WorldWideScience

Sample records for resistance stress tolerance

  1. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Nakai, Yusuke; Fujiwara, Sumire; Kubo, Yasuyuki; Sato, Masa H

    2013-03-01

    VOZ (vascular plant one zinc-finger protein) is a plant specific one-zinc finger type transcriptional activator, which is highly conserved through land plant evolution. We have previously shown that loss-of-function mutations in VOZ1 and VOZ2 showed increased cold and drought stress tolerances whereas decreased biotic stress resistance in Arabidopsis. Here, we demonstrate that transgenic plants overexpressing VOZ2 impairs freezing and drought stress tolerances but increases resistance to a fungal pathogen, Colletoricum higginsianum. Consistent with changes in the tolerance to biotic and abiotic stresses, the expression of marker genes for these stresses is significantly altered compared with those of the wild-type plant. These results indicate that a overexpression of VOZ2 confers biotic stress tolerance but impairs abiotic stress tolerances in Arabidopsis.

  2. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  3. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  4. Tolerance: the forgotten child of plant resistance

    Directory of Open Access Journals (Sweden)

    Robert K.D. Peterson

    2017-10-01

    Full Text Available Plant resistance against insect herbivory has greatly focused on antibiosis, whereby the plant has a deleterious effect on the herbivore, and antixenosis, whereby the plant is able to direct the herbivore away from it. Although these two types of resistance may reduce injury and yield loss, they can produce selection pressures on insect herbivores that lead to pest resistance. Tolerance, on the other hand, is a more sustainable pest management strategy because it involves only a plant response and therefore does not cause evolution of resistance in target pest populations. Despite its attractive attributes, tolerance has been poorly studied and understood. In this critical, interpretive review, we discuss tolerance to insect herbivory and the biological and socioeconomic factors that have limited its use in plant resistance and integrated pest management. First, tolerance is difficult to identify, and the mechanisms conferring it are poorly understood. Second, the genetics of tolerance are mostly unknown. Third, several obstacles hinder the establishment of high-throughput phenotyping methods for large-scale screening of tolerance. Fourth, tolerance has received little attention from entomologists because, for most, their primary interest, research training, and funding opportunities are in mechanisms which affect pest biology, not plant biology. Fifth, the efforts of plant resistance are directed at controlling pest populations rather than managing plant stress. We conclude this paper by discussing future research and development activities.

  5. Selection for resistance to white pine blister rust affects the abiotic stress tolerances of limber pine

    Science.gov (United States)

    Patrick J. Vogan; Anna W. Schoettle

    2015-01-01

    Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...

  6. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    Science.gov (United States)

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Dietary supplementation of yeast (Saccharomyces cerevisiae) improves growth, stress tolerance, and disease resistance in juvenile Nile tilapia (Oreochromis niloticus)

    DEFF Research Database (Denmark)

    Abass, David Attim; Obirikorang, Kwasi Adu; Campion, Benjamin Betey

    2018-01-01

    The yeast Saccharomyces cerevisiae is one of the commonest probiotics incorporated in aquafeeds. An 84-day feeding trial was conducted to evaluate the effects of varying dietary inclusions of S. cerevisiae, 0% (control), 3% (YF3), 5% (YF5), and 7% (YF7), on growth, stress tolerance, and disease r...

  8. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance.

    Science.gov (United States)

    Shen, Xinjie; Guo, Xinwei; Guo, Xiao; Zhao, Di; Zhao, Wei; Chen, Jingsheng; Li, Tianhong

    2017-03-01

    Plant R2R3-MYB transcription factors play crucial roles in stress responses. We previously isolated a R2R3-MYB homolog from sweet cherry cv. Hong Deng, designated PacMYBA (GenBank accession No. KF974774). To explore the role of PacMYBA in the plant stress response, we heterologously expressed PacMYBA in transgenic Arabidopsis thaliana plants. In a previous study, we demonstrated that PacMYBA is mainly localized to the nucleus and could be induced by abscisic acid (ABA). Analysis of the promoter sequence of PacMYBA revealed that it contains several stress-related cis-elements. QPCR results showed that PacMYBA is induced by salt, salicylic (SA), and jasmonic acid (JA) in sweet cherry leaves. Transgenic Arabidopsis plants heterologously expressing PacMYBA exhibited enhanced salt-tolerance and increased resistance to Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Overexpression of PacMYBA decreased the osmotic potential (OP), increased the free proline content, and increased the peroxidase content in transgenic Arabidopsis plants. Furthermore, overexpression of PacMYBA also affected the expression levels of salt stress- and pathogen defense-related genes in the transgenic plants. These results indicate that PacMYBA is a positive regulator of salt stress tolerance and pathogen resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    Science.gov (United States)

    MCGRANN, GRAHAM R D; STEED, ANDREW; BURT, CHRISTOPHER; GODDARD, RACHEL; LACHAUX, CLEA; BANSAL, ANURADHA; CORBITT, MARGARET; GORNIAK, KALINA; NICHOLSON, PAUL; BROWN, JAMES K M

    2015-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS. PMID:25040333

  11. Stress tolerant plants

    OpenAIRE

    Rubio, Vicente; Iniesto Sánchez, Elisa; Irigoyen Miguel, María Luisa

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  12. CASAR82A, a pathogen-induced pepper SAR8.2, exhibits an antifungal activity and its overexpression enhances disease resistance and stress tolerance.

    Science.gov (United States)

    Lee, Sung Chul; Hwang, Byung Kook

    2006-05-01

    Pepper SAR8.2 gene (CASAR82A) was previously reported to be locally or systemically induced in pepper plants by biotic and abiotic stresses. In this study, the physiological and molecular functions of the pepper SAR8.2 protein in the plant defense responses were investigated by generating Arabidopsis transgenic lines overexpressing the CASAR82A gene. The transgenic Arabidopsis plants grew faster than the wild-type plants, indicating that the CASAR82A gene was involved in plant development. The ectopic expression of CASAR82A in Arabidopsis was accompanied by the expression of the Arabidopsis pathogenesis-related (PR)-genes including AtPR-1, AtPR-4 and AtPR-5. CASAR82A overexpression enhanced the resistance against infections by Pseudomonas syringae pv. tomato, Fusarium oxysporum f.sp. matthiolae or Botrytis cinerea. The transgenic plants also exhibited increased NaCl and drought tolerance during all growth stages. Moreover, the methyl viologen test showed that the transgenic plants were tolerant to oxidative stress. The purified recombinant CASAR82A protein and crude protein extracts of the transgenic plants exhibited antifungal activity against some phytopathogenic fungi, indicating that the enhanced resistance of the transgenic plants to fungal pathogen infection may be due to the antifungal effect of SAR8.2 protein.

  13. Effects of carotenoid sources on growth performance, blood parameters, disease resistance and stress tolerance in black tiger shrimp (Penaeus monodon Fabricius

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Two feeding trial were conducted to determine the effects of various sources of carotenoid on growth performance, disease resistance, blood parameters, stress tolerance and pigmentation in juvenile black tiger shrimp (Penaeus monodon. Trial I was performed in small shrimp (1 g average body weight. The shrimp were fed with control diet without carotenoid (diet 1 while diets 2 to 6 contained 50 mg/kg astaxanthin (Lucanthin Pink®, 125 mg/kg β-carotene (Lucarotin®, 200 mg/kg β-carotene (Lucarotin®, 125 mg/kg Betatene® extracted from Dunaliella and 3% dried Spirulina respectively. There was an improvement in color in all groups of shrimp fed caroteniod supplemented diets, but no significant differences in weight gain or survival among the shrimps fed each test diet (p>0.05. Resistance to white spot syndrome virus (WSSV infection and stress tolerance (salinity stress, were not significantly different among treatments. Trial II was performed in juvenile shrimp (10 g average body weight fed test diets containing 100 ppm astaxanthin (Lucanthin pink®, 125 mg/kg β-carotene (Lucarotin®, 250 mg/kg β-carotene (Lucarotin®, 250 mg/kg Betatene® and 3% dried Spirulina compared with those fed control diet without carotenoid. At the end of 6 weeks feeding period, shrimp fed control diet as well as astaxanthin and dried Spirulina supplemented diets had higher levels of total hemocyte counts than those of all β-carotene supplemented diets feeding group. However, phenoloxidase activity and clearance of pathogenic vibrio from the hemolymphwere not significantly different among the treatments (p>0.05. Astaxanthin levels were highest in the shrimp fed all carotenoid-supplemented diets. In conclusion, a natural carotenoid i.e. dried Spirulina and carotenoid extracted from Dunaliella which have a lower production cost than analytical carotenoid showed beneficial effects on shrimp feed supplement.

  14. Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses

    Directory of Open Access Journals (Sweden)

    Liping Xing

    2017-11-01

    Full Text Available The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14, a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.

  15. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  16. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Xiaohui eLi

    2015-06-01

    Full Text Available NADPH oxidases (also known as respiratory burst oxidase homologues, Rbohs are the enzymes that catalyze the generation of reactive oxygen species (ROS in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing (VIGS-based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of each of other SlRbohs did not affect the resistance. The SlRbohB-silenced plants accumulated more ROS and attenuated expression of defense genes after infection of B. cinerea than the nonsilenced plants. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI. Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI and drought tolerance in tomato.

  17. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress.

    Science.gov (United States)

    Li, Xiaohui; Zhang, Huijuan; Tian, Limei; Huang, Lei; Liu, Shixia; Li, Dayong; Song, Fengming

    2015-01-01

    NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.

  18. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.

    Science.gov (United States)

    Liu, Bo; Hong, Yong-Bo; Zhang, Ya-Fen; Li, Xiao-Hui; Huang, Lei; Zhang, Hui-Juan; Li, Da-Yong; Song, Feng-Ming

    2014-10-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant responses to biotic and abiotic stresses; however, only a few of tomato WRKYs have been studied for their biological functions. In the present study, we identified a Botrytis cinerea-responsive WRKY gene SlDRW1 (Solanum lycopersicumdefense-related WRKY1) from tomato. SlDRW1 is a nucleus localized protein with transactivation activity in yeast. Expression of SlDRW1 was significantly induced by B. cinerea, leading to 10-13 folds of increase than that in the mock-inoculated plants but not by Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlDRW1 resulted in increased severity of disease caused by B. cinerea, but did not affect the phenotype of disease caused by Pst DC3000. In addition, silencing of SlDRW1 also resulted in decreased tolerance against oxidative stress but did not affect drought stress tolerance. Furthermore, silencing of SlDRW1 attenuated defense response such as expression of defense-related genes after infection by B. cinerea. Our results demonstrate that SlDRW1 is a positive regulator of defense response in tomato against B. cinerea and oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance.

    Science.gov (United States)

    Li, Xiaohui; Huang, Lei; Zhang, Yafen; Ouyang, Zhigang; Hong, Yongbo; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2014-10-28

    The SR/CAMTA proteins represent a small family of transcription activators that play important roles in plant responses to biotic and abiotic stresses. Seven SlSR/CAMTA genes were identified in tomato as tomato counterparts of SR/CAMTA; however, the involvement of SlSRs/CAMTAs in biotic and abiotic stress responses is not clear. In this study, we performed functional analysis of the SlSR/CAMTA family for their possible functions in defense response against pathogens and tolerance to drought stress. Expression of SlSRs was induced with distinct patterns by Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Virus-induced gene silencing (VIGS)-based knockdown of either SlSR1 or SlSR3L in tomato resulted in enhanced resistance to B. cinerea and Pst DC3000 and led to constitutive accumulation of H2O2, elevated expression of defense genes, marker genes for pathogen-associated molecular pattern-triggered immunity, and regulatory genes involved in the salicylic acid- and ethylene-mediated signaling pathways. Furthermore, the expression of SlSR1L and SlSR2L in detached leaves and whole plants was significantly induced by drought stress. Silencing of SlSR1L led to decreased drought stress tolerance, accelerated water loss in leaves, reduced root biomass and attenuated expression of drought stress responsive genes in tomato. The SlSR1 and SlSR3L proteins were localized in the nucleus of plant cells when transiently expressed in Nicotiana benthamiana and had transcriptional activation activity in yeast. VIGS-based functional analyses demonstrate that both SlSR1 and SlSR3L in the tomato SlSR/CAMTA family are negative regulators of defense response against B. cinerea and Pst DC3000 while SlSR1L is a positive regulator of drought stress tolerance in tomato.

  20. Ayurvedic Amalaki Rasayana promotes improved stress tolerance ...

    Indian Academy of Sciences (India)

    2016-10-15

    Oct 15, 2016 ... [Dwivedi V and Lakhotia SC 2016 Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-aging effects in Drosophila melanogaster. J. Biosci. 1. Introduction. The ancient Ayurvedic literature as available today does not elaborate the bases and mechanisms of actions of.

  1. Stress tolerant virulent strains of Cronobacter sakazakii from food

    Directory of Open Access Journals (Sweden)

    Md Fakruddin

    2014-01-01

    Full Text Available BACKGROUND: Cronobacter sakazakii is considered as an emerging foodborne pathogen. The aim of this study was to isolate and characterize virulent strains of Cronobacter sakazakii from food samples of Bangladesh. RESULT: Six (6 Cronobacter sakazakii was isolated and identified from 54 food samples on the basis of biochemical characteristics, sugar fermentation, SDS-PAGE of whole cell protein, plasmid profile and PCR of Cronobacter spp. specific genes (esak, gluA, zpx, ompA, ERIC, BOX-AIR and sequencing. These strains were found to have moderately high antibiotic resistance against common antibiotics and some are ESBL producer. Most of the C. sakazakii isolates were capable of producing biofilm (strong biofilm producer, extracellular protease and siderophores, curli expression, haemolysin, haemagglutinin, mannose resistant haemagglutinin, had high cell surface hydrophobicity, significant resistance to human serum, can tolerate high concentration of salt, bile and DNase production. Most of them produced enterotoxins of different molecular weight. The isolates pose significant serological cross-reactivity with other gram negative pathogens such as serotypes of Salmonella spp., Shigella boydii, Shigella sonnei, Shigella flexneri and Vibrio cholerae. They had significant tolerance to high temperature, low pH, dryness and osmotic stress. CONCLUSION: Special attention should be given in ensuring hygiene in production and post-processing to prevent contamination of food with such stress-tolerant virulent Cronobacter sakazakii.

  2. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts.

    Science.gov (United States)

    Nadai, Chiara; Treu, Laura; Campanaro, Stefano; Giacomini, Alessio; Corich, Viviana

    2016-01-01

    From a technological point of view, yeast resistance to sulfite is of great interest and represents an important technological character for winemaking. Several mechanisms are involved, and strain-dependent strategies to obtain SO2 resistance can deeply influence wine quality, although this choice is less relevant in determining the technological performance of the strain during fermentation. In this study, to better understand the strain-specific mechanisms of resistance, 11 Saccharomyces cerevisiae strains, whose genomes have been previously sequenced, were selected. Their attitude towards sulfites, in terms of resistance and production, was evaluated, and RNA-sequencing of four selected strains was performed during fermentation process in synthetic grape must in the presence of SO2. Results demonstrated that at molecular level, the physical effect of SO2 triggered multiple stress responses in the cell and high tolerance to general enological stressing condition increased SO2 resistance. Adaptation mechanism due to high basal gene expression level rather than specific gene induction in the presence of sulfite seemed to be responsible in modulating strain resistance. This mechanism involved higher basal gene expression level of specific cell wall proteins, enzymes for lipid biosynthesis, and enzymes directly involved in SO2 assimilation pathway and efflux.

  3. Genetic diversity analysis of stress tolerant rice ( Oryza sativa L ...

    African Journals Online (AJOL)

    Genetic diversity analysis of stress tolerant rice (Oryza sativa L.) A S M Faridul Islam, M Raihan Ali, Glenn B Gregorio, M Rafiqul Islam. Abstract. Fourteen rice genotypes, composed of six salt tolerant, three submergence tolerant, two drought tolerant genotypes along with three high yielding genotypes, released from ...

  4. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  5. Safety aspects of genetically modified crops with abiotic stress tolerance

    NARCIS (Netherlands)

    Liang, C.; Prins, T.W.; Wiel, van de C.C.M.; Kok, E.J.

    2014-01-01

    Abiotic stress, such as drought, salinity, and temperature extremes, significantly reduce crop yields. Hence, development of abiotic stress-tolerant crops by modern biotechnology may contribute to global food security. Prior to introducing genetically modified crops with abiotic stress tolerance to

  6. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert

    2017-07-27

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under environmental stress conditions.

  7. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  8. Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses.

    Science.gov (United States)

    Gadea, Rebeca; Fernández Fuentes, Miguel Ángel; Pérez Pulido, Rubén; Gálvez, Antonio; Ortega, Elena

    2016-07-01

    The aim of the present study was to analyze the effects of step-wise exposure of biocide-sensitive bacteria from organic foods to phenolic biocides triclosan (TC) and hexachlorophene [2,2'-methylenebis(3,4,6-trichlorophenol)] (CF). The analysis included changes in the tolerance to the biocide itself, the tolerance to other biocides, and cross-resistance to clinically important antibiotics. The involvement of efflux mechanisms was also studied as well as the possible implication of modifications in cytoplasmic membrane fluidity in the resistance mechanisms. The influence of biocide tolerance on growth capacity of the adapted strains and on subsequent resistance to other physical stresses has also been analyzed. Repeated exposure of bacteria from organic foods to phenolic biocides resulted in most cases in partially increased tolerance to the same biocide, to dissimilar biocides and other antimicrobial compounds. Nine TC-adapted strains and six CF-adapted strains were able to develop high levels of biocide tolerance, and these were stable in the absence of biocide selective pressure. Most strains adapted to TC and one CF-adapted strain showed significantly higher anisotropy values than their corresponding wildtype strains, suggesting that changes in membrane fluidity could be involved in biocide adaptation. Exposure to gradually increasing concentrations of CF induced a decrease in heat tolerance. Biocide adaptation had no significant effects of gastric acid or bile resistance, suggesting that biocide adaptation should not influence survival in the gastrointestinal tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Selection on resilience improves disease resistance and tolerance to infections

    NARCIS (Netherlands)

    Mulder, H.A.; Rashidi, H.

    2017-01-01

    Response to infection in animals has 2 main mechanisms: resistance (ability to control pathogen burden) and tolerance (ability to maintain performance given the pathogen burden). Selection on disease resistance and tolerance to infections seems a promising avenue to increase productivity of animals

  10. Osmotic stress tolerance in semi-terrestrial tardigrades

    DEFF Research Database (Denmark)

    Heidemann, Nanna W T; Smith, Daniel K.; Hygum, Thomas L.

    2016-01-01

    Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of hig...... that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress.......Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high...

  11. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    Science.gov (United States)

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Piriformospora indica: Potential and Significance in Plant Stress Tolerance

    Science.gov (United States)

    Gill, Sarvajeet S.; Gill, Ritu; Trivedi, Dipesh K.; Anjum, Naser A.; Sharma, Krishna K.; Ansari, Mohammed W.; Ansari, Abid A.; Johri, Atul K.; Prasad, Ram; Pereira, Eduarda; Varma, Ajit; Tuteja, Narendra

    2016-01-01

    Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production. PMID:27047458

  13. Stress tolerant crops from nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Saunders, R.M.

    1983-01-01

    Notes are given on the nutritional quality and uses of: pods of Geoffroea decorticans, a species tolerant of saline and limed soils and saline water; seeds of Olneya tesota which nodulates readily and fixes nitrogen and photosynthesizes at low water potential; and pods of Prosopis chilensis and P. tamarugo which tolerate long periods without rain. 3 references.

  14. Polyamines Function in Stress Tolerance: From Synthesis to Regulation

    Directory of Open Access Journals (Sweden)

    Ji-Hong eLiu

    2015-10-01

    Full Text Available Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine,spermidine and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested.

  15. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hossain

    2015-06-01

    Full Text Available Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS (hydrogen peroxide, H2O2; superoxide, O2ˉ˙; hydroxyl radical, OH. and singlet oxygen, 1O2 is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.

  16. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging.

    Science.gov (United States)

    Hossain, Mohammad A; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J; Fujita, Masayuki; Tran, Lam-Son P

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, [Formula: see text]; hydroxyl radical, OH(⋅) and singlet oxygen, (1)O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.

  17. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    Full Text Available Alfalfa (Medicago sativa L., a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye under the control of an oxidative stress-inducible peroxidase (SWPA2 promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants, three lines (SOR2, SOR3, and SOR8 selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  18. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  19. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  20. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  1. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  2. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...

  3. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    yogendra

    2015-02-23

    Feb 23, 2015 ... growth and induction of stress related enzymes in Sahbhagi (drought tolerance) and IR-64 (drought sensitive) cultivars of rice .... Leaf rolling in drought stress was determined based on rice standard evaluation system developed by International Rice Research Institute (IRRI). A visual score was taken of the ...

  4. The molecular pathways underlying host resistance and tolerance to pathogens.

    Science.gov (United States)

    Glass, Elizabeth J

    2012-01-01

    Breeding livestock that are better able to withstand the onslaught of endemic- and exotic pathogens is high on the wish list of breeders and farmers world-wide. However, the defense systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR) such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance, yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host's ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  5. The molecular pathways underlying host resistance and tolerance to pathogens

    Directory of Open Access Journals (Sweden)

    Elizabeth Janet Glass

    2012-12-01

    Full Text Available Breeding livestock that are better able to withstand the onslaught of endemic and exotic pathogens is high on the wish list of breeders and farmers world-wide. However the defence systems in both pathogens and their hosts are complex and the degree of genetic variation in resistance and tolerance will depend on the trade-offs that they impose on host fitness as well as their life-histories. The genes and pathways underpinning resistance and tolerance traits may be distinct or intertwined as the outcome of any infection is a result of a balance between collateral damage of host tissues and control of the invading pathogen. Genes and molecular pathways associated with resistance are mainly expressed in the mucosal tract and the innate immune system and control the very early events following pathogen invasion. Resistance genes encode receptors involved in uptake of pathogens, as well as pattern recognition receptors (PRR such as the toll-like receptor family as well as molecules involved in strong and rapid inflammatory responses which lead to rapid pathogen clearance yet do not lead to immunopathology. In contrast tolerance genes and pathways play a role in reducing immunopathology or enhancing the host’s ability to protect against pathogen associated toxins. Candidate tolerance genes may include cytosolic PRRs and unidentified sensors of pathogen growth, perturbation of host metabolism and intrinsic danger or damage associated molecules. In addition, genes controlling regulatory pathways, tissue repair and resolution are also tolerance candidates. The identities of distinct genetic loci for resistance and tolerance to infectious pathogens in livestock species remain to be determined. A better understanding of the mechanisms involved and phenotypes associated with resistance and tolerance should ultimately help to improve livestock health and welfare.

  6. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  7. Differential accumulation of reactive oxygen and nitrogen species in maize lines with contrasting drought tolerance and aflatoxin resistance

    Science.gov (United States)

    Abiotic stresses such as drought stress can exacerbate aflatoxin contamination of maize kernels. Previous studies showed that maize lines resistance to aflatoxin contamination tend to exhibit enhanced drought tolerance and accumulate lower levels of reactive oxygen species (ROS) and nitrogen species...

  8. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  9. Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives.

    Science.gov (United States)

    Parankusam, Santisree; Adimulam, Srivani S; Bhatnagar-Mathur, Pooja; Sharma, Kiran K

    2017-01-01

    High temperature is one of the biggest abiotic stress challenges for agriculture. While, Nitric oxide (NO) is gaining increasing attention from plant science community due to its involvement in resistance to various plant stress conditions, its implications on heat stress tolerance is still unclear. Several lines of evidence indicate NO as a key signaling molecule in mediating various plant responses such as photosynthesis, oxidative defense, osmolyte accumulation, gene expression, and protein modifications under heat stress. Furthermore, the interactions of NO with other signaling molecules and phytohormones to attain heat tolerance have also been building up in recent years. Nevertheless, deep insights into the functional intermediaries or signal transduction components associated with NO-mediated heat stress signaling are imperative to uncover their involvement in plant hormone induced feed-back regulations, ROS/NO balance, and stress induced gene transcription. Although, progress is underway, much work remains to define the functional relevance of this molecule in plant heat tolerance. This review provides an overview on current status and discuss knowledge gaps in exploiting NO, thereby enhancing our understanding of the role of NO in plant heat tolerance.

  10. Validation of molecular markers associated with boron tolerance, powdery mildew resistance and salinity tolerance in field peas

    Directory of Open Access Journals (Sweden)

    Muhammad eJavid

    2015-10-01

    Full Text Available Field pea (Pisum sativum L. is an important grain legume consumed both as human food and animal feed. However, productivity in low rainfall regions can be significantly reduced by inferior soils containing high levels of boron and/or salinity. Furthermore, powdery mildew (Erysiphe pisi disease also causes significant yield loss in warmer regions. Breeding for tolerance to these abiotic and biotic stresses are major aims for pea breeding programs and the application of molecular markers for these traits could greatly assist in developing improved germplasm at a faster rate. The current study reports the evaluation of a near diagnostic marker, PsMlo, associated with powdery mildew (PM resistance and boron (B tolerance as well as linked markers associated with salinity tolerance across a diverse set of pea germplasm. The PsMlo1 marker predicted the PM and B phenotypic responses with high levels of accuracy (>80% across a wide range of field pea genotypes, hence offers the potential to be widely adapted in pea breeding programs. In contrast, linked markers for salinity tolerance were population specific, therefore, application of these markers would be suitable to relevant crosses within the program. Our results also suggest that there are possible new sources of salt tolerance present in field pea germplasm that could be further exploited.

  11. Microorganisms having enhanced tolerance to inhibitors and stress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  12. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Vertebrate defense against parasites: Interactions between avoidance, resistance, and tolerance.

    Science.gov (United States)

    Klemme, Ines; Karvonen, Anssi

    2017-01-01

    Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade-offs with other life-history traits. Trade-offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host-parasite system, the trematode eye-fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta ) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species-specific variation in resistance and tolerance and population-specific variation in resistance. Further, we demonstrate evidence for a trade-off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host-parasite interactions.

  14. Sunflower breeding for resistance to abiotic stresses

    OpenAIRE

    Škorić D.

    2009-01-01

    Due to a specific structure of its main organs (root, stem, leaves, head), sunflower can be successfully grown on marginal soils and in semi-arid conditions and it is more resistant to abiotic stresses than other field crops. In sunflower breeding for resistance to abiotic stresses, the greatest progress has been made in selection for drought resistance. Breeders use over 30 different parameters in sunflower screening for drought resistance, with physiological ones being the predominant type....

  15. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance.

    Science.gov (United States)

    Gagnaire, Valérie; Jardin, Julien; Rabah, Houem; Briard-Bion, Valérie; Jan, Gwénaël

    2015-01-01

    Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i) chemically defined or ii) aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy.

  17. Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Valérie Gagnaire

    Full Text Available Dairy propionibacteria are actinomycetales found in various fermented food products. The main species, Propionibacterium freudenreichii, is generally recognized as safe and used both as probiotic and as cheese starter. Its probiotic efficacy tightly depends on its tolerance towards digestive stresses, which can be largely modulated by the ingested delivery vehicle. Indeed, tolerance of this bacterium is enhanced when it is consumed within a fermented dairy product, compared to a dried probiotic preparation. We investigated both stress tolerance and protein neosynthesis upon growth in i chemically defined or ii aqueous phase of Emmental cheeses. Although the same final population level was reached in both media, a slower growth and an enhanced survival of CIRM BIA 1 strain of P. freudenreichii subsp. shermanii was observed in Emmental juice, compared to chemically defined medium. This was accompanied by differences in substrates used and products released as well as overexpression of various early stress adaptation proteins in Emmental juice, compared to chemically defined medium, implied in protein folding, in aspartate catabolism, in biosynthesis of valine, leucine and isoleucine, in pyruvate metabolism in citrate cycle, in the propionate metabolism, as well as in oxidoreductases. All these changes led to a higher digestive stress tolerance after growth in Emmental juice. Mechanisms of stress adaptation were induced in this environment, in accordance with enhanced survival. This opens perspectives for the use of hard and semi-hard cheeses as delivery vehicle for probiotics with enhanced efficacy.

  18. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  19. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... antimicrobial activity against a broad spectrum of bacteria, including food spoilage and pathogenic organisms such ... Key words: Baobab seeds, maari, fermentation, lactic acid bacteria, acid resistance, bile tolerance, antimicrobial .... cells was estimated by microscope using a counting chamber. (Neubauer ...

  20. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  1. In vitro screening of potato genotypes for osmotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Gelmesa Dandena

    2017-02-01

    Full Text Available Potato (Solanum tuberosum L. is a cool season crop which is susceptible to both drought and heat stresses. Lack of suitable varieties of the crop adapted to drought-prone areas of the lowland tropics deprives farmers living in such areas the opportunity to produce and use the crop as a source of food and income. As a step towards developing such varieties, the present research was conducted to evaluate different potato genotypes for osmotic stress tolerance under in vitro conditions and identify drought tolerant genotypes for future field evaluation. The experiment was carried out at the Leibniz University of Hannover, Germany, by inducing osmotic stress using sorbitol at two concentrations (0.1 and 0.2 M in the culture medium. A total of 43 genotypes collected from different sources (27 advanced clones from CIP, nine improved varieties, and seven farmers’ cultivars were used in a completely randomized design with four replications in two rounds. Data were collected on root and shoot growth. The results revealed that the main effects of genotype, sorbitol treatment, and their interactions significantly (P < 0.01 influenced root and shoot growthrelated traits. Under osmotic stress, all the measured root and shoot growth traits were significantly correlated. The dendrogram obtained from the unweighted pair group method with arithmetic mean allowed grouping of the genotypes into tolerant, moderately tolerant, and susceptible ones to a sorbitol concentration of 0.2 M in the culture medium. Five advanced clones (CIP304350.100, CIP304405.47, CIP392745.7, CIP388676.1, and CIP388615.22 produced shoots and rooted earlier than all other genotypes, with higher root numbers, root length, shoot and root mass under osmotic stress conditions induced by sorbitol. Some of these genotypes had been previously identified as drought-tolerant under field conditions, suggesting the capacity of the in vitro evaluation method to predict drought stress tolerant

  2. Identification of alcohol stress tolerance genes ofSynechocystissp. PCC 6803 using adaptive laboratory evolution.

    Science.gov (United States)

    Matsusako, Takuya; Toya, Yoshihiro; Yoshikawa, Katsunori; Shimizu, Hiroshi

    2017-01-01

    Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-term passage culture experiments using medium containing 2 g/L isobutanol. These evolved strains grew on medium containing 5 g/L isobutanol on which the parental strain could not grow. Mutation analysis of the evolved strains revealed that they acquired resistance ability due to combinatorial malfunctions of slr1044 ( mcpA ) and slr0369 ( envD ), or slr0322 ( hik43 ) and envD . The tolerant strains demonstrated stress resistance against isobutanol as well as a wide variety of alcohols such as ethanol, n -butanol, and isopentanol. As a result of introducing an ethanol-producing pathway into the evolved strain, its productivity successfully increased to 142% of the control strain. Novel mutations were identified that improved the stress tolerance ability of various alcohols in Synechocystis sp. PCC 6803.

  3. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two...

  4. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.) YS Gusain, US Singh, AK Sharma. Abstract. In the present study, plant growth promoting rhizobacterial (PGPR) strains Pseudomonas fluorescence strain P2, Pseudomonas jessenii R62, Pseudomonas ...

  5. Characterization and evaluation of stress and heavy metal tolerance ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Full Length Research Paper. Characterization and evaluation of stress and heavy metal tolerance of some predominant Gram negative halotolerant bacteria from mangrove soils of. Bhitarkanika, Orissa, India. Mishra R. R.1, Dangar T. K.2, Rath B1 and Thatoi H.N1*. 1P.G. Department of Biotechnology, ...

  6. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Ugochukwu Anieto

    2015-06-23

    Jun 23, 2015 ... Full Length Research Paper. Investigation of stress tolerance of endoglucanases of the cellulosomes of Clostridium cellulolyticum to ethanol. Ugochukwu Anieto. Biological Sciences Department, University of North Texas, Denton Texas 76203, USA. Received 16 February, 2015; Accepted 17 June, 2015.

  7. Screening of drought oxidative stress tolerance in Serbian ...

    African Journals Online (AJOL)

    This study was designed to examine and compare antioxidant and free-radical scavenging activities of leaves of six different melliferous plant species (Populus alba, Robinia pseudoacacia, Sophora japonica, Euodia hupehensis, Tilia sp., Fraxinus sp.) from Serbia in order to evaluate their drought oxidative stress tolerance.

  8. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  9. Genetically modified plants for salinity stress tolerance (abstract)

    International Nuclear Information System (INIS)

    Sopory, S.K.; Singia-Pareek, S.I.; Kumar, S.; Rajgopal, D.; Aggarwal, P.; Kumar, D.; Reddy, K.M.

    2005-01-01

    Several recent reports have indicated that the area under salinity is on the increase and currently very few genotypes of important crop plants are available for cultivation under these conditions. In this regard, identification of novel stress responsive genes and transgenic approach offers an important strategy to develop salt tolerant plants. Using an efficient PCR-based cDNA subtraction method a large number of genes upregulated under salinity and dehydration stress have been identified also in rice and Pennisetum. Functional analysis of some of these genes is being done using transgenic approach. Earlier, we reported on the role of one of the stress regulated genes, glyoxalse I in conferring salinity tolerance. We now show that by manipulating the expression of both the genes of the glyoxalse pathway, glyoxalse I and II together, the ability of the double transgenic plants to tolerate salinity stress is greatly enhanced as compared to the single transgenic plants harbouring either the glyoxalse I or glyoxalse II. The cDNA for glyoxalse II was cloned from rice and mobilized into pCAMBIA vector having hptII gene as the selection marker. The seedlings of the T1 generation transgenic plants survived better under high salinity compared to the wild type plants; the double transgenics had higher limits of tolerance as compared to the lines transformed with single gene. A similar trend was seen even when plants were grown in pots under glass house conditions and raised to maturity under the continued presence of NaCl. In this, the transgenic plants were able to grow, flower and set seeds. The overexpression of glyoxalse pathway was also found to confer stress tolerance in rice. We have also isolated a gene encoding vacuolar sodium/proton antiporter from Pennisetum and over expressed in Brassica juncea and rice. The transgenic plants were able to tolerate salinity stress. Our work along with many others' indicates the potential of transgenic technology in developing

  10. Response of Microcystis to copper stress - Do phenotypes of Microcystis make a difference in stress tolerance?

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhongxing [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Gan Nanqin [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Huang Qun [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China); Song Lirong [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 (China)]. E-mail: lrsong@ihb.ac.cn

    2007-05-15

    To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa - unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mg l{sup -1} copper sulfate treatment for 24 h. Upon exposure to 0.25 mg l{sup -1} copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F {sub v}/F {sub m}, ETR{sub max}, and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis. - Stress-resistance ability in Microcystis is influenced by its phenotypes.

