Haolu; Liang, Lina; Zhou, Xiangyan; Yang, Jiangwei; Si, Huaijun; Zhang, Ning

    2017-01-01

    Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. Production of marker-free and RSV-resistant transgenic rice using a ...

    Indian Academy of Sciences (India)

    2013-07-22

    Jul 22, 2013 ... A twin T-DNA system is a convenient strategy for creating selectable marker-free transgenic plants. The standard transformation plasmid, pCAMBIA 1300, was modified into a binary vector consisting of two separate T-DNAs, one of which contained the hygromycin phosphotransferase (hpt) marker gene.

  11. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development.

    Science.gov (United States)

    Isaacs, Alison T; Jasinskiene, Nijole; Tretiakov, Mikhail; Thiery, Isabelle; Zettor, Agnès; Bourgouin, Catherine; James, Anthony A

    2012-07-10

    Anopheles stephensi mosquitoes expressing m1C3, m4B7, or m2A10 single-chain antibodies (scFvs) have significantly lower levels of infection compared to controls when challenged with Plasmodium falciparum, a human malaria pathogen. These scFvs are derived from antibodies specific to a parasite chitinase, the 25 kDa protein and the circumsporozoite protein, respectively. Transgenes comprising m2A10 in combination with either m1C3 or m4B7 were inserted into previously-characterized mosquito chromosomal "docking" sites using site-specific recombination. Transgene expression was evaluated at four different genomic locations and a docking site that permitted tissue- and sex-specific expression was researched further. Fitness studies of docking site and dual scFv transgene strains detected only one significant fitness cost: adult docking-site males displayed a late-onset reduction in survival. The m4B7/m2A10 mosquitoes challenged with P. falciparum had few or no sporozoites, the parasite stage infective to humans, in three of four experiments. No sporozoites were detected in m1C3/m2A10 mosquitoes in challenge experiments when both genes were induced at developmentally relevant times. These studies support the conclusion that expression of a single copy of a dual scFv transgene can completely inhibit parasite development without imposing a fitness cost on the mosquito.

  12. Production of marker-free and RSV-resistant transgenic rice using a ...

    Indian Academy of Sciences (India)

    2013-07-22

    Jul 22, 2013 ... Breitler JC, Meynard D, Van Boxtel J, Royer M, Bonnot F,. Cambillau L and Guiderdoni E 2004 A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Trans- genic Res. 13 271–287. Chen PY, Wang CK, Soong SC and To ...

  13. Perception of GMOs by scientists and practitioners--the critical role of information flow about transgenic organisms.

    Science.gov (United States)

    Małyska, Aleksandra; Maciąg, Kamil; Twardowski, Tomasz

    2014-03-25

    The issue of GMOs arouses constantly strong emotions in public discourse. At the same time opinions of people particularly interested in this issues such as researchers, or potential users of this technology (e.g. farmers) are rarely subjected to analysis. Moreover, lack of knowledge about the flow of information "from the laboratory to the consumer" hinders implementation of any changes in this field. By using triangulation (combining quantitative and qualitative research and the use of various research tools) we explored the attitudes of Polish scientists, agricultural advisers and farmers (large scale agricultural producers) to the use of GMOs in the economy. On the basis of the performed research we diagnosed the effectiveness of information flow among these groups about transgenic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Measurement of resistance to flow across antroduodenal area during fasting.

    Science.gov (United States)

    Mearin, F; Azpiroz, F; Malagelada, J R

    1986-06-01

    Changes in antroduodenal resistance to flow may participate in the regulation of gastric emptying and duodenogastric reflux. Little is known, however, about the relationship between antroduodenal resistance and the physiological patterns of contractile activity in this area. We have developed an instrument that maintains an electronically regulated constant-pressure gradient of 2 mmHg across both ends of a flaccid cylinder positioned fluoroscopically across the pylorus. Because resistance bears a constant inverse relationship to flow at a fixed pressure gradient, changes in the recorded rate of airflow through the cylinder are a measure of antroduodenal resistance. In vitro studies showed that, under these conditions, airflow was a function of the diameter and length of the air path and the frequency and duration of external pressure waves greater than 2 mmHg. In vivo studies in four dogs examined the relationship between interdigestive phases of motor activity and variations in resistance exerted by the antroduodenal area. We found that flow rates varied markedly with each phase. Antroduodenal resistance was lowest during motor quiescence (phase I), rose gradually during irregular activity (phase II), and reached its peak during maximal contractile activity (phase III) (P less than 0.05). Resistance was similar for antegrade and retrograde flow. Additional studies suggested that the pyloric area contributes mostly to resistance during phase I, whereas duodenal resistance at least matches that of the pylorus during phase III.

  15. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    Science.gov (United States)

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani.

    Science.gov (United States)

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2013-01-01

    Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    Science.gov (United States)

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. A comparative investigation of the metabolism of the herbicide glufosinate in cell cultures of transgenic glufosinate-resistant and non-transgenic oilseed rape (Brassica napus) and corn (Zea mays).

    Science.gov (United States)

    Ruhland, Monika; Engelhardt, Gabriele; Pawlizki, Karlheinz

    2002-10-01

    To obtain information on differences between the metabolic pathways of the herbicide glufosinate (trade names: BASTA, LIBERTY) in non-transgenic, glufosinate-sensitive plants and in transgenic, glufosinate-resistant plants, the metabolism of 14C-labeled glufosinate and its enantiomers L- and D-glufosinate was studied using cell cultures of oilseed rape and corn. Transformation of glufosinate in both sensitive and transgenic rape cells remained at a low rate of about 3-10% in contrast to corn cells, where 20% was transformed in sensitive and 43% in transgenic cells after 14 days of incubation, the rest remaining as unchanged glufosinate. In sensitive rape and corn cells the main metabolite was 4-methylphosphinico-2-oxo-butanoic acid (PPO) with 7.3 and 16.4%, respectively, together with low amounts of 3-methylphosphinicopropionic acid (MPP), 4-methylphosphinico-2-hydroxybutanoic acid (MHB), 4-methylphosphinicobutanoic acid (MPB) and 2-methylphosphinicoacetic acid (MPA). An additional metabolite formed in transgenic cell cultures was 2-acetamido-4-methylbutanoic acid (N-acetyl-L-glufosinate, NGA), which was formed at rates of 3.2% in rape and 16.1% in corn. A further minor metabolite, not yet identified, was detected in both cell types. The liberation of 0.2% 14CO2 indicates further metabolic steps prior to a limited mineralization in plant cell cultures. L-glufosinate was transformed into the same metabolites as the glufosinate racemate. D-glufosinate was not metabolized.

  19. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self....... Two case are treated: flow perpendicular to the cylinder axes, and flow parallel to the axes. In each case two new approximate procedures were used. In the first procedure, one solves the equation of flow in a Voronoi cell around the fiber, and averages over the distribution of the Voronoi cells...

  20. Kill two birds with one stone: making multi-transgenic pre-diabetes mouse models through insulin resistance and pancreatic apoptosis pathogenesis

    Directory of Open Access Journals (Sweden)

    Siyuan Kong

    2018-04-01

    Full Text Available Background Type 2 diabetes is characterized by insulin resistance accompanied by defective insulin secretion. Transgenic mouse models play an important role in medical research. However, single transgenic mouse models may not mimic the complex phenotypes of most cases of type 2 diabetes. Methods Focusing on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors, we generated single-transgenic (C/EBP homology protein, CHOP mice (CHOP mice, dual-transgenic (human islet amyloid polypeptide, hIAPP; CHOP mice (hIAPP-CHOP mice and triple-transgenic (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1; hIAPP; CHOP mice (11β-HSD1-hIAPP- CHOP mice. The latter two types of transgenic (Tg animals were induced with high-fat high-sucrose diets (HFHSD. We analyzed the diabetes-related symptoms and histology features of the transgenic animals. Results Comparing symptoms on the spot-checked points, we determined that the triple-transgene mice were more suitable for systematic study. The results of intraperitoneal glucose tolerance tests (IPGTT of triple-transgene animals began to change 60 days after induction (p < 0.001. After 190 days of induction, the body weights (p < 0.01 and plasma glucose of the animals in Tg were higher than those of the animals in Negative Control (Nc. After sacrificed, large amounts of lipid were found deposited in adipose (p < 0.01 and ectopically deposited in the non-adipose tissues (p < 0.05 or 0.01 of the animals in the Tg HFHSD group. The weights of kidneys and hearts of Tg animals were significantly increased (p < 0.01. Serum C peptide (C-P was decreased due to Tg effects, and insulin levels were increased due to the effects of the HFHSD in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone of Tg was slightly higher than those of Nc due to the

  1. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    Science.gov (United States)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  2. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.

    Science.gov (United States)

    Tang, Wei; Tian, Yingchuan

    2003-02-01

    A synthetic version of the CRY1Ac gene of Bacillus thuringiensis has been used for the transformation of loblolly pine (Pinus taeda L.) using particle bombardment. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Expression vector pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) CRY1Ac coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator sequences, and the neomycin phosphotransferase II (NPTII) gene controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected on media with kanamycin. Shoot regeneration was induced from the kanamycin-resistant calli, and transgenic plantlets were then produced. More than 60 transformed plants from independent transformation events were obtained for each loblolly pine genotype tested. The integration and expression of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern hybridization, by Northern blot analysis, and by Western blot analysis. Effective resistance of transgenic plants against Dendrolimus punctatus Walker and Crypyothelea formosicola Staud was verified in feeding bioassays with the insects. The transgenic plants recovered could represent a good opportunity to analyse the impact of genetic engineering of pine for sustainable resistance to pests using a B. thuringiensis insecticidal protein. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform.

  3. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    Science.gov (United States)

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea.

  4. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots.

    Science.gov (United States)

    Muramoto, Nobuhiko; Tanaka, Tomoko; Shimamura, Takashi; Mitsukawa, Norihiro; Hori, Etsuko; Koda, Katsunori; Otani, Motoyasu; Hirai, Masana; Nakamura, Kenzo; Imaeda, Takao

    2012-06-01

    Black rot of sweet potato caused by pathogenic fungus Ceratocystis fimbriata severely deteriorates both growth of plants and post-harvest storage. Antimicrobial peptides from various organisms have broad range activities of killing bacteria, mycobacteria, and fungi. Plant thionin peptide exhibited anti-fungal activity against C. fimbriata. A gene for barley α-hordothionin (αHT) was placed downstream of a strong constitutive promoter of E12Ω or the promoter of a sweet potato gene for β-amylase of storage roots, and introduced into sweet potato commercial cultivar Kokei No. 14. Transgenic E12Ω:αHT plants showed high-level expression of αHT mRNA in both leaves and storage roots. Transgenic β-Amy:αHT plants showed sucrose-inducible expression of αHT mRNA in leaves, in addition to expression in storage roots. Leaves of E12Ω:αHT plants exhibited reduced yellowing upon infection by C. fimbriata compared to leaves of non-transgenic Kokei No. 14, although the level of resistance was weaker than resistance cultivar Tamayutaka. Storage roots of both E12Ω:αHT and β-Amy:αHT plants exhibited reduced lesion areas around the site inoculated with C. fimbriata spores compared to Kokei No. 14, and some of the transgenic lines showed resistance level similar to Tamayutaka. Growth of plants and production of storage roots of these transgenic plants were not significantly different from non-transgenic plants. These results highlight the usefulness of transgenic sweet potato expressing antimicrobial peptide to reduce damages of sweet potato from the black rot disease and to reduce the use of agricultural chemicals.

  5. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  6. S14G-humanin alleviates insulin resistance and increases autophagy in neurons of APP/PS1 transgenic mouse.

    Science.gov (United States)

    Han, Kun; Jia, Ning; Zhong, Yi; Shang, Xiuli

    2018-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by Aβ plaque deposition in the brain, which is related to the disorder of autophagosome maturation, transport, and formation of autolysosome. Notably, abnormal insulin signaling is connected with cognitive dysfunction in AD. In this study, using APP/PS1 transgenic mice as AD model, we investigated the mechanism by which S14G-humanin (HNG) improved autophagy and insulin signaling in AD brain. Immunohistochemistry was used to determine the levels of mTOR and Aβ deposition, and Western blot analysis was used to determine IRS-1, IRS-1 pSEr636, ULK1, p62, LC3 I/LC3 II protein levels. Our results demonstrated that HNG could improve the learning ability and memory in APP/PS1 transgenic mice, possibly through decreasing IRS-1 Ser636 phosphorylation and mTOR protein expression in the hippocampus, thus improving insulin resistance in the brain. In addition, HNG increased ULK1 expression, decreased p62 and LC3 I/LC3 II protein levels, thus enhancing autophagy and decreasing Aβ deposition in the brain. Taken together, our results suggest that through the regulation of IRS-1/mTOR insulin signaling in the hippocampus, HNG increases the activity of autophagy and decreases Aβ deposition in the brain, and improves learning ability and memory of AD mice. © 2017 Wiley Periodicals, Inc.

  7. Heat-resistant mechanism of transgenic rape by 45Ca isotope tracer

    International Nuclear Information System (INIS)

    Xu Falun; Yang Yuanyou; Liu Ning; Liao Jiali; Yang Jijun; Tang Jun; Liu Zhibin; Yang Yi

    2012-01-01

    The Ca 2+ uptake differences of the rape with heat-resistant gene and the general rape were investigated by 45 Ca isotope tracer. The results showed that the rape with heat-resistant gene can strengthen the regulation of calcium absorption. The calcium regulation ability of the heat-resistant genes may be able to play in the rape aspect of the mechanism of resistance. (authors)

  8. Flow resistance a design guide for engineers

    CERN Document Server

    Idelchik, I

    1989-01-01

    A sourcebook offering an up-to-date perspective on a variety of topics and using practical, applications-oriented data necessary for the design and evaluation of internal fluid system pressure losses. It has been prepared for the practicing engineer who understands fluid-flow fundamentals.

  9. Multi‑transgenic minipig models exhibiting potential for hepatic insulin resistance and pancreatic apoptosis.

    Science.gov (United States)

    Kong, Siyuan; Ruan, Jinxue; Xin, Leilei; Fan, Junhua; Xia, Jihan; Liu, Zhiguo; Mu, Yulian; Yang, Shulin; Li, Kui

    2016-01-01

    There are currently no multi‑transgenic minipig models of diabetes for the regulation of multiple genes involved in its pathogenesis. The foot and mouth disease virus 2A (F2A)‑mediated polycistronic system possesses several advantages, and the present study developed a novel multi‑transgenic minipig model associated with diabetes using this system. The tissue‑specific polycistronic system used in the present study consisted of two expression cassettes, separated by an insulator: (i) 11‑β‑hydroxysteroid dehydrogenase 1 (11β‑HSD1), driven by the porcine liver‑specific apolipoprotein E promoter; (ii) human islet amyloid polypeptide (hIAPP) and C/EBP homologous protein (CHOP), linked to the furin digested site and F‑2A, driven by the porcine pancreas‑specific insulin promoter. In the present study, porcine fetal fibroblasts were transfected with this vector. Following somatic cell nuclear transfer using 10 cell clones and the transplantation of 1,459 embryos in total, three Landrace x Yorkshire surrogates became pregnant and delivered three Wuzhishan piglets. Genomic polymerase chain reaction (PCR) demonstrated that the piglets were multi‑transgenic. Reverse transcription‑quantitative PCR confirmed that 11β‑HSD1 transcription was upregulated in the targeted liver. Similarly, hIAPP and CHOP were expressed at high levels, compared with the control (P<0.05 and P<0.01) in the pancreas, consistent with the western blotting and immunohistochemistry results. The primary results also showed that overexpression of 11β‑HSD1 in the liver increased the liver fat lipid parameters; and the levels of hIAPP and CHOP in the pancreatic islet cells, leading to delayed β‑cell development and apoptosis. This novel tissue‑specific polycistronic system offers a promising starting point for efficiently mimicking multigenic metabolic disease.

  10. Flow resistance in open channels with fixed movable bed

    Science.gov (United States)

    Simoes, Francisco J.

    2010-01-01

    In spite of an increasingly large body of research by many investigators, accurate quantitative prediction of open channel flow resistance remains a challenge. In general, the relations between the elements influencing resistance (turbulence, boundary roughness, and channel shape features, such as discrete obstacles, bars, channel curvature, recirculation areas, secondary circulation, etc.) and mean flow variables are complex and poorly understood. This has resulted in numerous approaches to compute friction using many and diverse variables and equally diverse prescriptions for their use. In this paper, a new resistance law for surface (grain) resistance, the resistance due to the flow viscous effects on the channel boundary roughness elements, is presented for the cases of flow in the transition (5 friction losses in channels and natural rivers with plane beds, regardless of sediment transport conditions. This work is useful to hydraulic engineers involved with the derivation of depth-discharge relations in open channel flow and with the estimation of sediment transport rates for the case of bedload transport.

  11. Suppression of turbulent resistivity in turbulent Couette flow

    International Nuclear Information System (INIS)

    Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-01-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations

  12. Suppression of turbulent resistivity in turbulent Couette flow

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe

    2015-07-01

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  13. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  14. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  15. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  16. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Molecular investigations of the soil, rhizosphere and transgenic glufosinate-resistant rape and maize plants in combination with herbicide (Basta) application under field conditions.

    Science.gov (United States)

    Ernst, Dieter; Rosenbrock-Krestel, Hilkea; Kirchhof, Gudrun; Bieber, Evi; Giunaschwili, Nathela; Müller, Rüdiger; Fischbeck, Gerhard; Wagner, Tobias; Sandermann, Heinrich; Hartmann, Anton

    2008-01-01

    A field study was conducted during 1994 to 1998 on the Experimental Farm Roggenstein, near Fürstenfeldbruck, Bavaria, Germany to determine the effect of transgenic glufosinate-resistant rape in combination with the herbicide Basta [glufosinate-ammonium, phosphinothricin, ammonium (2RS)-2-amino-4-(methylphosphinato) butyric acid] application on soil microorganisms and the behaviour of the synthetic transgenic DNA in response to normal agricultural practice. No influence of Basta on microbial biomass could be detected. The phospholipid fatty acid analysis of soil extracts showed no difference between Basta application and mechanical weed control, whereas conventional herbicide application revealed a different pattern. Basta application resulted in a changed population of weeds with a selective effect for Viola arvensis. During senescence, transgenic rape DNA was degraded similar to endogenous control DNA. After ploughing the chopped plant material in the soil, transgenic as well as endogenous control DNA sequences could be detected for up to 4 weeks for rape and up to 7 months for maize, whereas PCR analysis of composted transgenic maize revealed the presence of the transgene over a period of 22 months.

  18. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  19. MOLECULAR METHODS USED TO ASSESS THE RISKS OF TRANSGENE FLOW; BENEFITS AND LIMITATIONS

    Science.gov (United States)

    The US EPA WED has initiated a gene flow project to characterize ecological risks of gene flow from GM plants to native species. Development of molecular assays for risk characterization down to gene expression level is of high interest to the EPA. Phylogenetic analyses of ampl...

  20. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  1. Flux-flow resistivity of three high-temperature superconductors

    International Nuclear Information System (INIS)

    Cha, Y.S.; Evans, D.J.; Hull, J.R.; Seol, S.Y.

    1996-01-01

    Results of experiments on flux-flow resistivity (the relationship of voltage to current) of three high-temperature superconductors are described. The superconductors are a melt-cast BSCCO 2212 rod, a single filament BSCCO powder-in-tube (PIT) tape, and a multifilament PIT tape. The flux-flow resistivity of these superconductors was measured at three temperatures: 77 K (saturated liquid nitrogen), 87 K (saturated liquid argon), and 67 K (subcooled liquid nitrogen). Implications of the present results for practical applications are discussed

  2. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain.

    Directory of Open Access Journals (Sweden)

    Alexander W E Franz

    2014-05-01

    Full Text Available In 2006, we reported a mariner (Mos1-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2. Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS by backcrossing for five generations and selecting individuals expressing the transgene's EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5 lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fisher's selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS was manifest in the final family selection stage, we were able to select homozygotes for the transgene in

  3. Modelling nasal high flow therapy effects on upper airway resistance and resistive work of breathing.

    Science.gov (United States)

    Adams, Cletus F; Geoghegan, Patrick H; Spence, Callum J; Jermy, Mark C

    2018-04-07

    The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30-60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (V t ) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. NHF was applied via three different cannula sizes to a 3-D printed human upper airway. Pressure drop and flow rate were measured and used to estimate inspiratory and expiratory upper airway resistances. The resistance information was used to compute the muscular work required to overcome the resistance of the upper airway to flow. NHF raises expiratory resistance relative to spontaneous breathing if the breathing pattern does not change but reduces work of breathing if peak expiratory flow falls. Of the cannula sizes used, the large cannula produced the greatest resistance and the small cannula produced the least. The work required to cause tracheal flow through the upper airway was reduced if the RR and minute volume are reduced by NHF. NHF has been observed to do so in COPD patients (Bräunlich et al., 2013). A reduction in I:E ratio due to therapy was found to reduce work of breathing if the peak inspiratory flow is less than the flow below which no inspiratory effort is required to overcome upper airway resistance. NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of

  4. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Clifton, Eric H; Dunbar, Mike W; Hoffmann, Amanda M; Ingber, David A; Keweshan, Ryan S

    2014-04-08

    The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.

  5. Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Brown, Sebe; Kurtz, Ryan; Dennehy, Tim; Braxton, Bo; Head, Graham; Huang, Fangneng

    2016-06-15

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins have become a primary tool in pest management. Due to the intensive use of Bt crops, resistance of the fall armyworm, Spodoptera frugiperda, to Cry1F maize has occurred in Puerto Rico, Brazil, and some areas of the southeastern U.S. The sustainability of Bt crops faces a great challenge because the Cry1F-maize resistant S. frugiperda may also infest other Bt crops in multiple cropping ecosystems. Here we examined the survival and plant injury of a S. frugiperda population selected with Cry1F maize on three single-gene and five pyramided Bt cotton products. Larvae of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of S. frugiperda were all susceptible to the pyramided cotton containing Cry1Ac/Cry2Ab, Cry1Ac/Cry1F/Vip3A, Cry1Ab/Cry2Ae, or Cry1Ab/Cry2Ae/Vip3A, and the single-gene Cry2Ae cotton. Pyramided cotton containing Cry1Ac/Cry1F was effective against SS and RS, but not for RR. These findings show that the Cry1F-maize selected S. frugiperda can cause cross-crop resistance to other Bt crops expressing similar insecticidal proteins. Resistance management and pest management programs that utilize diversify mortality factors must be implemented to ensure the sustainability of Bt crops. This is especially important in areas where resistance to single-gene Bt crops is already widespread.

  6. Resistance levels to two strains of Potato virus Y (PVY) in transgenic potatoes cv. Achat Níveis de resistência ao Potato virus Y (PVY) em batata cv. Achat

    OpenAIRE

    André N. Dusi; César Carvalho; Antônio Carlos Torres; Antonio Carlos de Ávila

    2001-01-01

    Two transgenic potato clones of cv. Achat, denominated 1P and 63P were challenged with two Potato virus Y strains (PVY O and PVY N), under greenhouse conditions, to be evaluated for resistance to these strains. Optical density values of the Elisa readings of samples from the transgenic plants were compared to readings from samples of the inoculated non-transformed plants. Clone 1P was extremely resistant to both PVY strains, reflected by not being systemically infected. Clone 63P, however, pr...

  7. Resistive pressure sensors integrated with a Coriolis mass flow sensor

    NARCIS (Netherlands)

    Alveringh, Dennis; Schut, Thomas; Wiegerink, Remco J.; Sparreboom, Wouter; Lötters, Joost Conrad

    2017-01-01

    We report on a novel resistive pressure sensor that is completely integrated with a Coriolis mass flow sensor on one chip, without the need for extra fabrication steps or different materials. Two pressure sensors are placed in-line with the Coriolis sensor without requiring any changes to the fluid

  8. Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco.

    Science.gov (United States)

    Langen, Gregor; Imani, Jafargholi; Altincicek, Boran; Kieseritzky, Gernot; Kogel, Karl-Heinz; Vilcinskas, Andreas

    2006-05-01

    A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.

  9. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    Science.gov (United States)

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  10. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  11. Dissimilarity of contemporary and historical gene flow in a wild carrot (Daucus carota) metapopulation under contrasting levels of human disturbance: implications for risk assessment and management of transgene introgression

    NARCIS (Netherlands)

    Rong, J.; Xu, S.; Meirmans, P.G.; Vrieling, K

    2013-01-01

    Background and Aims Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also

  12. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  13. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference.