  11. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Stress-tolerant P-solubilizing microorganisms.

    Science.gov (United States)

    Vassilev, N; Eichler-Löbermann, B; Vassileva, M

    2012-08-01

    Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors.

  13. Effectiveness analysis of resistance and tolerance to infection

    Directory of Open Access Journals (Sweden)

    Detilleux Johann C

    2011-03-01

    Full Text Available Abstract Background Tolerance and resistance provide animals with two distinct strategies to fight infectious pathogens and may exhibit different evolutionary dynamics. However, few studies have investigated these mechanisms in the case of animal diseases under commercial constraints. Methods The paper proposes a method to simultaneously describe (1 the dynamics of transmission of a contagious pathogen between animals, (2 the growth and death of the pathogen within infected hosts and (3 the effects on their performances. The effectiveness of increasing individual levels of tolerance and resistance is evaluated by the number of infected animals and the performance at the population level. Results The model is applied to a particular set of parameters and different combinations of values. Given these imputed values, it is shown that higher levels of individual tolerance should be more effective than increased levels of resistance in commercial populations. As a practical example, a method is proposed to measure levels of animal tolerance to bovine mastitis. Conclusions The model provides a general framework and some tools to maximize health and performances of a population under infection. Limits and assumptions of the model are clearly identified so it can be improved for different epidemiological settings.

  14. Ecologically relevant stress resistance: from microarrays and ...

    Indian Academy of Sciences (India)

    2004-10-15

    Oct 15, 2004 ... Home; Journals; Journal of Biosciences; Volume 29; Issue 4. Ecologically relevant stress resistance: from microarrays and quantitative trait loci to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic and genetic stress as model stresses.

  15. Improving abiotic stress tolerance of quinoa

    DEFF Research Database (Denmark)

    Yang, Aizheng

    Global food security faces the challenges of rapid population growth and shortage of water resources. Drought, heat waves and soil salinity are becoming more frequent and extreme due to climatic changes in many regions of the world, and resulting in yield reduction of many crops. It is hypothesized...... other crops, its productivity declines under severe drought, high salt conditions and harsh climate conditions. Different management approaches including water-saving irrigation methods (such as deficit irrigation, DI and alternate root-zone drying irrigation, ARD), inoculating crop seeds with plant...... growth promoting bacteria (PGPB) and priming seed (such as with saponin) were involved to improve drought and salinity stress and climate adaptability in quinoa. During PhD research, the effect of theses strategies on physiological and agronomic characteristics of quinoa were studied in detail....

  16. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    Science.gov (United States)

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  17. Invasive Knotweeds are Highly Tolerant to Salt Stress

    Science.gov (United States)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  18. [Salt stress tolerance of cucumber-grafted rootstocks].

    Science.gov (United States)

    Wang, Li-Ping; Sun, Jin; Guo, Shi-Rong; Liu, Shu-Ren; Liu, Chao-Jie; Tian, Jing

    2012-05-01

    Taking 4 different Cucurbita maxima x C. moschata rootstocks for cucumber (Cucumis sativus) as test materials, a solution culture experiment was conducted to study their growth and antioxidative enzyme activities under the stresses of Ca(NO3)2 and NaCl, with the salt stress tolerance of the rootstocks evaluated by subordinate function. At 30 mmol x L(-1) of Ca (NO3)2 or 45 mmol x L(-1) of NaCl, the growth of the rootstock seedlings was improved; but at 60 and 120 mmol x L(-1) of Ca(NO3)2 or 90 and 180 mmol x L(-1) of NaCl, the growth and the antioxidative systems of the seedlings were inhibited, and the salt injury index of 'Qingzhen No. 1' was the smallest, with the decrement of biomass and SOD, POD and CAT activities and the increment of relative conductance being significantly lower than those of the others. Under the stress of high concentration Ca(NO3)2, the SOD, POD and CAT activities of test rootstocks were higher, and the salt injury index and relative conductance were lower, as compared with those under high concentration NaCl, suggesting that the damage of Ca(NO3)2 stress to cucumber-grafted rootstock were smaller than that of NaCl stress. Among the 4 rootstocks, 'Qingzhen No. 1' had the strongest salt stress tolerance, followed by 'Zuomu Nangua', 'Fengyuan Tiejia', and 'Chaoba Nangua'.

  19. Tobacco OPBP1 Enhances Salt Tolerance and Disease Resistance of Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Xujun Chen

    2008-12-01

    Full Text Available Osmotin promoter binding protein 1 (OPBP1, an AP2/ERF transcription factor of tobacco, has been demonstrated to function in disease resistance and salt tolerance in tobacco. To increase stress tolerant capability of rice, we generated rice plants with an OPBP1 overexpressing construct. Salinity shock treatment with 250 mM NaCl indicated that most of the OPBP1 transgenic plants can survive, whereas the control seedlings cannot. Similar recovery was found by using the seedlings grown in 200 mM NaCl for two weeks. The OPBP1 transgenic and control plants were also studied for oxidative stress tolerance by treatment with paraquat, showing the transgenic lines were damaged less in comparison with the control plants. Further, the OPBP1 overexpression lines exhibited enhanced resistance to infections of Magnaporthe oryzae and Rhizoctonia solani pathogens. Gene expressing analysis showed increase in mRNA accumulation of several stress related genes. These results suggest that expression of OPBP1 gene increase the detoxification capability of rice.

  20. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  1. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2018-04-01

    Full Text Available Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction.

  2. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    Science.gov (United States)

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression. PMID:21330789

  3. Advances in improvement of stress tolerance by induced mutation and genetic transformation in alfalfa

    International Nuclear Information System (INIS)

    Huang Xin; Ye Hongxia; Shu Xiaoli; Wu Dianxing

    2008-01-01

    In order to provide references for stress-tolerant breeding of alfalfa, genetic basis of stress-tolerant traits was briefly introduced and advanced in improvement of stress-tolerance by induced mutation and genetic transformation in alfalfa were reviewed. (authors)

  4. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Fulai

    2017-01-01

    to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma...... membrane permeability (malondialdehyde and ATPase), reactive oxygen species (ROS) and antioxidants, osmotic adjustment, carbohydrate metabolism, nutrient acquisition, and secondary metabolism under low or high temperature stress. The possible mechanisms of AM symbiosis improving temperature stress......Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown...

  5. Expression Profiling of Abiotic Stress-Inducible Genes in response to Multiple Stresses in Rice (Oryza sativa L. Varieties with Contrasting Level of Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Supratim Basu

    2014-01-01

    Full Text Available The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive, Pokkali, and Nonabokra (both salt tolerant. The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously.

  6. Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application

    Directory of Open Access Journals (Sweden)

    Kang Zhen

    2009-08-01

    Full Text Available Abstract Background Poly-β-hydroxybutyrate (PHB mobilization in bacteria has been proposed as a mechanism that can benefit their host for survival under stress conditions. Here we reported for the first time that a stress-induced system enabled E. coli, a non-PHB producer, to mobilize PHB in vivo by mimicking natural PHB accumulation bacteria. Results The successful expression of PHB biosynthesis and PHB depolymerase genes in E. coli was confirmed by PHB production and 3-hydroxybutyrate secretion. Starvation experiment demonstrated that the complete PHB mobilization system in E. coli served as an intracellular energy and carbon storage system, which increased the survival rate of the host when carbon resources were limited. Stress tolerance experiment indicated that E. coli strains with PHB production and mobilization system exhibited an enhanced stress resistance capability. Conclusion This engineered E. coli with PHB mobilization has a potential biotechnological application as immobilized cell factories for biocatalysis and biotransformation.

  7. Stress for Stress Tolerance? A Fundamentally New Approach in Mammalian Embryology

    DEFF Research Database (Denmark)

    Pribenszky, Csaba; Vajta, Gabor; Molnár, Miklós

    2010-01-01

    tolerance to various in vitro procedures. The aim of this review is to summarize reports on the effects of stress on gametes and embryos of several species. Treatment with sublethal doses of high hydrostatic pressure (HHP), osmotic, heat, or oxidative stress resulted in increased morphological survival...... activation, intracytoplasmic sperm injection and somatic cell nuclear transfer. Osmotic stress of oocytes resulted in higher developmental rates after cryopreservation, parthenogenetic activation and somatic cell nuclear transfer. Heat shock was reported to increase developmental competence...

  8. comparative study with commercial rootstocks to determine the tolerance to heavy metal (Pb in the drought and salt stress tolerant eggplant breeding lines

    Directory of Open Access Journals (Sweden)

    Mevlüde Nur TOPAL

    2017-06-01

    Full Text Available Negative effects of heavy metals on plants are peroxidation of lipids in cell membranes, production of free oxygen radicals, disorders in photosynthesis, damages in DNAs and as a result death of the cell. Plant development, productivity and quality of the fruits are decreased in the plants that are exposed to Pb stress which is one of the most toxic heavy metals. Usage of rootstocks which is mainly used against biotic stress conditions also seems to be defined as a solution to abiotic stress conditions such as heavy metal stresses. In eggplant production, wild species and hybrids are used as rootstocks against soil based pathogens and nematode. Reactions of improvement lines derived from local gene resources for rootstock improvement to heavy metal stress which is one of the abiotic stresses were determined. While determining the resistance against Pb stress, commercially used eggplant rootstocks are compared. In this study 4 eggplant cultivars (S. melongena: Burdur Bucak, Mardin Kızıltepe, Artvin Hopa and Kemer whose resistance potential against salt and drought stresses had been previously revealed and 6 rootstocks of wild eggplant species or hybrids (AGR-703, Doyran, Hawk, Hikyaku, Köksal-F1 and Vista-306 were tested against Pb stress. Eggplant seedlings were applied to 0, 150 and 300 ppm Pb solutions (Pb(NO32 during 4-5 true leaf stage. 20 days after the stress application wet and dry weight of green parts and roots, height of the body part and leaf areas were measured. Pb tolerance of Köksal F1 and AGR703 rootstocks were higher than other commercial rootstocks. Mardin Kızıltepe and Burdur Merkez genotypes which have high tolerances against abiotic stress gave lower values with respect to Artvin Hopa and Kemer which are sensitive genotypes and many other rootstocks while comparing the reduction ratios of stress signs such as shoot fresh weight and shoot length according to control under Pb stress.

  9. Field Phenotyping of Soybean Roots for Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Berhanu A. Fenta

    2014-08-01

    Full Text Available Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000. Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

  10. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    Science.gov (United States)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  11. Grafting improves cucumber water stress tolerance in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdulaziz R. Al-Harbi

    2018-02-01

    Full Text Available Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F1 cucumber cultivar (Cucumis sativus L. was grafted onto Affyne (Cucumis sativus L. and Shintoza A90 (Cucurbitamaxima × C. moschata rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc, which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant−1 in non-grafted treatment to 6.149 kg plant−1 in grafted treatment under moderate -water stress, total soluble solid contents (13%, titratable acidity (39% and vitamin C (33%. The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  12. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; Faize, Lydia; Nicolás, Emilio; Clemente-Moreno, Maria José; Bru-Martinez, Roque; Burgos, Lorenzo; Hernández, José Antonio

    2016-06-01

    Water deficit is the most serious environmental factor limiting agricultural production. In this work, the tolerance to water stress (WS) of transgenic plum lines harbouring transgenes encoding cytosolic antioxidant enzymes was studied, with the aim of achieving the durable resistance of commercial plum trees. The acclimatization process was successful for two transgenic lines: line C3-1, co-expressing superoxide dismutase (two copies) and ascorbate peroxidase (one copy) transgenes simultaneously; and line J8-1, harbouring four copies of the cytosolic ascorbate peroxidase gene (cytapx). Plant water relations, chlorophyll fluorescence and the levels of antioxidant enzymes were analysed in both lines submitted to moderate (7 d) and severe (15 d) WS conditions. Additionally, in line J8-1, showing the best response in terms of stress tolerance, a proteomic analysis and determination of the relative gene expression of two stress-responsive genes were carried out. Line J8-1 exhibited an enhanced stress tolerance that correlated with better photosynthetic performance and a tighter control of water-use efficiency. Furthermore, this WS tolerance also correlated with a higher enzymatic antioxidant capacity than wild-type (WT) and line C3-1 plum plants. On the other hand, line C3-1 displayed an intermediate phenotype between WT plants and line J8-1 in terms of WS tolerance. Under severe WS, the tolerance displayed by J8-1 plants could be due to an enhanced capacity to cope with drought-induced oxidative stress. Moreover, proteomic analysis revealed differences between WT and J8-1 plants, mainly in terms of the abundance of proteins related to carbohydrate metabolism, photosynthesis, antioxidant defences and protein fate. The transformation of plum plants with cytapx has a profound effect at the physiological, biochemical, proteomic and genetic levels, enhancing WS tolerance. Although further experiments under field conditions will be required, it is proposed that J8

  14. Transgenic plants: resistance to abiotic and biotic stresses

    Directory of Open Access Journals (Sweden)

    Akila Wijerathna-Yapa

    2017-06-01

    Full Text Available Today’s crop breeding combined with improved agricultural management has brought substantial increases in food production. But irrigation, fertilizers pest management requires a high energy input that creates a drain on the already scare fossil fuels. It is thus clear that different strategy has to be adopted to increase crop productivity further to meet the needs of rapidly increasing world population. Crop breeders are endeavoring to meet this challenge by developing crops with higher yield, better resistance to pest, disease and weedicides, tolerance to various stress conditions.

  15. Role of nitric oxide in tolerance of plants to abiotic stress.

    Science.gov (United States)

    Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Basalah, Mohammed O

    2011-07-01

    Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.

  16. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway.

    Directory of Open Access Journals (Sweden)

    Huijuan Guo

    Full Text Available Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2 levels. We tested the hypothesis that elevated CO(2 would reduce resistance (i.e., the ability to prevent damage but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2 reduced resistance by decreasing the jasmonic acid (JA level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2. Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height was also reduced by elevated CO(2. Under ambient CO(2, the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype plants, but elevated CO(2 reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2 will simultaneously reduce the resistance and tolerance of tomato plants.

  17. Role of phytosterols in drought stress tolerance in rice.

    Science.gov (United States)

    Kumar, M S Sujith; Ali, Kishwar; Dahuja, Anil; Tyagi, Aruna

    2015-11-01

    Phytosterols are integral components of the membrane lipid bilayer in plants. They regulate membrane fluidity to influence its properties, functions and structure. An increase in accumulation of phytosterols namely campesterol, stigmasterol and β-sitosterol was observed in rice as seedlings matured. The levels of the major phytosterol, β-sitosterol in N22 (drought tolerant) rice seedlings was found to increase proportionately with severity of drought stress. Its levels were 145, 216, 345 and 364 μg/g FW after subjecting to water stress for 3, 6, 9 and 12 days respectively, while for IR64 (drought susceptible), levels were 137, 198, 227 and 287 μg/g FW at the same stages. Phytosterols were also found to increase with maturity as observed at 30, 50 and 75 days after planting. The activity of HMG-CoA reductase (EC 1.1.1.34) which is considered to be a key limiting enzyme in the biosynthesis of phytosterols was 0.55, 0.56, 0.78 and 0.85 μmol/min/L at 3, 6, 9 and 12 days of water stress in N22 and 0.31, 0.50, 0.54 and 0.65 μmol/min/L in case of IR64 respectively. The elevation in the levels of phytosterols as well as the activity of HMG-CoA reductase during drought stress indicates the role of phytosterols in providing tolerance to stress. Copyright © 2015. Published by Elsevier Masson SAS.

  18. ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Terai, Hideki; Kitajima, Shunsuke; Potter, Danielle S; Matsui, Yusuke; Quiceno, Laura Gutierrez; Chen, Ting; Kim, Tae-Jung; Rusan, Maria; Thai, Tran C; Piccioni, Federica; Donovan, Katherine A; Kwiatkowski, Nicholas; Hinohara, Kunihiko; Wei, Guo; Gray, Nathanael S; Fischer, Eric S; Wong, Kwok-Kin; Shimamura, Teppei; Letai, Anthony; Hammerman, Peter S; Barbie, David A

    2018-02-15

    An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications. Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044

  19. Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment.

    Science.gov (United States)

    Pan, X; Wu, T; Zhang, L; Cai, L; Song, Z

    2009-03-01

    Lactobacilli should resist stress environments in industry process and gastrointestinal tract before exerting their beneficial effects. To explore the possible stabilizers in probiotic products, prebiotic oligosaccharides were investigated. We investigated the effect of four selected oligosaccharides on the survival of probiotic Lactobacillus plantarum and L. acidophilus to simulated stress conditions. It was found that the tolerance of lactobacilli to simulated artificial gastrointestinal juice, heat treatment and phenol solution was obviously enhanced in fructo-oligosaccharides (FOS) and xylo-oligosaccharides (XOS) group. In addition, chito-oligosaccharides (COS), manno-oligosaccharides (MOS) and glucose also had positive effect compared with control group (without sugar). Prebiotic oligosaccharides, especially XOS and FOS added in medium have protection function to lactobacilli in stress environments. The protection function of oligosaccharides may correlate with the bacteria growth, which was stimulated by these oligosaccharides. Prebiotic oligosaccharides may be used as stabilizers in probiotic products.

  20. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  1. AFLP marker linked to water-stress-tolerant bulks in barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    A. Altinkut

    2003-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP assay is an efficient method for the identification of molecular markers, useful in the improvement of numerous crop species. Bulked Segregant Analysis (BSA was used to identify AFLP markers associated with water-stress tolerance in barley, as this would permit rapid selection of water-stress tolerant genotypes in breeding programs. AFLP markers linked to water-stress tolerance was identified in two DNA pools (tolerant and sensitive, which were established using selected F2 individuals resulting from a cross between water-stress-tolerant and sensitive barley parental genotypes, based on their paraquat (PQ tolerance, leaf size, and relative water content (RWC. All these three traits were previously shown to be associated with water-stress tolerance in segregating F2 progeny of the barley cross used in a previous study. AFLP analysis was then performed on these DNA pools, using 40 primer pairs to detect AFLP fragments that are present/absent, respectively, in the two pools and their parental lines. One separate AFLP fragment, which was present in the tolerant parent and in the tolerant bulk, but absent in the sensitive parent and in the sensitive bulk, was identified. Polymorphism of the AFLP marker was tested among tolerant and sensitive F2 individuals. The presence of this marker that is associated with water-stress tolerance will greatly enhance selection for paraquat and water-stress tolerant genotypes in future breeding programs.

  2. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology

    Directory of Open Access Journals (Sweden)

    Hongyan eWang

    2016-02-01

    Full Text Available Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  3. Breeding approaches in simultaneous selection for multiple stress tolerance of maize in tropical environments

    Directory of Open Access Journals (Sweden)

    Denić M.

    2007-01-01

    Full Text Available Maize is the principal crop and major staple food in the most countries of Sub-Saharan Africa. However, due to the influence of abiotic and biotic stress factors, maize production faces serious constraints. Among the agro-ecological conditions, the main constraints are: lack and poor distribution of rainfall; low soil fertility; diseases (maize streak virus, downy mildew, leaf blights, rusts, gray leaf spot, stem/cob rots and pests (borers and storage pests. Among the socio-economic production constraints are: poor economy, serious shortage of trained manpower; insufficient management expertise, lack of use of improved varieties and poor cultivation practices. To develop desirable varieties, and thus consequently alleviate some of these constraints, appropriate breeding approaches and field-based methodologies in selection for multiple stress tolerance, were implemented. These approaches are mainly based on: a Crossing selected genotypes with more desirable stress tolerant and other agronomic traits; b Using the disease/pest spreader row method, combined with testing and selection of created progenies under strong to intermediate pressure of drought and low soil fertility in nurseries; and c Evaluation of the varieties developed in multi-location trials under low and "normal" inputs. These approaches provide testing and selection of large number of progenies, which is required for simultaneous selection for multiple stress tolerance. Data obtained revealed that remarkable improvement of the traits under selection was achieved. Biggest progress was obtained in selection for maize streak virus and downy mildew resistance, flintiness and earliness. In the case of drought stress, statistical analyses revealed significant negative correlation between yield and anthesis-silking interval, and between yield and days to silk, but positive correlation between yield and grain weight per ear.

  4. Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Lau Susanna KP

    2011-06-01

    Full Text Available Abstract Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches. Results L. hongkongensis possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two arc gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na+:H+ antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs. Conclusions The L. hongkongensis genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.

  5. Application of stress susceptibility index for drought tolerance screening of tomato populations

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2013-01-01

    Full Text Available Investigation comprised 41 tomato genotypes originating from the population of domestic and domesticated genotypes collected in Serbia and belonging to the tomato collection of the Institute of Vegetable Crop Science, Smederevska Palanka. The aim of collection screening was to choose the genotypes tolerant to drought during plant intensive growth stage, whereby the process of selection would set out to obtain the recombinant genotypes for this abiotic factor. The screening criteria were established for genotype divergence in plant height and shoot-root ratio under conditions of optimal irrigation regime and drought. Divergence was estimated using cluster analysis with Euclidean distance as a measure of distance, with a complete gene attachment to grouping. Drought tolerance is expressed by the stress susceptibility index (SSI. Various results were obtained based on the screening of genotypes grown under optimal and dry conditions. As a measure of stress susceptibility, based on SSI, genotypes having different drought tolerance level were determined. On the grounds of the analyses carried out, 10 genotypes were segregated (G102, G104, G107, G109, G110, G119, G125, G126, G128 and G141 to represent a basis to obtain the recombinant genotypes and to initiate the selection for drought resistance. [Projekat Ministarstva nauke Republike Srbije, br. TR 31005 i br. TR 31059

  6. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    López-Martínez, Gema; Margalef-Català, Mar; Salinas, Francisco; Liti, Gianni; Cordero-Otero, Ricardo

    2015-01-01

    Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.

  7. Protein and carbohydrate composition of larval food affects tolerance tothermal stress and desiccation in adult Drosophila melanogaster

    DEFF Research Database (Denmark)

    Andersen, Laila H; Kristensen, Torsten N; Loeschcke, Volker

    2010-01-01

    Larval nutrition may affect a range of different life history traits as well as responses to environmental stress in adult insects. Here we test whether raising larvae of fruit flies, Drosophila melanogaster, on two different nutritional regimes affects resistance to cold, heat and desiccation....... In contrast, flies developed on the carbohydrate-enriched growth medium recovered faster from chill coma stress compared to flies developed on a protein-enriched medium. We also found gender differences in stress tolerance, with female flies being more tolerant to chill coma, heat knockdown and desiccation...... stress compared to males. Egg production was highest in females that had developed on the protein-enriched medium. However, there was a sex-specific effect of nutrition on egg-to-adult viability, with higher viability for males developing on the sucrose-enriched medium, while female survival was highest...

  8. New genes involved in osmotic stress tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ramon Gonzalez

    2016-09-01

    Full Text Available Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis, or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.

  9. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae

    Science.gov (United States)

    Gonzalez, Ramon; Morales, Pilar; Tronchoni, Jordi; Cordero-Bueso, Gustavo; Vaudano, Enrico; Quirós, Manuel; Novo, Maite; Torres-Pérez, Rafael; Valero, Eva

    2016-01-01

    Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context. PMID:27733850

  10. The genetic architecture of defence as resistance to and tolerance of bacterial infection in Drosophila melanogaster.

    Science.gov (United States)

    Howick, Virginia M; Lazzaro, Brian P

    2017-03-01

    Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co-evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance. © 2017 John Wiley & Sons Ltd.

  11. Impact of pesticide resistance on toxicity and tolerance of hostplant phytochemicals in Amyelois transitella (Lepidoptera: Pyralidae)

    Science.gov (United States)

    For some polyphagous insects adaptation to phytochemically novel plants confers enhanced resistance to insecticides, but whether insecticide resistance enhances tolerance to novel phytochemicals has not been assessed. We used Amyelois transitella Walker (navel orangeworm), an economically important ...

  12. RATIO FEATURES OF STRESS TOLERANCE AND ANXIETY IN MEN AND WOMEN

    Directory of Open Access Journals (Sweden)

    A V Mikheeva

    2016-12-01

    Full Text Available The article discusses the ratio of stress tolerance to the level of personal anxiety. It provides a definition of the term “stress tolerance”, analyzes the concept of the “disquietude” and the “anxiety”: how different authors define these phenomena, what is different and what is in common. The concepts of “personal anxiety” and “situational anxiety” are given consideration. The views of foreign and domestic authors on anxiety as a factor that contributes to stress, as well as its components are discussed. An overview of the methods of measuring stress and anxiety is provided: a stress questionnaire of S.V. Subbotin, anxiety scale of Spielberger - Hanin. The results of domestic and foreign research on the identification of correlations between the variables of stress tolerance and anxiety are analyzed. We also consider the results of our own research, conducted on a sample of 149 men and 142 women in 2015-2016 years in Moscow. The results of four subgroups of the respondents are reviewed: men with high stress tolerance, men with low stress tolerance, women with high stress tolerance, and women with low stress tolerance. In each of the subgroups the variables of reactive and personal anxiety and connections between indicators of anxiety and indicators of stress tolerance are analyzed; the conclusions about the relationship of stress and anxiety in each subgroup are drawn.

  13. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  14. Evaluation of drought tolerance in new Bulgarian sweet corn genotypes with using stress tolerance indices

    Directory of Open Access Journals (Sweden)

    Shtereva Lydia

    2015-01-01

    Full Text Available Two inbred lines and their heterotic F1 hybrid of sweet corn (Zea mays L. var. rugosa Bonaf. were evaluated to assess their reaction for PEG-mediated water stress at the seedling stage in terms of various physiological and biochemical traits. Water potentials were: zero as control and -0.6, -0.9, -1.2 and -1.5 MPa as treatments. Stress- determining parameters such as proline content, malondiadehyde, and hydrogen peroxide were measured. In water stress, the germination was inversely proportional to the Polyethylene glycol concentrations in all three genotypes; roots and shoots length, fresh and dry weight decreased with an increasing of polyethylene glycol concentration. Malondiadehyde, proline, and hydrogen peroxide were found to be increased at different osmotic gradients in comparison to control. The data observed in the experiments revealed that the line C-6 might be used as a very promising parent to breed and select new drought tolerant sweet corn hybrids. Such a suggestion needs to be further explored by involving a larger set of sweet corn lines and hybrids.

  15. Deinococcus gobiensis cold shock protein improves salt stress tolerance of escherichia coli

    International Nuclear Information System (INIS)

    Jiang Shijie; Wang Jin; Yang Mingkun; Chen Ming; Zhang Wei; Luo Xuegang

    2013-01-01

    The Deinococcus gobiensis I-0, an extremely radiation-resistant bacterium, isolated from the Gobi, has superior resistance to abiotic stress (e.g radiation, oxidation, dehydration and so on). The two cold-shock proteins encoded by csp1 (Dgo C A1136) and csp2 (Dgo P A0041) were identified in the complete genome sequence of D. gobiensis. In this study, we showed that D. gobiensis Csp1 protected Escherichia coli cells against cold shock and other abiotic stresses such as salt and osmotic shocks. The quantitative real-time PCR assay shows that the expression of trehalose synthase (otsA, otsB) was up-regulated remarkably under salt stress in the csp1-expressing strain, while no difference in the expression of the genes involved in trehalose degradation (treB and treC). The results suggested that Csp1 caused the accumulation of the trehalose was a major feature for improving tolerance to salt stress in E. coli. (authors)

  16. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    Science.gov (United States)

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  17. Population variation in the cost and benefit of tolerance and resistance against herbivory in Datura stramonium.

    Science.gov (United States)

    Fornoni, Juan; Valverde, Pedro Luis; Núñez-Farfán, Juan

    2004-08-01

    In this study we examine the hypothesis that divergent natural selection produces genetic differentiation among populations in plant defensive strategies (tolerance and resistance) generating adaptive variation in defensive traits against herbivory. Controlled genetic material (paternal half-sib families) from two populations of the annual Datura stramonium genetically differentiated in tolerance and resistance to herbivory were used. This set of paternal half-sib families was planted at both sites of origin and the pattern of genotypic selection acting on tolerance and resistance was determined, as well as the presence and variation in the magnitude of allocational costs of tolerance. Selection analyses support the adaptive differentiation hypothesis. Tolerance was favored at the site with higher average level of tolerance, and resistance was favored at the site with higher average level of resistance. The presence of significant environmentally dependent costs of tolerance was in agreement with site variation in the adaptive value of tolerance. Our results support the expectation that environmentally dependent costs of plant defensive strategies can generate differences among populations in the evolutionary trajectory of defensive traits and promote the existence of a selection mosaic. The pattern of contrasting selection on tolerance suggests that, in some populations of D. stramonium, tolerance may alter the strength of reciprocal coevolution between plant resistance and natural enemies.

  18. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes.To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L(-1 NaCl solutions and simulated herbivory (0, 25 and 50% of the leaf area excised treatments. The relative growth rate (RGR of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species.This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be ineffective for controlling this invasion.

  19. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  20. Activation of stress signalling pathways enhances tolerance of fungi to chemical fungicides and antifungal proteins.

    Science.gov (United States)

    Hayes, Brigitte M E; Anderson, Marilyn A; Traven, Ana; van der Weerden, Nicole L; Bleackley, Mark R

    2014-07-01

    Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.

  1. Morphological characteristic of purple long yard bean cultivars and their tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    M W Lestari

    2015-01-01

    Full Text Available The cultivation of purple long yard bean which tolerance to drought stress and have high productivity can improve farming in arid area. The purpose of this study was to evaluate the mechanism of the tolerance purple long yard beans to drought stress based on morphologic characters, to get the hypothesis method of tolerance and to obtain tolerance cultivars to the drought stress. Eight cultivars of purple long yard beans, i.e. UBPHU1-41, UBPHU1-130, UBPU3-153, UBPU1-202, UBPU2-222, UBPU1-365, Brawijaya 4 and Bagong 2, were tested in two environmental conditions, 100% field capacity and 50% field capacity. The results showed that drought stress in purple long yard bean affected all morphological characters observed, except for root length and flowering time. Estimation of tolerance to drought stress using the Principles Component Analysis (PCA showed that the shoot fresh weight could be an indicator of purple pod bean tolerance to drought stress. However, the test using Stress Susceptibility Index (SSI was not able to classify the purple long yard bean tolerance to drought stress. The results of analysis using PCA followed by discriminant analysis and clustering dendrogram showed that the UBPU1-41, UBPU1-130, UBPU2-222, UBPU1-365, UB4 and Bagong 2 cultivars were medium cultivars that are tolerant to drought stress. Therefore, they can be planted in semiarid regions.

  2. Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Margaret M. Briehl

    2012-08-01

    Full Text Available Acquired resistance to drugs commonly used for lymphoma treatment poses a significant barrier to improving lymphoma patient survival. Previous work with a lymphoma tissue culture model indicates that selection for resistance to oxidative stress confers resistance to chemotherapy-induced apoptosis. This suggests that adaptation to chronic oxidative stress can contribute to chemoresistance seen in lymphoma patients. Oxidative stress-resistant WEHI7.2 cell variants in a lymphoma tissue culture model exhibit a range of apoptosis sensitivities. We exploited this phenotype to test for mitochondrial changes affecting sensitivity to apoptosis in cells made resistant to oxidative stress. We identified impaired release of cytochrome c, and the intermembrane proteins adenylate kinase 2 and Smac/DIABLO, indicating inhibition of the pathway leading to permeabilization of the outer mitochondrial membrane. Blunting of a glucocorticoid-induced signal and intrinsic mitochondrial resistance to cytochrome c release contributed to both points of resistance. The level of Bcl-2 family members or a difference in Bim induction were not contributing factors. The extent of cardiolipin oxidation following dexamethasone treatment, however, did correlate with apoptosis resistance. The differences found in the variants were all proportionate to the degree of resistance to glucocorticoid treatment. We conclude that tolerance to oxidative stress leads to mitochondrial changes that confer resistance to apoptosis.

  3. Acclimation improves salt stress tolerance in Zea mays plants.

    Science.gov (United States)

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.

    Science.gov (United States)

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  5. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    Science.gov (United States)

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  6. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  7. Oxylipins and plant abiotic stress resistance.

    Science.gov (United States)

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  8. The activities of antioxidant enzymes in response to oxidative stresses and hormones in paraquat-tolerant Rehmannia glutinosa plants.

    Science.gov (United States)

    Choi, Dong Geun; Yoo, Nam Hee; Yu, Chang Yeon; de Los Reyes, Benildo; Yun, Song Joong

    2004-09-30

    All members of R. glutinosa show the unique characteristic of intrinsic tolerance to paraquat (PQ). Antioxidant enzymes have been proposed to be the primary mechanism of PQ resistance in several plant species. Therefore, the antioxidant enzyme systems of R. glutinosa were evaluated by comparatively analyzing cellular antioxidant enzyme levels, and their responses of oxidative stresses and hormones. The levels of ascorbate peroxidase (APX), glutathione reductase (GR), non-specific peroxidase (POX), and superoxide dismutase (SOD) were 7.3-, 4.9-, 2.7- and 1.6-fold higher in PQ-tolerant R. glutinosa than in PQ-susceptible soybeans. However, the activity of catalase (CAT) was about 12-fold higher in the soybeans. The activities of antioxidant enzymes reduced after PQ treatment in the two species, with the exception of POX and SOD in R. glutinosa, which increased by about 40 %. Interestingly, the activities of APX, SOD and POX in R. glutinosa, relative to those in soybeans, were further increased by 49, 67 and 93 % after PQ treatment. The considerably higher intrinsic levels, and increases in the relative activities of antioxidant enzymes in R. glutinosa under oxidative stress support the possible role of these enzymes in the PQ tolerance of R. glutinosa. However, the relatively lower levels of SOD versus PQ tolerance, and the mixed responses of antioxidant enzymes to stresses and hormones, suggest a possible alternative mechanism(s) for PQ tolerance in R. glutinosa.

  9. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Science.gov (United States)

    Dong, Xiangrong; Tian, Bing; Dai, Shang; Li, Tao; Guo, Linna; Tan, Zhongfang; Jiao, Zhen; Jin, Qingsheng; Wang, Yanping; Hua, Yuejin

    2015-01-01

    PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah) by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  10. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Xiangrong Dong

    Full Text Available PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under stress. PprI was stably expressed in L. lactis as confirmed by western blot assays. L. lactis expressing PprI exhibited significantly improved resistance to oxidative stress and high osmotic pressure. This enhanced cellular tolerance to stressors might be due to the regulation of resistance-related genes (e.g., recA, recO, sodA, and nah by pprI. Moreover, transformed L. lactis demonstrated increased lactic acid production, attributed to enhanced lactate dehydrogenase activity. These results suggest that pprI can improve the tolerance of L. lactis to environmental stresses, and this transformed bacterial strain is a promising candidate for industrial applications of lactic acid production.

  11. Transformation of oats and its application to improving osmotic stress tolerance.

    Science.gov (United States)

    Maqbool, Shahina B; Zhong, Heng; Oraby, Hesham F; Sticklen, Mariam B

    2009-01-01

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic trade mark bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages. The characteristic of HVA1 expression for osmotic tolerance in transgenic oat progeny was analyzed in vitro as well as in vivo. Transgenic plants exhibited significantly (Pplants. The symptoms of wilting or death of leaves as observed in 80% of non-transgenic plants due to osmotic stress was delayed and detected only in less than 10% of trans-genic plants. These observations confirmed the characteristic of HVA1 protein as providing or enhancing the osmotic tolerance in transgenic plants against salinity and

  12. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  13. Quantifying the Impact of Physical Activity on Stress Tolerance in College Students

    Science.gov (United States)

    Bland, Helen W.; Melton, Bridget F.; Bigham, Lauren E.; Welle, Paul D.

    2014-01-01

    Problem: Stress experience by millennial college students can be crippling. While stress is a universal and unavoidable phenomenon for college students, the variance in ability to handle stress can be attributed to stress tolerance (Welle & Graf, 2011). Research is needed to identify effective tools that increase college students' ability to…

  14. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  15. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  16. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Mohammad Sayyar Khan

    2015-07-01

    Full Text Available Global agriculture in the context of growing and expanding populations is under huge pressure to provide increased food, feed, and fiber. The recent phenomenon of climate change has further added fuel to the fire. It has been practically established now that the global temperature has been on the increase with associated fluctuations in annual rainfall regimes, and the resultant drought and flood events and increasing soil and water salinization. These challenges would be met with the introduction and utilization of new technologies coupled with conventional approaches. In recent years, transgenic technology has been proved very effective in terms of production of improved varieties of crop plants, resistant to biotic stresses. The abiotic stresses such as salt and drought are more complex traits, controlled by many genes. Transgenic plant development for these stresses has utilized many single genes. However, much emphasis has been placed on genes catalyzing the biosynthetic pathways of osmoprotectants. This review focuses on the current status of research on osmoprotectant genes and their role in abiotic stress tolerance in transgenic plants.

  17. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  18. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation.

    Science.gov (United States)

    Auesukaree, Choowong

    2017-08-01

    During ethanol fermentation, yeast cells encounter various stresses including sugar substrates-induced high osmolarity, increased ethanol concentration, oxygen metabolism-derived reactive oxygen species (ROS), and elevated temperature. To cope with these fermentation-associated stresses, appropriate adaptive responses are required to prevent stress-induced cellular dysfunctions and to acquire stress tolerances. This review will focus on the cellular effects of these stresses, molecular basis of the adaptive response to each stress, and the cellular mechanisms contributing to stress tolerance. Since a single stress can cause diverse effects, including specific and non-specific effects, both specific and general stress responses are needed for achieving comprehensive protection. For instance, the high-osmolarity glycerol (HOG) pathway and the Yap1/Skn7-mediated pathways are specifically involved in responses to osmotic and oxidative stresses, respectively. On the other hand, due to the common effect of these stresses on disturbing protein structures, the upregulation of heat shock proteins (HSPs) and trehalose is induced upon exposures to all of these stresses. A better understanding of molecular mechanisms underlying yeast tolerance to these fermentation-associated stresses is essential for improvement of yeast stress tolerance by genetic engineering approaches. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Distress tolerance and physiological reactivity to stress predict women's problematic alcohol use.

    Science.gov (United States)

    Holzhauer, Cathryn Glanton; Wemm, Stephanie; Wulfert, Edelgard

    2017-06-01

    Research has shown that measures of reactivity to distress-including distress tolerance and physiological reactivity to stress-are dysregulated in women who misuse alcohol. These variables may interact and create a risk profile for young adult women, reflecting patterns of stress reactivity that confer a risk for alcohol misuse. The current study tested this hypothesis by examining the independent and interactive associations of subjective distress tolerance, behavioral distress tolerance, and physiological stress reactivity with women's alcohol misuse. The study was conducted with a sample of 91 college women recruited on a large northeastern university campus. Results showed that subjective levels of distress tolerance and physiological reactivity to stress (skin conductance reactivity, SCR), but not behavioral distress tolerance, were independently associated with alcohol misuse. In addition, subjective distress tolerance moderated the relationship between SCR and negative alcohol-related consequences. Specifically, women with low physiological reactivity (SCR) to a stressful task and greater urge to quickly rid themselves of distress (low subjective distress tolerance) endorsed a significantly greater number of adverse consequences from their alcohol use. These results extend prior findings by showing that, even among a nonclinical sample of women, lower stress reactivity in combination with low subjective distress tolerance is associated with increased risk for various drinking-related negative consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells.

    Directory of Open Access Journals (Sweden)

    Jay E Johnson

    Full Text Available A methionine-restricted diet robustly improves healthspan in key model organisms. For example, methionine restriction reduces age-related pathologies and extends lifespan up to 45% in rodents. However, the mechanisms underlying these benefits remain largely unknown. We tested whether the yeast chronological aging assay could model the benefits of methionine restriction, and found that this intervention extends lifespan when enforced by either dietary or genetic approaches, and furthermore, that the observed lifespan extension is due primarily to reduced acid accumulation. In addition, methionine restriction-induced lifespan extension requires the activity of the retrograde response, which regulates nuclear gene expression in response to changes in mitochondrial function. Consistent with an involvement of stress-responsive retrograde signaling, we also found that methionine-restricted yeast are more stress tolerant than control cells. Prompted by these findings in yeast, we tested the effects of genetic methionine restriction on the stress tolerance and replicative lifespans of cultured mouse and human fibroblasts. We found that such methionine-restricted mammalian cells are resistant to numerous cytotoxic stresses, and are substantially longer-lived than control cells. In addition, similar to yeast, the extended lifespan of methionine-restricted mammalian cells is associated with NFκB-mediated retrograde signaling. Overall, our data suggest that improved stress tolerance and extension of replicative lifespan may contribute to the improved healthspan observed in methionine-restricted rodents, and also support the possibility that manipulation of the pathways engaged by methionine restriction may improve healthspan in humans.

  1. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  2. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Kumar G Raja

    2010-03-01

    Full Text Available Abstract Background Environmentally inflicted stresses such as salinity and drought limit the plant productivity both in natural and agricultural system. Increasing emphasis has been directed to molecular breeding strategies to enhance the intrinsic ability of plant to survive stress conditions. Functional screens in microorganisms with heterologous genes are a rapid, effective and powerful tool to identify stress tolerant genes in plants. Jatropha curcas (Physic nut has been identified as a potential source of biodiesel plant. In order to improve its productivity under stress conditions to benefit commercial plantations, we initiated prospecting of novel genes expressed during stress in J. curcas that can be utilized to enhance stress tolerance ability of plant. Results To identify genes expressed during salt tolerance, cDNA expression libraries were constructed from salt-stressed roots of J. curcas, regulated under the control of the yeast GAL1 system. Using a replica based screening, twenty thousand yeast transformants were screened to identify transformants expressing heterologous gene sequences from J. curcas with enhanced ability to tolerate stress. From the screen we obtained 32 full length genes from J. curcas [GenBank accession numbers FJ489601-FJ489611, FJ619041-FJ619057 and FJ623457-FJ623460] that can confer abiotic stress tolerance. As a part of this screen, we optimized conditions for salt stress in J. curcas, defined parameters for salt stress in yeast, as well as isolated three salt hypersensitive yeast strains shs-2, shs-6 and shs-8 generated through a process of random mutagenesis, and exhibited growth retardation beyond 750 mM NaCl. Further, we demonstrated complementation of the salt sensitive phenotypes in the shs mutants, and analyzed the expression patterns for selected J. curcas genes obtained from the screen in both leaf and root tissues after salt stress treatments. Conclusions The approach described in this report

  3. Identification of plant genes for abiotic stress resistance

    NARCIS (Netherlands)

    Dixit, S.A.

    2008-01-01

    As water and salt stresses occur frequently and can affect many habitats, plants have developed several strategies to cope with these challenges: either adaptation mechanisms, which allow them to survive the adverse conditions, or specific growth habits to avoid stress conditions. Stress-tolerant

  4. Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shiro Mitsuya

    2010-02-01

    Full Text Available The PEX11 family of peroxisome membrane proteins have been shown to be involved in regulation of peroxisome size and number in plant, animals, and yeast cells. We and others have previously suggested that peroxisome proliferation as a result of abiotic stress may be important in plant stress responses, and recently it was reported that several rice PEX11 genes were up regulated in response to abiotic stress. We sought to test the hypothesis that promoting peroxisome proliferation in Arabidopsis thaliana by over expression of one PEX11 family member, PEX11e, would give increased resistance to salt stress. We could demonstrate up regulation of PEX11e by salt stress and increased peroxisome number by both PEX11e over expression and salt stress, however our experiments failed to find a correlation between PEX11e over expression and increased peroxisome metabolic activity or resistance to salt stress. This suggests that although peroxisome proliferation may be a consequence of salt stress, it does not affect the ability of Arabidopsis plants to tolerate saline conditions.

  5. Abiotic stress tolerance: from gene discovery in model organisms to crop improvement.

    Science.gov (United States)

    Bressan, Ray; Bohnert, Hans; Zhu, Jian-Kang

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.

  6. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  7. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst conversion...

  8. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  9. Notification: Evaluation of EPA's Management of Resistance Issues Related to Herbicide Tolerant Genetically Engineered Crops

    Science.gov (United States)

    Project #OPE-FY16-0023, March 25, 2016. The EPA OIG plans to begin preliminary research to assess the EPA's management and oversight of resistance issues related to herbicide tolerant genetically engineered crops.

  10. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    Science.gov (United States)

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  11. Investigation of stress tolerance of endoglucanases of the ...

    African Journals Online (AJOL)

    Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself.

  12. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  13. The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila

    OpenAIRE

    Ayres, Janelle S.; Schneider, David S.

    2009-01-01

    Author Summary Two routes to decreasing susceptibility to infection are resistance (the ability to clear pathogens) and tolerance (the ability to limit damage in response to pathogens). Anorexia induced by sickness puts animals into a diet-restricted state, a state that is generally believed to extend lifespan. We asked whether anorexia induced by sickness would alter the immune response. We measured the effects of diet restriction on both resistance and tolerance to two different infections ...

  14. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    Science.gov (United States)

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. The Role of the Environment in the Evolution of Tolerance and Resistance to a Pathogen.

    Science.gov (United States)

    Zeller, Michael; Koella, Jacob C

    2017-09-01

    Defense against parasites can be divided into resistance, which limits parasite burden, and tolerance, which reduces pathogenesis at a given parasite burden. Distinguishing between the two and understanding which defense is favored by evolution in different ecological settings are important, as they lead to fundamentally different evolutionary trajectories of host-parasite interactions. We let the mosquito Aedes aegypti evolve under different food levels and with either no parasite, a constant parasite, or a coevolving parasite (the microsporidian Vavraia culicis). We then tested tolerance and resistance of the evolved lines on a population level at the two food levels. Exposure to parasites during evolution increased resistance and tolerance, but there were no differences between the lines evolved with coevolving or constant parasites. Mosquitoes that had evolved with food restriction had higher resistance than those evolved with high food but similar tolerance. The mosquitoes that had restricted food when being tested had lower tolerance than those with normal food, but there was no difference in resistance. Our results emphasize the complexity and dependence on environmental conditions of the evolution and expression of resistance and tolerance and help to evaluate some of the predictions about the evolution of host defense against parasites.

  16. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  17. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Science.gov (United States)

    Zheng, Yan-Lin; Wang, Shi-An

    2015-01-01

    The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  18. Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement

    OpenAIRE

    Bressan, Ray; Bohnert, Hans; Zhu, Jian-Kang

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improv...

  19. Genetically engineered Rice with transcription factor DREB genes for abiotic stress tolerance(abstract)

    International Nuclear Information System (INIS)

    Datta, S.K.; Datta, K.

    2005-01-01

    Water stress (drought and Salinity) is the most severe limitation to rice productivity. Several breeding approaches (MAS, QTL) applied to suitable genotypes are in place at IRRI and elsewhere. Phenotyping of water stress tolerance is in progress with potential predictability. Dr. Shinozaki's group has cloned a number of transcription factor genes, which have been shown to work in Arabidopsis to achieve drought, cold, and salinity tolerant plants. None of these genes have as yet displayed their potential functioning in rice. Genetic engineering aims at cross talk between different stress signaling pathways leading to stress tolerance. Osmotic Adjustment (OA) is an effective component of abiotic stress (drought and salinity) tolerance in many plants including rice. When plant experiences water stress, OA contributes to turgor maintenance of both shoots and roots. Conventional breeding could not achieve the OA in rice excepting a few rice cultivars, which are partially adapted to water-stress conditions. Several stress-related genes have now been cloned and transferred in to enhance the osmolytes and some transgenic lines showed increased tolerance to osmotic stress. A few strategies could be effectively deployed for a better understanding of water-stress tolerance in rice and to develop transgenic rice, which can survive for a critical period of water-stress conditions: 1) Switching on of transcription factor regulating the expression of several genes related to abiotic stress, 2) Use of a suitable stress inducible promoter driving the target gene for an efficient and directed expression in plants, 3) Understanding of phenotyping and GxE in a given environment, 4) Selection of a few adaptive rice cultivars suitable in drought/salinity prone areas, 5) Microarray, proteomics, QTL and MAS may expedite the cloning and characterizing the stress induced genes, and 6) Finally, the efficient transformation system for generating a large number of transgenic rice of different

  20. In vitro induction of variability through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Das, A.; Gopal, J.; Minocha, J.L.; Chopra, H.R.; Dhaliwal, H.S.

    2001-01-01

    In vitro cultured shoots of potato, cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi', were irradiated with 20 and 40 Gy gamma rays. Microtubers, obtained from MIV3 shoots multiplied in vitro, were planted in pots. The resulting plants were screened for resistance to late blight, using detached leaf method. In 'Kufri Chandramukhi', 42% plants and in 'Kufri Jyoti' 36% plants, obtained from 40 Gy treatment, showed resistance to late blight. The frequency of resistant plants was lower from 20 Gy treatment. The progenies of putatively resistant plants were grown in field, and inoculated with sporangial inoculum of late blight fungus. The field grown progeny segregated for disease resistance, and approximately 56% plants showed resistance. During the next propagation, the frequency of resistant plants increased to 72%. For developing heat tolerance, microtubers obtained from 20 and 40 Gy treatments and in vitro multiplied M 1 V 3 shoots were cultured at high temperature of 28C. In both varieties, the number of the microtubers per plant was highly reduced and the resulting microtubers had distorted shape but showed better germination (62%), even in early sowing at relatively higher temperature. Of the two radiation doses, the higher dose of 40 Gy gave better results in both the varieties. Heat tolerance was also assessed from chlorophyll persistence. The progenies from putative heat-tolerant plants were tested in field by planting at higher temperature in two subsequent generations. The heat tolerant plants segregated in each generation, but the frequency of heat-tolerant plants increased. (author)

  1. A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections.

    Directory of Open Access Journals (Sweden)

    Janelle S Ayres

    2008-12-01

    Full Text Available Organisms evolve two routes to surviving infections-they can resist pathogen growth (resistance and they can endure the pathogenesis of infection (tolerance. The sum of these two properties together defines the defensive capabilities of the host. Typically, studies of animal defenses focus on either understanding resistance or, to a lesser extent, tolerance mechanisms, thus providing little understanding of the relationship between these two mechanisms. We suggest there are nine possible pairwise permutations of these traits, assuming they can increase, decrease, or remain unchanged in an independent manner. Here we show that by making a single mutation in the gene encoding a protease, CG3066, active in the melanization cascade in Drosophila melanogaster, we observe the full spectrum of changes; these mutant flies show increases and decreases in their resistance and tolerance properties when challenged with a variety of pathogens. This result implicates melanization in fighting microbial infections and shows that an immune response can affect both resistance and tolerance to infections in microbe-dependent ways. The fly is often described as having an unsophisticated and stereotypical immune response where single mutations cause simple binary changes in immunity. We report a level of complexity in the fly's immune response that has strong ecological implications. We suggest that immune responses are highly tuned by evolution, since selection for defenses that alter resistance against one pathogen may change both resistance and tolerance to other pathogens.

  2. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  3. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review.

    Science.gov (United States)

    Parmar, Nehanjali; Singh, Kunwar Harendra; Sharma, Deepika; Singh, Lal; Kumar, Pankaj; Nanjundan, J; Khan, Yasin Jeshima; Chauhan, Devendra Kumar; Thakur, Ajay Kumar

    2017-08-01

    Genetic engineering technique offers myriads of applications in improvement of horticultural crops for biotic and abiotic stress tolerance, and produce quality enhancement. During last two decades, a large number of transgenic horticultural crops has been developed and more are underway. A number of genes including natural and synthetic Cry genes, protease inhibitors, trypsin inhibitors and cystatin genes have been used to incorporate insect and nematode resistance. For providing protection against fungal and bacterial diseases, various genes like chitinase, glucanase, osmotin, defensin and pathogenesis-related genes are being transferred to many horticultural crops world over. RNAi technique has been found quite successful in inducing virus resistance in horticultural crops in addition to coat protein genes. Abiotic stresses such as drought, heat and salinity adversely affect production and productivity of horticultural crops and a number of genes encoding for biosynthesis of stress protecting compounds including mannitol, glycine betaine and heat shock proteins have been employed for abiotic stress tolerance besides various transcription factors like DREB1, MAPK, WRKY, etc. Antisense gene and RNAi technologies have revolutionized the pace of improvement of horticultural crops, particularly ornamentals for color modification, increasing shelf-life and reducing post-harvest losses. Precise genome editing tools, particularly CRISPR/Cas9, have been efficiently applied in tomato, petunia, citrus, grape, potato and apple for gene mutation, repression, activation and epigenome editing. This review provides comprehensive overview to draw the attention of researchers for better understanding of genetic engineering advancements in imparting biotic and abiotic stress tolerance as well as on improving various traits related to quality, texture, plant architecture modification, increasing shelf-life, etc. in different horticultural crops.

  4. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Mihail KANTOR

    2018-03-01

    Full Text Available Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.

  5. Ceftaroline-Resistant, Daptomycin-Tolerant, and Heterogeneous Vancomycin-Intermediate Methicillin-Resistant Staphylococcus aureus Causing Infective Endocarditis.

    Science.gov (United States)

    Nigo, Masayuki; Diaz, Lorena; Carvajal, Lina P; Tran, Truc T; Rios, Rafael; Panesso, Diana; Garavito, Juan D; Miller, William R; Wanger, Audrey; Weinstock, George; Munita, Jose M; Arias, Cesar A; Chambers, Henry F

    2017-03-01

    We report a case of infective endocarditis (IE) caused by ceftaroline-resistant, daptomycin-tolerant, and heterogeneous vancomycin-intermediate methicillin-resistant S. aureus (MRSA). Resistance to ceftaroline emerged in the absence of drug exposure, and the E447K substitution in the active site of PBP2a previously associated with ceftaroline resistance was identified. Additionally, we present evidence of patient-to-patient transmission of the strain within the same unit. This case illustrates the difficulties in treating MRSA IE in the setting of a multidrug-resistant phenotype. Copyright © 2017 American Society for Microbiology.

  6. Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives.

    Science.gov (United States)

    Farooq, S; Azam, F

    2001-01-01

    Agricultural biodiversity adds value to crop, induces resistance, contributes enormously to human foodstuff, removes fear of genetic uniformity and ensure food security of the world. For these reasons, NIAB initiated a programme on collection, evaluation, and utilisation of agro-biodiversity related with wheat and wheat wild relatives. The focus of the programme was on the addition of stress tolerance from wild species to cultivated wheat. The objectives were i) to have a permanent source of stress tolerant germplasm, ii) to facilitate availability of such germplasm for environment friendly, profitable and sustainable agriculture on stressed lands and iii) to ensure safety of biodiversity (through gene conservation) for the stability of future agriculture. During 1998-2001, we tested wheat lines developed by using biodiversity residing in the Aegilops species. The material was tested in an area that required stress tolerant germplasm. Planting was done in fields where cotton was already growing up to the stage of second picking. The inputs included only half the amount of recommended dose of fertiliser, approximately half of the normal irrigation, no herbicide and two applications of compost. Two of the lines tested in these trials out-yielded all existing wheat cultivars traditionally grown in this area and convinced the farmers that biodiversity does play a role in adding value to the existing material, making it suitable for specific requirement. This paper describes, in detail, the significance of the plant material for the area, practical achievements, acceptance by the farmers and economic feasibility of the stress tolerant material developed at NIAB.

  7. Prevalence of impaired glucose tolerance and insulin resistance among obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Robabeh Ghergherechi

    2010-07-01

    Full Text Available Robabeh Ghergherechi1, Ali Tabrizi21Department of Pediatrics Endocrinology, Tabriz University of Medical Sciences, Tabriz, Iran; 2Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, IranPurpose: Obesity is one of the most important nutritional disorders in the world which has an obvious relationship with the incidence of metabolic diseases. Obesity prevalence has increased among children and adolescents during recent decades, leading to a rise in Type 2 diabetes mellitus (DM II prevalence in these two age brackets. Hence, the aim of this study was to assess impaired glucose tolerance and insulin resistance, and gather metabolic findings in obese children and adolescents.Methods and materials: We studied 110 obese children and adolescents (body mass index > 95th percentile for age and gender 4–18 years of age referred to the endocrine clinic of the Children’s Hospital at Tabriz University in a descriptive cross-sectional study. ­Fasting glucose, insulin, and lipid profile in all subjects were determined. Oral glucose tolerance test after eating 75 g/kg glucose was performed. Homeostatic model assessment was used to ­estimate insulin resistance.Results: Impaired glucose tolerance and insulin resistance prevalence in 68 obese adolescents was 14.7% and 31.8%, respectively. Impaired glucose tolerance and insulin resistance was not seen in 23.8% of 42 obese children. No case of DM II was seen. There was a significant statistical difference in glucose (P = 0.003 and insulin (P < 0.001 level at minute 120 in individuals with impaired glucose tolerance compared to obese children and adolescents without impaired glucose tolerance. Rate of insulin resistance in patients with impaired glucose tolerance was greater and had a significant statistical difference (P = 0.03.Conclusion: Obesity has a close relationship with increased risk of impaired glucose tolerance and insulin resistance in children and adolescents. Oral glucose

  8. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance.

    Science.gov (United States)

    Arraes, Fabricio Barbosa Monteiro; Beneventi, Magda Aparecida; Lisei de Sa, Maria Eugenia; Paixao, Joaquin Felipe Roca; Albuquerque, Erika Valeria Saliba; Marin, Silvana Regina Rockenbach; Purgatto, Eduardo; Nepomuceno, Alexandre Lima; Grossi-de-Sa, Maria Fatima

    2015-09-03

    Ethylene is a phytohormone known for inducing a triple response in seedlings, leaf abscission and other responses to various stresses. Several studies in model plants have evaluated the importance of this hormone in crosstalk signaling with different metabolic pathways, in addition to responses to biotic stresses. However, the mechanism of action in plants of agricultural interest, such as soybean, and its participation in abiotic stresses remain unclear. The studies presented in this work allowed for the identification of 176 soybean genes described elsewhere for ethylene biosynthesis (108 genes) and signal transduction (68 genes). A model to predict these routes in soybean was proposed, and it had great representability compared to those described for Arabidopsis thaliana and Oryza sativa. Furthermore, analysis of putative gene promoters from soybean gene orthologs permitted the identification of 29 families of cis-acting elements. These elements are essential for ethylene-mediated regulation and its possible crosstalk with other signaling pathways mediated by other plant hormones. From genes that are differentially expressed in the transcriptome database, we analyzed the relative expression of some selected genes in resistant and tolerant soybean plants subjected to water deficit. The differential expression of a set of five soybean ethylene-related genes (MAT, ACS, ACO, ETR and CTR) was validated with RT-qPCR experiments, which confirmed variations in the expression of these soybean target genes, as identified in the transcriptome database. In particular, two families of ethylene biosynthesis genes (ACS and ACO) were upregulated under these experimental conditions, whereas CTR (involved in ethylene signal transduction) was downregulated. In the same samples, high levels of ethylene production were detected and were directly correlated with the free fraction levels of ethylene's precursor. Thus, the combination of these data indicated the involvement of ethylene

  9. Selection of pigs for improved coping with health and environmental challenges: breeding for resistance or tolerance?

    Directory of Open Access Journals (Sweden)

    Sarita Zhe Ying Guy

    2012-12-01

    Full Text Available The benefits of improved health and welfare in pigs have driven refinements in management and selection practices, one of which is the production of pig phenotypes that can maintain health and productivity by improving response against pathogens. Selection has traditionally been made for host resistance; but the alternative host defence mechanism – host tolerance – is now being considered, as breeding for disease tolerance allows maintenance of high performance across environments of increasing pathogenic load. A distinction must be made between these two mechanisms as they vary in their influence on host-pathogen interactions and pathogen evolution, and consequently on the results of breeding programmes. Many pig production studies have failed to distinguish between resistance and tolerance; although a distinction may not always be possible. This article reviews current perspectives in selective breeding for disease resistance and tolerance in growing pigs, and the attendant industry implications. To assess the viability of breeding for resistance and/or tolerance for improved response to disease and other environmental challenges, we propose the use of routine farm records, instead of data measurements taken from laboratory experiments. Consequently, a number of factors need to be taken into account simultaneously for a multidimensional modelling approach. This includes not only genotype and disease variables, but also descriptors of the environment, as well as any possible interactions. It may not be feasible to record individual pathogen loads, and therefore true tolerance, on farm using routinely collected data. However, it may be estimated with group (farm means, or other proxy measures. Although this results in a bias, this may still be useful for modelling and quantifying resistance and tolerance. We can then quantify success of selection, and this may enable us to decide whether to select for disease resistance versus disease

  10. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...... the current models of restraint and benevolence, other ways of understanding the politics of democratic pluralism might be developed, which will enable us to conceive of tolerance's future in terms different than those currently on offer. Tolerance: A Sensorial Orientation to Politics develops...

  11. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants.

    Science.gov (United States)

    Kaur, Harmeet; Mukherjee, Soumya; Baluska, Frantisek; Bhatla, Satish C

    2015-01-01

    Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants.

  12. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance

    DEFF Research Database (Denmark)

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain...... and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination...... of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions...

  13. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.

    Science.gov (United States)

    Hatmi, Saloua; Gruau, Charlotte; Trotel-Aziz, Patricia; Villaume, Sandra; Rabenoelina, Fanja; Baillieul, Fabienne; Eullaffroy, Philippe; Clément, Christophe; Ferchichi, Ali; Aziz, Aziz

    2015-02-01

    Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  14. Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses

    International Nuclear Information System (INIS)

    Ahmad, R.; Hussain, J.

    2014-01-01

    Abiotic stresses are the most important contributors towards low productivity of major food crops. Various attempts have been made to enhance abiotic stress tolerance of crop plants by classical breeding and genetic transformation. Genetic transformation with glycinebetaine (GB) synthesizing enzymes' gene(s) in naturally non accumulating plants has resulted in enhanced tolerance against variety of abiotic stresses. Present study was aimed to evaluate the performance of GB synthesizing transgenic potato plants against salt and cold stresses. Transgenic potato plants were challenged against salt and cold stresses at whole plant level. Transgenic lines were characterized to determine the transgene copy number. Different parameters like integrity, chlorophyll contents, tuber yield and vegetative biomass were studied to monitor the stress tolerance of transgenic potato plants. The results were compared with Non-transgenic (NT) plants and statistically analyzed to evaluate significant differences. Multi-copy insertion of expression cassette was found in both transgenic lines. Upon salt stress, transgenic plants maintained better growth as compared to NT plants. The tuber yield of transgenic plants was significantly greater than NT plants in salt stress. Transgenic plants showed improved membrane integrity against cold stress by depicting appreciably reduced ion leakage as compared to NT plants. Moreover, transgenic plants showed significantly less chlorophyll bleaching than NT plants upon cold stress. In addition, NT plants accumulated significantly less biomass, and yielded fewer tubers as compared to transgenic plants after cold stress treatment. The study will be a committed step for field evaluation of transgenic plants with the aim of commercialization. (author)

  15. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  16. Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard To Select

    DEFF Research Database (Denmark)

    Porsby, Cisse Hedegaard; Webber, Mark A.; Nielsen, Kristian Fog

    2011-01-01

    of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed...... mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2x the MIC of TDA for wild-type strains were selected...... both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant...

  17. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  18. Resistance of Some Steels to Stress Corrosion Cracking

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1982-01-01

    Evaluations of stress-corrosion cracking resistance of five high-strength low-alloy steels described in report now available. Steels were heat-treated to various tensile strengths and found to be highly resistant to stress-corrosion cracking.

  19. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  20. Integrating Classical with Emerging Concepts for Better Understanding of Salinity Stress Tolerance Mechanisms in Rice

    Directory of Open Access Journals (Sweden)

    Navdeep Kaur

    2017-07-01

    Full Text Available Rice is an important cereal crop responsible for world's food security. The sensitivity of rice plants toward a range of abiotic stresses is a prime challenge for its overall growth and productivity. Among these, salinity is a major stress which results in a significant loss of global rice yield annually. For finding straightforward and strict future solutions in order to assure the food security to growing world population, understanding of the various mechanisms responsible for salt stress tolerance in rice is of paramount importance. In classical studies, identification of salt tolerant cultivars and the genetic markers linked to salt tolerance and breeding approaches have been given emphasis. It further affirmed on the identification of various pathways regulating the complex process of salt stress adaptation. However, only limited success has been achieved in these approaches as salt tolerance is a complex process and is governed by multiple factors. Hence, for better understanding of salt tolerance mechanisms, a comprehensive approach involving physiological, biochemical and molecular studies is much warranted. Modern experimental and genetic resources have provided a momentum in this direction and have provided molecular insights into different salt stress responsive pathways at the signaling and regulatory level. The integrative knowledge of classical and modern research of the understanding of salt stress adaptive pathways can help the researchers for designing effective strategies to fight against salt stress. Hence, the present review is focused on the understanding of the salt stress tolerance mechanisms in rice through the consolidative knowledge of classical and modern concepts. It further highlights the emerging new trends of salt stress adaptive pathways in rice.

  1. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  2. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.

    Science.gov (United States)

    Kaur, Ranjeet; Kumar Bhunia, Rupam; Ghosh, Ananta Kumar

    2016-01-01

    Global food security is threatened by the severe environmental conditions that have reduced the worldwide crop yield. Plants possess inherent mechanisms to cope with the initial stress phase but to ensure their survival through harsh climate, the intervention of genetic engineering is desirable. We present a comprehensive review on the progress made in the field of developing environmental stress tolerant crops and the prospects that can be undertaken for achieving it. We review the effects of abiotic and biotic stresses on crop plants, and the use of different molecular genetic approaches to cope with these environmental stresses for establishment of sustainable agriculture. The various strategies employed in different crops have also been discussed. We also summarized the major patents in the field of plant stress tolerance that have been granted in the last five years. On the basis of these analyses, we propose that genetic engineering of crops is the preferred approach over the traditional methods for yielding healthier and viable agriculture in response to the different stressful environments. The wild progenitors of cultivated crop species can prove to be highly potential genetic resources in this regard and can be exploited to produce better crops that are relatively tolerant towards various environmental stresses. Thus, elucidation of genetic loci and deciphering the underlying mechanisms that confer tolerance to plants against stressful conditions followed by its successful introgression into elite, high-yielding crop varieties can be an effective way to engineer the crops for sustainable agriculture.

  3. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    Science.gov (United States)

    Alsdurf, Jacob D; Ripley, Tayler J; Matzner, Steven L; Siemens, David H

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. Löve & D. Löve, a perennial wild relative of Arabidopsis, representing genetic variation within and among several low-elevation range margin populations. Boechera stricta is restricted to higher, moister elevations in temperate regions where generalist herbivores are often less common. Previous reports indicate a negative genetic correlation (genetic tradeoff) between chemical defence allocation and abiotic stress tolerance that may prevent the simultaneous evolution of defence and drought tolerance that would be needed for range expansion. In growth chamber experiments, the genetic tradeoff became undetectable among offspring sib-families whose parents had been drought treated, suggesting that the stress-induced trans-generational plasticity may circumvent the genetic tradeoff and thus enable range expansion. However, the trans-generational effects also included a conflict between plastic responses (environmental tradeoff); offspring whose parents were drought treated were more drought tolerant, but had lower levels of glucosinolate toxins that function in defence against generalist herbivores. We suggest that either the genetic or environmental tradeoff between defence allocation and stress tolerance has the potential to contribute to range limit development in upland mustards.