    Science.gov (United States)

    Zhang, Zhi-Yong; Yang, Lin; Zhou, Shu-Feng; Wang, Han-Guang; Li, Wan-Chen; Fu, Feng-Ling

    2011-05-20

    To overcome the low efficiency of agronomic protection from maize dwarf mosaic disease, susceptible maize inbred line was transformed by Agrobacterium tumefaciens harboring hpRNA expression vectors containing inverted-repeat sequences of different lengths targeting coat protein gene (CP) of maize dwarf mosaic virus (MDMV). After PCR screening and Southern blotting, the flanking sequences of the integration sites were amplified by thermal asymmetric interlaced PCR (TAIL-PCR) and used for analysis of T-DNA integration patterns. The T₂ plant lines were evaluated for their MDMV resistance in field inoculation trials under two environments. Of the nineteen T₂ plant lines positive in Southern blotting, six were evaluated as resistant to MDMV, and four of them had resistance non-significantly different from the highly resistant control "H9-21", while the resistance of the other eleven was proved to be significantly improved when compared to their non-transformed parent line. These improvements in MDMV resistance were verified by the relative amount of virus CP gene expression measured by quantitative real time PCR. Comparing the results of Southern blotting and TAIL-PCR analysis, different integration patterns of one or two copies of the inverted-repeat sequences were identified from non-repetitive and repetitive sequences of the maize genome. The MDMV resistance mediated by RNA interference is relative to the length of the inverted-repeat sequence, the copy number of T-DNA integration and the repeatability of integration sites. A longer hpRNA expression construct shows more efficiency than a shorter one. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Resistance coefficient during ice slurry flow through pipe sudden constriction

    Directory of Open Access Journals (Sweden)

    Ł. Mika

    2010-07-01

    Full Text Available Due to the adverse environmental effects of some commonly-used refrigerants, efforts are still underway to find new cooling mediumsthat would be safer to the ozone layer and would not increase the greenhouse effect. Ice slurry as a new ecological coolant suits theprocesses requiring the preservation of constant and equal temperature in the cooling process of the full section of the cooled solid. Thanks to that, ice slurry can find a wide potential application in such branches of industry, as heat treatment, materials engineering, or foundry. In this paper, flow systems which are commonly used in fittings elements such as diameter’s reductions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the slurry flow in which the flow qualities depend mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the resistance coefficient during the ice slurry flow through the pipe sudden constriction. The volume fraction of solid particles in the slurry ranged from 5 to 30%. The recommended and non-recommended range of the Reynolds number for the ice slurry flow through the pipe sudden constriction were presented in this paper. The experimental studies were conducted on a few variants of the most common reductions of copper pipes. Further studies on the determination of the resistance coefficient in the remaining fittings elements of the pipeline were recommended in the paper as well as the further theoretical studies intended to determine the theoretical relations to calculate the resistance coefficient in all the fittings elements in the pipeline (on the basis of the experimental studies and to elaborate the calculation pattern of the entire ice slurry system.

  16. Turbulent Mixing and Flow Resistance over Dunes and Scours

    Science.gov (United States)

    Dorrell, R. M.; Arfaie, A.; Burns, A. D.; Eggenhuisen, J. T.; Ingham, D. B.; McCaffrey, W. D.

    2014-12-01

    Flows in both submarine and fluvial channels are subject to lower boundary roughness. Lower boundary roughness occurs as frictional roughness suffered by the flow as it moves over the bed (skin friction) or drag suffered by the flow as it moves past a large obstacle (form drag). Critically, to overcome such roughness the flow must expend (lose) energy and momentum. However, whilst overcoming bed roughness the degree of turbulent mixing in the flow may be enhanced increasing the potential energy of the flow. This is of key importance to density driven flows as the balance between kinetic energy lost and potential energy gained (through turbulent diffusion of suspended particulate material) may critically affect the criterion for autosuspension. Moreover, this effect of lower boundary roughness may go as far as helping to explain why, even on shallow slopes, channelized submarine density currents can run out over ultra long distances. Such effects are also important in fluvial systems, where they will be responsible for maximizing or minimizing sediment capacity and competence in different flow environments. Numerical simulations are performed at a high Reynolds number (O (106)) for a series of crestal length to height ratio (c/h) at a fixed width to height ratio (w/h). Here, we present key findings of shear flow over a range of idealized bedform shapes. We show how the total basal shear stress is split into skin friction and form drag and identify how the respective magnitudes vary as a function of bedform shape and scale. Moreover we demonstrate how said bedforms affect the balance of energy lost (frictional) and energy gained (turbulent mixing). Overall, results demonstrate a slow reduction in turbulent mixing and flow resistance with decreasing bedform side slope angle. This suggests that both capacity and competence of the flow may be reduced through decrease in of the potential energy of the flow as a result of change in slope angles.

  17. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants1[OPEN

    Science.gov (United States)

    Wang, Bing; Sumit, Rishi; Srivastava, Subodh K.; Yang, Yang; Swaminathan, Sivakumar

    2018-01-01

    Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1. In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome. PMID:29101280

  18. Recombinant Promoter (MUASCsV8CP) Driven Totiviral Killer Protein 4 (KP4) Imparts Resistance Against Fungal Pathogens in Transgenic Tobacco

    Science.gov (United States)

    Deb, Debasish; Shrestha, Ankita; Maiti, Indu B.; Dey, Nrisingha

    2018-01-01

    Development of disease-resistant plant varieties achieved by engineering anti-microbial transgenes under the control of strong promoters can suffice the inhibition of pathogen growth and simultaneously ensure enhanced crop production. For evaluating the prospect of such strong promoters, we comprehensively characterized the full-length transcript promoter of Cassava Vein Mosaic Virus (CsVMV; -565 to +166) and identified CsVMV8 (-215 to +166) as the highest expressing fragment in both transient and transgenic assays. Further, we designed a new chimeric promoter ‘MUASCsV8CP’ through inter-molecular hybridization among the upstream activation sequence (UAS) of Mirabilis Mosaic Virus (MMV; -297 to -38) and CsVMV8, as the core promoter (CP). The MUASCsV8CP was found to be ∼2.2 and ∼2.4 times stronger than the CsVMV8 and CaMV35S promoters, respectively, while its activity was found to be equivalent to that of the CaMV35S2 promoter. Furthermore, we generated transgenic tobacco plants expressing the totiviral ‘Killer protein KP4’ (KP4) under the control of the MUASCsV8CP promoter. Recombinant KP4 was found to accumulate both in the cytoplasm and apoplast of plant cells. The agar-based killing zone assays revealed enhanced resistance of plant-derived KP4 against two deuteromycetous foliar pathogenic fungi viz. Alternaria alternata and Phoma exigua var. exigua. Also, transgenic plants expressing KP4 inhibited the growth progression of these fungi and conferred significant fungal resistance in detached-leaf and whole plant assays. Taken together, we establish the potential of engineering “in-built” fungal stress-tolerance in plants by expressing KP4 under a novel chimeric caulimoviral promoter in a transgenic approach. PMID:29556246

  19. Managing the Risk of European Corn Borer Resistance to Transgenic Corn: An Assessment of Refuge Recommendations

    OpenAIRE

    Terrance M. Hurley; Silvia Secchi; Bruce A. Babcock

    1999-01-01

    The use of Genetically Modified Organisms (GMOs) in agriculture has been on the rise since 1995. Scientists have been working to develop a high-dose refuge management plan that can effectively delay European corn borer resistance to pesticidal GMO corn. This paper develops a stochastic agricultural production model to assess and provide insight into the reasons why refuge recommendations remain controversial.

  20. Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Pavlidi, N.; Monastirioti, M.; Daborn, P.; Van Leeuwen, T.; Vontas, J.

    2012-01-01

    The emergence and spread of insecticide resistance in mosquitoes, such as the major vector of dengue and yellow fever Aedes aegypti, is a major public health problem. A number of studies have been conducted to-date aiming to identify specific molecular changes that are associated with the phenotype,

  1. Inoculation of transgenic resistant potato by Phytophthora infestans affects host plant choice of a generalist moth

    NARCIS (Netherlands)

    Abreha, K.B.; Alexandersson, Erik; Vossen, J.H.; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato

  2. Do glyphosate resistant feral plants and hay fields spread the transgene to conventional alfalfa seed fields?

    Science.gov (United States)

    In addition to meeting domestic needs, large amounts of alfalfa seed and hay produced in the US are being exported overseas. Because alfalfa is an insect pollinated crop, gene flow is a concern. Adding to this alfalfa readily naturalizes along roadsides, irrigation ditches, and unmanaged habitats; a...

  3. Comparisons of transcriptional profiles of gut genes between cry1Ab-resistant and susceptible strains of Ostrinia nubilalis revealed genes possibly related to the adaptation of resistant larvae to transgenic cry1Ab corn

    Science.gov (United States)

    European corn borer (Ostrinia nubilalis) gut 2,895 unique genes expressions were quantified and compared between a laboratory-selected Cry1Ab-resistant (R) strain and a susceptible (S) strain after fed transgenic corn (MON810) leaves expressing Cry1Ab by microarray. A total of 398 gut genes were di...

  4. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    OpenAIRE

    Jelenić, Srećko

    2003-01-01

    Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM) crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosp...

  5. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots.

    Science.gov (United States)

    Kung, Yi-Jung; Yu, Tsong-Ann; Huang, Chiung-Huei; Wang, Hui-Chin; Wang, Shin-Lan; Yeh, Shyi-Dong

    2010-08-01

    Papaya production is seriously limited by Papaya ringspot virus (PRSV) worldwide and Papaya leaf-distortion mosaic virus (PLDMV) in Eastern Asia. An efficient transformation method for developing papaya lines with transgenic resistance to these viruses and commercially desirable traits, such as hermaphroditism, is crucial to shorten the breeding program for this fruit crop. In this investigation, an untranslatable chimeric construct pYP08 containing truncated PRSV coat protein (CP) and PLDMV CP genes coupled with the 3' untranslational region of PLDMV, was generated. Root segments from different portions of adventitious roots of in vitro multiple shoots of hermaphroditic plants of papaya cultivars 'Tainung No. 2', 'Sunrise', and 'Thailand' were cultured on induction medium for regeneration into somatic embryos. The highest frequency of somatic embryogenesis was from the root-tip segments of adventitious roots developed 2-4 weeks after rooting in perlite medium. After proliferation, embryogenic tissues derived from somatic embryos were wounded in liquid-phase by carborundum and transformed by Agrobacterium carrying pYP08. Similarly, another construct pBG-PLDMVstop containing untranslatable CP gene of PLDMV was also transferred to 'Sunrise' and 'Thailand', the parental cultivars of 'Tainung No. 2'. Among 107 transgenic lines regenerated from 349 root-tip segments, nine lines of Tainung No. 2 carrying YP08 were highly resistant to PRSV and PLDMV, and 9 lines (8 'Sunrise' and 1 'Thailand') carrying PLDMV CP highly resistant to PLDMV, by a mechanism of post-transcriptional gene silencing. The hermaphroditic characteristics of the transgenic lines were confirmed by PCR with sex-linked primers and phenotypes of flower and fruit. Our approach has generated transgenic resistance to both PRSV and PLDMV with commercially desirable characters and can significantly shorten the time-consuming breeding programs for the generation of elite cultivars of papaya hybrids.

  6. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum.

    Science.gov (United States)

    Tripathi, Jaindra N; Lorenzen, Jim; Bahar, Ofir; Ronald, Pamela; Tripathi, Leena

    2014-08-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum (Xcm), is the most devastating disease of banana in east and central Africa. The spread of BXW threatens the livelihood of millions of African farmers who depend on banana for food security and income. There are no commercial chemicals, biocontrol agents or resistant cultivars available to control BXW. Here, we take advantage of the robust resistance conferred by the rice pattern-recognition receptor (PRR), XA21, to the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). We identified a set of genes required for activation of Xa21-mediated immunity (rax) that were conserved in both Xoo and Xcm. Based on the conservation, we hypothesized that intergeneric transfer of Xa21 would confer resistance to Xcm. We evaluated 25 transgenic lines of the banana cultivar 'Gonja manjaya' (AAB) using a rapid bioassay and 12 transgenic lines in the glasshouse for resistance against Xcm. About 50% of the transgenic lines showed complete resistance to Xcm in both assays. In contrast, all of the nontransgenic control plants showed severe symptoms that progressed to complete wilting. These results indicate that the constitutive expression of the rice Xa21 gene in banana results in enhanced resistance against Xcm. Furthermore, this work demonstrates the feasibility of PRR gene transfer between monocotyledonous species and provides a valuable new tool for controlling the BXW pandemic of banana, a staple food for 100 million people in east Africa. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Transgenic Expression of the piRNA-Resistant Masculinizer Gene Induces Female-Specific Lethality and Partial Female-to-Male Sex Reversal in the Silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Hiroki Sakai

    2016-08-01

    Full Text Available In Bombyx mori (B. mori, Fem piRNA originates from the W chromosome and is responsible for femaleness. The Fem piRNA-PIWI complex targets and cleaves mRNAs transcribed from the Masc gene. Masc encodes a novel CCCH type zinc-finger protein and is required for male-specific splicing of B. mori doublesex (Bmdsx transcripts. In the present study, several silkworm strains carrying a transgene, which encodes a Fem piRNA-resistant Masc mRNA (Masc-R, were generated. Forced expression of the Masc-R transgene caused female-specific lethality during the larval stages. One of the Masc-R strains weakly expressed Masc-R in various tissues. Females heterozygous for the transgene expressed male-specific isoform of the Bombyx homolog of insulin-like growth factor II mRNA-binding protein (ImpM and Bmdsx. All examined females showed a lower inducibility of vitellogenin synthesis and exhibited abnormalities in the ovaries. Testis-like tissues were observed in abnormal ovaries and, notably, the tissues contained considerable numbers of sperm bundles. Homozygous expression of the transgene resulted in formation of the male-specific abdominal segment in adult females and caused partial male differentiation in female genitalia. These results strongly suggest that Masc is an important regulatory gene of maleness in B. mori.

  8. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  9. Can transgenic mosquitoes afford the fitness cost?

    Science.gov (United States)

    Lambrechts, Louis; Koella, Jacob C; Boëte, Christophe

    2008-01-01

    In a recent study, SM1-transgenic Anopheles stephensi, which are resistant partially to Plasmodium berghei, had higher fitness than non-transgenic mosquitoes when they were maintained on Plasmodium-infected blood. This result should be interpreted cautiously with respect to malaria control using transgenic mosquitoes because, despite the evolutionary advantage conferred by the transgene, a concomitant cost prevents it from invading the entire population. Indeed, for the spread of a resistance transgene in a natural situation, the transgene's fitness cost and the efficacy of the gene drive will be more crucial than any evolutionary advantage.

  10. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  11. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  12. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  13. Consequences of gene flow between transgenic, insect-resistant crops and their wild relatives

    OpenAIRE

    Darmency, Henri

    2015-01-01

    Genetically Modified Organisms in Food focuses on scientific evaluation of published research relating to GMO food products to assert their safety as well as potential health risks. This book is a solid reference for researchers and professionals needing information on the safety of GMO and non-GMO food production, the economic benefits of both GMO and non-GMO foods, and includes in-depth coverage of the surrounding issues of genetic engineering in foods. This is a timely publication written ...

  14. Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance

    Directory of Open Access Journals (Sweden)

    Jacobs Jeanne ME

    2011-10-01

    Full Text Available Abstract Background The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.. Results A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM, Phthorimaea operculella (Zeller. Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. Conclusions A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event.

  15. Efficient dsRNA-mediated transgenic resistance to Beet necrotic yellow vein virus in sugar beets is not affected by other soilborne and aphid-transmitted viruses.

    Science.gov (United States)

    Lennefors, Britt-Louise; van Roggen, Petra M; Yndgaard, Flemming; Savenkov, Eugene I; Valkonen, Jari P T

    2008-04-01

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.

  16. Expression Analysis of Hairpin RNA Carrying Sugarcane mosaic virus (SCMV Derived Sequences and Transgenic Resistance Development in a Model Rice Plant

    Directory of Open Access Journals (Sweden)

    Sehrish Akbar

    2017-01-01

    Full Text Available Developing transgenic resistance in monocotyledonous crops against pathogens remains a challenging area of research. Sugarcane mosaic virus (SCMV is a serious pathogen of many monocotyledonous crops including sugarcane. The objective of present study was to analyze transgenic expression of hairpin RNA (hpRNA, targeting simultaneously CP (Coat Protein and Hc-Pro (helper component-proteinase genes of SCMV, in a model rice plant. Conserved nucleotide sequences, exclusive for DAG (Aspartic acid-Alanine-Glycine and KITC (Lycine-Isoleucine-Threonine-Cysteine motifs, derived from SCMV CP and Hc-Pro genes, respectively, were fused together and assembled into the hpRNA cassette under maize ubiquitin promoter to form Ubi-hpCP:Hc-Pro construct. The same CP:Hc-Pro sequence was fused with the β-glucuronidase gene (GUS at the 3′ end under CaMV 35S promoter to develop 35S-GUS:CP:Hc-Pro served as a target reporter gene construct. When delivered into rice callus tissues by particle bombardment, the Ubi-hpCP:Hc-Pro construct induced strong silencing of 35S-GUS:CP:Hc-Pro. Transgenic rice plants, containing Ubi-hpCP:Hc-Pro construct, expressed high level of 21–24 nt small interfering RNAs, which induced specific suppression against GUS:CP:Hc-Pro delivered by particle bombardment and conferred strong resistance to mechanically inoculated SCMV. It is concluded that fusion hpRNA approach is an affordable method for developing resistance against SCMV in model rice plant and it could confer SCMV resistance when transformed into sugarcane.

  17. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1991-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. Flux flow resistance in two dimensional Josephson junction arrays has been calculated, and related to correlations in vortex structure. Randomness has been introduced, and its effects on the superconducting transition, and vortex mobility, have been studied. We find that randomness destroys phase coherence, yet the randomness induced pinning reduces flux flow resistance at low temperatures. Vortex line fluctuations in high temperature superconductors have been studied using a three dimensional XY model. We have considered the melting of the vortex line lattice, and the entanglement and cutting of vortex lines in the vortex line liquid phase. Vortex line entangling and cutting appear to occur on the same length scales in the liquid phase. The vortex structure function has been calculated and from it, elastic properties of the vortex line liquid have been inferred. The two dimensional classical Coulomb gas, where charges map onto vortices in the superconducting system, has been simulated. The melting transitions of ordered charge (vortex) lattices have been studied, and we find evidence that these transitions do not have the critical behavior expected from standard symmetry analysis

  18. SAFETY CONSIDERATIONS WITH BLOOD FLOW RESTRICTED RESISTANCE TRAINING

    Directory of Open Access Journals (Sweden)

    Alan Kacin

    2015-11-01

    Full Text Available Blood flow restricted resistance (BFRR training with pneumatic tourniquet has been suggested as an alternative for conventional weight training due to the proven benefits for muscle strength and hypertrophy using relatively low resistance, hence reducing the mechanical stress across a joint. As such, it has become an important part of rehabilitation programs used in either injured or operated athletes. Despite a general consensus on effectiveness of BFRR training for muscle conditioning, there are several uncertainties regarding the interplay of various extrinsic and intrinsic factors on its safety and efficiency, which are being reviewed from a clinical perspective. Among extrinsic factors tourniquet cuff pressure, size and shape have been identified as key for safety and efficiency. Among intrinsic factors, limb anthropometrics, patient history and presence of cardiac, vascular, metabolic or peripheral neurologic conditions have been recognized as most important. Though there are a few potential safety concerns connected to BFRR training, the following have been identified as the most probable and health-hazardous: (a mechanical injury to the skin, muscle, and peripheral nerves, (b venous thrombosis due to vascular damage and disturbed hemodynamics and (c augmented arterial blood pressure responses due to combined high body exertion and increased peripheral vascular resistance. Based on reviewed literature and authors’ personal experience with the use of BFRR training in injured athletes, some guidelines for its safe application are outlined. Also, a comprehensive risk assessment tool for screening of subjects prior to their inclusion in a BFRR training program is being introduced.

  19. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  20. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Ziaei, Mahboobeh; Motallebi, Mostafa; Zamani, Mohammad Reza; Panjeh, Nasim Zarin

    2016-06-01

    Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation. Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants. Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.

  1. Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae in transgenic soybean (Glycine max (L. Merrill Fabales, Fabaceae cultivar IAS5 expressing a modified Cry1Ac endotoxin

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-01-01

    Full Text Available Somatic embryos of the commercial soybean (Glycine max cultivar IAS5 were co-transformed using particle bombardment with a synthetic form of the Bacillus thuringiensis delta-endotoxin crystal protein gene cry1Ac, the beta-glucuronidase reporter gene gusA and the hygromycin resistance gene hpt. Hygromycin-resistant tissues were proliferated individually to give rise to nine sets of clones corresponding to independent transformation events. The co-bombardment resulted in a co-transformation efficiency of 44%. Many histodifferentiated embryos and 30 well-developed plants were obtained. Twenty of these plants flowered and fourteen set seeds. The integration and expression of the cry1Ac, gusA and hpt transgenes into the genomes of a sample of transformed embryos and all T0, T1, T2 and T3 plants were confirmed by Gus activity, PCR, Southern and western blot, and ELISA techniques. Two T0 plants out of the seven co-transformed plants produced seeds and were analyzed for patterns of integration and inheritance until the T3 generation. Bioassays indicated that the transgenic plants were highly toxic to the velvetbean caterpillar Anticarsia gemmatalis, thus offering a potential for effective insect resistance in soybean.

  2. [Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens].

    Science.gov (United States)

    Vetchinkina, E M; Komakhina, V V; Vysotskii, D A; Zaitsev, D V; Smirnov, A N; Babakov, A V; Komakhin, R A

    2016-09-01

    The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.

  3. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny: Implications for environmental biosafety assessment.

    Science.gov (United States)

    Xia, Hui; Zhang, Hongbin; Wang, Wei; Yang, Xiao; Wang, Feng; Su, Jun; Xia, Hanbing; Xu, Kai; Cai, Xingxing; Lu, Bao-Rong

    2016-08-01

    Transgene introgression into crop weedy/wild relatives can provide natural selective advantages, probably causing undesirable environmental impact. The advantages are likely associated with factors such as transgenes, selective pressure, and genetic background of transgene recipients. To explore the role of the environment and background of transgene recipients in affecting the advantages, we estimated the fitness of crop-weed hybrid lineages derived from crosses between marker-free insect-resistant transgenic (Bt/CpTI) rice with five weedy rice populations under varied insect pressure. Multiway anova indicated the significant effect of both transgenes and weedy rice genotypes on the performance of crop-weed hybrid lineages in the high-insect environment. Increased fecundity was detected in most transgene-present F1 and F2 hybrid lineages under high-insect pressure, but varied among crop-weed hybrid lineages with different weedy rice parents. Increased fecundity of transgenic crop-weed hybrid lineages was associated with the environmental insect pressure and genotypes of their weedy rice parents. The findings suggest that the fitness effects of an insect-resistant transgene introgressed into weedy populations are not uniform across different environments and genotypes of the recipient plants that have acquired the transgene. Therefore, these factors should be considered when assessing the environmental impact of transgene flow to weedy or wild rice relatives.

  4. Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Zhen eDuan

    2015-12-01

    Full Text Available Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.. From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d and salt stress (200 mM NaCl were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content (RWC level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars.

  5. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  6. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  7. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    CSIR Research Space (South Africa)

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  8. Transgen kunst

    DEFF Research Database (Denmark)

    2007-01-01

    Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07......Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07...

  9. Hydraulic Roughness and Flow Resistance in a Subglacial Conduit

    Science.gov (United States)

    Chen, Y.; Liu, X.; Mankoff, K. D.

    2017-12-01

    The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D020%.

  10. Impact of transgene genome location on gene migration from herbicide-resistant wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host).