  4. Host resistance and tolerance of parasitic gut worms depend on resource availability.

    Science.gov (United States)

    Knutie, Sarah A; Wilkinson, Christina L; Wu, Qiu Chang; Ortega, C Nicole; Rohr, Jason R

    2017-04-01

    Resource availability can significantly alter host-parasite dynamics. Abundant food can provide more resources for hosts to resist infections, but also increase host tolerance of infections by reducing competition between hosts and parasites for food. Whether abundant food favors host resistance or tolerance (or both) might depend on the type of resource that the parasite exploits (e.g., host tissue vs. food), which can vary based on the stage of infection. In our study, we evaluated how low and high resource diets affect Cuban tree frog (Osteopilus septentrionalis) resistance and tolerance of a skin-penetrating, gut nematode Aplectana sp. at each stage of the infection. Compared to a low resource diet, a high resource diet enhanced frog resistance to worm penetration and tolerance while worms traveled to the gut. In contrast, a low resource diet increased resistance to establishment of the infection. After the infection established and worms could access food resources in the gut, a high resource diet enhanced host tolerance of parasites. On a high resource diet, parasitized frogs consumed significantly more food than non-parasitized frogs; when food was then restricted, mass of non-parasitized frogs did not change, whereas mass of parasitized frogs decreased significantly. Thus, a high resource diet increased frog tolerance of established worms because frogs could fully compensate for energy lost to the parasites. Our study shows that host-parasite dynamics are influenced by the effect of resource availability on host resistance and tolerance, which depends on when parasites have access to food and the stage of infection.

  5. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd Wolle...... crop performance under various climatic stresses.......Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...

  6. Stress tolerance in fungi - to kill a spoilage yeast.

    NARCIS (Netherlands)

    Smits, G.J.; Brul, S.

    2005-01-01

    The fungal spoilage of ingredients of food manufacture is an economic problem, often causes product loss and may constitute a health hazard. To effectively combat fungal food spoilage, a mechanistic understanding of tolerance for, and adaptation to, the preservation method used is crucial. Both are

  7. THE STRESS RESISTANCE OF STUDENTS. THE PARADIGM OF SUBJECT PERSONALITY SELF- ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Sergey I. Dyakov

    2016-01-01

    Full Text Available The aim of the investigation is to consider a problem of stress resistance of students in the context of subject self-organization of the personality. Methods. The following methods of research are used: questioning; psychological and diagnostic tests «Tolerance of Uncertainty» (NTN and «Personal Factors of Decisions» (PFD by T. V. Kornilova; original experimental experiences – «Coding», a technique of a self-assessment (scaling and «A locus control». While data processing the methods of mathematical statistics (SPSS 12 package – the correlation analysis of Pearson and the factorial analysis with rotation use a component by «verimax» method are applied. Results and scientific novelty. Types of subjectivity and strategy of stress resistance are allocated. The nature and a role of the emotional and stressful mechanism having information and semantic properties in its basis are disclosed. Communication of irresponsible mechanisms of mentality with the sphere of consciousness in the context of subjectivity of the personality is shown. Mechanisms of emotional and rational self-control of system of mental self-organization of the person are presented. The statistical and qualitative data opening communications between properties of subjectivity and stress resistance of the personality are empirically obtained. Variation of the relations and also types of subjectivity and stress resistance emphasized based on the results of the presented research. Original (author’s methods of studying of subjectivity and factors of stress resistance are presented. Practical significance. The revealed factors of subject self-organization reveal the stress-producing directions of the environment and the relation of the personality to situations of changes and uncertainty: and also indicate subject properties of resistance to stress which need to be developed to increase the level of health of students, to reduce risk of deviance and delinquency of

  8. Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots

    Directory of Open Access Journals (Sweden)

    Honghong eWu

    2015-02-01

    Full Text Available Salinity stress tolerance is a physiologically complex trait that is conferred by the large array of interacting mechanisms. Among these, vacuolar Na+ sequestration has always been considered as one of the key components differentiating between sensitive and tolerant species and genotypes. However, vacuolar Na+ sequestration has been rarely considered in the context of the tissue-specific expression and regulation of appropriate transporters contributing to Na+ removal from the cytosol. In this work, six bread wheat varieties contrasting in their salinity tolerance (three tolerant and three sensitive were used to understand the essentiality of vacuolar Na+ sequestration between functionally different root tissues, and link it with the overall salinity stress tolerance in this species. Roots of 4-d old wheat seedlings were treated with 100 mM NaCl for 3 days, and then Na+ distribution between cytosol and vacuole was quantified by CoroNa Green fluorescent dye imaging. Our major observations were as follows: 1 salinity stress tolerance correlated positively with vacuolar Na+ sequestration ability in the mature root zone but not in the root apex; 2 Contrary to expectations, cytosolic Na+ levels in root meristem were significantly higher in salt tolerant than sensitive group, while vacuolar Na+ levels showed an opposite trend. These results are interpreted as meristem cells playing a role of the salt sensor; 3 No significant difference in the vacuolar Na+ sequestration ability was found between sensitive and tolerant group in either transition or elongation zones; 4 The overall Na+ accumulation was highest in the elongation zone, suggesting its role in osmotic adjustment and turgor maintenance required to drive root expansion growth. Overall, the reported results suggest high tissue-specificity of Na+ uptake, signalling, and sequestration in wheat root. The implications of these findings for plant breeding for salinity stress tolerance are discussed.

  9. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    OpenAIRE

    Alsdurf, Jacob D.; Ripley, Tayler J.; Matzner, Steven L.; Siemens, David H.

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. L?ve &...

  10. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    OpenAIRE

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the tran...

  11. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  12. Stress Tolerance of Bed Bugs: A Review of Factors That Cause Trauma to Cimex lectularius and C. Hemipterus

    Directory of Open Access Journals (Sweden)

    Joshua B. Benoit

    2011-04-01

    Full Text Available Recent emergence of bed bugs (Cimex spp. has prompted a significant expansion of research devoted to this pest. The ability to survive and recover from stress has significant implications on the distribution and survival of insects, and bed bugs are no exception. Research on bed bug stress tolerance has shown considerable progress and necessitates a review on this topic. Bed bugs have an extraordinary ability to resist dehydration between bloodmeals, and this represents a critical factor allowing their prolonged survival when no host is available. High relative humidities are detrimental to bed bugs, leading to reduced survival in comparison to those held at lower relative humidities. Continual exposure of bed bugs, eggs and mobile stages, to temperatures below freezing and short term exposure (=1 h to temperatures below −16 to −18 °C results in mortality. The upper thermal limit for short term exposure of eggs, nymphs and adults is between 40–45 °C for the common (Cimex lectularius and tropical (C. hemipterus bed bugs. Long-term exposure to temperatures above 35 °C results in significant reduction in survival of mobile bed bugs. Eggs for C. lectularius and C. hemipterus are no longer viable when held below 10 °C or above 37 °C throughout embryogenesis. Blood feeding, although necessary for survival and reproduction, is discussed as a stress due to thermal and osmotic fluctuations that result from ingesting a warm bloodmeal from a vertebrate host. Cold, heat, water stress and blood feeding prompted the expression of heat shock proteins (Hsps. Pesticide application is a common human-induced stress for urban pests, and recent studies have documented pesticide resistance in many bed bug populations. High levels of traumatic insemination (mating of bed bugs has been linked to reduced survival and fecundity along with possibly exposing individuals to microbial infections after cuticular penetration by the paramere (=male reproductive organ

  13. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.

    Science.gov (United States)

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Feng, Bing; Xiao, Dong-Guang

    2015-03-16

    During the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA. However, the function of the SNR84 gene in baker's yeast coping with baking-associated stresses remains unclear. In this study, we explored the effect of SNR84 overexpression on baker's yeast which was exposed to high-temperature, high-sucrose and freeze-thaw stresses. These results suggest that overexpression of the SNR84 gene conferred tolerance of baker's yeast cells to high-temperature, high-sucrose and freeze-thaw stresses and enhanced their leavening ability in high-sucrose and freeze-thaw dough. These findings could provide a valuable insight for breeding of novel stress-resistant baker's yeast strains that are useful for baking. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  15. Potential of elite maize composites for drought tolerance in stress ...

    African Journals Online (AJOL)

    1999-12-11

    Dec 11, 1999 ... Effects due to environment (E), genotype (G) and G x E interaction were highly significant (P<0.01) for grain yield, 50% silk emergence, plant height, lodging, ears per plant, and ear rating in both environments (drought and non-drought stressed). In the stress environment, grain yields of the varieties ranged ...

  16. Influence of sulfur on cadmium (Cd) stress tolerance in Triticum ...

    African Journals Online (AJOL)

    ... (TSC) accumulation, and decreased MDA content in wheat plants. The results indicate that application of S mitigated the adverse effects of Cd stress by enhancing TSC, photosynthetic pigments and antioxidant enzymes. Key words: Antioxidant, cadmium stress, carbohydrates, photosynthetic pigments, Triticum aestivum.

  17. Variable Levels of Tolerance to Water Stress (Drought and Associated Biochemical Markers in Tunisian Barley Landraces

    Directory of Open Access Journals (Sweden)

    Sameh Dbira

    2018-03-01

    Full Text Available Due to its high tolerance to abiotic stress, barley (Hordeum vulgare is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought in nine accessions of “Ardhaoui” barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.

  18. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Science.gov (United States)

    Bevilacqua, Caroline Borges; Basu, Supratim; Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  19. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Caroline Borges Bevilacqua

    Full Text Available Rice (Oryza sativa L. cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1 classify the subspecies (ssp. grouping (japonica or indica of 21 accessions; 2 evaluate their sensitivity to cold stress; and 3 analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and

  20. Insulin resistance and exercise tolerance in heart failure patients

    DEFF Research Database (Denmark)

    Snoer, Martin; Monk-Hansen, Tea; Olsen, Rasmus Huan

    2012-01-01

    Insulin resistance has been linked to exercise intolerance in heart failure patients. The aim of this study was to assess the potential role of coronary flow reserve (CFR), endothelial function and arterial stiffness in explaining this linkage.......Insulin resistance has been linked to exercise intolerance in heart failure patients. The aim of this study was to assess the potential role of coronary flow reserve (CFR), endothelial function and arterial stiffness in explaining this linkage....

  1. Pre-cold stress increases acid stress resistance and induces amino ...

    African Journals Online (AJOL)

    Pre-cold stress increases acid stress resistance and induces amino acid homeostasis in Lactococcus lactis NZ9000. ... Compared to exposure to acid stress only, pre-adaptation to cold stress decreased the redox balance ratio and the formation of hydroxyl radicals, indicating a change in aerobic respiration and oxidative ...

  2. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  3. Trait Stress Resistance and Dynamic Stress Dissipation on Health and Well-Being: The Reservoir Model

    OpenAIRE

    Bergeman, C. S.; Deboeck, Pascal R.

    2014-01-01

    Daily data from the NDHWB (n = 783; age range 37–90) were analyzed to produce ‘dynamic characteristic’ estimates of stress input and dissipation. These were used in multi-level modeling (with age and trait stress resistance) to predict depression and health trajectories. Main effects suggest that dissipation and stress resistance predict lower depression and better health, but lower stress input was only related to lower depression. Interactions revealed that subjects with above average stres...

  4. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  5. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  6. Tasco®, a Product of Ascophyllum nodosum, Imparts Thermal Stress Tolerance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Franklin Evans

    2011-11-01

    Full Text Available Tasco®, a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco® water extract (TWE at 300 µg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C treated with 300 µg/mL and 600 µg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco® imparted thermal stress

  7. Evaluation of drought tolerance and yield capacity of barley (hordeum vulgare) genotypes under irrigated and water-stressed conditions

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Silva, J.A.T.D

    2012-01-01

    Twelve barley genotypes developed through different selection methods were evaluated under drought and irrigated conditions. The results of a correlation matrix revealed highly significant associations between Grain Yield (Yp) and Mean Productivity (MP), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) under irrigated conditions while the Mean Productivity (MP), Yield Stability Index (Yi), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) had a high response under stressed condition. Based on a principal component analysis, Geometric Mean Productivity (GMP), Mean Productivity (MP) and Stress Tolerance Index (STI) were considered to be the best parameters for selection of drought-tolerant genotypes. The 2-row barley genotypes B-07023 and B-07021 performed better in yield response under drought conditions and were more stable under stress conditions. Furthermore, drought stress reduced the yield of some genotypes while others were tolerant to drought, suggesting genetic variability in this material for drought tolerance. (author)

  8. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    Directory of Open Access Journals (Sweden)

    Ramanna Hema

    Full Text Available Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD, were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  9. Stable Expression of mtlD Gene Imparts Multiple Stress Tolerance in Finger Millet

    Science.gov (United States)

    Hema, Ramanna; Vemanna, Ramu S.; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P.; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet. PMID:24922513

  10. Comparative analysis of expressed sequence tags (ESTs between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress

    Directory of Open Access Journals (Sweden)

    Raju N L

    2011-04-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs by suppression subtraction hybridization (SSH to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. Results EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant and ICC 1882 (drought resistant exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs (10 each for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons, 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71% unigenes showed significant BLASTX similarity ( Conclusion Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

  11. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Haishun Cao

    2017-11-01

    Full Text Available Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA treatment. Furthermore, the ectopic expression (EE of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.

  12. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  13. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-05-03

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants.

  14. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1

    Directory of Open Access Journals (Sweden)

    Huiming Tang

    2018-03-01

    Full Text Available Quorum sensing (QS regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ, the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT and ΔrhlR strains are significantly higher than those in the ΔlasR strain. Supplementation of ΔlasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa. This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.

  15. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  16. Jasmonates: emerging players in controlling temperature stress tolerance

    Directory of Open Access Journals (Sweden)

    Manvi eSharma

    2016-01-01

    Full Text Available The sedentary life of plants has forced them to live in an environment that is characterized by the presence of numerous challenges in terms of biotic and abiotic stresses. Phytohormones play essential roles in mediating plant physiology and alleviating various environmental perturbations. Jasmonates are a group of oxylipin compounds occurring ubiquitously in the plant kingdom that play pivotal roles in response to developmental and environmental cues. Jasmonates (JAs have been shown to participate in unison with key factors of other signal transduction pathway, including those involved in response to abiotic stress. Recent findings have furnished large body of information suggesting the role of jasmonates in cold and heat stress. JAs have been shown to regulate C-repeat binding factor (CBF pathway during cold stress. The interaction between the integrants of JA signaling and components of CBF pathway demonstrates a complex relationship between the two. JAs have also been shown to counteract chilling stress by inducing ROS avoidance enzymes. In addition, several lines of evidence suggest the positive regulation of thermotolerance by JA. The present review provides insights into biosynthesis, signal transduction pathway of jasmonic acid and their role in response to temperature stress.

  17. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.).

    Science.gov (United States)

    Ahmad, Maqshoof; Zahir, Zahir A; Nazli, Farheen; Akram, Fareeha; Arshad, Muhammad; Khalid, Muhammad

    2013-12-01

    Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m(-1) under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  18. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.

    Directory of Open Access Journals (Sweden)

    Maqshoof Ahmad

    2013-12-01

    Full Text Available Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.

  19. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  20. Adaptive evolution of Escherichia coli to Ciprofloxacin in controlled stress environments: emergence of tolerance in spatial and temporal gradients

    Science.gov (United States)

    Deng, J.; Sanford, R. A.; Dong, Y.; Shechtman, L. A.; Zhou, L.; Alcalde, R.; Werth, C. J.; Fouke, B. W.

    2016-12-01

    Microorganisms in nature have evolved in response to a variety of environmental stresses, including gradients of temperature, pH, substrate availability and aqueous chemistry. While environmental stresses are considered to be the driving forces of adaptive evolution, the impact and extent of any specific stress needed to drive such changes has not been well characterized. In this study, the antibiotic Ciprofloxacin was used as a stressor and systematically applied to E. coli st. 307 cells via a spatial gradient in a microfluidic pore network and a temporal gradient in batch cultures. The microfluidic device facilitated in vitro real-time tracking of bacterial abundances and dynamic spatial distributions in response to the gradients of both the antibiotic and nutrients. Cells collected from the microfluidic device showed growth on plates containing up to 10-times the original minimum inhibition concentration (MIC). In batch systems, Ciprofloxacin was used to evaluate adaptive responses via temporal gradients, in which the stressor concentration was incrementally increased over time with each transfer of the culture after 24 hours of growth. Responses of E. coli 307 to these stress patterns were measured by quantifying changes in the MIC for Ciprofloxacin. Over a period of 18 days of step-wise concentration increments, bacterial cells were observed to acquire tolerance gradually and eventually adapt to a 28-fold increase in the original MIC. Samples at different stages within the temporal Ciprofloxacin gradient treatment show different extents of resistance. All samples exhibited resistance exceeding the highest exposure stress concentration. In combination with the spatial and temporal gradient systems, this work provides the first comprehensive measure of the dynamic resistance of E. coli in response to Ciprofloxacin concentration gradients. These will provide invaluable insights to understand the effects of antibiotic stresses on bacterial adaptive evolution in

  1. A Novel Non-coding RNA Regulates Drought Stress Tolerance in Arabidopsis thaliana

    KAUST Repository

    Albesher, Nour H.

    2014-05-01

    Drought (soil water deficit) as a major adverse environmental condition can result in serious reduction in plant growth and crop production. Plants respond and adapt to drought stresses by triggering various signalling pathways leading to physiological, metabolic and developmental changes that may ultimately contribute to enhanced tolerance to the stress. Here, a novel non-coding RNA (ncRNA) involved in plant drought stress tolerance was identified. We showed that increasing the expression of this ncRNA led to enhanced sensitivity during seed germination and seedling growth to the phytohormone abscisic acid. The mutant seedlings are also more sensitive to osmotic stress inhibition of lateral root growth. Consistently, seedlings with enhanced expression of this ncRNA exhibited reduced transiprational water loss and were more drought-tolerant than the wild type. Future analyses of the mechanism for its role in drought tolerance may help us to understand how plant drought tolerance could be further regulated by this novel ncRNA.

  2. Multilayer, high resolution, ion-bombardment-tolerant electron resist system

    International Nuclear Information System (INIS)

    Hunt, B.D.; Buhrman, R.A.

    1981-01-01

    A multilayer, high resolution electron resist system, which withstands ion bombardment, has been developed. This system consists of four layers which are, from top to bottom: AZ1350B, a thin metal interlayer, PMMA, and a copolymer of PMMA. The bottom two layers define the actual pattern dimensions. Two independent developers have been chosen for these two layers in order to obtain controllably undercut resist profiles ideal for liftoff applications, while maintaining high resolution in the upper PMMA layer. The top two layers of the four-level system serve to provide a protective metal coating which prevents crosslinking of the underlying polymer layer. This allows processing involving ion bombardment, such as ion milling or reactive ion etching. Without this protective metal layer, difficulty is often encountered in liftoff processing after ion bombardment, due to the presence of a thin crosslinked polymer layer which resists solvent penetration. This resist system has been used in conjunction with reactive ion beam oxidation to fabricate high quality, small area, niobium--lead alloy tunnel junctions in an edge geometry. Using a standard Cambridge EBMF-2 microfabricator, junctions with linewidths as small as 0.25 μm have been produced. With the edge geometry, this corresponds to junction areas smaller than 4 x 10 -10 cm 2

  3. Fungicide, antibiotic, heavy metal resistance and salt tolerance of ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... All of the rhizobial isolates showed resistance to the antibiotic (µg ml-1); streptomycin sulphate ... Using fungicides for crop diseases control in legume fields has contributed to increasing yield ..... on growth of Rhizobium japonicum and symbiotically grown soybean in soil under laboratory conditions. Prot.

  4. Strategies of two tropical woody species to tolerate salt stress

    Directory of Open Access Journals (Sweden)

    Bruno Melo Lustosa

    2017-03-01

    Full Text Available This study aimed to evaluate the leaf primary metabolism in two woody species, Sterculia foetida and Bombacopsis glabra. Both species have seeds rich in oil and they are largely found in regions with irregularities in water availability. Seedlings were grown in a greenhouse from seeds. At 140 days after emergence, 50% of the plants were subjected to salt stress for 23 days, daily receiving 100 mM of NaCl solution. In both species, leaf stomata conductance and water potential decreased quickly under salt stress. The two species showed different strategies in photosynthetic pigment concentration and components of nitrogen metabolism. S. foetida kept the pigment concentration unchanged after 23 days of stress, while B. glabra increased concentration of chlorophyll a and carotenoids. S. foetida showed a high leaf concentration of K+ in stressed plants and a Na+/K+ ratio without differences when compared to control. Thus, S. foetida presented a better ionic balance, while B. glabra invested in photoprotection. Therefore, both species present potential to be planted in Brazilian Northeast, where water deficit and salt stress are challenging for annual crops.

  5. Ecologically relevant stress resistance: from microarrays and ...

    Indian Academy of Sciences (India)

    Unknown

    2004-10-15

    Oct 15, 2004 ... senting both cosmopolitan species such as D. melanogaster with a known genome map, and more specialized and ecologically well described .... gene regulation in stress selected and inbred lines, map. QTL responsible for stress ..... psychophysiological stress in rats; Brain Res. 757 146–. 148. Goodnight ...

  6. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses.

    Science.gov (United States)

    Pruthvi, V; Rama, N; Parvathi, M S; Nataraja, K N

    2017-05-01

    Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. A Survey: Potential Impact of Genetically Modified Maize Tolerant to Drought or Resistant to Stem Borers in Uganda

    Directory of Open Access Journals (Sweden)

    Isaac M. Wamatsembe

    2017-03-01

    Full Text Available Maize production in Uganda is constrained by various factors, but especially drought and stem borers contribute to significant yield losses. Genetically modified (GM maize with increased drought tolerance and/or Bt insect resistance (producing the Bacillus thuringiensis Cry protein is considered as an option. For an ex ante impact analysis of these technologies, a farmer survey was carried out in nine districts of Uganda, representing the major farming systems. The results showed that farmers did rate stem borer and drought as the main constraints for maize farming. Most farmers indicated a positive attitude towards GM maize, and 86% of all farmers said they would grow GM maize. Farmer estimated yield losses to drought and stem borer damage were on average 54.7% and 23.5%, respectively, if stress occurred. Taking the stress frequency into consideration (67% for both, estimated yield losses were 36.5% and 15.6% for drought and stem borer, respectively. According to the ex-ante partial budget analysis, Bt hybrid maize could be profitable, with an average value/cost ratio of 2.1. Drought tolerant hybrid maize had lower returns and a value/cost ratio of 1.5. Negative returns occurred mainly for farmers with non-stressed grain yields below 2 t·ha−1. The regulatory framework in Uganda needs to be finalized with consideration of strengthening key institutions in the maize sector for sustainable introduction of GM maize.

  8. Pseudomonas aeruginosa enolase influences bacterial tolerance to oxidative stresses and virulence

    Directory of Open Access Journals (Sweden)

    Yuding Weng

    2016-12-01

    Full Text Available Pseudomonas aeruginosa is a Gram negative opportunistic pathogenic bacterium, which causes acute and chronic infections. Upon entering host, bacteria alter global gene expression to adapt to host environment and avoid clearance by host. Enolase is a glycolytic enzyme involved in carbon metabolism. It is also a component of RNA degradosome, which is involved in RNA processing and gene regulation. Here we report that enolase is required for the pathogenesis of P. aeruginosa in a murine acute pneumonia model. Mutation of enolase coding gene (eno increased bacterial susceptibility to neutrophil mediated killing, which is due to reduced tolerance to oxidative stress. Catalases and alkyl hydroperoxide reductases play a major role in protecting the cell from oxidative damages. In the eno mutant, the expression levels of catalases (KatA, KatB were similar as those in the wild type strain in the presence of H2O2, however, the expression levels of alkyl hydroperoxide reductases (AhpB, AhpC were significantly reduced. Overexpression of ahpB but not ahpC in the eno mutant fully restored the bacterial resistance to H2O2 as well as neutrophil mediated killing, and partially restored bacterial virulence in the murine acute pneumonia model. Therefore, we have identified a novel role of enolase in the virulence of P. aeruginosa.

  9. Transformation of Oats and Its Application to Improving Osmotic Stress Tolerance

    Science.gov (United States)

    Maqbool, Shahina B.; Zhong, Heng; Oraby, Hesham F.; Sticklen, Mariam B.

    Oat (Avena sativa L.), a worldwide temperate cereal crop, is deficient in tolerance to osmotic stress due to drought and/or salinity. To genetically transform the available commercial oat cultivars, a genotype-independent and efficient regeneration system from shoot apical meristems was developed using four oat cultivars: Prairie, Porter, Ogle, and Pacer. All these oat cultivars generated a genotype-independent in vitro differentiated multiple shoots from shoot apical meristems at a high frequency. Using this system, three oat cultivars were genetically co-transformed with pBY520 (containing hva1 and bar) and pAct1-D (containing gus) using biolistic™ bombardment. Transgenic plants were selected and regenerated using herbicide resistance and GUS as a marker. Molecular and biochemical analyses of putative transgenic plants confirmed the co-integration of hva1 and bar genes with a frequency of 100%, and 61.6% of the transgenic plants carried all three genes (hva1, bar and gus). Further analyses of R0, R1, and R2 progenies confirmed stable integration, expression, and Mendalian inheritance for all transgenes. Histochemical analysis of GUS protein in transgenic plants showed a high level of GUS expression in vascular tissues and in the pollen grains of mature flowers. Immunochemical analysis of transgenic plants indicated a constitutive expression of hva1 at all developmental stages. However, the level of HVA1 was higher during the early seedling stages.

  10. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-20

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  11. EXOPOLYSACCHARIDE PRODUCTION BY DROUGHT TOLERANT BACILLUS SPP. AND EFFECT ON SOIL AGGREGATION UNDER DROUGHT STRESS

    Directory of Open Access Journals (Sweden)

    Sandhya Vardharajula

    2014-08-01

    Full Text Available Exopolysaccharides (EPS of microbial origin with novel functionality, reproducible physico-chemical properties, are important class of polymeric materials. EPS are believed to protect bacterial cells from dessication, produce biofilms, thus enhancing the cells chances of bacterial colonizing special ecological niches. In rhizosphere, EPS are known to be useful to improve the moisture-holding capacity. Three Bacillus spp. strains identified by 16s rDNA sequence analysis as B. amyloliquefaciens strain HYD-B17; B. licheniformis strain HYTAPB18; B. subtilis strain RMPB44 were studied for the ability to tolerate matric stress and produce EPS under different water potentials. EPS production in all the three Bacillus spp strains increased with increasing water stress indicating correlation between drought stress tolerance and EPS production. Among the isolates, strain HYD-17 showed highest production of EPS. The exopolysaccharide composition of the three strains was further analyzed by HPLC. Drought stress influenced the ratio of sugars in EPS and glucose was found as major sugar in strains HYTAPB18 and RMPB44 whereas raffinose was major sugar found in strain HYD-B17. Inoculation of EPS producing Bacillus spp. strains in soil resulted in good soil aggregation under drought stress conditions at different incubation periods. This study shows that exposure to water stress conditions affects the composition and ratios of sugars in EPS produced by Bacillus spp. strains HYD-B17, HYTAPB18 and RMPB44 influencing abiotic stress tolerance of the microorganisms.

  12. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance.

    Science.gov (United States)

    Kim, Yun-Hee; Kim, Myoung Duck; Choi, Young Im; Park, Sung-Chul; Yun, Dae-Jin; Noh, Eun Woon; Lee, Haeng-Soon; Kwak, Sang-Soo

    2011-04-01

    Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes in plants. Previously, we reported that overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic potato and sweetpotato plants enhanced tolerance to various abiotic stresses. In this study, transgenic poplar (Populus alba × Poplus glandulosa) expressing the AtNDPK2 gene under the control of a SWPA2 promoter (referred to as SN) was generated to develop plants with enhanced tolerance to oxidative stress. The level of AtNDPK2 expression and NDPK activity in SN plants following methyl viologen (MV) treatment was positively correlated with the plant's tolerance to MV-mediated oxidative stress. We also observed that antioxidant enzyme activities such as ascorbate peroxidase, catalase and peroxidase were increased in MV-treated leaf discs of SN plants. The growth of SN plants was substantially increased under field conditions including increased branch number and stem diameter. SN plants exhibited higher transcript levels of the auxin-response genes IAA2 and IAA5. These results suggest that enhanced AtNDPK2 expression affects oxidative stress tolerance leading to improved plant growth in transgenic poplar. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Influence of sulfur on cadmium (Cd) stress tolerance in Triticum ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-29

    May 29, 2012 ... accumulation. However, S-exposed plants clearly exhibited enhanced antioxidant enzymes activity. (catalase, peroxidase and superoxide dismutase), chlorophyll a and b content and total soluble ... that application of S mitigated the adverse effects of Cd stress by enhancing TSC, photosynthetic pigments ...

  14. A physiological evaluation of the enhanced osmotic stress tolerance ...

    African Journals Online (AJOL)

    Leaf water potential and relative water content were also determined. SR3 leaves were more effective in accumulating proline and soluble sugar than those of Jinan 177, and their osmotic potential was significantly reduced in response to the applied osmotic stress. The mean increase in the activities of SOD, POD and APX ...

  15. Stress Tolerance: New Challenges for Millennial College Students

    Science.gov (United States)

    Bland, Helen W.; Melton, Bridget F.; Welle, Paul; Bigham, Lauren

    2012-01-01

    Problem: College years have been deemed as one of the most stressful periods of a person's life (Hales, 2009). The millennial generation of college students are unique in characteristics, including the manner in which they handle stressors. Purpose: The purpose of this study was to identify lifestyle habits and coping strategies that may be…

  16. Nitric oxide and nitrosative stress tolerance in yeast

    Science.gov (United States)

    Tillmann, Anna; Gow, Neil A.R.; Brown, Alistair J.P.

    2013-01-01

    The opportunistic human fungal pathogen Candida albicans encounters diverse environmental stresses when it is in contact with its host. When colonising and invading human tissues C. albicans is exposed to reactive oxygen (ROS) and reactive nitrogen intermediates (RNI). ROS and RNI are generated in the first line of host defence by phagocytic cells such as macrophages and neutrophils. In order to escape these host-induced oxidative and nitrosative stresses C. albicans has developed various detoxification mechanisms. One such mechanism is the detoxification of nitric oxide (NO) to nitrate by the flavohaemoglobin enzyme, CaYhb1. Members of the haemoglobin superfamily are highly conserved and are found in archaea, eukaryotes, and bacteria. Flavohemoglobins have a dioxygenase activity (NOD) and contain three domains: a globin domain, an FAD-binding domain, and an NAD(P)-binding domain. Here we examine the nitrosative stress response in three fungal models: the pathogenic yeast C. albicans, the benign budding yeast Saccharomyces cerevisiae, and the benign fission yeast Schizosaccharomyces pombe. We compare their enzymatic and non-enzymatic NO and RNI detoxification mechanisms and summarise fungal responses to nitrosative stress. PMID:21265777

  17. Evidence for an association in corn between stress tolerance and ...

    African Journals Online (AJOL)

    Aflatoxins are carcinogenic secondary metabolites produced mainly by Aspergillus flavus during infection of susceptible crops, such as corn. A. flavus infection and subsequent aflatoxin contamination is a serious issue in the southern US, especially during a drought. Field studies demonstrate that reduction of drought stress ...

  18. development of intermittent drought stress tolerant common bean

    African Journals Online (AJOL)

    ACSS

    2011-01-31

    Jan 31, 2011 ... 2School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University,. P. O. Box 7062 ... Pods per plant and seed weight were the yield components most affected by drought, with reductions of 82 and 78 % ... Yield stability under water stress can be attributed to drought ...

  19. Variation in adult life history and stress resistance across five ...

    Indian Academy of Sciences (India)

    Unknown

    Dry weight at eclosion, adult lifespan, lifetime fecundity, lipid and carbohydrate content at eclosion, and starvation and desiccation ... Keywords. life-history evolution; lifespan; fecundity; starvation; desiccation; lipid; glycogen; sexual dimorphism; laboratory ...... Rapid loss of stress resistance in Drosophila melanogaster.

  20. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. OsSUV3 functions in cadmium and zinc stress tolerance in rice (Oryza sativa L. cv IR64).

    Science.gov (United States)

    Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Protein of nuclear encoded SUV3 (suppressor of Var 3) gene is a DNA and RNA helicase, localized in mitochondria and is a subunit of the degradosome complex involved in regulation of RNA surveillance and turnover. To overcome the abiotic stress-induced loss of crop yield, a multi-stress tolerant trait is required. Beside salinity stress the heavy metals including cadmium and zinc also affect the yield and quality of food crops. Since rice is a one of the staple food therefore it is important to develop a multi-stress including salinity and metal tolerant variety. Recently we have reported the role of OsSUV3 in salinity stress tolerance in rice; however, its role in metal stress has not been studied so far. Here we report that in response to cadmium and zinc stress the OsSUV3 transcript level is induced in rice and its overexpression in transgenic IR64 rice plants confers the metal stress tolerance. In addition to its previously reported role in salinity stress tolerance, this study further shows the role of OsSUV3 helicase in cadmium and zinc stress tolerance suggesting its involvement in multi-stress tolerance.

  2. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato.

    Science.gov (United States)

    Ji, Chang Yoon; Jin, Rong; Xu, Zhen; Kim, Ho Soo; Lee, Chan-Ju; Kang, Le; Kim, So-Eun; Lee, Hyeong-Un; Lee, Joon Seol; Kang, Chang Ho; Chi, Yong Hun; Lee, Sang Yeol; Xie, Yiping; Li, Hongmin; Ma, Daifu; Kwak, Sang-Soo

    2017-08-14

    Sweetpotato (Ipomoea batatas [L.] Lam) is suitable for growth on marginal lands due to its abiotic stress tolerance. However, severe environmental conditions including low temperature pose a serious threat to the productivity and expanded cultivation of this crop. In this study, we aimed to develop sweetpotato plants with enhanced tolerance to temperature stress. P3 proteins are plant-specific ribosomal P-proteins that act as both protein and RNA chaperones to increase heat and cold stress tolerance in Arabidopsis. Here, we generated transgenic sweetpotato plants expressing the Arabidopsis ribosomal P3 (AtP3B) gene under the control of the CaMV 35S promoter (referred to as OP plants). Three OP lines (OP1, OP30, and OP32) were selected based on AtP3B transcript levels. The OP plants displayed greater heat tolerance and higher photosynthesis efficiency than wild type (WT) plants. The OP plants also exhibited enhanced low temperature tolerance, with higher photosynthesis efficiency and less membrane permeability than WT plants. In addition, OP plants had lower levels of hydrogen peroxide and higher activities of antioxidant enzymes such as peroxidase and catalase than WT plants under low temperature stress. The yields of tuberous roots and aerial parts of plants did not significantly differ between OP and WT plants under field cultivation. However, the tuberous roots of OP transgenic sweetpotato showed improved storage ability under low temperature conditions. The OP plants developed in this study exhibited increased tolerance to temperature stress and enhanced storage ability under low temperature compared to WT plants, suggesting that they could be used to enhance sustainable agriculture on marginal lands.

  3. Resistance gene analogs involved in tolerant cassava--geminivirus interaction that shows a recovery phenotype.

    Science.gov (United States)

    Louis, Bengyella; Rey, Chrissie

    2015-12-01

    The current literature describes recovery from virus-induced symptoms as a RNA silencing defense, but immunity-related genes, including the structurally specific resistance gene analogs (RGAs) that may play a key role in tolerance and recovery is not yet reported. In this study, the transcriptome data of tolerant cassava TME3 (which exhibits a recovery phenotype) and susceptible cassava T200 infected with South African cassava mosaic virus were explored for RGAs. Putative resistance protein analogs (RPAs) with amide-like indole-3-acetic acid-Ile-Leu-Arg (IAA-ILR) and leucine-rich repeat (LRR)-kinase conserved domains were unique to TME3. Common responsive RPAs in TME3 and T200 were the dirigent-like protein, coil-coil nucleotide-binding site (NBS) and toll-interleukin-resistance, disease resistance zinc finger chromosome condensation-like protein (DZC), and NBS-apoptosis repressor with caspase recruitment (ARC)-LRR domains. Mutations in RPAs in the MHD motif of the NBS-ARC2 subdomain associated with the recovery phase in TME3 were observed. Additionally, a cohort of 25 RGAs mined solely during the recovery process in TME3 was identified. Phylogenetic and expression analyses support that diverse RGAs are differentially expressed during tolerance and recovery. This study reveals that in cassava, a perennial crop, RGAs participate in tolerance and differentially accumulate during recovery as a complementary defense mechanism to natural occurring RNA silencing to impair viral replication.

  4. Development of late blight resistance and heat tolerance through gamma irradiation of shoot cultures in potato

    International Nuclear Information System (INIS)

    Gosal, S.S.; Jitender Kaur, Adas; Minocha, J.L.

    2001-01-01

    In vitro shoot cultures of two potato varieties viz., Kufri jyoti and Kufri Chandramukhi were gamma irradiated at 20 Gy and 40 Gy. Micro tubers were induced in micro propagated M1V3 generation. For heat tolerance micro tubers were induced at elevated (28 C ) incubation temperature (optimum being 20 1C ) and were characterized by early sowing, chlorophyll persistence and harvest index. The number of micro tubers/plant was highly reduced at elevated temperature and the resulting tubers exhibited distorted shapes and growth of apical buds. Thus obtained micro tubers exhibited better germination (62.3%) even in early sowing at relatively higher temperature. The progenies from putative heat tolerant plants were grown in the field by sowing at higher temperature for four subsequent generations. Heat tolerant plants segregated in each generation but the frequency of heat tolerant plants increased in the advanced generation. For developing late blight resistance micro tubers produced from irradiated shoot cultures were sown in pots and resulting plants were screened using detached leaf method. The progenies of putative resistant plants grown in the field were artificially inoculated with sporangial inoculum of Phytophthora infection's. Field grown plants exhibited segregation with respect to disease reaction and about 56 per cent plants showed resistance. Segregation was reduced during following generation and the frequency of resistant plants was increased up to 72.3 per cent. Thus, repeated selections has helped in developing stable mutants in both the varieties

  5. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    OpenAIRE

    Dues, Dylan J.; Andrews, Emily K.; Schaar, Claire E.; Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxi...

  6. Screening for Stress Resistance Mutations in the Mouse

    Directory of Open Access Journals (Sweden)

    Wallace S Chick

    2014-09-01

    Full Text Available Longevity is correlated with stress resistance in many animal models. However, previous efforts through the boosting of the antioxidant defense system did not extend life span, suggesting that longevity related stress resistance is mediated by other uncharacterized pathways. We have developed a high-throughput platform for screening and rapid identification of novel genetic mutants in the mouse that are stress-resistant. Selection for resistance to stressors occurs in mutagenized mouse embryonic stem (ES cells, which are carefully treated so as to maintain pluripotency for mouse production. Initial characterization of these mutant ES cells revealed mutations in Pigl, Tiam1, and Rffl, among others. These genes are implicated in glycosylphosphatidylinositol biosynthesis, NADPH oxidase function, and inflammation. These mutants: (1 are resistant to two different oxidative stressors, paraquat and the omission of 2-mercaptoethanol, (2 have reduced levels of endogenous reactive oxygen species (ROS, (3 are capable of generating live mice, and (4 transmit the stress resistance phenotype to the mice. This strategy offers an efficient way to select for new mutants expressing a stress resistance phenotype, to rapidly identify the causative genes, and to develop mice for in vivo studies.

  7. Toward a semisynthetic stress response system to engineer microbial solvent tolerance.

    Science.gov (United States)

    Zingaro, Kyle A; Papoutsakis, Eleftherios Terry

    2012-01-01

    Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have

  8. Examining the specific dimensions of distress tolerance that prospectively predict perceived stress.

    Science.gov (United States)

    Bardeen, Joseph R; Fergus, Thomas A; Orcutt, Holly K

    2017-04-01

    We examined five dimensions of distress tolerance (i.e. uncertainty, ambiguity, frustration, negative emotion, physical discomfort) as prospective predictors of perceived stress. Undergraduate students (N = 135) completed self-report questionnaires over the course of two assessment sessions (T1 and T2). Results of a linear regression in which the five dimensions of distress tolerance and covariates (i.e. T1 perceived stress, duration between T1 and T2) served as predictor variables and T2 perceived stress served as the outcome variable showed that intolerance of uncertainty was the only dimension of distress tolerance to predict T2 perceived stress. To better understand this prospective association, we conducted a post hoc analysis simultaneously regressing two subdimensions of intolerance of uncertainty on T2 perceived stress. The subdimension representing beliefs that "uncertainty has negative behavioral and self-referent implications" significantly predicted T2 perceived stress, while the subdimension indicating that "uncertainty is unfair and spoils everything" did not. Results support a growing body of research suggesting intolerance of uncertainty as a risk factor for a wide variety of maladaptive psychological outcomes. Clinical implications will be discussed.

  9. Drought-Tolerant Corn Hybrids Yield More in Drought-Stressed Environments with No Penalty in Non-stressed Environments.

    Science.gov (United States)

    Adee, Eric; Roozeboom, Kraig; Balboa, Guillermo R; Schlegel, Alan; Ciampitti, Ignacio A

    2016-01-01

    The potential benefit of drought-tolerant (DT) corn ( Zea mays L.) hybrids may depend on drought intensity, duration, crop growth stage (timing), and the array of drought tolerance mechanisms present in selected hybrids. We hypothesized that corn hybrids containing DT traits would produce more consistent yields compared to non-DT hybrids in the presence of drought stress. The objective of this study was to define types of production environments where DT hybrids have a yield advantage compared to non-DT hybrids. Drought tolerant and non-DT hybrid pairs of similar maturity were planted in six site-years with different soil types, seasonal evapotranspiration (ET), and vapor pressure deficit (VPD), representing a range of macro-environments. Irrigation regimes and seeding rates were used to create several micro-environments within each macro-environment. Hybrid response to the range of macro and micro-environmental stresses were characterized in terms of water use efficiency, grain yield, and environmental index. Yield advantage of DT hybrids was positively correlated with environment ET and VPD. Drought tolerant hybrids yielded 5 to 7% more than non-DT hybrids in high and medium ET environments (>430 mm ET), corresponding to seasonal VPD greater than 1200 Pa. Environmental index analysis confirmed that DT hybrids were superior in stressful environments. Yield advantage for DT hybrids appeared as yield dropped below 10.8 Mg ha -1 and averaged as much as 0.6-1 Mg ha -1 at the low yield range. Hybrids with DT technology can offer a degree of buffering against drought stress by minimizing yield reduction, but also maintaining a comparable yield potential in high yielding environments. Further studies should focus on the physiological mechanisms presented in the commercially available corn drought tolerant hybrids.

  10. Impact of acute psychological stress on cardiovascular risk factors in face of insulin resistance.

    Science.gov (United States)

    Jones, Kristian T; Shelton, Richard C; Wan, Jun; Li, Li

    2016-11-01

    Individuals with insulin resistance (IR) are at greater risk for cardiovascular disease (CVD). Psychological stress may contribute to develop CVD in IR, although mechanisms are poorly understood. Our aim was to test the hypothesis that individuals with IR have enhanced emotional and physiological responses to acute psychological stress, leading to increased CVD risk. Sixty participants were enrolled into the study, and classified into IR group (n = 31) and insulin sensitive group (n = 29) according to the Quantitative insulin sensitivity check index, which was calculated based on an oral glucose tolerance test. The Trier social stress test, a standardized experimental stress paradigm, was performed on each participant, and emotional and physiological responses were examined. Blood was collected from each subject for insulin, cytokines, and cortisol measurements. Compared with the insulin-sensitive group, individuals with IR had significantly lower ratings of energy and calm, but higher fatigue levels in response to acute stressors. Individuals with IR also showed blunted heart rate reactivity following stress. In addition, the IR status was worsened by acute psychological stress as demonstrated by further increased insulin secretion. Furthermore, individuals with IR showed significantly increased levels of leptin and interleukin-6, but decreased levels of adiponectin, at baseline, stress test, and post-stress period. Our findings in individuals with IR under acute stress would allow a better understanding of the risks for developing CVD and to tailor the interventions for better outcomes.

  11. Increased resistance to stress corrosion of aluminum alloys

    Science.gov (United States)

    Brummer, S. B.; Cocks, F. H.

    1970-01-01

    Stress corrosion resistance is increased by distorting surface grain-boundary structure and by interrupting the corrosion and stress corrosion. The first is accomplished by machining or shot peening and the second by removal from and later reexposure to the corrosive environment.

  12. Plant resistance to cold stress: Mechanisms and environmental ...

    Indian Academy of Sciences (India)

    Unknown

    temperature was an even more effective signal than day-length. [Beck E H, Heim R and Hansen J 2004 Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening; J. Biosci. 29 449–459]. 1. Introduction. 1.1 Ecophysiological aspects of plant cold stress and acclimation.

  13. Studying the Phenotypic and Genotypic Expression of Antibiotic Resistance in Campylobacter jejuni under Stress Conditions.

    Science.gov (United States)

    Efimochkina, N R; Stetsenko, V V; Bykova, I V; Markova, Yu M; Polyanina, A S; Aleshkina, A I; Sheveleva, S A

    2018-03-01

    Specific features for the development of resistance in Campylobacter jejuni strains were studied after treatment with antibiotics of 6 pharmacological groups. Populations of 18 native strains of C. jejuni (isolated from raw poultry products) and their subcultures (obtained after 2-3-fold stress exposures to antimicrobial agents in subinhibitory doses) were examined to evaluate the expression of phenotypic antibiotic resistance. Genotypic properties of strains were studied by the PCR with primers that detect the presence of genes for resistance to aminoglycosides (aphA-1, aphA-3, and aphA-7), tetracyclines (tetO), and quinolones (GZgyrA). The majority of test strains of C. jejuni exhibited a high resistance to nalidixic acid, ciprofloxacin, and tetracycline, which reached the maximum value after numerous passages. The expression of antibiotic resistance was greatest in the presence of nalidixic acid and tetracycline. Ciprofloxacin resistance of 33% strains, which were initially resistant to this antibiotic, was increased after 2-3-fold treatment. We revealed a high degree of correspondence between phenotypic and genotypic profiles of antibiotic resistance in food isolates of Campylobacter. One, two, or more genes of aphA were identified in 85% strains phenotypically resistant to aminoglycosides. The tetO gene was found nearly in all strains resistant to tetracycline. Studying the biofilm matrix in C. jejuni after culturing with antibiotics in subinhibitory doses showed that quinolones (particularly nalidixic acid) and tetracyclines potentiate the formation of biofilms and increase the tolerance of Campylobacter to stress exposures. The intensity of biofilm growth was shown to depend little on the effect of macrolides and aminoglycosides. Therefore, the presence of these agents in residual concentrations is associated with a lower risk for the development of antibiotic resistance in C. jejuni populations.

  14. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals

    Directory of Open Access Journals (Sweden)

    Megan C Shelden

    2013-05-01

    Full Text Available Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive, yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt-tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript /metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance.

  15. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals.

    Science.gov (United States)

    Shelden, Megan C; Roessner, Ute

    2013-01-01

    Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance.

  16. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  17. Screening maize ( Zea mays L.) hybrids for salt stress tolerance at ...

    African Journals Online (AJOL)

    Plant breeding may provide a relatively cost effective short-term solution to the salinity problem by producing cultivars that are able to remain productive at low to moderate levels of salinity. To determine the most tolerant hybrid to salinity stress, an experiment was performed as factorial form under completely randomized ...

  18. Stress-inducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance

    NARCIS (Netherlands)

    Kissoudis, Christos; Kalloniati, Chrissanthi; Flemetakis, Emmanouil; Madesis, Panagiotis; Labrou, Nikolaos E.; Tsaftaris, Athanasios; Nianiou-Obeidat, Irini

    2015-01-01

    The involvement of glutathione transferases (GSTs) in plant’s tolerance to abiotic stresses has been extensively studied; however, the metabolic changes occurring in the plants with altered GSTs expression have not been studied in detail. We have previously demonstrated that GmGSTU4

  19. Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila

    NARCIS (Netherlands)

    Aksu, Ugur; Yanar, Karolin; Terzioglu, Duygu; Erkol, Tugçe; Ece, Evrim; Aydin, Seval; Uslu, Ezel; Çakatay, Ufuk

    2014-01-01

    We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol, a membrane permeable antioxidant, affects the type and magnitude of oxidative damage and stress tolerance through mimetic aging process in Drosophila. Drosophila colonies were randomly divided into three

  20. The genome of the stress tolerant wild tomato species solanum pennellii

    Science.gov (United States)

    Solanum pennellii is a wild tomato species endemic to Andean regions in South America, where it has evolved to thrive in arid habitats1. It exhibits extreme stress tolerance and introgression lines (ILs) in which large genomic regions of cultivated tomato (S. lycopersicum) are replaced with the corr...

  1. Relations of low frustration tolerance beliefs with stress, depression, and anxiety in young adolescents.

    Science.gov (United States)

    Mahon, Noreen E; Yarcheski, Adela; Yarcheski, Thomas J; Hanks, Michele M

    2007-02-01

    Young adolescents (N=144; 66 boys, 78 girls), ages 12 to 14 years (M=12.2, SD=.8), who reported lower scores on the Low Frustration Tolerance Beliefs Instrument had higher scores on the Perceived Stress Scale and the Profile of Mood States Subscales of Depression and Anxiety.

  2. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

    OpenAIRE

    Holzinger, Andreas; Pichrtov?, Martina

    2016-01-01

    Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important...

  3. Genome sequences of two stress-tolerant Campylobacter jejuni poultry strains, 305 and DFVF1099

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    Campylobacter jejuni is a food-borne pathogen with a high prevalence in poultry meat, which in fresh unfrozen condition is the major source of campylobacteriosis. C. jejuni strains DFVF1099 and 305 are considered tolerant to several environmental stresses (T. Birk et al., J. Food Prot. 73...

  4. Truncated HSPB1 causes axonal neuropathy and impairs tolerance to unfolded protein stress

    Directory of Open Access Journals (Sweden)

    Emil Ylikallio

    2015-06-01

    General significance: sHSPs have important roles in prevention of protein aggregates that induce toxicity. We showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, and when lacking causes axonal neuropathy in patients.

  5. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Directory of Open Access Journals (Sweden)

    Yoshiki eNakahara

    2015-10-01

    Full Text Available Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1 a novel protein highly homologous to thaumatin-like proteins, (2 a novel coiled-coil protein of unknown function, and (3 a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  6. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea.

    Science.gov (United States)

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation.

  7. Multiple antibiotic resistances in metal tolerant E. coli from hospital waste water.

    Science.gov (United States)

    Alam, Manzar; Imran, Mohd

    2014-01-01

    Study of antibiotic resistance was done among the metal tolerant E. coli isolates from hospital wastewater at Lucknow city. Metal tolerance was determined in terms of visible growth on metal amended plates at their varying concentrations. MICs were also determined among all metal tolerant E. coli isolates. All the isolates showed their MIC in between 100-2000 µg/ml while maximum isolates demonstrated their MICs at 400, 800 and 1600 µg/ml against all the metal tested. 23.07% of the isolates showed their MIC at 2000 µg/ml against Ni(3+). Multiple antibiotic resistances were recorded among all the metal resistant E.coli isolates. A high level of resistance was observed against Methicillin (86.53%) followed by penicillin (73.07%), Cephradin (57.69%), Rifampicin (34.61%), Erythromycin (26.92%), Nalidixic acids (25%), Chloramphenicol (3.84%) and least to Gentamycine (1.92%). Streptomycin was recorded most effective against E.coli isolates among the entire antibiotic tested. Antimicrobial resistance observed among the bacteria from the aquatic system contaminated with hospital wastes may be threatful for the environment and public health both.

  8. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.

    Science.gov (United States)

    Dahlsten, Elias; Lindström, Miia; Korkeala, Hannu

    2015-05-01

    Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously.

    Science.gov (United States)

    Erdei, Eva; Molnár, Mónika; Gyémánt, Gyöngyi; Antal, Károly; Emri, Tamás; Pócsi, István; Nagy, János

    2011-07-01

    A thermotolerant Kluyveromyces marxianus mutant was developed by exposing yeast cultures repeatedly to 48°C incubation temperature, and the strain was characterized with a significantly increased trehalose content. Unexpectedly, the strain was sensitive to alcohol, osmotic and oxidative stress, which correlated with the increases in the trehalose concentrations. Intracellular glutathione levels declined in both wild-type and mutant cells when exposed to elevating incubation temperatures. Finally, we reached the surprising conclusion that neither trehalose nor glutathione metabolisms should be aimed at in future strain development programs with K. marxianus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Fault tolerance improvement for queuing systems under stress load

    International Nuclear Information System (INIS)

    Nikonov, Eh.G.; Florko, A.B.

    2009-01-01

    Various kinds of queuing information systems (exchange auctions systems, web servers, SCADA) are faced to unpredictable situations during operation, when information flow that requires being analyzed and processed rises extremely. Such stress load situations often require human (dispatcher's or administrator's) intervention that is the reason why the time of the first denial of service is extremely important. Common queuing systems architecture is described. Existing approaches to computing resource management are considered. A new late-first-denial-of-service resource management approach is proposed

  11. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus

    Directory of Open Access Journals (Sweden)

    Sara I. Zandalinas

    2017-06-01

    Full Text Available Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS. Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and glutathione reductase (GR activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  12. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus.

    Science.gov (United States)

    Zandalinas, Sara I; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2017-01-01

    Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  13. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    International Nuclear Information System (INIS)

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-01-01

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis

  14. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Fengjuan, E-mail: jfj.5566@163.com; Qi, Shengdong, E-mail: zisexanwu@163.com; Li, Hui, E-mail: 332453593@qq.com; Liu, Pu, E-mail: banbaokezhan@163.com; Li, Pengcheng, E-mail: lpcsdau@163.com; Wu, Changai, E-mail: cawu@sdau.edu.cn; Zheng, Chengchao, E-mail: cczheng@sdau.edu.cn; Huang, Jinguang, E-mail: jghuang@sdau.edu.cn

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  15. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    exploitation of DNA/RNA unwinding pathways for engineering salinity tolerance without affecting yield in crop plants. The helicase was also upregulated in response to other stresses like dehydration and low temperatures. In addition, future generations of the transgenic tobacco plants maintained the exogenous gene and continued to resist high salt stress, suggesting that stress tolerance can be manipulated in crop plants. (author)

  16. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants.

    Science.gov (United States)

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.

  17. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  18. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  19. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat.

    Science.gov (United States)

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  1. Putrescine, a fast-acting switch for tolerance against osmotic stress.

    Science.gov (United States)

    Kotakis, Christos; Theodoropoulou, Eleftheria; Tassis, Konstantinos; Oustamanolakis, Charalambos; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2014-01-15

    During the last decade we showed clearly that abiotic stress changes the cellular composition of polyamines, which in turn regulate the photochemical and non-photochemical quenching of the received light energy in the photosynthetic apparatus and that modulate substantially the level of plant tolerance. In the present contribution, we tried to change the bioenergetics of the leaf discs before the exposure to osmotic stress only by exogenously supplied putrescine, in order to enhance quickly the tolerance against the abiotic stress. Tobacco leaf discs treated with polyethylene-glycol reduced their water content about 24% within 1h. This relatively mild osmotic stress increased endogenous putrescine about 83% and decreased maximum photosystem II photochemical efficiency about 14%. In line with this, here we show that treatment with 1mM exogenous putrescine 1h before polyethylene-glycol addition protects the photochemical capacity and inhibits loss of water, confirming the key role of putrescine in the modulation of plant tolerance against osmotic stress. Furthermore, our recent works indicate that putrescine is accumulated in lumen during light reactions and may act as a permeable buffer and an osmolyte. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.

    Science.gov (United States)

    Della-Bianca, B E; Gombert, A K

    2013-12-01

    Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker's strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait-a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

  3. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  4. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress.

    Science.gov (United States)

    Cheng, Lin; Zou, Yijing; Ding, Shuli; Zhang, Jiajing; Yu, Xiaolin; Cao, Jiashu; Lu, Gang

    2009-05-01

    Polyamines play an important role in plant response to abiotic stress. S-adenosyl-l-methionine decarboxylase (SAMDC) is one of the key regulatory enzymes in the biosynthesis of polyamines. In order to better understand the effect of regulation of polyamine biosynthesis on the tolerance of high-temperature stress in tomato, SAMDC cDNA isolated from Saccharomyces cerevisiae was introduced into tomato genome by means of Agrobacterium tumefaciens through leaf disc transformation. Transgene and expression was confirmed by Southern and Northern blot analyses, respectively. Transgenic plants expressing yeast SAMDC produced 1.7- to 2.4-fold higher levels of spermidine and spermine than wild-type plants under high temperature stress, and enhanced antioxidant enzyme activity and the protection of membrane lipid peroxidation was also observed. This subsequently improved the efficiency of CO(2) assimilation and protected the plants from high temperature stress, which indicated that the transgenic tomato presented an enhanced tolerance to high temperature stress (38 degrees C) compared with wild-type plants. Our results demonstrated clearly that increasing polyamine biosynthesis in plants may be a means of creating high temperature-tolerant germplasm.

  5. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis

    DEFF Research Database (Denmark)

    Kallipolitis, B H; Ingmer, H

    2001-01-01

    Environmental sensing by two-component signal transduction systems is likely to play a role for growth and survival of Listeria monocytogenes both during transmission in food products and within a host organism. Two-component systems typically consist of a membrane-associated sensor histidine...... kinase and a gene regulatory protein, the response regulator (RR). We have identified seven putative RR genes in L. monocytogenes LO28 by PCR using degenerate oligonucleotide primers. By insertional inactivation we obtained data suggesting that three of the putative RRs contribute to the pathogenicity...... of L. monocytogenes in mice. Strikingly, the mutants that were attenuated in virulence also had a decreased ability to grow in the presence of various stress conditions potentially encountered in an infection process. Thus, our data point to a connection between the ability of the putative two...

  6. Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis

    Science.gov (United States)

    Kariñho-Betancourt, Eunice

    2015-01-01

    Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off) between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits. Methodology/Principal Findings. We experimentally assessed (1) the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2) the extent of natural selection acting on plant defenses, and (3) the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control) or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies. Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained. PMID:25780756

  7. Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis

    Directory of Open Access Journals (Sweden)

    Eunice Kariñho-Betancourt

    2015-03-01

    Full Text Available Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits.Methodology/Principal Findings. We experimentally assessed (1 the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2 the extent of natural selection acting on plant defenses, and (3 the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies.Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained.

  8. Enhancing stress resistance and production phenotypes through transcriptome engineering.

    Science.gov (United States)

    Lam, Felix H; Hartner, Franz S; Fink, Gerald R; Stephanopoulos, Gregory

    2010-01-01

    As Saccharomyces cerevisiae is engineered further as a microbial factory for industrially relevant but potentially cytotoxic molecules such as ethanol, issues of cell viability arise that threaten to place a biological limit on output capacity and/or the use of less refined production conditions. Evidence suggests that one naturally evolved mode of survival in deleterious environments involves the complex, multigenic interplay between disparate stress response and homeostasis mechanisms. Rational engineering of such resistance would require a systems-level understanding of cellular behavior that is, in general, not yet available. To circumvent this limitation, we have developed a phenotype discovery approach termed global transcription machinery engineering (gTME) that allows for the generation and selection of nonphysiological traits. We alter gene expression on a genome-wide scale by selecting for dominant mutations in a randomly mutagenized general transcription factor. The gene encoding the mutated transcription factor resides on a plasmid in a strain carrying the unaltered chromosomal allele. Thus, although the dominant mutations may destroy the essential function of the plasmid-borne variant, alteration of the transcriptome with minimal perturbation to normal cellular processes is possible via the presence of the native genomic allele. Achieving a phenotype of interest involves the construction and diversity evaluation of yeast libraries harboring random sequence variants of a chosen transcription factor and the subsequent selection and validation of mutant strains. We describe the rationale and procedures associated with each step in the context of generating strains possessing enhanced ethanol tolerance. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. [Arabidopsis CBF1 in plant tolerance to low temperature and drought stresses].

    Science.gov (United States)

    Liu, Fen-Xia; Tan, Zhen-Bo; Zhu, Jian-Qing; Deng, Xiao-Jian

    2004-05-01

    Since it was established that the alteration in gene expression occur during cold acclimation, a major goal in cold acclimation research has been to identify cold-responsive genes and to determine whether they play roles in freezing tolerance. Many cold-regulated genes (COR) were isolated and characterized in Arabidopsis and other cold tolerant plant species. Studies on regulation of COR in Arabidopsis have resulted in the discovery of a family of transcriptional activators, of which, CBF1, a member of the gene family, controls expression of a battery of COR in Arabidopsis and other cold tolerant plant species. During recent years, CBF-like genes were found in the genomes of chilling-sensitive plant species such as tomato and maize. Over-expression of Arabidopsis CBF1 confers elevated tolerance to chilling and drought stresses in transgenic tomato. These results promote our effort to identify and characterize CBF-like genes to improve tolerance of chilling-sensitive plant species to chilling and drought stresses.

  10. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress

    Directory of Open Access Journals (Sweden)

    Muthusamy Muthusamy

    2016-11-01

    Full Text Available In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome and sensitive cultivar (Grand Naine, AAA genome was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9 % are coding for transcription factors (TFs comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants.

  11. A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in arabidop

    KAUST Repository

    Li, Wenbo

    2013-07-01

    Salinity is an abiotic stress that substantially limits crop production worldwide. To identify salt stress tolerance determinants, we screened for Arabidopsis mutants that are hypersensitive to salt stress and designated these mutants as short root in salt medium (rsa). One of these mutants, rsa3-1, is hypersensitive to NaCl and LiCl but not to CsCl or to general osmotic stress. Reactive oxygen species (ROS) over-accumulate in rsa3-1 plants under salt stress. Gene expression profiling with Affymetrix microarray analysis revealed that RSA3 controls expression of many genes including genes encoding proteins for ROS detoxification under salt stress. Map-based cloning showed that RSA3 encodes a xyloglucan galactosyltransferase, which is allelic to a gene previously named MUR3/KAM1. The RSA3/ MUR3/KAM1-encoded xylogluscan galactosyltransferase regulates actin microfilament organization (and thereby contributes to endomembrane distribution) and is also involved in cell wall biosynthesis. In rsa3-1, actin cannot assemble and form bundles as it does in the wild-type but instead aggregates in the cytoplasm. Furthermore, addition of phalloidin, which prevents actin depolymerization, can rescue salt hypersensitivity of rsa3-1. Together, these results suggest that RSA3/MUR3/KAM1 along with other cell wall-associated proteins plays a critical role in salt stress tolerance by maintaining the proper organization of actin microfilaments in order to minimize damage caused by excessive ROS. © 2013 The Author.

  12. Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat.

    Science.gov (United States)

    Abd El-Daim, I A; Bejai, S; Fridborg, I; Meijer, J

    2018-03-01

    Abiotic stressors are main limiting factors for agricultural production around the world. Plant growth-promoting bacteria have been successfully used to improve abiotic stress tolerance in several crops including wheat. However, the molecular changes involved in the improvement of stress management are poorly understood. The present investigation addressed some molecular factors involved in bacterially induced plant abiotic stress responses by identifying differentially expressed genes in wheat (Triticum aestivum) seedlings treated with the beneficial bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 prior to challenge with abiotic stress conditions such as heat, cold or drought. cDNA-AFLP analysis revealed differential expression of more than 200 transcript-derived fragments (TDFs) in wheat leaves. Expression of selected TDFs was confirmed using RT-PCR. DNA sequencing of 31 differentially expressed TDFs revealed significant homology with both known and unknown genes in database searches. Virus-induced gene silencing of two abscisic acid-related TDFs showed different effects upon heat and drought stress. We conclude that treatment with B. amyloliquefaciens 5113 caused molecular modifications in wheat in order to induce tolerance against heat, cold and drought stress. Bacillus treatment provides systemic effects that involve metabolic and regulatory functions supporting both growth and stress management. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  13. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress

    Science.gov (United States)

    2011-01-01

    Background Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. Results EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay. Conclusion Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide

  14. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.

    Science.gov (United States)

    Zhang, Lu; Alfano, James R; Becker, Donald F

    2015-02-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Overexpression of B11 Gene in Transgenic Rice Increased Tolerance to Aluminum Stress

    Directory of Open Access Journals (Sweden)

    Devi Media Siska

    2017-04-01

    Full Text Available Rice cultivation on acid soils is mainly constrained by aluminum (Al toxicity. However, rice has tolerance mechanism to Al stress, which is controlled by many genes. B11 gene is one of the Al- tolerance gene candidate isolated from rice var. Hawara Bunar. It has not been known whether overexpression of the gene in Al-sensitive rice is able to increase Al tolerance. The research objective was to analyze root morphological and physiological responses of transgenic rice overexpressing B11 gene to Al stress. The experiment was carried out using five rice genotypes including two varieties (Hawara Bunar and IR64 and three T4 generation of transgenic lines, that are T8-2-4, T8-12-5, and T8-15-41. All rice genotypes were grown in nutrient solution for 24 h (adaptation period, and then were exposed to 15 ppm Al for 72 h (treatment period and recovered in normal nutrient solution for 48 h (recovery period. The result showed that the overexpression of the B11 gene in T8-2-4, T8-12-5, and T8-15-41 transgenic lines improved tolerance to Al stress based on root growth characters, accumulation of Al, root cell membrane lipid peroxidation, and root tip cell structure.

  17. Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila.

    Science.gov (United States)

    Aksu, Ugur; Yanar, Karolin; Terzioglu, Duygu; Erkol, Tugçe; Ece, Evrim; Aydin, Seval; Uslu, Ezel; Çakatay, Ufuk

    2014-09-01

    We aimed to test our hypothesis that scavenging reactive oxygen species (ROS) with tempol, a membrane permeable antioxidant, affects the type and magnitude of oxidative damage and stress tolerance through mimetic aging process in Drosophila. Drosophila colonies were randomly divided into three groups: (1) no D-galactose, no tempol; (2) D-galactose without tempol; (3) D-galactose, but with tempol. Mimetic aging was induced by d-galactose administration. The tempol-administered flies received tempol at the concentration of 0.2% in addition to d-galactose. Thiobarbituric acid reacting substance (TBARS) concentrations, advanced oxidation protein products (AOPPs), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), sialic acid (SA) were determined. Additionally, stress tolerances were tested. Mimetically aged group without tempol led to a significant decrease in tolerance to heat, cold, and starvation (P tempol was used for these parameters. The Cu,Zn-SOD activity and SA concentrations were lower in both mimetically aged and tempol-administered Drosophila groups compared to control (P tempol-administered groups. Mimetically aged group without tempol led to a significant increase in tissue TBARS and AOPPs concentrations (P tempol could prevent these alterations. Scavenging ROS using tempol also restores redox homeostasis in mimetically aged group. Tempol partly restores age-related oxidative injury and increases stress tolerance. © 2014 Wiley Periodicals, Inc.

  18. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2009-09-01

    Full Text Available Soybean [Glycine max (L. Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production.Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes.These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.

  19. Biocide tolerance, phenotypic and molecular response of lactic acid bacteria isolated from naturally-fermented Aloreña table to different physico-chemical stresses.