    Science.gov (United States)

    Rehman, Maqsood; Hansen, Jennifer L; Mallory-Smith, Carol A; Zemetra, Robert S

    2017-08-01

    Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. BC 1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC 1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC 1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    Science.gov (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  12. Resistance levels to two strains of Potato virus Y (PVY in transgenic potatoes cv. Achat Níveis de resistência ao Potato virus Y (PVY em batata cv. Achat

    Directory of Open Access Journals (Sweden)

    André N. Dusi

    2001-11-01

    Full Text Available Two transgenic potato clones of cv. Achat, denominated 1P and 63P were challenged with two Potato virus Y strains (PVY O and PVY N, under greenhouse conditions, to be evaluated for resistance to these strains. Optical density values of the Elisa readings of samples from the transgenic plants were compared to readings from samples of the inoculated non-transformed plants. Clone 1P was extremely resistant to both PVY strains, reflected by not being systemically infected. Clone 63P, however, presented partial resistance to both PVY strains as local or systemic infection was delayed in some days. These results confirm the previously reported extreme resistance to PVY of clone 1P.Dois clones transgênicos de batata, derivados da cv. Achat, denominados 1P e 63P foram desafiados com duas estirpes do Potato virus Y (PVY O PVY N, em condições de casa-de-vegetação, para avaliação do nível de resistência dos clones ao vírus. Os valores de densidade óptica das leituras dos testes de Elisa foram comparados a leituras dos clones não transformados e inoculados. O clone 1P apresentou extrema resistência a ambas as estirpes, não tendo sido observada infecção sistêmica nos dois ensaios. O Clone 63P apresentou resistência parcial às duas estirpes, refletida no retardo do aparecimento de infecções sistêmicas por duas semanas. Os resultados obtidos confirmam o alto nível de resistência do clone 1P, relatado anteriormente.

  13. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn

    Directory of Open Access Journals (Sweden)

    Jianxiu Yao

    2017-01-01

    Full Text Available A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R strain and its isoline susceptible (S strain of the European corn borer (Ostrinia nubilalis after the larvae were fed the leaves of transgenic corn (MON810 expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0 in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.

  14. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco

    DEFF Research Database (Denmark)

    Jach, G; Görnhardt, B; Mundy, J

    1995-01-01

    cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani, which infects a range of plant species including tobacco....... Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack......cDNAs encoding three proteins from barley (Hordeum vulgare), a class-II chitinase (CHI), a class-II beta-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes...

  15. Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of Papaya ringspot virus

    OpenAIRE

    Souza Júnior, Manoel T.; Nickel, Osmar; Gonsalves, Dennis

    2005-01-01

    Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficien...

  16. Grafting on a Non-Transgenic Tolerant Tomato Variety Confers Resistance to the Infection of a Sw5-Breaking Strain of Tomato spotted wilt virus via RNA Silencing.

    Directory of Open Access Journals (Sweden)

    Roberta Spanò

    Full Text Available RNA silencing controls endogenous gene expression and drives defensive reactions against invasive nucleic acids like viruses. In plants, it has been demonstrated that RNA silencing can be transmitted through grafting between scions and silenced rootstocks to attenuate virus and viroid accumulation in the scions. This has been obtained mostly using transgenic plants, which may be a drawback in current agriculture. In the present study, we examined the dynamics of infection of a resistance-breaking strain of Tomato spotted wilt virus (RB-TSWV through the graft between an old Apulian (southern Italy tomato variety, denoted Sl-Ma, used as a rootstock and commercial tomato varieties used as scions. In tests with non-grafted plants, Sl-Ma showed resistance to the RB-TSWV infection as viral RNA accumulated at low levels and plants recovered from disease symptoms by 21 days post inoculation. The resistance trait was transmitted to the otherwise highly susceptible tomato genotypes grafted onto Sl-Ma. The results from the analysis of small RNAs hallmark genes involved in RNA silencing and virus-induced gene silencing suggest that RNA silencing is involved in the resistance showed by Sl-Ma against RB-TSWV and in scions grafted on this rootstock. The results from self-grafted susceptible tomato varieties suggest also that RNA silencing is enhanced by the graft itself. We can foresee interesting practical implications of the approach described in this paper.

  17. Flow resistance reduction of coal water slurry through gas phase addition

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available One of the main advantages of coal water slurry fuel (CWS is a physical form that allows, among others, their transfer by pipelines over long distances. For this form of transport actions towards reducing the flow resistance of the transmitted medium are important. One of the treatments leading to reduction in the flow resistance of suspensions is to introduce gas into the stream of flowing slurry. The goal of that action is to either loosen the structure of densely packed grains or increase the velocity of the suspension. The paper presents the flow resistance of CWS in a horizontal pipeline and the effect of addition of the gas phase on the resistance level. The investigation was carried out with the use of a research stand enabling to measure the flow resistance of the multiphase/multicomponent systems. The measured diameter and length of sections were respectively: 0.03 and 2 m. The coal-water slurries (based on steam coals with concentration of dry coal in the range of 51 do 60% obtained by wet milling in a drum mill were used. During the tests, the following parameters were measured: slurry flow rate, air flow rate, temperature and pressure difference in inlet and outlet of the measured section. The volume flow rate of slurry fuel was in the range of 30 to 110 dm3/min while the volume flow rate of air was from 0.15 to 4 m3/h. Based on the obtained results, the slurry flow resistance as a function of the flow rate and share of introduced air was evaluated. The performed research allowed for assessment of flow resistance reduction condition and to determine the pipe flow curves for different temperatures. It was found that the effect of reducing the flow resistance of the coal slurry by introducing gas into the flow tube depended on the volumetric flow rate, and thus the linear velocity of the slurry. Under the experimental condition, this effect only occurred at low flow rates (30 - 50 dm3/min and low temperature of the suspension. The

  18. The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Lingmin eDai

    2016-05-01

    Full Text Available Pathogenesis-related proteins (PRs can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. The PR-4 gene was overexpressed in regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and also repressed the growth of powdery mildew. The PR gene responds differently to different stresses in the PR-4 transformants. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  19. Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet.

    Science.gov (United States)

    Atkinson, Howard J; Johnston, Katherine A; Robbins, Mark

    2004-02-01

    A protein-engineered rice cystatin (OcIDeltaD86) provides transgenic, partial crop resistance to plant nematodes. This study determined whether its oral uptake has adverse effects on male Sprague-Dawley rats when they are administered by oral gavage 0.1-10 mg OcIDeltaD86/kg body weight daily for 28 d. Body weight and water and food intakes were unaltered for most of the study. The only significant changes in fresh weight of nine organs were for the liver (4% decrease; P 95% loss of such inhibition after 15 s in simulated gastric fluid. The results suggest that the no effect level (NOEL) for OcIDeltaD86 is >10 mg/(kg. d). This provides a range of dietary exposure >200-2000 fold depending upon the promoter used to control its expression in potato.

  20. Development of transgenic finger millet (Eleusine coracana (L ...

    Indian Academy of Sciences (India)

    In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of ...

  1. Multiple Different Defense Mechanisms Are Activated in the Young Transgenic Tobacco Plants Which Express the Full Length Genome of the Tobacco Mosaic Virus, and Are Resistant against this Virus

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J.; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489–1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7–8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV

  2. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus.

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication

  3. Nasal cannula, CPAP, and high-flow nasal cannula: effect of flow on temperature, humidity, pressure, and resistance.

    Science.gov (United States)

    Chang, Gordon Y; Cox, Cynthia A; Shaffer, Thomas H

    2011-01-01

    Delivery of warm, humidified, supplemental oxygen via high-flow nasal cannula has several potential benefits; however, the high-flow range may not maintain humidification and temperature and in some cases may cause excessive expiratory pressure loading. To compare the effect of flow on temperature, humidity, pressure, and resistance in nasal cannula (NC), continuous positive airway pressure (CPAP), and high-flow nasal cannula (HFNC) in a clinical setting. The three delivery systems were tested in the nursery using each instrument's recommended specifications and flow ranges (0-3 L/min and 0-8 L/min). Flow, pressure, temperature, and humidity were measured, and resistance was calculated. For all devices at 0-3 L/min, there was a difference (p CPAP 34.5°C > HFNC 34.0°C), humidity (HFNC 82% > CPAP 77% > NC 57%), pressure (HFNC 22 cmH(2)O > NC 4 cmH(2)O > CPAP 3 cmH(2)O), and resistance (HFNC 636 cmH(2)O/L/sec > NC 270 cmH(2)O/L/sec > CPAP 93 cmH(2)O/L/sec) as a function of flow. For HFNC and CPAP at 0-8 L/min, there was a difference (pCPAP 34.5°C > HFNC 34.0°C) in humidity (HFNC 83 % > CPAP 76 %), pressure (HFNC 56 cmH(2)O > CPAP 14 cmH(2)O) and resistance (HFNC 783 cmH(2)O/L/sec > CPAP 280 cmH(2)O/L/sec) as a function of flow. Gas delivered by HFNC was more humid than NC and CPAP. However, the higher pressure and resistance delivered by the HFNC system may have clinical relevance, such as increased work of breathing, and warrants further in vivo studies.

  4. Amyloid-β Derived from the Brain of the Alzheimer's Disease Transgenic Mouse Is Resistant to Proteolytic Digestion Due to Its Conformation.

    Science.gov (United States)

    Chen, Baian; Zhang, Jing; Wang, Shubo; Wang, Wen; Yao, Zitong; Sun, Quan; Wu, Yi; Lu, Jing

    2017-08-01

    The main pathological feature of Alzheimer's disease (AD) is the formation of abundant amyloid-β (Aβ) plaques in the human brain. Studies have reported that Aβ from the AD brain is resistant to proteolytic digestion, which may explain why Aβ cannot be readily eliminated from this organ. However, there are only a few studies that address this important question. We used the AD transgenic mouse (APP/PS1) model to show that Aβ derived from the brain of the old mouse is resistant to proteolytic digestion. This was in contrast to the proteinase K-sensitive human Aβ peptide, whose amino acid sequence was identical to that of AD mouse-derived Aβ but whose conformation was different (i.e., the native protein, but not the peptide, folded into a three-dimensional conformation). To address this question, we denatured AD mouse-derived Aβ with urea and found that Aβ became proteinase K-sensitive. This phenomenon was concentration-dependent, and these results were confirmed by another protein denaturant, guanidinium hydrochloride. We recovered the conformation of the denatured AD mouse-derived Aβ by eliminating urea and adding the human Aβ peptide, and we found that human Aβ was converted to the proteinase K-resistant form in the presence of partially undenatured AD mouse-derived Aβ. However, upon the addition of the rat Aβ peptide, there were no Aβ proteinase K-resistant fragments. Our results show that the resistance of AD mouse-derived Aβ to proteolytic digestion is dependent on the three-dimensional conformation of Aβ. In summary, this study provides new insights on why Aβ plaques fail to be degraded in the human brain.

  5. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.).

    Science.gov (United States)

    Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal

    2013-09-01

    Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels

  6. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean

    Science.gov (United States)

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect mineral content (especially Mg, Mn, and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at si...

  7. Transgenic expression of a maize geranyl geranyl transferase gene sequence in maize callus increases resistance to ear rot pathogens

    Science.gov (United States)

    Determining the genes responsible for pest resistance in maize can allow breeders to develop varieties with lower losses and less contamination with undesirable toxins. A gene sequence coding for a geranyl geranyl transferase-like protein located in a fungal ear rot resistance quantitative trait loc...

  8. IDENTIFICATION OF ESCAPED TRANSGENIC CREEPING BENTGRASS IN OREGON

    Science.gov (United States)

    When transgenic plants are cultivated near wild species that are sexually compatible with the crop, gene flow between the crop and wild plants is possible. A resultant concern is that transgene flow and transgene introgression within wild populations could have unintended ecologi...

  9. Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method.

    Science.gov (United States)

    Lee, Kyung Eun; Kwon, Soon-Sung; Ji, Yoon Cheol; Shin, Eun-Seok; Choi, Jin-Ho; Kim, Sung Joon; Shim, Eun Bo

    2016-08-01

    Flow resistances exerted in the coronary arteries are the key parameters for the image-based computer simulation of coronary hemodynamics. The resistances depend on the anatomical characteristics of the coronary system. A simple and reliable estimation of the resistances is a compulsory procedure to compute the fractional flow reserve (FFR) of stenosed coronary arteries, an important clinical index of coronary artery disease. The cardiac muscle volume reconstructed from computed tomography (CT) images has been used to assess the resistance of the feeding coronary artery (muscle volume-based method). In this study, we estimate the flow resistances exerted in coronary arteries by using a novel method. Based on a physiological observation that longer coronary arteries have more daughter branches feeding a larger mass of cardiac muscle, the method measures the vessel lengths from coronary angiogram or CT images (vessel length-based method) and predicts the coronary flow resistances. The underlying equations are derived from the physiological relation among flow rate, resistance, and vessel length. To validate the present estimation method, we calculate the coronary flow division over coronary major arteries for 50 patients using the vessel length-based method as well as the muscle volume-based one. These results are compared with the direct measurements in a clinical study. Further proving the usefulness of the present method, we compute the coronary FFR from the images of optical coherence tomography.

  10. Effect of rolling motion on transient flow resistance of two-phase flow in a narrow rectangular duct

    International Nuclear Information System (INIS)

    Jin, Guangyuan; Yan, Changqi; Sun, Licheng; Xing, Dianchuan

    2014-01-01

    Highlight: • The frictional resistance in narrow rectangular channel in rolling motion is studied. • Homogeneous correlations could predict the experimental data in vertical condition. • Increasing the two-phase velocity would weaken the fluctuation of friction factor. • The frictional factor has a great similarity with the frictional pressure drop. - Abstract: As a typical ocean environment, rolling motion can induce additional forces on a flow system. Experimental study of the characteristics of air–water mixture flow resistance in narrow rectangular channel(40 × 1.41 mm 2 ) in rolling motions was carried out with the rolling periods and amplitudes of 8 s, 12 s, 16 s, and 10°, 15°, 30°, respectively. Several homogeneous and separated flow models were evaluated against the experimental data to clarify their applicability in predicting the two-phase flow resistance in vertical rectangular channels. The comparison showed that McAdams correlation for calculating the viscosity in homogeneous model is suitable for the present situation to calculate the averaged two-phase flow resistance. Transient flow resistance under rolling condition changed periodically, as a result, attempt was conducted to illustrate the effect of rolling motion. Transient frictional pressure drop strongly depends on the mass quality, Reynolds number, rolling period and amplitude. The fluctuation amplitude of the frictional pressure drop increased with increasing mass quality and rolling amplitude. It also increased with reduction of the rolling period. A new correlation for predicting the transient frictional factor was given by including the influence of rolling parameters and was validated against the experimental data

  11. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  12. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    This is probably due to that fact that Kp includes the hydraulic conductance of the root system, which offers the highest resistance to water flow in a plant, and the frictional resistance of the proximal part of the crown. Day time course of water relation parameters were monitored in melon and tomato (predawn, 1100 to 1400 h) ...

  13. Low-Load Resistance Training with Blood Flow Occlusion as a Countermeasure to Disuse Atrophy

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Cook, S. B.

    2009-01-01

    Decreases in strength and neuromuscular function are observed following prolonged disuse. Exercise countermeasures to prevent muscle dysfunction during disuse typically involve high intensity resistance training. The purpose of the study is to evaluate the effectiveness of low-load resistance training with a blood flow occlusion to mitigate muscle loss and dysfunction during 30 days of unilateral lower limb suspension (ULLS).

  14. Cochlear aqueduct flow resistance depends on round window membrane position in guinea pigs

    NARCIS (Netherlands)

    Feijen, RA; Segenhout, JM; Albers, FWJ; Wit, HP

    2004-01-01

    The resistance for fluid flow of the cochlear aqueduct was measured in guinea pigs for different positions of the round window membrane. These different positions were obtained by applying different constant pressures to the middle car cavity. Fluid flow through the aqueduct was induced by small

  15. Plasma adiponectin levels are increased despite insulin resistance in corticotropin-releasing hormone transgenic mice, an animal model of Cushing syndrome.

    Science.gov (United States)

    Shinahara, Masayuki; Nishiyama, Mitsuru; Iwasaki, Yasumasa; Nakayama, Shuichi; Noguchi, Toru; Kambayashi, Machiko; Okada, Yasushi; Tsuda, Masayuki; Stenzel-Poore, Mary P; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Adiponectin (AdN), an adipokine derived from the adipose tissue, has an insulin-sensitizing effect, and plasma AdN is shown to be decreased in obesity and/or insulin resistant state. To clarify whether changes in AdN are also responsible for the development of glucocorticoid-induced insulin resistance, we examined AdN concentration in plasma and AdN expression in the adipose tissue, using corticotropin-releasing hormone (CRH) transgenic mouse (CRH-Tg), an animal model of Cushing syndrome. We found, unexpectedly, that plasma AdN levels in CRHTg were significantly higher than those in wild-type littermates (wild-type: 19.7+/-2.5, CRH-Tg: 32.4+/-3.1 microg/mL, pAdN mRNA and protein levels were significantly decreased in the adipose tissue of CRH-Tg. Bilateral adrenalectomy in CRH-Tg eliminated both their Cushing's phenotype and their increase in plasma AdN levels (wild-type/sham: 9.4+/-0.5, CRH-Tg/sham: 15.7+/-2.0, CRH-Tg/ADX: 8.5+/-0.4 microg/mL). These results strongly suggest that AdN is not a major factor responsible for the development of insulin resistance in Cushing syndrome. Our data also suggest that glucocorticoid increases plasma AdN levels but decreases AdN expression in adipocytes, the latter being explained possibly by the decrease in AdN metabolism in the Cushing state.

  16. Wetland and riparian plant communities at risk of invasion by transgenic-resistant Agrostis stolonifera in Central Oregon

    Science.gov (United States)

    Creeping bentgrass (Agrostis stolonifera) and redtop (A. gigantea) are introduced turfgrasses that are naturalized throughout the northern U.S. Interest in creeping bentgrass has risen following the 2003 escape of a genetically modified (GM), herbicide-resistant cultivar near Mad...

  17. Transgenic Bt corn varietal resistance against the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Cramibidae) and implications to sugarcane

    Science.gov (United States)

    The Mexican rice borer, Eoreuma loftini (Dyar), attacks crops including corn, Zea mays L.; rice, Oryza sativa L.; sorghum, Sorghum bicolor (L.) Moench; and sugarcane, Saccharum spp., but strongly resistant varieties of any kind, native or otherwise, have not been identified. A field plot corn varie...

  18. Paradoxical resistance to myocardial ischemia and age-related cardiomyopathy in NHE1 transgenic mice: a role for ER stress?

    Science.gov (United States)

    Cook, Alexandra R; Bardswell, Sonya C; Pretheshan, Subashini; Dighe, Kushal; Kanaganayagam, Gajen S; Jabr, Rita I; Merkle, Sabine; Marber, Michael S; Engelhardt, Stefan; Avkiran, Metin

    2009-02-01

    Sarcolemmal Na(+)/H(+) exchanger (NHE) activity, which is provided by the NHE isoform 1 (NHE1), has been implicated in ischemia/reperfusion-induced myocardial injury in animal models and humans, on the basis of studies with pharmacological NHE1 inhibitors. We generated a transgenic (TG) mouse model with cardiac-specific over-expression of NHE1 to determine whether this would be sufficient to increase myocardial susceptibility to ischemia/reperfusion-induced injury. TG mouse hearts exhibited increased sarcolemmal NHE activity and normal morphology and function. Surprisingly, they also showed reduced susceptibility to ischemia/reperfusion-induced injury, as reflected by improved functional recovery and smaller infarcts. Such protection was sustained in the presence of NHE1 inhibition with zoniporide, indicating a mechanism that is independent of sarcolemmal NHE activity. Immunoblot analysis revealed accumulation of immature NHE1 protein as well as marked upregulation of both cytoprotective (78/94 kDa glucose-regulated proteins, calreticulin, protein disulfide isomerase) and pro-apoptotic (C/EBP homologous protein) components of the endoplasmic reticulum (ER) stress response in TG myocardium. With increasing age, NHE1 TG mice exhibited increased myocyte apoptosis, developed left ventricular contractile dysfunction, underwent cardiac remodelling and died prematurely. Our findings indicate that: (1) Cardiac-specific NHE1 over-expression induces the ER stress response in mouse myocardium, which may afford protection against ischemia/reperfusion-induced injury despite increased NHE activity; (2) Ageing NHE1 TG mice exhibit myocyte apoptosis, cardiac remodelling and failure, likely as a result of sustained ER stress; (3) The pluripotent effects of the ER stress response may confound studies that are based on the chronic over-expression of complex proteins in myocardium.

  19. transgenic plants

    African Journals Online (AJOL)

    been initiated in this area by the Global Pest. Resistance Management Programme located at. MSU. Through effective resistance management training, pesticide use patterns change, and the effective lift: span of pesticides and host plant resistance technology increases. Effective resistance management can mean reduced.

  20. Deciphering the Neuronal Circuitry Controlling Local Blood Flow in the Cerebral Cortex with Optogenetics in PV::Cre Transgenic Mice

    Science.gov (United States)

    Urban, Alan; Rancillac, Armelle; Martinez, Lucie; Rossier, Jean

    2012-01-01

    Although it is know since more than a century that neuronal activity is coupled to blood supply regulation, the underlying pathways remains to be identified. In the brain, neuronal activation triggers a local increase of cerebral blood flow (CBF) that is controlled by the neurogliovascular unit composed of terminals of neurons, astrocytes, and blood vessel muscles. It is generally accepted that the regulation of the neurogliovascular unit is adjusted to local metabolic demand by local circuits. Today experimental data led us to realize that the regulatory mechanisms are more complex and that a neuronal system within the brain is devoted to the control of local brain-blood flow. Recent optogenetic experiments combined with functional magnetic resonance imaging have revealed that light stimulation of neurons expressing the calcium binding protein parvalbumin (PV) is associated with positive blood oxygen level-dependent (BOLD) signal in the corresponding barrel field but also with negative BOLD in the surrounding deeper area. Here, we demonstrate that in acute brain slices, channelrhodopsin-2 (ChR2) based photostimulation of PV containing neurons gives rise to an effective contraction of penetrating arterioles. These results support the neurogenic hypothesis of a complex distributed nervous system controlling the CBF. PMID:22715327

  1. Modifying Bananas: From Transgenics to Organics?

    Directory of Open Access Journals (Sweden)

    James Dale

    2017-02-01

    Full Text Available Bananas are one of the top ten world food crops. Unlike most other major food crops, bananas are difficult to genetically improve. The challenge is that nearly all banana cultivars and landraces are triploids, with high levels of male and female infertility. There are a number of international conventional breeding programs and many of these are developing new cultivars. However, it is virtually impossible to backcross bananas, thus excluding the possibility of introgressing new traits into a current cultivar. The alternative strategy is to “modify” the cultivar itself. We have been developing the capacity to modify Cavendish bananas and other cultivars for both disease resistance and enhanced fruit quality. Initially, we were using transgenes; genes that were derived from species outside of the Musa or banana genus. However, we have recently incorporated two banana genes (cisgenes into Cavendish; one to enhance the level of pro-vitamin A and the other to increase the resistance to Panama disease. Modified Cavendish with these cisgenes have been employed in a field trial. Almost certainly, the next advance will be to edit the Cavendish genome, to generate the desired traits. As these banana cultivars are essentially sterile, transgene flow and the outcrossing of modified genes into wild Musa species. are highly unlikely and virtually impossible in other triploid cultivars. Therefore, genetic changes in bananas may be compatible with organic farming.

  2. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A. (Dept. of Respiratory Medicine, Westmead Hospital, Westmead, NSW (Australia))

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: (1) increased negative intrathoracic pressure swings (-25[+-]1 cmH[sub 2]O) induced by an inspiratory resistance; (2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and (3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au).

  3. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    International Nuclear Information System (INIS)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A.

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: 1) increased negative intrathoracic pressure swings (-25±1 cmH 2 O) induced by an inspiratory resistance; 2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and 3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au)

  4. Flow resistance in a compound gravel-bed bend

    Indian Academy of Sciences (India)

    The parabolic law is the most effective method for the ... training problems. Fluid mixing between the center and sides of a bed is greater than that in a straight channel. The primary reason for this difference is that the shear stress ... The flow measurements were taken at eight consecutive cross-sections of five velocity.

  5. Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue

    CSIR Research Space (South Africa)

    Girgi, M

    2002-01-01

    Full Text Available resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue Maram Girgi1, Maretha M. O?Kennedy2, Anika Morgenstern1, Gillian Mayer2, Horst L?rz1,* and Klaus H. Oldach 1Institute for Applied Molecular Plant Biology... of Maram Girgi, Maretha O?Kennedy, An- nika Morgenstern and Gilian Mayer was supported by the European Commission within the framework of INCO-DC project ERBIC18CT980316. The plasmid pAHC25 was a kind gift from Professor Peter H. Quail, Director of Research...

  6. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses.