    Science.gov (United States)

    Casado Muñoz, María Del Carmen; Benomar, Nabil; Lavilla Lerma, Leyre; Knapp, Charles W; Gálvez, Antonio; Abriouel, Hikmate

    2016-12-01

    Lactic acid bacteria (LAB) isolated throughout the fermentation process of Aloreña table olives were found to be resistant at least to three antibiotics (Casado Muñoz et al., 2014); however, most were sensitive to the biocides tested in this study (with minimum inhibitory concentrations [MIC] below the epidemiological cut-off values). 2-15% of the isolates were found to be biocide resistant: Leuconostoc Pseudomesenteroides, which were resistant to hexachlorophene, and Lactobacillus pentosus to cetrimide and hexadecylpiridinium. We analyzed the effect of different physico-chemical stresses, including antimicrobials, on the phenotypic and genotypic responses of LAB, providing new insights on how they become resistant in a changing environment. Results indicated that similar phenotypic responses were obtained under three stress conditions: antimicrobials, chemicals and UV light. Susceptibility patterns to antibiotics changed: increasing MICs for ampicillin, chloramphenicol, ciprofloxacin, teicoplanin and tetracycline, and decreasing the MICs for clindamycin, erythromycin, streptomycin and trimethoprim in most strains. Statistically, cross resistance between different antibiotics was detected in all stress conditions. However, expression profiles of selected genes involved in stress/resistance response (rpsL, recA, uvrB and srtA) differed depending on the stress parameter, LAB species and strain, and the target gene. We conclude that, despite the uniform phenotypic response to stresses, the repertoire of induced and repressed genes differs. So, a search for a target to improve stress tolerance of LAB, especially those of importance as starter/protective cultures or probiotics, may depend on the individual screening of each strain, even though we could predict the antibiotic phenotypic response to all stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impact of Pesticide Resistance on Toxicity and Tolerance of Hostplant Phytochemicals in Amyelois Transitella (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Bagchi, Vikram A; Siegel, Joel P; Demkovich, Mark R; Zehr, Luke N; Berenbaum, May R

    2016-01-01

    For some polyphagous insects, adaptation to phytochemically novel plants can enhance resistance to certain pesticides, but whether pesticide resistance expands tolerance to phytochemicals has not been examined. Amyelois transitella Walker (navel orangeworm) is an important polyphagous pest of nut and fruit tree crops in California. Bifenthrin resistance, partially attributable to enhanced cytochrome P450 (P450)-mediated detoxification, has been reported in an almond-infesting population exposed to intense pesticide selection. We compared the toxicity of bifenthrin and three phytochemicals-chlorogenic acid, and the furanocoumarins xanthotoxin and bergapten-to three strains of A. transitella: pyrethroid-resistant R347 (maintained in the laboratory for ∼10 generations), fig-derived FIG (in the laboratory for ∼25 generations), and CPQ-a laboratory strain derived from almonds ∼40 years ago). Whereas both Ficus carica (fig) and Prunus dulcis (almond) contain chlorogenic acid, furanocoumarins occur only in figs. Both R347 and FIG exhibited 2-fold greater resistance to the three phytochemicals compared with CPQ; surprisingly, bifenthrin resistance was highest in FIG. Piperonyl butoxide, a P450 synergist, increased toxicity of all three phytochemicals only in CPQ, implicating alternate tolerance mechanisms in R347 and FIG. To test the ability of the strains to utilize novel hostplants directly, we compared survival on diets containing seeds of Wisteria sinensis and Prosopis pallida, two non-host Fabaceae species; survival of FIG was highest and survival of R347 was lowest. Our results suggest that, while P450-mediated pesticide resistance enhances tolerance of certain phytochemicals in this species, it is only one of multiple biochemical adaptations associated with acquiring novel hostplants. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Science.gov (United States)

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  2. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    Directory of Open Access Journals (Sweden)

    Jing Xu

    Full Text Available Although glutathione S-transferases (GST, EC 2.5.1.18 are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  3. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    International Nuclear Information System (INIS)

    Rámila, Consuelo d.P.; Contreras, Samuel A.; Di Domenico, Camila; Molina-Montenegro, Marco A.; Vega, Andrea; Handford, Michael; Bonilla, Carlos A.

    2016-01-01

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  4. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida

    Energy Technology Data Exchange (ETDEWEB)

    Rámila, Consuelo d.P. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Contreras, Samuel A.; Di Domenico, Camila [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Molina-Montenegro, Marco A. [Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo (Chile); Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca (Chile); Vega, Andrea [Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Handford, Michael [Departmento de Biología, Facultad de Ciencias, Universidad de Chile, Avenida Las Palmeras 3425, 7800024 Santiago (Chile); Bonilla, Carlos A. [Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Desarrollo Urbano Sustentable (CEDEUS), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Santiago (Chile); and others

    2016-11-05

    Highlights: • P. frigida presents an extremely high boron toxicity threshold. • Restricting uptake and internal tolerance mechanisms could confer boron tolerance. • P. frigida is a boron hyperaccumulator over a wide range of concentrations. • The species has potential for phytoremediation purposes. - Abstract: Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500 mg/L), and within its tissues (>5000 mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems.

  5. Chronic environmental stress enhances tolerance to seasonal gradual warming in marine mussels.

    Directory of Open Access Journals (Sweden)

    Ionan Marigómez

    Full Text Available In global climate change scenarios, seawater warming acts in concert with multiple stress sources, which may enhance the susceptibility of marine biota to thermal stress. Here, the responsiveness to seasonal gradual warming was investigated in temperate mussels from a chronically stressed population in comparison with a healthy one. Stressed and healthy mussels were subjected to gradual temperature elevation for 8 days (1°C per day; fall: 16-24°C, winter: 12-20°C, summer: 20-28°C and kept at elevated temperature for 3 weeks. Healthy mussels experienced thermal stress and entered the time-limited survival period in the fall, became acclimated in winter and exhibited sublethal damage in summer. In stressed mussels, thermal stress and subsequent health deterioration were elicited in the fall but no transition into the critical period of time-limited survival was observed. Stressed mussels did not become acclimated to 20°C in winter, when they experienced low-to-moderate thermal stress, and did not experience sublethal damage at 28°C in summer, showing instead signs of metabolic rate depression. Overall, although the thermal threshold was lowered in chronically stressed mussels, they exhibited enhanced tolerance to seasonal gradual warming, especially in summer. These results challenge current assumptions on the susceptibility of marine biota to the interactive effects of seawater warming and pollution.

  6. Thermal stress resistance of ion implanted sapphire crystals

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Jamieson, D.N.; Szymanski, R.; Orlov, A.V.; Williams, J.S.; Conway, M.

    1999-01-01

    Monocrystals of sapphire have been subjected to ion implantation with 86 keV Si - and 80 keV Cr - ions to doses in the range of 5x10 14 -5x10 16 cm -2 prior to thermal stress testing in a pulsed plasma. Above a certain critical dose ion implantation is shown to modify the near-surface structure of samples by introducing damage, which makes crack nucleation easier under the applied stress. The effect of ion dose on the stress resistance is investigated and the critical doses which produce a noticeable change in the stress resistance are determined. The critical dose for Si ions is shown to be much lower than that for Cr - ions. However, for doses exceeding 2x10 16 cm -2 the stress resistance parameter decreases to approximately the same value for both implants. The size of the implantation-induced crack nucleating centers and the density of the implantation-induced defects are considered to be the major factors determining the stress resistance of sapphire crystals irradiated with Si - and Cr - ions

  7. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Yue, Erkui; Liu, Zhen; Li, Chao; Li, Yu; Liu, Qiuxiang; Xu, Jian-Hong

    2017-07-01

    Overexpressing miR529a can enhance oxidative stress resistance by targeting OsSPL2 and OsSPL14 genes that can regulate the expression of their downstream SOD and POD related genes. MicroRNAs are involved in the regulation of plant developmental and physiological processes, and their expression can be altered when plants suffered environment stresses, including salt, oxidative, drought and Cadmium. The expression of microRNA529 (miR529) can be induced under oxidative stress. However, its biological function under abiotic stress responses is still unclear. In this study, miR529a was overexpressed to investigate the function of miR529a under oxidative stress in rice. Our results demonstrated that the expression of miR529a can be induced by exogenous H 2 O 2 , and overexpressing miR529a can increase plant tolerance to high level of H 2 O 2 , resulting in increased seed germination rate, root tip cell viability, reduced leaf rolling rate and chlorophyll retention. The expression of oxidative stress responsive genes and the activities of superoxide dismutase (SOD) and peroxidase (POD) were increased in miR529a overexpression plant, which could help to reduce redundant reactive oxygen species (ROS). Furthermore, only OsSPL2 and OsSPL14 were targeted by miR529a in rice seedlings, repressing their expression in miR529aOE plants could lead to strengthen plant tolerance to oxidation stress. Our study provided the evidence that overexpression of miR529a could strengthen oxidation resistance, and its target genes OsSPL2 and OsSPL14 were responsible for oxidative tolerance, implied the manipulation of miR529a and its target genes regulation on H 2 O 2 related response genes could improve oxidative stress tolerance in rice.

  8. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.

    Science.gov (United States)

    Dubrovina, Alexandra S; Kiselev, Konstantin V; Khristenko, Valeriya S; Aleynova, Olga A

    2015-08-01

    Abiotic stresses, such as drought, salinity, cold and heat, are major environmental factors that limit crop productivity. Vitis amurensis Rupr. is a wild grapevine species displaying a high level of abiotic and biotic stress resistance. Protein kinases, including Ca(2+)-dependent protein kinases (CDPKs), are known to mediate plant acclimation to various environmental changes. However, the functions of most grape CDPKs have not been clarified. A recent CDPK gene expression analysis revealed that 10 CDPK genes of V. amurensis were up-regulated under different abiotic stress treatments. The expression of the VaCPK20 gene was significantly up-regulated under low and high temperature stress in V. amurensis. In the current study, the effects of overexpressing the VaCPK20 gene in callus cell lines of V. amurensis and transgenic plants of A. thaliana on their responses to abiotic stresses were investigated. Transgenic Arabidopsis overexpressing the VaCPK20 gene showed higher tolerance to freezing and drought stresses, and transgenic grape cell cultures overexpressing the VaCPK20 gene showed higher resistance to cold stress in comparison with the controls transformed by the "empty" vector. Heat and salt stress resistance of the transgenic V. amurensis calli and A. thaliana was comparable to that of the wild type and vector controls. Overexpression of the VaCPK20 gene increased the expression of stress-responsive genes, such as COR47, NHX1, KIN1, or ABF3, in the transgenic Arabidopsis plants under non-stress conditions, after freezing, and under drought stress. The results imply that VaCPK20 may act as a regulatory factor involved in cold and drought stress response pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Begley, Máire; Hill, Colin

    2012-06-01

    Significant phenotypic diversity was observed when we examined the abilities of a number of Cronobacter sakazakii natural isolates to cope with various sublethal stress conditions (acid, alkaline, osmotic, oxidative, or heat stress). Levels of catalase activity and use of acetate as a carbon source, phenotypes commonly used as indirect assays to predict RpoS function, revealed a high correlation between predicted RpoS activity and tolerance to acid, alkaline, osmotic, and oxidative treatments. The rpoS genes were sequenced and analyzed for polymorphisms. Loss-of-function mutations were found in two strains; C. sakazakii DPC 6523 and the genome-sequenced strain C. sakazakii ATCC BAA-894. The complementation of these strains with a functional rpoS gene resulted in an increase in bacterial tolerance to acid, osmotic, and oxidative stresses. The pigmentation status of strains was also assessed, and a high variability in carotenoid content was observed, with a functional rpoS gene being essential for the production of the characteristic yellow pigment. In conclusion, the evidence presented in this study demonstrates that rpoS is a highly polymorphic gene in C. sakazakii, and it supports the importance of RpoS for the tolerance under stress conditions that C. sakazakii may encounter in the food chain and in the host during infection.

  10. Distress Tolerance Links Sleep Problems with Stress and Health in Homeless.

    Science.gov (United States)

    Reitzel, Lorraine R; Short, Nicole A; Schmidt, Norman B; Garey, Lorra; Zvolensky, Michael J; Moisiuc, Alexis; Reddick, Carrie; Kendzor, Darla E; Businelle, Michael S

    2017-11-01

    We examined associations between sleep problems, distress intolerance, and perceived stress and health in a convenience sample of homeless adults. Participants (N = 513, 36% women, Mage = 44.5 ±11.9) self-reported sleep adequacy, sleep duration, unintentional sleep during the daytime, distress tolerance, urban stress, and days of poor mental health and days of poor physical health over the last month. The indirect effects of sleep problems on stress and health through distress tolerance were examined using a non-parametric, bias-corrected bootstrapping procedure. Sleep problems were prevalent (eg, 13.0 ±11.4 days of inadequate sleep and 4.7 ±7.9 days of unintentionally falling asleep during the preceding month). Distress intolerance partially accounted for the associations of inadequate sleep and unintentionally falling asleep, but not sleep duration, with urban stress and more days of poor mental and physical health. Many homeless individuals endure sleep problems. Given the connections between sleep and morbidity and mortality, results further support the need for more attention directed toward facilitating improvements in sleep quality to improve the quality of life of homeless adults, potentially including attention to improving distress tolerance skills.

  11. A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants.

    Science.gov (United States)

    Saeed, Muhammad; Dahab, Abdel hafiz Adam; Wangzhen, Guo; Tianzhen, Zhang

    2012-04-01

    Today, agriculture is facing a tremendous threat from the climate change menace. As human survival is dependent on a constant supply of food from plants as the primary producers, we must aware of the underlying molecular mechanisms that plants have acquired as a result of molecular evolution to cope this rapidly changing environment. This understanding will help us in designing programs aimed at developing crop plant cultivars best suited to our needs of a sustainable agriculture. The field of systems biology is rapidly progressing, and new insight is coming out about the molecular mechanisms involved in abiotic stress tolerance. There is a cascade of changes in transcriptome, proteome, and metabolome of plants during these stress responses. We have tried to cover most pronounced recent developments in the field of "omics" related to abiotic stress tolerance of plants. These changes are very coordinated, and often there is crosstalk between different components of stress tolerance. The functions of various molecular entities are becoming more clear and being associated with more precise biological phenomenon.

  12. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Wenli Wu

    2017-06-01

    Full Text Available Brassinosteroids (BR regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR's impact on salt stress tolerance in perennial ryegrass (Lolium perenne L. The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl. The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL, malondialdehyde (MDA, and reduced photosynthetic rate (Pn. Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs. The EBR applications also alleviated decline of superoxide dismutase (SOD and catalase (CAT and ascorbate peroxidase (APX activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA and gibberellin A4 (GA4 content but reduced indole-3-acetic acid (IAA, zeatin riboside (ZR, isopentenyl adenosine (iPA, and salicylic acid (SA. Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+ content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+ in perennial ryegrass.

  14. Abiotic stress tolerance of charophyte green algae: New challenges for omics techniques

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2016-05-01

    Full Text Available Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetphyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae and Charophyceae. Zygnematophyceae (Conjugating green algae are considered to be closest algal relatives to land plants (Embryophyta. Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth’s history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR as well as ultraviolet (UV irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies.While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions

  15. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques.

    Science.gov (United States)

    Holzinger, Andreas; Pichrtová, Martina

    2016-01-01

    Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an

  16. Contribution of ClpP to stress tolerance and virulence properties of Streptococcus mutans.

    Science.gov (United States)

    Hou, Xiang-Hua; Zhang, Jia-Qin; Song, Xiu-Yu; Ma, Xiao-Bo; Zhang, Shi-Yang

    2014-11-01

    Abilities to tolerate environmental stresses and to form biofilms on teeth surface are key virulence attributes of Streptococcus mutans, the primary causative agent of human dental caries. ClpP, the chief intracellular protease of S. mutans, along with ATPases degrades altered proteins that might be toxic for bacteria, and thus plays important roles in stress response. To further understand the roles of ClpP in stress response of S. mutans, a ClpP deficient strain was constructed and used for general stress tolerance, autolysis, mutacins production, and virulence assays. Here, we demonstrated that inactivation of ClpP in S. mutans resulted in a sensitive phenotype to several environmental stresses, including acid, cold, thermal, and oxidative stresses. The ClpP deficient strain displayed slow growth rates, poor growth yields, formation of long chains, increased clumping in broth, and reduced capacity to form biofilms in presence of glucose. Mutacins production and autolysis of S. mutans were also impaired by mutation of clpP. Animals study showed that clpP mutation increased virulence of S. mutans but not significant. However, enhanced abilities to survive lethal acid and to form biofilm in sucrose were observed in ClpP deficient strain. Our findings revealed a broad impact of ClpP on several virulence properties of S. mutans and highlighted the relevance of ClpP proteolysis with progression of diseases caused by S. mutans. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Michael J. Van Oosten

    2017-07-01

    Full Text Available Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP, a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl, respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching, protection of the photosynthetic system (improving quantum yield of photosystem II and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots. To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions.Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  18. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  19. The role of anorexia in resistance and tolerance to infections in Drosophila.

    Directory of Open Access Journals (Sweden)

    Janelle S Ayres

    2009-07-01

    Full Text Available Most infections induce anorexia but its function, if any, remains unclear. Because this response is common among animals, we hypothesized that infection-induced diet restriction might be an adaptive trait that modulates the host's ability to fight infection. Two defense strategies protect hosts against infections: resistance, which is the ability to control pathogen levels, and tolerance, which helps the host endure infection-induced pathology. Here we show that infected fruit flies become anorexic and that diet restriction alters defenses, increasing the fly's tolerance to Salmonella typhimurium infections while decreasing resistance to Listeria monocytogenes. This suggests that attempts to extend lifespan through diet restriction or the manipulation of pathways mimicking this process will have complicated effects on a host's ability to fight infections.

  20. The role of anorexia in resistance and tolerance to infections in Drosophila.

    Science.gov (United States)

    Ayres, Janelle S; Schneider, David S

    2009-07-01

    Most infections induce anorexia but its function, if any, remains unclear. Because this response is common among animals, we hypothesized that infection-induced diet restriction might be an adaptive trait that modulates the host's ability to fight infection. Two defense strategies protect hosts against infections: resistance, which is the ability to control pathogen levels, and tolerance, which helps the host endure infection-induced pathology. Here we show that infected fruit flies become anorexic and that diet restriction alters defenses, increasing the fly's tolerance to Salmonella typhimurium infections while decreasing resistance to Listeria monocytogenes. This suggests that attempts to extend lifespan through diet restriction or the manipulation of pathways mimicking this process will have complicated effects on a host's ability to fight infections.

  1. The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila

    Science.gov (United States)

    Ayres, Janelle S.; Schneider, David S.

    2009-01-01

    Most infections induce anorexia but its function, if any, remains unclear. Because this response is common among animals, we hypothesized that infection-induced diet restriction might be an adaptive trait that modulates the host's ability to fight infection. Two defense strategies protect hosts against infections: resistance, which is the ability to control pathogen levels, and tolerance, which helps the host endure infection-induced pathology. Here we show that infected fruit flies become anorexic and that diet restriction alters defenses, increasing the fly's tolerance to Salmonella typhimurium infections while decreasing resistance to Listeria monocytogenes. This suggests that attempts to extend lifespan through diet restriction or the manipulation of pathways mimicking this process will have complicated effects on a host's ability to fight infections. PMID:19597539

  2. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Haap, Timo, E-mail: timo.haap@gmx.de; Schwarz, Simon; Köhler, Heinz-R.

    2016-01-15

    Highlights: • Cadmium acclimation of two Daphnia magna clones which differed in Cd sensitivity and Hsp70 levels. • Two distinct metal-handling strategies regarding Hsp70 and MT expression were observed. • High Hsp70 levels did not confer an increase in Cd and heat stress tolerance. • Our results indicate a trade-off between Hsp70 and MT. - Abstract: The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by

  3. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Directory of Open Access Journals (Sweden)

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  4. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.

    Science.gov (United States)

    Cheng, Cheng; Zhang, Mingming; Xue, Chuang; Bai, Fengwu; Zhao, Xinqing

    2017-02-01

    Budding yeast Saccharomyces cerevisiae is widely studied for the production of biofuels from lignocellulosic biomass. However, economic production is currently challenged by the repression of cell growth and compromised fermentation performance of S. cerevisiae strains in the presence of various environmental stresses, including toxic level of final products, inhibitory compounds released from the pretreatment of cellulosic feedstocks, high temperature, and so on. Therefore, it is important to improve stress tolerance of S. cerevisiae to these stressful conditions to achieve efficient and economic production. In this review, the latest advances on development of stress tolerant S. cerevisiae strains are summarized, with the emphasis on the impact of cell flocculation and zinc addition. It was found that cell flocculation affected ethanol tolerance and acetic acid tolerance of S. cerevisiae, and addition of zinc to a suitable level improved stress tolerance of yeast cells to ethanol, high temperature and acetic acid. Further studies on the underlying mechanisms by which cell flocculation and zinc status affect stress tolerance will not only enrich our knowledge on stress response and tolerance mechanisms of S. cerevisiae, but also provide novel metabolic engineering strategies to develop robust yeast strains for biofuels production. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates.

    Science.gov (United States)

    Sokolova, Inna M; Frederich, Markus; Bagwe, Rita; Lannig, Gisela; Sukhotin, Alexey A

    2012-08-01

    Energy balance is a fundamental requirement of stress adaptation and tolerance. We explore the links between metabolism, energy balance and stress tolerance using aquatic invertebrates as an example and demonstrate that using key parameters of energy balance (aerobic scope for growth, reproduction and activity; tissue energy status; metabolic rate depression; and compensatory onset of anaerobiosis) can assist in integrating the effects of multiple stressors and their interactions and in predicting the whole-organism and population-level consequences of environmental stress. We argue that limitations of both the amount of available energy and the rates of its acquisition and metabolic conversions result in trade-offs between basal maintenance of a stressed organism and energy costs of fitness-related functions such as reproduction, development and growth and can set limit to the tolerance of a broad range of environmental stressors. The degree of stress-induced disturbance of energy balance delineates transition from moderate stress compatible with population persistence (pejus range) to extreme stress where only time-limited existence is possible (pessimum range). It also determines the predominant adaptive strategy of metabolic responses (energy compensation vs. conservation) that allows an organism to survive the disturbance. We propose that energy-related biomarkers can be used to determine the conditions when these metabolic transitions occur and thus predict ecological consequences of stress exposures. Bioenergetic considerations can also provide common denominator for integrating stress responses and predicting tolerance limits under the environmentally realistic scenarios when multiple and often variable stressors act simultaneously on an organism. Determination of bioenergetic sustainability at the organism's level (or lack thereof) has practical implications. It can help identify the habitats and/or conditions where a population can survive (even if at the

  6. The Arabidopsis RNA-binding protein AtRGGA regulates tolerance to salt and drought stress.

    Science.gov (United States)

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-05-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  8. Resistance to nutritional stress in ants: when being fat is advantageous.

    Science.gov (United States)

    Dussutour, Audrey; Poissonnier, Laure-Anne; Buhl, Jerome; Simpson, Stephen J

    2016-03-01

    In ants, nutrient acquisition for the whole colony relies on a minority of workers, the foragers, which are often old and lean. Some studies have shown that the link between age, physiology and foraging activity is more flexible than once thought, especially in response to colony or environmental perturbations. This great plasticity offers the intriguing possibility to disentangle the effect of age, behaviour and physiology on the ants' abilities to cope with nutritional stresses. In this paper, we first looked at the capacity of groups of foragers and inner-nest workers to resist starvation and macronutrient imbalance. Second, we investigated whether behavioural task reversion modified the tolerance to nutritional stresses and by extension, changed mortality rate. We found that inner-nest workers live longer than foragers under nutritional stresses but not under optimal conditions. The reversion from foraging to inner-nest activities is followed by an increase in fat content and longevity. Finally, we demonstrated that changes in fat content associated with behavioural transition are highly flexible and strongly correlated to tolerance of nutritional stress. Our results have considerable implications for our understanding of the population dynamics of social insects under adverse nutritional conditions. © 2016. Published by The Company of Biologists Ltd.

  9. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops

    Directory of Open Access Journals (Sweden)

    Craita eBita

    2013-07-01

    Full Text Available Global warming is predicted to have a general negative effect on plant growth due to the negative effect of high temperatures on plant development. The increasing threat of climatological extremes, including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review we assess the impact of global climate change on the production of agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that have will be likely to show the most extreme reductions in yield as a result of warming in general and the expected fluctuations in temperature. High temperature stress has a wide range of effects on plants both in terms of physiology, biochemistry and gene regulation pathways. In this review we present the recent advances of research on all these level of investigation focusing on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally we review possible mechanisms and methods which can lead to the generation of new varieties that will allow sustainable yield production in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

  10. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection

    Directory of Open Access Journals (Sweden)

    Carolyn Mitchell

    2016-07-01

    Full Text Available Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

  11. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chronic stress moderates the impact of social exclusion on pain tolerance: an experimental investigation.

    Science.gov (United States)

    Pieritz, Karoline; Schäfer, Sarina J; Strahler, Jana; Rief, Winfried; Euteneuer, Frank

    2017-01-01

    Experiences of social pain due to social exclusion may be processed in similar neural systems that process experiences of physical pain. The present study aimed to extend the findings on social exclusion and pain by examining the impact of social exclusion on an affective (ie, heat pain tolerance) and a sensory component of pain (ie, heat pain intensity). Whether a potential effect may be moderated by chronic life stress, social status, or social sup-port was further examined. A community-based sample of 59 women was studied. Social exclusion and inclusion were experimentally manipulated by using a virtual ball-tossing game called Cyberball in which participants were randomly assigned to either being excluded or being included by two other virtual players. Heat pain tolerance and intensity were assessed before and after the game. Potential psychosocial moderators were assessed via a questionnaire. The main finding of this study is that chronic stress moderates the impact of social exclusion on pain tolerance ( p socially excluded participants showed a lower heat pain tolerance than participants who were socially included. Contrary to the authors' hypothesis, pain sensitivity was increased in socially included participants compared with socially excluded participants after the game ( p social exclusion.

  13. Intermittent hypoxic resistance training: is metabolic stress the key moderator?

    Science.gov (United States)

    Scott, Brendan R; Slattery, Katie M; Dascombe, Ben J

    2015-02-01

    Traditionally, researchers and practitioners have manipulated acute resistance exercise variables to elicit the desired responses to training. However, recent research indicates that altering the muscular environment during resistance training, namely by implementing a hypoxic stimulus, can augment muscle hypertrophy and strength. Intermittent hypoxic resistance training (IHRT), whereby participants inspire hypoxic air during resistance training, has been previously demonstrated to increase muscle cross-sectional area and maximum strength by significantly greater amounts than the equivalent training in normoxia. However, some recent evidence has provided conflicting results, reporting that the use of systemic hypoxia during resistance training provided no added benefit. While the definitive mechanisms that may augment muscular responses to IHRT are not yet fully understood, an increased metabolic stress is thought to be important for moderating many downstream processes related to hypertrophy. It is likely that methodological differences between conflicting IHRT studies have resulted in different degrees of metabolic stress during training, particularly when considering the inter-set recovery intervals used. Given that the most fundamental physiological stresses resulting from hypoxia are disturbances to oxidative metabolism, it becomes apparent that resistance training may only benefit from additional hypoxia if the exercise is structured to elicit a strong metabolic response. We hypothesize that for IHRT to be more effective in producing muscular hypertrophy and increasing strength than the equivalent normoxic training, exercise should be performed with relatively brief inter-set recovery periods, with the aim of providing a potent metabolic stimulus to enhance anabolic responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    Science.gov (United States)

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  15. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Shuang-Shuang; Sun, Le; Dong, Xinran; Lu, Sun-Jie; Tian, Weidong; Liu, Jian-Xiang

    2016-07-01

    Two salt hypersensitive mutants she1 and she2 were identified through genetic screening. SHE1 encodes a cellulose synthase CESA6 while SHE2 encodes a cellulose synthase-interactive protein CSI1. Both of them are involved in cellulose deposition. Our results demonstrated that the sustained cellulose synthesis is important for salt stress tolerance in Arabidopsis. © 2015 Institute of Botany, Chinese Academy of Sciences.

  16. Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids

    International Nuclear Information System (INIS)

    Abbasi, G.H.; Akhtar, J.; Haq, A.U.

    2014-01-01

    A hydroponic experiment was conducted to investigate the role of potassium (K) in extenuating the injurious effect of salt stress on maize hybrids differing in salt tolerance. Two salt-sensitive viz., 33H25 and 8441 and two salt-tolerant viz. 26204 and Hysun-33 maize hybrids were grown for four weeks in half strength Hoagland's solution. The nutrient solution was salinized by three salinity (0, 70 and 140 mM L-1 NaCl) levels and supplied with three levels of potassium (3, 6 and 9 mM L-1). Salt stress significantly reduced the plant growth as reflected by a decrease in the plant height, leaf area, shoot length, shoot fresh and dry weight, relative water content (RWC), membrane stability index (MSI), chlorophyll contents (chl), transpiration rate (E), photosynthetic rate (A), internal CO/sub 2/ concentration (Ci), stomatal conductance (gs), K+/Na+ ratio and increased the activities of anti-oxidative enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) at 70 mM NaCl, but activities of SOD, POD and CAT declined at 140 mM NaCl for all four maize hybrids. Salinity induced diminution in all these attributes was significantly greater in salt sensitive maize hybrids as compared to salt tolerant maize hybrids. However, application of potassium counteracted the unsympathetic effects of salinity on the growth of salt tolerant maize hybrids, particularly at 9 mM L-1 level. Potassium enhanced growth of salt-stressed maize hybrids 26204 and Hysun-33 was associated with increased CAT activity, higher photosynthetic capacity, and accumulation of K+ in the leaves. These results suggested that potassium application counteracted the unfavorable effects of salinity on growth of maize by civilizing photosynthetic capacity of maize plants against salinity-induced oxidative stress and maintaining ion homeostasis, however, these alleviating effects were cultivar specific. (author)

  17. Contrasting tolerance among soybean genotypes subjected to different levels of cadmium stress

    International Nuclear Information System (INIS)

    Alyemen, M.N.; Ahanger, M.A.; Alam, P.; Ahmad, P.

    2017-01-01

    The present study investigated the effects of cadmium stress on the growth, physio-biochemical attributes, and enzyme activity of five soybean genotypes. Cadmium stress significantly reduced growth attributes, such as the length of plant shoots and roots and the fresh and dry weight of plant shoots, but enhanced hydrogen peroxide (H/sub 2/O/sub 2/) production, lipid peroxidation (MDA), and electrolyte leakage, especially in the PK-416 and Pusa-24 genotypes. Cadmium stress also enhanced leaf proline content and the activity of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, especially in the Pusa-37 and Pusa-16 genotypes. Efficient antioxidant systems determine the stress tolerance potential of specific genotypes. Cadmium accumulated to higher levels in roots than in shoots, which indicated that cadmium was selectively absorbed to upper sensitive plant parts. The present study may provide a sustainable approach for identifying soybean genotypes that can be cultivated at heavy metal-polluted sites. (author)

  18. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress.

    Science.gov (United States)

    Checker, Vibha G; Chhibbar, Anju K; Khurana, Paramjit

    2012-10-01

    Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.

  19. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance.

    Science.gov (United States)

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants.

  20. Arbuscular Mycorrhizal Fungi Enhance Basil Tolerance to Salt Stress through Improved Physiological and Nutritional Status

    International Nuclear Information System (INIS)

    Salwa, A.; Abeer, H.; Alqarawi, A. A.; Abdullah, E.F.; Egamberdieva, D.

    2016-01-01

    Pot experiments were conducted to evaluate the influence of salinity on some physio-biochemical traits in sweet basil (Ocimum basilicum L.) cultivars with contrasting salt stress tolerance and to determine the role of arbuscular mycorrhizal fungi (AMF) in ameliorating the salt stress in plant. Salt stress (250 mM NaCl) reduced the colonization potential of AMF and inhibited photosynthetic pigments, chlorophyll and carotenoids in plant tissue. AMF inoculated plants contained higher level of chlorophyll pigments. Salt stressed plants showed increased lipid peroxidation, antioxidant enzyme activities like superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). Plants inoculated with AMF showed lower lipid peroxidation and enhanced antioxidant enzyme activities. Moreover, the content of lipids, proline, and soluble sugars in basil plants was improved with AMF inoculation. AMF inoculation reduced accumulation of Na+ and improved nutrient acquisition. In conclusion, AMF were capable to reduce oxidative stress via supporting of the antioxidant system. Salt tolerant cultivar showed higher antioxidant enzyme activity and accumulation of osmolytes. (author)

  1. Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Aurelio Gómez-Cadenas

    2013-03-01

    Full Text Available Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS for tolerant crop selection in breeding programs.

  2. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao

    2017-09-09

    Long non-coding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis thaliana lncRNA, Drought induced RNA (DRIR), as a novel positive regulator of plant response to drought and salt stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression of the DRIR gene than the wild type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates plant response to abiotic stress by modulating the expression of a series of genes involved in stress response.

  3. Salt and cadmium stress tolerance caused by overexpression of the Glycine Max Na+/H+ Antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511).

    Science.gov (United States)

    Yang, Lin; Han, Yujie; Wu, Di; Yong, Wang; Liu, Miaomiao; Wang, Sutong; Liu, Wenxin; Lu, Meiyi; Wei, Ying; Sun, Jinsheng

    2017-11-01

    Cadmium (Cd) pollution has aroused increasing attention due to its toxicity. It has been proved that Na + /H + Antiporter (NHX1) encodes a well-documented protein in Na + /H + trafficking, which leads to salt tolerance. This study showed that Glycine max Na + /H + Antiporter (GmNHX1) improved short-term cadmium and salt resistance in Lemna turionifera 5511. Expression of GmNHX1 prevented root from abscission and cell membrane damage, which also can enhance antioxidant system, inhibited of reactive oxygen species (ROS) accumulation and cause a less absorption of Cd under cadmium and salt stress. The cadmium tolerance suggested that NHX1 was involved under the cadmium stress. Copyright © 2017. Published by Elsevier B.V.

  4. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    Science.gov (United States)

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  6. Assessment of acetolactate synthase (ALS) tolerance to imazethapyr in red rice ecotypes (Oryza spp) and imidazolinone tolerant/ resistant rice (Oryza sativa) varieties.

    Science.gov (United States)

    Avila, Luis A; Lee, Do-Jin; Senseman, Scott A; McCauley, Garry N; Chandler, James M; Cothren, J Tom

    2005-02-01

    Three red rice ecotypes (Oryza spp), including LA 5, MS 5 and TX 4, were evaluated for acetolactate synthase resistance/tolerance to imazethapyr. The red rice ecotypes were compared with a tolerant line (CL-121), a resistant line (CL-161) and a conventional rice variety (Cypress). Based on enzymatic activity, the mean I(50) values were 1.5, 1.1, 1.5, 1.6, 20.8 and 590.6 microM imazethapyr, respectively, for LA 5, MS 5, TX 4, Cypress, CL-121 and CL-161. CL-161 was 32 times more resistant than CL-121 and at least 420 times more resistant than the average of the red rice ecotypes and Cypress. Results from the acetolactate synthase (ALS) assay showed that red rice ecotypes and Cypress had high susceptibility to imazethapyr when compared with the tolerant CL-121 and the resistant CL-161. Measurable enzymatic tolerance to ALS-inhibiting herbicides has not yet developed in these red rice ecotypes. Copyright (c) 2005 Society of Chemical Industry.

  7. Control of porcine reproductive and respiratory syndrome (PRRS through genetic improvements in disease resistance and tolerance

    Directory of Open Access Journals (Sweden)

    Raymond eRowland

    2012-12-01

    Full Text Available Infections caused by porcine reproductive and respiratory syndrome virus (PRRSV have a severe economic impact on pig production in North America, Europe and Asia. The emergence and eventual predominance of PRRS in the 1990s are the likely result of changes in the pork industry initiated in the late 1970s, which allowed the virus to occupy a unique niche within a modern commercial production system. PRRSV infection is responsible for severe clinical disease, but can maintain a life-long subclinical infection, as well as participate in several polymicrobial syndromes. Current vaccines lessen clinical signs, but are of limited use for disease control and elimination. The relatively poor protective immunity following vaccination is a function of the virus’s capacity to generate a large degree of genetic diversity, combined with several strategies to evade innate and adaptive immune responses. In 2007, the PRRS Host Genetics consortium (PHGC was established to explore the role of host genetics as as an avenue for PRRS control. The PHGC model for PRRS incorporates the experimental infection of large numbers of growing pigs and has created the opportunity to study experimental PRRSV infection at the population level. The results show that pigs can be placed into distinct phenotypic groups, including pigs that show resistance or pigs that exhibit tolerance to infection. Tolerance is best illustrated by pigs that gain weight normally in the face of a relatively high virus load. Genome-wide association analysis has identified a region on chromosome 4 (SSC4 correlated with resistance; i.e., higher weight gain combined with lower virus load. The genomic region is near a family of genes involved in innate immunity. These results create the opportunity to develop breeding programs that will produce pigs with increased resistance to PRRS. The identification of genomic markers involved in tolerance will likely prove more difficult, primarily because tolerance

  8. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Wei, Wei; Zhang, Yu-Qin; Tao, Jian-Jun; Chen, Hao-Wei; Li, Qing-Tian; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-03-01

    Plant homeodomain (PHD) finger proteins affect processes of growth and development by changing transcription and reading epigenetic histone modifications, but their functions in abiotic stress responses remain largely unclear. Here we characterized seven Arabidopsis thaliana Alfin1-like PHD finger proteins (ALs) in terms of the responses to abiotic stresses. ALs localized to the nucleus and repressed transcription. Except AL6, all the ALs bound to G-rich elements. Mutations of the amino acids at positions 34 and 35 in AL6 caused loss of ability to bind to G-rich elements. Expression of the AL genes responded differentially to osmotic stress, salt, cold and abscisic acid treatments. AL5-over-expressing plants showed higher tolerance to salt, drought and freezing stress than Col-0. Consistently, al5 mutants showed reduced stress tolerance. We used ChIP-Seq assays to identify eight direct targets of AL5, and found that AL5 binds to the promoter regions of these genes. Knockout mutants of five of these target genes exhibited varying tolerances to stresses. These results indicate that AL5 inhibits multiple signaling pathways to confer stress tolerance. Our study sheds light on mechanisms of AL5-mediated signaling in abiotic stress responses, and provides tools for improvement of stress tolerance in crop plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice.

    Science.gov (United States)

    Pearson, Todd; Markees, Thomas G; Serreze, David V; Pierce, Melissa A; Marron, Michele P; Wicker, Linda S; Peterson, Laurence B; Shultz, Leonard D; Mordes, John P; Rossini, Aldo A; Greiner, Dale L

    2003-07-01

    Curing type 1 diabetes by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. Most islet allotransplant tolerance induction protocols have been tested in nonobese diabetic (NOD) mice, and most have failed. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Out of concern that NOD biology could be misleading in this regard, we tested the hypothesis that autoimmunity and resistance to transplantation tolerance in NOD mice are distinct phenotypes. Unexpectedly, we observed that (NOD x C57BL/6)F(1) mice, which have no diabetes, nonetheless resist prolongation of skin allografts by costimulation blockade. Further analyses revealed that the F(1) mice shared the dendritic cell maturation defects and abnormal CD4(+) T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice can be dissociated genetically. The outcomes of tolerance induction protocols tested in NOD mice may not accurately predict outcomes in human subjects.

  10. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  11. Treatment increases stress-corrosion resistance of aluminum alloys

    Science.gov (United States)

    Jacobs, A. J.

    1966-01-01

    Overaging during heat treatment of the aluminum alloys immediately followed by moderate plastic deformation, preferably by shock loading achieves near optimum values of both yield strength and resistance to stress corrosion. Similar results may be obtained by substituting a conventional deformation process for the shock loading step.

  12. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    Higher resistance to oxidative stress in D. discoideum. 583 each culture being assayed and incubated for 3–4 h. At the end of the incubation period, isopropanol was added directly and the dissolution was accomplished by titura- tion. Absorbance of the reduced dye was measured at. 570 nm with background subtraction at ...

  13. Variation in adult life history and stress resistance across five ...

    Indian Academy of Sciences (India)

    Unknown

    higher adult lifespan and stress resistance in recently wild-caught flies, relative to flies maintained for a long time in discrete- generation laboratory cultures. ... as preadult development time, age-specific female fecun- dity and adult lifespan ...... ween fecundity and longevity in Drosophila melanogaster. Physiol. Zool.

  14. Detection of stress resistance genes in transgenic maize by multiplex and touchdown polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Bannikova M. A.

    2015-10-01

    Full Text Available Aim. To develop a methodology for detection of the genes of resistance to the stress factors in transgenic maize by multiplex (mPCR and touchdown polymerase chain reactions. Methods. isolation of total DNA by CTAB method, purification of DNA from RNA and proteins, electrophoresis of total DNA and amplification products in agarose gel, polymerase chain reaction. Results. The protocol of multiplex and touchdown polymerase chain reactions has been developed for simultaneous verification of the quality of total DNA extracted from the studied maize plant samples and detection of the following genes that determine resistance to the stress factors in the transgenic maize and maize transformation events: BT176, MON810, MON88017, DAS1507, DAS59122, MIR604, GA21, NK603 (mPCR, Bt11, MON863, MON89034, T25 (touchdown PCR. The multiplex PCR and touchdown PCR were developed using the reference samples. Conclusions. The proposed protocol of mPCR and touchdown PCR reactions can be used for mass analysis of maize samples to detect the genes of tolerance/resistance to herbicides and genes of resistance to insects reliably, authentically, quickly and cheaply.

  15. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.

    Science.gov (United States)

    Mukherjee, Vaskar; Radecka, Dorota; Aerts, Guido; Verstrepen, Kevin J; Lievens, Bart; Thevelein, Johan M

    2017-01-01

    Non-conventional yeasts present a huge, yet barely exploited, resource of yeast biodiversity for industrial applications. This presents a great opportunity to explore alternative ethanol-fermenting yeasts that are more adapted to some of the stress factors present in the harsh environmental conditions in second-generation (2G) bioethanol fermentation. Extremely tolerant yeast species are interesting candidates to investigate the underlying tolerance mechanisms and to identify genes that when transferred to existing industrial strains could help to design more stress-tolerant cell factories. For this purpose, we performed a high-throughput phenotypic evaluation of a large collection of non-conventional yeast species to identify the tolerance limits of the different yeast species for desirable stress tolerance traits in 2G bioethanol production. Next, 12 multi-tolerant strains were selected and used in fermentations under different stressful conditions. Five strains out of which, showing desirable fermentation characteristics, were then evaluated in small-scale, semi-anaerobic fermentations with lignocellulose hydrolysates. Our results revealed the phenotypic landscape of many non-conventional yeast species which have not been previously characterized for tolerance to stress conditions relevant for bioethanol production. This has identified for each stress condition evaluated several extremely tolerant non- Saccharomyces yeasts. It also revealed multi-tolerance in several yeast species, which makes those species good candidates to investigate the molecular basis of a robust general stress tolerance. The results showed that some non-conventional yeast species have similar or even better fermentation efficiency compared to S. cerevisiae in the presence of certain stressful conditions. Prior to this study, our knowledge on extreme stress-tolerant phenotypes in non-conventional yeasts was limited to only few species. Our work has now revealed in a systematic way the

  16. Effects of cadmium-resistant fungi Aspergillus aculeatus on metabolic profiles of bermudagrass [Cynodondactylon (L.)Pers.] under Cd stress.

    Science.gov (United States)

    Li, Xiaoning; Gitau, Margaret Mukami; Han, Shijuan; Fu, Jinmin; Xie, Yan

    2017-05-01

    Plants' tolerance to heavy metal stress may be induced by the exploitation of microbes. The objectives of this study were to investigate the effect of cadmium (Cd)-resistant fungus, Aspergillus aculeatus, on tolerance to Cd and alteration of metabolites in bermudagrass under Cd stress, and identify the predominant metabolites associated with Cd tolerance. Two genotypes of bermudagrass with contrasting Cd tolerance (Cd-sensitive 'WB92' and Cd-tolerant 'WB242') were exposed to 0, 50, 150 and 250 mg kg -1 Cd for 21 days. Physiological responses of bermudagrass to Cd stress were evaluated based on the relative growth rate (RGR) and normalized relative transpiration rate (NRT). Plants inoculated with A. aculeatus exhibited higher RGR and NRT under Cd stress than those of non-inoculated plants, regardless of genotypes. A total of 32 Cd-responsive metabolites in leaves and 21 in roots were identified in the two genotypes, including organic acids, amino acids, sugars, and fatty acids and others. Interestingly, under Cd stress, the leaves of inoculated 'WB92' accumulated less citric acid, aspartic acid, glutamic acid, sucrose, galactose, but more sorbose and glucose, while inoculated 'WB242' leaves had less citric acid, malic acid, sucrose, sorbose, but more fructose and glucose, compared to non-inoculated plants. In 'WB92' roots, the A. aculeatus reduced mannose content, but increased trehalose and citric acid content, while in 'WB242', it decreased sucrose, but enhanced citric acid content, compared to Cd regime. The results of this study suggest that A. aculeatus may induce accumulation of different metabolites associated with Cd tolerance in bermudagrass. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Mechanisms of Brain Glucocorticoid Resistance in Stress-Induced Psychopathologies.

    Science.gov (United States)

    Merkulov, V M; Merkulova, T I; Bondar, N P

    2017-03-01

    Exposure to stress activates the hypothalamic-pituitary-adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stress- and GR-induced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.

  18. Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters.

    Science.gov (United States)

    Li, Peng; Seneviratne, Chaminda J; Alpi, Emanuele; Vizcaino, Juan A; Jin, Lijian

    2015-10-01

    Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress.

    Science.gov (United States)

    Chen, Yun; Feng, Li; Wei, Ning; Liu, Zhi-Hao; Hu, Shan; Li, Xue-Bao

    2017-06-01

    PYR/PYL/RCAR proteins are putative abscisic acid (ABA) receptors that play important roles in plant responses to biotic and abiotic stresses. In this study, 27 predicted PYL proteins were identified in cotton (Gossypium hirsutum). Sequence analysis showed they are conserved in structures. Phylogenetic analysis showed that cotton PYL family could be categorized into three groups. Yeast two-hybrid assay revealed that the GhPYL proteins selectively interacted with some GhPP2C proteins. Quantitative RT-PCR analysis indicated that the most of nine GhPYL genes were down-regulated, while the other three were up-regulated in cotton under drought stress. Overexpression of GhPYL10/12/26 in Arabidopsis conferred the transgenic plants increased ABA sensitivity during seed germination and early seedling growth. On the contrary, the transgenic seedlings displayed better growth status and longer primary roots under normal conditions and mannitol stress, compared with wild type. Furthermore, the transgenic plants showed the enhanced drought tolerance, relative to wild type, when they were suffered from drought stress. Expression of some stress-related genes in transgenic plants was significant higher than that in wild type under osmotic stress. Thus, our data suggested that these cotton PYL genes may be involved in plant response and defense to drought/osmotic stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought Tolerance in Date Palm (Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Haddad A. El Rabey

    2015-01-01

    Full Text Available This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar “Sagie” were subjected to drought (27.5 g/L polyethylene glycol 6000 and salinity stress conditions (16 g/L NaCl for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.

  1. Autophagy Is Rapidly Induced by Salt Stress and Is Required for Salt Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Liming Luo

    2017-08-01

    Full Text Available Salinity stress challenges agriculture and food security globally. Upon salt stress, plant growth slows down, nutrients are recycled, osmolytes are produced, and reallocation of Na+ takes place. Since autophagy is a high-throughput degradation pathway that contributes to nutrient remobilization in plants, we explored the involvement of autophagic flux in salt stress response of Arabidopsis with various approaches. Confocal microscopy of GFP-ATG8a in transgenic Arabidopsis showed that autophagosome formation is induced shortly after salt treatment. Immunoblotting of ATG8s and the autophagy receptor NBR1 confirmed that the level of autophagy peaks within 30 min of salt stress, and then settles to a new homeostasis in Arabidopsis. Such an induction is absent in mutants defective in autophagy. Within 3 h of salt treatment, accumulation of oxidized proteins is alleviated in the wild-type; however, such a reduction is not seen in atg2 or atg7. Consistently, the Arabidopsis atg mutants are hypersensitive to both salt and osmotic stresses, and plants overexpressing ATG8 perform better than the wild-type in germination assays. Quantification of compatible osmolytes further confirmed that the autophagic flux contributes to salt stress adaptation. Imaging of intracellular Na+ revealed that autophagy is required for Na+ sequestration in the central vacuole of root cortex cells following salt treatment. These data suggest that rapid protein turnover through autophagy is a prerequisite for salt stress tolerance in Arabidopsis.

  2. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  3. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Directory of Open Access Journals (Sweden)

    Yariv Brotman

    2013-03-01

    Full Text Available Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L. plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated

  4. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass1[OPEN

    Science.gov (United States)

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-01-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance. PMID:26224802

  5. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance.

    Science.gov (United States)

    Coleman-Derr, Devin; Tringe, Susannah G

    2014-01-01

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions.

  6. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Devin eColeman-Derr

    2014-06-01

    Full Text Available The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions.

  7. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  8. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Derr, Devin [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, Susannah G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-06

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions

  9. Pyramiding of two rice bacterial blight resistance genes, Xa3 and Xa4, and a closely linked cold-tolerance QTL on chromosome 11.

    Science.gov (United States)

    Hur, Yeon-Jae; Cho, Jun-Hyeon; Park, Hyun-Su; Noh, Tae-Hwan; Park, Dong-Soo; Lee, Ji Yun; Sohn, Young-Bo; Shin, Dongjin; Song, You Chun; Kwon, Young-Up; Lee, Jong-Hee

    2016-10-01

    We fine mapped the Xa4 locus and developed a pyramided rice line containing Xa3 and Xa4 R - alleles and a cold-tolerance QTL. This line will be valuable in rice breeding. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease of cultivated rice. Pyramiding BB resistance genes is an essential approach for increasing the resistance level of rice varieties. We selected an advanced backcross recombinant inbred line 132 (ABL132) from the BC3F7 population derived from a cross between cultivars Junam and IR72 by K3a inoculation and constructed the mapping population (BC4F6) to locate the Xa4 locus. The Xa4 locus was found to be delimited within a 60-kb interval between InDel markers InDel1 and InDel2 and tightly linked with the Xa3 gene on chromosome 11. After cold (4 °C) treatment, ABL132 with introgressions of IR72 in chromosome 11 showed lower survival rate, chlorophyll content, and relative water content compared to Junam. Genetic analysis showed that the cold stress-related quantitative trait locus (QTL) qCT11 was located in a 1.3-Mb interval close to the Xa4 locus. One line, ABL132-36, containing the Xa3 resistance allele from Junam, the Xa4 resistance allele from IR72, and the cold-tolerance QTL from Junam (qCT11), was developed from a BC4F6 population of 250 plants. This is the first report on the pyramiding of Xa3 and Xa4 genes with a cold-tolerance QTL. This region could provide a potential tool for improving resistance against BB and low-temperature stress in rice-breeding programs.

  10. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    Science.gov (United States)

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  11. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production.

    Science.gov (United States)

    Kumari, Rajni; Pramanik, Krishna

    2012-12-01

    The present work deals with the improvement of multiple stress tolerance in a glucose-xylose co-fermenting hybrid yeast strain RPR39 by sequential mutagenesis using ethyl methane sulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, near and far ultraviolet radiations. The mutants were evaluated for their tolerance to ethanol, temperature and fermentation inhibitors. Among these mutants, mutant RPRT90 exhibited highest tolerance to 10% initial ethanol concentration, 2 g L(-1) furfural and 8 g L(-1) acetic acid. The mutant also showed good growth at high temperature (39-40°C). A study on the combined effect of multiple stresses during fermentation of glucose-xylose mixture (3:1 ratio) was performed using mutant RPRT90. Under the combined effect of thermal (39°C) and inhibitor stress (0.25 g L(-1) vanillin, 0.5 g L(-1) furfural and 4 g L(-1) acetic acid), the mutant produced ethanol with a yield of 0.379 g g(-1), while under combined effect of ethanol (7% v/v) and inhibitor stress the ethanol yield obtained was 0.43 g g(-1). Further, under the synergistic effect of sugar (250 g L(-1)), thermal (39°C), ethanol (7% v/v) and inhibitors stress, the strain produced a maximum of 47.93 g L(-1) ethanol by utilizing 162.42 g L(-1) of glucose-xylose mixture giving an ethanol yield of 0.295 g g(-1) and productivity of 0.57 g L(-1) h(-1). Under same condition the fusant RPR39 produced a maximum of 30.0 g L(-1) ethanol giving a yield and productivity of 0.21 g g(-1) and 0.42 g L(-1) h(-1) respectively. The molecular characterization of mutant showed considerable difference in its genetic profile from hybrid RPR39. Thus, sequential mutagenesis was found to be effective to improve the stress tolerance properties in yeast. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    Science.gov (United States)

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effect of Endophyte infection and clipping treatment on resistance and tolerance of Achnatherum sibiricum

    Directory of Open Access Journals (Sweden)

    Junhua Qin

    2016-12-01

    Full Text Available It is well-documented that endophytes can enhance the resistance of agronomical grasses, such as tall fescue and perennial ryegrass to herbivory. For native grasses, however, the related reports are limited, and the conclusions are variable. Achnatherum sibiricum is a grass native to the Inner Mongolian steppe. This grass is highly infected by endophytes but does not produce detectable endophyte-related alkaloids known under normal conditions. In this study, the contributions of endophytes to the resistance of A. sibiricum to Locusta migratoria were studied. We found that locusts preferred EF (endophyte-free plants to EI (endophyte-infected plants, and the weight of locusts fed on EI plants was significantly lower than those fed on EF plants. Hence, endophyte infection significantly enhanced the resistance of the host to L. migratoria. Endophyte infection significantly decreased the concentration of soluble sugar and amino acids while significantly increasing the concentration of total phenolic content, and these metabolites may contribute to herbivore resistance of the host. The clipping treatment further strengthened the locust resistance advantage of EI over EF plants. After clipping, the weight of the locusts fed on EI plants significantly decreased compared with those fed on unclipped plants, whereas the weight of the locusts fed on EF plants increased significantly. The results suggested that endophyte infection could increase herbivore resistance while decreasing the tolerance of the host grass by mechanisms apart from endophyte-conferred alkaloid defense.

  14. Stress resistance of Escherichia coli and Bacillus subtilis is modulated by auxins.

    Science.gov (United States)

    Repar, J; Šućurović, S; Zahradka, K; Zahradka, D; Ćurković-Perica, M

    2013-11-01

    Two bacterial species, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, were exposed to different auxins to examine possible effects of these substances on bacterial stress tolerance. Bacterial resistance to UV irradiation, heat shock, and streptomycin was assessed with and without previous exposure to the following auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthalene acetic acid (NAA). Escherichia coli and B. subtilis cultures pretreated with any of the 3 auxins survived UV irradiation better than the untreated cultures. Also, B. subtilis cultures pretreated with IBA or NAA survived prolonged heat exposure better than the untreated cultures, while IAA pretreatment had no effect on heat shock survival. In contrast, auxin pretreatment rendered E. coli more sensitive to heat shock. Escherichia coli cultures pretreated with auxins were also more sensitive to streptomycin, while auxin pretreatment had no effect on sensitivity of B. subtilis to streptomycin. These results show that auxins may either enhance or reduce bacterial tolerance to different stressors, depending on the bacterial species and the type and level of the stress. Auxins usually had similar effects on the same bacterial species in cases when the same type and level of stress were applied.

  15. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc. Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L. Plants

    Directory of Open Access Journals (Sweden)

    Kurnool Kiranmai

    2018-03-01

    Full Text Available Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.. Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L. showed increased tolerance to drought stress compared to wild-type (WT plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2∙-, accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  16. Comparison of white spot syndrome virus infection resistance between Exopalaemon carinicauda and Litopenaeus vannamei under different salinity stresses

    Science.gov (United States)

    Ge, Qianqian; Yu, Ge; Sun, Ming; Li, Jitao; Li, Jian

    2017-12-01

    Exopalaemon carinicauda is one of the important economic shrimp species in China, and can tolerate a wide range of salinities. However, its disease resistance remains to be unclear in comparison with other shrimp species under salinity stress. In this study, the resistance to white spot syndrome virus (WSSV) of E. carinicauda and Litopenaeus vannamei was determined by comparing their hemocyanin (Hc) and phenoloxidase (PO) activities under different salinity stresses. In E. carinicauda, the PO activity and Hc gene transcript abundance showed a coherent pattern of increase and decrease while Hc content showed a slightly decrease with Vibrio anguillarum and WSSV infections. For both E. carinicauda and L. vannamei under salinity stress, the PO activity showed a positive correlation with the salinity while the Hc content and expression level of its gene increased significantly in salinities of 5, 15 and 25 g L-1. The survival rate of E. carinicauda with WSSV infection was higher than that of L. vannamei in the first 24 h under different salinity stresses. Drastic mortality of E.carinicauda and L. vannamei appeared at 48 h and 3 h post-injection, respectively. Furthermore, compared with L. vannamei, E. carinicauda displayed higher PO activity, Hc content and abundance of Hc gene mRNA. The results collectively indicated that Hc and PO have obviously functional connection in resisting pathogens and tolerating salinity stress, and PO activity and Hc gene mRNA abundance may reflect the resistance of shrimp to disease. E. carinicauda has higher level of immune potential than L. vannamei, suggesting its greater capacity in resisting pathogens under salinity stresses.

  17. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions

    Directory of Open Access Journals (Sweden)

    Thais H. S. Ferreira

    2017-06-01

    Full Text Available Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.

  18. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in postinfarct heart failure.

    Science.gov (United States)

    Ohta, Yukihiro; Kinugawa, Shintaro; Matsushima, Shouji; Ono, Taisuke; Sobirin, Mochamad A; Inoue, Naoki; Yokota, Takashi; Hirabayashi, Kagami; Tsutsui, Hiroyuki

    2011-05-01

    Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.

  19. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP.

    Directory of Open Access Journals (Sweden)

    Souvik Basak

    Full Text Available Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP, which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3 were identified with improved tolerance via H(2O(2 enrichment selection. The best mutant OM3 could grow in 12 mM H(2O(2 with the growth rate of 0.6 h(-1, whereas the growth of wild type was completely inhibited at this H(2O(2 concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS, which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2O(2 treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold, but also RpoS- and OxyR-regulated genes (up to 7.7-fold. qRT-PCR data and enzyme activity assay suggested that catalase (katE could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.

  20. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance

    Directory of Open Access Journals (Sweden)

    Kristina L Ford

    2011-09-01

    Full Text Available Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L. in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant, Excalibur (tolerant and RAC875 (tolerant, were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299 in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875 differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and ROS scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle.

  1. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    Science.gov (United States)

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAl alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed

  3. The etiology of oxidative stress in insulin resistance

    Directory of Open Access Journals (Sweden)

    Samantha Hurrle

    2017-10-01

    Full Text Available Insulin resistance is a prevalent syndrome in developed as well as developing countries. It is the predisposing factor for type 2 diabetes mellitus, the most common end stage development of metabolic syndrome in the United States. Previously, studies investigating type 2 diabetes have focused on beta cell dysfunction in the pancreas and insulin resistance, and developing ways to correct these dysfunctions. However, in recent years, there has been a profound interest in the role that oxidative stress in the peripheral tissues plays to induce insulin resistance. The objective of this review is to focus on the mechanism of oxidative species generation and its direct correlation to insulin resistance, to discuss the role of obesity in the pathophysiology of this phenomenon, and to explore the potential of antioxidants as treatments for metabolic dysfunction.

  4. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects.

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K; Kumar, Vivek; Verma, Rishi; Upadhyay, R G; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis - and trans -acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis -acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance.

  5. Salt-tolerant and -sensitive alfalfa (Medicago sativa) cultivars have large variations in defense responses to the lepidopteran insect Spodoptera litura under normal and salt stress condition.

    Science.gov (United States)

    Lei, Yunting; Liu, Qing; Hettenhausen, Christian; Cao, Guoyan; Tan, Qing; Zhao, Weiye; Lin, Honghui; Wu, Jianqiang

    2017-01-01

    In nature, plants are often exposed to multiple stress factors at the same time. Yet, little is known about how plants modulate their physiology to counteract simultaneous abiotic and biotic stresses, such as soil salinity and insect herbivory. In this study, insect performance bioassays, phytohormone measurements, quantification of transcripts, and protein determination were employed to study the phenotypic variations of two alfalfa (Medicago sativa) cultivars in response to insect Spodoptera litura feeding under normal and salt stress condition. When being cultivated in normal soil, the salt-tolerant alfalfa cultivar Zhongmu-1 exhibited lower insect resistance than did the salt-sensitive cultivar Xinjiang Daye. Under salinity stress, the defense responses of Xinjiang Daye were repressed, whereas Zhongmu-1 did not show changes in resistance levels. It is likely that salinity influenced the resistance of Xinjiang Daye through suppressing the accumulation of jasmonic acid-isoleucine (JA-Ile), which is the bioactive hormone inducing herbivore defense responses, leading to attenuated trypsin proteinase inhibitor (TPI) activity. Furthermore, exogenous ABA supplementation suppressed the insect herbivory-induced JA/JA-Ile accumulation and levels of JAR1 (jasmonate resistant 1) and TPI, and further decreased the resistance of Xinjiang Daye, whereas Zhongmu-1 showed very little response to the increased ABA level. We propose a mechanism, in which high levels of abscisic acid induced by salt treatment may affect the expression levels of JAR1 and consequently decrease JA-Ile accumulation and thus partly suppress the defense of Xinjiang Daye against insects under salt stress. This study provides new insight into the mechanism by which alfalfa responds to concurrent abiotic and biotic stresses.

  6. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-09-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  7. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  8. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.

    Science.gov (United States)

    Abdel Latef, Arafat A; Tran, Lam-Son P

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  9. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    Directory of Open Access Journals (Sweden)

    Klára Kosová

    2015-09-01

    Full Text Available Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum, durum wheat (Triticum durum, barley (Hordeum vulgare, maize (Zea mays; leguminous plants: alfalfa (Medicago sativa, soybean (Glycine max, common bean (Phaseolus vulgaris, pea (Pisum sativum; oilseed rape (Brassica napus; potato (Solanum tuberosum; tobacco (Nicotiana tabaccum; tomato (Lycopersicon esculentum; and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  10. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Czech Academy of Sciences Publication Activity Database

    Hichri, I.; Muhovski, Y.; Žižková, Eva; Dobrev, Petre; Gharbi, E.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Clippe, A.; Errachid, A.; Motyka, Václav; Lutts, S.

    2017-01-01

    Roč. 8, JUL 31 (2017), č. článku 1343. ISSN 1664-462X R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : agrobacterium-mediated transformation * transgenic arabidopsis plants * dna-binding * salinity tolerance * defense responses * drought tolerance * abiotic stresses * water-stress * genes * tobacco * Solanum lycopersicum * SlWRKY3 * transcription factor * salinity tolerance * plant physiology Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  11. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  12. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.

    2018-03-01

    Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.

  13. Herbivory on temperate rainforest seedlings in sun and shade: resistance, tolerance and habitat distribution.

    Directory of Open Access Journals (Sweden)

    Cristian Salgado-Luarte

    Full Text Available Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1 herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2 consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun and forest understory (shade in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory

  14. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU).

    Science.gov (United States)

    Ashrafuzzaman, Md; Lubna, Farzana Afrose; Holtkamp, Felix; Manning, William J; Kraska, Thorsten; Frei, Michael

    2017-11-01

    Rising tropospheric ozone concentrations in Asia necessitate the breeding of adapted rice varieties to ensure food security. However, breeding requires field-based evaluation of ample plant material, which can be technically challenging or very costly when using ozone fumigation facilities. The chemical ethylenediurea (EDU) has been proposed for estimating the effects of ozone in large-scale field applications, but controlled experiments investigating constitutive effects on rice or its suitability to detect genotypic differences in ozone tolerance are missing. This study comprised a controlled open top chamber experiment with four treatments (i) control (average ozone concentration 16 ppb), (ii) control with EDU application, (iii) ozone stress (average 77 ppb for 7 h daily throughout the season), and (iv) ozone stress with EDU application. Three contrasting rice genotypes were tested, i.e. the tolerant line L81 and the sensitive Nipponbare and BR28. The ozone treatment had significant negative effects on plant growth (height and tillering), stomatal conductance, SPAD value, spectral reflectance indices such as the normalized difference vegetation index (NDVI), lipid peroxidation, as well as biomass and grain yields. These negative effects were more pronounced in the a priori sensitive varieties, especially the widely grown Bangladeshi variety BR28, which showed grain yield reductions by 37 percent. EDU application had almost no effects on plants in the absence of ozone, but partly mitigated ozone effects on foliar symptoms, lipid peroxidation, SPAD value, stomatal conductance, several spectral reflectance parameters, panicle number, grain yield, and spikelet sterility. EDU responses were more pronounced in sensitive genotypes than in the tolerant L81. In conclusion, EDU had no constitutive effects on rice and partly offset negative ozone effects, especially in sensitive varieties. It can thus be used to diagnose ozone damage in field grown rice and for

  15. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding.

    Science.gov (United States)

    Rodenburg, Jonne; Cissoko, Mamadou; Kayongo, Nicholas; Dieng, Ibnou; Bisikwa, Jenipher; Irakiza, Runyambo; Masoka, Isaac; Midega, Charles A O; Scholes, Julie D

    2017-05-01

    The parasitic weeds Striga asiatica and Striga hermonthica cause devastating yield losses to upland rice in Africa. Little is known about genetic variation in host resistance and tolerance across rice genotypes, in relation to virulence differences across Striga species and ecotypes. Diverse rice genotypes were phenotyped for the above traits in S. asiatica- (Tanzania) and S. hermonthica-infested fields (Kenya and Uganda) and under controlled conditions. New rice genotypes with either ecotype-specific or broad-spectrum resistance were identified. Resistance identified in the field was confirmed under controlled conditions, providing evidence that resistance was largely genetically determined. Striga-resistant genotypes contributed to yield security under Striga-infested conditions, although grain yield was also determined by the genotype-specific yield potential and tolerance. Tolerance, the physiological mechanism mitigating Striga effects on host growth and physiology, was unrelated to resistance, implying that any combination of high, medium or low levels of these traits can be found across rice genotypes. Striga virulence varies across species and ecotypes. The extent of Striga-induced host damage results from the interaction between parasite virulence and genetically determined levels of host-plant resistance and tolerance. These novel findings support the need for predictive breeding strategies based on knowledge of host resistance and parasite virulence. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Rizvi, Hina; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Qayyum, Muhammad Farooq; Hafeez, Farhan; Ok, Yong Sik

    2016-09-01

    Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies.

  17. Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress1[OPEN

    Science.gov (United States)

    Siciliano, Ilenia

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved. PMID:27208301

  18. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Olivier [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Miaud, Claude, E-mail: claude.miaud@univ-savoie.fr [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Ficetola, Gentile Francesco [Laboratoire d' Ecologie Alpine, UMR CNRS 5553, Universite de Savoie, Technolac, Le Bourget du Lac (France); Department of Biology, Universita degli Studi di Milano, Milan (Italy); Bocher, Aurore [Laboratoire de Chimie Moleculaire et Environnement, Universite de Savoie, Le Bourget du Lac (France); Mouchet, Florence [Laboratoire d' Ecologie Fonctionnelle, UMR CNRS-UPS-INPT 5245, Institut National Polytechnique-ENSAT, Auzeville-Tolosane (France); Guittonneau, Sylvie [Laboratoire de Chimie Moleculaire et Environnement, Universite de Savoie, Le Bourget du Lac (France); Devaux, Alain [Laboratoire des Sciences de l' Environnement, Ecole Nationale des Travaux Publics de l' Etat, INRA-EFPA, Vaulx-en-Velin (France)

    2009-11-08

    Populations of widely distributed species can be subjected to unequal selection pressures, producing differences in rates of local adaptation. We report a laboratory experiment testing tolerance variation to UV-B and polycyclic aromatic hydrocarbons (PAHs) among common frog (Rana temporaria) populations according to their natural exposure level in the field. Studied populations were naturally distributed along two gradients, i.e. UV-B radiation with altitude and level of contamination by PAHs with the distance to emitting sources (road traffic). Tadpoles from eight populations were subjected to (1) no or high level of artificial UV-B; (2) four concentrations of benzo[a]pyrene (BaP) (0, 50, 250, 500 {mu}g L{sup -1}); (3) simultaneously to UV-B and BaP. Since both stressors are genotoxic, the number of micronucleated erythrocytes (MNE) in circulating red blood cells was used as a bioindicator of tadpole sensitivity. High-altitude populations appear to be locally adapted to better resist UV-B genotoxicity, as they showed the lowest MNE numbers. Conversely, no correlation was observed between levels of PAH contamination in the field and tadpole tolerance to BaP in the laboratory, indicating the absence of local adaptation for BaP tolerance in these populations. Nevertheless, the decrease of MNE formation due to BaP exposure with altitude suggests that high-altitude populations were intrinsically more resistant to BaP genotoxicity. We propose the hypothesis of a co-tolerance between UV-B and BaP in high-altitude common frog populations: local adaptation to prevent and/or repair DNA damage induced by UV-B could also protect these highland populations against DNA damage induced by BaP. The results of this study highlight the role of local adaptation along pollutant gradients leading to tolerance variation, which implies that is it necessary to take into account the history of exposure of each population and the existence of co-tolerance that can hide toxic effects of a

  20. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    Science.gov (United States)

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    Science.gov (United States)

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  2. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress.