    Science.gov (United States)

    Jung, Ho Won; Kim, Ki Deok; Hwang, Byung Kook

    2005-06-01

    The 5' flanking region of the CALTPI gene, which encodes a basic lipid transfer protein, was isolated and characterized from the genomic DNA of Capsicum annuum. Four different regions of the promoter sequence of the CALTPI gene were fused to the beta-glucuronidase (GUS) coding region. In an Agrobacterium-mediated transient expression assay, the transcriptional activations of the promoter deletions were examined in tobacco leaves after infection with Pseudomonas syringae pv. tabaci, and treatment with ethylene and salicylic acid. The -808 bp region of the CALTPI gene promoter sequence exhibited full promoter activity. The W-box and ERE-box elements, which are essential for induction by all signals, were localized in the region between -555 bp and -391 bp upstream of the translation initiation site. A CALTPI transgene was then introduced under the control of the 35S promoter into the Arabidopsis ecotype Col-0. Transgenic Arabidopsis lines expressing the CALTPI gene developed rapidly compared to the wild-type plants, indicating that CALTPI may be involved in plant development. Overexpression of the CALTPI gene enhanced the resistance against infection by P. syringae pv. tomato and Botrytis cinerea. The transgenic plants expressing the CALTPI gene also showed high levels of tolerance to NaCl and drought stresses at various vegetative growth stages. No transcription of the PR-1, PR-2, PR-5, thionin, and RD29A genes was observed in untreated leaf tissues of the transgenic plants. The enhanced resistance to pathogen and environmental stresses in transgenic Arabidopsis correlated with the enhanced expression of the CALTPI gene.

  7. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    The results confirm inheritance and segregation of. the exogenous Bt gene in transgenic CCRI 30 and NewCott 33B, governing resistance to bollworm, and; the exogenous tfdA gene in transgenic TFD, governing resistance to the herbicide 2,4-D. Both resistance characters were governed by a single dominant nuclear gene ...

  8. Flow resistance of orifices and spacers of BWR thermal-hydraulic and neutronic coupling loop

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Asaka, Hideaki; Nakamura, Hideo

    2002-03-01

    Authors are performing THYNC experiments to study thermal-hydraulic instability under neutronic and thermal-hydraulic coupling. In THYNC experiments, the orifices are installed at the exit of the test section and the spacers are installed in the test section, in order to properly simulate in-core thermal-hydraulics in the reactor core. It is necessary to know the flow resistance of the orifices and spacers for the analysis of THYNC experimental results. Consequently, authors measured the flow resistance of orifice and spacer under single-phase and two-phase flows. Using the experimental results, authors investigated the dependency of the flow resistances on the parameters, such as pressure, mass flux, an geometries. Furthermore, authors investigated the applicability of the basic two-phase flow models, for example the separate flow model, to the two-phase flow multiplier. As the result of the investigation on the single-phase flow experiment, it was found (1) that the effects of pressure and mass flux flow resistance are described by a function of Reynolds number, and (2) that flow resistances of the orifice and the spacer are calculated with the previous prediction methods. However, it was necessary to introduce an empirical coefficient, since it was difficult to predict accurately the flow resistance only with the previous prediction method due to the complicated geometry dependency, for example a flow area blockage ratio. On the other hand, according to the investigation on two-phase flow experiment, the followings were found. (1) Relation between the two-phase flow multiplier and the quality is regarded to be linear under pressure of 2MPa - 7MPa. The relation is dependent on pressure and geometry, and is little dependent on mass flux. (2) Relation between the two-phase flow multiplier and void fraction is little dependent on pressure, mass flux, and geometry under pressure of 0.2MPa - 7MPa and void fraction less than 0.6. The relation is less dependent on

  9. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  10. Manejo de capim pé-de-galinha em lavouras de soja transgênica resistente ao glifosato Management of goose grass on transgenic soybean, resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    André da Rosa Ulguim

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a resistência de capim pé-de-galinha (Eleusine indica ao glifosato, em lavouras de soja transgênica; avaliar o efeito de aplicações de glifosato em diferentes estádios de desenvolvimento; identificar práticas agronômicas associadas à seleção de biótipos resistentes; e avaliar a eficiência dos herbicidas cletodim, fluazifope-P-butílico, clomazona, glufosinato de amônio e glifosato nas plantas resistentes. Plantas escapes ao tratamento com glifosato foram coletadas em 24 propriedades, no Rio Grande do Sul. As plantas foram cultivadas em casa de vegetação, tendo-se avaliado a sua resistência ao glifosato. Os acessos resistentes foram selecionados e avaliados quanto ao efeito da aplicação do glifosato em diferentes estádios de crescimento e quanto à sensibilidade aos herbicidas. Foi aplicado um questionário aos produtores para identificação das práticas agronômicas associadas às falhas no controle. O controle de E. indica pelo glifosato é mais efetivo com a aplicação em estádios iniciais de desenvolvimento. Práticas agronômicas, como uso contínuo de baixas doses do herbicida, aplicação em estádios de desenvolvimento avançados das plantas daninhas (mais de um afilho e a ausência de rotação de culturas foram relacionadas às falhas de controle observadas. Os herbicidas cletodim, fluazifope-P-butílico e glufosinato de amônio são alternativas eficientes para o controle de E. indica.The objective of this work was to evaluate the resistance of goose grass (Eleusine indica to glyphosate application in transgenic soybean crops; evaluate the effect of glyphosate applications in different growth stages; identify the main agronomic practices associated with the selection of resistant biotypes; and evaluate the effect of the herbicides clethodim, fluazifop-p-butyl, clomazone, glufosinate ammonium, and glyphosate on resistant plants. Plants that survived glyphosate application

  11. Magnus: A New Resistive MHD Code with Heat Flow Terms

    Science.gov (United States)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  12. Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography

    CSIR Research Space (South Africa)

    May, F

    2010-11-01

    Full Text Available Mountain Group (TMG) aquifer system. WRC Report No. 1327/1/08. Water Research Commission. LOKE, M., 2001. A practical guide to RES2DINV ver. 3.4; Rapid 2-D Resistivity & IP inversion using the least squares method. Geoelectrical Imaging 2-D & 3D..., N Jovanovic2 and A Rozanov1 University of Stellenbosch1 and Council for Scientific and Industrial Research (CSIR)2 Characterization and quantification of preferential flow in fractured rock systems, using resistivity tomography Introduction...

  13. FLOW RESTRICTED RESISTANCE TRAINING ATTENUATES MYOSTATIN GENE EXPRESSION IN A PATIENT WITH INCLUSION BODY MYOSITIS

    Directory of Open Access Journals (Sweden)

    A.R. Santos

    2014-07-01

    Full Text Available Inclusion body myositis is a rare idiopathic inflammatory myopathy that produces extreme muscle weakness. Blood flow restricted resistance training has been shown to improve muscle strength and muscle hypertrophy in inclusion body myositis. Objective: The aim of this study was to evaluate the effects of a resistance training programme on the expression of genes related to myostatin (MSTN signalling in one inclusion body myositis patient. Methods: A 65-year-old man with inclusion body myositis underwent blood flow restricted resistance training for 12 weeks. The gene expression of MSTN, follistatin, follistatin-like 3, activin II B receptor, SMAD-7, MyoD, FOXO-3, and MURF-2 was quantified. Results: After 12 weeks of training, a decrease (25% in MSTN mRNA level was observed, whereas follistatin and follistatin-like 3 gene expression increased by 40% and 70%, respectively. SMAD-7 mRNA level was augmented (20%. FOXO-3 and MURF-2 gene expression increased by 40% and 20%, respectively. No change was observed in activin II B receptor or MyoD gene expression. Conclusions: Blood flow restricted resistance training attenuated MSTN gene expression and also increased expression of myostatin endogenous inhibitors. Blood flow restricted resistance training evoked changes in the expression of genes related to MSTN signalling pathway that could in part explain the muscle hypertrophy previously observed in a patient with inclusion body myositis.

  14. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  15. Effect of decreasing electrical resistance in Characeae cell membranes caused by the flow of alternating current

    Directory of Open Access Journals (Sweden)

    Edward Śpiewla

    2014-01-01

    Full Text Available By means of the techniques of external electrodes and microelectrodes, it was found that evanescent flow of an alternating current through plasmalemma of Characeae cells neutralises oscillatory change in their electrical resistance and reversibly diminishes its value. This effect is particularly significant in the case of "high resistance cells", but it weakens with increasing temperature. The value of the estimated activation energy indicates that, after flow of the alternating current through the membrane, a rapid increase in the conductivity may be caused by an increase in conductivity of potassium channels. This result seems to support the hypothesis of electroconformational feedback.

  16. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  17. Dam-break flows with resistance as agents of sediment transport

    Science.gov (United States)

    Emmett, M.; Moodie, T. B.

    2008-08-01

    When a semi-infinite body of fluid initially at rest behind a vertical retaining wall is suddenly released by the removal of the barrier, the resulting flow over either a horizontal or a sloping bed is referred to as a dam-break flow. When resistance to the flow is neglected, the exact solution in the case of a horizontal bed with or without "tail water" may be obtained on the basis of shallow-water theory via the method of characteristics, and the results are well known. The inclusion of the effects of resistance in the form of basal friction that are needed in order to bring the mathematical solutions into closer harmony with the experimental results modifies the wave speed and flow profile near the head of the wave significantly and the simple exact solution of the shallow-water equations can no longer be employed as a reasonable description of the flow field. It is our intention here to study dam-break flows as agents of sediment transport taking into account basal friction and the attendant changes in depth profiles near the head, as well as the effects of particle concentrations on the flow dynamics including both erosion and deposition of particles arising through the interaction of the flow with the bed material. We shall consider shallow flows over dry beds and investigate the effects of changes in the depositional and erosional models employed as well as in the nature of the drag acting on the flow. These models offer some insight into the transport of sediment in the worst case scenario of complete and instantaneous collapse of a dam. They are also anticipated to provide information on other sheet flow events where particle transport plays a significant role in the flow dynamics.

  18. Cross-pollination of nontransgenic corn ears with transgenic Bt corn: efficacy against lepidopteran pests and implications for resistance management.

    Science.gov (United States)

    Burkness, E C; O'Rourke, P K; Hutchison, W D

    2011-10-01

    The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.

  19. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Science.gov (United States)

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  20. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants.

    Science.gov (United States)

    Farias, Davi F; Peijnenburg, Ad A C M; Grossi-de-Sá, Maria F; Carvalho, Ana F U

    2015-01-01

    Insecticidal Cry proteins from Bacillus thuringiensis (Bt) have been exploited in the development of genetically modified (GM) crops for pest control. However, several pests are still difficult to control such as the coleopteran boll weevil Anthonomus grandis. By applying in vitro molecular evolution to the cry8Ka1 gene sequence, variants were generated with improved activity against A. grandis. Among them, Cry8Ka5 mutant protein showed coleoptericidal activity 3-fold higher (LC50 2.83 μg/mL) than that of the original protein (Cry8Ka1). Cry8Ka5 has been used in breeding programs in order to obtain coleopteran-resistant cotton plants. Nevertheless, there is some concern in relation to the food safety of transgenic crops, especially to the heterologously expressed proteins. In this context, our research group has performed risk assessment studies on Cry8Ka5, using the tests recommended by Codex as well as tests that we proposed as alternative and/or complementary approaches. Our results on the risk analysis of Cry8Ka5 taken together with those of other Cry proteins, point out that there is a high degree of certainty on their food safety. It is reasonable to emphasize that most safety studies on Cry proteins have essentially used the Codex approach. However, other methodologies would potentially provide additional information such as studies on the effects of Cry proteins and derived peptides on the indigenous gastrointestinal microbiota and on intestinal epithelial cells of humans. Additionally, emerging technologies such as toxicogenomics potentially will offer sensitive alternatives for some current approaches or methods.

  1. Occurrence of Transgenic Feral Alfalfa (Medicago sativa subsp. sativa L.) in Alfalfa Seed Production Areas in the United States.

    Science.gov (United States)

    Greene, Stephanie L; Kesoju, Sandya R; Martin, Ruth C; Kramer, Matthew

    2015-01-01

    The potential environmental risks of transgene exposure are not clear for alfalfa (Medicago sativa subsp. sativa), a perennial crop that is cross-pollinated by insects. We gathered data on feral alfalfa in major alfalfa seed-production areas in the western United States to (1) evaluate evidence that feral transgenic plants spread transgenes and (2) determine environmental and agricultural production factors influencing the location of feral alfalfa, especially transgenic plants. Road verges in Fresno, California; Canyon, Idaho; and Walla Walla, Washington were surveyed in 2011 and 2012 for feral plants, and samples were tested for the CP4 EPSPS protein that conveys resistance to glyphosate. Of 4580 sites surveyed, feral plants were observed at 404 sites. Twenty-seven percent of these sites had transgenic plants. The frequency of sites having transgenic feral plants varied among our study areas. Transgenic plants were found in 32.7%, 21.4.7% and 8.3% of feral plant sites in Fresno, Canyon and Walla Walla, respectively. Spatial analysis suggested that feral populations started independently and tended to cluster in seed and hay production areas, places where seed tended to drop. Significant but low spatial auto correlation suggested that in some instances, plants colonized nearby locations. Neighboring feral plants were frequently within pollinator foraging range; however, further research is needed to confirm transgene flow. Locations of feral plant clusters were not well predicted by environmental and production variables. However, the likelihood of seed spillage during production and transport had predictive value in explaining the occurrence of transgenic feral populations. Our study confirms that genetically engineered alfalfa has dispersed into the environment, and suggests that minimizing seed spillage and eradicating feral alfalfa along road sides would be effective strategies to minimize transgene dispersal.

  2. Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking planthoppers.

    Science.gov (United States)

    Sengupta, Subhadipa; Chakraborti, Dipankar; Mondal, Hossain A; Das, Sampa

    2010-03-01

    Rice, the major food crop of world is severely affected by homopteran sucking pests. We introduced coding sequence of Allium sativum leaf agglutinin, ASAL, in rice cultivar IR64 to develop sustainable resistance against sap-sucking planthoppers as well as eliminated the selectable antibiotic-resistant marker gene hygromycin phosphotransferase (hpt) exploiting cre/lox site-specific recombination system. An expression vector was constructed containing the coding sequence of ASAL, a potent controlling agent against green leafhoppers (GLH, Nephotettix virescens) and brown planthopper (BPH, Nilaparvata lugens). The selectable marker (hpt) gene cassette was cloned within two lox sites of the same vector. Alongside, another vector was developed with chimeric cre recombinase gene cassette. Reciprocal crosses were performed between three single-copy T(0) plants with ASAL- lox-hpt-lox T-DNA and three single-copy T(0) plants with cre-bar T-DNA. Marker gene excisions were detected in T(1) hybrids through hygromycin sensitivity assay. Molecular analysis of T(1) plants exhibited 27.4% recombination efficiency. T(2) progenies of L03C04(1) hybrid parent showed 25% cre negative ASAL-expressing plants. Northern blot, western blot and ELISA showed significant level of ASAL expression in five marker-free T(2) progeny plants. In planta bioassay of GLH and BPH performed on these T(2) progenies exhibited radical reduction in survivability and fecundity compared with the untransformed control plants.

  3. Down with DON: Strategies for precise transgene delivery and rnai-based suppression of fusarium

    Science.gov (United States)

    Transgenic strategies can effectively supplement other methods for controlling Fusarium head blight (FHB). Impediments to deploying FHB-resistant transgenic barley include a long time-frame for creating and testing transgenes in barley, imprecise transgene insertions that lead to unstable gene expre...

  4. Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach

    NARCIS (Netherlands)

    Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions

  5. Effects of bed-load movement on flow resistance over bed forms

    Indian Academy of Sciences (India)

    Abstract. The effect of bed-load transport on flow resistance of alluvial channels with undulated bed was experimentally investigated. The experiments were carried out in a tilting flume 250mm wide and 12·5m long with glass-sides of rectan- gular cross-section and artificial dune shaped floor that was made from Plexi-glass.

  6. RESPIRATORY RESISTANCE MEASURED BY FLOW-INTERRUPTION IN A NORMAL POPULATION

    NARCIS (Netherlands)

    VANALTENA, R; GIMENO, F

    1994-01-01

    Data on reference values of total respiratory resistance (R(int)) in healthy people are limited. The aim of this study was to examine the relationship between R(int) and gender, height, weight, age and smoking habits. The instrument used was the Jaeger Pneumoscope with a flow interruption device.

  7. Flow resistance interactions on hillslopes with heterogeneous attributes: Effects on runoff hydrograph characteristics

    Science.gov (United States)

    An improved modeling framework for capturing the effects of dynamic resistance to overland flow is developed for intensively managed landscapes. The framework builds on the WEPP model but it removes the limitations of the “equivalent” plane and static roughness assumption. The enhanced model therefo...

  8. within plant resistance to water flow in tomato and sweet melons

    African Journals Online (AJOL)

    Administrator

    In this study, within plant resistance to water transport (hydraulic conductance) was monitored in tomato (Lycopersicum esculuntum) and sweet melon (Citrullus lanatus) using the high pressure flow meter (HPFM) and evaporative flux (EF) methods. In the evaporative flux method, measure- ments of transpiration flux and leaf ...

  9. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    In this study, within plant resistance to water transport (hydraulic conductance) was monitored in tomato (Lycopersicum esculuntum) and sweet melon (Citrullus lanatus) using the high pressure flow meter (HPFM) and evaporative flux (EF) methods. In the evaporative flux method, measurements of transpiration flux and leaf ...

  10. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes

    NARCIS (Netherlands)

    Mlynarova, L.; Conner, A.J.; Nap, J.P.H.

    2006-01-01

    A major challenge for future genetically modified (GM) crops is to prevent undesired gene flow of transgenes to plant material intended for another use. Recombinase-mediated auto excision of transgenes directed by a tightly controlled microspore-specific promoter allows efficient removal of either

  11. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    International Nuclear Information System (INIS)

    Wu, L. N.; Ma, Z. W.

    2014-01-01

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β  s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength

  12. Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows

    Directory of Open Access Journals (Sweden)

    S.M. Moawad

    Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices

  13. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    Science.gov (United States)

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    Full Text Available The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP, Bombyx mori A4 promoter (A4P, hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG. After oral inoculation of BmNPV with 3 × 10(5 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity.

  15. Resistance to BmNPV via Overexpression of an Exogenous Gene Controlled by an Inducible Promoter and Enhancer in Transgenic Silkworm, Bombyx mori

    Science.gov (United States)

    Jiang, Liang; Cheng, Tingcai; Zhao, Ping; Yang, Qiong; Wang, Genhong; Jin, Shengkai; Lin, Ping; Xiao, Yang; Xia, Qingyou

    2012-01-01

    The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4P), hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG). After oral inoculation of BmNPV with 3 × 105 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity. PMID:22870254

  16. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  17. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallaji, Milad [Department of Civil Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Seppänen, Aku [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pour-Ghaz, Mohammad, E-mail: mpourghaz@ncsu.edu [Department of Civil Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2015-03-15

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and to show approximately the shape and position of the water front even if the flow is nonuniform.

  18. Plantas transgênicas resistentes aos herbicidas: situação e perspectivas Resistant transgenic plants to the herbicide: situation and perspectives

    Directory of Open Access Journals (Sweden)

    Patrícia Andréa Monquero

    2005-01-01

    DNA inserted into their cells from another organism. In some cases, this organism may be from a other individue of the same species, or from another species with which they would not normally cross-breed. The use of genetic modification in plant breeding aims to: increase crop yields beyond the maximum for existing varieties; reduce post-harvest losses; make crops more tolerant to environment stresses; make crops that use efficiently nitrogen and phosphorous; improve nutritional value of foods; produce plants that are resistant to certain herbicide, pests or diseases; develop alternative resources for industry such as fuels and pharmaceuticals. Many consumers are concerned that genetic modification isn't natural and believe that conventional breeding is better than GMOs because it follows the principles of natural selection, or uses natural mutations. However, it is also possible to produce undesirable combinations of genes by conventional breeding. Several concerns are associated with the use of herbicide-tolerant crops. Those include: (a drift to nearby susceptible plants; (b herbicide-resistant crops becoming weedy and difficult to control; (c illegal use of seeds; (d negative public reaction to genetic engineer; (e hybridization between GM crop plants and their wild relatives; and (g increased selection for resistant weed biotypes or tolerant species. The generation of genetically modified organisms has fomented a controversial debate in various sectors of our society. Yet we must be cautious before generalizing the use of transgenics since each case should be analyzed regarding both its particular advantages and drawbacks, and contribution to the improvement of life quality.

  19. The Application of 2-D Resistivity and Self Potential (SP) Methods in Determining the Water Flow

    Science.gov (United States)

    Nordiana, M. M.; Tajudeen Olugbenga, Adeeko; Afiq Saharudin, Muhamad; nabila, S.; El Hidayah Ismail, Noer

    2018-04-01

    Existence of water flow at urban area will decrease the shear strength and increase hydraulic conductivity of soil which finally caused subsurface problems at this area. To avoid landslide, slope instability and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. The understanding about geological condition has to be considering before construction activities be done. Six 2-D resistivity survey lines with minimum 5 m electrode spacing were executed using Pole-dipole array. The field investigation such as borehole was carried out at multiple locations in the area where the 2-D resistivity method have been conducted. The directions and intensities of the water were evaluated with self-potential (SP) method. Subsequently, the results from borehole were used to verify the results of electrical resistivity method. Interpretation of 2-D resistivity data showed a low resistivity value (support the results of 2-D resistivity method relating a saturated zone in the survey area. There is a good correlation between the 2-D resistivity investigations and the results of borehole records.

  20. Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab.

    Science.gov (United States)

    Reisig, Dominic D; Reay-Jones, Francis P F

    2015-08-01

    Transgenic corn, Zea mays L., that expresses the Bacillus thuringiensis (Bt) toxin Cry1Ab is only moderately toxic to Helicoverpa zea (Boddie) and has been planted commercially since 1996. Growth and development of H. zea was monitored to determine potential changes in susceptibility to this toxin over time. Small plots of corn hybrids expressing Cry1F, Cry1F × Cry1Ab, Cry1Ab × Cry3Bb1, Cry1A.105 × Cry2Ab2 × Cry3Bb1, Cry1A.105 × Cry2Ab2, and Vip3Aa20 × Cry1Ab × mCry3A were planted in both 2012 and 2013 inNorth and South Carolina with paired non-Bt hybrids from the same genetic background. H. zea larvae were sampled on three time periods from ears and the following factors were measured: kernel area injured (cm(2)) by H. zea larvae, larval number per ear, larval weight, larval length, and larval head width. Pupae were sampled on a single time period and the following factors recorded: number per ear, weight, time to eclosion, and the number that eclosed. There was no reduction in larval weight, number of insect entering the pupal stadium, pupal weight, time to eclosion, and number of pupae able to successfully eclose to adulthood in the hybrid expressing Cry1Ab compared with a non-Bt paired hybrid. As Cry1Ab affected these in 1996, H. zea may be developing resistance to Cry1Ab in corn, although these results are not comprehensive, given the limited sampling period, size, and geography. We also found that the negative impacts on larval growth and development were greater in corn hybrids with pyramided traits compared with single traits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Characterization and comparison of transgenic Artemisia annua GYR and wild-type NON-GYR plants in an environmental release trial.

    Science.gov (United States)

    Liu, H; Wu, G G; Wang, J B; Wu, X; Bai, L; Jiang, W; Lv, B B; Pan, A H; Jia, J W; Li, P; Zhao, K; Jiang, L X; Tang, X M

    2016-08-26

    The anti-malarial drug, artemisinin, is quite expensive as a result of its slow content in Artemisia annua. Recent investigations have suggested that genetic engineering of A. annua is a promising approach to improve the yield of artemisinin. In this study, the transgenic A. annua strain GYR, which has high artemisinin content, was evaluated in an environmental release trial. First, GYR plants were compared with the wild-type variety NON-GYR, with regard to phenotypic characters (plant height, crown width, stem diameter, germination rate, leaf dry weight, 1000-seed weight, leave shape). Second, stress resistance in the two varieties (salt, drought, herbicide, and cold resistance) was evaluated under different experimental conditions. Finally, gene flow was estimated. The results indicated that there were significant differences in several agronomic traits (plant height, stem diameter, and leave dry weight) between the transgenic GYR and NON-GYR plants. Salt stress in transgenic and control plants was similar, except under high NaCl concentrations (1.6%, w/w). Leaf water, proline, and MDA content (increased significantly) were significantly different. Transgenic A. annua GYR plants did not grow better than NON-GYR plants with respect to drought and herbicide resistance. The two varieties maintained vitality through the winter. Third, gene flow was studied in an environmental risk trial for transgenic GYR. The maximum gene flow frequency was 2.5%, while the maximum gene flow distance was 24.4 m; gene flow was not detected at 29.2 m at any direction. Our findings may provide an opportunity for risk assessment in future commercialization of transgenic A. annua varieties.

  2. Experimental study on local resistance of two-phase flow through spacer grid with rod bundle

    International Nuclear Information System (INIS)

    Yan Chaoxing; Yan Changqi; Sun Licheng; Tian Qiwei

    2015-01-01

    The experimental study on local resistance of single-phase and two-phase flows through a spacer grid in a vertical channel with 3 × 3 rod bundle was carried out under the normal temperature and pressure. For the case of single-phase flow, the liquid Reynolds number covered the range of 290-18 007. For the case of two-phase flow, the ranges of gas and liquid superficial velocities were 0.013-3.763 m/s and 0.076-1.792 m/s, respectively. A correlation for predicting local resistance of single-phase flow was given based on experimental results. Eight classical two-phase viscosity formulae for homogeneous model were evaluated against the experimental data of two-phase flow. The results show that Dukler model predicts the experimental data well in the range of Re 1 < 9000 while McAdams correlation is the best one for Re 1 ≥ 9000. For all experimental data, Dukler model provides the best prediction with the mean relative error of 29.03%. A new correlation is fitted for the range of Re 1 < 9000 by considering mass quality, two- phase Reynolds number and liquid and gas densities, resulting in a good agreement with the experimental data. (authors)

  3. Microfluidic Bypass Manometry: Parallelized measurement of flow resistance of complex channel geometries and trapped droplets

    Science.gov (United States)

    Vanapalli, Siva; Suteria, Naureen; Nekouei, Mehdi

    2017-11-01

    We report a technique referred to as ``microfluidic bypass manometry'' for measurement of pressure drop versus flow rate (ΔP-Q) relations in a parallelized manner. It involves introducing co-flowing laminar streams into a microfluidic network that contains a series of loops, where each loop contains a test geometry and a bypass channel as a flow rate sensing element. To demonstrate the technique, we measure ΔP-Q relations simultaneously for forty test geometries ranging from linear to contraction-expansion to serpentine to pillar-laden microchannels. The measured Newtonian flow resistance of these different geometries is in excellent agreement with CFD simulations. To expand the capabilities of the method, we measured ΔP-Q relations for similar-sized oil droplets trapped in microcavities where the cavity geometry spans from prisms of 3 - 10 sides to cylinders. We find in all cases, ΔP-Q relation is nonlinear and the flow resistance is sensitive to drop confinement and weakly dependent on cavity geometry. We anticipate that microfluidic bypass manometry may find broad application in several areas including design of lab-on-chip devices, laminar drag reduction, rheology of complex fluids and mechanics of deformable particles.

  4. Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Okkels, Fridolin; Bruus, Henrik

    2005-01-01

    We consider pressure-driven, steady-state Poiseuille flow in straight channels with various cross-sectional shapes: elliptic, rectangular, triangular, and harmonic-perturbed circles. A given shape is characterized by its perimeter P and area A which are combined into the dimensionless compactness...... number C= P-2/A, while the hydraulic resistance is characterized by the well-known dimensionless geometrical correction factor a. We find that a depends linearly on C, which points out C as a single dimensionless measure characterizing flow properties as well as the strength and effectiveness of surface......-related phenomena central to lab-on-a-chip applications. This measure also provides a simple way to evaluate the hydraulic resistance for the various shapes....

  5. On the theoretical velocity distribution and flow resistance in natural channels

    Science.gov (United States)

    Moramarco, Tommaso; Dingman, S. Lawrence

    2017-12-01

    The velocity distribution in natural channels is of considerable interest for streamflow measurements to obtain information on discharge and flow resistance. This study focuses on the comparison of theoretical velocity distributions based on 1) entropy theory, and 2) the two-parameter power law. The analysis identifies the correlation between the parameters of the distributions and defines their dependence on the geometric and hydraulic characteristics of the channel. Specifically, we investigate how the parameters are related to the flow resistance in terms of Manning roughness, shear velocity and water surface slope, and several formulae showing their relationships are proposed. Velocity measurements carried out in the past 20 years at Ponte Nuovo gauged section along the Tiber River, central Italy, are the basis for the analysis.

  6. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  7. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  8. Thermodynamic Resistance to Matter Flow at The Interface of a Porous Membrane.

    Science.gov (United States)

    Glavatskiy, K S; Bhatia, Suresh K

    2016-04-12

    Nanoporous materials are important in industrial separation, but their application is subject to strong interfacial barriers to the entry and transport of fluids. At certain conditions the fluid inside and outside the nanoporous material can be viewed as a two-phase system, with an interface between them, which poses an excess resistance to matter flow. We show that there exist two kinds of phenomena which influence the interfacial resistance: hydrodynamic effects and thermodynamic effects, which are independent of each other. Here, we investigate the role of the thermodynamic effects in carbon nanotubes (CNTs) and slit pores and compare the associated thermodynmic resistance with that due to hydrodynamic effects traditionally modeled by the established Sampson expression. Using CH4 and CO2 as model fluids, we show that the thermodynamic resistance is especially important for moderate to high pressures, at which the fluid within the CNT or slit pore is in the condensed state. Further, we show that at such pressures the thermodynamic resistance becomes comparable with the internal resistance to fluid transport at length scales typical of membranes used in fuel cells, and of importance in membrane-based separation, and nanofluidics in general.

  9. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference.

    Science.gov (United States)

    Shimizu, Takumi; Ogamino, Takumi; Hiraguri, Akihiro; Nakazono-Nagaoka, Eiko; Uehara-Ichiki, Tamaki; Nakajima, Masami; Akutsu, Katsumi; Omura, Toshihiro; Sasaya, Takahide

    2013-05-01

    Rice grassy stunt virus (RGSV), a member of the genus Tenuivirus, causes significant economic losses in rice production in South, Southeast, and East Asian countries. Growing resistant varieties is the most efficient method to control RGSV; however, suitable resistance genes have not yet been found in natural rice resources. One of the most promising methods to confer resistance against RGSV is the use of RNA interference (RNAi). It is important to target viral genes that play important roles in viral infection and proliferation at an early stage of viral replication. Our recent findings obtained from an RNAi experiment with Rice stripe virus (RSV), a tenuivirus, revealed that the genes for nucleocapsid and movement proteins were appropriate targets for RNAi to confer resistance against RSV. In this study, we transformed rice plants by introducing an RNAi construct of the RGSV genes for the nucelocapsid protein pC5 or movement protein pC6. All progenies from self-fertilized transgenic plants had strong resistance against RGSV infection and did not allow the proliferation of RGSV. Thus, our strategy to target genes for nucleocapsid and movement proteins for conferring viral resistance might be applicable to the plant viruses in the genus Tenuivirus.

  10. The Study of the Participation of Heat Shock Proteins in the Resistance to High and Low Temperatures with the Use of Thellungiella (Thellungiella salsuguinea and Transgenic Lines of Arabidopsis (Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    K.Z. Gamburg

    2017-02-01

    Full Text Available Transgenic lines of Arabidopsis with HSP101 gene in sense and anti sense orientations acquired resistance to hard heat shock (50° C 10 min or 45-47° C 1 hour and to freezing (-4° C 2 hours due to the preliminary 2 hour’s heating at 37° C. Thus, it was shown at the first time that the induction of the resistance to hard heat shock and freezing with mild heat shock is possible in the absence of HSP101 synthesis. Thellungiella with the genome to 95-97% identical to the genome of Arabidopsis did not have higher resistance to high temperature, but was significantly more resistant to freezing. It differed from Arabidopsis by several times higher contents of HSP101, HSP60 and HSC70. Contents of these HSPs in Arabidopsis increased as a result of hardening at 4° C what was accompanied by the increase of the resistance to freezing. It is supposed that the resistances to heat and cold shocks are dependent not only from HSP101, but also from other HSPs.

  11. Hydrodynamic resistance and flow patterns in the gills of a tilapine fish.

    Science.gov (United States)

    Strother, James A

    2013-07-15

    The gills of teleost fishes are often discussed as an archetypal counter-current exchange system, capable of supporting the relatively high metabolic rates of some fishes despite the low oxygen solubility of water. Despite an appreciation for the physiology of exchange at the gills, many questions remain regarding the hydrodynamical basis of ventilation in teleost fishes. In this study, the hydrodynamic resistance and flow fields around the isolated gills of a tilapia, Oreochromis mossambicus, were measured as a function of the applied pressure head. At ventilatory pressures typical of a fish at rest, the hydrodynamic resistance of the gills was nearly constant, the flow was laminar, shunting of water around the gills was essentially absent, and the distribution of water flow was relatively uniform. However, at the higher pressures typical of an active or stressed fish, some of these qualities were lost. In particular, at elevated pressures there was a decrease in the hydrodynamic resistance of the gills and substantial shunting of water around the gills. These effects suggest mechanical limits to maximum aerobic performance during activity or under adverse environmental conditions.

  12. Extreme resistance to two Brazilian strains of Potato virus Y (PVY in transgenic potato, cv. Achat, expressing the PVYº coat protein Resistência extrema a duas estirpes do Potato virus Y (PVY de batata transgênica, cv. Achat, expressando o gene da capa protéica do PVY O

    Directory of Open Access Journals (Sweden)

    Eduardo Romano

    2001-07-01

    Full Text Available The coat protein (CP gene of the potato virus Y strain "o" (PVY O was introduced into potato, cultivar Achat, via Agrobacterium tumefaciens-mediated transformation. Sixty three putative transgenic lines were challenged against the Brazilian strains PVY-OBR and PVY-NBR. An extremely resistant phenotype, against the two strains, was observed in one line, denominated 1P. No symptoms or positive ELISA results were observed in 16 challenged plants from this line. Another clone, named as 63P, showed a lower level of resistance. Southern blot analysis showed five copies of the CP gene in the extremely resistant line and at least three copies in the other resistant line. The stability of the integrated transgenes in the extreme resistant line was examined during several in vitro multiplications over a period of three years, with no modification in the Southern pattern was observed. The stability of the transgenes, the absence of primary infections and the relatively broad spectrum of resistance suggest that the extremely resistant line obtained in this work can be useful for agricultural purposes.O gene da capa protéica (CP do Potato virus Y estirpe "o", foi introduzido em batata cultivar Achat, via Agrobacterium tumefaciens. Sessenta e três linhas possivelmente transgênicas foram desafiadas com as estirpes brasileiras PVY-OBR e PVY-NBR. Uma linha apresentou extrema resistência às duas estirpes inoculadas, e foi denominado clone 1P. Não foram observados sintomas sistêmicos de infecção e as plantas foram negativas em Elisa. Outra linha, denominada clone 63P, mostrou algum nível de resistência. Análises por Southern blot indicaram a presença de pelo menos cinco cópias do gen CP no clone 1P e pelo menos três cópias no clone 63P. A estabilidade do gene introduzido no clone 1P foi avaliada durante três anos, após várias multiplicações in vitro. Não foram observadas mudanças no padrão do Southern blot. A estabilidade do transgene, na

  13. Nanoscale fluid-structure interaction: flow resistance and energy transfer between water and carbon nanotubes.

    Science.gov (United States)

    Chen, Chao; Ma, Ming; Jin, Kai; Liu, Jefferson Zhe; Shen, Luming; Zheng, Quanshui; Xu, Zhiping

    2011-10-01

    We investigate here water flow passing a single-walled carbon nanotube (CNT), through analysis based on combined atomistic and continuum mechanics simulations. The relation between drag coefficient C(D) and Reynolds number Re is obtained for a wide range of flow speed u from 5 to 600 m/s. The results suggest that Stokes law for creep flow works well for small Reynolds numbers up to 0.1 (u ≈ 100 m/s), and indicates a linear dependence between drag force and flow velocity. Significant deviation is observed at elevated Re values, which is discussed by considering the interfacial slippage, reduction of viscosity due to friction-induced local heating, and flow-induced structural vibration. We find that interfacial slippage has a limited contribution to the reduction of the resistance, and excitations of low-frequency vibration modes in the carbon nanotube play an important role in energy transfer between water and carbon nanotubes, especially at high flow speeds where drastic enhancement of the carbon nanotube vibration is observed. The results reported here reveal nanoscale fluid-structure interacting mechanisms, and lay the ground for rational design of nanofluidics and nanoelectromechanical devices operating in a fluidic environment.

  14. Generation of highly productive polyclonal and monoclonal tobacco suspension lines from a heterogeneous transgenic BY-2 culture through flow cytometric sorting

    OpenAIRE

    Kirchhoff, Janina

    2012-01-01

    Over the last 20 years, plant cells gained increasing interest as host systems for the production of human and animal pharmaceuticals. Transgenic tobacco suspension cultures are an especially promising production host because of their beneficial growth, low maintenance requirement and the possibility of contained cultivation in bioreactors under controlled conditions. The excellent product quality of plant-produced proteins was demonstrated for a multitude of proteins, but the heterogeneous a...

  15. Agronomic performance, chromosomal stability and resistance to velvetbean caterpillar of transgenic soybean expressing cry1Ac gene Performance agronômica, estabilidade cromossômica e resistência à lagarta-da-soja em soja transgênica que expressa o gene cry1Ac

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-07-01

    Full Text Available The objective of this work was to analyze the agronomic performance and chromosomal stability of transgenic homozygous progenies of soybean [Glycine max (L. Merrill.], and to confirm the resistance of these plants against Anticarsia gemmatalis. Eleven progenies expressing cry1Ac, hpt and gusA genes were evaluated for agronomic characteristics in relation to the nontransformed parent IAS 5 cultivar. Cytogenetical analysis was carried out on transgenic and nontransgenic plants. Two out of the 11 transgenic progenies were also evaluated, in vitro and in vivo, for resistance to A. gemmatalis. Two negative controls were used in resistance bioassays: a transgenic homozygous line, containing only the gusA reporter gene, and nontransgenic 'IAS 5' plants. The presence of cry1Ac transgene affected neither the development nor the yield of plants. Cytogenetical analysis showed that transgenic plants presented normal karyotype. In detached-leaf bioassay, cry1Ac plants exhibited complete efficacy against A. gemmatalis, whereas negative controls were significantly damaged. Whole-plant feeding assay confirmed a very high protection of cry1Ac against velvetbean caterpillar, while nontransgenic 'IAS 5' plants and homozygous gusA line exhibited 56.5 and 71.5% defoliation, respectively. The presence of cry1Ac transgene doesn't affect the majority of agronomic traits (including yield of soybean and grants high protection against A. gemmatalis.O objetivo deste trabalho foi analisar a performance agronômica e a estabilidade cromossômica de progênies transgênicas homozigotas de soja [Glycine max (L. Merrill.], e confirmar a resistência dessas plantas a Anticarsia gemmatalis. Onze progênies com expressão dos genes cry1Ac, hpt e gusA foram avaliadas quanto às características agronômicas, em relação à cultivar parental IAS 5 não transformada. Análises citogenéticas foram realizadas em plantas transgênicas e não transgênicas. Duas das 11 prog

  16. ESTABLISHMENT OF TRANSGENIC CREEPING BENTGRASS (AGROSTIS STOLONIFERA L.) IN NON-AGRONOMIC HABITATS

    Science.gov (United States)

    Concerns about genetically modified crops include transgene flow to compatible wild species and potential unintended ecological consequences associated with transgene introgression. To date, there has been little empirical documentation of the relative frequency of establishment...

  17. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  18. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    Science.gov (United States)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  19. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori......A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...... and the uncertainty of the flow resistivity and the test chamber’s influence are estimated. Inclusion of more than one chamber’s absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%...

  20. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients.

    Science.gov (United States)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-03-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori and the uncertainty of the flow resistivity and the test chamber's influence are estimated. Inclusion of more than one chamber's absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%.

  1. Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training.

    Science.gov (United States)

    Fitschen, P J; Kistler, B M; Jeong, J H; Chung, H R; Wu, P T; Walsh, M J; Wilund, K R

    2014-09-01

    Blood flow restriction (BFR) exercise may be an alternative form of resistance training; however, a side of effect of BFR resistance exercise is acute muscle pain. Typically, BFR exercise studies restrict blood flow with a cuff continuously during the exercise bout, including rest periods. However, others have used intermittent BFR where the cuff is inflated only during sets. We performed two studies to compare intermittent and continuous BFR exercise. In study one, eleven subjects randomly proceeded through three treatments of unilateral leg extensions to failure: (i) continuous BFR, (ii) intermittent BFR and (iii) control (exercise without BFR). Pain measurements were taken immediately after each set. In study two, subjects (n = 32) underwent a 5-week resistance training programme after random assignment to one of the three conditions. Lean mass and strength were assessed at baseline and after training. Continuous BFR resulted in significantly greater pain than intermittent BFR or control. Both BFR conditions resulted in significantly fewer repetitions to failure than control. This suggests that an acute bout of intermittent BFR exercise may produce as much muscle fatigue as an acute bout of continuous BFR exercise, but with less pain. With training, maximal knee extension (P = 0·033) and maximum knee flexion (P = 0·007) strength increased among all groups. There were no significant differences between groups in strength or lean mass. These results suggest that short-term low-load resistance training increases muscle strength to a similar extent as low-load resistance training without BFR. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Increased glucose tolerance despite low adiponectin levels in obesity resistent aP2-Ucp 1 transgenic mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Jeleník, Tomáš; Rossmeisl, Martin; Ogston, N. C.; Slámová, Kristýna; Jílková, Zuzana; Mohamed-Ali, V.; Kopecký, J.

    2007-01-01

    Roč. 31, Suppl.1 (2007), S77-S77 ISSN 0307-0565. [European congress on obesity /15./. 22.04.2007-25.04.2007, Budapest] R&D Projects: GA ČR(CZ) GD303/03/H065 Institutional research plan: CEZ:AV0Z50110509 Keywords : Ucp1 transgenic mice * glucose tolerance * adiponectin Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  3. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2015-01-01

    Full Text Available The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure, geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  4. A matching problem revisited for stability analysis of resistive wall modes in flowing plasmas

    International Nuclear Information System (INIS)

    Shiraishi, J.; Tokuda, S.; Aiba, N.

    2010-01-01

    The classical matching problem for magnetohydrodynamic stability analysis is revisited to study effects of the plasma flow on the resistive wall modes (RWMs). The Newcomb equation, which describes the marginal states and governs the regions except for the resonant surface, is generalized to analyze the stability of flowing plasmas. When there exists no flow, the singular point of the Newcomb equation and the resonant surface degenerate into the rational surface. The location of the rational surface is prescribed by the equilibrium, hence the inner layer, which must contain the resonant surface, can be set a priori. When the flow exists, the singular point of the Newcomb equation splits in two due to the Doppler shift. Additionally, the resonant surface deviates from the singular points and the rational surface if the resonant eigenmode has a real frequency. Since the location of the resonant surface depends on the unknown real frequency, it can be determined only a posteriori. Hence the classical asymptotic matching method cannot be applied. This paper shows that a new matching method that generalizes the asymptotic one to use the inner layer with finite width works well for the stability analysis of flowing plasmas. If the real frequency is limited in a certain range such as the RWM case, the resonance occurs somewhere in the finite region around the singular points, hence the inner layer with finite width can capture the resonant surface.

  5. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  6. Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women.

    Science.gov (United States)

    Patterson, Stephen D; Ferguson, Richard A

    2010-03-01

    The response of calf muscle strength, resting (R (bf)) and post-occlusive (PO(bf)) blood flow were investigated following 4 weeks resistance training with and without blood flow restriction in a matched leg design. Sixteen untrained females performed unilateral plantar-flexion low-load resistance training (LLRT) at either 25% (n = 8) or 50% (n = 8) one-repetition maximum (1 RM). One limb was trained with unrestricted blood flow whilst in the other limb blood flow was restricted with the use of a pressure applied cuff above the knee (110 mmHg). Regardless of the training load, peak PO(bf), measured using venous occlusion plethysmography increased when LLRT was performed with blood flow restriction compared to no change following LLRT with unrestricted blood flow. A significant increase (P training. Maximal dynamic strength (1 RM), maximal voluntary contraction and isokinetic strength at 0.52 and 1.05 rad s(-1) also increased (P training with blood flow restriction. Moreover, 1 RM increased to a greater extent following training at 50% 1 RM compared to 25% 1 RM. These results suggest that 4 weeks LLRT with blood flow restriction provides a greater stimulus to increase peak PO(bf) as well as strength parameters than LLRT with unrestricted blood flow.

  7. Molecular Analyses of Transgenic Plants.

    Science.gov (United States)

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.

  8. Magnetic field induced suppression of vortex flow resistance in superconductors with periodic pinning centers

    International Nuclear Information System (INIS)

    Villar, R.; Pryadun, V.V.; Sierra, J.; Aliev, F.G.; Gonzalez, E.; Vicent, J.L.; Golubovic, D.; Moshchalkov, V.V.

    2006-01-01

    We study vortex flow resistance (VFR) in films of Pb with holes as periodic pinning centers (PPCs) and of Nb with PPCs in the form of Ni dots, as function of temperature, dc current and constant applied magnetic field. The experimental resolution is better than 10 -5 of the normal state resistance. At high temperatures near to T c and high drive currents the resistance shows local minima both at matching fields and zero field. For lower temperatures, however, in a narrow temperature range before the vortex system becomes completely frozen, we observe suppression of the VFR with increasing magnetic field. In the Pb film with PPCs these phenomena show up as a clear zero field resistance excess, which is gradually suppressed by the applied magnetic field. We attribute this unusual feature in the magnetoresistance to thermally excited vortex-antivortex pairs. In the Nb superconducting film with PPCs we observe a gradual suppression of the VFR near integer matching fields up to n = 3 at the lowest accessible dc currents and relevant temperatures. This anomalous behaviour is followed by the observation of negligible VFL for higher fields (H 3 4 ) and a strong enhancement of VFR for H > H 4 . We tentatively explain this observation as due to the moving vortex glass

  9. Cross-transfer effects of resistance training with blood flow restriction.

    Science.gov (United States)

    Madarame, Haruhiko; Neya, Mitsuo; Ochi, Eisuke; Nakazato, Koichi; Sato, Yoshiaki; Ishii, Naokata

    2008-02-01

    This study investigated whether muscle hypertrophy-promoting effects are cross-transferred in resistance training with blood flow restriction, which has been shown to evoke strong endocrine activation. Fifteen untrained men were randomly assigned into the occlusive training group (OCC, N = 8) and the normal training group (NOR, N = 7). Both groups performed the same unilateral arm exercise (arm curl) at 50% of one-repetition maximum (1RM) without occlusion (three sets, 10 repetitions). Either the dominant or nondominant arm was randomly chosen to be trained (OCC-T, NOR-T) or to serve as a control (OCC-C, NOR-C). After the arm exercise, OCC performed leg exercise with blood flow restriction (30% of 1RM, three sets, 15-30 repetitions), whereas NOR performed the same leg exercise without occlusion. The training session was performed twice a week for 10 wk. In a separate set of experiments, acute changes in blood hormone concentrations were measured after the same leg exercises with (N = 5) and without (N = 5) occlusion. Cross-sectional area (CSA) and isometric torque of elbow flexor muscles increased significantly in OCC-T, whereas no significant changes were observed in OCC-C, NOR-T, and NOR-C. CSA and isometric torque of thigh muscles increased significantly in OCC, whereas no significant changes were observed in NOR. Noradrenaline concentration showed a significantly larger increase after leg exercise with occlusion than after exercises without occlusion, though growth hormone and testosterone concentrations did not show significant differences between these two types of exercises. The results indicate that low-intensity resistance training increases muscular size and strength when combined with resistance exercise with blood flow restriction for other muscle groups. It was suggested that any circulating factor(s) was involved in this remote effect of exercise on muscular size.

  10. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.

    Science.gov (United States)

    Ngaki, Micheline N; Wang, Bing; Sahu, Binod B; Srivastava, Subodh K; Farooqi, Mohammad S; Kambakam, Sekhar; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2016-01-01

    Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.

  11. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.

    Directory of Open Access Journals (Sweden)

    Micheline N Ngaki

    Full Text Available Fusarium virguliforme causes the serious disease sudden death syndrome (SDS in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.

  12. Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia.

    Science.gov (United States)

    Dwivedi, Ankit; Khim, Nimol; Reynes, Christelle; Ravel, Patrice; Ma, Laurence; Tichit, Magali; Bourchier, Christiane; Kim, Saorin; Dourng, Dany; Khean, Chanra; Chim, Pheaktra; Siv, Sovannaroth; Frutos, Roger; Lek, Dysoley; Mercereau-Puijalon, Odile; Ariey, Frédéric; Menard, Didier; Cornillot, Emmanuel

    2016-06-14

    Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008-2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010-2011 from 16 health centres in malaria endemics areas in Cambodia. Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia.

  13. Investigation of flow resistance characteristics of endothermic hydrocarbon fuel under supercritical pressures

    Directory of Open Access Journals (Sweden)

    Chunben Zhang

    2013-06-01

    Full Text Available The characteristics of flow resistance of a typical hydrocarbon fuel (RP-3 flow through adiabatic horizontal miniature tubes at supercritical pressures are experimentally investigated for both laminar and turbulent flow. The experiments are conducted by using a long tube measuring section and a short tube measuring section simultaneously in order to eliminate the effect of local pressure drop. In these experiments, the temperature of RP-3 changes from (295 to 789 K and the reduced pressure (P/Pc, Pc=2.33 MPa ranges from 1 to 2.58, the mass flux is up to 1572.7 kg/(m2·s. Test results indicate that frictional pressure drops for various supercritical pressures at the same mass flux can be considered as equal with each other when the reduced temperature Tb/Tpc0.95, difference appears and increases with the increase of Tb/Tpc. Additionally, the friction factor (f of the supercritical fluid for turbulent flow has a critical value at Tb/Tpc=1, the values of f at this point for all pressures and mass fluxes are equal with each other. Moreover, at the same mass flux, there are two corresponding friction factors for the same Re, one is in the region of Tb/Tpc1. Finally, classical correlations of friction factor is inapplicable when Tb/Tpc>0.95 at supercritical pressure and a new correlation has been obtained based on the experimental data.

  14. Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system

    International Nuclear Information System (INIS)

    Li, LeYuan; Zou, Deqiu; Ma, XianFeng; Liu, XiaoShi; Hu, ZhiGang; Guo, JiangRong; Zhu, YingYing

    2017-01-01

    Highlights: • Using microcapsule slurry as engine cooling media was presented. • A novel composite microcapsule was prepared by inlaying graphene into shell. • Thermal conductivity of composite microcapsules was improved greatly. • All slurries can save pumping consumption compared to pure water as coolants. - Abstract: Due to the high heat carrier density, using microcapsule phase change material (MPCM) slurry as engine coolant instead of water was presented. To match the engine cooling temperature, a novel microcapsule was prepared based on phase change paraffin with phase transition temperature range of 78–85 °C as core and urea-formaldehyde as resin shell. To improve thermal conductivity of the microcapsule, a composite microcapsule phase change material (CMPCM) was also prepared by inlaying graphene into urea-formaldehyde resin shell. By dispersing microcapsule in water, microcapsule slurries were prepared. To analyze the feasibility in engine cooling system, an experimental study on the flow resistance characteristics of microcapsule slurries in a circular tube was conducted. The pressure drops of slurries for turbulent flow were measured and the effects of such facts as the concentration and flow velocity were discussed. According to the pressure characteristic and latent heat of the slurry, the pumping consumption rates of slurries to water under a given heat transportation quantity can be obtained. The results show that mass flow rate and pumping consumption of slurries decrease greatly compared with water, which indicate that the microcapsule slurries are promising media for engine cooling system.

  15. Clean vector technology for marker-free transgenic fruit crops

    NARCIS (Netherlands)

    Krens, F.A.; Pelgrom, K.T.B.; Schaart, J.G.; Nijs, den A.P.M.; Rouwendal, G.J.A.

    2004-01-01

    Marker-free transgenic crops confer several advantages over transgenic crops equipped with selection genes coding e.g. for antibiotic resistance. Firstly, the European Union has prepared a guidance document for risk assessment of GM-crops to be introduced in the environment (E.U. Joint Working Group

  16. 2013 North Dakota Transgenic Barley Research and FHB Nursery Report

    Science.gov (United States)

    Research continues to develop and test new transgenic plants using genes provided by collaborators. As lines are developed in Golden Promise, they are crossed to Conlon for field testing. Transgenic lines developed in Conlon are being crossed to resistant lines developed by the breeding programs. ...

  17. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    Science.gov (United States)

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  18. Increased glucose tolerance despite low adiponectin levels in obesity-resistent aP2-Ucp1 transgenic mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jeleník, Tomáš; Ogston, N. C.; Slámová, Kristýna; Mohamed-Ali, V.; Kopecký, Jan

    2006-01-01

    Roč. 49, Suppl. 1 (2006), s. 755-755 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /42./. 14.09.2006-17.09.2006, Copenhagen-Malmoe] R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA303/05/2580 Institutional research plan: CEZ:AV0Z50110509 Keywords : adiponectin * transgenic mice * obesity * mitochondria * glucose tolerance * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  19. Multiple transgene traits may create un-intended fitness effects in Brassica napus

    Science.gov (United States)

    Increasingly, genetically modified crops are being developed to express multiple “stacked” traits for different types of transgenes, for example, herbicide resistance, insect resistance, crop quality and resistance to environmental factors. The release of crops that express mult...

  20. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay

    Science.gov (United States)

    Kamphee, Hatairat; Chaiprasert, Angkana; Prammananan, Therdsak; Wiriyachaiporn, Natpapas; Kanchanatavee, Airin; Dharakul, Tararaj

    2015-01-01

    Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection. PMID:26355296

  1. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay.

    Directory of Open Access Journals (Sweden)

    Hatairat Kamphee

    Full Text Available Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance, while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance. The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb DNA control. The optimized conditions were validated with the H37Rv wild-type (WT Mtb isolate and Mtb isolates with known mutations (MT within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible and MT (drug resistant Mtb isolates, with the least limit of detection (LOD being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.

  2. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes.

    Science.gov (United States)

    Sarangi, Debalin; Tyre, Andrew J; Patterson, Eric L; Gaines, Todd A; Irmak, Suat; Knezevic, Stevan Z; Lindquist, John L; Jhala, Amit J

    2017-03-22

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F 2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.

  3. Gene flow from single and stacked herbicide-resistant rice (Oryza sativa): modeling occurrence of multiple herbicide-resistant weedy rice.

    Science.gov (United States)

    Dauer, Joseph; Hulting, Andrew; Carlson, Dale; Mankin, Luke; Harden, John; Mallory-Smith, Carol

    2018-02-01

    Provisia™ rice (PV), a non-genetically engineered (GE) quizalofop-resistant rice, will provide growers with an additional option for weed management to use in conjunction with Clearfield ® rice (CL) production. Modeling compared the impact of stacking resistance traits versus single traits in rice on introgression of the resistance trait to weedy rice (also called red rice). Common weed management practices were applied to 2-, 3- and 4-year crop rotations, and resistant and multiple-resistant weedy rice seeds, seedlings and mature plants were tracked for 15 years. Two-year crop rotations resulted in resistant weedy rice after 2 years with abundant populations (exceeding 0.4 weedy rice plants m -2 ) occurring after 7 years. When stacked trait rice was rotated with soybeans in a 3-year rotation and with soybeans and CL in a 4-year rotation, multiple-resistance occurred after 2-5 years with abundant populations present in 4-9 years. When CL rice, PV rice, and soybeans were used in 3- and 4-year rotations, the median time of first appearance of multiple-resistance was 7-11 years and reached abundant levels in 10-15 years. Maintaining separate CL and PV rice systems, in rotation with other crops and herbicides, minimized the evolution of multiple herbicide-resistant weedy rice through gene flow compared to stacking herbicide resistance traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Upgraded flowing liquid lithium limiter for improving Li coverage uniformity and erosion resistance in EAST device

    Science.gov (United States)

    Zuo, G. Z.; Hu, J. S.; Maingi, R.; Yang, Q. X.; Sun, Z.; Huang, M.; Chen, Y.; Yuan, X. L.; Meng, X. C.; Xu, W.; Gentile, C.; Carpe, A.; Diallo, A.; Lunsford, R.; Mansfield, D.; Osborne, T.; Tritz, K.; Li, J. G.

    2017-12-01

    We report on design and technology improvements for a flowing liquid lithium (FLiLi) limiter inserted into auxiliary heated discharges in the experimental advanced superconducting tokamak device. In order to enhance Li coverage uniformity and erosion resistance, a new liquid Li distributor with homogenous channels was implemented. In addition, two independent electromagnetic pumps and a new horizontal capillary structure contributed to an improvement in the observed Li flow uniformity (from 30% in the previous FLiLi design to >80% in this FLiLi design). To improve limiter surface erosion resistance, hot isostatic press technology was applied, which improved the thermal contact between thin stainless steel protective layers covering the Cu heat sink. The thickness of the stainless steel layer was increased from 0.1 mm to 0.5 mm, which also helped macroscopic erosion resilience. Despite the high auxiliary heating power up to 4.5 MW, no Li bursts were recorded from FLiLi, underscoring the improved performance of this new design.

  5. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Bruno, F.; Saman, W. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, SA 5095 (Australia)

    2011-01-15

    An experimental investigation was undertaken in which the thermal resistance for the heat flow through a typical timber framed pitched roofing system was measured under outdoor conditions for heat flow up. The measured thermal resistance of low resistance systems such as an uninsulated attic space and a reflective attic space compared well with published data. However, with higher thermal resistance systems containing bulk insulation within the timber frame, the measured result for a typical installation was as low as 50% of the thermal resistance determined considering two dimensional thermal bridging using the parallel path method. This result was attributed to three dimensional heat flow and insulation installation defects, resulting from the design and construction method used. Translating these results to a typical house with a 200 m{sup 2} floor area, the overall thermal resistance of the roof was at least 23% lower than the overall calculated thermal resistance including two dimensional thermal bridging. When a continuous layer of bulk insulation was applied to the roofing system, the measured values were in agreement with calculated resistances representing a more reliable solution. (author)

  6. Production of transgenic pigs over-expressing the antiviral gene Mx1

    Directory of Open Access Journals (Sweden)

    Quanmei Yan

    2014-01-01

    Full Text Available The myxovirus resistance gene (Mx1 has a broad spectrum of antiviral activities. It is therefore an interesting candidate gene to improve disease resistance in farm animals. In this study, we report the use of somatic cell nuclear transfer (SCNT to produce transgenic pigs over-expressing the Mx1 gene. These transgenic pigs express approximately 15–25 times more Mx1 mRNA than non-transgenic pigs, and the protein level of Mx1 was also markedly enhanced. We challenged fibroblast cells isolated from the ear skin of transgenic and control pigs with influenza A virus and classical swine fever virus (CFSV. Indirect immunofluorescence assay (IFA revealed a profound decrease of influenza A proliferation in Mx1 transgenic cells. Growth kinetics showed an approximately 10-fold reduction of viral copies in the transgenic cells compared to non-transgenic controls. Additionally, we found that the Mx1 transgenic cells were more resistant to CSFV infection in comparison to non-transgenic cells. These results demonstrate that the Mx1 transgene can protect against viral infection in cells of transgenic pigs and indicate that the Mx1 transgene can be harnessed to develop disease-resistant pigs.

  7. Comparison of creatine ingestion and resistance training on energy expenditure and limb blood flow.

    Science.gov (United States)

    Arciero, P J; Hannibal, N S; Nindl, B C; Gentile, C L; Hamed, J; Vukovich, M D

    2001-12-01

    This study determined the effects of 28 days of oral creatine ingestion (days 1 to 5 = 20g/d; [5 g 4 times daily]: days 6 to 28 = 10 g/d; [5 g twice daily]) alone and with resistance training (5 hours/week) on resting metabolic rate (RMR), body composition, muscular strength (1RM), and limb blood flow (LBF). Using a double-blind, placebo-controlled design, 30 healthy male volunteers (21 +/- 3 years; 18 to 30 years) were randomly assigned to 1 of 3 groups; pure creatine monohydrate alone (Cr; n = 10), creatine plus resistance training (Cr-RT; n = 10), or placebo plus resistance training (P-RT; n = 10). Body composition (DEXA, Lunar DPX-IQ), body mass, bench, and leg press 1RM (isotonic), RMR (indirect calorimetry; ventilated hood), and forearm and calf LBF (venous occlusive plethysmography) were obtained on all 30 subjects on 3 occasions beginning at approximately 6:00 AM following an overnight fast and 24 hours removed from the last training session; baseline (day 0), and 7 days and 29 days following the interventions. No differences existed among groups at baseline for any of the variables measured. Following the 28-day interventions, body mass (Cr, 73.9 +/- 11.5 v 75.6 +/- 12.5 kg; Cr-RT, 78.8 +/- 6.7 v 80.8 +/- 6.8 kg; P training significantly increases total and fat-free body mass, muscular strength, peripheral blood flow, and resting energy expenditure and improves blood cholesterol. Copyright 2001 by W.B. Saunders Company

  8. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport

    Science.gov (United States)

    Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.

    2017-09-01

    Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.

  9. Effect of Acute Resistance Exercise on Carotid Artery Stiffness and Cerebral Blood Flow Pulsatility

    Directory of Open Access Journals (Sweden)

    Wesley K Lefferts

    2014-03-01

    Full Text Available Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE. Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA stiffness and cerebral blood flow velocity (CBFv pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg∙m-2 underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals or a time control condition (seated rest in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep and hemodynamics (pulsatility index, forward wave intensity and reflected wave intensity were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA. Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p 0.05. There were significant increases in forward wave intensity post-RE (p0.05. Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it may not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.

  10. Will transgenic plants adversely affect the environment?

    Indian Academy of Sciences (India)

    Unknown

    *Corresponding author (Fax, (0967) 330-528; Email, vvvelkov@rambler.ru). Transgenic insecticidal plants based on .... Authors claimed that these results suggested that. Bt corn can have adverse sublethal effects on ..... provide resistance against the Mexican rice borer, Eore- uma loftini (Dyar), the primary pest of south ...

  11. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.

    Science.gov (United States)

    Evans, Colin; Vance, Steven; Brown, Maggie

    2010-07-01

    Resistance training increases muscle strength and endurance but may require high intensity and long duration to enhance capillarity. Vascular occlusion during low-load resistance training augments the strength and endurance gains compared with low-load resistance training alone, but in this study we investigated whether it also promotes microvascular filtration capacity, an index of capillarity. Nine healthy males performed short-term low-intensity resistance training of the calf muscles (four sets of 50 heel raises, three times a week for 4 weeks) under restricted (thigh cuff inflated to 150 mmHg on the non-dominant leg) or unrestricted (dominant leg without thigh cuff) blood flow conditions. Before and after resistance training, calf filtration capacity and resting blood flow were assessed by strain gauge plethysmography, and calf muscle strength and fatigue were assessed respectively by maximal voluntary contraction and force decline during electrically evoked ischaemic contractions in both legs. Calf filtration capacity increased by 26% in the restricted leg but did not increase significantly in the unrestricted leg. Calf muscle strength was 18% greater in the restricted leg but unchanged in the unrestricted leg. Calf muscle fatigue and resting blood flow did not change in either leg. Resistance training promoted microvascular filtration capacity, an effect that was somewhat enhanced by blood flow restriction, and could be due to increased capillarization.

  12. Neuromuscular Adaptations to Low-Load Blood Flow Restricted Resistance Training

    Directory of Open Access Journals (Sweden)

    Summer B. Cook, Brendan R. Scott, Katherine L. Hayes, Bethany G. Murphy

    2018-03-01

    Full Text Available Low-load blood flow restricted (BFR resistance exercise has been suggested to be as effective as moderate and high-load resistance training for increasing muscle size and strength. The purpose of the study was to evaluate the effects of 6 weeks of HL or low-load BFR resistance training on neuromuscular function, strength, and hypertrophy of the knee extensors. Eighteen participants aged 18-22 years old were randomized to one of three training groups: moderate load (ML: 70% of 1 repetition maximum [1-RM]; BFR (20% 1-RM with a vascular restriction set to ~180 mmHg; and a control group (CON that did not exercise. Participants performed leg extension (LE and leg press exercises 3 times per week for 6 weeks. Measurements of isometric torque, LE 1-RM, central activation, electrically evoked torque, and muscle volume of the knee extensors were obtained before and after training. Isometric peak torque did not change following the training (p = 0.13. LE 1-RM improved in the ML (34 ± 20%; d = 0.78 and BFR (14 ± 5%; d = 0.67 groups compared to the CON group (0.6 ± 8%; d = 0.09; time x group interaction p = 0.02. Muscle volume increased in the ML (5.6%; d = 0.19 and BFR groups (2.5%; d = 0.09 with no change in the CON group (time x group interaction p = 0.001. There were no changes in central activation and evoked torque in any groups following the training (p > 0.05. Strength and hypertrophy were evident following ML and BFR resistance training programs indicating that both modalities are effective, although ML training appears to be a more potent and efficient. Neuromuscular changes were not evident and warrant more research.

  13. Impact of the postpump resistance on pressure-flow waveform and hemodynamic energy level in a neonatal pulsatile centrifugal pump.

    Science.gov (United States)

    Wang, Shigang; Haines, Nikkole; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    This study tested the impact of different postpump resistances on pulsatile pressure-flow waveforms and hemodynamic energy output in a mock extracorporeal system. The circuit was primed with a 40% glycerin-water mixture, and a PediVAS centrifugal pump was used. The pre- and postpump pressures and flow rates were monitored via a data acquisition system. The postpump resistance was adjusted using a Hoffman clamp at the outlet of the pump. Five different postpump resistances and rotational speeds were tested with nonpulsatile (NP: 5000 RPM) and pulsatile (P: 4000 RPM) modes. No backflow was found when using pulsatile flow. With isoresistance, increased arterial resistances decreased pump flow rates (NP: from 1,912 ml/min to 373 ml/min; P: from 1,485 ml/min to 288 ml/min), increased postpump pressures (NP: from 333 mm Hg to 402 mm Hg; P: from 223 mm Hg to 274 mm Hg), and increased hemodynamic energy output with pulsatile mode. Pump flow rate correlated linearly with rotational speed (RPMs) of the pump, whereas postpump pressures and hemodynamic energy outputs showed curvilinear relationships with RPMs. The maximal pump flow rate also increased from 618 ml/min to 4,293 ml/min with pulsatile mode and from 581 ml/min to 5,665 ml/min with nonpulsatile mode. Results showed that higher postpump resistance reduced the pump flow range, and increased postpump pressure and surplus hemodynamic energy output with pulsatile mode. Higher rotational speeds also generated higher pump flow rates, postpump pressures, and increased pulsatility.

  14. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes

    2010-01-01

    Interleukin-6 (IL-6) is a major cytokine involved in both normal physiological brain functions and underlying significant neuropathology. IL-6 has been suggested to play a role in the control of body weight but the results are somewhat controversial. In this study we have challenged transgenic mice...... of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant following the high......-fat diet feeding. In summary, the present results demonstrate that brain-specific IL-6 controls body weight which may be a significant factor in physiological conditions and/or in diseases causing neuroinflammation....

  15. Effects of Entrapped Bubble Formation on Flow Through Porous Media During Electrical Resistance Heating

    Science.gov (United States)

    Thoms, R. B.; Johnson, R. L.

    2006-12-01

    In-situ thermal remediation technologies such as electrical resistance heating (ERH) have been used effectively to treat volatile organic compounds (VOCs) in a variety of subsurface conditions. Field applications have shown significant reductions in total contaminant mass over relatively short time periods. The mechanism of these technologies is well understood; the subsurface temperature is increased to boil the groundwater and the target contaminant is evaporated and rises to the surface where it is collected by vapor recovery wells. Recently there is increased interest in combining ERH with other approaches (e.g., addition of chemical oxidants or reductants). These coupled applications can be effective at temperatures well below boiling; however sustained groundwater flow is especially important for delivering remediation chemicals to the treatment zone. Since heating decreases the solubility of many gases, production of entrapped bubbles due to heating could have a significant impact on groundwater flow, although this has not been thoroughly studied. We are currently characterizing this process using a combination of physical and numerical models. Experimental results from a two-dimensional (2-D) bench-scale study using water saturated with carbon dioxide indicate substantial reduction in relative permeability when gas bubbles are created by heating. The volume of gas created can be described using simple functional relationships relating the volume of bubbles created to the increase in temperature. In turn, a capillary-saturation relationship can be used to relate the relative permeability of the soil to the volume of gas within the soil matrix. Several one-dimensional (1-D) column studies are conducted to measure the volume of gas created under a range of temperatures and dissolved gas concentrations. The resultant data are being used to calibrate a coupled fluid flow and energy transport model to predict the impact of bubble formation on flow during thermal

  16. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbergen, Inge; Veer, Marcel van ' t [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Lammers, Jeroen; Ubachs, Joey [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Pijls, Nico H.J., E-mail: nico.pijls@cze.nl [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-03-15

    Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3–5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p = 0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p = 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. - Highlights: • We measured absolute coronary blood flow and microvascular resistance in STEMI patients in the acute phase and in the subacute phase, using the technique of thermodilution with low grade intracoronary continuous infusion of saline. • These measurements are safe and feasible during PPCI in STEMI patients. • In STEMI patients, absolute flow

  17. Resistance calculation of un-fully developed two-phase flow through high differential pressure regulating valves

    International Nuclear Information System (INIS)

    Xu Mingyang; Wang Wenran; Wang Jiaying

    1999-01-01

    To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test

  18. Primary transgenic bovine cells and their rejuvenated cloned equivalents show transgene-specific epigenetic differences.

    Science.gov (United States)

    Alonso-González, Lucia; Couldrey, Christine; Meinhardt, Marcus W; Cole, Sally A; Wells, David N; Laible, Götz

    2012-01-01

    Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences.

  19. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    were not damaged by bollworms. The results (table 1) indicate that they are all insect-resistant plants. The results confirm that the insect-resistance character controlled by the exogenous Bt gene is a dominant character. It did not matter whether the transgenic insect-resistant cotton cultivars CCRI 30 and NewCott 33B were ...

  20. Delayed Effect of Blood Flow-restricted Resistance Training on Rapid Force Capacity

    DEFF Research Database (Denmark)

    Nielsen, Jakob Lindberg; Frandsen, Ulrik; Prokhorova, Tatyana

    2017-01-01

    PURPOSE: The aim of the present study was to investigate the effect and time course of high-frequent low-load blood flow-restricted (BFR) resistance training on rapid force capacity (i.e., rate of torque development [RTD]). MATERIALS AND METHODS: Ten male subjects (22.8 ± 2.3 yr) performed four...... sets of knee extensor exercise (20% one-repetition maximum) to concentric failure during concurrent BFR of the thigh (100 mm Hg), and eight work-matched controls (21.9 ± 3.0 yr) trained without BFR (CON). Twenty-three training sessions were performed within 19 d. Maximal slow and fast knee joint...... in myofiber area and expression of myocellular proteins known to be modified by cellular stress (CaMKII, annexin A6, SNO-CYS). RESULTS: RTD remained unchanged after BFR training at Post5, while increasing 15%-20% Post12 (P

  1. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  2. Imaging Preferential Flow Pathways of Contaminants from Passive Acid Mine Drainage Mitigation Sites Using Electrical Resistivity

    Science.gov (United States)

    Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.

    2017-12-01

    The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.

  3. Effects of refuges on the evolution of resistance to transgenic corn by the western corn rootworm, Diabrotica virgifera virgifera LeConte.

    Science.gov (United States)

    Deitloff, Jennifer; Dunbar, Mike W; Ingber, David A; Hibbard, Bruce E; Gassmann, Aaron J

    2016-01-01

    Diabrotica virgifera virgifera LeConte is a major pest of corn and causes over a billion dollars of economic loss annually through yield reductions and management costs. Corn producing toxins derived from Bacillus thuringiensis (Bt) has been developed to help manage D. v. virgifera. However, previous studies have demonstrated the ability of this species to evolve resistance to Bt toxins in both laboratory and field settings. We used an experimental evolution approach to test the refuge strategies for delaying resistance of D. v. virgifera to corn producing Bt toxin Cry34/35Ab1. In the absence of refuges, D. v. virgifera developed resistance to Bt corn after three generations of selection. In some cases, non-Bt refuges reduced the level of resistance compared with the strain selected in the absence of refuges, but refuge strains did show reduced susceptibility to Bt corn compared with the unselected strain. In this study, non-Bt refuges delayed resistance to Bt corn by D. v. virgifera in some cases but not others. Combining the refuge strategy with pyramids of multiple Bt toxins and applying other pest management strategies will likely be necessary to delay resistance of D. v. virgifera to Bt corn. © 2015 Society of Chemical Industry.

  4. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  5. A Mathematical Model for the Flow Resistance and the Related Hydrodynamic Dispersion Induced by River Dunes

    Directory of Open Access Journals (Sweden)

    Marilena Pannone

    2013-01-01

    Full Text Available Present work is aimed at the derivation of a simply usable equation for the total flow resistance associated with river bedforms, by a unifying approach allowing for bypassing some of the limiting restrictions usually adopted in similar types of studies. Specifically, we focused on the effect induced by the out-of-phase free surface undulations appearing in presence of sand dunes. The proposed expression, obtained by combining the balance of momentum referred to the control volume whose longitudinal dimension coincides with the dune wavelength and the energy balance integrated between its extreme sections, was tested by comparison with some laboratory experimental measurements available in the literature and referred to steady flow past fixed, variably rough bedforms. In terms of shear stress or friction factor, the proposed theory provides estimates in good agreement with the real data, especially if evaluated against the performances provided by other classical similar approaches. Moreover, when analyzed in terms of hydrodynamic dispersive properties as a function of the skin roughness on the basis of a previously derived analytical solution, the dune-covered beds seem to behave like meandering channels, responsible for a globally enhanced fluid particles longitudinal spreading, with a relatively reduced effect in the presence of less pronounced riverbed modelling.

  6. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death.

    Science.gov (United States)

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2013-07-22

    The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers' bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies' guided DNA vectors delivered the transgenes for the human recombinant DNases' into proliferating stem cells. Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin

  7. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    Science.gov (United States)

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with 99m Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R 2 =1.0). On the other hand, the PI had a stronger association with the MMAD (R 2 =1.0) than the FPF (R 2 =0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cochlear aqueduct flow resistance is not constant during evoked inner ear pressure change in the guinea pig

    NARCIS (Netherlands)

    Wit, HP; Feijen, RA; Albers, FWJ

    Inner ear fluid pressure was measured during 6.25 mHz square wave middle ear pressure manipulation, with a perforated tympanic membrane. After a negative-going middle ear pressure change the calculated flow resistance of the inner ear pressure release routes (mainly the cochlear aqueduct) was

  9. First- and Second-level Bayesian Inference of Flow Resistivity of Sound Absorber and Room’s Influence

    DEFF Research Database (Denmark)

    Choi, Sang-Hyeon; Lee, Ikjin; Jeong, Cheol-Ho

    2016-01-01

    Sabine absorption coefficient is a widely used one deduced from reverberation time measurements via the Sabine equation. First- and second-level Bayesian analysis are used to estimate the flow resistivity of a sound absorber and the influences of the test chambers from Sabine absorption...

  10. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  11. Transgene mus som sygdomsmodeller

    DEFF Research Database (Denmark)

    Schuster, Mikkel Bruhn; Porse, Bo Torben

    2003-01-01

    Transgenic animal models have proven to be useful tools in understanding both basic biology and the events associated with disease. Recent technical advances in the area of genomic manipulation in combination with the availability of the human and murine genomic sequences now allow the precise...... tailoring of the mouse genome. In this review we describe a few systems in which transgenic animal models have been employed for the purpose of studying the etiology of human diseases. Udgivelsesdato: 2003-Feb-17...

  12. Weeding with transgenes.

    Science.gov (United States)

    Duke, Stephen O

    2003-05-01

    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  13. THE TRIAL OF TRANSGENICS

    Directory of Open Access Journals (Sweden)

    Antonio f. Díaz García

    2015-04-01

    Full Text Available This paper discloses the uncertainty with which transgenic uses are authorized.  It provides a list of reasons showing that there is no absolute proof of the benefits of transgenic use.  Moreover it discusses the need to provide more credibility to safety studies and reports on results of various tests of GMOs.  Finally it proposes the establishment of higher penalties for specialists that omit relevant information in their studies and reports on this matter.

  14. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    NARCIS (Netherlands)

    Pavli, R.; Panopoulos, N.J.; Goldbach, R.W.; Skaracis, G.N.

    2010-01-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots

  15. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.)

    NARCIS (Netherlands)

    Zheng Sijun, S.J.; Henken, B.; Maagd, de R.A.; Purwito, A.; Krens, F.A.; Kik, C.

    2005-01-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate

  16. Numerical Research on Convective Heat Transfer and Resistance Characteristics of Turbulent Duct Flow Containing Nanorod-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Fangyang Yuan

    2018-01-01

    Full Text Available A coupled numerical model for nanorod-based suspension flow is constructed, and the convective heat transfer and resistance characteristics of the nanofluid duct flow are investigated. The numerical results are verified by experimental results and theoretical models. Most of nanorods are located randomly in the bulk fluid, while particles near the wall aligned with the flow direction. Friction factor of nanofluids with nanorods increases with higher particle volume concentration or aspect ratio, but the increment reduces when the Reynolds number gets larger. The relative Nusselt number is obtained to characterize the intensity of convective heat transfer. The results show that the Nusselt number of nanofluids increases when the particle volume concentration or aspect ratio becomes larger. Compared to increasing the aspect ratio of nanorods, increasing the particle volume concentration would be more effective on enhancing the convective heat transfer intensity in industrial applications although it will cause a slight increase of resistance.

  17. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  18. Arterial stiffness and blood flow adaptations following eight weeks of resistance exercise training in young and older women.

    Science.gov (United States)

    Rossow, Lindy M; Fahs, Christopher A; Thiebaud, Robert S; Loenneke, Jeremy P; Kim, Daeyeol; Mouser, James G; Shore, Erin A; Beck, Travis W; Bemben, Debra A; Bemben, Michael G

    2014-05-01

    Resistance training is recommended for all adults of both sexes. The arterial stiffness and limb blood flow responses to resistance training in young and older women have not been well-studied. The purpose of this study was to examine arterial stiffness and blood flow adaptations to high-intensity resistance exercise training in young and older women. Young (aged 18-25) and older (aged 50-64) women performed full-body high-intensity resistance exercise three times per week for eight weeks. The following measurements were performed twice prior to training and once following training: carotid to femoral and femoral to tibialis posterior pulse wave velocity (PWV), blood pressure, heart rate, resting forearm blood flow and forearm reactive hyperemia. Data was analyzed by ANOVAs with alpha set at 0.05. Correlations were also examined between changes in arterial stiffness and baseline arterial stiffness values. Older subjects had higher carotid-femoral PWV than younger subjects. No significant effects were found for femoral-tibialis posterior PWV or for resting forearm blood flow. Changes in carotid-femoral and femoral-tibialis posterior PWV correlated significantly with their respective baseline values. Older subjects increased peak forearm blood flow while young subjects showed no change. Total hyperemia increased significantly in both groups. In conclusion, in both young and older women, eight weeks of high-intensity resistance training appeared to improve microvascular forearm function while not changing carotid-femoral or femoral-tibialis posterior arterial stiffness. However, a large degree of individual variation was found and arterial stiffness adaptations appeared positively related to the initial stiffness values. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Delayed Effect of Blood Flow-restricted Resistance Training on Rapid Force Capacity.

    Science.gov (United States)

    Nielsen, Jakob Lindberg; Frandsen, Ulrik; Prokhorova, Tatyana; Bech, Rune Dueholm; Nygaard, Tobias; Suetta, Charlotte; Aagaard, Per

    2017-06-01

    The aim of the present study was to investigate the effect and time course of high-frequent low-load blood flow-restricted (BFR) resistance training on rapid force capacity (i.e., rate of torque development [RTD]). Ten male subjects (22.8 ± 2.3 yr) performed four sets of knee extensor exercise (20% one-repetition maximum) to concentric failure during concurrent BFR of the thigh (100 mm Hg), and eight work-matched controls (21.9 ± 3.0 yr) trained without BFR (CON). Twenty-three training sessions were performed within 19 d. Maximal slow and fast knee joint velocity muscle strength and rapid force capacity (e.g., RTD) and evoked twitch contractile parameters were assessed before (Pre) and 5 and 12 d after (Post5 and Post12) training. Muscle biopsies were obtained Pre, after 8 d (Mid8), and 3 and 10 d after (Post3 and Post10) training to examine changes in myofiber area and expression of myocellular proteins known to be modified by cellular stress (CaMKII, annexin A6, SNO-CYS). RTD remained unchanged after BFR training at Post5, while increasing 15%-20% Post12 (P resistance exercise performed with BFR leads to marked increases in rapid force capacity (RTD). However, a general delayed adaptive response was observed for voluntary contractile parameters (including RTD) in parallel with a decline and subsequent recovery in evoked contractile properties, suggesting the delayed gain in rapid force capacity mainly have a peripheral origin.

  20. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota

    2017-09-01

    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  1. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  2. Likelihood assessment for gene flow of transgenes from imported genetically modified soybean (Glycine max(L.) Merr.) to wild soybean (Glycine sojaSeib. et Zucc.) in Japan as a component of environmental risk assessment.

    Science.gov (United States)

    Goto, Hidetoshi; McPherson, Marc A; Comstock, Bradley A; Stojšin, Duška; Ohsawa, Ryo

    2017-09-01

    Environmental risk assessment is required for genetically modified (GM) crops before their import into Japan. Annual roadside monitoring along transportation routes from ports to processing facilities for GM soybean ( Glycine max (L.) Merr.) have been requested as a condition of import only approval because of lack of information on the likelihood of persistence of imported GM soybean for food, feed and processing and the potential for transfer of transgenes into wild soybean ( Glycine soja Seib. et Zucc.) through gene flow under the Japanese environment. The survey of soybean seeds, plants and wild soybean populations were conducted along transportation routes from unloading ports to processing facilities that provided data to help quantify actual exposure. The survey indicated that the opportunities for co-existence and subsequent crossing between wild soybean populations and imported soybean are highly unlikely. Together the survey results and the comprehensive literature review demonstrated low exposure of imported GM soybean used for food, feed and processing in Japan. This evaluation of exposure level is not specific to particular GM soybean event but can apply to any GM soybean traits used for food, feed and processing if their weediness or invasiveness are the same as those of the conventional soybean.

  3. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults.

    Science.gov (United States)

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G; Bendlin, Barbara B

    2017-06-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife.

  4. Keeping the genie in the bottle: transgene biocontainment by excision in pollen.

    Science.gov (United States)

    Moon, Hong S; Li, Yi; Stewart, C Neal

    2010-01-01

    Gene flow from transgenic plants is an environmental and regulatory concern. While biocontainment might be achieved using male sterility or transgenic mitigation tools, we believe that perhaps the optimal solution might be simply to remove transgenes from pollen. Male sterility might not be ideal for many pollinators, and might not be implementable using standardized genes. Transgenic mitigation might not be useful to control conspecific gene flow (e.g. crop to crop), and relies on competition and not biocontainment per se. Site-specific recombination systems could allow highly efficient excision of transgenes in pollen to eliminate, or at least minimize, unwanted transgene movement via pollen dispersal. There are other potential biotechnologies, such as zinc finger nucleases, that could be also used for transgene excision.

  5. Role of the 25-26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with plum pox virus.

    Science.gov (United States)

    Kundu, Jiban Kumar; Briard, Pascal; Hily, Jean Michel; Ravelonandro, Michel; Scorza, Ralph

    2008-02-01

    The reaction of a genetically engineered plum clone (C5) resistant to plum pox virus (PPV) by graft inoculation with the virus was evaluated. The resistance in this clone has been demonstrated to be mediated through post-transcriptional gene silencing (PTGS). A single C5 plant out of 30 plants inoculated with PPV M strain by double chip-budding showed mild diffuse mosaic 'Sharka' symptom at the bottom section of the scion. The upper leaves of this PPV-infected C5 plant remained symptomless and the virus was not detected in them by either DAS-ELISA or RT-PCR. An RNA silencing associated small interfering RNA duplex, siRNA (21-26 nt), was detected in non-inoculated C5 plants and in the portions of inoculated C5 plant in which PPV could not be detected. In the PPV-infected portion of the C5 plant and in C6 PPV susceptible plants only the approximately 21-22 nt siRNAs was detected. Cytosine-methylation was confirmed in C5 plants both uninfected and showing PPV symptoms. The 25-26 nt siRNA normally present in C5 was absent in PPV-infected C5 tissues confirming the critical role of this siRNA in the resistance of clone C5 to PPV infection. We also show that this PPV infection was limited and transient. It was only detected in one plant at one of four post-dormancy sampling dates and did not appear to affect the overall PPV resistance of the C5 clone.

  6. Monitoring water flows with time-lapse Electrical Resistivity Tomography on the Super-Sauze landslide

    Science.gov (United States)

    Gance, J.; Sailhac, P.; Malet, J.-P.; Grandjean, G.; Supper, R.; Jochum, B.; Ottowitz, D.

    2012-04-01

    This work presents results of a permanent hydro-geophysical monitoring of an active landslide developed in clay-shales. Hydrology has been proved to be a major factor controlling the Super-Sauze earthflow behavior, but it knowledge still limited mainly because of the importance of spatial heterogeneities. The geometry of the bedrock creates internal crests and gullies that can guide waterflows or create a lock and engender an excess of pore water pressure; the soil surface characteristics plays also a large role in the surface hydraulic conductivity, and therefore, on the infiltration pattern. To understand in detail these processes, it is therefore important to monitor spatially at large scale (with high resolution) those phenomena and to overcome the monitoring difficulties inherent to a fast-moving clayey earthflow. The objectives of the survey are to identify and characterize spatially and temporarily the water flow circulation within the landslide body over a period of one year. The studied profile measures 114 m long and is surveyed with 93 electrodes spaced from 0.5, 1 or 2 meter according the soil surface cracking. Four resistivity datasets of 4300 measurements are acquired each day using a gradient array since May 2011. The monitoring is performed with the GEOMON4D system, developed by the Geological Survey of Austria. To facilitate the interpretation, humidity, conductivity, temperature, and piezometer sensors are placed along the profile. Two dGPS antenna placed upstream and downstream the profile allow to correlate the results with soil displacement. Lefranc tests and granulometry results realized on several samples have shown the important heterogeneities of the near surface. The objective of this work is to present the data processing strategy for the analysis of long periods time-lapse ERT survey of natural rain events taking into account changes through time of the position of the electrodes, changes in the soil surface state and important changes

  7. Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults.

    Science.gov (United States)

    Staunton, Craig A; May, Anthony K; Brandner, Christopher R; Warmington, Stuart A

    2015-11-01

    Light-load blood flow restriction exercise (BFRE) may provide a novel training method to limit the effects of age-related muscle atrophy in older adults. Therefore, the purpose of this study was to compare the haemodynamic response to resistance and aerobic BFRE between young adults (YA; n = 11; 22 ± 1 years) and older adults (OA; n = 13; 69 ± 1 years). On two occasions, participants completed BFRE or control exercise (CON). One occasion was leg press (LP; 20 % 1-RM) and the other was treadmill walking (TM; 4 km h(-1)). Haemodynamic responses (HR, Q, SV and BP) were recorded during baseline and exercise. At baseline, YA and OA were different for some haemodynamic parameters (e.g. BP, SV). The relative responses to BFRE were similar between YA and OA. Blood pressures increased more with BFRE, and also for LP over TM. Q increased similarly for BFRE and CON (in both LP and TM), but with elevated HR and reduced SV (TM only). While BFR conferred slightly greater haemodynamic stress than CON, this was lower for walking than leg-press exercise. Given similar response magnitudes between YA and OA, these data support aerobic exercise being a more appropriate BFRE for prescription in older adults that may contribute to limiting the effects of age-related muscle atrophy.

  8. Characterization of a Maize Wip1 Promoter in Transgenic Plants

    Directory of Open Access Journals (Sweden)

    Shengxue Zhang

    2013-12-01

    Full Text Available The Maize Wip1 gene encodes a wound-induced Bowman-Birk inhibitor (BBI protein which is a type of serine protease inhibitor, and its expression is induced by wounding or infection, conferring resistance against pathogens and pests. In this study, the maize Wip1 promoter was isolated and its function was analyzed. Different truncated Wip1 promoters were fused upstream of the GUS reporter gene and transformed into Arabidopsis, tobacco and rice plants. We found that (1 several truncated maize Wip1 promoters led to strong GUS activities in both transgenic Arabidopsis and tobacco leaves, whereas low GUS activity was detected in transgenic rice leaves; (2 the Wip1 promoter was not wound-induced in transgenic tobacco leaves, but was induced by wounding in transgenic rice leaves; (3 the truncated Wip1 promoter had different activity in different organs of transgenic tobacco plants; (4 the transgenic plant leaves containing different truncated Wip1 promoters had low GUS transcripts, even though high GUS protein level and GUS activities were observed; (5 there was one transcription start site of Wip1 gene in maize and two transcription start sites of GUS in Wip1::GUS transgenic lines; (6 the adjacent 35S promoter which is present in the transformation vectors enhanced the activity of the truncated Wip1 promoters in transgenic tobacco leaves, but did not influence the disability of truncated Wip1231 promoter to respond to wounding signals. We speculate that an ACAAAA hexamer, several CAA trimers and several elements similar to ACAATTAC octamer in the 5'-untranslated region might contribute to the strong GUS activity in Wip1231 transgenic lines, meanwhile, compared to the 5'-untranslated region from Wip1231 transgenic lines, the additional upstream open reading frames (uORFs in the 5'-untranslated region from Wip1737 transgenic lines might contribute to the lower level of GUS transcript and GUS activity.

  9. An investigation of flow and resistance characteristics of heat exchanger with the 2-D LDV system and visualization technique

    International Nuclear Information System (INIS)

    Wang Zongsen; Shen Xiong; Xu Yuanhui; Bi Shuxun

    1987-12-01

    An experimental study of the heat exchanger which would be used in a nuclear reactor for low temperature heat-supplying is presented. A 2-D Laser Doppler Velocimeter was used as a unique technique to measure the mean velocity and turbulence intensity distributions in different sections of the model. The relationship between the resistance coefficient and Reynolds number also obtained in terms of the total pressure rakes covered by the casings and the wall static pressure pick-up holes. The flow visualization has realized by using a piece of light source with an Argon-Ion laser. It is apparent that the polystyrene particles seeded in the flow can trace the mean flow. The results showed that the self-similar phenomenon exists in the tube bundle flow system. There are some secondary vortices in the cross sections between two passages of the model

  10. Effects of indirect selection pressure on plant fitness and the movement of transgenes in constructed plant communities

    Science.gov (United States)

    Escape and persistence of transgenes from agricultural crops are issues of concern to stakeholders in the environmental safety of transgenic crops. That is, whether transgenes that confer resistance to biotic or abiotic stresses may benefit weedy or native species outside of agr...

  11. Bioavailability of transgenic microRNAs in genetically modified plants.

    Science.gov (United States)

    Yang, Jian; Primo, Cecilia; Elbaz-Younes, Ismail; Hirschi, Kendal D

    2017-01-01

    Transgenic expression of small RNAs is a prevalent approach in agrobiotechnology for the global enhancement of plant foods. Meanwhile, emerging studies have, on the one hand, emphasized the potential of transgenic microRNAs (miRNAs) as novel dietary therapeutics and, on the other, suggested potential food safety issues if harmful miRNAs are absorbed and bioactive. For these reasons, it is necessary to evaluate the bioavailability of transgenic miRNAs in genetically modified crops. As a pilot study, two transgenic Arabidopsis lines ectopically expressing unique miRNAs were compared and contrasted with the plant bioavailable small RNA MIR2911 for digestive stability and serum bioavailability. The expression levels of these transgenic miRNAs in Arabidopsis were found to be comparable to that of MIR2911 in fresh tissues. Assays of digestive stability in vitro and in vivo suggested the transgenic miRNAs and MIR2911 had comparable resistance to degradation. Healthy mice consuming diets rich in Arabidopsis lines expressing these miRNAs displayed MIR2911 in the bloodstream but no detectable levels of the transgenic miRNAs. These preliminary results imply digestive stability and high expression levels of miRNAs in plants do not readily equate to bioavailability. This initial work suggests novel engineering strategies be employed to enhance miRNA bioavailability when attempting to use transgenic foods as a delivery platform.

  12. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    Science.gov (United States)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  13. [Molecular genetics and biotechnology in medicinal plants: studies by transgenic plants].

    Science.gov (United States)

    Saito, K

    1994-01-01

    The advances in molecular genetics and biotechnology in the field of medicinal plant research are discussed with focusing on the works using transgenic plants. Differentiated organ cultures and transgenic teratomas, incited by the infection with mutants of Agrobacterium Ti and Ri plasmids, were established in quinolizidine-alkaloid producing plants and Solanaceae plants. These cultured cells were used for the production and bioconversion of specific alkaloids produced in these plants. The methods of integration of foreign genes into medicinal plants were developed using an Ri binary vector. The mode of gene expression driven by TR1'-2' promoters was elucidated in transgenic medicinal plants, e.g., Nicotiana tabacum, Glycyrrhiza uralensis, Digitalis purpurea and Atropa belladonna. The genes for herbicide resistance, mammalian cytochrome P450 and bacterial beta-hydroxydecanoylthioester dehydrase were transferred and expressed in plants either to confer herbicide-resistant trait or to change the pattern of metabolites. The cDNA clones encoding cysteine synthase responsible for sulfur assimilation and biosynthesis of non-protein amino acids were isolated and characterized from Spinacea oleracea and Citrullus vulgaris. The functional lysine residue was identified by site-directed mutagenesis experiments. An over-expression system in Escherichia coli was constructed for the bacterial production of the plant specific non-protein amino acids. We made transgenic N. tabacum integrated with sense- and antisense-constructs of cysteine synthase cDNA driven by cauliflower mosaic virus 35S promoter for the purpose of genetic manipulation of biosynthetic flow of cysteine in plants. The future prospects of medicinal plant research are also discussed in the context of modern plant molecular biology.

  14. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    Science.gov (United States)

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  15. Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize?

    Science.gov (United States)

    Bourguet, D; Bethenod, M T; Trouvé, C; Viard, F

    2000-01-01

    The strategies proposed for delaying the development of resistance to the Bacillus thuringiensis toxins produced by transgenic maize require high levels of gene flow between individuals feeding on transgenic and refuge plants. The European corn borer Ostrinia nubilalis (Hübner) may be found on several host plants, which may act as natural refuges. The genetic variability of samples collected on sagebrush (Artemisia sp.), hop (Humulus lupulus L.) and maize (Zea mays L.) was studied by comparing the allozyme frequencies for six polymorphic loci. We found a high level of gene flow within and between samples collected on the same host plant. The level of gene flow between the sagebrush and hop insect samples appeared to be sufficiently high for these populations to be considered a single genetic panmictic unit. Conversely, the samples collected on maize were genetically different from those collected on sagebrush and hop. Three of the six loci considered displayed greater between-host-plant than within-host-plant differentiation in comparisons of the group of samples collected on sagebrush or hop with the group of samples collected on maize. This indicates that either there is genetic isolation of the insects feeding on maize or that there is host-plant divergent selection at these three loci or at linked loci. These results have important implications for the potential sustainability of transgenic insecticidal maize. PMID:10902683

  16. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  17. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species.

    Science.gov (United States)

    Chen, Jun; Ying, Guang-Guo; Wei, Xiao-Dong; Liu, You-Sheng; Liu, Shuang-Shuang; Hu, Li-Xin; He, Liang-Ying; Chen, Zhi-Feng; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-11-15

    This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Transgenic plants as vital components of integrated pest management

    NARCIS (Netherlands)

    Kos, Martine; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2009-01-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars.

  19. Investigating Transgenic Corn Hybrids as a Method for Mycotoxin Control

    Science.gov (United States)

    Transgenic Bt corn hybrids have been available for more than 10 years and are known to control specific insects. More recently, so-called “stacked-gene” hybrids, have been released with multiple insect resistance genes and genes for herbicide resistance, resulting in up to 6 traits per plant. Beca...

  20. Transgenic parasites accelerate drug discovery

    Science.gov (United States)

    Rodriguez, Ana; Tarleton, Rick L.

    2013-01-01

    Parasitic neglected diseases are in dire need of new drugs either to replace old drugs rendered ineffective because of resistance development, to cover clinical needs that had never been addressed or to tackle other associated problems of existing drugs such as high cost, difficult administration, restricted coverage or toxicity. The availability of transgenic parasites expressing reporter genes facilitates the discovery of new drugs through high throughput screenings, but also by allowing rapid screening in animal models of disease. Taking advantage of these, we propose an alternative pathway of drug development for neglected diseases, going from high throughput screening directly into in vivo testing of the top ranked compounds selected by medicinal chemistry. Rapid assessment animal models allow for identification of compounds with bona fide activity in vivo early in the development chain, constituting a solid basis for further development and saving valuable time and resources. PMID:22277131

  1. Study of Proper Time Range for Current Flow to Resistance Spot Welding Inspected by Mechanical Property and Metallurgy Testing

    International Nuclear Information System (INIS)

    Pearsura, Prachya

    2007-08-01

    Full text: This research used the mechanical property and metallurgy testing to identify the proper time range for current flow. The specimen tested was 1 mm thick mild steel. The welded specimens were tested by Tensile Shear testing following JIS Z 3136: 1999 and Macro Structure testing follow by JIS Z 3139: 1978. Subsequently, the results from analyzing were compared with standard JIS Z 3140. The results show that the suitable current flow is 8 to 10 cycles. This technique can be applied to monitor the process and the quality of resistance spot welding

  2. Insulin-mediated increases in renal plasma flow are impaired in insulin-resistant normal subjects

    NARCIS (Netherlands)

    ter Maaten, JC; Bakker, SJL; Serne, EH; Moshage, HJ; Gans, ROB

    2000-01-01

    Background Impaired vasodilatation in skeletal muscle is a possible mechanism linking insulin resistance to blood pressure regulation. Increased renal vascular resistance has been demonstrated in the offspring of essential hypertensives. We assessed whether insulin-mediated renal vasodilatation is

  3. Transgenic expression of plant-specific insert of potato aspartic proteases (StAP-PSI) confers enhanced resistance to Botrytis cinerea in Arabidopsis thaliana.

    Science.gov (United States)

    Frey, María Eugenia; D'Ippolito, Sebastián; Pepe, Alfonso; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2018-02-08

    The plant-specific insert of Solanum tuberosum aspartic proteases (StAP-PSI) has high structural similarity with NK-lysin and granulysin, two saposin-like proteins (SAPLIPs) with antimicrobial activity. Recombinant StAP-PSI and some SAPLIPs show antimicrobial activity against pathogens that affect human and plants. In this work, we transformed Arabidopsis thaliana plants with StAP-PSI encoding sequence with its corresponding signal peptide under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Results obtained show that StAP-PSI significantly enhances Arabidopsis resistance against Botrytis cinerea infection. StAP-PSI is secreted into the leaf apoplast and acts directly against pathogens; thereby complementing plant innate immune responses. Data obtained from real-time PCR assays show that the constitutive expression of StAP-PSI induces the expression of genes that regulate jasmonic acid signalling pathway, such as PDF1.2, in response to infection due to necrotrophic pathogens. On the other hand, according to the data described for other antimicrobial peptides, the presence of the StAP-PSI protein in the apoplast of A. thaliana leaves is responsible for the expression of salicylic acid-associated genes, such as PR-1, irrespective of infection with B. cinerea. These results indicate that the increased resistance demonstrated by A. thaliana plants that constitutively express StAP-PSI owing to B. cinerea infection compared to the wild-type plants is a consequence of two factors, i.e., the antifungal activity of StAP-PSI and the overexpression of A. thaliana defense genes induced by the constitutive expression of StAP-PSI. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the use of pesticides. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the spreading of resistance of agriculturally important pathogens. Copyright

  4. Transgenic mice susceptible to poliovirus.

    OpenAIRE

    Koike, S; Taya, C; Kurata, T; Abe, S; Ise, I; Yonekawa, H; Nomoto, A

    1991-01-01

    Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic mice just as in tissues of humans. The transgenic mice are susceptible to all three poliovirus serotypes, and the mice inoculated with poliov...

  5. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  6. Characterizing reach-scale flow resistance in mountain streams using structure-from-motion surveys and computational fluid dynamics simulation

    Science.gov (United States)

    DiBiase, R.; Liu, X.; Chen, Y.

    2016-12-01

    Understanding flow hydraulics in mountain streams is important for assessing flooding hazard, and for quantifying sediment transport and bedrock incision in upland landscapes. In such settings, reach-scale flow resistance is sensitive to grain-scale roughness in channel bed sediment cover, which has traditionally been characterized by particle size distributions derived from time-consuming point counts performed in the field. However, developing a general framework for quantifying frictional relationships in mountain channels has proven a significant challenge. Here we combine millimeter-scale Structure-from-Motion (SfM) surveys of bed topography, traditional point counts of surface clast size and shape, and computational fluid dynamics (CFD) simulations in order to better evaluate the important scales of roughness for turbulent flow in mountain rivers. We focused our field surveys on gravel, cobble, and boulder bedded channels in Southern California and Central Pennsylvania spanning a wide range of grain size, sorting, and shape, with the goal of deriving empirical relationships between metrics of bed microtopography roughness and particle size and shape distributions. The resulting reach-scale topographic models were then used in large eddy simulation CFD experiments to quantify flow behavior and bed resistance. By analyzing bed microtopography using structure function analysis, we identified three scaling regimes that correspond to roughness length scales important for constraining the geometric complexity required for CFD simulations. Our preliminary results highlight the potential for rapid estimation of reach-scale microtopography using SfM methods that in addition provides a more direct measure of flow resistance than particle size statistics. Additionally, SfM methods enable a similarly straightforward assessment of vegetation and bedrock channel roughness, with broad applications in fluvial geomorphology.

  7. Several methods to detect the inheritance and resistance to the ...

    African Journals Online (AJOL)

    Majority of the transgenic plants had only a single copy of the inserted CryIA(c) gene. Leaf section bioassays showed that resistance against larvae of diamondback moth in CryIA(c) transgenic cabbage was significantly enhanced. The inheritance patterns of the transgene in T1 offspring of transgenic cabbage were ...

  8. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  9. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  10. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  11. Evidence for Field-Evolved Resistance of Striacosta albicosta (Lepidoptera: Noctuidae) to Cry1F Bacillus thuringiensis Protein and Transgenic Corn Hybrids in Ontario, Canada.

    Science.gov (United States)

    Smith, J L; Lepping, M D; Rule, D M; Farhan, Y; Schaafsma, A W

    2017-10-01

    Western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a pest of corn (Zea mays L.) that has recently expanded its range into Ontario, Canada. Control of S. albicosta damage to corn hybrids containing event TC1507-expressing Cry1F Bacillus thuringiensis protein alone or pyramided with event MON 89034 expressing Cry1A.105 and Cry2Ab2 Bt proteins was tested in 2011-2015 in Ontario in small- and large-scale field plots with natural infestation. In 2011, significantly lower incidence and severity of kernel damage was sustained by Cry1F × Cry1A.105 + Cry2Ab2 corn compared with a non-Bt near-isogenic hybrid. However, from 2012 to 2015, there was no difference in incidence or severity of damage comparing non-Bt hybrids with Cry1F hybrids alone or pyramided with Cry1A.105 and Cry2Ab2 planted as a pure stand or with an integrated refuge (95% Bt: 5% non-Bt seeds). In 2015, neonate larvae derived from Ontario field-collections were tested in concentration-response diet-overlay bioassays with lyophilized Cry1F protein at concentrations up to 75 µg cm-2. The concentrations at which mortality of 50% (LC50) of the collections occurred ranged from approximately 10 µg cm-2 (F0) to >28 µg cm-2 (F1) in a 7-d bioassay, indicating relative insensitivity to Cry1F. Results from field experiments, laboratory bioassays, and the history of exposure to Cry1F in corn show that S. albicosta in Ontario are not controlled by Cry1F-expressing corn hybrids and provide evidence for the conclusion that the evolution of resistance to Cry1F has occurred. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Gastroduodenal resistance and neural mechanisms involved in saline flow decrease elicited by acute blood volume expansion in anesthetized rats

    Directory of Open Access Journals (Sweden)

    Graça J.R.V.

    1997-01-01

    Full Text Available We have previously demonstrated that blood volume (BV expansion decreases saline flow through the gastroduodenal (GD segment in anesthetized rats (Xavier-Neto J, dos Santos AA & Rola FH (1990 Gut, 31: 1006-1010. The present study attempts to identify the site(s of resistance and neural mechanisms involved in this phenomenon. Male Wistar rats (N = 97, 200-300 g were surgically manipulated to create four gut circuits: GD, gastric, pyloric and duodenal. These circuits were perfused under barostatically controlled pressure (4 cmH2O. Steady-state changes in flow were taken to reflect modifications in circuit resistances during three periods of time: normovolemic control (20 min, expansion (10-15 min, and expanded (30 min. Perfusion flow rates did not change in normovolemic control animals over a period of 60 min. BV expansion (Ringer bicarbonate, 1 ml/min up to 5% body weight significantly (P<0.05 reduced perfusion flow in the GD (10.3 ± 0.5 to 7.6 ± 0.6 ml/min, pyloric (9.0 ± 0.6 to 5.6 ± 1.2 ml/min and duodenal (10.8 ± 0.4 to 9.0 ± 0.6 ml/min circuits, but not in the gastric circuit (11.9 ± 0.4 to 10.4 ± 0.6 ml/min. Prazosin (1 mg/kg and yohimbine (3 mg/kg prevented the expansion effect on the duodenal but not on the pyloric circuit. Bilateral cervical vagotomy prevented the expansion effect on the pylorus during the expansion but not during the expanded period and had no effect on the duodenum. Atropine (0.5 mg/kg, hexamethonium (10 mg/kg and propranolol (2 mg/kg were ineffective on both circuits. These results indicate that 1 BV expansion increases the GD resistance to liquid flow, 2 pylorus and duodenum are important sites of resistance, and 3 yohimbine and prazosin prevented the increase in duodenal resistance and vagotomy prevented it partially in the pylorus

  13. A Novel Identification Method of Thermal Resistances of Thermoelectric Modules Combining Electrical Characterization Under Constant Temperature and Heat Flow Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2016-11-01

    Full Text Available The efficiency of a Thermoelectric Module (TEM is not only influenced by the material properties, but also by the heat losses due to the internal and contact thermal resistances. In the literature, the material properties are mostly discussed, mainly to increase the well-known thermoelectric figure of merit ZT. Nevertheless, when a TEM is considered, the separate characterization of the materials of the p and n elements is not enough to have a suitable TEM electrical model and evaluate more precisely its efficiency. Only a few recent papers deal with thermal resistances and their influence on the TEM efficiency; mostly, the minimization of these resistances is recommended, without giving a way to determine their values. The aim of the present paper is to identify the internal and contact thermal resistances of a TEM by electrical characterization. Depending on the applications, the TEM can be used either under constant temperature gradient or constant heat flow conditions. The proposed identification approach is based on the theoretical electrical modeling of the TEM, in both conditions. It is simple to implement, because it is based only on open circuit test conditions. A single electrical measurement under both conditions (constant-temperature and constant-heat is needed. Based on the theoretical electrical models, one can identify the internal and thermal resistances.

  14. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    Science.gov (United States)

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  15. Migratory Bee Hive Transportation Contributes Insignificantly to Transgenic Pollen Movement Between Spatially Isolated Alfalfa Seed Fields.

    Science.gov (United States)

    Boyle, Natalie K; Kesoju, Sandya R; Greene, Stephanie L; Martin, Ruth C; Walsh, Douglas B

    2017-02-01

    Contracted commercial beekeeping operations provide an essential pollination service to many agricultural systems worldwide. Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially isolated alfalfa fields. Twelve honey bee (Apis mellifera L.) colonies were permitted to forage on transgenic alfalfa blossoms for 1 wk in Touchet, WA. The hives were then transported 112 km to caged conventional alfalfa plots following one and two nights of isolation (8 and 32 h, respectively) from the transgenic source. Alfalfa seed harvested from the conventional plots was assessed for the presence of the transgene using a new seedling germination assay. We found that 8 h of isolation from a transgenic alfalfa source virtually eliminated the incidence of cross-pollination between the two varieties.

  16. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  17. Coronary physiological assessment combining fractional flow reserve and index of microcirculatory resistance in patients undergoing elective percutaneous coronary intervention with grey zone fractional flow reserve.

    Science.gov (United States)

    Niida, Takayuki; Murai, Tadashi; Yonetsu, Taishi; Kanaji, Yoshihisa; Usui, Eisuke; Matsuda, Junji; Hoshino, Masahiro; Araki, Makoto; Yamaguchi, Masao; Hada, Masahiro; Ichijyo, Sadamitsu; Hamaya, Rikuta; Kanno, Yoshinori; Isobe, Mitsuaki; Kakuta, Tsunekazu

    2018-03-08

    The aim of this study is to investigate the association between fractional flow reserve (FFR) values and change in coronary physiological indices after elective percutaneous coronary intervention (PCI). Decision making for revascularization when FFR is 0.75-0.80 is controversial. A retrospective analysis was performed of 296 patients with stable angina pectoris who underwent physiological examinations before and after PCI. To investigate the differences of coronary flow improvement between territories with low-FFR (zone FFR (0.75-0.80), serial changes in physiological indices including mean transit time (Tmn), coronary flow reserve (CFR), and index of microcirculatory resistance (IMR) were compared between these two groups. Compared to low-FFR territories, grey-zone FFR territories showed significantly lower prevalence of Tmn shortening, CFR improvement, and decrease in IMR (Tmn shorting, 63.9% vs. 87.0%, P 51.3% vs. 63.3%, P = .040) and lower extent of their absolute changes (Tmn shorting, 0.06 (-0.03 to 0.16) vs. 0.22 (0.07-0.45), P zone FFR. Physiological assessment combining FFR and IMR may help identify patients who may benefit by PCI, particularly those in the grey zone. © 2018 Wiley Periodicals, Inc.

  18. Toxicity assessment of transgenic papaya ringspot virus of 823-2210 line papaya fruits.

    Science.gov (United States)

    Lin, Hsin-Tang; Yen, Gow-Chin; Huang, Ting-Tzu; Chan, Lit-Fu; Cheng, Ying-Huey; Wu, Jhaol-Huei; Yeh, Shyi-Dong; Wang, Sheng-Yang; Liao, Jiunn-Wang

    2013-02-20

    The transgenic papaya is a valuable strategy for creating plants resistant to papaya ringspot virus (PRSV) infection and increasing production. This study was further performed to evaluate the comparative toxicity effects of the newly developed transgenic line of the fruits of two backcross transgenic papaya lines (2210 and 823) and one hybrid line (823-2210) and compare to their parent non-transgenic (TN-2) counterparts. The stability analysis of coat protein (CP) of PRSV was investigated using the digestion stability assays in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and bile salts to detect the CP fragments. Results revealed that the CP fragments were rapidly hydrolyzed in SGF and were undetectable in organs and gastrointestinal contents in rats. For the genotoxicity, three in vitro assays were conducted and exhibited that non-transgenic and backcross transgenic papaya fruits were negative. Moreover, a repeated animal feeding study was conducted by feeding 2 g/kg of body weight (bw) of non-transgenic and backcross transgenic papaya fruits for 28 days in rats. There were no biological or toxicological significances between non-transgenic and backcross transgenic papaya fruits in rats. The results demonstrated that the backcross transgenic papaya fruit can be recognized as an equivalent substitution for traditional papaya in food safety.

  19. Chromatin organisation of transgenes in Dictyostelium.

    Science.gov (United States)

    Windhof, I M; Dubin, M J; Nellen, W

    2013-07-01

    The introduction of transgenes in Dictyostelium discoideum typically results in the integration of the transformation vector into the genome at one or a few insertion sites as tandem arrays of approximately 100 copies. Exceptions are extrachromosomal vectors, which do not integrate into chromosomes, and vectors containing resistance markers such as blasticidin, which integrate as single copies at one or a few sites. Here we report that low copy number vector inserts display typical euchromatic features while high copy number insertions are enriched for modifications associate with heterochromatin. Interestingly, high copy number insertions also colocalise with heterochromatin, are enriched for the centromeric histone CenH3 and display centromere-like behaviour during mitosis. We also found that the chromatin organisation on extrachromosmal transgenes is different from those integrated into the chromosomes.

  20. Effects of bed-load movement on flow resistance over bed forms

    Indian Academy of Sciences (India)

    Tehran, Iran. 2Department of Irrigation and Reclamation Engineering, Soil and Water Faculty,. University of Tehran, Tehran, Iran ... Steady flow of clear as against sediment-laden water with different flow depths and velocities were studied in the ..... McGraw-Hill Series In: Water Resource and Envi- ronmental Engineering.

  1. Transgenics in crops

    Science.gov (United States)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  2. Comparative study of transgenic and non-transgenic maize (Zea mays) flours commercialized in Brazil, focussing on proteomic analyses.

    Science.gov (United States)

    Vidal, Nádia; Barbosa, Herbert; Jacob, Silvana; Arruda, Marco

    2015-08-01

    Genetically modified foods are a major concern around the world due to the lack of information concerning their safety and health effects. This work evaluates differences, at the proteomic level, between two types of crop samples: transgenic (MON810 event with the Cry1Ab gene, which confers resistance to insects) and non-transgenic maize flour commercialized in Brazil. The 2-D DIGE technique revealed 99 differentially expressed spots, which were collected in 2-D PAGE gels and identified via mass spectrometry (nESI-QTOF MS/MS). The abundance of protein differences between the transgenic and non-transgenic samples could arise from genetic modification or as a result of an environmental influence pertaining to the commercial sample. The major functional category of proteins identified was related to disease/defense and, although differences were observed between samples, no toxins or allergenic proteins were found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison between volatile emissions from transgenic apples and from two representative classically bred apple cultivars.

    Science.gov (United States)

    Vogler, Ute; Rott, Anja S; Gessler, Cesare; Dorn, Silvia

    2010-02-01

    While most risk assessments contrast a transgenic resistant to its isogenic line, an additional comparison between the transgenic line and a classically bred cultivar with the same resistance gene would be highly desirable. Our approach was to compare headspace volatiles of transgenic scab resistant apple plants with two representative cultivars (the isogenic 'Gala' and the scab resistance gene-containing 'Florina'). As modifications in volatile profiles have been shown to alter plant relationships with non-target insects, we analysed headspace volatiles from apple plants subjected to different infection types by gas chromatography-mass spectrometry. Marked differences were found between healthy and leafminer (Phyllonorycter blancardella) infested genotypes, where emissions between the transgenic scab resistant line and the two cultivars differed quantitatively in four terpenes and an aromatic compound. However, these modified odour emissions were in the range of variability of the emissions recorded for the two standard cultivars that proved to be crucial references.

  4. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  5. Allergenicity assessment of the Papaya ringspot virus coat protein expressed in transgenic Rainbow papaya

    Science.gov (United States)

    The virus-resistant, transgenic commercial papaya cultivars Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland US and Canada since their release to planters in Hawaii in 1998. These cultivars are derived from transgenic papaya line 55-1 and carry ...

  6. Detection of probable marker-free transgene-positive rice plants ...

    Indian Academy of Sciences (India)

    Detection of probable marker-free transgene-positive rice plants resistant to rice tungro disease from backcross progenies of transgenic. Pusa Basmati 1. SOMNATH ROY1, 3∗, AMRITA BANERJEE2, 4, JAYANTA TARAFDAR2 and BIJOY K. SENAPATI1. 1Department of Plant Breeding, and 2Department of Plant Pathology, ...

  7. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Science.gov (United States)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  8. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard × Brassica napus (oilseed rape hybrid populations

    Directory of Open Access Journals (Sweden)

    Warwick Suzanne I

    2009-10-01

    Full Text Available Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed × Brassica napus (crop transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003 and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems, there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001, although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a

  9. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    Science.gov (United States)

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes. Copyright © 2014 Elsevier B.V. All rights

  10. A numerical study on the flow and performance characteristics of a piezoelectric micropump with electromagnetic resistance for electrically conducting fluids

    International Nuclear Information System (INIS)

    An, Yong Jun; Choi, Chung Ryul; Kim, Chang Nyung

    2008-01-01

    A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD (MagnetoHydroDynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS (Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studied by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study

  11. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  12. Characterisation of tospovirus resistance in transgenic plants

    NARCIS (Netherlands)

    Prins, M.

    1997-01-01

    Over the past two decades tomato spotted wilt virus (TSWV) has become increasingly important as a pathogen in many crops. This can be attributed to intensified world trade and concomitant spread of one of the most important vectors of the virus, the thrips Frankliniella occidentalis.

  13. Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2011-01-01

    Full Text Available Abstract Background An effective method for obtaining resistant transgenic plants is to induce RNA silencing by expressing virus-derived dsRNA in plants and this method has been successfully implemented for the generation of different plant lines resistant to many plant viruses. Results Inverted repeats of the partial Tobacco mosaic virus (TMV movement protein (MP gene and the partial Cucumber mosaic virus (CMV replication protein (Rep gene were introduced into the plant expression vector and the recombinant plasmids were transformed into Agrobacterium tumefaciens. Agrobacterium-mediated transformation was carried out and three transgenic tobacco lines (MP16-17-3, MP16-17-29 and MP16-17-58 immune to TMV infection and three transgenic tobacco lines (Rep15-1-1, Rep15-1-7 and Rep15-1-32 immune to CMV infection were obtained. Virus inoculation assays showed that the resistance of these transgenic plants could inherit and keep stable in T4 progeny. The low temperature (15℃ did not influence the resistance of transgenic plants. There was no significant correlation between the resistance and the copy number of the transgene. CMV infection could not break the resistance to TMV in the transgenic tobacco plants expressing TMV hairpin MP RNA. Conclusions We have demonstrated that transgenic tobacco plants expressed partial TMV movement gene and partial CMV replicase gene in the form of an intermolecular intron-hairpin RNA exhibited complete resistance to TMV or CMV infection.

  14. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands.

    Science.gov (United States)

    Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu

    2013-05-01

    This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Obtaining transgenic rice plants and their progenies using Agrobacterium tumefaciens].

    Science.gov (United States)

    Yin, Z C; Yang, F; Xu, Y; Li, B J

    1998-12-01

    Rice (Oriza sativa L.) suspension cells of Taipei 309 were co-cultivated with A. tumefaciens stran EHA101 harbouring binary vector pBYT2 for 3 days in the presence of vir inducer, 100 mumol/L acetosyringone (AS). After 2 months of continuous selection, 17 stable hygromycin-resistant, GUS-positive calli were recovered from 364 suspension cell clusters co-cultivated with A. tumefaciens. 10 putative transgenic R0 plants obtained from 8 tansformed calli and their progenies were analyzed for the integration and expression of foreign genes. Southern blot analysis of R0 and R1 generations indicated that foreign genes had been stably integrated in the genome of transgenic rice and sexually transmitted. One of the transgenic lines showed 5 copies of T-DNA integration, while the others had only one copy. Histochemical staining observation and fluorometric assay of GUS activity in transgenic rice cells and plants showed ubiquitin promoter from maize was highly effective in driving the expression of gus reporter gene in transgenic rice cells. GUS protein and its activity were also investigated through ndPAGE-X-Gluc staining assay, and it was found that the GUS protein in transgenic rice cells was smaller in size than the standard GUS protein (Sigma Co. G0786) but as large as that from E.coli HB101 (pBI121). This study suggested that Agrobacterium-mediated transformation of plant is an efficient and reliable method to introduce foreign genes into rice.

  16. Potential transgenic routes to increase tree biomass.

    Science.gov (United States)

    Dubouzet, Joseph G; Strabala, Timothy J; Wagner, Armin

    2013-11-01

    Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Transcriptionally Silenced Transgenes in Maize Are Activated by Three Mutations Defective in Paramutation

    Science.gov (United States)

    McGinnis, Karen M.; Springer, Catherine; Lin, Yan; Carey, Charles C.; Chandler, Vicki

    2006-01-01

    Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase. In all the mutants, DNA methylation was reduced in the active transgenes relative to the silent transgenes at all of the CNG sites monitored within the transgene promoter. However, asymmetrical methylation persisted at one site within the reactivated transgene in the rmr1-1 mutant. With that one mutant, rmr1-1, the transgene was efficiently resilenced upon outcrossing to reintroduce the wild-type protein. In contrast, with the mop1-1 and rmr2-1 mutants, the transgene remained active in a subset of progeny even after the wild-type proteins were reintroduced by outcrossing. Interestingly, this immunity to silencing increased as the generations progressed, consistent with a heritable chromatin state being formed at the transgene in plants carrying the mop1-1 and rmr2-1 mutations that becomes more resistant to silencing in subsequent generations. PMID:16702420

  18. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.

    Science.gov (United States)

    Gayen, Dipak; Paul, Soumitra; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-07-15

    Transgenic rice expressing the Xa21 gene have enhanced resistant to most devastating bacterial blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). However, identification of unintended modifications, owing to the genetic modification, is an important aspect of transgenic crop safety assessment. In this study, the nutritional compositions of seeds from transgenic rice plants expressing the Xa21 gene were compared against non-transgenic rice seeds. In addition, to detect any changes in protein translation levels as a result of Xa21 gene expression, rice seed proteome analyses were also performed by two-dimensional gel electrophoresis. No significant differences were found in the nutritional compositions (proximate components, amino acids, minerals, vitamins and anti-nutrients) of th