    Science.gov (United States)

    García, Julia E; Maroniche, Guillermo; Creus, Cecilia; Suárez-Rodríguez, Ramón; Ramirez-Trujillo, José Augusto; Groppa, María D

    2017-09-01

    Osmotic variations in the soil can affect bacterial growth diminishing the number of inoculated bacteria. In a scenario of water deficit having tolerant bacteria would be beneficial to achieve a better response of the plant to stress. Thus, selection of more resistant bacteria could be useful to design new inoculants to be used in arid zones. In this sense, a group of Azospirillum isolates deposited in INTA collection was characterized in order to select strains tolerant to osmotic stress. The results obtained demonstrated that Az19 strain has similar in vitro PGPR characteristics to Az39, the most used strain in Argentina for inoculants industries, with the advantage of a better tolerance to osmotic and salt stress. Inoculation of maize plants with this strain resulted in a better response against water deficit compared to Az39 strain, encouraging us to further study the behavior of this strain in greenhouse and field trials in view of developing new inoculants suitable for areas with water deficit. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.

    Science.gov (United States)

    Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

  4. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7.

    Science.gov (United States)

    Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun

    2012-05-01

    To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Salt Stess On Soybean Glycine Max L Merr Improving Salt Stress Tolerance Through Seed Priming

    Directory of Open Access Journals (Sweden)

    Maman Suryaman

    2017-08-01

    Full Text Available Soybean seeds rapidly deteriorate or loss of viability and vigor especially in stress conditions including by saline. This study was aimed to obtain the best seed viability and vigor of soybean treated by seed priming under salt stress. This study used a randomized completely block design with factorial pattern. First factor was the saline stress of NaCl concentration C which consisted of three levels c0 0 0.5 c1 c2 1.Second factor was the treatment of seed priming P that consisted of 4 levels p0 hydropriming p1 osmopriming p2 matripriming p3 vitamin priming. The experiment was repeated three times. Data collected consisted of germination capacity germination rate hypocotyl and epicotyl length the weight of seedling and the electrical conductivity. Data were analyzed by analysis of variance followed by Duncans multiple range test at 5 percent. The results showed that osmopriming matripriming and vitamin priming improved total germination and germination rate of soybean seeds under salinity stress while seed priming with hydropriming caused significantly the reduction of germination total and germination rate in salinity stress of 1 percent. Increased salinity stress from 0 to 1 percent caused a reduction in hypocotyl and epicotyl length different with osmopriming matripriming and vitamin priming that produced hypocotyl and epicotyl longer than hydropriming. In all seed primings increased salinity stress from 0 to 1 percent lowered the weight of seedlings and most drastic reduction of seedling weight occurred in seeds treated with hydropriming. Among seed priming treatments osmopriming matripriming and vitamin priming were more able to reduce membrane leakage compared to hydropriming as indicated by lower electrical conductivity rates contributing the increase in tolerance to salt stress and high in seed viability and vigor.

  6. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Jiao, Yang; Li, MingXia; Zhong, XiuLi; Gu, FengXue; Liu, Qi; Xia, Xu; Li, HaoRu

    2018-01-01

    Abstract An in-depth understanding of the effects of drought stress on plant metabolism is necessary to improve the drought tolerance of wheat and to utilize genetic resources for the development of drought stress-tolerant wheat varieties. In this study, the profiles of 58 key metabolites produced by wheat seedlings in response to drought stress were investigated to determine various physiological processes related to drought tolerance between drought-tolerant and drought-sensitive wheat genotypes. Results showed that the wheat metabolome was dominated by sugars, organic acids and amino acids; the wheat metabolome played important roles to enhance the drought tolerance of shoots. Under drought stress, JD17 exhibited higher growth indices and higher photosynthesis ability than JD8. A high level of compatible solutes and energy in shoots were essential for wheat to develop drought tolerance. Drought also caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and γ-aminobutyric acid metabolisms. Long-term drought stress resulted in the drought-tolerant wheat genotype JD17, which induced metabolic shifts in the tricarboxylic acid cycle and glycolysis with the depletion of the γ-aminobutyric acid shut process. In JD17, the prolonged drought stress induced a progressive accumulation of osmolytes, including proline, sucrose, fructose, mannose and malic acid. This research extended our understanding of the mechanisms involved in wheat seedling drought tolerance; this study also demonstrated that gas chromatography–mass spectrometry metabolomics could be an effective approach to understand the drought effects on plant biochemistry.

  7. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    exposure. To allow added radioactive methionine to be incorporated into induced proteins, a modified chemically defined broth was developed with the minimal amount of methionine necessary for satisfactory growth of all strains. Protein spots were analyzed using image software and identification was done...... was to investigate the response to acid stress of three sequenced C. jejuni strains with different acid tolerances using HCl and acetic acid. RESULTS: Two-dimensional gel electrophoresis was used for proteomic analysis and proteins were radioactively labelled with methionine to identify proteins only related to acid...

  8. Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi

    Czech Academy of Sciences Publication Activity Database

    Michán, C.; Martínez, J.L.; Alvarez, M.C.; Turk, M.; Sychrová, Hana; Ramos, J.

    2013-01-01

    Roč. 13, č. 2 (2013), s. 180-188 ISSN 1567-1356 R&D Projects: GA MŠk(CZ) OC10012; GA ČR(CZ) GAP503/10/0307 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200110901 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : Debaryomyces * stress tolerance * ROS content * sodium content * membrane fluidity Subject RIV: EE - Microbiology, Virology Impact factor: 2.436, year: 2013

  9. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    OpenAIRE

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption me...

  10. Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice

    Directory of Open Access Journals (Sweden)

    Huong Mai Nguyen

    2017-07-01

    Full Text Available High-salinity stress considerably affects plant growth and crop yield. Thus, developing techniques to enhance high-salinity stress tolerance in plants is important. In this study, we revealed that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice. To elucidate the molecular mechanism underlying the ethanol-induced tolerance, we performed microarray analyses using A. thaliana seedlings. Our data indicated that the expression levels of 1,323 and 1,293 genes were upregulated by ethanol in the presence and absence of NaCl, respectively. The expression of reactive oxygen species (ROS signaling-related genes associated with high-salinity tolerance was upregulated by ethanol under salt stress condition. Some of these genes encode ROS scavengers and transcription factors (e.g., AtZAT10 and AtZAT12. A RT-qPCR analysis confirmed that the expression levels of AtZAT10 and AtZAT12 as well as AtAPX1 and AtAPX2, which encode cytosolic ascorbate peroxidases (APX, were higher in ethanol-treated plants than in untreated control plants, when exposure to high-salinity stress. Additionally, A. thaliana cytosolic APX activity increased by ethanol in response to salinity stress. Moreover, histochemical analyses with 3,3′-diaminobenzidine (DAB and nitro blue tetrazolium (NBT revealed that ROS accumulation was inhibited by ethanol under salt stress condition in A. thaliana and rice, in which DAB staining data was further confirmed by Hydrogen peroxide (H2O2 content. These results suggest that ethanol enhances high-salinity stress tolerance by detoxifying ROS. Our findings may have implications for improving salt-stress tolerance of agriculturally important field-grown crops.

  11. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  12. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  13. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China); Zhang, Hongxia, E-mail: hxzhang@sippe.ac.cn [Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032 (China)

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  15. Carotid-cardiac baroreflex response and LBNP tolerance following resistance training

    Science.gov (United States)

    Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1992-01-01

    The purpose of this study was to examine the effect of lower body resistance training on cardiovascular control mechanisms and blood pressure maintenance during an orthostatic challenge. Lower body negative pressure (LBNP) tolerance, carotid-cardiac baroreflex function (using neck chamber pressure), and calf compliance were measured in eight healthy males before and after 19 wk of knee extension and leg press training. Resistance training sessions consisted of four or five sets of 6-12 repetitions of each exercise, performed two times per week. Training increased strength 25 +/- 3 (SE) percent (P = 0.0003) and 31 +/- 6 percent (P = 0.0004), respectively, for the leg press and knee extension exercises. Average fiber size in biopsy samples of m. vastus lateralis increased 21 +/- 5 percent (P = 0.0014). Resistance training had no significant effect on LBNP tolerance. However, calf compliance decreased in five of the seven subjects measured, with the group average changing from 4.4 +/- 0.6 ml.mm Hg-1 to 3.9 +/- 0.3 ml.mm Hg-1 (P = 0.3826). The stimulus-response relationship of the carotid-cardiac baroreflex response shifted to the left on the carotid pressure axis as indicated by a reduction of 6 mm Hg in baseline systolic blood pressure (P = 0.0471). In addition, maximum slope increased from 5.4 +/- 1.3 ms.mm Hg-1 before training to 6.6 +/- 1.6 ms.mm Hg-1 after training (P = 0.0141). Our results suggest the possibility that high resistance, lower extremity exercise training can cause a chronic increase in sensitivity and resetting of the carotid-cardiac baroreflex.

  16. A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis.

    Science.gov (United States)

    Cao, Lei; Yu, Yang; DuanMu, Huizi; Chen, Chao; Duan, Xiangbo; Zhu, Pinghui; Chen, Ranran; Li, Qiang; Zhu, Yanming; Ding, Xiaodong

    2016-08-24

    Wild soybean (Glycine soja) is a highly adaptive plant species which can grow well in saline-alkaline soils. In soybean genome, there exist about 140 HD-Zip (Homeodomain-leucine Zipper) genes. HD-Zip transcription factor family is one of the largest plant specific superfamilies and plays important roles in response to abiotic stresses. Although HD-Zip transcription factors have been broadly reported to be involved in plant resistance to abiotic stresses like salt and drought, their roles in response to bicarbonate stress is largely unknown. From our previous transcriptome profile analysis of wild soybean treated by 50 mM NaHCO3, we identified an HD-Zip gene (Gshdz4) which showed high response to the alkaline stress. Our result of qRT-PCR showed that the expression of Gshdz4 was induced by alkaline stress (NaHCO3) in both leaves and roots of wild soybean. Overexpression of Gshdz4 in Arabidopsis resulted in enhanced tolerance to NaHCO3 and KHCO3 during the process of plant growth and development. However, the growths of transgenic and WT plants were not significantly different on the medium with high pH adjusted by KOH, implicating Gshdz4 is only responsible for resisting HCO3 (-) but not high pH. The transgenic plants had less MDA contents but higher POD activities and chlorophyll contents than the WT plants. Moreover, the transcript levels of stress-related genes, such as NADP-ME, H (+) -Ppase, RD29B and KIN1 were increased with greater extent in the transgenic plants than the wild plants. On the contrary, Gshdz4 overexpression lines were much sensitive to osmotic stress at seed germination and stocking stages compared to the wild plants. We revealed that the important and special roles of Gshdz4 in enhancing bicarbonate tolerance and responding to osmotic stress. It is the first time to elucidate these novel functions of HD-ZIP transcription factors. All the evidences broaden our understanding of functions of HD-Zip family and provide clues for uncovering the

  17. Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus.

    Directory of Open Access Journals (Sweden)

    Pingfang Li

    Full Text Available Brassinosteroids (BRs, a group of naturally occurring plant steroidal compounds, are essential for plant growth, development and stress tolerance. Recent studies showed that BRs could induce systemic tolerance to biotic and abiotic stresses; however, the molecular mechanisms by which BRs signals lead to responses in the whole plant are largely unknown. In this study, 24-epibrassinosteroid (EBR-induced systemic tolerance in Cucumis sativus L. cv. Jinyan No. 4 was analyzed through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation. Expression of defense/stress related genes were induced in both treated local leaves and untreated systemic leaves by local EBR application. With the suppressive subtractive hybridization (SSH library using cDNA from the phloem sap of EBR-treated plants as the tester and distilled water (DW-treated plants as the driver, 14 transcripts out of 260 clones were identified. Quantitative Real Time-Polymerase Chain Reaction (RT-qPCR validated the specific up-regulation of these transcripts. Of the differentially expressed transcripts with known functions, transcripts for the selected four cDNAs, which encode an auxin-responsive protein (IAA14, a putative ankyrin-repeat protein, an F-box protein (PP2, and a major latex, pathogenesis-related (MLP-like protein, were induced in local leaves, systemic leaves and roots after foliar application of EBR onto mature leaves. Our results demonstrated that EBR-induced systemic tolerance is accompanied with increased transcript of genes in the defense response in other organs. The potential role of phloem mRNAs as signaling components in mediating BR-regulated systemic resistance is discussed.

  18. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity

    DEFF Research Database (Denmark)

    Ryssel, Mia; Hviid, Anne-Mette Meisner; Dawish, Mohamed S.

    2014-01-01

    in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate...... nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that L. lactis MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide...

  19. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea

    OpenAIRE

    Huang, Li; Zhang, Songlin; Singer, Stacy D.; Yin, Xiangjing; Yang, Jinhua; Wang, Yuejin; Wang, Xiping

    2016-01-01

    Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arab...

  20. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis Cultivars Differing in Chilling Tolerance under Cold Stress.

    Directory of Open Access Journals (Sweden)

    Huaqiang Tan

    Full Text Available Cowpea (V. unguiculata L. Walp. is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18% had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic

  1. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress.

    Science.gov (United States)

    Tan, Huaqiang; Huang, Haitao; Tie, Manman; Tang, Yi; Lai, Yunsong; Li, Huanxiu

    2016-01-01

    Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and

  2. Effects of salt stress on wild type and vte4 mutant Arabidopsis thaliana: Model plant to engineer tolerance towards salinity

    Directory of Open Access Journals (Sweden)

    Khalatbari Amir Ali

    2013-01-01

    Full Text Available One of the major environmental constraints impairing plant distribution and yield is believed to be salt stress. Additionally, engineered abiotic stress resistance or/and tolerance is considered as an indispensable target in order to enhance plant productivity. In this study, the effects of salinity on physiological and morphological of wild type (Columbia-0 and vte4 mutant Arabidopsis thaliana were investigated under different NaCl concentrations. These salt treatments, including control condition, 50mM and 100mM NaCl were imposed on the plants. Each salt treatment was replicated three times in a complete randomized design with factorial arrangement. Wild type and mutant A.thaliana plants were subjected to the abiotic stress (salinity for up to 11 days to evaluate the parameters of growth, development and water relations. As a result, the performance of wild type plants was stronger than vte4 mutant under different salt treatments. Under control condition, rosette dry weight, maximum quantum efficiency (PSII and specific leaf area obtained the highest values of 13.85 mg, considered, wild type A.thaliana recorded higher value of 0.82 gW/gFW for relative water content (RWC under 50mM NaCl whereas mutant plants gained the value of 0.78 gW/gFW under the same condition. However, root mass fraction indicated an increase for both wild type and vte4 mutant plants after 11 days of salt stress onset. The reduction of water potential was observed for wild type and mutant A.thaliana where it scored -1.3 MPa and -1.4, respectively. As a conclusion, these findings implied that under different salt treatments morphological and physiological responses of wild type and vte4 mutant were affected in which wild type plants showed more tolerance. Lack of γ-tocopherol methyltransferase (γ -TMT gene in vte4 seemed to impair defence mechanism of this mutant against salinity.

  3. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria.

    Science.gov (United States)

    Hall, Clayton W; Mah, Thien-Fah

    2017-05-01

    Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  5. Investigating inbreeding depression for heat stress tolerance in the model organism Drosophila melanogaster

    DEFF Research Database (Denmark)

    Pedersen, Kamilla Sofie; Pedersen, Louise Dybdahl; Sørensen, Anders Christian

    2012-01-01

    Mating between closely related individuals often causes reduced fitness, which is termed ‘inbreeding depression’. Inbreeding is, therefore, a threat towards the persistence of animal and plant populations. Here we present methods and results from a practical for high-school and first-year univers......Mating between closely related individuals often causes reduced fitness, which is termed ‘inbreeding depression’. Inbreeding is, therefore, a threat towards the persistence of animal and plant populations. Here we present methods and results from a practical for high-school and first...... into vials before exposure to 38°C heat stress in a water bath for 1 h. Half an hour later the number of comatose inbred and control flies were scored and chi-square statistic procedures were used to test for different degrees of heat stress tolerance between the two lines of flies. The practical introduces...

  6. The RNA chaperone Hfq enables the environmental stress tolerance super-phenotype of Pseudomonas putida.

    Science.gov (United States)

    Arce-Rodríguez, Alejandro; Calles, Belén; Nikel, Pablo I; de Lorenzo, Víctor

    2016-10-01

    The natural physiological regime of the soil bacterium Pseudomonas putida involves incessant exposure to endogenous metabolic conflicts and environmental physicochemical insults. Yet, the role of assisted small RNA-mRNA pairing in the stress tolerance super-phenotype that is the trademark of this bacterium has not been accredited. We have thoroughly explored the physiological consequences -in particular those related to exogenous stress - of deleting the hfq gene of P. putida, which encodes the major RNA chaperone that promotes sRNA-target mRNA interactions. While the overall trend was a general weakening of every robustness descriptor of the Δhfq strain, growth parameters and production of central metabolic enzymes were comparatively less affected than other qualities that depend directly on energy status (e.g. motility, DNA repair). The overall catalytic vigour of the mutant decreased to putida. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Physiological Basis for the Tolerance of Yeast Zygosaccharomyces bisporus to Salt Stress

    Directory of Open Access Journals (Sweden)

    Akshya Sharma

    2017-10-01

    Full Text Available Zygosaccharomyces bisporus is a moderately halotolerant yeast isolated from highly sugary and salty foods. We performed various evident biochemical and in vivo experiments as first of its kind to sketch out the possible overlay of salt tolerance mechanism in this model organism. The growth and survival curve analysis revealed that 1.0 M NaCl concentration (sublethal enacts growth inhibitory effects with prompting immediate delay in cell division cycle; however, yeast cells adopted modified stress physiologically with further stretched stress spans which was accompanied by an upsurge in the level of cellular metabolites such as trehalose (reserve carbohydrate and chiefly glycerol (polyols as major compatible osmolytes, suggesting their role in defense mechanism against osmotic stress. To further elucidate the relation of osmotic stress cell physiology to salinity, thiobarbituric acid reactive substances, protein carbonyl, and reduced glutathione content were measured in salt-stressed cells demonstrating positive correlation of reactive oxygen species generation in Z. bisporus with an elevated concentration of lipid and protein oxidation, thereby damaging cell membrane and eventually causing cell death. We assessed NaCl exposure sourcing increased intracellular reactive oxygen species concentration, by an electron transfer-based colorimetric cupric-reducing antioxidant capacity assay justifying that cellular total antioxidant capacity which uses all the combined antioxidant activities present within vitamins, proteins, lipids, and glutathione reverses these deleterious stress effects. Henceforth, performance of Z. bisporus MTCC 4801 mounted because of stress regime seems to be multifactorial.

  8. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    2011-04-01

    Full Text Available There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts.We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals.These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of

  9. Nitric oxide production and tolerance differ among Symbiodinium types exposed to heat stress.

    Science.gov (United States)

    Hawkins, Thomas D; Davy, Simon K

    2012-11-01

    Nitric oxide (NO) is a ubiquitous molecule and its involvement in metazoan-microbe symbiosis is well known. Evidence suggests that it plays a role in the temperature-induced breakdown ('bleaching') of the ecologically important cnidarian-dinoflagellate association, and this can often lead to widespread mortality of affected hosts. This study confirms that dinoflagellates of the genus Symbiodinium can produce NO and that production of the compound is differentially regulated in different types when exposed to elevated temperature. Temperature-sensitive type B1 cells under heat stress (8°C above ambient) exhibited significant increases in NO synthesis, which occurred alongside pronounced photoinhibition and cell mortality. Tolerant type A1 cells also displayed increases in NO production, yet maintained photosynthetic yields at levels similar to those of untreated cells and displayed less dramatic increases in cell death. Type C1 cells displayed a down-regulation of NO synthesis at high temperature, and no significant mortality increases were observed in this type. Temperature-induced mortality in types A1 and B1 was affected by the prevailing level of NO and, furthermore, photosynthetic yields of these temperature-tolerant and -sensitive types appeared differentially susceptible to NO donated by pharmacological agents. Taken together, these differences in NO synthesis and tolerance could potentially influence the varying bleaching responses seen among hosts harboring different Symbiodinium types.

  10. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13.

    Science.gov (United States)

    Arshad, Muhammad; Feyissa, Biruk A; Amyot, Lisa; Aung, Banyar; Hannoufa, Abdelali

    2017-05-01

    Alfalfa (Medicago sativa) is an important forage crop that is often grown in areas that frequently experience drought and water shortage. MicroRNA156 (miR156) is an emerging tool for improving various traits in plants. We tested the role of miR156d in drought response of alfalfa, and observed a significant improvement in drought tolerance of miR156 overexpression (miR156OE) alfalfa genotypes compared to the wild type control (WT). In addition to higher survival and reduced water loss, miR156OE genotypes also maintained higher stomatal conductance compared to WT during drought stress. Furthermore, we observed an enhanced accumulation of compatible solute (proline) and increased levels of abscisic acid (ABA) and antioxidants in miR156OE genotypes. Similarly, alfalfa plants with reduced expression of miR156-targeted SPL13 showed reduced water loss and enhanced stomatal conductance, chlorophyll content and photosynthetic assimilation. Several genes known to be involved in drought tolerance were differentially expressed in leaf and root of miR156 overexpression plants. Taken together, our findings reveal that miR156 improves drought tolerance in alfalfa at least partially by silencing SPL13. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Metabolomic approach reveals the biochemical mechanisms underlying drought stress tolerance in thyme.

    Science.gov (United States)

    Moradi, Parviz; Ford-Lloyd, Brian; Pritchard, Jeremy

    2017-06-15

    Thyme as a perennial herb has been recognized globally for its antimicrobial, antiseptic and spasmolytic effects. In this investigation, we have used non-targeted metabolite and volatile profiling combined with the morpho-physiological parameters in order to understand the responses at the metabolite and physiological level in drought sensitive and tolerant thyme plant populations. The results at the metabolic level identified the significantly affected metabolites. Significant metabolites belonging to different chemical classes consisting amino acids, carbohydrates, organic acids and lipids have been compared in tolerant and sensitive plants. These compounds may take a role through mechanisms including osmotic adjustment, ROS scavenging, cellular components protection and membrane lipid changes, hormone inductions in which the key metabolites were proline, betain, mannitol, sorbitol, ascorbate, jasmonate, unsaturated fatty acids and tocopherol. Regarding with volatile profiling, sensitive plants showed an increased-then-decreased trend at major terpenes apart from alpha-cubebene and germacrene-D. In contrast, tolerant populations had unchanged terpenes during the water stress period with an elevation at last day. These results suggesting that the two populations are employing different strategies. The combination of metabolite profiling and physiological parameters assisted to understand precisely the mechanisms of plant response at volatile metabolome level. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Metabolite profiling reveals abiotic stress tolerance in Tn5 mutant of Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    Full Text Available Pseudomonas is an efficient plant growth-promoting rhizobacteria (PGPR; however, intolerance to drought and high temperature limit its application in agriculture as a bioinoculant. Transposon 5 (Tn5 mutagenesis was used to generate a stress tolerant mutant from a PGPR Pseudomonas putida NBRI1108 isolated from chickpea rhizosphere. A mutant NBRI1108T, selected after screening of nearly 10,000 transconjugants, exhibited significant tolerance towards high temperature and drought. Southern hybridization analysis of EcoRI and XhoI restricted genomic DNA of NBRI1108T confirmed that it had a single Tn5 insertion. The metabolic changes in the polar and non-polar extracts of NBRI1108 and NBRI1108T were examined using 1H, 31P nuclear magnetic resonance (NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS. Thirty six chemically diverse metabolites consisting of amino acids, fatty acids and phospholipids were identified and quantified. Insertion of Tn5 influenced amino acid and phospholipid metabolism and resulted in significantly higher concentration of aspartic acid, glutamic acid, glycinebetaine, glycerophosphatidylcholine (GPC and putrescine in NBRI1108T as compared to that in NBRI1108. The concentration of glutamic acid, glycinebetaine and GPC increased by 34%, 95% and 100%, respectively in the NBRI1108T as compared to that in NBRI1108. High concentration of glycerophosphatidylethanolamine (GPE and undetected GPC in NBRI1108 indicates that biosynthesis of GPE may have taken place via the methylation pathway of phospholipid biosynthesis. However, high GPC and low GPE concentration in NBRI1108T suggest that methylation pathway and phosphatidylcholine synthase (PCS pathway of phospholipid biosynthesis are being followed in the NBRI1108T. Application of multivariate principal component analysis (PCA on the quantified metabolites revealed clear variations in NBRI1108 and NBRI1108T in polar and non-polar metabolites. Identification of abiotic

  13. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

    Directory of Open Access Journals (Sweden)

    Pezzotti Mario

    2011-07-01

    Full Text Available Abstract Background Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. Results The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. Conclusion In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In

  14. Effect of cold working and applied stress on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.; Itoh, H.; Saito, I.; Takamatsu, H.; Fujitani, T.

    1992-01-01

    In order to grasp the stress corrosion cracking quantitative resistance of Alloys 600 and 690 in PWR primary water, the authors have studied the effect of cold working and applied stress on the stress corrosion cracking resistance of Alloys 600 and 690, in high temperature water. Stress corrosion cracking tests were conducted at 360 degrees C (633K) in a simulated PWR primary water for about 12,000 hours or 24,000 hours. From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked Alloys of thermally treated 690 have the excellent stress corrosion cracking resistance. Further, in this paper, the planning of stress corrosion cracking test for weld joints and weld metal of Alloy 600 is described

  15. Evolutionary and biochemical aspects of chemical stress resistance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Thiago Motta Venancio

    2012-03-01

    Full Text Available Large-scale chemical genetics screens (chemogenomics in yeast have been widely used to find drug targets, understand the mechanism-of-action of compounds, and unravel the biochemistry of drug resistance. Chemogenomics is based on the comparison of growth of gene deletants in the presence and absence of a chemical substance. Such studies showed that more than 90% of the yeast genes are required for growth in the presence of at least one chemical. Analysis of these data, using computational approaches, has revealed non-trivial features of the natural chemical tolerance systems. As a result two non-overlapping sets of genes are seen to respectively impart robustness and evolvability in the context of natural chemical resistance. The former is composed of multidrug resistance genes, whereas the latter comprises genes sharing chemical genetic profiles with many others. Recent publications showing the potential applications chemogenomics in studying the pharmacological basis of various drugs are discussed, as well as the expansion of chemogenomics to other organisms. Finally, integration of chemogenomics with sensitive sequence analysis and ubiquitination/phosphorylation data led to the discovery of a new conserved domain and important post-translational modification pathways involved in stress resistance.

  16. RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans.

    Science.gov (United States)

    Kovacs, C J; Faustoferri, R C; Quivey, R G

    2017-12-15

    Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans , the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF , the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The Δ rgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the Δ rgpF mutant strain was unable to induce activity of the F 1 F o ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF The Δ rgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the Δ rgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivo Galleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutans IMPORTANCE The cell wall of Streptococcus mutans , the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. mutans

  17. A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis.

    Science.gov (United States)

    Guan, Qingmei; Wu, Jianmin; Yue, Xiule; Zhang, Yanyan; Zhu, Jianhua

    2013-08-01

    Salt stress is an important environmental factor that significantly limits crop productivity worldwide. Studies on responses of plants to salt stress in recent years have identified novel signaling pathways and have been at the forefront of plant stress biology and plant biology in general. Thus far, research on salt stress in plants has been focused on cytoplasmic signaling pathways. In this study, we discovered a nuclear calcium-sensing and signaling pathway that is critical for salt stress tolerance in the reference plant Arabidopsis. Through a forward genetic screen, we found a nuclear-localized calcium-binding protein, RSA1 (SHORT ROOT IN SALT MEDIUM 1), which is required for salt tolerance, and identified its interacting partner, RITF1, a bHLH transcription factor. We show that RSA1 and RITF1 regulate the transcription of several genes involved in the detoxification of reactive oxygen species generated by salt stress and that they also regulate the SOS1 gene that encodes a plasma membrane Na(+)/H(+) antiporter essential for salt tolerance. Together, our results suggest the existence of a novel nuclear calcium-sensing and -signaling pathway that is important for gene regulation and salt stress tolerance.

  18. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS.Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  19. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis

    Directory of Open Access Journals (Sweden)

    Lvqin He

    2018-02-01

    Full Text Available Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC, MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis.

  20. Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead.

    Science.gov (United States)

    Long, Dan-Dan; Fu, Rong-Rong; Han, Jian-Rong

    2017-07-01

    Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.

  1. The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development.

    Science.gov (United States)

    Wagner, Josiah T; Singh, Param Priya; Romney, Amie L; Riggs, Claire L; Minx, Patrick; Woll, Steven C; Roush, Jake; Warren, Wesley C; Brunet, Anne; Podrabsky, Jason E

    2018-02-20

    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system. We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the assembled genome has a high degree of completeness in genic regions that is on par with several other teleost genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these may be under positive selection. The A. limnaeus genome is the first South American annual killifish genome made publicly available. This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and evolution.

  2. Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance.

    Science.gov (United States)

    Königer, Martina; Bollinger, Nicole

    2012-08-01

    It is well known that chloroplasts move in response to changes in blue light intensity in order to optimize light interception, however, little is known about interspecific variation and the relative importance of this mechanism for the high light stress tolerance of plants. We characterized chloroplast movement behavior as changes in light transmission through a leaf in a variety of species ranging from ferns to monocots and eudicots and found a wide spectrum of responses. Most species exhibited a distinct accumulation response compared to the dark positioning, and all species showed a distinct avoidance response. The speed with which transmission values changed during the avoidance response was consistently faster than that during the accumulation response and speeds varied greatly between species. Plants thriving in higher growth light intensities showed greater degrees of accumulation responses and faster changes in transmission than those that prefer lower light intensities. In some species, the chloroplasts on both the adaxial and abaxial leaf surfaces changed their positioning in response to light, while in other species only the chloroplasts on one leaf side responded. No correlation was found between high light stress tolerance and the speed or degree of transmission changes, indicating that plants can compensate for slow and limited transmission changes using other photoprotective mechanisms.

  3. Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans.

    Science.gov (United States)

    Kurino, Chiho; Furuhashi, Tsubasa; Sudoh, Kaori; Sakamoto, Kazuichi

    2017-04-01

    The possibility that odor plays a role in lifespan regulation through effects on the nervous system is indicated by research on Caenorhabditis elegans. In fact, ablation of AWA and AWC, which are suggested as olfactory neurons, has been shown to extend lifespan via DAF-16, a homolog of FoxO. However, the effects of odor stimuli on the lifespan still remain unclear. Thus, we here aimed to clarify the effect of attractive and repulsive odors on longevity and stress tolerance in C. elegans and to analyze the pathways thereof. We used isoamyl alcohol as an attractive odor, and acetic acid as a repellent component, as identified by chemotaxis assay. We found that isoamyl alcohol stimulus promoted longevity in a DAF-16-dependent manner. On the other hand, acetic acid stimulus promoted thermotolerance through mechanisms independent of DAF-16. Above all, our results indicate that odor stimuli affect the lifespan and stress tolerance of C. elegans, with attractive and repulsive odors exerting their effects through different mechanisms, and that longevity is induced by both activation and inactivation of olfactory neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance.

    Science.gov (United States)

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-03-23

    Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T 0 -P, red: T 0 -R, and strong red: T 0 -S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T 2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

  5. Organic Light-Emitting Diodes with Highly Conductive Polymer Electrodes as Anode and Their Stress Tolerance

    Science.gov (United States)

    Kajii, Hirotake; Ohmori, Yutaka; Maki, Hideki; Sekimoto, Yasuhiro; Shigeno, Yasuhiro; Takehara, Naoya; Nakagawa, Hiroshi

    2008-01-01

    The fabrication and characteristics of organic light-emitting diodes (OLEDs) with highly conductive polymer electrodes as an anode and the stress tolerance of the devices fabricated on polymeric substrates were studied. By inserting a wet-processed organic layer between a polymer electrode and a dry-processed hole-transport layer, the surface emission pattern from an OLED was markedly improved. For the device with a wet-processed organic layer (methoxy-substituted 1,3,5-tris[4-(diphenylamino)phenyl]benzene), the uniform surface emission resulted from the uniform applied electric field in the emissive layer and the improvement in interface adherence. The OLED with a wet-processed layer as a hole injection layer showed a maximum luminance and a maximum efficiency of 10,000 cd/m2 and 3.5 cd/A, respectively. For the device fabricated on a polymeric substrate, the impact testing of the OLEDs with highly conductive polymer electrodes [poly(ethylenedioxythiophene):poly(styrene sulfonic acid)] as an anode revealed that the emission lasted for more than several ten thousand steps. A highly conductive polymer electrode had a sufficient tolerance to mechanical stress, as determined by comparing devices with indium tin oxide and a highly conductive polymer as anodes.

  6. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition.

    Science.gov (United States)

    Li, Guangkun; Chi, Mengshan; Chen, Huizhen; Sui, Yuan; Li, Yan; Liu, Yongsheng; Zhang, Xiaojing; Sun, Zhiqiang; Liu, Guoqing; Wang, Qi; Liu, Jia

    2016-02-01

    As an eco-friendly management method, biological control of postharvest diseases, utilizing antagonistic yeasts, is a research topic receiving considerable attention. Detailed knowledge on the biology of yeast antagonists is crucial when considering their potential application and development as biocontrol products. Changes in the growth form, such as single-cell to pseudohyphae, have been associated with the mode of action in postharvest biocontrol yeasts. In this study, the antagonistic yeast, Candida diversa, reversibly shifted from a single-cell morphology on yeast peptone dextrose (YPD) medium with 2 % agar to a pseudohyphal morphology on YPD with 0.3 % agar. The tolerance of the pseudohyphal form to heat and oxidative stresses, as well as the biocontrol efficacy against Botrytis cinerea on apple and kiwifruit stored at 25 and 4 °C, was significantly higher as compared to the single-cell form. This study provides new information on the ability of C. diversa to change its morphology and the impact of the morphology shift on stress tolerance and biocontrol performance.

  7. US forest response to projected climate-related stress: a tolerance perspective.

    Science.gov (United States)

    Liénard, Jean; Harrison, John; Strigul, Nikolay

    2016-08-01

    Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine-scale predictions) and potential vegetation climate envelope models (for coarse-grained, large-scale predictions). Here, we develop and apply an intermediate approach wherein we use stand-level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate-related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought-related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high-elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States. © 2016 John Wiley & Sons Ltd.

  8. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    Science.gov (United States)

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioproces