WorldWideScience

Sample records for resistance responses soybean

  1. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    YONGCHUN LI

    parasitic nematode that feeds on the roots of soybean and most economically ... sified pest problems (Skorupska et al. 1994). Soybean cyst nematode .... Genomic DNA extraction and pooling for bulk segregant analysis. Genomic DNA was isolated ...

  2. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    2016-12-02

    Dec 2, 2016 ... SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 popula- tions. Three recessive genes conditioned the inheritance of resistance to ...

  3. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    2016-12-02

    Dec 2, 2016 ... Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and ... Jinan, Shandong 250100, People's Republic of China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu ...

  4. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach.

    Science.gov (United States)

    Sato, Dan; Akashi, Hiromichi; Sugimoto, Masahiro; Tomita, Masaru; Soga, Tomoyoshi

    2013-04-15

    Aphid infection reduces soybean (Glycine max [L.] Merr.) yield. Consequently, cultivation of aphid-resistant strains is a promising approach to pest control, and understanding the resistance mechanism is of importance. Here, we characterized the resistance of soybeans to foxglove aphid, Aulacorthum solani Kaltenbach, at the metabolite level. First, we evaluated aphid mortality and settlement rates on the leaves of two soybean strains, 'Tohoku149' and 'Suzuyutaka', and found that the former had strong resistance soon after introduction of the aphids. The metabolomic response to aphid introduction was analyzed using capillary electrophoresis-time-of-flight mass spectrometry. We found the following three features in the profiles: (1) concentrations of citrate, amino acids, and their intermediates were intrinsically higher for Tohoku149 than Suzuyutaka, (2) concentrations of several metabolites producing secondary metabolites, such as flavonoids and alkaloids, drastically changed 6h after aphid introduction, and (3) concentrations of TCA cycle metabolites increased in Tohoku149 48 h after aphid introduction. We also profiled free amino acids in aphids reared on both soybean strains and under starvation, and found that the profile of the aphids on Tohoku149 was similar to that of the starved aphids, but different to that of aphids on Suzuyutaka. These tests confirmed that aphids suck phloem sap even from Tohoku149. This study demonstrates the metabolomic profiles of both soybean strains and aphids, which will contribute to the molecular level understanding of mechanisms of soybean resistance to aphids. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  6. Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate.

    Science.gov (United States)

    Nandula, Vijay K; Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Poston, Daniel H

    2007-05-02

    Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury

  7. Stability of soybean aphid resistance in soybean across different temperatures

    Science.gov (United States)

    The soybean aphid, Aphis glycines Matsumura, is the most important insect pest posing a threat to soybean, Glycine max (L.) Merr., grain production in the United States. Soybean cultivars with resistance are currently being deployed to aid in management of the pest. Temperature has been reported to ...

  8. Comparative Transcriptome Analysis of Resistant and Susceptible Common Bean Genotypes in Response to Soybean Cyst Nematode Infection.

    Directory of Open Access Journals (Sweden)

    Shalu Jain

    Full Text Available Soybean cyst nematode (SCN; Heterodera glycines Ichinohe reproduces on the roots of common bean (Phaseolus vulgaris L. and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70-90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR proteins, WRKY transcription factors, pathogenesis-related (PR proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in

  9. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, Presistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  10. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and In Silico Mapping in Relation to Resistance Markers

    Directory of Open Access Journals (Sweden)

    Bernarda Calla

    2009-07-01

    Full Text Available White mold, caused by (Lib. de Bary, can be a serious disease of crops grown under cool, moist environments. In many plants, such as soybean [ (L. Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen, and to determine possible physiological changes that occur during infection, a microarray screen was conducted using stem tissue to evaluate changes in gene expression between partially resistant and susceptible soybean genotypes at 8 and 14 hours post inoculation. RNA from 15 day-old inoculated plants was labeled and hybridized to soybean cDNA microarrays. ANOVA identified 1270 significant genes from the comparison between time points and 105 genes from the comparison between genotypes. Selected genes were classified into functional categories. The analyses identified changes in cell-wall composition and signaling pathways, as well as suggesting a role for anthocyanin and anthocyanidin synthesis in the defense against . In-silico mapping of both the differentially expressed transcripts and of public markers associated with partial resistance to white mold, provided evidence of several differentially expressed genes being closely positioned to white mold resistance markers, with the two most promising genes encoding a PR-5 and anthocyanidin synthase.

  11. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi.

    Science.gov (United States)

    Aoyagi, Luciano N; Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Polizel-Podanosqui, Adriana; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2014-12-01

    Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies. Due to their apparently highly diverse functions, these genes are promising targets for developing crop varieties resistant to diseases. In the present study, the identification and phylogenetic analysis of the soybean R2R3-MYB (GmMYB) transcription factor family was performed and the expression profiles of these genes under biotic stress were determined. GmMYBs were identified from the soybean genome using bioinformatic tools, and their putative functions were determined based on the phylogenetic tree and classified into subfamilies using guides AtMYBs describing known functions. The transcriptional profiles of GmMYBs upon infection with different pathogen were revealed by in vivo and in silico analyses. Selected target genes potentially involved in disease responses were assessed by RT-qPCR after different times of inoculation with P. pachyrhizi using different genetic backgrounds related to resistance genes (Rpp2 and Rpp5). R2R3-MYB transcription factors related to lignin synthesis and genes responsive to chitin were significantly induced in the resistant genotypes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Soybean aphid (Hemiptera: Aphididae) response to soybean plant defense: stress levels, tradeoffs, and cross-virulence.

    Science.gov (United States)

    Enders, Laramy; Bickel, Ryan; Brisson, Jennifer; Heng-Moss, Tiffany; Siegfried, Blair; Zera, Anthony; Miller, Nick

    2014-02-01

    A variety of management methods to control the soybean aphid (Aphis glycines Matsumura) have been investigated since its invasion into North America in 2000, among them plant resistance has emerged as a viable option for reducing aphid damage to soybeans and preventing outbreaks. Plant resistance methods often use natural soybean plant defenses that impose stress on aphids by reducing fitness and altering behavior. Research efforts have heavily focused on identification and development of aphid resistant soybean varieties, leaving much unknown about soybean aphid response to stressful host plant defenses. In this study, we aimed to 1) evaluate lifetime fitness consequences and phenotypic variation in response to host plant-induced stress and 2) investigate whether trade-offs involving fitness costs and/or cross-virulence to multiple antibiotic soybean varieties exists. We compared aphid survival and reproduction during and after a short period of exposure to soybeans with the Rag2 resistance gene and measured aphid clonal variation in response to Rag2 soybeans. In addition, we measured the performance of Rag2 virulent and avirulent aphids on five soybean varieties with various forms of antibiotic resistance. Our results indicate that plant defenses impose high levels of stress and have long-term fitness consequences, even after aphids are removed from resistant plants. We identified one aphid clone that was able to colonize Rag2 among the seven clones tested, suggesting that virulent genotypes may be prevalent in natural populations. Finally, although we did not find evidence of cross-virulence to multiple antibiotic soybean varieties, our results suggest independent mechanisms of aphid virulence to Rag1 and Rag2 that may involve fitness costs.

  13. Assessing Frogeye Leaf Spot Resistance on Recommended Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    In Jeong Kang

    2015-09-01

    Full Text Available Soybean frogeye leaf spot caused by the fungus Cercospora sojina Hara, has known to lead a severe reduction of crop yield. Since frogeye leaf spot on soybean has recently become a serious problem in Korea, the susceptibility of recent recommended cultivars against C. sojina had been tested. To standardize the disease severity of soybean, the optimum sporulation condition of C. sojina and the disease index were established in this study. Sporulation was maximized on the 10% V8 juice agar with 12 h light and 12 h dark at 25°C. Spore suspension (105 spores/ml was sprayed on the leaves of soybean (V6 stage, and the disease responses to each isolate were evaluated on 28 days after inoculation. As a result, Daepung, Shinpaldal2ho, Yeonpung and Cheonga showed the resistance reaction to 8, 7, 6, 6 isolates of C. sojina, respectively, whereas Cheongja, Hwangkeum, Taekwang, Daewon, Cheonsang and Sinhwa showed the susceptible reaction to 8 isolates of C. sojina. Breeding the resistant soybean cultivars against C. sojina requires a uniform resistance for screening technique. The disease index of frogeye leaf spot on soybean developed in this study can be effectively used for the accurate field assay to select the frogeye leaf spot resistant soybean.

  14. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  15. Identification of a second Asian soybean rust resistance gene in Hyuuga soybean.

    Science.gov (United States)

    Kendrick, Mandy D; Harris, Donna K; Ha, Bo-Keun; Hyten, David L; Cregan, Perry B; Frederick, Reid D; Boerma, H Roger; Pedley, Kerry F

    2011-05-01

    ABSTRACT Asian soybean rust (ASR) is an economically significant disease caused by the fungus Phakopsora pachyrhizi. The soybean genes Rpp3 and Rpp?(Hyuuga) confer resistance to specific isolates of the pathogen. Both genes map to chromosome 6 (Gm06) (linkage group [LG] C2). We recently identified 12 additional soybean accessions that harbor ASR resistance mapping to Gm06, within 5 centimorgans of Rpp3 and Rpp?(Hyuuga). To further characterize genotypes with resistance on Gm06, we used a set of eight P. pachyrhizi isolates collected from geographically diverse areas to inoculate plants and evaluate them for differential phenotypic responses. Three isolates elicited different responses from soybean accessions PI 462312 (Ankur) (Rpp3) and PI 506764 (Hyuuga) (Rpp?[Hyuuga]). In all, 11 of the new accessions yielded responses identical to either PI 462312 or Hyuuga and 1 of the new accessions, PI 417089B (Kuro daizu), differed from all others. Additional screening of Hyuuga-derived recombinant inbred lines indicated that Hyuuga carries two resistance genes, one at the Rpp3 locus on Gm06 and a second, unlinked ASR resistance gene mapping to Gm03 (LG-N) near Rpp5. These findings reveal a natural case of gene pyramiding for ASR resistance in Hyuuga and underscore the importance of utilizing multiple isolates of P. pachyrhizi when screening for ASR resistance.

  16. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  17. Review of soybean resistance to pathogens

    Directory of Open Access Journals (Sweden)

    Vidić Miloš

    2013-01-01

    Full Text Available This paper presents an overview of the research on soybean resistance to pathogens. The review included most harmful agents of soybean diseases in Serbia, as well as those that are potentially harmful. Development and cultivation of resistant cultivars is the most efficient, economical and environmentally acceptable control measure for plant disease. It points to the variability in pathogenicity (physiological races of parasites, especially expressed in Phytophthora sojae, Peronospora manshurica and Pseudomonas syringae pv. glycinea, which requires continuous breeding for resistance. Resistant, partially resistant and moderately susceptible genotypes, which are used as donors of resistance genes to different pathogens, are listed in this paper. Also, avirulent genes in the parasite and resistance genes in soybean are indicated. Gene mapping significantly contributes to better understanding of the mode of inheritance and consequently, more efficient breeding for disease resistance. Significant improvement is expected by using molecular techniques, especially in dealing with Sclerotinia sclerotiorum, Pseudomonas syringae pv. glycinea and Phomopsis longicolla. For these parasites only partial resistance has been reported but not complete resistance.

  18. Newly identified resistance to soybean aphid (Aphis glycines) in soybean plant introduction lines

    Science.gov (United States)

    Host-plant resistance is potentially efficacious in managing the soybean aphid (SA, Aphis glycines Matsumura), a major invasive pest in northern soybean-production regions of North America. However, development of aphid-resistant soybean has been complicated by the presence of virulent SA biotypes,...

  19. Characterization and genetics of multiple soybean aphid biotype resistance in five soybean plant introductions

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in the five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance in...

  20. Genetic analysis of resistance to soybean rust disease | Kiryowa ...

    African Journals Online (AJOL)

    Soybean rust (Phakopsora pachyrhizi Sydow.) causes the most damage of all the pathogens known to attack soybean (Glycine max. Merril). A study was conducted in Uganda to estimate the magnitude of genetic parameters controlling soybean rust resistance and to estimate narrow sense heritability of the resistance.

  1. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  2. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    Science.gov (United States)

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  3. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  4. Comparisons of visual rust assessments and DNA levels of Phakopsora pachyrhizi in soybean genotypes varying in rust resistance

    Science.gov (United States)

    Soybean resistance to Phakopsora pachyrhizi, the cause of soybean rust, has been characterized by the following three infection types (i) immune response (IM; complete resistance) with no visible lesions, (ii) resistant reaction with reddish brown (RB) lesions (incomplete resistance), and (iii) susc...

  5. Soybean Yield Determinants and Response to Rhizobial

    African Journals Online (AJOL)

    komla

    Abstract. The response of two soybean varieties (Samsoy—2 and improved variety TGx 1448-2E) to Bradyrhizobium inoculation in the northern Guinea savanna of Nigeria was tested in a researcher-managed on-farm trial. There were variations in soybean yields between and within farmers' fields. Data obtained from 24.

  6. Nuclear proteomic changes linked to soybean rust resistance.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; Feng, Jian; Garrett, Wesley M; Frederick, Reid

    2011-03-01

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is an emerging threat to the US soybean crop. In an effort to identify proteins that contribute to disease resistance in soybean we compared a susceptible Williams 82 cultivar to a resistant Williams 82 inbred isoline harboring the Rpp1 resistance gene (R-gene). Approximately 4975 proteins from nuclear preparations of leaves were detected using a high-throughput liquid chromatography-mass spectrometry method. Many of these proteins have predicted nuclear localization signals, have homology to transcription factors and other nuclear regulatory proteins, and are phosphorylated. Statistics of summed spectral counts revealed sets of proteins with differential accumulation changes between susceptible and resistant plants. These protein accumulation changes were compared to previously reported gene expression changes and very little overlap was found. Thus, it appears that numerous proteins are post-translationally affected in the nucleus after infection. To our knowledge, this is the first indication of large-scale proteomic change in a plant nucleus after infection. Furthermore, the data reveal distinct proteins under control of Rpp1 and show that this disease resistance gene regulates nuclear protein accumulation. These regulated proteins likely influence broader defense responses, and these data may facilitate the development of plants with improved resistance.

  7. A pigeonpea gene confers resistance to Asian soybean rust in soybean.

    Science.gov (United States)

    Kawashima, Cintia G; Guimarães, Gustavo Augusto; Nogueira, Sônia Regina; MacLean, Dan; Cook, Doug R; Steuernagel, Burkhard; Baek, Jongmin; Bouyioukos, Costas; Melo, Bernardo do V A; Tristão, Gustavo; de Oliveira, Jamile Camargos; Rauscher, Gilda; Mittal, Shipra; Panichelli, Lisa; Bacot, Karen; Johnson, Ebony; Iyer, Geeta; Tabor, Girma; Wulff, Brande B H; Ward, Eric; Rairdan, Gregory J; Broglie, Karen E; Wu, Gusui; van Esse, H Peter; Jones, Jonathan D G; Brommonschenkel, Sérgio H

    2016-06-01

    Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.

  8. The effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus.

    Science.gov (United States)

    Zhou, Chuanpeng; Lin, Heizhao; Ge, Xianping; Niu, Jin; Wang, Jun; Wang, Yun; Chen, Lixiong; Huang, Zhong; Yu, Wei; Tan, Xiaohong

    2015-03-01

    The present study was conducted to investigate the effects of dietary soybean isoflavones (SI) supplementation on growth performance, innate immune responses, hepatic antioxidant abilities, heat shock protein 70 (HSP70) gene expression and resistance to the pathogen Vibrio harveyi in Trachinotus ovatus. A basal diet was supplemented with SI at 0, 10, 20, 40, 60, 80 mg kg(-1) feed for 8 weeks. Significantly maximum weight gain (WG) and specific growth rate (SGR) were observed in treatment with 40 mg kg(-1) SI supplement (P alkaline phosphatase activity, hepatic total antioxidative capacity, catalase activity and superoxide dismutase activity were also noticed in fish fed SI at 40 or 60 mg kg(-1) (P dietary intake containing SI could enhance the immune ability of fish and improve its resistance to infection by V. harveyi. Especially supplementation with 40 mg kg(-1) SI to the fish for 8 weeks showed remarkable improvement in the growth, non-specific immune responses, hepatic antioxidant abilities and HSP70 gene expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Identificatoin and confirmation of resistance against soybean aphid (Aphis glycines) in eight wild soybean lines

    Science.gov (United States)

    The development and use of aphid-resistant soybean (Glycine max) cultivars has been complicated by the presence of multiple virulent biotypes of the soybean aphid (SA, Aphis glycines Matsumura). Ultimately, a variety of unique resistance sources may be needed to develop cultivars with a broad spectr...

  10. Registration of eight soybean germplasm lines resistant to soybean rust

    Science.gov (United States)

    Soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Sydow is a threat to soybean [Glycine max (L.) Merr.] production worldwide. Although SBR has not caused widespread damage in North America, the crop is still threatened by the disease because most cultivars in production are susceptible...

  11. Induced mutations for soybean rust resistance

    International Nuclear Information System (INIS)

    Smutkupt, S.; Wongpiyasatid, A.; Lamseejan, S.

    1983-01-01

    Soybean mutation experiments for inducing rust resistance in the cultivars G 8375, Wakashima mutant number 10, Taichung N, S.J.2, S.J.4, BM 50, BM 98, G 8377, G 8586 and G 8587 have been carried out since 1979. Six pods from each of 4438 control and 43,907 M 1 plants were randomly harvested. M 2 seeds of each cultivar of different doses were bulked (M 2 bulk). In addition, 270 good M 1 plants were selected and threshed singly (M 2 single). M 2 -bulk and M 2 -single seeds were advanced to M 3 . Both, M 3 -bulk and M 3 -single plants, together with the remaining M 2 -bulk seeds were screened for rust resistance in the rainy season of 1980 in Nong Hoi Valley (altitude about 1000 m above sea level) and at Mae Joe Station, both in Chiang Mai Province (latitude 18 deg. 31'-19 deg. N). Based on the IWGSR rating system, soybean plants with slow growth of rust were selected from both locations. The results were as follows: Six plants were selected from a total of 2802 control plants, and 115 from a total of 28,834 M 2 and M 3 plants. Further evaluation of these selections for rust resistance will be carried out in the rainy season of 1981 in Nong Hoi Valley, Chiang Mai. (author)

  12. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis

    Science.gov (United States)

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems. PMID:26513657

  13. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis.

    Directory of Open Access Journals (Sweden)

    Yumei Dong

    Full Text Available Nonhost resistance (NHR pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, mitochondrial processing peptidase (MPP, oxygen evolving enhancer (OEE, and nucleoside diphosphate kinase (NDKs, were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.

  14. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis.

    Science.gov (United States)

    Dong, Yumei; Su, Yuan; Yu, Ping; Yang, Min; Zhu, Shusheng; Mei, Xinyue; He, Xiahong; Pan, Manhua; Zhu, Youyong; Li, Chengyun

    2015-01-01

    Nonhost resistance (NHR) pertains to the most common form of plant resistance against pathogenic microorganisms of other species. Bipolaris maydis is a non-adapted pathogen affecting soybeans, particularly of maize/soybean intercropping systems. However, no experimental evidence has described the immune response of soybeans against B. maydis. To elucidate the molecular mechanism underlying NHR in soybeans, proteomics analysis based on two-dimensional polyacrylamide gel electrophoresis (2-DE) was performed to identify proteins involved in the soybean response to B. maydis. The spread of B. maydis spores across soybean leaves induced NHR throughout the plant, which mobilized almost all organelles and various metabolic processes in response to B. maydis. Some enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), mitochondrial processing peptidase (MPP), oxygen evolving enhancer (OEE), and nucleoside diphosphate kinase (NDKs), were found to be related to NHR in soybeans. These enzymes have been identified in previous studies, and STRING analysis showed that most of the protein functions related to major metabolic processes were induced as a response to B. maydis, which suggested an array of complex interactions between soybeans and B. maydis. These findings suggest a systematic NHR against non-adapted pathogens in soybeans. This response was characterized by an overlap between metabolic processes and response to stimulus. Several metabolic processes provide the soybean with innate immunity to the non-adapted pathogen, B. maydis. This research investigation on NHR in soybeans may foster a better understanding of plant innate immunity, as well as the interactions between plant and non-adapted pathogens in intercropping systems.

  15. Physiology response of fourth generation saline resistant soybean (Glycine max (L.) Merrill) with application of several types of antioxidants

    Science.gov (United States)

    Manurung, I. R.; Rosmayati; Rahmawati, N.

    2018-02-01

    Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.

  16. Resistance to charcoal rot identified in ancestral soybean germplasm

    Science.gov (United States)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  17. Framing the issues of resistance management in soybean

    Science.gov (United States)

    The soybean insect-pest complex consists of both long-established and new invasive pests. Management of these pests has been achieved by various means, but often relies heavily on the application of insecticides and the development of insect-resistant soybean varieties. Pest management practitione...

  18. Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean.

    Science.gov (United States)

    Shi, Ainong; Chen, Pengyin; Vierling, Richard; Zheng, Cuming; Li, Dexiao; Dong, Dekun; Shakiba, Ehsan; Cervantez, Innan

    2011-02-01

    Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one 'BARC' SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two 'BARC' SNPs from probe A519 linked to Rsv3, one 'BARC' SNP from chromosome 14 (LG B2) near Rsv3, and two 'BARC' SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.

  19. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    Directory of Open Access Journals (Sweden)

    Zhijun Che

    2017-10-01

    Full Text Available Soybean mosaic virus (SMV is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L. Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants derived from two soybean parents was used in this study. There were 104 SNPs identified significantly associated with resistance to SC7, some of which were located within previous reported quantitative trait loci. Three putative genes on chromosome 1, 9, and 12 were homologous to WRKY72, eEF1Bβ, and RLP9, which were involved in defense response to insect and disease in Arabidopsis. Moreover, the expression levels of these three genes changed in resistance and susceptible soybean accessions after SMV infection. These three putative genes may involve in the resistance to SC7 and be worthy to further research. Collectively, markers significantly associated with resistance to SC7 will be helpful in molecular marker-assisted selection for breeding resistant soybean accessions to SMV, and the candidate genes identified would advance the functional study of resistance to SMV in soybean.

  20. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    Science.gov (United States)

    Che, Zhijun; Liu, Hailun; Yi, Fanglei; Cheng, Hao; Yang, Yuming; Wang, Li; Du, Jingyi; Zhang, Peipei; Wang, Jiao; Yu, Deyue

    2017-01-01

    Soybean mosaic virus (SMV) is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L.) Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants derived from two soybean parents was used in this study. There were 104 SNPs identified significantly associated with resistance to SC7, some of which were located within previous reported quantitative trait loci. Three putative genes on chromosome 1, 9, and 12 were homologous to WRKY72, eEF1Bβ, and RLP9, which were involved in defense response to insect and disease in Arabidopsis. Moreover, the expression levels of these three genes changed in resistance and susceptible soybean accessions after SMV infection. These three putative genes may involve in the resistance to SC7 and be worthy to further research. Collectively, markers significantly associated with resistance to SC7 will be helpful in molecular marker-assisted selection for breeding resistant soybean accessions to SMV, and the candidate genes identified would advance the functional study of resistance to SMV in soybean. PMID:29075282

  1. Resistance of Advanced Soybean Lines to Pod Borrer (Etiella zinckenella

    Directory of Open Access Journals (Sweden)

    Heru Kuswantoro

    2017-07-01

    Full Text Available The increasing and stabilizing of soybean product in Indonesia face many limitations. One of the limiting factors is pod borrer (Etiella zinckenella Treitschke infestation that is able to cause yield loss up to 80%. Objective of the research was to find out some advanced soybean lines that resistant to pod borrer. Design was randomized complete block with three replications. Soybean lines were grown gradualy to ensure the simultanously flowering. The plants were caged at 35 days after planting (DAT and infested with the imago of E. zinckenella at 56 DAT. Results showed that different soybean lines affected imago population, eggs population, larvae population, infected pods and infected seeds. Some genotypes were consistantly resistant to E. zinckenella. The resistance of those genotypes were non preference resistance based on eggs population, larvae population, infected pod and infected seeds. This study discovered nine soybean lines that is resistant to E. zinckenella, so that it can be beneficial for improving soybean resistance to this pest through releasing as a new resistant pod borer variety after tested further in potential yield and genetic x environment interaction trials. In addition, there were three varieties and two germplasm accessions that can be used as gene sources for improving the resistance of the varieties. The three varieties are able to be cultivated directly in field to decrease the E. zinckenella occurrence. 

  2. Glyphosate Can Decrease Germination of Glyphosate-Resistant Soybeans.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Bicalho, Elisa Monteze; Smedbol, Élise; Cruz, Fernanda Vieira da Silva; Lucotte, Marc; Garcia, Queila Souza

    2017-03-22

    We investigated the effects of different concentrations of glyphosate acid and one of its formulations (Roundup) on seed germination of two glyphosate-resistant (GR) and one non-GR variety of soybean. As expected, the herbicide affected the shikimate pathway in non-GR seeds but not in GR seeds. We observed that glyphosate can disturb the mitochondrial electron transport chain, leading to H 2 O 2 accumulation in soybean seeds, which was, in turn, related to lower seed germination. In addition, GR seeds showed increased activity of antioxidant systems when compared to non-GR seeds, making them less vulnerable to oxidative stress induced by glyphosate. The differences in the responses of GR varieties to glyphosate exposure corresponded to their differences in enzymatic activity related to H 2 O 2 scavenging and mitochondrial complex III (the proposed site of ROS induction by glyphosate). Our results showed that glyphosate ought to be used carefully as a pre-emergence herbicide in soybean field crop systems because this practice may reduce seed germination.

  3. Suitability of Soybean Meal from Insect-Resistant Soybeans for Broiler Chickens.

    Science.gov (United States)

    Ortega, María A; Davis, Adam J; Boerma, H Roger; Parrott, Wayne A

    2016-03-23

    Benning(M) and Benning(MGH) are near-isogenic lines (NILs) of the soybean cultivar Benning, which contain insect-resistance quantitative trait loci (QTLs) from the soybean accession PI 229358. Benning(M) contains QTL-M, which confers antibiosis and antixenosis. In addition to QTL-M, Benning(MGH) contains QTL-G, which confers antibiosis, and QTL-H, which confers antixenosis. Soybean meal was produced from Benning and the NILs. Nutritional composition, digestible amino acid content, and nitrogen-corrected true metabolizable energy (TMEN) were equivalent among soybean meals. A 21-day broiler feeding trial was carried out to determine if the QTLs affect soybean meal quality. Weight gain and feed-to-gain ratio were evaluated. No biologically significant differences were detected for broilers fed Benning, Benning(M), and Benning(MGH). This demonstrates that soybean meal produced from the insect-resistant NILs is equivalent to soybean meal produced from their non-insect-resistant parent cultivar for broiler weight gain.

  4. Resistance to Phomopsis Seed Decay in Soybean

    OpenAIRE

    Shuxian Li; Pengyin Chen

    2013-01-01

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but are typically shriveled, elongated, cracked, and have a chalky white appearance. Development of PSD is sensitive to environmental conditions. Hot and humid environments favor pathogen growth and disease...

  5. Evidence for Soybean Aphid (Hemiptera: Aphididae) Resistance to Pyrethroid Insecticides in the Upper Midwestern United States.

    Science.gov (United States)

    Hanson, Anthony A; Menger-Anderson, James; Silverstein, Celia; Potter, Bruce D; MacRae, Ian V; Hodgson, Erin W; Koch, Robert L

    2017-10-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a damaging invasive pest of soybean in the upper Midwest. Threshold-based insecticide applications are the primary control method for soybean aphid, but few insecticide groups are available (i.e., pyrethroids, organophosphates, and neonicotinoids). To quantify current levels of soybean aphid susceptibility to pyrethroids in the upper Midwest and monitor for insecticide resistance, leaf-dip bioassays were performed with λ-cyhalothrin in 2013-2015, and glass-vial bioassays were performed with λ-cyhalothrin and bifenthrin in 2015 and 2016. Soybean aphids were collected from 27 population-years in Minnesota and northern Iowa, and were compared with a susceptible laboratory colony with no known insecticide exposure since discovery of soybean aphid in North America in 2000. Field-collected aphids from some locations in leaf-dip and glass-vial bioassays had significantly lower rates of insecticide-induced mortality compared with the laboratory population, although field population susceptibility varied by year. In response to sublethal concentrations of λ-cyhalothrin, adult aphids from some locations required higher concentrations of insecticide to reduce nymph production compared with the laboratory population. The most resistant field population demonstrated 39-fold decreased mortality compared with the laboratory population. The resistance documented in this study, although relatively low for most field populations, indicates that there has been repeated selection pressure for pyrethroid resistance in some soybean aphid populations. Integrated pest management and insecticide resistance management should be practiced to slow further development of soybean aphid resistance to pyrethroids. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Natural resistance of soybean cultivars to the soybean looper larva Chrysodeixis includens (Lepidoptera: Noctuidae)

    OpenAIRE

    Wille, Paulo Eduardo; Pereira, Bruna Angelina; Wille, Cleiton Luiz; Restelatto, Samanta Souza; Boff, Mari Inês Carissimi; Franco, Cláudio Roberto

    2017-01-01

    Abstract: The objective of this work was to evaluate the natural resistance of soybean cultivars to Chrysodeixis includens. For this, four commercial soybean cultivars recommended for the Southern region of Brazil were used: BR 36, NA 5909 RG, BMX Turbo RR, and Benso 1RR. In the laboratory, larvae were subjected to the antixenosis feeding assay, in which they were free or not to choose among old leaves, new leaves, and pods. Neonate larvae were subjected to two antibiosis tests: in the first ...

  7. Marker mapping and resistance gene associations in soybean

    OpenAIRE

    2011-01-01

    The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.

  8. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease

    Directory of Open Access Journals (Sweden)

    Lauro Bücker Neto

    2013-01-01

    Full Text Available Soybean [Glycine max (L. Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.

  9. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease.

    Science.gov (United States)

    Neto, Lauro Bücker; de Oliveira, Rafael Rodrigues; Wiebke-Strohm, Beatriz; Bencke, Marta; Weber, Ricardo Luís Mayer; Cabreira, Caroline; Abdelnoor, Ricardo Vilela; Marcelino, Francismar Correa; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira

    2013-07-01

    Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.

  10. [Endophytic bacterial diversity of wild soybean (Glycine soja) varieties with different resistance to soybean cyst nematode (Heterodera glycines)].

    Science.gov (United States)

    Wu, Yunpeng; Shi, Fengyu; Hamid, M Imran; Zhu, Yingbo

    2014-08-04

    The aim of this study was to investigate endophytic bacterial diversity of wild soybean varieties with different resistance to soybean cyst nematode(Heterodera glycines) , for deciphering the interactions of soybean cyst nematode with endophytic bacteria. After screening wild soybean varieties against race 3 of H. glycines, we investigated endophytic bacterial diversity in root tissues of wild soybean varieties with different resistance to H. glycines using 16S rDNA cloning library and amplified ribosomal DNA restriction analysis. Endophytic bacteria of wild soybean root belonged to 6 bacterial groups, the clones belonging to group Proteobacteria and Firmicutes were the endophyte dominants in wild soybean with 46.8% and 13.6% of total clones, respectively. Actinobacteria, Bacteroidetes, Acidobacteria, Deincoccus-Thermus and Archaea were less represented. 18.8% of clone sequences were similar to those of uncultured bacteria in the environment. The bacterial diversity was higher in H. glycines-Resistant than -Susceptible wild soybean varieties, and the dominant group was different between H. glycines-Resistant and -Susceptible wild soybean varieties. Mesorhizobium tamadayense, Enterobacter ludwigii and Bacillus megaterium were the main bacterial groups in special operational taxonomic units (OTUs) of H. glycines-Resistant wild soybean variety. By 16S rDNA cloning library and amplified ribosomal DNA restriction analysis, the diversity of dominant group of endophytic bacteria in root tissues has difference among H. glycines-Resistant and -Susceptible wild soybean varieties.

  11. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B.

    Science.gov (United States)

    Winter, Shawn M J; Shelp, Barry J; Anderson, Terry R; Welacky, Tom W; Rajcan, Istvan

    2007-02-01

    Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance. The objectives of this research were to: (1) determine the genetic variation and inheritance of SCN resistance in a G. max ('S08-80') x G. soja (PI464925B) F (4:5) recombinant inbred line (RIL) population; and (2) identify and evaluate quantitative trait loci (QTL) associated with SCN resistance. Transgressive segregation for resistance was observed, although neither parent was resistant to the Chatham and Ruthven SCN isolates. Broad sense heritability was 0.81 for the Ruthven and 0.91 for the Chatham isolate. Root dry weight was a significant covariate that influenced cyst counts. One RIL [female index (FI) = 5.2 +/- 1.11] was identified as resistant to the Chatham isolate (FI soja, were identified on linkage groups I, K, and O, and individually explained 8, 7 and 5% (LOD = 2.1-2.7) of the total phenotypic variation, respectively. Significant epistatic interactions were found between pairs of SSR markers that individually may or may not have been associated with SCN resistance, which explained between 10 and 15% of the total phenotypic variation. Best-fit regression models explained 21 and 31% of the total phenotypic variation in the RIL population to the Chatham and Ruthven isolates, respectively. The results of this study help to improve the understanding of the genetic control of SCN resistance in soybean caused by minor genes resulting in horizontal resistance. The incorporation of the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.

  12. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823.

    Science.gov (United States)

    Childs, Silas P; King, Zachary R; Walker, David R; Harris, Donna K; Pedley, Kerry F; Buck, James W; Boerma, H Roger; Li, Zenglu

    2018-01-01

    A novel Rpp gene from PI 605823 for resistance to Phakopsora pachyrhizi was mapped on chromosome 19. Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & P. Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance conditioned by resistance to P. pachyrhizi (Rpp) genes has been found in numerous soybean accessions, and at least 10 Rpp genes or alleles have been mapped to six genetic loci. Identifying additional disease-resistance genes will facilitate development of soybean cultivars with durable resistance. PI 605823, a plant introduction from Vietnam, was previously identified as resistant to US populations of P. pachyrhizi in greenhouse and field trials. In this study, bulked segregant analysis using an F 2 population derived from 'Williams 82' × PI 605823 identified a genomic region associated with resistance to P. pachyrhizi isolate GA12, which had been collected in the US State of Georgia in 2012. To further map the resistance locus, linkage mapping was carried out using single-nucleotide polymorphism markers and phenotypic data from greenhouse assays with an F 2:3 population derived from Williams 82 × PI 605823 and an F 4:5 population derived from '5601T' × PI 605823. A novel resistance gene, Rpp7, was mapped to a 154-kb interval (Gm19: 39,462,291-39,616,643 Glyma.Wm82.a2) on chromosome 19 that is different from the genomic locations of any previously reported Rpp genes. This new gene could be incorporated into elite breeding lines to help provide more durable resistance to soybean rust.

  13. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    OpenAIRE

    Coser, Sara M.; Chowda Reddy, R. V.; Zhang, Jiaoping; Mueller, Daren S.; Mengistu, Alemu; Wise, Kiersten A.; Allen, Tom W.; Singh, Arti; Singh, Asheesh K.

    2017-01-01

    Charcoal rot (CR) disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS) enable unraveling the genetic architecture of resistance and identification of causal ge...

  14. Interspecies gene transfer provides soybean resistance to a fungal pathogen.

    Science.gov (United States)

    Langenbach, Caspar; Schultheiss, Holger; Rosendahl, Martin; Tresch, Nadine; Conrath, Uwe; Goellner, Katharina

    2016-02-01

    Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina Resistance in Soybean Revealed Using a Diverse Panel

    Directory of Open Access Journals (Sweden)

    Sara M. Coser

    2017-09-01

    Full Text Available Charcoal rot (CR disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methods available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient information available on the genetic mechanisms related to resistance. Genome-wide association studies (GWAS enable unraveling the genetic architecture of resistance and identification of causal genes. The aims of this study were to identify new sources of resistance to CR in a collection of 459 diverse plant introductions from the USDA Soybean Germplasm Core Collection using field and greenhouse screenings, and to conduct GWAS to identify candidate genes and associated molecular markers. New sources for CR resistance were identified from both field and greenhouse screening from maturity groups I, II, and III. Five significant single nucleotide polymorphism (SNP and putative candidate genes related to abiotic and biotic stress responses are reported from the field screening; while greenhouse screening revealed eight loci associated with eight candidate gene families, all associated with functions controlling plant defense response. No overlap of markers or genes was observed between field and greenhouse screenings suggesting a complex molecular mechanism underlying resistance to CR in soybean with varied response to different environments; but our findings provide useful information for advancing breeding for CR resistance as well as the genetic mechanism of resistance.

  16. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    Science.gov (United States)

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  17. Molecular characterization of resistance to soybean rust (Phakopsora pachyrhizi Syd. & Syd.) in soybean cultivar DT 2000 (PI 635999)

    Science.gov (United States)

    Resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi Syd.& Syd., has been identified in many soybean germplasm accessions and is conferred by either dominant or recessive genes that have been mapped to six independent loci (Rpp1 – Rpp6), but No U.S. cultivars are resistant to SBR. The c...

  18. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus.

    Science.gov (United States)

    Zhou, Lian; He, Hongli; Liu, Ruifang; Han, Qiang; Shou, Huixia; Liu, Bao

    2014-06-03

    Soybean mosaic virus (SMV) is the most prevalent viral disease in many soybean production areas. Due to a large number of SMV resistant loci and alleles, SMV strains and the rapid evolution in avirulence/effector genes, traditional breeding for SMV resistance is complex. Genetic engineering is an effective alternative method for improving SMV resistance in soybean. Potassium (K+) is the most abundant inorganic solute in plant cells, and is involved in plant responses to abiotic and biotic stresses. Studies have shown that altering the level of K+ status can reduce the spread of the viral diseases. Thus K+ transporters are putative candidates to target for soybean virus resistance. The addition of K+ fertilizer significantly reduced SMV incidence. Analysis of K+ channel gene expression indicated that GmAKT2, the ortholog of Arabidopsis K+ weak channel encoding gene AKT2, was significantly induced by SMV inoculation in the SMV highly-resistant genotype Rsmv1, but not in the susceptible genotype Ssmv1. Transgenic soybean plants overexpressing GmAKT2 were produced and verified by Southern blot and RT-PCR analysis. Analysis of K+ concentrations on different leaves of both the transgenic and the wildtype (Williams 82) plants revealed that overexpression of GmAKT2 significantly increased K+ concentrations in young leaves of plants. In contrast, K+ concentrations in the old leaves of the GmAKT2-Oe plants were significantly lower than those in WT plants. These results indicated that GmAKT2 acted as a K+ transporter and affected the distribution of K+ in soybean plants. Starting from 14 days after inoculation (DAI) of SMV G7, severe mosaic symptoms were observed on the WT leaves. In contrast, the GmAKT2-Oe plants showed no symptom of SMV infection. At 14 and 28 DAI, the amount of SMV RNA in WT plants increased 200- and 260- fold relative to GmAKT2-Oe plants at each time point. Thus, SMV development was significantly retarded in GmAKT2-overexpressing transgenic soybean

  19. Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907.

    Science.gov (United States)

    Chen, Haifeng; Zhao, Sheng; Yang, Zhonglu; Sha, Aihua; Wan, Qiao; Zhang, Chanjuan; Chen, Limiao; Yuan, Songli; Qiu, Dezhen; Chen, Shuilian; Shan, Zhihui; Zhou, Xin-an

    2015-04-01

    In this study, Rpp6907, a novel resistance gene/allele to Phakopsora pachyrhizi in soybean, was mapped in a 111.9-kb region, including three NBS-LRR type predicted genes, on chromosome 18. Soybean rust caused by Phakopsora pachyrhizi Sydow has been reported in numerous soybean-growing regions worldwide. The development of rust-resistant varieties is the most economical and environmentally safe method to control the disease. The Chinese soybean germplasm SX6907 is resistant to P. pachyrhizi and exhibits immune reaction compared with the known Rpp genes. These characteristics suggest that SX6907 may carry at least one novel Rpp gene/allele. Three F2 populations from the crosses of SX6907 (resistant) and Tianlong 1, Zhongdou40, and Pudou11 (susceptible) were used to map the Rpp gene. Three resistance responses (immune, red-brown, and tan-colored lesion) were observed from the F2 individuals. The segregation follows a ratio of 1(resistance):2(heterozygous):1(susceptible), indicating that the resistance in SX6907 is controlled by a single incomplete dominant gene (designated as Rpp6907). Results showed that Rpp6907 was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by simple sequence repeat (SSR) markers SSR24 and SSR40 at a distance of 111.9 kb. Among the ten genes marked within this 111.9-kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950, and Glyma18g51960) are nucleotide-binding site and leucine-rich repeat-type genes. These genes may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on resistance spectrum analysis and mapping results, we inferred that Rpp6907 is a novel gene different from Rpp1 in PI 200492, PI 561356, PI 587880A, PI 587886, and PI 594538A, or a new Rpp1-b allele.

  20. Soybean lines evaluated for resistance to reniform nematode

    Science.gov (United States)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  1. Detection of novel QTLs for foxglove aphid resistance in soybean

    Science.gov (United States)

    Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...

  2. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970.

    Science.gov (United States)

    Yu, Neil; Kim, Myungsik; King, Zachary R; Harris, Donna K; Buck, James W; Li, Zenglu; Diers, Brian W

    2015-03-01

    Asian soybean rust (ASR) resistance gene Rpp2 has been fine mapped into a 188.1 kb interval on Glyma.Wm82.a2, which contains a series of plant resistance ( R ) genes. Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrihizi Syd. & P. Syd., is a serious disease in major soybean [Glycine max (L.) Merr.] production countries worldwide and causes yield losses up to 75 %. Defining the exact chromosomal position of ASR resistance genes is critical for improving the effectiveness of marker-assisted selection (MAS) for resistance and for cloning these genes. The objective of this study was to fine map the ASR resistance gene Rpp2 from the plant introduction (PI) 230970. Rpp2 was previously mapped within a 12.9-cM interval on soybean chromosome 16. The fine mapping was initiated by identifying recombination events in F2 and F3 plants using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers that flank the gene. Seventeen recombinant plants were identified and then tested with additional genetic markers saturating the gene region to localize the positions of each recombination. The progeny of these selected plants were tested for resistance to ASR and with SSR markers resulting in the mapping of Rpp2 to a 188.1 kb interval on the Williams 82 reference genome (Glyma.Wm82.a2). Twelve genes including ten toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes were predicted to exist in this interval on the Glyma.Wm82.a2.v1 gene model map. Eight of these ten genes were homologous to the Arabidopsis TIR-NBS-LRR gene AT5G17680.1. The identified SSR and SNP markers close to Rpp2 and the candidate gene information presented in this study will be significant resources for MAS and gene cloning research.

  3. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  4. Impact of Rag1 aphid resistant soybeans on Binodoxys communis (Hymenoptera: Braconidae), a parasitoid of soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Ghising, Kiran; Harmon, Jason P; Beauzay, Patrick B; Prischmann-Voldseth, Deirdre A; Helms, Ted C; Ode, Paul J; Knodel, Janet J

    2012-04-01

    Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.

  5. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  6. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  7. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels.

    Science.gov (United States)

    Waldeck, Nathan; Burkey, Kent; Carter, Thomas; Dickey, David; Song, Qijian; Taliercio, Earl

    2017-06-29

    Ozone is an air pollutant widely known to cause a decrease in productivity in many plant species, including soybean (Glycine max (L.) Merr). While the response of cultivated soybean to ozone has been studied, very little information is available regarding the ozone response of its wild relatives. Ozone-resistant wild soybean accessions were identified by measuring the response of a genetically diverse group of 66 wild soybean (Glycine soja Zucc. and Sieb.) accessions to elevated ozone levels. RNA-Seq analyses were performed on leaves of different ages from selected ozone-sensitive and ozone-resistant accessions that were subjected to treatment with an environmentally relevant level of ozone. Many more genes responded to elevated ozone in the two ozone-sensitive accessions than in the ozone-resistant accessions. Analyses of the ozone response genes indicated that leaves of different ages responded differently to ozone. Older leaves displayed a consistent reduction in expression of genes involved in photosynthesis in response to ozone, while changes in expression of defense genes dominated younger leaf tissue in response to ozone. As expected, there is a substantial difference between the response of ozone-sensitive and ozone-resistant accessions. Genes associated with photosystem 2 were substantially reduced in expression in response to ozone in the ozone-resistant accessions. A decrease in peptidase inhibitors was one of several responses specific to one of the ozone resistant accessions. The decrease in expression in genes associated with photosynthesis confirms that the photosynthetic apparatus may be an early casualty in response to moderate levels of ozone. A compromise of photosynthesis would substantially impact plant growth and seed production. However, the resistant accessions may preserve their photosynthetic apparatus in response to the ozone levels used in this study. Older leaf tissue of the ozone-resistant accessions showed a unique down-regulation of

  8. A short communication: Response of Soybean to concomitant ...

    African Journals Online (AJOL)

    Low soil fertility especially N and P limits soybean production among the resource poor farmers in Kenya. A combination of effective rhizobia and arbuscular mycorrhiza fungi (AMF) inoculants can be used to alleviate these deficiencies. In this study, the response of soybean variety, Gazelle to 2 AMF species (Acaulospora ...

  9. Evaluation of late vegetative and reproductive stage soybeans for resistance to soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Prochaska, T J; Pierson, L M; Baldin, E L L; Hunt, T E; Heng-Moss, T M; Reese, J C

    2013-04-01

    The soybean aphid, Aphis glycines Matsumura, has become the most significant soybean [Glycine max (L.) Merrill] insect pest in the north central soybean production region of North America. The objectives of this research were to measure selected genotypes for resistance to the soybean aphid in the later vegetative and reproductive stages under field conditions, and confirm the presence of tolerance in KS4202. The results from 2007 to 2011 indicate that KS4202 can support aphid populations with minimal yield loss at levels where significant yield loss would be expected in most other genotypes. The common Nebraska cultivar, 'Asgrow 2703', appears to show signs of tolerance as well. None of the yield parameters were significantly different between the aphid infested and noninfested treatments. Based on our results, genotypes may compensate for aphid feeding in different ways. Asgrow 2703 appears to produce a similar number of seeds as its noninfested counterpart, although the seeds produced are slightly smaller. Field evaluation of tolerance in KS4202 indicated a yield loss of only 13% at 34,585-53,508 cumulative aphid-days, when 24-36% yield loss would have been expected.

  10. Genome-wide association study of soybean cyst nematode (Heterodera glycines Ichinohe) HG type 2.5.7 (race 1) resistance in wild soybean (Glycine soja Sieb. & Zucc.)

    Science.gov (United States)

    Soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Thus far, most of the commercial SCN-resistant soybean cultivars have been developed from very limited resistant germplasm resources. Overuse of these limited resistant sources has resulted in SCN race ...

  11. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  12. The Seed Biotinylated Protein of Soybean (Glycine max): A Boiling-Resistant New Allergen (Gly m 7) with the Capacity To Induce IgE-Mediated Allergic Responses.

    Science.gov (United States)

    Riascos, John J; Weissinger, Sandra M; Weissinger, Arthur K; Kulis, Michael; Burks, A Wesley; Pons, Laurent

    2016-05-18

    Soybean is a common allergenic food; thus, a comprehensive characterization of all the proteins that cause allergy is crucial to the development of effective diagnostic and immunotherapeutic strategies. A cDNA library was constructed from seven stages of developing soybean seeds to investigate candidate allergens. We searched the library for cDNAs encoding a seed-specific biotinylated protein (SBP) based on its allergenicity in boiled lentils. A full-length cDNA clone was retrieved and expressed as a 75.6-kDa His-tagged recombinant protein (rSBP) in Escherichia coli. Western immunoblotting of boiled bacterial extracts demonstrated specific IgE binding to rSBP, which was further purified by metal affinity and anion exchange chromatographies. Of the 23 allergic sera screened by ELISA, 12 contained IgEs specific to the purified rSBP. Circular dichroism spectroscopy revealed a predominantly unordered structure consistent with SBP's heat stability. The natural homologues (nSBP) were the main proteins isolated from soybean and peanut embryos after streptavidin affinity purification, yet they remained low-abundance proteins in the seed as confirmed by LC-MS/MS. Using capture ELISAs, the soybean and peanut nSBPs were bound by IgEs in 78 and 87% of the allergic sera tested. The soybean nSBP was purified to homogeneity and treatments with different denaturing agents before immunoblotting highlighted the diversity of its IgE epitopes. In vitro activation of basophils was assessed by flow cytometry in a cohort of peanut-allergic children sensitized to soybean. Stronger and more frequent (38%) activations were induced by nSBP-soy compared to the major soybean allergen, Gly m 5. SBPs may represent a novel class of biologically active legume allergens with the structural resilience to withstand many food-manufacturing processes.

  13. Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) in an early growth stage.

    Science.gov (United States)

    Panthee, D R; Yuan, J S; Wright, D L; Marois, J J; Mailhot, D; Stewart, C N

    2007-10-01

    Asian soybean rust (ASR) caused by Phakopsora pachyrhizi Sydow is a potentially devastating disease posing a serious threat to the soybean industry. Understanding plant host response at the molecular level is certainly important for control of the disease. The main objective of this study was to perform a transcriptome profiling of P. pachyrhizi-exposed young soybean plants (V2 growth stage) using whole genome Affymetrix microarrays of soybean. Three-week-old soybean cv. 5601 T plants at the V2 growth stage were inoculated with P. pachyrhizi, and leaf samples were collected 72 h post inoculation with subsequent microarray analysis performed. A total of 112 genes were found to be differentially expressed from P. pachyrhizi exposure, of which 46 were upregulated, and 66 were downregulated. Most of the differentially expressed genes were general defense and stress-related genes, and 34 of these were unknown. Confirmational real-time reverse transcription-polymerase chain reaction was performed on a subset of 5 out of 112 differentially expressed genes. These results were congruent with the microarray analysis. Our results indicated that low and nonspecific innate response to the pathogen may account for the failure to develop rust resistance in the soybean variety studied. To our knowledge, this is the first microarray analysis of soybean in response to ASR.

  14. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene.

    Science.gov (United States)

    Tougou, Makoto; Yamagishi, Noriko; Furutani, Noriyuki; Shizukawa, Yoshiaki; Takahata, Yoshihito; Hidaka, Soh

    2007-11-01

    We transformed a construct containing the sense coat protein (CP) gene of Soybean dwarf virus (SbDV) into soybean somatic embryos via microprojectile bombardment to acquire SbDV-resistant soybean plants. Six independent T(0) plants were obtained. One of these transgenic lines was subjected to further extensive analysis. Three different insertion patterns of Southern blot hybridization analysis in T(1) plants suggested that these insertions introduced in T(0) plants were segregated from each other or co-inherited in T(1) progenies. These insertions were classified into two types, which overexpressed SbDV-CP mRNA and accumulated SbDV-CP-specific short interfering RNA (siRNA), or repressed accumulation of SbDV-CP mRNA and siRNA by RNA analysis prior to SbDV inoculation. After inoculation of SbDV by the aphids, most T(2) plants of this transgenic line remained symptomless, contained little SbDV-specific RNA by RNA dot-blot hybridization analysis and exhibited SbDV-CP-specific siRNA. We discuss here the possible mechanisms of the achieved resistance, including the RNA silencing.

  15. Resistance of Soybean Cultivars to Heterodera glycines HG type 2.5 in Korea

    Directory of Open Access Journals (Sweden)

    Donggeun Kim

    2013-09-01

    Full Text Available A total of 75 soybean cultivars developed in Korea was screened against soybean cyst nematode (SCN, Heterodera glycines HG type 2.5. Cysts developed on soybean cultivars ranged from 104 to 624 cysts per pot. There was no resistant cultivar but ‘Jangyeopkong’, ‘Saealkong’, ‘Miryangkong’, and ‘Mansukong’ were moderately resistant; 33 cultivars were moderately susceptible and the other cultivars were susceptible. ‘Jangyeopkong’, ‘Saealkong’, ‘Miryangkong’, and ‘Mansukong’ could be recommended for soybean fields infested with SCN until developing SCN resistant soybean.

  16. Soybean Resistance to Cercospora sojina Infection Is Reduced by Silicon.

    Science.gov (United States)

    Nascimento, Kelly Juliane Telles; Debona, Daniel; França, Sueny Kelly Santos; Gonçalves, Mariana Gabriele Marcolino; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2014-11-01

    Frogeye leaf spot, caused by Cercospora sojina, is one of the most important leaf diseases of soybean worldwide. Silicon (Si) is known to increase the resistance of several plant species to pathogens. The cultivars Bossier and Conquista, which are susceptible and resistant, respectively, to frogeye leaf spot, supplied and nonsupplied with Si were examined for the activities of defense enzymes and the concentrations of total soluble phenolics (TSP) and lignin-thioglycolic acid (LTGA) derivatives at 8, 14, and 16 days after inoculation (dai) with C. sojina. The importance of cell wall degrading enzymes (CWDE) to the infection process of C. sojina and the effect of Si on their activities were also determined. Soybean plants were grown in hydroponic culture containing either 0 or 2 mM Si (-Si and +Si, respectively) and noninoculated or C. sojina inoculated. Severity of frogeye leaf spot was higher in cultivar Bossier plants than cultivar Conquista and also in the +Si plants compared with their -Si counterparts. Except for the concentrations of TSP and LTGA derivatives, activities of defense enzymes and the CWDE did not change for +Si noninoculated plants regardless of the cultivar. The activities of lipoxygenases, phenylalanine ammonia-lyases, chitinases, and polyphenoloxidases as well as the activities of CWDE decreased for the +Si inoculated plants. The results from this study demonstrated that defense enzyme activities decreased in soybean plants supplied with Si, which compromised resistance to C. sojina infection.

  17. Gas exchange and morpho-physiological response of soybean to ...

    African Journals Online (AJOL)

    Gas exchange and morpho-physiological response of soybean to straw mulching under drought conditions. Lan-lan Xue, Long-chang Wang, Shakeel Ahmad Anjum, Muhammad Farrukh Saleem, Ming-chen Bao, Asif Saeed, Muhammad Faisal Bilal ...

  18. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar.

    Science.gov (United States)

    Zhang, Jiqing; Xia, Changjian; Wang, Xiaoming; Duan, Canxing; Sun, Suli; Wu, Xiaofei; Zhu, Zhendong

    2013-06-01

    Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar 'Yudou 29' is resistant to many P. sojae isolates in China. The genetic basis of the resistance in 'Yudou 29' was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, 'Yudou 29' displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between 'Jikedou 2' (PRR susceptible) and 'Yudou 29' was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in 'Yudou 29' is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus.

  19. Pyramiding different aphid-resistance genes in elite soybean germplasm to combat dynamic aphid populations

    Science.gov (United States)

    The soybean aphid, an invasive species, has posed a significant threat to soybean production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resis...

  20. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific.

    Science.gov (United States)

    Panthee, Dilip R; Marois, James J; Wright, David L; Narváez, Dario; Yuan, Joshua S; Stewart, C Neal

    2009-01-01

    Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.

  1. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes

    Science.gov (United States)

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115

  2. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  3. Genome-wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean.

    Science.gov (United States)

    Zhang, Jiaoping; Singh, Arti; Mueller, Daren S; Singh, Asheesh K

    2015-12-01

    Soybean [Glycine max (L.) Merr.] is an economically important crop that is grown worldwide. Sudden death syndrome (SDS), caused by Fusarium virguliforme, is one of the top yield-limiting diseases in soybean. However, the genetic basis of SDS resistance, especially with respect to epistatic interactions, is still unclear. To better understand the genetic architecture of soybean SDS resistance, genome-wide association and epistasis studies were performed using a population of 214 germplasm accessions and 31,914 SNPs from the SoySNP50K Illumina Infinium BeadChip. Twelve loci and 12 SNP-SNP interactions associated with SDS resistance were identified at various time points after inoculation. These additive and epistatic loci together explained 24-52% of the phenotypic variance. Disease-resistant, pathogenesis-related and chitin- and wound-responsive genes were identified in the proximity of peak SNPs, including stress-induced receptor-like kinase gene 1 (SIK1), which is pinpointed by a trait-associated SNP and encodes a leucine-rich repeat-containing protein. We report that the proportion of phenotypic variance explained by identified loci may be considerably improved by taking epistatic effects into account. This study shows the necessity of considering epistatic effects in soybean SDS resistance breeding using marker-assisted and genomic selection approaches. Based on our findings, we propose a model for soybean root defense against the SDS pathogen. Our results facilitate identification of the molecular mechanism underlying SDS resistance in soybean, and provide a genetic basis for improvement of soybean SDS resistance through breeding strategies based on additive and epistatic effects. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. DROUGHT RESISTANT SELECTION ON SOYBEAN SOMACLONAL VARIANTS

    Directory of Open Access Journals (Sweden)

    Nur Basuki

    2012-02-01

    Full Text Available This research was conducted to evaluate the yield potential of 19 somaclonal variants resulting from in vitro selection when planted under drought stress condition in the field. Field test was done by planting the variants, the parents, and checked varieties in the field during dry season, and was irrigated once a week for non-stress and once two weeks for drought stress treatment. Split-plot design arranged in a factorial (2 x 28 with three replications was used in this research. Obser-vations were done on yield and yield components. Analysis of variance was used to see the difference between treatments and then it was continued with analysis using Honestly Significant Difference test to find out the best treatments. There was no interaction between genotype and drought stress on seed yield. Different genotypes showed a significant difference on this character. It indicated that the yield potential of selected variants was not affected by drought stress treatment. This research gave 10 variants having the potential to be developed as drought resistant genotypes. However, these ten potential geno-types need to be tested further in field trial to find out the yield adaptability and stability and their resistance to drought stress.

  5. Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.

    Science.gov (United States)

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.

  6. Soybean (Glycine max L. Merr. sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease.

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    Full Text Available Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs, including red (650-660, far red (720-730 and blue (440-450 nm or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.

  7. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  8. Characterization of kudzu (Pueraria spp.) resistance to Phakopsora pachyrhizi, the causal agent of soybean rust.

    Science.gov (United States)

    Jordan, Stephen A; Mailhot, Daniel J; Gevens, Amanda J; Marois, Jim J; Wright, David L; Harmon, Carrie L; Harmon, Philip F

    2010-09-01

    Kudzu (Pueraria spp.) is an accessory host for soybean rust (SBR) (caused by Phakopsora pachyrhizi) that is widespread throughout the southeastern United States. An expanded survey of kudzu sites was conducted in 2008 to determine the proportion of natural resistance in the north-Florida kudzu population. Of the 139 sites evaluated, approximately 18% were found to be free of SBR infection, while 23% had reduced sporulation. Ten accessions of kudzu from north-central Florida were characterized for their response to challenge by a single isolate of P. pachyrhizi under laboratory conditions. Three outcomes were observed: tan lesions with profuse sporulation (susceptible); reddish-brown lesions with delayed, reduced sporulation (resistant); and an immune response in which no lesions developed (immune). Of the 10 accessions, 6 were susceptible, 3 were immune, and 1 was resistant. Cytological examination revealed that resistant interactions were typified by early onset of a multicell hypersensitive response (HR) while typical immune interactions were the result of cell wall depositions that blocked penetration in combination with early onset of the HR. Quantitative real-time polymerase chain reaction was performed to determine the extent of colonization. After 15 days, there was 10-fold less P. pachyrhizi DNA present in resistant compared with susceptible kudzu, while the amount of P. pachyrhizi DNA present in the immune kudzu was below the detection level. Susceptible kudzu had approximately half the amount of P. pachyrhizi DNA present when compared with a susceptible soybean cultivar.

  9. Diallel analysis for frogeye leaf spot resistance in soybean

    Directory of Open Access Journals (Sweden)

    Gravina Geraldo de Amaral

    2003-01-01

    Full Text Available Seven soybean cultivars (Bossier, Cristalina, Davis, Kent, Lincoln, Paraná and Uberaba, with different levels of resistance to Cercospora sojina, were crossed in a diallel design to determine the general (GCA and specific (SCA combining abilities relative to the inheritance of the resistance. Race 04 of the fungus was inoculated in the parents and in the 21 F1 hybrids in a greenhouse in a completely randomized design, with 12 replications. The reactions to the disease were evaluated 20 days after the inoculation, always on the most infected leaflet. Both GCA and SCA were significant for all the evaluated characters, being inferred that, for the expression of the characters, the additive, dominant and, possibly, epistatic genic actions were important. The largest values of estimated SCA effect (ij were observed in the hybrid combinations where at least one parent presented high GCA. Cristalina, Davis and Uberaba cultivars showed the largest estimates for GCA effect (i, and from the analysis of ii, the contribution of these parents to heterosis of their hybrids will be towards the reduction of the disease symptoms. Therefore, these cultivars are indicated as parents in breeding programs that seek the development of soybean cultivars with resistance to frogeye leaf spot.

  10. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  11. Mind your elders: wild soybean’s contribution to soybean aphid resistance

    Science.gov (United States)

    Currently, biotype 4 soybean aphid (Aphis glycines Matsamura, SBA) is the most virulent SBA biotype. Overcoming the most aphid resistant genes, SBA biotype 4 has become the greatest challenge in utilizing plant resistance in soybean [Glycine max (L.) Merr.]. Soybean’s wild ancestor Glycine soja (Sie...

  12. A new soybean rust resistance allele from PI 423972 at the Rpp4 locus

    Science.gov (United States)

    Phakopsora pachyrhizi is a fungal pathogen and the cause of Asian soybean rust (SBR). P. pachyrhizi invaded the continental United States in 2004 and has since been a threat to the soybean industry. There are six described loci that harbor resistance to P. pachyrhizi (Rpp) genes. The resistance of P...

  13. Genome-Wide Association Study Reveals Novel Loci for SC7 Resistance in a Soybean Mutant Panel

    OpenAIRE

    Che, Zhijun; Liu, Hailun; Yi, Fanglei; Cheng, Hao; Yang, Yuming; Wang, Li; Du, Jingyi; Zhang, Peipei; Wang, Jiao; Yu, Deyue

    2017-01-01

    Soybean mosaic virus (SMV) is a member of Potyvirus genus that causes severe yield loss and destroys seed quality in soybean [Glycine max (L.) Merr.]. It is important to explore new resistance sources and discover new resistance loci to SMV, which will provide insights to improve breeding strategies for SMV resistance. Here, a genome-wide association study was conducted to accelerate molecular breeding for the improvement of resistance to SMV in soybean. A population of 165 soybean mutants de...

  14. Differential responses of B vitamins in black soybean seeds.

    Science.gov (United States)

    Kim, Gi-Ppeum; Lee, Jinwook; Ahn, Kyung-Geun; Hwang, Young-Sun; Choi, Youngmin; Chun, Jiyeon; Chang, Woo-Suk; Choung, Myoung-Gun

    2014-06-15

    This study was aimed to determine the contents and the association of B vitamins from seeds of 10 black and one yellow soybean (Glycine max (L.) Merr.) varieties with either green or yellow cotyledon. Thiamine, flavin adenine dinucleotide (FAD), riboflavin and total riboflavin were found highest in 'Chengjakong', while flavin mononucleotide (FMN) was greatest in 'Mirang'. Nicotinic acid and total vitamin B3 were highest in 'Shingi' as a yellow soybean variety but pantothenic acid and pyridoxine contents were greatest in 'Tawon' and 'Mirang', respectively. These content variations of B vitamins directly reflected the wide segregation of soybean varieties on the principal component analysis (PCA) scores plot, indicating that these 4 soybean varieties appeared to be least associated with other soybean varieties based on the different responses of B vitamins. The results of cluster and correlation analyses presented that the cotyledon colour of soybean seed contributed to a variation of B vitamin contents. Overall, the results suggest that a wide range of B vitamin contents would be affected by genotypic factors alongside the difference of cotyledon colour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Drought stress responses in soybean roots and nodules

    Directory of Open Access Journals (Sweden)

    Karl Kunert

    2016-07-01

    Full Text Available Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  16. Drought Stress Responses in Soybean Roots and Nodules.

    Science.gov (United States)

    Kunert, Karl J; Vorster, Barend J; Fenta, Berhanu A; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  17. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  18. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  19. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2.

    Science.gov (United States)

    Pandey, Ajay K; Yang, Chunling; Zhang, Chunquan; Graham, Michelle A; Horstman, Heidi D; Lee, Yeunsook; Zabotina, Olga A; Hill, John H; Pedley, Kerry F; Whitham, Steven A

    2011-02-01

    Asian soybean rust is an aggressive foliar disease caused by the obligate biotrophic fungus Phakopsora pachyrhizi. On susceptible plants, the pathogen penetrates and colonizes leaf tissue, resulting in the formation of necrotic lesions and the development of numerous uredinia. The soybean Rpp2 gene confers resistance to specific isolates of P. pachyrhizi. Rpp2-mediated resistance limits the growth of the pathogen and is characterized by the formation of reddish-brown lesions and few uredinia. Using virus-induced gene silencing, we screened 140 candidate genes to identify those that play a role in Rpp2 resistance toward P. pachyrhizi. Candidate genes included putative orthologs to known defense-signaling genes, transcription factors, and genes previously found to be upregulated during the Rpp2 resistance response. We identified 11 genes that compromised Rpp2-mediated resistance when silenced, including GmEDS1, GmNPR1, GmPAD4, GmPAL1, five predicted transcription factors, an O-methyl transferase, and a cytochrome P450 monooxygenase. Together, our results provide new insight into the signaling and biochemical pathways required for resistance against P. pachyrhizi.

  20. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus).

    Science.gov (United States)

    Deng, Junming; Mai, Kangsen; Chen, Liqiao; Mi, Haifeng; Zhang, Lu

    2015-06-01

    This study evaluated the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on growth, antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × Oreochromis aureus). Five experimental diets were formulated with 0 (control), 10, 20, 30, and 40% RSM replacing graded levels of SBM, respectively. Fish were fed one of the five experimental diets for eight weeks, and then challenged by A. hydrophila via intraperitoneal injection and kept for seven days. Dietary RSM inclusion level up to 30% did not affect the weight gain and daily growth coefficient, whereas these were depressed by a further inclusion. Fish fed diet with 40% RSM showed the lowest serum total antioxidant capacity, lysozyme, alternative complement pathway, respiratory burst and phagocytic activities. Dietary RSM inclusion gradually depressed the post-challenge survival rate, and that was significantly lower in fish fed diet with 40% RSM compared to fish fed the control diet. Conversely, the inclusion of RSM generally increased the serum total cholesterol level, the plasma alanine aminotransferase and aspartate aminotransferase activities, and these were significantly higher in fish fed diet with 40% RSM compared to fish fed the control diet. The results indicated that RSM can be included at level up to 30% in diet for tilapia without obvious adverse effects on the growth, antioxidant capacity, non-specific immune response and resistance to A. hydrophila infection, whereas these were depressed by a further inclusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  2. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection.

    Science.gov (United States)

    Li, Shuang; Chen, Yu; Zhu, Xiaofeng; Wang, Yuanyuan; Jung, Ki-Hong; Chen, Lijie; Xuan, Yuanhu; Duan, Yuxi

    2018-01-01

    Glycine max (soybean) is an extremely important crop, representing a major source of oil and protein for human beings. Heterodera glycines (soybean cyst nematode, SCN) infection severely reduces soybean production; therefore, protecting soybean from SCN has become an issue for breeders. Black soybean has exhibited a different grade of resistance to SCN. However, the underlying mechanism of Huipizhi Heidou resistance against SCN remains elusive. The Huipizhi Heidou (ZDD2315) and race 3 of Heterodera glycines were chosen to study the mechanism of resistance via examination of transcriptomic changes. After 5, 10, and 15days of SCN infection, whole roots were sampled for RNA extraction, and uninfected samples were simultaneously collected as a control. 740, 1413, and 4925 genes were isolated by padj (p-value adjusted)<0.05 after 5, 10, and 15days of the infection, respectively, and 225 differentially expressed genes were overlapped at all the time points. We found that the differentially expressed genes (DEGs) at 5, 10, and 15days after infection were involved in various biological function categories; in particular, induced genes were enriched in defense response, hormone mediated signaling process, and response to stress. To verify the pathways observed in the GO and KEGG enrichment results, effects of hormonal signaling in cyst-nematode infection were further examined via treatment with IAA (indo-3-acetic acid), salicylic acid (SA), gibberellic acid (GA), jasmonic acid (JA), and ethephon, a precursor of ethylene. The results indicate that five hormones led to a significant reduction of J2 number in the roots of Huipizhi Heidou and Liaodou15, representing SCN-resistant and susceptible lines, respectively. Taken together, our analyses are aimed at understanding the resistance mechanism of Huipizhi Heidou against the SCN race 3 via the dissection of transcriptomic changes upon J2 infection. The data presented here will help further research on the basis of soybean and

  3. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

    Science.gov (United States)

    Yuan, C P; Wang, Y J; Zhao, H K; Zhang, L; Wang, Y M; Liu, X D; Zhong, X F; Dong, Y S

    2016-06-10

    Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance.

  4. Integration of sudden death syndrome resistance loci in the soybean genome.

    Science.gov (United States)

    Chang, Hao-Xun; Roth, Mitchell G; Wang, Dechun; Cianzio, Silvia R; Lightfoot, David A; Hartman, Glen L; Chilvers, Martin I

    2018-02-12

    Complexity and inconsistencies in resistance mapping publications of soybean sudden death syndrome (SDS) result in interpretation difficulty. This review integrates SDS mapping literature and proposes a new nomenclature system for reproducible SDS resistance loci. Soybean resistance to sudden death syndrome (SDS) is composed of foliar resistance to phytotoxins and root resistance to pathogen invasion. There are more than 80 quantitative trait loci (QTL) and dozens of single nucleotide polymorphisms (SNPs) associated with soybean resistance to SDS. The validity of these QTL and SNPs is questionable because of the complexity in phenotyping methodologies, the disease synergism between SDS and soybean cyst nematode (SCN), the variability from the interactions between soybean genotypes and environments, and the inconsistencies in the QTL nomenclature. This review organizes SDS mapping results and proposes the Rfv (resistance to Fusarium virguliforme) nomenclature based on supporting criteria described in the text. Among ten reproducible loci receiving our Rfv nomenclature, Rfv18-01 is mostly supported by field studies and it co-localizes to the SCN resistance locus rhg1. The possibility that Rfv18-01 is a pleiotropic resistance locus and the concern about Rfv18-01 being confounded with Rhg1 is discussed. On the other hand, Rfv06-01, Rfv06-02, Rfv09-01, Rfv13-01, and Rfv16-01 were identified both by screening soybean leaves against phytotoxic culture filtrates and by evaluating SDS severity in fields. Future phenotyping using leaf- and root-specific resistance screening methodologies may improve the precision of SDS resistance, and advanced genetic studies may further clarify the interactions among soybean genotypes, F. virguliforme, SCN, and environments. The review provides a summary of the SDS resistance literature and proposes a framework for communicating SDS resistance loci for future research considering molecular interactions and genetic breeding for soybean SDS

  5. Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus.

    Science.gov (United States)

    Ilut, Daniel C; Lipka, Alexander E; Jeong, Namhee; Bae, Dong Nyuk; Kim, Dong Hyun; Kim, Ji Hong; Redekar, Neelam; Yang, Kiwoung; Park, Won; Kang, Sung-Taeg; Kim, Namshin; Moon, Jung-Kyung; Saghai Maroof, M A; Gore, Michael A; Jeong, Soon-Chun

    2016-03-01

    Discovery of new germplasm sources and identification of haplotypes for the durable Soybean mosaic virus resistance gene, Rsv 4, provide novel resources for map-based cloning and genetic improvement efforts in soybean. The Soybean mosaic virus (SMV) resistance locus Rsv4 is of interest because it provides a durable type of resistance in soybean [Glycine max (L.) Merr.]. To better understand its molecular basis, we used a population of 309 BC3F2 individuals to fine-map Rsv4 to a ~120 kb interval and leveraged this genetic information in a second study to identify accessions 'Haman' and 'Ilpumgeomjeong' as new sources of Rsv4. These two accessions along with three other Rsv4 and 14 rsv4 accessions were used to examine the patterns of nucleotide diversity at the Rsv4 region based on high-depth resequencing data. Through a targeted association analysis of these 19 accessions within the ~120 kb interval, a cluster of four intergenic single-nucleotide polymorphisms (SNPs) was found to perfectly associate with SMV resistance. Interestingly, this ~120 kb interval did not contain any genes similar to previously characterized dominant disease resistance genes. Therefore, a haplotype analysis was used to further resolve the association signal to a ~94 kb region, which also resulted in the identification of at least two Rsv4 haplotypes. A haplotype phylogenetic analysis of this region suggests that the Rsv4 locus in G. max is recently introgressed from G. soja. This integrated study provides a strong foundation for efforts focused on the cloning of this durable virus resistance gene and marker-assisted selection of Rsv4-mediated SMV resistance in soybean breeding programs.

  6. Molecular Characterization of Resistance to Soybean Rust (Phakopsora pachyrhizi Syd. & Syd.) in Soybean Cultivar DT 2000 (PI 635999).

    Science.gov (United States)

    Vuong, Tri D; Walker, David R; Nguyen, Binh T; Nguyen, Tuyet T; Dinh, Hoan X; Hyten, David L; Cregan, Perry B; Sleper, David A; Lee, Jeong D; Shannon, James G; Nguyen, Henry T

    2016-01-01

    Resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi Syd. & Syd., has been identified in many soybean germplasm accessions and is conferred by either dominant or recessive genes that have been mapped to six independent loci (Rpp1 -Rpp6), but No U.S. cultivars are resistant to SBR. The cultivar DT 2000 (PI 635999) has resistance to P. pachyrhizi isolates and field populations from the United States as well as Vietnam. A F6:7 recombinant inbred line (RIL) population derived from Williams 82 × DT 2000 was used to identify genomic regions associated with resistance to SBR in the field in Ha Noi, Vietnam, and in Quincy, Florida, in 2008. Bulked segregant analysis (BSA) was conducted using the soybean single nucleotide polymorphism (SNP) USLP 1.0 panel along with simple sequence repeat (SSR) markers to detect regions of the genome associated with resistance. BSA identified four BARC_SNP markers near the Rpp3 locus on chromosome (Chr.) 6. Genetic analysis identified an additional genomic region around the Rpp4 locus on Chr. 18 that was significantly associated with variation in the area under disease progress curve (AUDPC) values and sporulation in Vietnam. Molecular markers tightly linked to the DT 2000 resistance alleles on Chrs. 6 and 18 will be useful for marker-assisted selection and backcrossing in order to pyramid these genes with other available SBR resistance genes to develop new varieties with enhanced and durable resistance to SBR.

  7. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen

    2015-05-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Physiological Response of Soybean Genotypes to Water Limiting ...

    African Journals Online (AJOL)

    This study was conducted to explore the physiological responses of soybean genotypes to water limiting conditions. Seven days old seedlings of C01, C08, C27, W01, W06 and W08 drought-sensitive, and C12 and W05 drought-tolerant genotypes used in the study were transplanted in Polyvinyl chloride (PVC) pipes, filled ...

  9. Yield response of soybeans to levels of nitrogen and potassium ...

    African Journals Online (AJOL)

    A field trail was conducted at the University of Uyo Teaching and Research Farm in a high rainfall area of South eastern Nigeria to assess the yield response soybeans [ Glycine max (L.) Merrill ] to different levels of nitrogen and potassium fertilizers. The results showed that the number of pods/ plant, threshing percentage ...

  10. Response of a Promiscuous Soybean Cultivar to Rhizobial ...

    African Journals Online (AJOL)

    acer

    Muhammad; Response of a Promiscuous Soybean Cultivar to Rhizobial Inoculation and Phosphorus in Nigeria's Southern Guinea Savanna. Alfisol. 80 analysis using the procedures described by Juo. (1979). Treatment and experimental design: The experiment was laid out in a randomized complete block design.

  11. Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections.

    Science.gov (United States)

    Subramanyam, Kondeti; Arun, Muthukrishnan; Mariashibu, Thankaraj Salammal; Theboral, Jeevaraj; Rajesh, Manoharan; Singh, Narendra K; Manickavasagam, Markandan; Ganapathi, Andy

    2012-12-01

    Salinity and fungal diseases are the two significant constraints limiting soybean productivity. In order to address these problems, we have transformed soybean cv. Pusa 16 via somatic embryogenesis with salinity induced and apoplastically secreted pathogenesis-related tobacco osmotin (Tbosm) gene using Agrobacterium-mediated genetic transformation. Integration of Tbosm in randomly selected five GUS assay-positive independently transformed soybean plants was confirmed by polymerase chain reaction (PCR) and Southern hybridization. Reverse transcriptase-PCR (RT-PCR) and Western blotting confirmed that the Tbosm was expressed in three of the five transformed soybean plants. Further the Western blotting revealed that the truncated osmotin protein accumulated more in apoplastic fluid. The transformed (T(1)) soybean plants survived up to 200 mM NaCl, whereas non-transformed (NT) plants could withstand till 100 mM and perished at 150 mM NaCl. The biochemical analysis revealed the T(1) soybean plants accumulated higher amount of proline, chlorophyll, APX, CAT, SOD, DHAR, MDHAR, and RWC than NT plants. Leaf gas exchange measurements revealed that T(1) soybean plants maintained higher net photosynthetic rate, CO(2) assimilation, and stomatal conductance than NT plants. The three T(1) soybean plants expressing the osmotin gene also showed resistance against three important fungal pathogens of soybean--Microsphaera diffusa, Septoria glycines and Phakopsora pachyrhizi. The T(1) soybean plants produced 32-35 soybean pods/plant containing 10.3-12.0 g of seeds at 200 mM NaCl, whereas NT plant produced 28.6 soybean pods containing 9.6 g of seeds at 100 mM NaCl. The present investigation clearly shows that expression of Tbosm enhances salinity tolerance and fungal disease resistance in transformed soybean plants.

  12. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    Science.gov (United States)

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  13. Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response

    Science.gov (United States)

    2009-01-01

    Background Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions. Results Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix® GeneChip® Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553) genotype and 200 candidate genes in the IsoClark (PI547430) genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs) specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results. Conclusion These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are co-regulated. The combined results of all analyses lead us to postulate iron inefficiency in soybean is a result of a

  14. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies

    Science.gov (United States)

    Management of insects that cause economic damage to yields of soybean mainly rely on insecticide application. Sources of resistance in soybean plant introduction (PIs) to different insect pests have been reported, and some of these resistance sources, like for the soybean aphid (SBA) have been used ...

  15. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars.

    Science.gov (United States)

    Gao, Le; Ding, Xueni; Li, Kai; Liao, Wenlin; Zhong, Yongkun; Ren, Rui; Liu, Zhitao; Adhimoolam, Karthikeyan; Zhi, Haijian

    2015-08-01

    Soybean mosaic virus resistance was significantly improved in multiple soybean cultivars through genetic transformation induced by inverted repeat-SMV- HC - Pro genes based on RNAi and post-transcriptional gene silencing. Here, we demonstrate Soybean mosaic virus (SMV) resistance in transgenic soybean plants. Transformation of five soybean genotypes with a construct containing inverted repeat-SMV-HC-Pro genes-induced high-level SMV resistance. Through leaf-painting assays, polymerase chain reaction (PCR) verification and LibertyLink(®) strip detection, 105 T0 and 1059 T1 plants were confirmed as transgene-positive. Southern blotting confirmed insertion of the T-DNA into the genomic DNA and revealed a low-copy integration pattern. Most T0 plants were fertile and transmitted the exogenous genes to their progenies (ratios of 3:1 or 15:1). In the T1 generation, virus resistance was evaluated visually after inoculation with SMV (strain SC3) and 441 plants were highly resistant (HR). SMV disease rating was classified on a scale with 0 = symptomless and 4 = mosaic symptoms with severe leaf curl. In the positive T1 plants, the disease rating on average was 1.42 (range 0.45-2.14) versus 3.2 (range 2-4) for the nontransformed plants. With the T2 generation, 75 transgene-positive plants were inoculated with SC3, and 57 HR plants were identified. Virus-induced seed coat mottling was eliminated in the resistant lines. Analysis of SMV levels in the plants was performed using quantitative real-time PCR and double-antibody sandwich enzyme-linked immunosorbent assays; the results revealed no virus or a gradual reduction over time in the viral content, thereby supporting the visual examination results. This is the first report demonstrating pathogen-derived resistance to SMV induced by inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Our findings contribute positively to the study of transgenic SMV-resistance using RNA interference.

  17. Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction.

    Science.gov (United States)

    Beneventi, Magda Aparecida; da Silva, Orzenil Bonfim; de Sá, Maria Eugênia Lisei; Firmino, Alexandre Augusto Pereira; de Amorim, Regina Maria Santos; Albuquerque, Erika Valéria Saliba; da Silva, Maria Cristina Mattar; da Silva, Joseane Padilha; Campos, Magnólia de Araújo; Lopes, Marcus José Conceição; Togawa, Roberto Coiti; Pappas, Georgios Joanis; Grossi-de-Sa, Maria Fatima

    2013-05-10

    Root-knot nematodes (RKN- Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS signaling during soybean-RKN interaction. Using 454 technology to explore the common aspects of resistance reaction during both parasitism and resistance phases it was verified that hormone, carbohydrate metabolism and stress related genes were consistently expressed at high levels in infected roots as compared to mock control. Most noteworthy genes include those encoding glycosyltransferases, peroxidases, auxin-responsive proteins and gibberellin-regulated genes. Our data analysis suggests the key role of glycosyltransferases, auxins and components of gibberellin signal transduction, biosynthesis and deactivation pathways in the resistance reaction and their participation in jasmonate signaling and redox homeostasis in mediating aspects of plant growth and responses to biotic stress. Based on this study we suggest a reasonable model regarding to the complex mechanisms of crosstalk between plant hormones, mainly gibberellins and auxins, which can be crucial to modulate the levels of ROS in the resistance reaction to nematode invasion. The model also includes recent findings concerning to the participation of DELLA-like proteins and ROS signaling controlling plant immune or stress responses. Furthermore, this study provides a dataset of potential candidate genes involved in both nematode parasitism and resistance, which can be tested further for their role in this biological process using functional genomics approaches.

  18. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.

    Science.gov (United States)

    Yin, Yongqi; Yang, Runqiang; Han, Yongbin; Gu, Zhenxin

    2015-01-15

    Calcium enhances salt stress tolerance of soybeans. Nevertheless, the molecular mechanism of calcium's involvement in resistance to salt stress is unclear. A comparative proteomic approach was used to investigate protein profiles in germinating soybeans under NaCl-CaCl2 and NaCl-LaCl3 treatments. A total of 80 proteins affected by calcium in 4-day-old germinating soybean cotyledons and 71 in embryos were confidently identified. The clustering analysis showed proteins were subdivided into 5 and 6 clusters in cotyledon and embryo, respectively. Among them, proteins involved in signal transduction and energy pathways, in transportation, and in protein biosynthesis were largely enriched while those involved in proteolysis were decreased. Abundance of nucleoside diphosphate kinase and three antioxidant enzymes were visibly increased by calcium. Accumulation of gamma-aminobutyric acid and polyamines was also detected after application of exogenous calcium. This was consistent with proteomic results, which showed that proteins involved in the glutamate and methionine metabolism were mediated by calcium. Calcium could increase the salt stress tolerance of germinating soybeans via enriching signal transduction, energy pathway and transportation, promoting protein biosynthesis, inhibiting proteolysis, redistributing storage proteins, regulating protein processing in endoplasmic reticulum, enriching antioxidant enzymes and activating their activities, accumulating secondary metabolites and osmolytes, and other adaptive responses. Biological significance Soybean (Glycine max L.), as a traditional edible legume, is being targeted for designing functional foods. During soybean germination under stressful conditions especially salt stress, newly discovered functional components such as gamma-aminobutyric acid (GABA) are rapidly accumulated. However, soybean plants are relatively salt-sensitive and the growth, development and biomass of germinating soybeans are significantly

  19. 'MN1606SP' by 'Spencer' filial soybean population reveals novel quantitative trait loci and interactions among loci conditioning SDS resistance.

    Science.gov (United States)

    Luckew, Alexander S; Swaminathan, Sivakumar; Leandro, Leonor F; Orf, James H; Cianzio, Silvia R

    2017-10-01

    Four novel QTL and interactions among QTL were identified in this research, using as a parent line the most SDS-resistant genotype within soybean cultivars of the US early maturity groups. Soybean sudden death syndrome (SDS) reduces soybean yield in most of the growing areas of the world. The causal agent of SDS, soilborne fungus Fusarium virguliforme (Fv), releases phytotoxins taken up by the plant to produce chlorosis and necrosis in the leaves. Planting resistant cultivars is the most successful management practice to control the disease. The objective of this study was to identify quantitative trait loci (QTL) associated with the resistance response of MN1606SP to SDS. A mapping population of F 2:3 lines created by crossing the highly resistant cultivar 'MN1606SP' and the susceptible cultivar 'Spencer' was phenotyped in the greenhouse at three different planting times, each with three replications. Plants were artificially inoculated using SDS infested sorghum homogeneously mixed with the soil. Data were collected on three disease criteria, foliar disease incidence (DI), foliar leaf scorch disease severity (DS), and root rot severity. Disease index (DX) was calculated as DI × DS. Ten QTL were identified for the different disease assessment criteria, three for DI, four for DX, and three for root rot severity. Three QTL identified for root rot severity and one QTL for disease incidence are considered novel, since no previous reports related to these QTL are available. Among QTL, two interactions were detected between four different QTL. The interactions suggest that resistance to SDS is not only dependent on additive gene effects. The novel QTL and the interactions observed in this study will be useful to soybean breeders for improvement of SDS resistance in soybean germplasm.

  20. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Wang Hehe

    2012-08-01

    Full Text Available Abstract Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad and susceptible (‘Sloan’ genotypes. There were 1025 single nucleotide polymorphisms (SNPs in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for

  1. Characterization of nonhost resistance of Arabidopsis to the Asian soybean rust.

    Science.gov (United States)

    Loehrer, Marco; Langenbach, Caspar; Goellner, Katharina; Conrath, Uwe; Schaffrath, Ulrich

    2008-11-01

    Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease of soybean. We report the use of the nonhost plant Arabidopsis thaliana to identify the genetic basis of resistance to P. pachyrhizi. Upon attack by P. pachyrhizi, epidermal cells of wild-type Arabidopsis accumulated H2O2, which likely orchestrates the frequently observed epidermal cell death. However, even when epidermal cell death occurred, fungal hyphae grew on and infection was terminated at the mesophyll boundary. These events were associated with expression of PDF1.2, suggesting that P. pachyrhizi, an ostensible biotroph, mimics aspects of a necrotroph. Extensive colonization of the mesophyll occurred in Arabidopsis pen mutants with defective penetration resistance. Although haustoria were found occasionally in mesophyll cells, the successful establishment of biotrophy failed, as evidenced by the cessation of fungal growth. Double mutants affected in either jasmonic acid or salicylic acid signaling in the pen3-1 background revealed the involvement of both pathways in nonhost resistance (NHR) of Arabidopsis to P. pachyrhizi. Interestingly, expression of AtNHL10, a gene that is expressed in tissue undergoing the hypersensitive response, was only triggered in infected pen3-1 mutants. Thus, a suppression of P. pachyrhizi-derived effectors by PEN3 can be inferred. Our results demonstrate that Arabidopsis can be used to study mechanisms of NHR to ASR.

  2. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    Science.gov (United States)

    Sugimoto, Takuma; Kato, Masayasu; Yoshida, Shinya; Matsumoto, Isao; Kobayashi, Tamotsu; Kaga, Akito; Hajika, Makita; Yamamoto, Ryo; Watanabe, Kazuhiko; Aino, Masataka; Matoh, Toru; Walker, David R.; Biggs, Alan R.; Ishimoto, Masao

    2012-01-01

    Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars. PMID:23136490

  3. Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean.

    Science.gov (United States)

    Karthikeyan, Adhimoolam; Li, Kai; Jiang, Hua; Ren, Rui; Li, Cui; Zhi, Haijian; Chen, Shouyi; Gai, Junyi

    2017-08-01

    Soybean mosaic virus (SMV) is one of the most devastating pathogens for soybeans in China. Among the country-wide 22 strains, SC5 dominates in Huang-Huai and Changjiang valleys. For controlling its damage, the resistance gene was searched through Mendelian inheritance study, gene fine-mapping, and candidate gene analysis combined with qRT-PCR (quantitative real-time polymerase chain reaction) analysis. The parents F 1 , F 2 , and RILs (recombinant inbred lines) of the cross Kefeng-1 (Resistance, R) × NN1138-2 (Susceptible, S) were used to examine the inheritance of SC5-resistance. The F 1 was resistant and the F 2 and RILs segregated in a 3R:1S and 1R:1S ratio, respectively, indicating a single dominant gene conferring the Kefeng-1 resistance. Subsequently, the genomic region conferring the resistance was found in "Bin 352-Bin353 with 500 kb" on Chromosome 2 using the phenotyping data of the 427 RILs and a high-density genetic map with 4703 bin markers. In the 500 kb genomic region, 38 putative genes are contained. The association analysis between the SNPs in a putative gene and the resistance phenotype for the 427 RILs prioritized 11 candidate genes using Chi-square criterion. The expression levels of these genes were tested by qRT-PCR. On infection with SC5, 7 out of the 11 genes had differential expression in Kefeng-1 and NN1138-2. Furthermore, integrating SNP-phenotype association analysis with qRT-PCR expression profiling analysis, Glyma02g13495 was found the most possible candidate gene for SC5-resistance. This finding can facilitate the breeding for SC5-resistance through marker-assisted selection and provide a platform to gain a better understanding of SMV-resistance gene system in soybean.

  4. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    Science.gov (United States)

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  5. Improving food and agricultural production. Thailand. Breeding for soybean resistance to anthracnose disease

    International Nuclear Information System (INIS)

    Backman, P.A.

    1992-01-01

    This is the report of a mission to evaluate projects using mutation breeding techniques to develop resistance in soybeans to anthracnose disease. The project to date is generally successful in that training has been provided to numerous scientists in Thailand, and this will lead to improved University teaching and better research. Several changes in experimental procedure are suggested to increase the chances of finding anthracnose resistance in soybean

  6. Screening of Soybean Germplasm Collection Resistance to Rust Disease (Phakopsora Pachyrhizi)

    OpenAIRE

    -, Sumartini

    2014-01-01

    Rust disease is an important disease on soybean, it was widely distributed in almost all soybeanproducing countries, the yield losses can be reach 85 %. One of the control measured is planting theresistant varieties. Resistant gens of one character can be obtained from the germplasm collection. Thestudy aiar to evaluate the resistance of soybean germplasm collection against rust diseases. The study wasconducted at Kendalpayak experimental station, Indonesian Legumes and Tuber Crops ResearchIn...

  7. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja)

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L.; Wang, Jinshe; Griffin, Joshua D.; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction. PMID:27582748

  8. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja).

    Science.gov (United States)

    Oki, Nobuhiko; Kaga, Akito; Shimizu, Takehiko; Takahashi, Masakazu; Kono, Yuhi; Takahashi, Motoki

    2017-01-01

    The common cutworm (CCW; Spodoptera litura Fabricius) is a serious herbivorous insect pest of soybean (Glycine max) in Asia and Oceania. Previously, we identified quantitative trait loci (QTLs) for CCW-antibiosis-resistance, CCW-1 and CCW-2, and antixenosis-resistance, qRslx1 and qRslx2, in the cultivar 'Himeshirazu'. The effects of these QTLs are useful in the breeding of CCW-resistant cultivars. In this study, we conducted an antixenosis bioassay on CCW using recombinant inbred lines derived from a cross between a wild soybean (Glycine soja) and the leading cultivar 'Fukuyutaka' to identify CCW-resistance genes in G. soja. The QTL analysis revealed six and four novel antixenosis-resistance QTLs in 2012 and 2013, respectively. Among them, the QTLs on chromosomes 2 and 7, designated qRslx4 and qRslx3, respectively, were stably detected in both years. qRslx3 exhibited the largest effect in both years, suggesting that qRslx3 can be exploited in the breeding of CCW-resistant soybean. Furthermore, qRslx3 and qRslx4 can be used, along with previously reported QTLs from 'Himeshirazu', to enhance the CCW-resistance of soybean cultivars because their chromosomal positions are unique. These new CCW-resistance QTLs from G. soja should play important roles in the breeding of CCW-resistant soybean cultivars.

  9. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean

    Directory of Open Access Journals (Sweden)

    Kang Yang

    2012-08-01

    Full Text Available Abstract Background R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP-induced soybean transcriptome. Results A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. Conclusions The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial

  10. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean.

    Science.gov (United States)

    Kang, Yang Jae; Kim, Kil Hyun; Shim, Sangrea; Yoon, Min Young; Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Suk-Ha

    2012-08-09

    R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL) that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP)-induced soybean transcriptome. A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested

  11. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  12. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A

    Science.gov (United States)

    Improving resistance for Phytophthora root and stem rot is an important goal in soybean [Glycine max (L.) Merr.] breeding. Partial resistance can be as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of this study was to identify QTL con...

  13. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  14. Evaluation of soybean germplasm accessions for resistance to Phakopsora pachyrhizi populations in the southeastern United States, 2009-2012

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] germplasm accessions from the USDA Soybean Germplasm Collection were screened for resistance to soybean rust (Phakopsora pachyrhizi) at up to five locations in the southeastern United States in 2009, 2011 and 2012. In 2009, plant introductions (PIs) from maturity gro...

  15. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  16. Genetic analysis of soybean resistance to Fusarium solani f.sp. glycines

    Directory of Open Access Journals (Sweden)

    Vanoli Fronza

    2004-01-01

    Full Text Available In order to study the genetic control of soybean resistance to sudden death syndrome (SDS, a 5 x 5 diallel with the F2 generation, without the reciprocals, was carried out in a greenhouse. The following parents were used: Forrest, MG/BR-46 (Conquista, IAC-4, FT-Cristalina, and FT-Estrela. The first two cultivars are more resistant to SDS than IAC-4, which is considered to be moderately resistant to SDS, and the last two cultivars are highly susceptible. The fungus was inoculated with three colonized sorghum grains placed at the bottom of the holes with two soybean seeds. Single plants were evaluated between 14 and 37 days after emergency based on foliar severity symptoms (1-5 of SDS. The disease incidence and a disease index were also calculated for each plot (clay pots with five plants each. The analysis for severity and disease index was performed only with the data of the 37th day after emergence. Additive and dominant genetic effects were detected by Jinks-Hayman's analysis, but the dominant genetic effects were higher. The genetic parameters estimated indicated that the average degree of dominance showed the presence of overdominance; at least three loci or genic blocks that exhibited dominance were responsible for the genetic control of SDS resistance; the estimates of narrow-sense heritabilities were moderate (0.48 to 0.62, but in the broad-sense they were higher (0.90 to 0.95, thus reinforcing the presence of dominance effects; and the resistance to SDS was controlled mostly by dominant alleles. Five microsatellite markers (Satt163, Satt309, Satt354, Satt371 and Satt570, reported as linked to five QRLs of the SDS, were used to genotype the parents and showed the possibility of occurrence of multiallelism in those loci, but this evidence did not invalidate the fitting of the data to the Jinks-Hayman's model.

  17. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust.

    Science.gov (United States)

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Gill, Upinder S; Huhman, David; Tang, Yuhong; Mysore, Kirankumar S

    2015-08-12

    Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.

  18. Iron deficiency differently affects metabolic responses in soybean roots.

    Science.gov (United States)

    Zocchi, Graziano; De Nisi, Patrizia; Dell'Orto, Marta; Espen, Luca; Gallina, Pietro Marino

    2007-01-01

    Iron deficiency responses were investigated in roots of soybean, a Strategy I plant species. Soybean responds to iron deficiency by decreasing growth, both at the root and shoot level. Chlorotic symptoms in younger leaves were evident after a few days of iron deficiency, with chlorophyll content being dramatically decreased. Moreover, several important differences were found as compared with other species belonging to the same Strategy I. The main differences are (i) a lower capacity to acidify the hydroponic culture medium, that was also reflected by a lower H(+)-ATPase activity as determined in a plasma membrane-enriched fraction isolated from the roots; (ii) a drastically reduced activity of the phosphoenolpyruvate carboxylase enzyme; (iii) a decrease in both cytosolic and vacuolar pHs; (iv) an increase in the vacuolar phosphate concentration, and (v) an increased exudation of organic carbon, particularly citrate, phenolics, and amino acids. Apparently, in soybean roots, some of the responses to iron deficiency, such as the acidification of the rhizosphere and other related processes, do not occur or occur only at a lower degree. These results suggest that the biochemical mechanisms induced by this nutritional disorder are differently regulated in this plant. A possible role of inorganic phosphate in the balance of intracellular pHs is also discussed.

  19. Optimization of soybean \\'dawadawa\\' production, using response ...

    African Journals Online (AJOL)

    dawadawa\\'. Response surface experimental design with 53 combinations in replicate was used to optimize the six processing variables. This was used to determine the optimum combinations of five processing variables that will produce the most ...

  20. Inheritance and genetic mapping of resistance to Asian soybean rust in cultivar TMG 803

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2014-11-01

    Full Text Available This study analyzed the inheritance and identified microsatellite markers linked to the resistance gene to Phakopsora pachyrhizi in soybean cultivar TMG 803. Hybridization between the cultivars TMG 803 and BRS Valiosa RR was performed to obtain F1 progenies and the F2 population. The response of the parents ‘TMG 803’ and ‘BRS Valiosa RR’ to P. pachyrhizi was, respectively, resistant and susceptible, and among the 116 F2 plants, 93 were resistant and 23 susceptible, under natural infection and field conditions. It was found that the resistance of cultivar TMG 803 is controlled by one gene with complete dominance, mapped as resistance locus Rpp4 of linkage group G. Of the 16 tested, one microsatellite marker, sc21_3420, was completely linked to the resistance gene (distance 0.0cM and the favorable allelic form was present in cultivar TMG 803, which may therefore be useful in assisted selection in segregating populations.

  1. Candidate Gene Sequence Analyses toward Identifying Rsv3-Type Resistance to Soybean Mosaic Virus

    Directory of Open Access Journals (Sweden)

    N. R. Redekar

    2016-07-01

    Full Text Available is one of three genetic loci conferring strain-specific resistance to (SMV. The locus has been mapped to a 154-kb region on chromosome 14, containing a cluster of five nucleotide-binding leucine-rich repeat (NB-LRR resistance genes. High sequence similarity between the candidate genes challenges fine mapping of the locus. Among the five, Glyma14g38533 showed the highest transcript abundance in 1 to 3 h of SMV-G7 inoculation. Comparative sequence analyses were conducted with the five candidate NB-LRR genes from susceptible (-type soybean [ (L. Merr.] cultivar Williams 82, resistant (-type cultivar Hwangkeum, and resistant lines L29 and RRR. Sequence comparisons revealed that Glyma14g38533 had far more polymorphisms than the other candidate genes. Interestingly, Glyma14g38533 gene from -type lines exhibited 150 single-nucleotide polymorphism (SNP and six insertion–deletion (InDel markers relative to -type line, Furthermore, the polymorphisms identified in three -type lines were highly conserved. Several polymorphisms were validated in 18 -type resistant and six -type susceptible lines and were found associated with their disease response. The majority of the polymorphisms were located in LRR domain encoding region, which is involved in pathogen recognition via protein–protein interactions. These findings associating Glyma14g38533 with -type resistance to SMV suggest it is the most likely candidate gene for .

  2. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

    Directory of Open Access Journals (Sweden)

    Sujie Fan

    2017-05-01

    Full Text Available Phytophthora root and stem rot of soybean [Glycine max (L. Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.

  3. Optimisation of wheat-sprouted soybean flour bread using response ...

    African Journals Online (AJOL)

    The effect of sprouted soybean flour on wheat bread was studied. Sprouting significantly increased the vitamin C content of soybean flour from 2.0 mg kg-1 to 3.25 mg kg-1. The sprouted soybean flour resulted in increased loaf volume, a firmer, spongy and more elastic loaf. However, increasing the sprouted soybean flour ...

  4. Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance.

    Science.gov (United States)

    Song, Tianqiao; Kale, Shiv D; Arredondo, Felipe D; Shen, Danyu; Su, Liming; Liu, Li; Wu, Yuren; Wang, Yuanchao; Dou, Daolong; Tyler, Brett M

    2013-07-01

    Resistance to Phytophthora sojae (Rps) genes have been widely used in soybean against root and stem rot diseases caused by this oomycete. Among 15 known soybean Rps genes, Rps1k has been the most widely used in the past four decades. Here, we show that the products of two distinct but closely linked RxLR effector genes are detected by Rps1k-containing plants, resulting in disease resistance. One of the genes is Avr1b-1, that confers avirulence in the presence of Rps1b. Three lines of evidence, including overexpression and gene silencing of Avr1b-1 in stable P. sojae transformants, as well as transient expression of this gene in soybean, indicated that Avr1b could trigger an Rps1k-mediated defense response. Some isolates of P. sojae that do not express Avr1b are nevertheless unable to infect Rps1k plants. In those isolates, we identified a second RxLR effector gene (designated Avr1k), located 5 kb away from Avr1b-1. Silencing or overexpression of Avr1k in P. sojae stable transformants resulted in the loss or gain, respectively, of the avirulence phenotype in the presence of Rps1k. Only isolates of P. sojae with mutant alleles of both Avr1b-1 and Avr1k could evade perception by the soybean plants carrying Rps1k.

  5. Genetic analysis and mapping of genes for resistance to multiple strains of Soybean mosaic virus in a single resistant soybean accession PI 96983.

    Science.gov (United States)

    Yang, Yongqing; Zheng, Guijie; Han, Lu; Dagang, Wang; Yang, Xiaofeng; Yuan, Yuan; Huang, Saihua; Zhi, Haijian

    2013-07-01

    Soybean mosaic virus (SMV) is one of the most broadly distributed soybean (Glycine max (L.) Merr.) diseases and causes severe yield loss and seed quality deficiency. Multiple studies have proved that a single dominant gene can confer resistance to several SMV strains. Plant introduction (PI) 96983 has been reported to contain SMV resistance genes (e.g., Rsv1 and Rsc14) on chromosome 13. The objective of this study was to delineate the genetics of resistance to SMV in PI 96983 and determine whether one gene can control resistance to more than one Chinese SMV strain. In this study, PI 96983 was identified as resistant and Nannong 1138-2 was identified as susceptible to four SMV strains SC3, SC6, SC7, and SC17. Genetic maps based on 783 F2 individuals from the cross of PI 96983 × Nannong 1138-2 showed that the gene(s) conferring resistance to SC3, SC6, and SC17 were between SSR markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136, whereas SC7 was between markers BARCSOYSSR_13_1140 and BARCSOYSSR_13_1185. The physical map based on 58 recombinant lines confirmed these results. The resistance gene for SC7 was positioned between BARCSOYSSR_13_1140 and BARCSOYSSR_13_1155, while the resistance gene(s) for SC3, SC6, and SC17 were between BARCSOYSSR_13_1128 and BARCSOYSSR_13_1136. We concluded that, there were two dominant resistance genes flanking Rsv1 or one of them at the reported genomic location of Rsv1. One of them (designated as "Rsc-pm") conditions resistance for SC3, SC6, and SC17 and another (designated as "Rsc-ps") confers resistance for SC7. The two tightly linked genes identified in this study would be helpful to cloning of resistance genes and breeding of multiple resistances soybean cultivars to SMV through marker-assisted selection (MAS).

  6. ASSESSING Bemisia tabaci (GENN.) BIOTYPE B RESISTANCE IN SOYBEAN GENOTYPES: ANTIXENOSIS AND ANTIBIOSIS

    OpenAIRE

    Goncalves Franco da Silva, Jose Paulo; Lopes Baldin, Edson Luiz; de Souza, Efrain Santana; Lourencao, Andre Luiz

    2012-01-01

    Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci [Genn.], Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to wh...

  7. Resistence of Euphorbia Heterophylla L. to ALS-inhibiting herbicides in soybean

    Directory of Open Access Journals (Sweden)

    Gelmini Gerson Augusto

    2005-01-01

    Full Text Available Herbicides are widely used in soybean for weed control, and the selection pressure attributed to the repeated use of herbicides with similar modes of action on the same site has caused selection for resistant biotypes within and among previously susceptible species, such as Euphorbia heterophylla L., in relation to ALS enzyme inhibitors, in the states of Paraná, Rio Grande do Sul, and São Paulo, Brazil. Seeds of E. heterophylla were collected to examine possible new cases of resistant populations and to test alternative herbicide treatments to manage these populations, in the Caarapó region, State of Mato Grosso do Sul, Brazil, in areas where plants of this species have survived continuous herbicide applications. The experiment was carried out under greenhouse conditions, where biotypes with a history of suspected resistance were compared with a known susceptible biotype. Several post-emergence herbicides were sprayed at zero, one, two, four, and eight times the recommended field application rates. Twenty days after application, plants were harvested, and control percentage and fresh weight were determined to establish dose-response curves, in the aim to obtain the resistance factor using CD50 and RD50 data. The chlorimuron-ethyl resistance factor values for the control percentage and fresh weight parameters were higher than 16.5 and 16.9, respectively, while imazethapyr showed resistance factors higher than 25.0 and 23.5, respectively. The resistant biotype showed different resistance levels to chlorimuron-ethyl and imazethapyr, showing cross-resistance to the sulfonylurea and imidazolinone groups. Nevertheless, this biotype was effectively controlled by fomesafen (250 g ha-1, lactofen (120 g ha-1, flumiclorac-pentyl (40 g ha-1, glufosinate-ammonium (150 g ha-1, and glyphosate (360 g ha-1.

  8. genetic analysis of resistance to soybean rust disease abstract résumé

    African Journals Online (AJOL)

    Administrator

    Department of Crop Science, Faculty of Agriculture, Makerere University, P. O. Box 7062, Kampala, Uganda .... pollinating crops like soybean depends on the .... Resistant. UG5. -. Uganda. Resistant. Kabanyolo 1. Mutant of Clark 63. Uganda. Susceptible. Nam 1. Hales x P1307-861. Colombia. Susceptible. Wondersoya.

  9. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    Science.gov (United States)

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  10. Identification of unique genetic sources of soybean rust resistance from the USDA germplasm collection

    Science.gov (United States)

    Soybean rust (SBR) is caused by the fungal pathogen Phakopsora pachyrhizi. Thus far, six rust resistance loci (Rpp1, 2, 3, 4, 5, and 6) have been reported. On the basis of field and greenhouse phenotyping assays between 2006 and 2011, we identified 75 SBR-resistant plant introductions (PIs). Crosses...

  11. The Endosymbiont Arsenophonus Provides a General Benefit to Soybean Aphid (Hemiptera: Aphididae) Regardless of Host Plant Resistance (Rag).

    Science.gov (United States)

    Wulff, Jason A; White, Jennifer A

    2015-06-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), invokes substantial chemical treatment and economic cost in North America. Resistant soybean genotypes hold promise as a low-impact control methodology, but soybean aphid "biotypes" capable of development on resistant soy cast doubt on the durability of soy resistance. We hypothesized that variation in soybean aphid ability to colonize resistant soy is partially attributable to a bacterial symbiont of soybean aphid, Arsenophonus. We used microinjection to manipulate Arsenophonus infection in both virulent and avirulent aphid biotypes, resulting in five pairs of infected versus uninfected isolines. These isolines were subjected to various population growth rate assays on resistant Rag versus susceptible soybean. We found that aphid virulence on Rag soybean was not dependent on Arsenophonus: virulent aphid biotypes performed well on Rag soybean, and avirulent aphid biotypes performed poorly on Rag soybean, regardless of whether Arsenophonus was present or not. However, we did find that Arsenophonus-infected clones on average performed significantly better than their paired uninfected isolines. This pattern was not consistently evident on every date for every clone, either in the population assays nor when we compared lifetime fecundity of individual aphids in a separate experiment. Nevertheless, this overall benefit for infected aphids may be sufficient to explain the high frequency of Arsenophonus infection in soybean aphids. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean.

    Science.gov (United States)

    Wen, Zixiang; Tan, Ruijuan; Yuan, Jiazheng; Bales, Carmille; Du, Wenyan; Zhang, Shichen; Chilvers, Martin I; Schmidt, Cathy; Song, Qijian; Cregan, Perry B; Wang, Dechun

    2014-09-23

    Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness. A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria. This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.

  13. Use of gamma radiation for inducing rust resistance in soybean

    International Nuclear Information System (INIS)

    Smutkupt, Sumit; Wongpiyasatid, Arunee; Lamseejan, Siranut; Naritoom, Kruik

    1982-01-01

    Experiments on induced mutations for rust resistance in 11 soybean cultivars were started in the rainy season of 1979. M 1 seeds were grown at Farm Suwan, Pak Chong, Nakorn Rajchasima Province. Six plods from each of 4,438 control and 43,907 M 1 plants were randomly harvested. M 2 seeds of each cultivar of different doses were bulked. In addition, 270 good M 1 plants were selected and threshed singly. M 2 -bulk and M 2 -single seeds were advanced to M 3 . Both of M 3 -bulk and M 3 -single plants together with M 2 -bulk plants derived from remnant M 2 seeds were screened for rust resistance in the rainy season of 1980. The IWGSR rust rating system was used. Based on the slow growth of rust reaction on the plant (323,333) compared with the average IWGSR rust rating notation of the rates (343) in the same row, 121 plants were selected. Among them, six were selected from a total of 2802 control plants, and 115 from a total of 28,834 M 2 and M 3 plants. Seeds of each selection harvested. Only 88 lines of M 4 and M 5 were available for further rust evaluation in the rainy season of 1981. The results were as follows: At 77 days after planting, 82 selected lines were rated 333, 323 in comparison with 87 out of 137 rows of control S.J.1, S.J.2, S.J.4 and T.K.5 were rated 343. At 86 days after planting, most of the selections reached the diseased level 343. However, six lines which were derived from G8586 were still rated 333. In addition, a plant with slow growth of rust (323) from Taichung N No. 81-1-032 was selected. The six selected lines having characteristics of slow growth of rust reaction on the plants will be further tested. The high yielding selections among 82 selected lines having low percentage of shrivelled seeds will be used for further yield evaluation in the rainy season of 1982

  14. Expression patterns in soybean resistant to Phakopsora pachyrhizi reveal the importance of peroxidases and lipoxygenases.

    Science.gov (United States)

    Choi, J J; Alkharouf, N W; Schneider, K T; Matthews, B F; Frederick, R D

    2008-11-01

    Soybean rust caused by Phakopsora pachyrhizi Sydow is a devastating foliar disease that has spread to most soybean growing regions throughout the world, including the USA. Four independent rust resistance genes, Rpp1-Rpp4, have been identified in soybean that recognize specific isolates of P. pachyrhizi. A suppressive subtraction hybridization (SSH) complementary DNA (cDNA) library was constructed from the soybean accession PI200492, which contains Rpp1, after inoculation with two different isolates of P. pachyrhizi that result in susceptible or immune reactions. Both forward and reverse SSH were performed using cDNA from messenger RNA pooled from 1, 6, 12, 24, and 48 h post-inoculation. A total of 1,728 SSH clones were sequenced and compared to sequences in GenBank for similarity. Microarray analyses were conducted on a custom 7883 soybean-cDNA clone array encompassing all of the soybean-rust SSH clones and expressed sequence tags from four other soybean cDNA libraries. Results of the microarray revealed 558 cDNA clones differentially expressed in the immune reaction. The majority of the upregulated cDNA clones fell into the functional category of defense. In particular, cDNA clones with similarity to peroxidases and lipoxygenases were prevalent. Downregulated cDNA clones included those with similarity to cell-wall-associated protein, such as extensins, proline-rich proteins, and xyloglucan endotransglycosylases.

  15. Monitoring glyphosate residues in transgenic glyphosate-resistant soybean.

    Science.gov (United States)

    Arregui, María C; Lenardón, Argelia; Sanchez, Daniel; Maitre, María I; Scotta, Roberto; Enrique, Susana

    2004-02-01

    The availability of Roundup Ready (RR) varieties of soybean has increased the use of glyphosate for weed control in Argentina. Glyphosate [(N-phosphonomethyl)glycine] is employed for the eradication of previous crop vegetation and for weed control during the soybean growing cycle. Its action is effective, and low environmental impact has been reported so far. No residues have been observed in soil or water, either of glyphosate or its metabolite, AMPA (aminomethylphosphonic acid). The objective of this work was to monitor glyphosate and AMPA residues in soybean plants and grains in field crops in Santa Fe Province, Argentina. Five sites were monitored in 1997, 1998 and 1999. Individual soybean plants were sampled from emergence to harvest, dried and ground. Analysis consisted in residue extraction with organic solvents and buffers, agitation, centrifugation, clean-up and HPLC with UV detection. In soybean leaves and stems, glyphosate residues ranged from 1.9 to 4.4 mg kg(-1) and from 0.1 to 1.8 mg kg(-1) in grains. Higher concentrations were detected when glyphosate was sprayed several times during the crop cycle, and when treatments approached the flowering stage. AMPA residues were also detected in leaves and in grains, indicating metabolism of the herbicide.

  16. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    Directory of Open Access Journals (Sweden)

    Sumit Rishi

    2012-06-01

    Full Text Available Abstract Background Nonhost resistance (NHR provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of

  17. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean.

    Science.gov (United States)

    Sumit, Rishi; Sahu, Binod B; Xu, Min; Sandhu, Devinder; Bhattacharyya, Madan K

    2012-06-13

    Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. The P.sojaesusceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete

  18. Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean.

    Science.gov (United States)

    Ghio, Cecilia; Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-12-01

    The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level. Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1-4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.

  19. Influence of ozone on induced resistance in soybean to the Mexican bean beetle (Coleoptera: Coccinellidae)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hengchen; Kogan, M. (Univ. of Illinois, Champaign (USA)); Endress, A.G. (Illinois Natural History Survey, Champaign, IL (USA))

    1990-08-01

    The influence of ozone (O{sub 3}) on induced resistance in soybean, Glycine max (L.) Merr., cv. Williams 82, was investigated. Feeding by larval soybean looper, Pseudoplusia includens (Walker), was used to induce resistance, and the feeding preference of the Mexican bean beetle, Epilachna varivetis Mulsant, was used to indicate induced resistance. Greenhouse grown soybean plants at the V9 growth stage (eight open trifoliolates) were used in all experiments. One day following feeding injury by the soybean looper, the injured plants and the uninjured controls were exposed to three concentrations of ozone in transparent mylar chambers; level in ambient air (about 0.025 ppm), 0.06 ppm, or 0.1 ppm. Plants were exposed for 5 h a day for a period of 2-4 d. Ozone exposure at the levels used in this study produced no visible injuries to leaves. Low doses (up to 4-d-exposure to 0.06 ppm or 2-d exposure to 0.1 ppm) of ozone overrode the resistance in soybean that had been induced by the feeding of soybean looper larvae. Higher doses (3- or 4-d exposure to 0.1 ppm) of ozone actually resulted in a greater acceptability by the Mexican bean beetle of plants injured by the soybean looper than of uninjured plants. Doses of ozone used in these experiments did not significantly alter the feeding preference of the Mexican bean beetle for the uninjured plants. Because ozone pollution and herbivore injury are commonly experienced by plants in nature, the results of this study add another perspective to insect-plant interactions.

  20. Fine mapping of the soybean aphid resistance genes Rag6 and Rag3c from glycine soja 85-32

    Science.gov (United States)

    The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2001. Host-plant resistance is known as an ideal management of aphids. Two novel aphid-resistant loci, Rag6 and Rag3c, from the Glycine soja accession 85-32, were previously detected in a 1...

  1. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean

    Science.gov (United States)

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect mineral content (especially Mg, Mn, and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at si...

  2. Methyl jasmonate induced resistance in cheniere rice and soybean plants

    Science.gov (United States)

    Taplin, C.

    2017-12-01

    Methyl jasmonate (MJ) is a compound naturally occurring in certain plants that aids in plant defense. In this study, we examined the difference in herbivory of fall armyworm (FAW) on control plants (treated without MJ) and MJ-treated plants. Seeds of cheniere rice and soybean were soaked in MJ overnight and planted in the greenhouse, although the soybean never grew. Therefore, only the mature plant leaves of cheniere rice were fed to FAW and the difference in herbivory was looked at. Our results show there is no statistical difference in the herbivory of the cheniere rice plant leaves.

  3. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2016-01-01

    Full Text Available Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  4. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    Science.gov (United States)

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  5. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  6. Physiological responses of genotypes soybean to simulated drought stress

    Directory of Open Access Journals (Sweden)

    Eleonóra Krivosudská

    2016-12-01

    Full Text Available The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. The work confirmed that the selected physiological characteristics (RWC, osmotic potential, stress index and created nodules on roots are good evaluating parameters for the determination of water stress in plant. In the floricultural year 2014 an experiment with four genetic resources of soybean was launched. Sowing of Maverick (USA, Drina (HRV, Nigra (SVK and Polanka (CZK genotypes was carried out in the containers of 15 l capacity. This stress had a negative impact on the physiological parameters. By comparing the RWC values, the decrease was more significant at the end of dehydration, which was monitored in Maverick and Drina genotypes using the Nitrazon inoculants and water stress effect. Inoculated stressed Nigra and Polanka genotypes have kept higher water content till the end of dehydration period. Also the proline accumulation was monitored during the water stress, whilst higher content of free proline reached of Maverick. More remarkable decrease of osmotic potential was again registered in a foreign Drina and Maverick genotypes in the inoculated variations. Nigra and Polanka genotypes responses not so significant in the given conditions.

  7. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    OpenAIRE

    Cruz,Maria Fernanda; Rodrigues,Fabrício Ávila; Diniz,Ana Paula Cardoso; Moreira,Maurilio Alves; Barros,Everaldo Gonçalves

    2013-01-01

    The control of Asian Soybean Rust (ASR), caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS) and soil amendment with calcium silicate (CS) on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection ...

  8. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja).

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L; Wang, Jinshe; Griffin, Joshua D; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  9. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines HG Type 2.5.7 in Wild Soybean (Glycine soja

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2016-08-01

    Full Text Available Soybean cyst nematode (SCN is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean (Glycine max (L. Merr. cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc. accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5, a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30 were identified, with ten SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  10. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  11. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    Science.gov (United States)

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-01-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms. PMID:1622242

  12. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps.

    Science.gov (United States)

    Zhao, Xue; Han, Yingpeng; Li, Yinghui; Liu, Dongyuan; Sun, Mingming; Zhao, Yue; Lv, Chunmei; Li, Dongmei; Yang, Zhijiang; Huang, Long; Teng, Weili; Qiu, Lijuan; Zheng, Hongkun; Li, Wenbin

    2015-04-01

    Soybean white mold (SWM), caused by Sclerotinia sclerotiorum ((Lib.) W. Phillips), is currently considered to be the second most important cause of soybean yield loss due to disease. Research is needed to identify SWM-resistant germplasm and gain a better understanding of the genetic and molecular basis of SWM resistance in soybean. Stem pigmentation after treatment with oxaloacetic acid is an effective indicator of resistance to SWM. A total of 128 recombinant inbred lines (RILs) derived from a cross of 'Maple Arrow' (partial resistant to SWM) and 'Hefeng 25' (susceptible) and 330 diverse soybean cultivars were screened for the soluble pigment concentration of their stems, which were treated with oxalic acid. Four quantitative trait loci (QTLs) underlying soluble pigment concentration were detected by linkage mapping of the RILs. Three hundred and thirty soybean cultivars were sequenced using the whole-genome encompassing approach and 25 179 single-nucleotide polymorphisms (SNPs) were detected for the fine mapping of SWM resistance genes by genome-wide association studies. Three out of five SNP markers representing a linkage disequilibrium (LD) block and a single locus on chromosome 13 (Gm13) were significantly associated with the soluble pigment content of stems. Three more SNPs that represented three minor QTLs for the soluble pigment content of stems were identified on another three chromosomes by association mapping. A major locus with the largest effect on Gm13 was found both by linkage and association mapping. Four potential candidate genes involved in disease response or the anthocyanin biosynthesis pathway were identified at the locus near the significant SNPs (soybean breeding for improving resistance to SWM. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. Role of physiological mechanisms and EPSPS gene expression in glyphosate resistance in wild soybeans (Glycine soja).

    Science.gov (United States)

    Gao, Yue; Tao, Bo; Qiu, Lijuan; Jin, Longguo; Wu, Jing

    2014-02-01

    The physiological mechanisms underlying glyphosate resistance in wild soybean germplasm and relevant EPSPS gene expression were evaluated. These germplasms were selected by gradually increasing glyphosate selection pressure started from 2010. As indicated by a whole-plant dose response bioassay, ZYD-254 plants were resistant to glyphosate at concentrations of 1230gaeha(-1), but the susceptible plants (ZYD-16) were unable to survive in the presence of 300gaeha(-1) glyphosate. The ED50 values of resistant germplasm were approximately 8.8 times of the susceptible germplasm. Chlorophyll content was significantly decreased in ZYD-16 plants in comparison with ZYD-254 plants. ZYD-16 plants accumulated 10.1 times more shikimate in leaves at 5days after glyphosate treatment at 1230gaeha(-1) than ZYD-254 did. GST activity differed between ZYD-254 and ZYD-16 in three tissues. It was highest in leaves. There were no significant differences in EPSPS1 or EPSPS3 expression between two germplasms before exposure to glyphosate treatment. After glyphosate treatment, there was a 2- to 4-fold increase in EPSPS1 mRNA levels in ZYD-254, but there was no change in EPSPS3 mRNA levels in ZYD-254 or ZYD-16. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis.

    Science.gov (United States)

    Koch, Karrie A; Ragsdale, David W

    2011-12-01

    Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.

  15. Mapping of yellow mosaic virus (YMV) resistance in soybean (Glycine max L. Merr.) through association mapping approach.

    Science.gov (United States)

    Kumar, Bhupender; Talukdar, Akshay; Verma, Khushbu; Bala, Indu; Harish, G D; Gowda, Sarmrat; Lal, S K; Sapra, R L; Singh, K P

    2015-02-01

    Yellow Mosaic Virus (YMV) is a serious disease of soybean. Resistance to YMV was mapped in 180 soybean genotypes through association mapping approach using 121 simple sequence repeats (SSR) and four resistance gene analogue (RGA)-based markers. The association mapping population (AMP) (96 genotypes) and confirmation population (CP) (84 genotypes) was tested for resistance to YMV at hot-spot consecutively for 3 years (2007-2009). The genotypes exhibited significant variability for YMV resistance (P 0.15, and >0.25, respectively. The 4 RGA-based markers showed no association with YMV resistance. Two SSR markers, Satt301 and GMHSP179 on chromosome 17 were found to be in significant LD with YMV resistance. Contingency Chi-square test confirmed the association (P resistance in soybean. This is the first report of its kind in soybean.

  16. Evaluation of Resistance to Phytophthora sojae in Soybean Mini Core Collections Using an Improved Assay System.

    Science.gov (United States)

    Jiang, Chang-Jie; Sugano, Shoji; Kaga, Akito; Lee, Sung Shin; Sugimoto, Takuma; Takahashi, Mami; Ishimoto, Masao

    2017-02-01

    Stem and root rot disease caused by Phytophthora sojae is devastating to soybean crops worldwide. Developing host resistance to P. sojae, considered the most effective and stable means to control this disease, is partly hampered by limited germplasm resources. In this study, we first modified conventional methods for a P. sojae resistance assay to a simpler and more cost-effective version, in which the P. sojae inoculum was mixed into the soil and the resistance was evaluated by survival rate (%) of soybean seedlings. This rating had significant correlations (P resistance in soybean mini core collections comprising either 79 accessions originating from Japan (JMC) or 80 accessions collected around the world (WMC) revealed a wide variation in resistance among the individual varieties. In total, 38 accessions from the JMC and 41 from the WMC exhibited resistance or moderate resistance to P. sojae isolate N1 (with virulence to Rps1b, 3c, 4, 5, and 6), with ≥50% survival. Of these, 26 from the JMC and 29 from the WMC showed at least moderate resistance to P. sojae isolate HR1 (vir Rps1a-c, 1k, 2, 3a-c, 4-6, and 8). Additionally, 24 WCS accessions, in contrast to only 6 from the JMC, exhibited 100% survival after being challenged with both the N1 and HR1 isolates, suggesting a biogeographical difference between the two collections. We further verified two JMC varieties, Daizu and Amagi zairai 90D, for their resistance to an additional four P. sojae isolates (60 to 100% survival), which may provide new and valuable genetic sources for P. sojae resistance breeding in soybean.

  17. Foliar symptoms recovery: developing scoring technique for assessment of soybean resistance to CPMMV (Cowpea Mild Mottle Virus

    Directory of Open Access Journals (Sweden)

    Siti Zubaidah

    2016-09-01

    Full Text Available Soybean is a commodity that has an important role as the source of protein, but its production is affected by various factors including disease. CpMMV (Cowpea mild mottle virus is one of the most damaging viruses that cause soybean disease. CpMMVs belong to the group of Carlavirus that are transmitted by whitefly (Bemisia tabaci. The use of CpMMV resistant plants as biological control can prevent viral diseases. Indonesia has many soybean germplasm from many regions and introduction from other countries that need to be evaluated for CpMMV. The assessment technique for soybean resistance to CpMMV is not available yet, but it is still based on other virus diseases. The specific assessment of plant resistance is important because some diseases can cause certain symptoms, depends on the resistance and the kinds of plants that are infected. This paper presents the assessment technique for soybean resistance to CpMMV infection, which can be used for various purposes and studies. One of the benefits is to find out soybean resistance to CpMMV or other objectives. This resistance assessment is not only based on leaves symptoms, but also based on the phenomenon of foliar symptoms recovery. Keywords: CpMMV, foliar symptoms recovery, scoring technique, soybean resistance.

  18. Induction of soybean resistance to the Mexican bean beetle (Coleoptera: Coccinellidae)

    Science.gov (United States)

    A.L. Iverson; R.B. Hammond; L.R. Iverson

    2001-01-01

    We tested chemical and insect feeding-induced insect resistance on soybean plants.The chemical induction effects of jasmonic acid (JA) and salicylic acid (SA) were investigated. We also evaluated the effects of plants stressed with previous insect herbivory. A larval antibiosis screening technique (LAST) and a preference test were performed in petri dishes using...

  19. Multi-Year Evaluation of Commercial Soybean Cultivars for Resistance to Phytophthora sojae

    Science.gov (United States)

    Phytophthora sojae causes damping off, root rot, and stem rot of soybean, particularly in poorly drained soils. The use of resistance has been one of the primary management tools used to control this disease, with the most commonly used genes being Rps1c and Rps1k, followed by Rps1a. The Varietal In...

  20. genetic analysis of resistance to soybean rust disease abstract résumé

    African Journals Online (AJOL)

    Administrator

    GENETIC ANALYSIS OF RESISTANCE TO SOYBEAN RUST DISEASE. M. KIRYOWA, P. TUKAMUHABWA and E. ADIPALA1. Department of Crop Science, Faculty of Agriculture, Makerere University, P. O. Box 7062, Kampala, Uganda. 1Regional Universities Forum for Capacity Building in Agriculture, Makerere University,.

  1. Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm.

    Science.gov (United States)

    Kim, Ki-Seung; Unfried, Jair R; Hyten, David L; Frederick, Reid D; Hartman, Glen L; Nelson, Randall L; Song, Qijian; Diers, Brian W

    2012-10-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi Sydow, is one of the most economically important and destructive diseases of soybean [Glycine max (L.) Merr.] and the discovery of novel SBR resistance genes is needed because of virulence diversity in the pathogen. The objectives of this research were to map SBR resistance in plant introduction (PI) 561356 and to identify single nucleotide polymorphism (SNP) haplotypes within the region on soybean chromosome 18 where the SBR resistance gene Rpp1 maps. One-hundred F(2:3) lines derived from a cross between PI 561356 and the susceptible experimental line LD02-4485 were genotyped with genetic markers and phenotyped for resistance to P. pachyrhizi isolate ZM01-1. The segregation ratio of reddish brown versus tan lesion type in the population supported that resistance was controlled by a single dominant gene. The gene was mapped to a 1-cM region on soybean chromosome 18 corresponding to the same interval as Rpp1. A haplotype analysis of diverse germplasm across a 213-kb interval that included Rpp1 revealed 21 distinct haplotypes of which 4 were present among 5 SBR resistance sources that have a resistance gene in the Rpp1 region. Four major North American soybean ancestors belong to the same SNP haplotype as PI 561356 and seven belong to the same haplotype as PI 594538A, the Rpp1-b source. There were no North American soybean ancestors belonging to the SNP haplotypes found in PI 200492, the source of Rpp1, or PI 587886 and PI 587880A, additional sources with SBR resistance mapping to the Rpp1 region.

  2. Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L.) Merr.] germplasm panel from maturity groups IV and V.

    Science.gov (United States)

    Qin, Jun; Song, Qijian; Shi, Ainong; Li, Song; Zhang, Mengchen; Zhang, Bo

    2017-01-01

    Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a P. sojae resistance gene pool that has high genetic diversity, and explored genomic regions underlying the host resistance to P. sojae races 1, 3, 7, 17 and 25. A soybean germplasm panel from maturity groups (MGs) IV and V including 189 accessions originated from 10 countries were used in this study. The panel had a high genetic diversity compared to the 6,749 accessions from MGs IV and V in USDA Soybean Germplasm Collection. Based on disease evaluation dataset of these accessions inoculated with P. sojae races 1, 3, 7, 17 and 25, which are publically available, five accessions in this panel were resistant to all races. Genome-wide association analysis identified a total of 32 significant SNPs, which were clustered in resistance-associated genomic regions, among those, ss715619920 was only 3kb away from the gene Glyma.14g087500, a subtilisin protease. Gene expression analysis showed that the gene was down-regulated more than 4 fold (log2 fold > 2.2) in response to P. sojae infection. The identified molecular markers and genomic regions that are associated with the disease resistance in this gene pool will greatly assist the U.S. Southern soybean breeders in developing elite varieties with broad genetic background and P. sojae resistance.

  3. Genome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L. Merr.] germplasm panel from maturity groups IV and V.

    Directory of Open Access Journals (Sweden)

    Jun Qin

    Full Text Available Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a P. sojae resistance gene pool that has high genetic diversity, and explored genomic regions underlying the host resistance to P. sojae races 1, 3, 7, 17 and 25. A soybean germplasm panel from maturity groups (MGs IV and V including 189 accessions originated from 10 countries were used in this study. The panel had a high genetic diversity compared to the 6,749 accessions from MGs IV and V in USDA Soybean Germplasm Collection. Based on disease evaluation dataset of these accessions inoculated with P. sojae races 1, 3, 7, 17 and 25, which are publically available, five accessions in this panel were resistant to all races. Genome-wide association analysis identified a total of 32 significant SNPs, which were clustered in resistance-associated genomic regions, among those, ss715619920 was only 3kb away from the gene Glyma.14g087500, a subtilisin protease. Gene expression analysis showed that the gene was down-regulated more than 4 fold (log2 fold > 2.2 in response to P. sojae infection. The identified molecular markers and genomic regions that are associated with the disease resistance in this gene pool will greatly assist the U.S. Southern soybean breeders in developing elite varieties with broad genetic background and P. sojae resistance.

  4. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Bales, Carmille; Gu, Cuihua; DiFonzo, Chris; Li, Ming; Song, Qijian; Cregan, Perry; Yang, Zhenyu; Wang, Dechun

    2017-09-01

    Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance. Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F 3 -derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5-46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5-22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.

  5. GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae.

    Science.gov (United States)

    Yan, Qiang; Cui, Xiaoxia; Su, Liming; Xu, Na; Guo, Na; Xing, Han; Dou, Daolong

    2014-08-01

    Using RNAi approach, we demonstrate that GmSGT1 is an essential component in soybean against Phytophthora sojae, but not required for Rps 2 or Rps 3a-mediated resistance. Utilization of disease resistance in soybean is a major approach to combat root and stem rot disease, which is caused by Phytophthora sojae and poses a growing threat to soybean safety production. The SGT1 protein is essential for disease resistance in many plant species. Here, we analyzed and characterized functions of GmSGT1 gene family in R protein-mediated resistance and basal defense in this important crop. Five candidate genes of GmSGT1 were identified and they were grouped into three clades. Transcriptional levels of all the tested genes were highly induced upon P. sojae infection in four soybean cultivars that confer different resistant levels. Using a gene silencing system in soybean cotyledons, we demonstrated that silencing GmSGT1 genes comprised race-specific resistance in soybean lines carrying genes at the following loci for race-specific resistance to P. sojae: Rps1a, Rps1c, Rps1d, Rps1k, and Rps8. In contrast, the resistance mediated by Rps2 or Rps3a was not affected. Silencing GmSGT1 genes in cotyledons also reduced resistance to this pathogen in a moderately partial resistant cultivar. We further showed that transient overexpression of GmSGT1-1 in Nicotiana benthamiana could enhance the resistance to P. capsici. These results suggest that GmSGT1 is an essential component for soybean in resisting the pathogen and pathways of Rps-mediated disease resistance are diverse in soybean.

  6. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia L. in Glufosinate-Resistant Soybean [Glycine max (L. Merr

    Directory of Open Access Journals (Sweden)

    Ethann R. Barnes

    2017-08-01

    Full Text Available Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1 evaluate the efficacy of preplant (PP herbicides followed by (fb glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor applied post-emergence (POST for control of GR common ragweed in glufosinate-resistant soybean; (2 their effect on common ragweed density, biomass, and soybean yield; and (3 the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90–99% control of common ragweed at 21 d after treatment (DAT. The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor controlled GR common ragweed 84–98% at soybean harvest, reduced common ragweed density (≤20 plants m−2 and biomass by ≥93%, and secured soybean yield 1,819–2,158 kg ha−1. The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373–US$506 compared to PP alone (US$91 or PRE fb POST programs (US$158. The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  7. Response of soybean genotypes against armyworm, Spodoptera litura based on no-choice test

    Science.gov (United States)

    Bayu, M. S. Y. I.; Krisnawati, A.; Adie, M. M.

    2018-01-01

    Armyworm is important polyphagous pest causing economic losses in many agricultural crops including soybean. In Indonesia, there are no soybean varieties which indicated had a resistance against armyworm. The experiment was conducted in Laboratory of Entomology and Green House of Indonesian Legumes and Tuber Crops Research Institute from March to April 2016. The experiment was arranged using randomized block design with a total of 18 soybean genotypes as a treatment in three replicates. The results showed that the difference of soybean genotypes had a significant effect on the leaf damaged intensity. Based on no-choice test and the leaves damaged intensity compared with resistant check genotypes, there was no genotype indicated resistant against S. litura. Most of the tested genotype showed moderately resistant and others showed susceptible to highly susceptible. Genotypes that indicated as moderately resistant are G 511 H/Anjs-1-1, G 511 H/Arg//Arg///Arg-30-7, G 511 H/Kaba//Kaba///-4-4, G 511 H/Kaba//Kaba///Kaba////Kaba-16-2, G 511 H/Anjs/Anjs///Anjs-3-3, G 511 H/Anjs/Anjs-1-2, G 511 H/Anjs/Anjs-5-5, G 511 H/Anjs/Anjs///Anjs-6-11, and Argomulyo. In conclusion, those nine genotypes indicated have antixenosis resistance against armyworm and can be considered as a source of gene for improving the soybean resistance to armyworm.

  8. Association mapping for partial resistance to Phytophthora sojae in soybean (Glycine max (L.) Merr.).

    Science.gov (United States)

    Sun, Jutao; Guo, Na; Lei, Jun; Li, Lihong; Hu, Guanjun; Xing, Han

    2014-08-01

    Association mapping is a powerful high-resolution mapping tool for complex traits. The objective of this study was to identify QTLs for partial resistance to Phytophthora sojae. In this study, we evaluated a total of 214 soybean accessions by the hypocotyl inoculation method, and 175 were susceptible. The 175 susceptible accessions were then evaluated for P. sojae partial resistance using slant board assays. The 175 accessions were screened with 138 SSR markers that generated 730 SSR alleles. A subset of 495 SSR loci with minor allele frequency (MAF) ≥ 0.05 was used for association mapping by the Tassel general linear model (GLM) and mixed linear model (MLM) programmes. This soybean population could be divided into two subpopulations and no or weak relatedness was detected between pairwise accessions. Four SSR alleles, Satt634-133, Satt634-149, Sat_222-168 and Satt301-190, associated with partial resistance to P. sojae were detected by both GLM and MLM methods. Of these identified markers, one marker, Satt301, was located in regions where P. sojae resistance QTL have been previously mapped using linkage analysis. The identified markers will help to understand the genetic basis of partial resistance, and facilitate future marker-assistant selection aimed to improve resistance to P. sojae and reduce disease-related mortality in soybean.

  9. Multivariate analysis of combining ability for soybean resistance to Cercospora sojina Hara

    Directory of Open Access Journals (Sweden)

    Geraldo de Amaral Gravina

    2004-01-01

    Full Text Available Seven soybean cultivars (Bossier, Cristalina, Davis, Kent, Lincoln, Paraná and Uberaba, with different levels of resistance to Cercospora sojina, race 04, were crossed according to a diallel design, with no reciprocals, to determine the general and the specific combining abilities for the resistance. The evaluations of the reaction to the disease were performed 20 days after the inoculation of the fungus on the most infected leaflet of the plant, in the parents and in the F1 hybrids. To quantify the resistance, the following characteristics were evaluated: infection degree (ID; number of lesions per leaflet (NLL; lesion mean diameter (LMD; lesioned leaf area (LLA; percentage of lesioned leaf area (PLLA; number of lesions per square centimeter (NLC and disease index (DI. The relative importance of each characteristic was evaluated by the canonical variables analysis and the LLA and NLL characteristics were eliminated from the multivariate function. With the remaining five characteristics, a multivariate index was created using the first canonical vector, which was submitted to the diallel analysis, according to Griffings fixed model, method 2. The most important characters to discriminate resistant from susceptible soybean plants to C. sojina were: ID, LMD, NLC, DI and PLLA. Cristalina, Davis and Uberaba cultivars are the best ones among those tested that can be recommended as parents in soybean breeding programs seeking resistance to Cercospora sojina. The additive, dominant and epistatic genetic effects were important for the expression of the resistance, although the additive genetic effect was the most important component.

  10. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles.

    Science.gov (United States)

    Garcia, Alexandre; Calvo, Eberson Sanches; de Souza Kiihl, Romeu Afonso; Harada, Arlindo; Hiromoto, Dario Minoru; Vieira, Luiz Gonzaga Esteves

    2008-08-01

    Soybean production in South and North America has recently been threatened by the widespread dissemination of soybean rust (SBR) caused by the fungus Phakopsora pachyrhizi. Currently, chemical spray containing fungicides is the only effective method to control the disease. This strategy increases production costs and exposes the environment to higher levels of fungicides. As a first step towards the development of SBR resistant cultivars, we studied the genetic basis of SBR resistance in five F2 populations derived from crossing the Brazilian-adapted susceptible cultivar CD 208 to each of five different plant introductions (PI 200487, PI 200526, PI 230970, PI 459025, PI 471904) carrying SBR-resistant genes (Rpp). Molecular mapping of SBR-resistance genes was performed in three of these PIs (PI 459025, PI 200526, PI 471904), and also in two other PIs (PI 200456 and 224270). The strategy mapped two genes present in PI 230970 and PI 459025, the original sources of Rpp2 and Rpp4, to linkage groups (LG) J and G, respectively. A new SBR resistance locus, rpp5 was mapped in the LG-N. Together, the genetic and molecular analysis suggested multiple alleles or closely linked genes that govern SBR resistance in soybean.

  11. Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio.

    Science.gov (United States)

    Huzar-Novakowiski, Jaqueline; Paul, Pierce A; Dorrance, Anne E

    2017-08-01

    Recent outbreaks of Sclerotinia stem rot (SSR) of soybean in Ohio, along with new fungicides and cultivars with resistance to this disease, have led to a renewed interest in studies to update disease management guidelines. The effect of host resistance (in moderately resistant [MR] and moderately susceptible [MS] cultivars) and chemical control on SSR and yield was evaluated in 12 environments from 2014 to 2016. The chemical treatments evaluated were an untreated check, four fungicides (boscalid, picoxystrobin, pyraclostrobin, and thiophanate-methyl), and one herbicide (lactofen) applied at soybean growth stage R1 (early flowering) alone or at R1 followed by a second application at R2 (full flowering). SSR developed in 6 of 12 environments, with mean disease incidence in the untreated check of 2.5 to 41%. The three environments with high levels of SSR (disease incidence in the untreated check >20%) were used for further statistical analysis. There were significant effects (P soybean cultivar and chemical treatment on SSR levels. Significantly lower levels of SSR were observed in MR cultivars. Both boscalid and lactofen reduced SSR but did not increase yield. Pyraclostrobin increased SSR compared with the untreated check in the three environments with high levels of disease. In the six fields where SSR did not develop, chemical treatment did not increase yield, nor was the yield from the MR cultivar significantly different from the MS cultivar. For Ohio, MR cultivars alone were effective for management of SSR in soybean fields where this disease has historically occurred.

  12. Identification of a new soybean rust resistance gene in PI 567102B.

    Science.gov (United States)

    Li, Shuxian; Smith, James R; Ray, Jeffery D; Frederick, Reid D

    2012-06-01

    Soybean rust (SBR) caused by Phakopsora pachyrhizi Syd. and P. Syd. is one of the most economically important diseases of soybean (Glycine max (L.) Merr.). Durable resistance to P. pachyrhizi is the most effective long-term strategy to control SBR. The objective of this study was to investigate the genetics of resistance to P. pachyrhizi in soybean accession PI 567102B. This accession was previously identified as resistant to SBR in Paraguay and to P. pachyrhizi isolates from seven states in the USA (Alabama, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Texas). Analysis of two independent populations, one in which F(2) phenotypes were inferred from F(2)-derived F(3) (F(2:3)) families and the other in which F(2) plants had phenotypes measured directly, showed that the resistance in PI 567102B was controlled by a single dominant gene. Two different isolates (MS06-1 and LA04-1) at different locations (Stoneville, MS and Ft. Detrick, MD) were used to independently assay the two populations. Linkage analysis of both populations indicated that the resistance locus was located on chromosome 18 (formerly linkage group G), but at a different location than either Rpp1 or Rpp4, which were previously mapped to this linkage group. Therefore, the SBR resistance in PI 567102B appeared to be conditioned by a previously unreported locus, with an underlying single dominant gene inferred. We propose this gene to be designated Rpp6. Incorporating Rpp6 into improved soybean cultivars may have wide benefits as PI 567102B has been shown to provide resistance to P. pachyrhizi isolates from Paraguay and the US.

  13. Soybean response to nitrogen fertilizer under water deficit conditions

    African Journals Online (AJOL)

    In order to determine the effect of water deficit and nitrogen fertilizer application on growth indices, yield and yield component of three soybean (Glycine Max L. Merr) genotypes a split plot factorial experiment based on randomized complete block with three replications was carried out. Soybean genotypes (Williams, K1410 ...

  14. Chemical control of perennial and annual weeds in herbicide resistant soybean crops.

    Science.gov (United States)

    Sarpe, N; Roibu, C; Negrila, E; Bodescu, F; Fuia, S; Popa, C; Beraru, C

    2001-01-01

    In Romania, the first tests with Roundup Ready on soybean crops were performed in 1998, on 2 soil types: a) at Teleorman Station on chernozem containing 3.5% humus, 4.5% clay b) at Brăila Station placed in Danube Meadow on alluvial soil containing 3.90% humus and 46% clay. In every locality cultivated soybean cultivar S.2254 was resistant to glyphosate. During the three years of experiments (1998-2000) the crop of soybean was infested with various species of weeds (both annual and perennial) of which the most important are: Sorghum halepense (60-80%), Echinochloa crus-galli, Setaria glauca, Amaranthus retroflexus, Solarium nigrum, Yanthium italicum, Abutilon theoprasthi, Sinapis arvensis, Datum stramonium, Polygonum persicaria, Calystegia sepium, Cirsium arvense. In 3 years of experience the best weed control and the highest soybean production were obtained in the variants treated 2 times postemergent with Roundup Ready at a dose of 3 + 3 l/ha. Similar results were also obtained in the farms of the Academy of Agricultural Forestry Sciences, where GMO soybean was cultivated on 1500 hectares.

  15. Identification of a soybean rust resistance gene in PI 567104B.

    Science.gov (United States)

    Liu, Min; Li, Shuxian; Swaminathan, Sivakumar; Sahu, Binod B; Leandro, Leonor F; Cardinal, Andrea J; Bhattacharyya, Madan K; Song, Qijian; Walker, David R; Cianzio, Silvia R

    2016-05-01

    Using a combination of phenotypic screening and molecular, statistical, and linkage analyses, we have mapped a dominant soybean rust resistance gene in soybean PI 567104B. Asian soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi Syd. and P. Syd., is one of the most economically important diseases that affect soybean production worldwide. A long-term strategy for minimizing the effects of SBR is the development of genetically resistant cultivars. The objectives of the study were to identify the location of a rust-resistance (Rpp) gene(s) in plant introduction (PI) 567104B, and to determine if the gene(s) in PI 567104B was different from previously mapped Rpp loci. The progeny of the cross of 'IAR 2001 BSR' × PI 567104B was phenotyped from field assays of the F 2:3 and F 4:5 generations and from a growth chamber assay of 253 F 5:6 recombinant inbred lines (RILs). For the growth chamber, the phenotyping was conducted by inoculation with a purified 2006 fungal isolate from Mississippi. A resistance gene locus on PI 567104B was mapped to a region containing the Rpp6 locus on chromosome 18. The high level of resistance of F 1 plants from two other crosses with PI 567104B as one of the parents indicated that the gene from PI 567104B was dominant. The interval containing the gene is flanked by the simple sequence repeat (SSR) markers Satt131 and Satt394, and includes the SSR markers BARCSOYSSR_18_0331 and BARCSOYSSR_18_0380. The results also indicated that the resistance gene from PI 567104B is different from the Rpp1 to the Rpp4 genes previously identified. To determine if the gene from PI 567104B is different from the Rpp6 gene from PI 567102B, additional research will be required.

  16. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean.

    Science.gov (United States)

    Liu, Juge; Li, Yang; Wang, Wei; Gai, Junyi; Li, Yan

    2016-03-11

    Multidrug and toxic compound extrusion (MATE) family is an important group of the multidrug efflux transporters that extrude organic compounds, transporting a broad range of substrates such as organic acids, plant hormones and secondary metabolites. However, genome-wide analysis of MATE family in plant species is limited and no such studies have been reported in soybean. A total of 117 genes encoding MATE transporters were identified from the whole genome sequence of soybean (Glycine max), which were denominated as GmMATE1 - GmMATE117. These 117 GmMATE genes were unevenly localized on soybean chromosomes 1 to 20, with both tandem and segmental duplication events detected, and most genes showed tissue-specific expression patterns. Soybean MATE family could be classified into four subfamilies comprising ten smaller subgroups, with diverse potential functions such as transport and accumulation of flavonoids or alkaloids, extrusion of plant-derived or xenobiotic compounds, regulation of disease resistance, and response to abiotic stresses. Eight soybean MATE transporters clustered together with the previously reported MATE proteins related to aluminum (Al) detoxification and iron translocation were further analyzed. Seven stress-responsive cis-elements such as ABRE, ARE, HSE, LTR, MBS, as well as a cis-element of ART1 (Al resistance transcription factor 1), GGNVS, were identified in the upstream region of these eight GmMATE genes. Differential gene expression analysis of these eight GmMATE genes in response to Al stress helps us identify GmMATE75 as the candidate gene for Al tolerance in soybean, whose relative transcript abundance increased at 6, 12 and 24 h after Al treatment, with more fold changes in Al-tolerant than Al-sensitive cultivar, which is consistent with previously reported Al-tolerance related MATE genes. A total of 117 MATE transporters were identified in soybean and their potential functions were proposed by phylogenetic analysis with known plant MATE

  17. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Distinct changes in soybean xylem sap proteome in response to pathogenic and symbiotic microbe interactions

    Directory of Open Access Journals (Sweden)

    Cho Un-Haing

    2009-09-01

    Full Text Available Abstract Background Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins. Results We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants. Conclusion Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.

  19. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus.

    Science.gov (United States)

    Tran, Phu-Tri; Widyasari, Kristin; Seo, Jang-Kyun; Kim, Kook-Hyung

    2018-01-01

    Soybean mosaic virus (SMV), a member of the genus Potyvirus, significantly reduces soybean production worldwide. Rsv3, which confers strain-specific resistance to SMV, was previously mapped between the markers A519F/R and M3Satt in chromosome 14 of the soybean [Glycine max (L.) Merr.] genotype L29. Analysis of the soybean genome database revealed that five different NBS-LRR sequences exist between the flanking markers. Among these candidate Rsv3 genes, the full-length cDNA of the Glyma.14g204700 was successfully cloned from L29. Over-expression of Glyma.14g204700 in leaves inoculated with SMV inhibited viral infection in a soybean genotype lacking Rsv3. In addition, the transient silencing of the candidate gene caused a high accumulation of an avirulent strain in L29 carrying Rsv3. Our results therefore provide additional line of evidence to support that Glyma.14g204700 is likely Rsv3 gene that confers strain-specific resistance to SMV. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    Science.gov (United States)

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  1. Molecular mapping of two loci that confer resistance to Asian rust in soybean.

    Science.gov (United States)

    Silva, Danielle C G; Yamanaka, Naoki; Brogin, Rodrigo L; Arias, Carlos A A; Nepomuceno, Alexandre L; Di Mauro, Antônio O; Pereira, Selma S; Nogueira, Livia M; Passianotto, André L L; Abdelnoor, Ricardo V

    2008-06-01

    Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.

  2. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Ping, Jieqing; Fitzgerald, Joshua C; Zhang, Chunbao; Lin, Feng; Bai, Yonghe; Wang, Dechun; Aggarwal, Rajat; Rehman, Maqsood; Crasta, Oswald; Ma, Jianxin

    2016-02-01

    Rps11 confers excellent resistance to predominant Phytophthora sojae isolates capable of defeating major Rps genes deployed into soybean production, representing a novel source of resistance for soybean cultivar enhancement. Phytophthora root and stem rot (PRSR), caused by the soil-borne pathogen Phytophthora sojae, is a devastating disease of soybean [Glycine max (L.) Merr.] throughout the world. Deploying resistant soybean cultivars is the most effective and environmentally friendly approach to managing this disease. The soybean landrace PI 594527 was found to carry excellent resistance to all P. sojae isolates examined, some of which were capable of overcoming the major Rps genesp, such as Rps1-k, Rps1-c, and Rps3-a, predominantly used for soybean protection in the past decades. A mapping population consisting of 58 F2 individuals and 209 F2:3 families derived from a cross between PI 594527 and the susceptible cultivar 'Williams' was used to characterize the inheritance pattern of the resistance to P. soja (Rps) in PI 594527. It was found that the resistance was conferred by a single Rps gene, designated Rps11, which was initially defined as an ~5 Mb genomic region at the beginning of chromosome 7 by bulked segregant analysis (BSA) with a nucleotide polymorphism (SNP) chip comprising 7039 SNP markers. Subsequently, simple sequence repeat (SSR) markers in the defined region were used to genotype the F2:3 mapping population to map Rps11 to a 225.3 kb genomic region flanked by SSR markers BARCSOYSSR_07_0286 and BARCSOYSSR_07_0300, according to the soybean reference genome sequence. Particularly, an SSR marker (i.e., BARCSOYSSR_07_0295) was found to tightly co-segregate with Rps11 in the mapping population and can be effectively used for marker-assisted selection of this gene for development of resistant soybean cultivars.

  3. Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments

    OpenAIRE

    Moellers, Tara C.; Singh, Arti; Zhang, Jiaoping; Brungardt, Jae; Kabbage, Mehdi; Mueller, Daren S.; Grau, Craig R.; Ranjan, Ashish; Smith, Damon L.; Chowda-Reddy, R. V.; Singh, Asheesh K.

    2017-01-01

    Genome-wide association (GWAS) and epistatic (GWES) studies along with expression studies in soybean [Glycine max (L.) Merr.] were leveraged to dissect the genetics of Sclerotinia stem rot (SSR) [caused by Sclerotinia sclerotiorum (Lib.) de Bary], a significant fungal disease causing yield and quality losses. A large association panel of 466 diverse plant introduction accessions were phenotyped in multiple field and controlled environments to: (1) discover sources of resistance, (2) identify ...

  4. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    Science.gov (United States)

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  5. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway

    Science.gov (United States)

    Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to P. pachyrhizi, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression i...

  6. Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies.

    Science.gov (United States)

    Chang, Hao-Xun; Lipka, Alexander E; Domier, Leslie L; Hartman, Glen L

    2016-10-01

    Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.

  7. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Li, Lihong; Guo, Na; Niu, Jingping; Wang, Zili; Cui, Xiaoxia; Sun, Jutao; Zhao, Tuanjie; Xing, Han

    2016-06-01

    Phytophthora sojae is an oomycete soil-borne plant pathogen that causes the serious disease Phytophthora root rot in soybean, leading to great loss of soybean production every year. Understanding the genetic basis of this plant-pathogen interaction is important to improve soybean disease resistance. To discover genes or QTLs underlying naturally occurring variations in soybean P.sojae resistance, we performed a genome-wide association study using 59,845 single-nucleotide polymorphisms identified from re-sequencing of 279 accessions from Yangtze-Huai soybean breeding germplasm. We used two models for association analysis. The same strong peak was detected by both two models on chromosome 13. Within the 500-kb flanking regions, three candidate genes (Glyma13g32980, Glyma13g33900, Glyma13g33512) had SNPs in their exon regions. Four other genes were located in this region, two of which contained a leucine-rich repeat domain, which is an important characteristic of R genes in plants. These candidate genes could be potentially useful for improving the resistance of cultivated soybean to P.sojae in future soybean breeding.

  8. The effect of Spirulina platensis versus soybean on insulin resistance in HIV-infected patients: a randomized pilot study.

    Science.gov (United States)

    Marcel, Azabji-Kenfack; Ekali, Loni G; Eugene, Sobngwi; Arnold, Onana E; Sandrine, Edie D; von der Weid, Denis; Gbaguidi, Emmanuel; Ngogang, Jeanne; Mbanya, Jean C

    2011-07-01

    HIV-infected patients develop abnormalities of glucose metabolism due to the virus and antiretroviral drugs. Spirulina and soybean are nutritional supplements that are cheap, accessible in our community and affect glucose metabolism. We carried out a randomized study to assess the effect of Spirulina platensis versus soybean as a food supplement on HIV/HAART-associated insulin resistance (IR) in 33 insulin-resistant HIV-infected patients. The study lasted for two months at the National Obesity Centre of Cameroon. Insulin resistance was measured using the short insulin tolerance test. Physical activity and diet did not change over the study duration. On-treatment analysis was used to analyze data. The Mann-Whitney U test, the Students T test and the Chi square test were used as appropriate. Curve gradients were analyzed using ANCOVA. Seventeen subjects were randomized to spirulina and 16 to soybean. Each received 19 g of supplement daily. The follow up rate was 65% vs. 100% for spirulina and soybean groups, respectively, and both groups were comparable at baseline. After eight weeks, insulin sensitivity (IS) increased by 224.7% vs. 60% in the spirulina and soybean groups respectively (p spirulina versus soybean, respectively, improved their IS (p = 0.049) with a 1.45 (1.05-2.02) chance of improving insulin sensitivity on spirulina. This pilot study suggests that insulin sensitivity in HIV patients improves more when spirulina rather than soybean is used as a nutritional supplement. ClinicalTrials.gov identifier NCT01141777.

  9. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  10. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Li, Linghong; Lin, Feng; Wang, Weidong; Ping, Jieqing; Fitzgerald, Joshua C; Zhao, Meixia; Li, Shuai; Sun, Lianjun; Cai, Chunmei; Ma, Jianxin

    2016-12-01

    RpsUN1 and RpsUN2 were fine mapped to two genomic regions harboring disease resistance-like genes. The haplotypes and instability of the regions and candidate genes for the two resistance loci were characterized. Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most destructive diseases of soybean. Deploying soybean cultivars carrying race-specific resistance conferred by Rps genes is the most practical approach to managing this disease. Previously, two Rps genes, RpsUN1 and RpsUN2 were identified in a landrace PI 567139B and mapped to a 6.5 cM region on chromosome 3 and a 3.0 cM region on chromosome 16, corresponding to 1387 and 423 kb of the soybean reference genome sequences. By analyzing recombinants defined by genotypic and phenotypic screening of the 826 F 2:3 families derived from two reciprocal crosses between the two parental lines, RpsUN1 and RpsUN2, were further narrowed to a 151 kb region that harbors five genes including three disease resistance (R)-like genes, and a 36 kb region that contains four genes including five R-like genes, respectively, according to the reference genome. Expressional changes of these nine genes before and after inoculation with the pathogen, as revealed by RNA-seq, suggest that Glyma.03g034600 in the RpsUN1 region and Glyma.16g215200 and Glyma.16g214900 in the RpsUN2 region of PI 567139B may be associated with the resistance to P. sojae. It is also suggested that unequal recombination between/among R-like genes may have occurred, resulting in the formation of two recombinants with inconsistent genotypic and phenotypic observations. The haplotype variation of genomic regions where RpsUN1 and RpsUN2 reside in the entire soybean germplasm deposited in the US soybean germplasm collection suggests that RpsUN1 and RpsUN2 are most likely novel genes.

  11. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  12. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean.

    Science.gov (United States)

    Wang, Bing; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2015-01-01

    Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.

  13. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean.

    Directory of Open Access Journals (Sweden)

    Bing Wang

    Full Text Available Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL. A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.

  14. Determining the GmRIN4 requirements of the soybean disease resistance proteins Rpg1b and Rpg1r using a nicotiana glutinosa-based agroinfiltration system.

    Directory of Open Access Journals (Sweden)

    Ryan Kessens

    Full Text Available Rpg1b and Rpg1r are soybean disease resistance (R genes responsible for conferring resistance to Pseudomonas syringae strains expressing the effectors AvrB and AvrRpm1, respectively. The study of these cloned genes would be greatly facilitated by the availability of a suitable transient expression system. The commonly used Niciotiana benthamiana-based system is not suitable for studying Rpg1b and Rpg1r function, however, because expression of AvrB or AvrRpm1 alone induces a hypersensitive response (HR, indicating that N. benthamiana contains endogenous R genes that recognize these effectors. To identify a suitable alternative host for transient expression assays, we screened 13 species of Nicotiana along with 11 accessions of N. tabacum for lack of response to transient expression of AvrB and AvrRpm1. We found that N. glutinosa did not respond to either effector and was readily transformable as determined by transient expression of β-glucuronidase. Using this system, we determined that Rpg1b-mediated HR in N. glutinosa required co-expression of avrB and a soybean ortholog of the Arabidopsis RIN4 gene. All four soybean RIN4 orthologs tested worked in the assay. In contrast, Rpg1r did not require co-expression of a soybean RIN4 ortholog to recognize AvrRpm1, but recognition was suppressed by co-expression with AvrRpt2. These observations suggest that an endogenous RIN4 gene in N. glutinosa can substitute for the soybean RIN4 ortholog in the recognition of AvrRpm1 by Rpg1r.

  15. Determining the GmRIN4 requirements of the soybean disease resistance proteins Rpg1b and Rpg1r using a nicotiana glutinosa-based agroinfiltration system.

    Science.gov (United States)

    Kessens, Ryan; Ashfield, Tom; Kim, Sang Hee; Innes, Roger W

    2014-01-01

    Rpg1b and Rpg1r are soybean disease resistance (R) genes responsible for conferring resistance to Pseudomonas syringae strains expressing the effectors AvrB and AvrRpm1, respectively. The study of these cloned genes would be greatly facilitated by the availability of a suitable transient expression system. The commonly used Niciotiana benthamiana-based system is not suitable for studying Rpg1b and Rpg1r function, however, because expression of AvrB or AvrRpm1 alone induces a hypersensitive response (HR), indicating that N. benthamiana contains endogenous R genes that recognize these effectors. To identify a suitable alternative host for transient expression assays, we screened 13 species of Nicotiana along with 11 accessions of N. tabacum for lack of response to transient expression of AvrB and AvrRpm1. We found that N. glutinosa did not respond to either effector and was readily transformable as determined by transient expression of β-glucuronidase. Using this system, we determined that Rpg1b-mediated HR in N. glutinosa required co-expression of avrB and a soybean ortholog of the Arabidopsis RIN4 gene. All four soybean RIN4 orthologs tested worked in the assay. In contrast, Rpg1r did not require co-expression of a soybean RIN4 ortholog to recognize AvrRpm1, but recognition was suppressed by co-expression with AvrRpt2. These observations suggest that an endogenous RIN4 gene in N. glutinosa can substitute for the soybean RIN4 ortholog in the recognition of AvrRpm1 by Rpg1r.

  16. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    Science.gov (United States)

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  17. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    Abstract. This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  18. Response of Soybean to Inoculation with Bradyrhizobium spp. in ...

    African Journals Online (AJOL)

    Soybean [Glycine max (L.) Merrill] is an important crop in Ethiopia. However, its productivity is constrained by a number of factors among which soil salinity is one the major problems. Therefore, field and greenhouse experiments were conducted to examine the effectiveness of exotic and locally isolated Bradyrhizobium spp.

  19. Soybean yield response: planting date and maturity groups in Missouri

    Science.gov (United States)

    Planting date is one of the main factors affecting soybean (Glycine max L. (Merr.)) yield. The environmental conditions in the U.S. Mid-South, combined with irrigated management, can allow for a wide planting window from late March to early July, and using cultivars from maturity group (MG) 3 to 6. ...

  20. Response of soybean seed germination to cadmium and acid rain.

    Science.gov (United States)

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain.

  1. Response of a Promiscuous Soybean Cultivar to Rhizobial ...

    African Journals Online (AJOL)

    An experiment was carried out at the Federal University of Technology (F. U. T.) Farm, Minna during the 2008 cropping season to investigate the number of nodules, dry shoot biomass, grain yield and, grain N and haulm N contents. An early maturing (75 days) promiscuous soybean cultivar (TGX 1485) was used.

  2. Comparative growth and grain yield responses of soybean ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... With an average protein content of 40% and oil content of 20%, soybean has the highest protein of all field crops, and is second only to groundnut (Arachis hypogea, L) in terms of oil ..... more efficient at acquiring soil P have been suggested to do so through better root development (Gahoonia and. Nielson ...

  3. Gas exchange and morpho-physiological response of soybean to ...

    African Journals Online (AJOL)

    DOGAR

    2013-05-01

    May 1, 2013 ... drought tolerance. Malondialdehyde (MDA), a product of lipid peroxidation, exhibited greater accumulation in plants under stress condition (Diego et al., 2003). This study aimed to investigate the effects of straw mulch on growth, yield and physiological aspects of soybean and showed the optimum quantity ...

  4. Soybean response to nitrogen fertilizer under water deficit conditions

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... yield and yield component of three soybean (Glycine Max L. Merr) genotypes a split plot factorial experiment ... results showed that, water deficit significantly decreased 1000 grain weight, yield, total dry mater and harvest index. ... variety of suboptimal environmental conditions (Gotz and. Herzog, 2000).

  5. A Technique for Evaluating Heterodera glycines Development in Susceptible and Resistant Soybean.

    Science.gov (United States)

    Halbrendt, J M; Lewis, S A; Shipe, E R

    1992-03-01

    A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; 'Pickett' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and 'Pickett' but not in PI 209332.

  6. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    Science.gov (United States)

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. Growth-chamber studies demonstrated wheat rust control at multiple plant growth stages with a glyphosate spray dose typically recommended for weed control. Rust control was absent in formulation controls without glyphosate, dependent on systemic glyphosate concentrations in leaf tissues, and not mediated through induction of four common systemic acquired resistance genes. A field test with endemic stripe rust inoculum confirmed the activities of glyphosate pre- and postinfestation. Preliminary greenhouse studies also demonstrated that application of glyphosate in glyphosate-resistant soybeans suppressed Asian soybean rust, caused by Phakopsora pachyrhizi. PMID:16293685

  7. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics

    Science.gov (United States)

    Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the...

  8. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea

    Science.gov (United States)

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on...

  9. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  10. Resistance of some early mutant lines of soybean to rust fungus (Phakospora pachyrhizi Syd)

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1984-01-01

    A trial for resistance to rust fungus (Phakospora pachyrhizi Syd.) was conducted on 11 early mutant lines of soybean M6 (derived from Orba variety with a dose of 0.4 kGy of Co-60) at Citayam Experimental Station, Bogor, in the wet season of 80/81. Based on IWGSR rating system, soybean mutant lines number M6/40/6 was moderately susceptible to rust fungus (Phakospora pachyrhizi Syd). While 10 other soybean mutant lines M6/40/1, M6/40/2, M6/40/3, M6/40/4, M6/40/5, M6/40/7, M6/40/8, M6/40/9, M6/40/10 and M6/40/11 were susceptible to rust fungus. Significant differences in yield were observed between the early mutant lines M6/40/6 (moderate susceptible), 10 other mutant lines (susceptible) and ringgit variety (susceptible). However, a significant lower yield was produced by those mutant lines compared with the yield of orba variety. (author)

  11. Soil phosphorus availability and soybean response to phosphorus starter fertilizer

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2014-10-01

    Full Text Available Phosphorus fixation in tropical soils may decrease under no-till. In this case, P fertilizer could be surface-spread, which would improve farm operations by decreasing the time spend in reloading the planter with fertilizers. In the long term, less soluble P sources could be viable. In this experiment, the effect of surface-broadcast P fertilization with both soluble and reactive phosphates on soil P forms and availability to soybean was studied with or without fertilization with soluble P in the planting furrow in a long-term experiment in which soybean was grown in rotation with Ruzigrass (Brachiaria ruziziensis. No P or 80 kg ha-1 of P2O5 in the form of triple superphosphate or Arad reactive rock phosphate was applied on the surface of a soil with variable P fertilization history. Soil samples were taken to a depth of 60 cm and soil P was fractionated. Soybean was grown with 0, 30, and 60 kg ha-1 of P2O5 in the form of triple phosphate applied in the seed furrow. Both fertilizers applied increased available P in the uppermost soil layers and the moderately labile organic and inorganic forms of P in the soil profile, probably as result of root decay. Soybean responded to phosphates applied on the soil surface or in the seed furrow; however, application of soluble P in the seed furrow should not be discarded. In tropical soils with a history of P fertilization, soluble P sources may be substituted for natural reactive phosphates broadcast on the surface. The planting operation may be facilitated through reduction in the rate of P applied in the planting furrow in relation to the rates currently applied.

  12. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  13. Effective selection criteria for assessing the resistance of stink bugs complex in soybean

    Directory of Open Access Journals (Sweden)

    Fabiani da Rocha

    2014-10-01

    Full Text Available Soybean plants with resistance to the stink bug complex are currently selected by extremely labor-intensive methods, which limit the evaluation of a large number of genotypes. Thus, this paper proposed the use of an alternative trait underlying the selection of resistant genotypes under field conditions with natural infestation: the weight of healthy seeds (WHS. To this end, 24 genotypes were evaluated under two management systems: with systematic chemical control of insects (management I, and without control (management II. Different indices were calculated using grain weight (YP of management I and WHS of management II (YS . The high correlation between YS and the indices mean productivity, stress tolerance and geometric mean productivity, plus the agreement in determining the groups of genotypes with resistance and high yield indicate that WHS is a useful character in simultaneous selection for these traits.

  14. Validation of a hairy roots system to study soybean-soybean aphid interactions

    Science.gov (United States)

    Morriss, Stephanie C.; Studham, Matthew E.; Tylka, Gregory L.

    2017-01-01

    The soybean aphid (Aphis glycines) is one of the main insect pests of soybean (Glycine max) worldwide. Genomics approaches have provided important data on transcriptome changes, both in the insect and in the plant, in response to the plant-aphid interaction. However, the difficulties to transform soybean and to rear soybean aphid on artificial media have hindered our ability to systematically test the function of genes identified by those analyses as mediators of plant resistance to the insect. An efficient approach to produce transgenic soybean material is the production of transformed hairy roots using Agrobacterium rhizogenes; however, soybean aphids colonize leaves or stems and thus this approach has not been utilized. Here, we developed a hairy root system that allowed effective aphid feeding. We show that this system supports aphid performance similar to that observed in leaves. The use of hairy roots to study plant resistance is validated by experiments showing that roots generated from cotyledons of resistant lines carrying the Rag1 or Rag2 resistance genes are also resistant to aphid feeding, while related susceptible lines are not. Our results demonstrate that hairy roots are a good system to study soybean aphid-soybean interactions, providing a quick and effective method that could be used for functional analysis of the resistance response to this insect. PMID:28358854

  15. Uncovering the Salt Response of Soybean by Unraveling Its Wild and Cultivated Functional Genomes Using Tag Sequencing

    Science.gov (United States)

    Ali, Zulfiqar; Zhang, Da Yong; Xu, Zhao Long; Xu, Ling; Yi, Jin Xin; He, Xiao Lan; Huang, Yi Hong; Liu, Xiao Qing; Khan, Asif Ali; Trethowan, Richard M.; Ma, Hong Xiang

    2012-01-01

    Soil salinity has very adverse effects on growth and yield of crop plants. Several salt tolerant wild accessions and cultivars are reported in soybean. Functional genomes of salt tolerant Glycine soja and a salt sensitive genotype of Glycine max were investigated to understand the mechanism of salt tolerance in soybean. For this purpose, four libraries were constructed for Tag sequencing on Illumina platform. We identify around 490 salt responsive genes which included a number of transcription factors, signaling proteins, translation factors and structural genes like transporters, multidrug resistance proteins, antiporters, chaperons, aquaporins etc. The gene expression levels and ratio of up/down-regulated genes was greater in tolerant plants. Translation related genes remained stable or showed slightly higher expression in tolerant plants under salinity stress. Further analyses of sequenced data and the annotations for gene ontology and pathways indicated that soybean adapts to salt stress through ABA biosynthesis and regulation of translation and signal transduction of structural genes. Manipulation of these pathways may mitigate the effect of salt stress thus enhancing salt tolerance. PMID:23209559

  16. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress.

    Directory of Open Access Journals (Sweden)

    Sonia Silvente

    Full Text Available Soybean (Glycine max L. is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1H NMR-based metabolite analysis combined with the physiological studies we assessed the effects of short-term water stress on overall growth, nitrogen fixation, ureide and proline dynamics, as well as metabolic changes in drought tolerant (NA5009RG and sensitive (DM50048 genotypes of soybean in order to elucidate metabolite adjustments in relation to the physiological responses in the nitrogen-fixing plants towards water limitation. The results of our analysis demonstrated critical differences in physiological responses between these two genotypes, and identified the metabolic pathways that are affected by short-term water limitation in soybean plants. Metabolic changes in response to drought conditions highlighted pools of metabolites that play a role in the adjustment of metabolism and physiology of the soybean varieties to meet drought effects.

  17. RESISTANCE OF SOME GROUNDNUT CULTIVARS TO SOYBEAN POD BORER, ETIELLA ZINCKENELLA TREIT. (LEPIDOPTERA: PYRALIDAE

    Directory of Open Access Journals (Sweden)

    Dwinardi Apriyanto, Edi Gunawan, dan Tri Sunardi .

    2011-11-01

    Full Text Available Resistance of some groundnut cultivars to soybean pod borer, Etiella zinckenella Treit. (Lepidoptera: Pyralidae.  Five groundnut cultivars: Badak, Panther, Sima, Gajah, and Simpai, were grown in field in June-August, 2006 to determine their resistance/susceptibility to Etiella zinckenella Treit.  Two local cultivars (big and small seeds were included as comparison (controls. All cultivars were grown in experimental plots arranged in a randomized complete block design (RCBD, replicated three times. The incidence of soybean pod borer and damaged pods were observed at 9, 11, 13 weeks after sowing (WAS at 10 sample plants taken randomly from each plot. All cultivars were harvested at 13 WAS. Number of damaged pods was counted and percentages per plant were calculated. Larvae observed inside pod or in the soil were counted and collected. The seed yield per plant and weight of 100 seeds from 100 sample plants taken randomly at harvest were weighted to nearest gram at 10% water content. Pod toughness (hardness was measured with penetrometer. Resistance level of each cultivar was determined based on cultivar’s means and overall mean and standard deviation of the percentages of damaged pods. Data were analyzed with analysis of variance (ANOVA and means were separated with DMRT. The result revealed that mean percentages of damaged pod differed significantly between cultivars. Seed yield of cultivar Panther, Sima and Badak were significantly higher than those of the other two and local cultivars. Cultivar Panther was categorized as resistant, cultivar Sima and Badak as moderately resistant, while the others as susceptible. The relative resistance of groundnut cultivar seems, at least in part, to correlate with the structural hardness of pod.

  18. SNP assay to detect the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust

    Science.gov (United States)

    Ha, Bo-Keun; Phillips, Daniel V.; Boerma, H. Roger

    2010-01-01

    Asian soybean rust (ASR), caused by Phakopsora pachyrhizi Syd., has the potential to become a serious threat to soybean, Glycine max L. Merr., production in the USA. A novel rust resistance gene, Rpp?(Hyuuga), from the Japanese soybean cultivar Hyuuga has been identified and mapped to soybean chromosome 6 (Gm06). Our objectives were to fine-map the Rpp?(Hyuuga) gene and develop a high-throughput single nucleotide polymorphism (SNP) assay to detect this ASR resistance gene. The integration of recombination events from two different soybean populations and the ASR reaction data indicates that the Rpp?(Hyuuga) locus is located in a region of approximately 371 kb between STS70887 and STS70923 on chromosome Gm06. A set of 32 ancestral genotypes which is predicted to contain 95% of the alleles present in current elite North American breeding populations and the sources of the previously reported ASR resistance genes (Rpp1, Rpp2, Rpp3, Rpp4, Rpp5, and rpp5) were genotyped with five SNP markers. We developed a SimpleProbe assay based on melting curve analysis for SNP06-44058 which is tighly linked to the Rpp?(Hyuuga) gene. This SNP assay can differentiate plants/lines that are homozygous/homogeneous or heterozygous/heterogeneous for the resistant and susceptible alleles at the Rpp?(Hyuuga) locus. PMID:20532750

  19. First report of Phakopsora pachyrhizi adapting to soybean genotypes with Rpp1 or Rpp6 rust resistance genes in field plots in the United States

    Science.gov (United States)

    Since the first detection of soybean rust, caused by Phakopsora pachyrhizi Syd., in the continental United States in November, 2004, soybean [Glycine max (L.) Merr.] genotypes with the Rpp1 or Rpp6 resistance genes have exhibited high levels of resistance in the United States. In 2011 and 2012, howe...

  20. Resistance to Phakopsora pachyrhizi in soybean PI 587905 maps to the Rpp1 locus and exhibits variable dominance associated with plant ontogeny

    Science.gov (United States)

    Soybean rust, caused by Phakopsora pachyrhizi Sydow, results in significant yield loss worldwide. Soybean accession PI 587905, previously identified as having resistance to P. pachyrhizi, was used to create two independent populations (F2 plants and F2-derived F3 lines) segregating for resistance. ...

  1. Soybean rust resistance sources and inheritance in the common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Souza, T L P O; Dessaune, S N; Moreira, M A; Barros, E G

    2014-07-25

    Soybean rust (SBR), caused by the fungus Phakopsora pachyrhizi, has been reported in common bean (Phaseolus vulgaris L.) cultivars and elite lines that were infected under controlled and natural field conditions in South Africa, the United States, Argentina, and Brazil. Although SBR is currently not a top priority problem for the common bean crop, many bean breeders are concerned about this disease because of the high severity and virulence diversity of P. pachyrhizi and its broad host range. In this study, a set of 44 P. vulgaris genotypes were tested for resistance to P. pachyrhizi; these genotypes included resistance sources to several fungal common bean diseases, carioca-, black- and red-seeded Brazilian cultivars, and elite lines that were developed by the main common bean breeding programs in Brazil. Twenty-four SBR resistance sources were identified. They presented the reddish-brown (RB) lesion type, characterizing resistance reactions. In addition to the RB lesion type, the PI181996 line presented the lowest disease severity mean score, considering its associated standard error value. For this reason, it was crossed with susceptible lines to study the inheritance of resistance. The results support the hypothesis that resistance to SBR in PI181996 is monogenic and dominant. We propose that this SBR resistance gene, the first to be identified and characterized in common bean, might be designated as Pkp-1.

  2. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  3. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  4. Induction of soybean resistance to bacterial pustule disease (Xanthomonas axonopodis pv. glycines) by rhizobacteria and organic material treatment

    Science.gov (United States)

    Khaeruni, A.; Johan, E. A.; Wijayanto, T.; Taufik, M.; Syafar, A. A. R.; Kade Sutariati, G. A.

    2018-02-01

    This study aimed to evaluate the role of different formulations and types of organic matter in improving yield and resistance of soybean plants to bacterial pustule disease. The study was prepared based on a randomized block design with a factorial pattern. The first factor was the application of rhizobacterial formulation (biofresh), ie F0 = without the application of rhizobacteria, F1 = application of biofresh in solid formulation, and F2 = application of biofresh in liquid formulation. The second factor was the application of organic materials, namely B1 = compost of soybean litter + cow dung, B2 = compost of rice straw + cow dung, B3 = compost of soybean litter + rice straw + cow dung. Observation of disease severity and soybean yield was conducted on five sample plants in each treatment. The results showed that the treatment of biological agent biofresh in solid formulation combined with compos of soybean litter, was the best treatment in increasing plant resistance to bacterial pustule disease and seed weight. Plant resistance induction occurred systemically characterized by salicylic acid increase of 0.3 mg and peroxidase increase of 0.07 unit / mL in the sample plants.

  5. Genetic analysis of soybean reactions to soybean mosaic virus

    OpenAIRE

    Ma, Guorong

    1995-01-01

    The soybean [Glycine max (L.) Merr.] mosaic disease, caused by soybean mosaic virus (SMV), is one of the most important soybean diseases in many areas of the world. This research, conducted in four separate studies, was designed to identify and characterize new sources of genes for resistance to SMV and to investigate the interaction of soybean resistance genes and SMV strains.

  6. Soybean NDR1-like proteins bind pathogen effectors and regulate resistance signaling.

    Science.gov (United States)

    Selote, Devarshi; Shine, M B; Robin, Guillaume P; Kachroo, Aardra

    2014-04-01

    Nonrace specific disease resistance 1 (NDR1) is a conserved downstream regulator of resistance (R) protein-derived signaling. We identified two NDR1-like sequences (GmNDR1a, b) from soybean, and investigated their roles in R-mediated resistance and pathogen effector detection. Silencing GmNDR1a and b in soybean shows that these genes are required for resistance derived from the Rpg1-b, Rpg3, and Rpg4 loci, against Pseudomonas syringae (Psg) expressing avrB, avrB2 and avrD1, respectively. Immunoprecipitation assays show that the GmNDR1 proteins interact with the AvrB2 and AvrD1 Psg effectors. This correlates with the enhanced virulence of Psg avrB2 and Psg avrD1 in GmNDR1-silenced rpg3 rpg4 plants, even though these strains are not normally more virulent on plants lacking cognate R loci. The GmNDR1 proteins interact with GmRIN4 proteins, but not with AvrB, or its cognate R protein Rpg1-b. However, the GmNDR1 proteins promote AvrB-independent activation of Rpg1-b when coexpressed with a phosphomimic derivative of GmRIN4b. The role of GmNDR1 proteins in Rpg1-b activation, their direct interactions with AvrB2/AvrD1, and a putative role in the virulence activities of Avr effectors, provides the first experimental evidence in support of the proposed role for NDR1 in transducing extracellular pathogen-derived signals. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. SOYBEAN.APHID.SD.2017

    Science.gov (United States)

    Infestations by soybean aphid (SA) can reduce soybean yield. Thus, SA-resistant soybean may be useful in reducing infestations and limiting yield loss. Expression of resistance was characterized among 746 soybean accessions in 56 growth chamber tests at the North Central Agricultural Research Labo...

  8. QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar 'L-10'

    Directory of Open Access Journals (Sweden)

    Zhang Hongxia

    2011-05-01

    Full Text Available Abstract Background Resistance of soybean (Glycine max L. Merr. cultivars to populations of cyst nematode (SCN; Heterodera glycines I. was complicated by the diversity of HG Types (biotypes, the multigenic nature of resistance and the temperature dependence of resistance to biotypes. The objective here was to identify QTL for broad-spectrum resistance to SCN and examine the transcript abundances of some genes within the QTL. Results A Total of 140 F5 derived F7 recombinant inbred lines (RILs were advanced by single-seed-descent from a cross between 'L-10' (a soybean cultivar broadly resistant to SCN and 'Heinong 37' (a SCN susceptible cultivar. Associated QTL were identified by WinQTL2.1. QTL Qscn3-1 on linkage group (LG E, Qscn3-2 on LG G, Qscn3-3 on LG J and Qscn14-1 on LG O were associated with SCN resistance in both year data (2007 and 2008. Qscn14-2 on LG O was identified to be associated with SCN resistance in 2007. Qscn14-3 on LG D2 was identified to be associated with SCN resistance in 2008. Qscn14-4 on LG J was identified to be associated with SCN resistance in 2008. The Qscn3-2 on LG G was linked to Satt309 (less than 4 cM, and explained 19.7% and 23.4% of the phenotypic variation in 2007 and 2008 respectively. Qscn3-3 was less than 5 cM from Satt244 on LG J, and explained 19.3% and 17.95% of the phenotypic variations in 2007 and 2008 respectively. Qscn14-4 could explain 12.6% of the phenotypic variation for the SCN race 14 resistance in 2008 and was located in the same region as Qscn3-3. The total phenotypic variation explained by Qscn3-2 and Qscn3-3 together was 39.0% and 41.3% in 2007 and 2008, respectively. Further, the flanking markers Satt275, Satt309, Sat_350 and Satt244 were used for the selection of resistant lines to SCN race 3, and the accuracy of selection was about 73% in this RIL population. Four genes in the predicted resistance gene cluster of LG J (chromosome 16 were successfully cloned by RT-PCR. The transcript

  9. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  10. Detection and fine-mapping of SC7 resistance genes via linkage and association analysis in soybean.

    Science.gov (United States)

    Yan, Honglang; Wang, Hui; Cheng, Hao; Hu, Zhenbin; Chu, Shanshan; Zhang, Guozheng; Yu, Deyue

    2015-08-01

    Soybean mosaic virus (SMV) disease is one of the most serious and broadly distributed soybean (Glycine max (L.) Merr.) diseases. Here, we combine the advantages of association and linkage analysis to identify and fine-map the soybean genes associated with resistance to SMV strain SC7. A set of 191 soybean accessions from different geographic origins and 184 recombinant inbred lines (RILs) derived from Kefeng No.1 (resistant) × Nannong 1138-2 (susceptible) were used in this study. The SC7 resistance genes were previously mapped to a 2.65 Mb region on chromosome 2 and a 380 kb region on chromosome 13. Among 19 single nucleotide polymorphisms (SNPs) detected via association analysis in the study, the SNP BARC-021625-04157 was located in the 2.65 Mb region, and the SNP BARC-041671-08065 was located near the 380 kb region; three genes harboring the SNPs were probably related to SC7 resistance. The resistance gene associated with BARC-021625-04157 was then fine-mapped to a region of approximately 158 kb on chromosome 2 using 184 RILs. Among the 15 genes within this region, one NBS-LRR type gene, one HSP40 gene and one serine carboxypeptidase-type gene might be candidate SC7 resistance genes. These results will be useful for map-based cloning and marker-assisted selection in soybean breeding programs. © 2014 Institute of Botany, Chinese Academy of Sciences.

  11. RAPD and SCAR markers linked to resistance to frogeye leaf spot in soybean

    Directory of Open Access Journals (Sweden)

    Sebastião Martins Filho

    2002-01-01

    Full Text Available The soybean (Glycine max (L. Merrill frogeye leaf spot is caused by the fungus Cercospora sojina Hara and is a widespread disease in Brazil and other countries, causing severe losses in grain yield and also affecting seed quality. The availability of DNA markers linked to genes for resistance to this disease would accelerate breeding programs, particularly when other traits are also being evaluated. Bulked segregant analysis was applied to 3 F2 populations derived from crosses between the resistant cultivars Parana, Cristalina and Uberaba, and the susceptible cultivar Bossier. In the cross 'Parana' x 'Bossier', 2 RAPD markers were identified, CSOPA1(800C and CSOPA2(1,250C, located at 4.4 ± 1.8 centiMorgans (cM and 3.4 ± 1.7 cM respectively from the resistance locus. DNA fragments of similar molecular weight were observed in the population derived from the cross 'Cristalina' x 'Bossier' at 2.3 ± 1.2 and 4.7 ± 1.5 cM from the resistance locus, respectively. In the offspring of the cross 'Uberaba' x 'Bossier', a DNA fragment corresponding to marker CSOPA1(800C was detected at 5.6 ± 2.1 cM from the resistance locus. Although marker CSOPA2(1,250C was not observed in this population, an additional marker was detected (CSOUB1(1,100C at 6.7 ± 2.2 cM from the resistance locus. The 1,250 bp fragment of CSOPA2(1,250C was cloned and converted into a SCAR marker, which amplified a single fragment whose size corresponded to the cloned segment of the crosses involving cultivars Cristalina and Parana. Markers CSOPA1(800C, CSOPA2(1,250C and CSOUB1(1,100C were mapped to soybean linkage group J with the aid of known SSRs linked to the Rcs3 locus, indicating that the RAPD and SCAR markers identified in our research also tag this resistance gene.

  12. Molecular mapping and characterization of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B

    Science.gov (United States)

    Phytophthora root and stem rot (PRR), caused by the soil-borne oomycete pathogen Phytophthora sojae, is one of the most destructive diseases of soybean. PRR can be effectively controlled by race-specific genes conferring resistance to P. sojae (Rps). However, the Rps genes are usually non-durable, a...

  13. Greenhouse evaluation of commercial soybean cultivars adapted to the northern United States for resistance to charcoal rot

    Science.gov (United States)

    Thirty (30) and sixty-seven (67) commercially available soybean (Glycine max (L.) Merr) cultivars from Wisconsin (Maturity group (MG) I-II) and Indiana (MG II-III), respectively, were evaluated for charcoal rot (CR; Macrophomina phaseolina (Tassi) Goid) resistance using a cut-stem greenhouse assay. ...

  14. Selection and evaluation of soybean lines derived from gamma irradiation for rust resistance

    International Nuclear Information System (INIS)

    Smutkupt, S.; Wongpiyasatid, A.; Lamseejan, S.

    1983-01-01

    In 1979, seeds of 11 soybean cultivars were gamma irradiated with 15 and 30 krad. Treated and control seeds of each cultivar were planted in the rainy season. In the rainy season of 1980, M 3 populations were screened for rust resistance in Nong Hoi Valley and Mae Joe Experiment Station, both in Chiang Main province. The IWGSR rust rating system was used. Based upon the slow growth of rust on soybean plants, 6 and 115 plants were selected from 2,802 control plants and from 28,824 treated plants, respectively. Selected lines were evaluated in Nong Hoi Valley in the rainy season of 1981. Sixteen selections with average good seed yield per plant and low percentage of shrivelled seeds were obtained. Among them, two lines, namely G8586/Line number 81-1-072 and S.J. 4/Line number 81-1-037 gave the higher average seed yield per plant than other lines. They are at present in a preliminary yield trial in Chiang Mai. Chiang Mai. (author)

  15. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean.

    Science.gov (United States)

    Spagnoletti, Federico N; Balestrasse, Karina; Lavado, Raúl S; Giacometti, Romina

    2016-11-01

    Uptake of Arsenic (As) in plant tissues can affect metabolism, causing physiological disorders, even death. As toxicity, but also pathogen infections trigger a generalised stress response called oxidative stress; however knowledge on the response of soybean (Glycine max L.) under multiple stressors is limited so far. Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of host plants to abiotic and biotic stress. Thus, we investigated the effects of the AMF Rhizophagus intraradices on soybean grown in As-contaminated soils as well as in the presence of the pathogen Macrophomina phaseolina (charcoal rot of the stem). Plant parameters and degree of mycorrhizal colonization under the different assessed treatments were analyzed. Content of As in roots and leaves was quantified. Increasing As level in the soil stopped plant growth, but promoted plant As uptake. Inoculation of soybean plants with M. phaseolina accentuated As effect at all physiological levels. In the presence of mycorrhizal symbiosis biomass dramatically increased, and significantly reduced the As concentration in plant tissues. Mycorrhization decreased oxidative damage in the presence of both As and the pathogen. Furthermore, transcription analysis revealed that the high-affinity phosphate transporter from R. intraradices RiPT and the gene encoding a putative arsenic efflux pump RiArsA were up-regulated under higher As doses. These results suggest that R. intraradices is most likely to get involved in the defense response against M. phaseolina, but also in the reduction of arsenate to arsenite as a possible detoxification mechanism in AMF associations in soybean. R. intraradices actively participates in the soybean antioxidant defense response against arsenic stress and M. phaseolina infection. Copyright © 2016. Published by Elsevier Inc.

  16. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species

    Science.gov (United States)

    Ishibashi, Yushi; Koda, Yuka; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2013-01-01

    Background and Aims Despite their toxicity, reactive oxygen species (ROS) play important roles in plant cell signalling pathways, such as mediating responses to stress or infection and in programmed cell death, at lower levels. Although studies have indicated that hydrogen peroxide (H2O2) promotes seed germination of several plants such as Arabidopsis, barley, wheat, rice and sunflower, the role of H2O2 in soybean seed germination is not well known. The aim of this study therefore was to investigate the relationships between ROS, plant hormones and soybean seed germination. Methods An examination was made of soybean seed germination, the expression of genes related to ethylene biosynthesis, endogenous ethylene contents, and the number and area of cells in the root tip, using N-acetylcysteine, an antioxidant, to counteract the effect of ROS. Key Results H2O2 promoted germination, which N-acetylcysteine suppressed, suggesting that ROS are involved in the regulation of soybean germination. H2O2 was produced in the embryonic axis after imbibition. N-Acetylcysteine suppressed the expression of genes related to ethylene biosynthesis and the production of endogenous ethylene. Interestingly, ethephon, which is converted to ethylene, and H2O2 reversed the suppression of seed germination by N-acetylcysteine. Furthermore, morphological analysis revealed that N-acetylcysteine suppressed cell elongation at the root tip, and this suppression was also reversed by ethephon or H2O2 treatments, as was the case in germination. Conclusions In soybean seeds, ROS produced in the embryonic axis after imbibition induce the production of endogenous ethylene, which promotes cell elongation in the root tip. This appears to be how ROS regulate soybean seed germination. PMID:23131300

  17. Soybean (Glycine max L. Response to Fungicides in the Absence of Disease Pressure

    Directory of Open Access Journals (Sweden)

    W. James Grichar

    2013-01-01

    Full Text Available Field studies were conducted during the 2010 and 2011 growing seasons along the Texas Upper Gulf Coast region to study the effects of fungicides on soybean disease development and to evaluate the response of four soybean cultivars to prothioconazole plus trifloxystrobin and pyraclostrobin. In neither year did any soybean diseases develop enough to be an issue. Only NKS 51-T8 responded to a fungicide treatment in 2010 while HBK 5025 responded in 2011. Prothioconazole plus trifloxystrobin increased NKS 51-T8 yield by 23% in 2010 while in 2011 the yield of HBK 5025 was increased 14% over the unsprayed check. No yield response was noted with pyraclostrobin on any soybean cultivar. Only prothioconazole + trifloxystrobin applied to either NKS 51-T8 or DP5335 in 2010 resulted in a net increase in dollars per hectare over the unsprayed check of the respective cultivar. In 2011, under extremely dry conditions, all fungicides with the exception of prothioconazole + trifloxystrobin applied to HBK 5025 resulted in a net decrease in returns over the unsprayed check.

  18. Disease resistance through impairment of α-SNAP-NSF interaction and vesicular trafficking by soybean Rhg1.

    Science.gov (United States)

    Bayless, Adam M; Smith, John M; Song, Junqi; McMinn, Patrick H; Teillet, Alice; August, Benjamin K; Bent, Andrew F

    2016-11-22

    α-SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] and NSF proteins are conserved across eukaryotes and sustain cellular vesicle trafficking by mediating disassembly and reuse of SNARE protein complexes, which facilitate fusion of vesicles to target membranes. However, certain haplotypes of the Rhg1 (resistance to Heterodera glycines 1) locus of soybean possess multiple repeat copies of an α-SNAP gene (Glyma.18G022500) that encodes atypical amino acids at a highly conserved functional site. These Rhg1 loci mediate resistance to soybean cyst nematode (SCN; H. glycines), the most economically damaging pathogen of soybeans worldwide. Rhg1 is widely used in agriculture, but the mechanisms of Rhg1 disease resistance have remained unclear. In the present study, we found that the resistance-type Rhg1 α-SNAP is defective in interaction with NSF. Elevated in planta expression of resistance-type Rhg1 α-SNAPs depleted the abundance of SNARE-recycling 20S complexes, disrupted vesicle trafficking, induced elevated abundance of NSF, and caused cytotoxicity. Soybean, due to ancient genome duplication events, carries other loci that encode canonical (wild-type) α-SNAPs. Expression of these α-SNAPs counteracted the cytotoxicity of resistance-type Rhg1 α-SNAPs. For successful growth and reproduction, SCN dramatically reprograms a set of plant root cells and must sustain this sedentary feeding site for 2-4 weeks. Immunoblots and electron microscopy immunolocalization revealed that resistance-type α-SNAPs specifically hyperaccumulate relative to wild-type α-SNAPs at the nematode feeding site, promoting the demise of this biotrophic interface. The paradigm of disease resistance through a dysfunctional variant of an essential gene may be applicable to other plant-pathogen interactions.

  19. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    Science.gov (United States)

    Phytophthora stem and root rot disease, caused by Phytophthora sojae, is one of the most destructive diseases of soybean (Glycine max (L.) Merr.), and has been increasing in several soybean-producing areas around the world. This disease induces serious limitations on soybean production, with yield l...

  20. A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae

    Directory of Open Access Journals (Sweden)

    Ninghui Li

    2017-07-01

    Full Text Available Phytophthora root and stem rot caused by the oomycete pathogen Phytophthora sojae is a destructive disease of soybean worldwide. Plant dirigent proteins (DIR are proposed to have roles in biosynthesis of either lignan or lignin-like molecules, and are important for defense responses, secondary metabolism, and pathogen resistance. In the present work, a novel DIR gene expressed sequence tag is identified as up-regulated in the highly resistant soybean cultivar ‘Suinong 10’ inoculated with P. sojae. The full length cDNA is isolated using rapid amplification of cDNA ends, and designated GmDIR22 (GenBank accession no. HQ_993047. The full length GmDIR22 is 789 bp and contains a 567 bp open reading frame encoding a polypeptide of 188 amino acids. The sequence analysis indicated that GmDIR22 contains a conserved dirigent domain at amino acid residues 43–187. The quantitative real-time reverse transcription PCR demonstrated that soybean GmDIR22 mRNA is expressed most highly in stems, followed by roots and leaves. The treatments with stresses demonstrated that GmDIR22 is significantly induced by P. sojae and gibberellic acid (GA3, and also responds to salicylic acid, methyl jasmonic acid, and abscisic acid. The GmDIR22 is targeted to the cytomembrane when transiently expressed in Arabidopsis protoplasts. Moreover, The GmDIR22 recombinant protein purified from Escherichia coli could effectively direct E-coniferyl alcohol coupling into lignan (+-pinoresinol. Accordingly, the overexpression of GmDIR22 in transgenic soybean increased total lignan accumulation. Moreover, the lignan extracts from GmDIR22 transgenic plants effectively inhibits P. sojae hyphal growth. Furthermore, the transgenic overexpression of GmDIR22 in the susceptible soybean cultivar ‘Dongnong 50’ enhances its resistance to P. sojae. Collectively, these data suggested that the primary role of GmDIR22 is probably involved in the regulation of lignan biosynthesis, and which

  1. Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, and Corn after Soybeans

    OpenAIRE

    Boyer, Christopher N.; Larson, James A.; Roberts, Roland K.; McClure, Angela T.; Tyler, Donald D.; Zhou, Vivian

    2013-01-01

    Deterministic and stochastic yield response plateau functions were estimated to determine the expected profit-maximizing nitrogen rates, yields, and net returns for corn grown after corn, cotton, and soybeans. The stochastic response functions were more appropriate than their deterministic counterparts, and the linear response stochastic plateau described the data the best. The profit-maximizing nitrogen rates were similar for corn after corn, cotton, and soybeans, but relative to corn after ...

  2. Evaluation of soybean breeding lines for resistance to Phomopsis seed decay: Results of 2014, 2015, and 2016 field trials in Stoneville, Mississippi

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] is one of the most important crops in the world. Phomopsis seed decay (PSD) is a soybean seed disease that causes poor seed quality. This disease is caused primarily by a fungal pathogen, Phomopsis longicolla (syn. Diaporthe longicolla). Planting PSD-resistant soybea...

  3. Comparison of pathogenic variation among Phakopsora pachyrhizi isolates collected from the United States and International Locations, and identification of Soybean genotypes resistant to the United States isolates

    Science.gov (United States)

    A major constraint in breeding for resistance to soybean rust has been the virulence diversity in Phakopsora pachyrhizi populations. In a greenhouse experiment, reactions of 18 soybean genotypes to 24 U.S. isolates collected 2007-2008 and four foreign isolates were compared. Reactions of four differ...

  4. Robust RNAi-mediated resistance to infection of seven potyvirids in soybean expressing an intron hairpin NIb RNA.

    Science.gov (United States)

    Yang, Xiangdong; Niu, Lu; Zhang, Wei; He, Hongli; Yang, Jing; Xing, Guojie; Guo, Dongquan; Du, Qian; Qian, Xueyan; Yao, Yao; Li, Qiyun; Dong, Yingshan

    2017-10-01

    Viral pathogens, such as soybean mosaic virus (SMV), are a major constraint in soybean production and often cause significant yield loss and quality deterioration. Engineering resistance by RNAi-mediated gene silencing is a powerful strategy for controlling viral diseases. In this study, a 248-bp inverted repeat of the replicase (nuclear inclusion b, NIb) gene was isolated from the SMV SC3 strain, driven by the leaf-specific rbcS2 promoter from Phaseolus vulgaris, and introduced into soybean. The transgenic lines had significantly lower average disease indices (ranging from 2.14 to 12.35) than did the non-transformed (NT) control plants in three consecutive generations, exhibiting a stable and significantly enhanced resistance to the SMV SC3 strain under field conditions. Furthermore, seed mottling did not occur in transgenic seeds, whereas the NT plants produced ~90% mottled seeds. Virus resistance spectrum screening showed that the greenhouse-grown transgenic lines exhibited robust resistance to five SMV strains (SC3, SC7, SC15, SC18, and a recombinant SMV), bean common mosaic virus, and watermelon mosaic virus. Nevertheless, no significantly enhanced resistance to bean pod mottle virus (BPMV, Comovirus) was observed in the transgenic lines relative to their NT counterparts. Consistent with the results of resistance evaluation, the accumulation of each potyvirid (but not of BPMV) was significantly inhibited in the transgenic plants relative to the NT controls as confirmed by quantitative real-time (qRT-PCR) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). These results demonstrate that robust RNAi-mediated resistance to multiple potyvirids in soybean was conferred by expressing an intron hairpin SMV NIb RNA.

  5. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  6. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2011-12-01

    Full Text Available The main limited factors of soybean plants expansion in acid soil are Aluminium (Al toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl3 under in vitro and in vivo condition. Addition of 15 part per million (ppm AlCl3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl3 concentrations (15 ppm under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100gr = 81 ppm. Al+3

  7. Adaptability and stability of soybean advanced lines of semi early cycle for rust resistance

    Directory of Open Access Journals (Sweden)

    Juliana Araújo Santos Martins

    2012-01-01

    Full Text Available This research work was carried out to verify the adaptability and phenotypic stability of soybean inbred lines of semi early cycle, using rust severity as the selection trait for partial resistance. The strains were evaluated during the growing seasons of 2007/08 and 2008/09, in the locations of Uberlândia and Uberaba, MG, Campo Alegre de Goiás and Senador Canedo, GO, using a randomized complete block design with three replications. Rust severity was evaluated by visual assessment of the leaflets at the medial third of five plants in each plot. By using disease severity, it was estimated: the mean absolute rate of disease progress (r, the area under the disease progress curve (AUDPC and the partial resistance factor (PRF. Adaptability and stability of the strains were estimated by the methods proposed by Eberhart and Russell, as well as by the AMMI method. It was found that the strains which were the most resistant to rust, in general, also showed the best adaptability and stability.

  8. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean.

    Science.gov (United States)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    2015-07-01

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  9. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance.

    Science.gov (United States)

    Liu, Jian-Zhong; Whitham, Steven A

    2013-04-01

    Heat-shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co-chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full-length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type-III DnaJ domain-containing HSP40 (GmHSP40.1), a co-chaperone of HSP70, caused hypersensitive response (HR)-like cell death. The HR-like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP-GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR-inducing ability. GmHSP40.1 co-localized with HcRed-SE, a protein involved in pri-miRNA processing, which has been shown to be co-localized with SR33-YFP, a protein involved in pre-mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear-localized DnaJ domain-containing GmHSP40.1 in cell death and disease resistance in soybean. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  10. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  11. Control of Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifoliaL.) in Glufosinate-Resistant Soybean [Glycine max(L.) Merr].

    Science.gov (United States)

    Barnes, Ethann R; Knezevic, Stevan Z; Sikkema, Peter H; Lindquist, John L; Jhala, Amit J

    2017-01-01

    Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR) common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1) evaluate the efficacy of preplant (PP) herbicides followed by (fb) glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor applied post-emergence (POST) for control of GR common ragweed in glufosinate-resistant soybean; (2) their effect on common ragweed density, biomass, and soybean yield; and (3) the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90-99% control of common ragweed at 21 d after treatment (DAT). The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S -metolachlor controlled GR common ragweed 84-98% at soybean harvest, reduced common ragweed density (≤20 plants m -2 ) and biomass by ≥93%, and secured soybean yield 1,819-2,158 kg ha -1 . The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373-US$506) compared to PP alone (US$91) or PRE fb POST programs (US$158). The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

  12. An integrated RNAseq-1H NMR metabolomics approach to understand soybean primary metabolism regulation in response to Rhizoctonia foliar blight disease.

    Science.gov (United States)

    Copley, Tanya R; Aliferis, Konstantinos A; Kliebenstein, Daniel J; Jabaji, Suha H

    2017-04-27

    Rhizoctonia solani AG1-IA is a devastating phytopathogen causing Rhizoctonia foliar blight (RFB) of soybean worldwide with yield losses reaching 60%. Plant defense mechanisms are complex and information from different metabolic pathways is required to thoroughly understand plant defense regulation and function. Combining information from different "omics" levels such as transcriptomics, metabolomics, and proteomics is required to gain insights into plant metabolism and its regulation. As such, we studied fluctuations in soybean metabolism in response to R. solani infection at early and late disease stages using an integrated transcriptomics-metabolomics approach, focusing on the regulation of soybean primary metabolism and oxidative stress tolerance. Transcriptomics (RNAseq) and metabolomics ( 1 H NMR) data were analyzed individually and by integration using bidirectional orthogonal projections to latent structures (O2PLS) to reveal possible links between the metabolome and transcriptome during early and late infection stages. O2PLS analysis detected 516 significant transcripts, double that reported in the univariate analysis, and more significant metabolites than detected in partial least squares discriminant analysis. Strong separation of treatments based on integration of the metabolomes and transcriptomes of the analyzed soybean leaves was revealed, similar trends as those seen in analyses done on individual datasets, validating the integration method being applied. Strong fluctuations of soybean primary metabolism occurred in glycolysis, the TCA cycle, photosynthesis and photosynthates in response to R. solani infection. Data were validated using quantitative real-time PCR on a set of specific markers as well as randomly selected genes. Significant increases in transcript and metabolite levels involved in redox reactions and ROS signaling, such as peroxidases, thiamine, tocopherol, proline, L-alanine and GABA were also recorded. Levels of ethanol increased 24

  13. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    Science.gov (United States)

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Variation in in vitro Morphogenic Response to Growth Regulators in Soybean Genotypes from India and Bulgaria

    Directory of Open Access Journals (Sweden)

    Todorova R.

    2007-12-01

    Full Text Available Soybean (Glycinae max (L. Merrill. is receiving great global importance due to its nutraceutical value but its cultivation suffers the problems of biotic/abiotic stress. To improve soybean germplasm biotechnological approach can be applied. The objectives of the experiments were to study the possibilities for establishment of in vitro cultures which can be used for genetic manipulations and modelling of stress. In vitro morphogeneic response of two Indian (Hardee and JS 335, one Bulgarian (Daniela and one american (Hodson soybean cultivars were studied using plant growth regulators. Using cotyledonary nodes as explants, high organogenic response was observed for cv Daniela and cv Hodson on media containig BAP and IBA. TDZ induced multiple shoot buds in all the cultivars, with varying degree of response and it was found to be genotype specific. A maximum of 8 shoot buds were obtained from cotyledonary node explants in presence of TDZ (0.5 mg/l for the cv. Hardee. A negative correlation was observed between bud number and size for the Bulgarian cultivars. The results indicate the stimulating effect of TDZ on organogenesis and the interaction of genotype and culture media, which can be utilized for crop improvement using tissue culture techniques.

  15. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  16. Biochemical Responses of Two Soybean (Glycine max Varieties to Aluminum Stress in Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Nafiseh Davarpanah Moghadam

    2016-09-01

    Full Text Available Aluminum toxicity is the most widespread form of metal toxicity to plants in soil acids, initially causing inhibition of root elongation and blocks absorption of water and nutrients. According to this fact that soybean has been widely used in industry, this study investigated the effects of aluminum toxicity on biochemical factors in two varieties of Williams and Katoul of soybean plant. The study was carried out in a randomized design with aluminium (0, 200, 500, 700 µM treatments and four replications in hydroponic culture. Results of biochemical tests showed that aluminum reduced the content of photosynthetic pigments, flavonoids, phenolic compounds, anthocyanins and reduced sugars in both cultivars of soybean. The proline content decreased with increasing aluminum in var. williams, but at var. katoul increased. It seems that G. max var. katoul suffers less than var. Williams. As regards, proline accumulation under Al stress to be generally higher in G. max var. katoul; hence, these results suggest that var. katoul is more resistant than var. Williams.

  17. Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity.

    Science.gov (United States)

    De Angelis, Elisabetta; Pilolli, Rosa; Bavaro, Simona L; Monaci, Linda

    2017-04-19

    Soy is an important component of the human diet thanks to its nutritional value and high protein content; however, it also represents a risk for allergenic consumers due to its potential to trigger adverse reactions in sensitized individuals. The putative correlation between immunoreactivity and resistance to the human gastrointestinal (GI) digestion has drawn attention to investigating soybean proteins digestibility. In this work, we provided further insights into this field by performing in vitro simulated GI digestion experiments directly on ground soybean seeds, to provide more realistic results obtained from the digestion of the whole food matrix. Soybean digestion products were analyzed by SDS-PAGE followed by untargeted HPLC-MS/MS analysis and the final data were software treated to enable protein/peptide identification. The latter allowed monitoring the proteolytic degradation of the main soybean proteins during the gastric and duodenal phases. In particular, β-conglycinin and trypsin inhibitors showed the highest resistance to the combined activity of GI enzymes, showing a partial degradation at the end of the duodenal phase as ascertained by the strong electrophoretic bands displayed at 50 kDa and 20 kDa, respectively. Glycinin subunits also presented, even if to a lower extent, resistance to the complete proteolytic degradation, as demonstrated by polypeptide fragments with molecular weight lower than 20 kDa displayed in the gel at the end of duodenal digestion. In addition, by bioinformatics analysis it was demonstrated that the GI resistant fragments of the allergenic proteins, β-conglycinin and glycinin, retained in their primary structure linear epitopes potentially able to trigger an immunoreaction when exposed to the intestinal mucosa. Moreover, such resistant peptides also presented a structural homology with epitope sequences recognized in other legume species, presenting a potential risk of adverse cross-reaction for a larger category of

  18. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea.

    Science.gov (United States)

    Schneider, Rhiannon; Rolling, William; Song, Qijian; Cregan, Perry; Dorrance, Anne E; McHale, Leah K

    2016-08-11

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on P. sojae populations. Thus, partial resistance provides a more durable resistance against the pathogen. In previous work, plant introductions (PIs) originating from the Republic of Korea (S. Korea) have shown to be excellent sources for high levels of partial resistance against P. sojae. Resistance to two highly virulent P. sojae isolates was assessed in 1395 PIs from S. Korea via a greenhouse layer test. Lines exhibiting possible Rps gene immunity or rot due to other pathogens were removed and the remaining 800 lines were used to identify regions of quantitative resistance using genome-wide association mapping. Sixteen SNP markers on chromosomes 3, 13 and 19 were significantly associated with partial resistance to P. sojae and were grouped into seven quantitative trait loci (QTL) by linkage disequilibrium blocks. Two QTL on chromosome 3 and three QTL on chromosome 19 represent possible novel loci for partial resistance to P. sojae. While candidate genes at QTL varied in their predicted functions, the coincidence of QTLs 3-2 and 13-1 on chromosomes 3 and 13, respectively, with Rps genes and resistance gene analogs provided support for the hypothesized mechanism of partial resistance involving weak R-genes. QTL contributing to partial resistance towards P. sojae in soybean germplasm originating from S. Korea were identified. The QTL identified in this study coincide with previously reported QTL, Rps genes, as well as novel loci for partial resistance. Molecular markers associated with these QTL can be used in the marker-assisted introgression of these alleles into elite cultivars. Annotations of genes within QTL allow hypotheses on the possible mechanisms of partial

  19. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis.

    Science.gov (United States)

    Li, Chengchen; Gui, Shunhua; Yang, Tao; Walk, Thomas; Wang, Xiurong; Liao, Hong

    2012-01-01

    Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparative studies on structure, transcription regulation and responses to phosphate (Pi) deprivation of the soybean PAP gene family should facilitate further insights into the potential physiological roles of GmPAPs. BLAST searches were performed to identify soybean PAP genes at the phytozome website. Bioinformatic analyses were carried out to investigate their gene structure, conserve motifs and phylogenetic relationships. Hydroponics and sand-culture experiments were carried out to obtain the plant materials. Quantitative real-time PCR was employed to analyse the expression patterns of PAP genes in response to P deficiency and symbiosis. In total, 35 PAP genes were identified from soybean genomes, which can be classified into three distinct groups including six subgroups in the phylogenetic tree. The expression pattern analysis showed flowers possessed the largest number of tissue-specific GmPAP genes under normal P conditions. The expression of 23 GmPAPs was induced or enhanced by Pi starvation in different tissues. Among them, nine GmPAP genes were highly expressed in the Pi-deprived nodules, whereas only two GmPAP genes showed significantly increased expression in the arbuscular mycorrhizal roots under low-P conditions. Most GmPAP genes are probably involved in P acquisition and recycling in plants. Also we provide the first evidence that some members of the GmPAP gene family are possibly involved in the response of plants to symbiosis with rhizobia or arbuscular mycorrhizal fungi under P-limited conditions.

  20. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting

    Directory of Open Access Journals (Sweden)

    Md Mokter Hossain

    2014-12-01

    Full Text Available Soybean genotypes show diverse physiological responses to drought, but specific physiological traits that can be used to evaluate drought tolerance have not been identified. In the present study we investigated physiological traits of soybean genotypes under progressive soil drying and rewetting, using a treatment mimicking field conditions. After a preliminary study with eight soybean genotypes, two drought-tolerant genotypes and one susceptible genotype were grown in the greenhouse and subjected to water restriction. Leaf expansion rate, gas exchange, water relation parameters, total chlorophyll (Chl, proline contents of leaves, and root xylem pH were monitored in a time course, and plant growth and root traits were measured at the end of the stress cycle. Drought-tolerant genotypes maintained higher leaf expansion rate, net photosynthetic rate (Pn, Chl content, instantaneous water use efficiency (WUEi, % relative water content (RWC, water potential (ψw, and turgor potential (ψp during progressive soil drying and subsequent rewetting than the susceptible genotypes. By contrast, stomatal conductance (gs and transpiration rate (Tr of tolerant genotypes declined faster owing to dehydration and recovered more sharply after rehydration than the same parameters in susceptible ones. Water stress caused a significant increase in leaf proline level and root xylem sap pH of both genotypes but tolerant genotypes recovered to pre-stress levels more quickly after rehydration. Tolerant genotypes also produced longer roots with higher dry mass than susceptible genotypes. We conclude that rapid perception and adjustment in response to soil drying and rewetting as well as the maintenance of relatively high Pn, %RWC, and root growth constitute the mechanisms by which drought-tolerant soybean genotypes cope with water stress.

  1. Genome-wide SNP identification and characterization in two soybean cultivars with contrasting Mungbean Yellow Mosaic India Virus disease resistance traits.

    Directory of Open Access Journals (Sweden)

    Chandra Bhan Yadav

    Full Text Available Mungbean yellow mosaic India virus (MYMIV is a bipartite Geminivirus, which causes severe yield loss in soybean (Glycine max. Considering this, the present study was conducted to develop large-scale genome-wide single nucleotide polymorphism (SNP markers and identify potential markers linked with known disease resistance loci for their effective use in genomics-assisted breeding to impart durable MYMIV tolerance. The whole-genome re-sequencing of MYMIV resistant cultivar 'UPSM-534' and susceptible Indian cultivar 'JS-335' was performed to identify high-quality SNPs and InDels (insertion and deletions. Approximately 234 and 255 million of 100-bp paired-end reads were generated from UPSM-534 and JS-335, respectively, which provided ~98% coverage of reference soybean genome. A total of 3083987 SNPs (1559556 in UPSM-534 and 1524431 in JS-335 and 562858 InDels (281958 in UPSM-534 and 280900 in JS-335 were identified. Of these, 1514 SNPs were found to be present in 564 candidate disease resistance genes. Among these, 829 non-synonymous and 671 synonymous SNPs were detected in 266 and 286 defence-related genes, respectively. Noteworthy, a non-synonymous SNP (in chromosome 18, named 18-1861613 at the 149th base-pair of LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE gene responsible for a G/C transversion [proline (CCC to alanine(GCC] was identified and validated in a set of 12 soybean cultivars. Taken together, the present study generated a large-scale genomic resource such as, SNPs and InDels at a genome-wide scale that will facilitate the dissection of various complex traits through construction of high-density linkage maps and fine mapping. In the present scenario, these markers can be effectively used to design high-density SNP arrays for their large-scale validation and high-throughput genotyping in diverse natural and mapping populations, which could accelerate genomics-assisted MYMIV disease resistance breeding in soybean.

  2. Genome-wide SNP identification and characterization in two soybean cultivars with contrasting Mungbean Yellow Mosaic India Virus disease resistance traits.

    Science.gov (United States)

    Yadav, Chandra Bhan; Bhareti, Priyanka; Muthamilarasan, Mehanathan; Mukherjee, Minakshi; Khan, Yusuf; Rathi, Pushpendra; Prasad, Manoj

    2015-01-01

    Mungbean yellow mosaic India virus (MYMIV) is a bipartite Geminivirus, which causes severe yield loss in soybean (Glycine max). Considering this, the present study was conducted to develop large-scale genome-wide single nucleotide polymorphism (SNP) markers and identify potential markers linked with known disease resistance loci for their effective use in genomics-assisted breeding to impart durable MYMIV tolerance. The whole-genome re-sequencing of MYMIV resistant cultivar 'UPSM-534' and susceptible Indian cultivar 'JS-335' was performed to identify high-quality SNPs and InDels (insertion and deletions). Approximately 234 and 255 million of 100-bp paired-end reads were generated from UPSM-534 and JS-335, respectively, which provided ~98% coverage of reference soybean genome. A total of 3083987 SNPs (1559556 in UPSM-534 and 1524431 in JS-335) and 562858 InDels (281958 in UPSM-534 and 280900 in JS-335) were identified. Of these, 1514 SNPs were found to be present in 564 candidate disease resistance genes. Among these, 829 non-synonymous and 671 synonymous SNPs were detected in 266 and 286 defence-related genes, respectively. Noteworthy, a non-synonymous SNP (in chromosome 18, named 18-1861613) at the 149th base-pair of LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE gene responsible for a G/C transversion [proline (CCC) to alanine(GCC)] was identified and validated in a set of 12 soybean cultivars. Taken together, the present study generated a large-scale genomic resource such as, SNPs and InDels at a genome-wide scale that will facilitate the dissection of various complex traits through construction of high-density linkage maps and fine mapping. In the present scenario, these markers can be effectively used to design high-density SNP arrays for their large-scale validation and high-throughput genotyping in diverse natural and mapping populations, which could accelerate genomics-assisted MYMIV disease resistance breeding in soybean.

  3. Fine Mapping and Characterization of Candidate Genes that Control Resistance to Cercospora sojina K. Hara in Two Soybean Germplasm Accessions.

    Directory of Open Access Journals (Sweden)

    Anh-Tung Pham

    Full Text Available Frogeye leaf spot (FLS, caused by the fungus Cercospora sojina K. Hara, may cause a significant yield loss to soybean growers in regions with a warm and humid climate. Two soybean accessions, PI 594891 and PI 594774, were identified to carry a high level of resistance similar to that conditioned by the Rcs3 gene in 'Davis'. Previously, we reported that the resistance to FLS in these two plant introductions (PIs was controlled by a novel gene (s on chromosome 13 that is different from Rcs3. To fine-map the novel FLS resistance gene(s in these two PIs, F2: 3 seeds from the crosses between PI 594891 and PI 594774, and the FLS susceptible genotype 'Blackhawk' were genotyped with SNP markers that were designed based on the SoySNP50k iSelect BeadChip data to identify recombinant events and locate candidate genes. Analysis of lines possessing key recombination events helped narrow down the FLS-resistance genomic region in PI 594891 from 3.3 Mb to a 72.6 kb region with five annotated genes. The resistance gene in PI 594774 was fine-mapped into a 540 kb region that encompasses the 72.6 kb region found in PI 594891. Sequencing five candidate genes in PI 594891 identified three genes that have several mutations in the promoter, intron, 5', and 3' UTR regions. qPCR analysis showed a difference in expression levels of these genes in both lines compared to Blackhawk in the presence of C. sojina. Based on phenotype, genotype and haplotype analysis results, these two soybean accessions might carry different resistance alleles of the same gene or two different gene(s. The identified SNPs were used to develop Kompetitive Allele Specific PCR (KASP assays to detect the resistance alleles on chromosome 13 from the two PIs for marker-assisted selection.

  4. Induction of Systematic Resistance in Soybean Plants against Fusarium Wilt Disease by Seed Treatment with Benzothiadiazole and Humic Acid

    Directory of Open Access Journals (Sweden)

    Montaser Fawzy ABDEL-MONAIM

    2011-05-01

    Full Text Available The ability of benzothiadiazole (BTH, humic acid (HA and their combination when used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Both inducers and their combination were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations i. e Minia and New Valley governorates. The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except number of branches plant-1, and seed yield. Application of BTH (0.25 + HA (4 g/l was the most potent in this respect treatment. Soybean seed soaking in BTH+ HA recorded the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. Whereas, HA treatment was recorded the lowest increased of these oxidative enzymes. Also, similar results were obtained in case of total phenol but HA increased the total phenol more than BTH in all tested cultivars.

  5. Optimisation of wheat-sprouted soybean flour bread using response ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-16

    Nov 16, 2009 ... The quadratic polynomial regression model .... by employing a least square technique (Gacula and Singh, 1984;. Wanasundara and Shahidi, 1996; SPSS, 2007). The model pro- posed for each response of Y was. ∑. ∑. ∑. = =<. = +. + ... loaf volume, sensory evaluation and loaf firmness of the bread were.

  6. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    YONGCHUN LI

    1State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University,. Nanjing, Jiangsu 210095, People's Republic of China. 2School of Environmental and Resources, Zhejiang Agriculture and Forestry University, Lin'an,. Zhejiang 311300, People's Republic of China. 3Crop Research ...

  7. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    2016-12-02

    Dec 2, 2016 ... analysis, the disease severity of JN(RN)P7 was proved to be significantly different from NJ(RN)P7. The populations of. NJ(RN)P7 and JN(RN)P7 were derived from the same soy- bean cross under two ecological sites. The vital difference between the two ecological sites is that SCN is a major pest.

  8. Soybean Pl 494182: A new source of more durable resistance to nematode populations

    Science.gov (United States)

    Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the United States and worldwide. In 2012, SCN reduced yields in the U.S. by an estimated $1 billion. These losses have been contained at a stable level with the use of resistan...

  9. Does competition between soybeans and Wild Poinsettia with low-level resistance or susceptibility to glyphosate affect physiology and secondary metabolism?

    Directory of Open Access Journals (Sweden)

    André da Rosa Ulguim

    2017-06-01

    Full Text Available The Wild Poinsettia (Euphorbia heterophylla L. has elevated potential to reduce the soybean yield and is a difficult to control plant due to herbicide resistance. The objectives of this study were to determine the changes in the photosynthetic physiological parameters, secondary metabolite levels, cellular damage, and antioxidant system activity in soybean plants and Wild Poinsettia biotypes with a low level of resistance or susceptibility to glyphosate in competition with soybeans. Two replacement series experiments were conducted in a greenhouse under competition between soybeans and the low-level resistant biotype (experiment I or susceptible biotype (experiment II. The treatments consisted of different proportions of soybean plants and Wild Poinsettia [100:0 (pure stand of soybean, 50:50, and 0:100 (pure stand of Wild Poinsettia] and different evaluation periods (the 2013/14 and 2014/15 growing seasons. The following parameters were analyzed: the chlorophyll, carotenoid (CRT, total phenol, hydrogen peroxide (H2O2, and lipid peroxidation levels and the catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD enzyme activity. Generally, competition between the soybeans and the Wild Poinsettia biotypes did not alter the photosynthetic parameters or the photosynthetic pigment levels of the crop. For the weed biotypes, competition with the soybeans negatively affected photosynthesis. Greater losses of chlorophylls and CRTs were observed for the susceptible biotype when in competition with soybeans, whereas the opposite trend was observed for the biotype with a low level of resistance. No cellular damage or alterations in antioxidant system enzyme activity was observed, which indicated a lack of oxidative stress.

  10. Genetic mapping and haplotype analysis of a locus for quantitative resistance to Fusarium graminearum in soybean accession PI 567516C.

    Science.gov (United States)

    Cheng, Peng; Gedling, Cassidy R; Patil, Gunvant; Vuong, Tri D; Shannon, J Grover; Dorrance, Anne E; Nguyen, Henry T

    2017-05-01

    A major novel quantitative disease resistance locus, qRfg_Gm06, for Fusarium graminearum was genetically mapped to chromosome 6. Genomic-assisted haplotype analysis within this region identified three putative candidate genes. Fusarium graminearum causes seed, root rot, and seedling damping-off in soybean which contributes to reduced stands and yield. A cultivar Magellan and PI 567516C were identified with low and high levels of partial resistance to F. graminearum, respectively. Quantitative disease resistance loci (QDRL) were mapped with 241 F 7:8 recombinant inbred lines (RILs) derived from a cross of Magellan × PI 567516C. Phenotypic evaluation for resistance to F. graminearum used the rolled towel assay in a randomized incomplete block design. The genetic map was constructed from 927 polymorphic single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. One major QDRL qRfg_Gm06 was detected and mapped to chromosome 6 with a LOD score of 20.3 explaining 40.2% of the total phenotypic variation. This QDRL was mapped to a ~400 kb genomic region of the Williams 82 reference genome. Genome mining of this region identified 14 putative candidate disease resistance genes. Haplotype analysis of this locus using whole genome re-sequencing (WGRS) of 106 diverse soybean lines narrowed the list to three genes. A SNP genotyping Kompetitive allele-specific PCR (KASP) assay was designed for one of the genes and was validated in a subset of the RILs and all 106 diverse lines.

  11. Identification and mapping of resistance genes to Phakopsora pachyrhizi in soybean (Glycine max L.) accession PI 594767-A.

    Science.gov (United States)

    Rocha, G A F; Alves, D P; Oliveira, J C; Brommonschenke, S H

    2016-08-05

    The goal of this study was to study resistance inheritance in the soybean (Glycine max L.) accession PI 594767-A to the Phakopsora pachyrhizi isolate PPUFV02, and map the resistance gene(s) identified using microsatellite markers. Crosses between PI 594767-A and the susceptible cultivar 'Conquista' gave rise to the segregating subpopulations 26C-2 and 26C-5, which in the F2 generation were evaluated for their reactions to PPUFV02. In addition, analyses with microsatellite markers linked to the Rpp1-Rpp5 loci were also performed. The segregation pattern obtained in 26C-2 revealed that resistance was governed by a recessive gene; a 1:2:1 segregation pattern was observed in 26C-5, indicating control by a gene with partial dominance. This variability may have been caused because environmental conditions, particularly temperature, when 26C-5 was assessed were unfavorable for pathogen development, allowing the phenotypic expression of heterozygous alleles in PI 594767-A. A resistance gene was located in the soybean linkage group G, in the genomic region between Sct_187r2 and Sat_064 that contains the Rpp1 locus. Resistance in PI 594767-A is probably conferred by a new Rpp1 gene allele, because this accession has a haplotype for Sct_187r2 and Sat_064, which differs from haplotypes of accessions that also contain resistance alleles that map the Rpp1 locus. The use of Sct_187r2 and Sat_064 will facilitate the introgression of the resistance allele from PI 594767-A and its pyramiding with other resistance genes into genotypes with superior agronomic characteristics, in order to obtain cultivars with broad-spectrum resistance to P. pachyrhizi.

  12. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  13. Análise multivariada dos componentes da resistência à ferrugem-asiática em genótipos de soja Multivariate analysis of resistance components to Asian rust in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Lucimara Junko Koga

    2008-10-01

    urediniospores. The cluster analysis formed four groups: A - developed the highest amount of disease; B - developed the lowest amount of disease; C - low initial resistance; and D - high initial resistance. All the genotypes of groups B, C and D had RB (redish-brown lesions and varied for initial resistance, delayed resistance, intensity of sporulation, stability of the qualitative response, productivity of urediniospores, and number of days to reach 50% of the maximum severity. Qualitative responses and disease severity evaluations reflect the combined effects of resistance on all the infection components and show practical importance in genotypes differentiation, regarding disease resistance. The genotypes of groups B, C and D presented qualitative and quantitative resistance, in different degrees, and they are promising genotypes as sources of resistance to Asian soybean rust.

  14. Genotypic Variation and Physiological Response of 10 Soybean Genotypes to Low-Zn Stress in Hydroponics

    OpenAIRE

    Hacisalihoglu, Gokhan; Lampley, Aja

    2009-01-01

    Soybean [Glycine max (L.) Merr.] is one of the most important vegetable and oilseed crops with an annual value of over 36 billion dollars in the U.S. Soil Zn deficiency can reduce soybean yield and quality; therefore identifying Zn efficient genotypes can offer a sustainable solution to this problem. Furthermore, a reliable method for screening soybean lines would be useful for breeders. The main objective of this study was to detect genotypic variation in soybean under low Zn stress. Thi...

  15. Soybean (Glycine max L. Merr.) Sprouts Germinated under Red Light Irradiation Induce Disease Resistance against Bacterial Rotting Disease

    OpenAIRE

    Dhakal, Radhika; Park, Euiho; Lee, Se-Weon; Baek, Kwang-Hyun

    2015-01-01

    Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were co...

  16. Arabidopsis Novel Glycine-Rich Plasma Membrane PSS1 Protein Enhances Disease Resistance in Transgenic Soybean Plants1[OPEN

    Science.gov (United States)

    Wang, Bing; Sumit, Rishi; Srivastava, Subodh K.; Yang, Yang; Swaminathan, Sivakumar

    2018-01-01

    Nonhost resistance is defined as the immunity of a plant species to all nonadapted pathogen species. Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 is nonhost to the oomycete plant pathogen Phytophthora sojae and the fungal plant pathogen Fusarium virguliforme that are pathogenic to soybean (Glycine max). Previously, we reported generating the pss1 mutation in the pen1-1 genetic background as well as genetic mapping and characterization of the Arabidopsis nonhost resistance Phytophthora sojae-susceptible gene locus, PSS1. In this study, we identified six candidate PSS1 genes by comparing single-nucleotide polymorphisms of (1) the bulked DNA sample of seven F2:3 families homozygous for the pss1 allele and (2) the pen1-1 mutant with Columbia-0. Analyses of T-DNA insertion mutants for each of these candidate PSS1 genes identified the At3g59640 gene encoding a glycine-rich protein as the putative PSS1 gene. Later, complementation analysis confirmed the identity of At3g59640 as the PSS1 gene. PSS1 is induced following P. sojae infection as well as expressed in an organ-specific manner. Coexpression analysis of the available transcriptomic data followed by reverse transcriptase-polymerase chain reaction suggested that PSS1 is coregulated with ATG8a (At4g21980), a core gene in autophagy. PSS1 contains a predicted single membrane-spanning domain. Subcellular localization study indicated that it is an integral plasma membrane protein. Sequence analysis suggested that soybean is unlikely to contain a PSS1-like defense function. Following the introduction of PSS1 into the soybean cultivar Williams 82, the transgenic plants exhibited enhanced resistance to F. virguliforme, the pathogen that causes sudden death syndrome. PMID:29101280

  17. Resistência de campo ao vírus da queima-do-broto em genótipos de soja resistentes a insetos Field resistence to brazilian bud blight in soybean genotypes resistant to insects

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenção

    1989-01-01

    above plus seven others were also screened by mechanical inoculation of greenhouse plants with five isolates of the soybean bud blight virus. The results were not parallel to those read in the field exposure test. Thus, the response of PI 227687, IAC 73-228 and probably those of some of the other best genotypes are not considered the result of plant resistance to the virus, but rather as field resistance related to the interaction plant/thrips vector.

  18. Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance

    Directory of Open Access Journals (Sweden)

    Caroline J. Sepiol

    2017-12-01

    Full Text Available Soybean (Glycine max [L.] Merr is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars’ worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding.

  19. Biochemical response of Anticarsia gemmatalis fed with soybean plants pulverized with the synthetic trypsin inhibitor benzamidine

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.G.A.; Pilon, A.M.; Pilon, F.M.; Ribeiro, F.R.; Silva, F.C.; Ribon, A.O.B.; Reis, A.P.; Visotto, L.E. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Guedes, R.N.C. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Biologia Animal; Oliveira, J.A. [Universidade Federal de Vicosa (UFV), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2008-07-01

    Full text: Insects are responsible for severe crop losses. New alternatives for pest control other than agrochemicals have been investigated. Protease inhibitors are one of the prime candidates effective against insect pests. In this work we studied the effect of the synthetic trypsin inhibitor benzamidine on the development of Anticarsia gemmatalis, an important pest of the soybean culture. Larvae were reared on soybean plants containing 0.00, 0.15, 0.30, 0.45, 0.60 and 0.75% (w/w) of benzamidine. After 6, 12, 24 and 48 h of feeding midgut extracts were prepared and assayed for enzymatic activity (proteolytic, amidasic and stearic). Benzamidine altered the activity patterns but was not able to totally abolish enzyme activity. The proteolytic, amidasic and stearic activity showed the higher time of inhibition in 48 h in concentration of 0,75%, the inhibition was the around 93%, 63.1% and 36.6%, respectively. We suggest that the presence of inhibitor has made insects to adapt and produce proteases which are insensitive to the action of benzamidine. (author)

  20. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation

    International Nuclear Information System (INIS)

    Kirda, C.; Kanber, R.; Tulucu, K.

    1995-01-01

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugar beet with water stress imposed (i e.,irrigation omitted)during ripening,stage saved nearly 22 % water, yet with no significant yield decrease. An experiment, conducted in Turkey Region, the European part of Turkey,and aimed at studying water production functions of sunflower(i e,yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stags influence yield the least , and 40 % savings of irrigation water supply , compared with traditional practices in the region, can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiments aiming at developing deficit irrigation strategies for soybean showed that soybean was at the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during yield formation stage did not significantly hinder the yield. Similarly wheat give good yield response if irrigated at booting,heading and milking stages, depending on w heather conditions. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of wheat crop. 1 tab; 9 figs; 59 refs (Author)

  1. From Select Agent to an Established Pathogen: The Response to Phakopsora pachyrhizi (Soybean Rust) in North America.

    Science.gov (United States)

    Kelly, Heather Y; Dufault, Nicholas S; Walker, David R; Isard, Scott A; Schneider, Raymond W; Giesler, Loren J; Wright, David L; Marois, James J; Hartman, Glen L

    2015-07-01

    The pathogen causing soybean rust, Phakopsora pachyrhizi, was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 2004, P. pachyrhizi was confirmed in Louisiana, making it the first report in the continental United States. Based on yield losses from countries in Asia, Africa, and South America, it was clear that this pathogen could have a major economic impact on the yield of 30 million ha of soybean in the United States. The response by agencies within the United States Department of Agriculture, industry, soybean check-off boards, and universities was immediate and complex. The impacts of some of these activities are detailed in this review. The net result has been that the once dreaded disease, which caused substantial losses in other parts of the world, is now better understood and effectively managed in the United States. The disease continues to be monitored yearly for changes in spatial and temporal distribution so that soybean growers can continue to benefit by knowing where soybean rust is occurring during the growing season.

  2. Genome-wide characterization of the aldehyde dehydrogenase gene superfamily in soybean and its potential role in drought stress response.

    Science.gov (United States)

    Wang, Wei; Jiang, Wei; Liu, Juge; Li, Yang; Gai, Junyi; Li, Yan

    2017-07-07

    Aldehyde dehydrogenases (ALDHs) represent a group of enzymes that detoxify aldehydes by facilitating their oxidation to carboxylic acids, and have been shown to play roles in plant response to abiotic stresses. However, the comprehensive analysis of ALDH superfamily in soybean (Glycine max) has been limited. In present study, a total of 53 GmALDHs were identified in soybean, and grouped into 10 ALDH families according to the ALDH Gene Nomenclature Committee and phylogenetic analysis. These groupings were supported by their gene structures and conserved motifs. Soybean ALDH superfamily expanded mainly by whole genome duplication/segmental duplications. Gene network analysis identified 1146 putative co-functional genes of 51 GmALDHs. Gene Ontology (GO) enrichment analysis suggested the co-functional genes of these 51 GmALDHs were enriched (FDR soybean tissues. The expression levels of 13 GmALDHs were significantly up-regulated and 14 down-regulated in response to water deficit. The occurrence frequencies of three drought-responsive cis-elements (ABRE, CRT/DRE, and GTGCnTGC/G) were compared in GmALDH genes that were up-, down-, or non-regulated by water deficit. Higher frequency of these three cis-elements was observed for the group of up-regulated GmALDH genes as compared to the group of down- or non- regulated GmALDHs by drought stress, implying their potential roles in the regulation of soybean response to drought stress. A total of 53 ALDH genes were identified in soybean genome and their phylogenetic relationships and duplication patterns were analyzed. The potential functions of GmALDHs were predicted by analyses of their co-functional gene networks, gene expression profiles, and cis-regulatory elements. Three GmALDH genes, including GmALDH3H2, GmALDH12A2 and GmALDH18B3, were highly induced by drought stress in soybean leaves. Our study provides a foundation for future investigations of GmALDH gene function in soybean.

  3. Effect of Charcoal Rot on Selected Putative Drought Resistant Soybean Genotypes and Yield.

    Science.gov (United States)

    Charcoal rot (CR), caused by the fungus Macrophomina phaseolina (Tassi) Goid. is a pervasive disease of economic significance on soybeans ([(Glycine max (L.) Merr.) that is exacerbated when plants are under stress, especially under heat and drought condition. Thus, the objective of this research was...

  4. Chemical evidence for the effect of Urochloa ruziziensis on glyphosate-resistant soybeans.

    Science.gov (United States)

    Nepomuceno, Mariluce; Chinchilla, Nuria; Varela, Rosa M; Molinillo, José Mg; Lacret, Rodney; Alves, Pedro Lca; Macias, Francisco A

    2017-10-01

    Soybean (Glycine max) is an important oleaginous legume that has been cultivated in new areas in Brazil, including pastures. Problems of reduced production yields have been reported by soybean growers when the crop is sown immediately after desiccation of pastures of Urochloa spp. using glyphosate. The objective of this work was to extract, isolate and identify the major chemicals from U. ruziziensis that have phytotoxic activity and to evaluate the possible relation between this effect and reduced soybean yield. U. ruziziensis plants at the flowering stage were desiccated using glyphosate at 1.44 kg ha -1 . The plants were collected between five and ten days after treatment. Extracts of dried and ground shoots were obtained by sequential extraction with hexane, dichloromethane and methanol. The results of wheat coleoptile bioassays indicated that the methanol extract was more inhibitory than the dichloromethane extract regardless of glyphosate application. Protodioscin, a steroidal saponin, was isolated from the extract as the major component and the activities of this compound were in good agreement with those found for the extract. The release of this compound into the soil is a plausible explanation for the decrease in production observed in transgenic soybean crop after desiccation of U. ruziziensis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Adriamycin resistance and radiation response

    International Nuclear Information System (INIS)

    Belli, J.A.; Harris, J.R.

    1979-01-01

    Mammalian cells (V79) in culture developed resistance to Adriamycin during continuous exposure to low levels of drug. This resistance was accompanied by change in x-ray survival properties which, in turn, depended upon the isolation of subpopulations from resistant sub lines. These changes in x-ray survival properties were characterized by reduced D/sub Q/ values and a decrease in the D/sub O/. However, these changes were not observed together in the same cell sub line. Adriamycin-resistant cells did not appear to be radiation damage repair deficient. Other phenotypic changes (cell morphology, DNA content and chromosome number) suggested mutational events coincident with the development of Adriamycin resistance

  6. Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographic distribution.

    Science.gov (United States)

    Schoen, D J; Burdon, J J; Brown, A H

    1992-04-01

    Accessions of five diploid and five tetraploid isozymically defined groups of Glycine tomentella collected from throughout the species range in Australasia were scored for resistance to three separate isolates of Phakopsora pachyrhizi, the causal agent of soybean leaf rust. Resistance levels were found to be high (>75%) in most of the groups. While resistance levels differed among groups, the overall levels in polyploids were similar to those in diploids. Geographical patterns of resistance and susceptibility to P. pachyrhizi indicate that two regions of susceptibility exist. The highest proportion of susceptible accessions occurs in the Kimberley Plateau region of Western Australia and the Northern Territory, while another region of susceptibility is found in the Townsville/Cairns region of Queensland. Results from genetic crosses between accessions within two forms of the tetraploids indicate that in the aneuploid form (2n = 78), resistance to P. pachyrhizi was under the control of a single dominant gene, whereas in a second group of tetraploids (2n=80), resistance was controlled by two or three gene loci.

  7. Photosynthetic response of soybean to twospotted spider mite (Acari: Tetranychydae injury

    Directory of Open Access Journals (Sweden)

    Adeney de Freitas Bueno

    2009-08-01

    Full Text Available The twospotted spider mite Tetranychus urticae Koch is a common pest on soybean plants. To clarify plant-arthropod interaction on mite-soybean system, leaf fluorescence, photosynthetic responses to variable carbon dioxide levels, and chlorophyll content were evaluated. Significant photosynthetic rate reduction was observed due to stomatal limitation. Stomatal closure was the major plant physiological response. As a consequence, there was reduction in photosynthetic rates. Surprisingly, plants did not show chlorophyll content reduction associated with photosynthetic impairment. No differences in fluorescence data indicate that T. urticae injury did not impair the function of light harvesting and photoelectron transport. These results showed that T. urticae could be a serious pest of soybean even on lower infestation, at least when photosynthesis was determinant to yield.O ácaro-rajado, Tetranychus urticae Koch é uma praga comum em plantas de soja. Para elucidar a interação entre o artrópode e a planta no sistema soja-ácaro, a fluorescência, as respostas fotossintéticas em diferentes concentrações internas de CO2 e o conteúdo de clorofila foram avaliados. Observou-se redução na capacidade fotossintética das plantas infestadas e o fechamento dos estômatos foi a principal causa dessa redução. As plantas infestadas não mostraram redução no conteúdo de clorofila. Também, nenhuma diferença foi encontrada na leitura de fluorescência, o que mostra que a injúria causada pelo ácaro não prejudica a coleta de luz nem o transporte de elétrons. Estes resultados mostram que T. urticae pode ser uma praga séria na cultura da soja mesmo em baixas infestações, principalmente nas situações em que a fotossíntese é fator determinante na produção.

  8. Parâmetros genéticos da resistência da soja a Cercospora sojina Genetic parameters of soybean resistance to Cercospora sojina

    Directory of Open Access Journals (Sweden)

    Geraldo de Amaral Gravina

    2004-07-01

    Full Text Available A herança da resistência da soja a Cercospora sojina Hara foi avaliada por meio de parâmetros genéticos, estimados pela análise de médias e de variâncias de um índice multivariado. Foram utilizados os cruzamentos de duas cultivares resistentes, Paraná (P e Uberaba (U, com uma suscetível, Bossier (B. Foram avaliados cinco caracteres associados à doença, nos genitores e nas gerações F1, F2, RCR e RCS de cada cruzamento: nota do grau de infecção avaliado visualmente; diâmetro médio da lesão; porcentagem de área foliar lesionada; número de lesões por centímetro quadrado; e índice de doença. Foi aplicado aos dados das análises de gerações um índice multivariado anteriormente estabelecido. O efeito genético aditivo foi o mais importante na determinação dos caracteres relacionados com a resistência da soja a C. sojina. Nos dois cruzamentos, PxB e UxB, pelo menos um dos tipos de epistasia (aa, ad e dd foi significativo, sendo mais adequada a avaliação da resistência da soja a C. sojina, pelo modelo aditivo-dominante-epistático.The inheritance of soybean resistance to Cercospora sojina Hara was studied based on genetic parameters estimated by the analysis of means and variances of a multivariate index. The crosses between two resistant cultivars, Paraná (P and Uberaba (U, with a susceptible, Bossier (B, were used. The parents and F1, F2, BCR and BCS generations from each cross were evaluated on five characteristics associated to the disease: visually evaluated infection degree; lesion mean diameter; percentage of lesioned leaf area; number of lesions per square centimeter; and disease index. A multivariate index previously established was applied to the data of the generation analyses. The additive genetic effect was the most important in the determination of the characters related to the resistance of soybean to C. sojina. On both crosses (PxB and UxB at least one kind of epistatic interaction (aa, ad and dd was

  9. Transcriptome-Wide Identification of Reference Genes for Expression Analysis of Soybean Responses to Drought Stress along the Day.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expression quantification in combined studies on drought stress and diurnal oscillations. Recently, water deficit responses have been associated with circadian clock oscillations at the transcription level, revealing the existence of hitherto unknown processes and increasing the demand for studies on plant responses to drought stress and its oscillation during the day. We performed data mining from a transcriptome-wide background using microarrays and RNA-seq databases to select an unpublished set of candidate reference genes, specifically chosen for the normalization of gene expression in studies on soybean under both drought stress and diurnal oscillations. Experimental validation and stability analysis in soybean plants submitted to drought stress and sampled during a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX, Golgin-84 and CYST indeed exhibited greater expression stability than the conventionally used housekeeping genes (ELF1-β and β-actin under these conditions. We also demonstrated the effect of using reference candidate genes with different stability values to normalize the relative expression data from a drought-inducible soybean gene (DREB5 evaluated in different periods of the day.

  10. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.

    Science.gov (United States)

    Ngaki, Micheline N; Wang, Bing; Sahu, Binod B; Srivastava, Subodh K; Farooqi, Mohammad S; Kambakam, Sekhar; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2016-01-01

    Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.

  11. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.

    Directory of Open Access Journals (Sweden)

    Micheline N Ngaki

    Full Text Available Fusarium virguliforme causes the serious disease sudden death syndrome (SDS in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.

  12. Evaluation of North American isolates of Soybean mosaic virus for gain of virulence on Rsv-genotype soybeans with special emphasis on resistance-breaking determinants on Rsv4.

    Science.gov (United States)

    Khatabi, B; Fajolu, O L; Wen, R-H; Hajimorad, M R

    2012-12-01

    Resistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV-G1 to SMV-G7, to study interaction with Rsv-genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago. In this study, 35 SMV field isolates collected in recent years from 11 states were evaluated for gain of virulence on soybean genotypes containing individual Rsv genes. All isolates were avirulent on L78-379 (Rsv1), whereas 19 were virulent on L29 (Rsv3). On PI88788 (Rsv4), 14 of 15 isolates tested were virulent; however, only one was capable of systemically infecting all of the inoculated V94-5152 (Rsv4). Nevertheless, virulent variants from 11 other field isolates were rapidly selected on initial inoculation onto V94-5152 (Rsv4). The P3 cistrons of the original isolates and their variants on Rsv4-genotype soybeans were sequenced. Analysis showed that virulence on PI88788 (Rsv4) was not associated, in general, with selection of any new amino acid, whereas Q1033K and G1054R substitutions were consistently selected on V94-5152 (Rsv4). The role of Q1033K and G1054R substitutions, individually or in combination, in virulence on V94-5152 (Rsv4) was confirmed on reconstruction in the P3 cistron of avirulent SMV-N, followed by biolistic inoculation. Collectively, our data demonstrate that SMV has evolved virulence towards Rsv3 and Rsv4, but not Rsv1, in the USA. Furthermore, they confirm that SMV virulence determinants on V94-5152 (Rsv4) reside on P3. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  13. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2] will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS: We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm and elevated (550 ppm [CO(2] in a replicated and field-based study. There was no influence of elevated [CO(2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3 plant, at elevated [CO(2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2] for soybean. CONCLUSION: Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2] in the absence of drought.

  14. Laboratory testing and molecular analysis of the resistance of wild and cultivated soybeans to cotton bollworm, Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    2015-02-01

    Full Text Available Identifying a superior soybean variety with high defoliator resistance is important to avoid yield loss. Cotton bollworm (Helicoverpa armigera Hübner is one of the major defoliators of soybean (Glycine max [L.] Merr. worldwide. In this study, we evaluated the effect of H. armigera larvae on ED059, a wild soybean (Glycine soja Sieb. et Zucc., and three cultivated soybean varieties: Tianlong 2, PI 535807, and PI 533604, in choice and no-choice assays. The percentage of ED059 leaflets consumed by H. armigera was lower than that of the three cultivated soybeans. Larvae that fed on ED059 exhibited low weight gain and high mortality rate. Waldbauer nutritional indices suggested that ED059 reduced the growth, consumption, and frass production of H. armigera larvae. Larvae that fed on ED059 showed lower efficiency of conversion of ingested and of digested food than those that fed on Tianlong 2 and PI 533604. However, they showed statistically similar consumption index and approximate digestibility compared with those fed on the three cultivated soybeans. Quantitative real-time PCR analysis revealed that 24 h after insect attack, ED059 had higher transcript levels of Kunitz trypsin inhibitor 3, Cysteine proteinase inhibitor 2, and Nerolidol synthase 1 but a lower transcript level of Pathogenesis-related protein 1 than Tianlong 2. The gene expression results were consistent with the presence of higher levels of jasmonic acid (JA and transcript levels of the JA biosynthesis enzyme allene oxide cyclase 3 in ED059 than in Tianlong 2. Our findings indicate that ED059 is a superior soybean line with strong insect resistance that may be mediated via the JA pathway.

  15. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes.

    Science.gov (United States)

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-06-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants.

  16. Marcadores RAPD para detecção de resistência à ferrugem-asiática-da-soja RAPD markers for detection soybean rust resistance

    Directory of Open Access Journals (Sweden)

    Marcelo Marchi Costa

    2008-12-01

    Full Text Available Os objetivos deste trabalho foram confirmar a herança da resistência da PI 459025 (Rpp4 à ferrugem-asiática-da-soja e identificar marcadores moleculares do tipo RAPD, ligados a este gene de resistência, em populações de soja. Pelo cruzamento dos genitores contrastantes PI 459025 x Coodetec 208 obteve-se uma população, cujas populações das gerações F2 e F2:3 foram artificialmente infectadas e avaliadas quanto à reação ao fungo Phakopsora pachyrhizi, pelo tipo de lesão (RB - resistente e TAN - suscetível. Com os resultados da avaliação fenotípica, dois "bulks" foram obtidos com DNA de plantas homozigóticas resistentes e suscetíveis, respectivamente, pela análise de "bulks" segregantes. De 600 iniciadores RAPD aleatórios, foram identificados três com fragmentos polimórficos entre os "bulks" e parentais contrastantes quanto à resistência. Pela análise do qui-quadrado, confirmaram-se: a herança monogênica, com dominância completa quanto à resistência ao patógeno, e a segregação 3:1 para a presença de banda dos três marcadores. Os três marcadores são ligados respectivamente a 5,1, 6,3 e 14,7 cM de distância do loco de resistência, em fase de repulsão no grupo de ligação G, o que foi confirmado pela utilização do marcador microssatélite Satt288. Estes marcadores são promissores na seleção assistida para resistência à ferrugem-asiática-da-soja.The objectives of this work were to confirm the PI 459025 inheritance of resistance (Rpp4 to Asian soybean rust pathogen and to detect RAPD markers linked to this resistance gene in soybean populations. Through the cross of the distint parental lines PI 459025 x Coodetec 208, a population was obtained, whose F2 and F2:3 generations had their populations artificially infected and evaluated for the reaction to Phakopsora pachyrhizi, by lesion type classification (RB - resistant and TAN - susceptible. Using the phenotypic results, the bulked segregant analysis

  17. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    Science.gov (United States)

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  18. Soybean Toxin (SBTX) Impairs Fungal Growth by Interfering with Molecular Transport, Carbohydrate/Amino Acid Metabolism and Drug/Stress Responses

    Science.gov (United States)

    Morais, Janne K. S.; Bader, Oliver; Weig, Michael; Oliveira, Jose Tadeu A.; Arantes, Mariana R.; Gomes, Valdirene M.; Da Cunha, Maura; Oliveira, Hermogenes D.; Sousa, Daniele O. B.; Lourencao, Andre L.; Vasconcelos, Ilka M.

    2013-01-01

    Soybean toxin (SBTX) is an antifungal protein from soybeans with broad inhibitory activity against the growth and filamentation of many fungi, including human and plant pathogenic species such as Candida albicans, Candida parapsilosis, Aspergillus niger, Penicillium herquei, Cercospora sojina and Cercospora kikuchii. Understanding the mechanism by which SBTX acts on fungi and yeasts may contribute to the design of novel antifungal drugs and/or the development of transgenic plants resistant to pathogens. To this end, the polymorphic yeast C. albicans was chosen as a model organism and changes in the gene expression profile of strain SC5314 upon exposure to SBTX were examined. Genes that were differentially regulated in the presence of SBTX were involved in glucose transport and starvation-associated stress responses as well as in the control of both the induction and repression of C. albicans hyphal formation. Transmission electron microscopy showed that C. albicans cells exposed to SBTX displayed severe signs of starvation and were heavily granulated. Our data were indicative of C. albicans cell starvation despite sufficient nutrient availability in the medium; therefore, it can be speculated that SBTX blocks nutrient uptake systems. Because neither the starvation signal nor the alkaline response pathway lead to the induction of hyphae, we hypothesise that conflicting signals are transmitted to the complex regulatory network controlling morphogenesis, eventually preventing the filamentation signal from reaching a significant threshold. PMID:23894655

  19. Inducers of resistance and silicon on the activity of defense enzymes in the soybean-Phakopsora pachyrhizi interaction

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Antunes da Cruz

    2013-06-01

    Full Text Available This study aimed to determine the effect of jasmonic acid (JA, Acibenzolar-S-Methyl (ASM and calcium silicate (a source of soluble silicon, Si, on the potentiation of soybean resistance to Asian soybean rust (ASR. The ASR severity was significantly reduced on plants sprayed with ASM or supplied with Si in comparison to plants sprayed with JA or deionized water. For chitinases (CHI, significant differences in activity between non-inoculated and inoculated plants sprayed with deionized water or with ASM occurred at 72 hours after inoculation (hai, at 24 and 72 hai when sprayed with JA and at 141 hai when supplied with Si. For β-1,3-glucanases (GLU, significant differences in activity between non-inoculated and inoculated plants sprayed with deionized water occurred at 24, 48 and 141 hai, but not until 72 for plants sprayed with ASM. For phenylalanine ammonia-lyases (PAL, significant differences in activity between non-inoculated and inoculated plants occurred only for plants sprayed with ASM at 72 and 141 hai. In conclusion, the ASR symptoms can be mild on plants sprayed with ASM or supplied with Si and that this amelioration likely involved the defense enzymes.

  20. Baseline response rates affect resistance to change.

    Science.gov (United States)

    Kuroda, Toshikazu; Cook, James E; Lattal, Kennon A

    2018-01-01

    The effect of response rates on resistance to change, measured as resistance to extinction, was examined in two experiments. In Experiment 1, responding in transition from a variable-ratio schedule and its yoked-interval counterpart to extinction was compared with pigeons. Following training on a multiple variable-ratio yoked-interval schedule of reinforcement, in which response rates were higher in the former component, reinforcement was removed from both components during a single extended extinction session. Resistance to extinction in the yoked-interval component was always either greater or equal to that in the variable-ratio component. In Experiment 2, resistance to extinction was compared for two groups of rats that exhibited either high or low response rates when maintained on identical variable-interval schedules. Resistance to extinction was greater for the lower-response-rate group. These results suggest that baseline response rate can contribute to resistance to change. Such effects, however, can only be revealed when baseline response rate and reinforcement rate are disentangled (Experiments 1 and 2) from the more usual circumstance where the two covary. Furthermore, they are more cleanly revealed when the programmed contingencies controlling high and low response rates are identical, as in Experiment 2. © 2017 Society for the Experimental Analysis of Behavior.

  1. Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2018-01-01

    Full Text Available Phytophthora root rot (PRR caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant and Williams (susceptible as the mapping population. Simple sequence repeat (SSR markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700, a pfkB carbohydrate kinase encoding gene (Glyma.02g245800, and a gene with no functional annotation (Glyma.02g246300, are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.

  2. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes.

    Directory of Open Access Journals (Sweden)

    Yejian Wang

    Full Text Available Nitrogen (N is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa, we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs.

  3. REVIEW - Advances on molecular studies of the interaction soybean - Asian rust

    Directory of Open Access Journals (Sweden)

    Aguida Maria Alves Pereira Morales

    2012-01-01

    Full Text Available Effective management practices are essential for controlling rust outbreaks. The main control methodused is the application of fungicides, which increases substantially the cost of production and is harmful to theenvironment. Prevention is still the best way to avoid more significant losses in soybean yields. Alternatives,such as planting resistant varieties to the fungus, are also important. The use of resistant or tolerant varietiesis the most promising method for controlling Asian soybean rust. Recently, five dominant genes resistant to soybean rust were described: Rpp1, Rpp2, Rpp3, Rpp4 and Rpp5. However, little is known about the molecular interaction among soybean plant and soybean rust and on the molecular pathway triggered by pathogen recognition. Understanding the molecular mechanisms involved in defense responses is of primary importance for planning strategies to control stress and, consequently, to increase plant adaptation to limiting conditions

  4. Prebiotic Supplementation Has Only Minimal Effects on Growth Efficiency, Intestinal Health and Disease Resistance of Westslope Cutthroat Trout Oncorhynchus clarkii lewisi Fed 30% Soybean Meal

    Directory of Open Access Journals (Sweden)

    Wendy M. Sealey

    2015-08-01

    Full Text Available Prebiotics have successfully been used to prevent infectious diseases in aquaculture and there is an increasing amount of literature that suggests that these products can also improve alternative protein utilization and digestion. Therefore, the objective of this study was to examine whether prebiotic supplementation increased the growth efficiency, intestinal health and disease resistance of cutthroat trout fed a high level of dietary soybean meal. To achieve this objective, juvenile Westslope cutthroat trout (Oncorhynchus clarkii lewisi were fed a practical type formulation with 0 or 30% dietary soybean meal with or without the commercial prebiotic (Grobiotic-A prior to experimental exposure to Flavobacterium psychrophilum. Juvenile Westslope cutthroat trout (initial weight 7.8 g/fish ± standard deviation of 0.5 g were stocked at 30 fish/tank in 75 L tanks with six replicate tanks per diet and fed their respective diets for 20 weeks. Final weights of Westslope cutthroat trout were affected by neither dietary soybean meal inclusion level (P=0.9582 nor prebiotic inclusion (P=0.9348 and no interaction was observed (P=0.1242. Feed conversion ratios were similarly not affected by soybean meal level (P=0.4895, prebiotic inclusion (P=0.3258 or their interaction (P=0.1478. Histological examination of the distal intestine of Westslope cutthroat trout demonstrated increases in inflammation due to both increased soybean meal inclusion level (P=0.0038 and prebiotic inclusion (P=0.0327 without significant interaction (P=0.3370. Feeding dietary soybean meal level at 30% increased mortality of F.psychrophilum cohabitation challenged Westslope cutthroat trout (P=0.0345 while prebiotic inclusion tended to decrease mortality (P=0.0671. These results indicate that subclinical alterations in intestinal inflammation levels due to high dietary inclusion levels of soybean meal could predispose Westslope cutthroat trout to F.psychrophilum infection.

  5. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  6. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Li, Yinping; Sun, Suli; Zhong, Chao; Wang, Xiaoming; Wu, Xiaofei; Zhu, Zhendong

    2017-06-01

    The RpsQ Phytophthora resistance locus was finely mapped to a 118-kb region on soybean chromosome 3. A best candidate gene was predicted and three co-segregating gene markers were developed. Phytophthora root rot (PRR), caused by Phytophthora sojae, is a major threat to sustainable soybean production. The use of genetically resistant cultivars is considered the most effective way to control this disease. The Chinese soybean cultivar Qichadou 1 exhibited a broad spectrum resistance, with a distinct resistance phenotype, following inoculation with 36 Chinese P. sojae isolates. Genetic analyses indicated that the disease resistance in Qichadou 1 is controlled by a single dominant gene. This gene locus was designated as RpsQ and mapped to a 118-kb region between BARCSOYSSR_03_0165 and InDel281 on soybean chromosome 3, and co-segregated with Insert11, Insert144 and SNP276. Within this region, there was only one gene Glyma.03g27200 encoding a protein with a typical serine/threonine protein kinase structure, and the expression pattern analysis showed that this gene induced by P. sojae infection, which was suggested as a best candidate gene of RpsQ. Candidate gene specific marker Insert144 was used to distinguish RpsQ from the other known Rps genes on chromosome 3. Identical polymerase chain reaction amplification products were produced for cultivars Qichadou 1 (RpsQ) and Ludou 4 (Rps9). All other cultivars carrying Rps genes on chromosome 3 produced different PCR products, which all lacked a 144-bp fragment present in Qichadou 1 and Ludou 4. The phenotypes of the analyzed cultivars combined with the physical position of the PRR resistance locus, candidate gene analyses, and the candidate gene marker test revealed RpsQ and Rps9 are likely the same gene, and confer resistance to P. sojae.

  7. A Novel Pathogenesis-Related Class 10 Protein Gly m 4l, Increases Resistance upon Phytophthora sojae Infection in Soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Fan, Sujie; Jiang, Liangyu; Wu, Junjiang; Dong, Lidong; Cheng, Qun; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Phytophthora root and stem rot of soybean, caused by Phytophthora sojae (P. sojae), is a destructive disease in many soybean planting regions worldwide. In a previous study, an expressed sequence tag (EST) homolog of the major allergen Pru ar 1 in apricot (Prunus armeniaca) was identified up-regulated in the highly resistant soybean 'Suinong 10' infected with P. sojae. Here, the full length of the EST was isolated using rapid amplification of cDNA ends (RACE). It showed the highest homology of 53.46% with Gly m 4 after comparison with the eight soybean allergen families reported and was named Gly m 4-like (Gly m 4l, GenBank accession no. HQ913577.1). The cDNA full length of Gly m 4l was 707 bp containing a 474 bp open reading frame encoding a polypeptide of 157 amino acids. Sequence analysis suggests that Gly m 4l contains a conserved 'P-loop' (phosphate-binding loop) motif at residues 47-55 aa and a Bet v 1 domain at residues 87-120 aa. The transcript abundance of Gly m 4l was significantly induced by P. sojae, salicylic acid (SA), NaCl, and also responded to methyl jasmonic acid (MeJA) and ethylene (ET). The recombinant Gly m 4l protein showed RNase activity and displayed directly antimicrobial activity that inhibited hyphal growth and reduced zoospore release in P. sojae. Further analyses showed that the RNase activity of the recombinant protein to degrading tRNA was significantly affected in the presence of zeatin. Over-expression of Gly m 4l in susceptible 'Dongnong 50' soybean showed enhanced resistance to P. sojae. These results indicated that Gly m 4l protein played an important role in the defense of soybean against P. sojae infection.

  8. Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress.

    Science.gov (United States)

    Liu, Haoran; Song, Jinhui; Dong, Lijun; Wang, Di; Zhang, Shuling; Liu, Jianfeng

    2017-07-01

    Understanding the mechanism for salt tolerance in wild soybean (Glycine soja) can help researchers improve that trait in cultivated soybean lines. We analyzed the effects of excess NaCl on the growth, physiology, and ion distribution in three soybean species: wild G. soja (W8), semi-wild G. gracilis (SW18), and the cultivated salt-sensitive G. max (cv. Melrose). These comparisons revealed that, under salt stress, shoot and root lengths and biomass (either shoot or root dry weights) were significantly higher for the W8 genotype than for the other two. Most of the morphological parameters for roots from the W8 plants were also increased, including total length, specific root length, and surface area. However, the average root diameter for W8 was significantly lower than that of either SW18 or 'Melrose' soybeans. In response to salinity, photosynthesis was suppressed to a greater extent in 'Melrose' than in W8. The relatively higher tolerance shown by W8 plants was also associated with lower levels of malondialdehyde, hydrogen peroxide, and relative electrical conductivity, but higher activities by superoxide dismutase and peroxidase, as well as more free proline and glycine betaine. In addition, the W8 plants contained less Na + and Cl - , but more K + , and they had a higher K + /Na + ratio in their leaves and roots when compared with either SW18 or 'Melrose' plants. Therefore, the W8 genotype performs better in terms of seedling growth, photosynthetic characteristics, and physiological indexes. These findings provide guidance for developing new soybean cultivars with improved tolerance to salt stress. Our data also contribute to the knowledge base for plant salt tolerance as a tool for increasing the yields of other crops in high-salinity soils.

  9. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  10. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach.

    Science.gov (United States)

    Iquira, Elmer; Humira, Sonah; François, Belzile

    2015-01-17

    Sclerotinia stem rot (SSR) is the most important soybean disease in Eastern Canada. The development of resistant cultivars represents the most cost-effective means of limiting the impact of this disease. In view of ensuring durable resistance, it is imperative to identify germplasm harbouring different resistance loci and to provide breeders with closely linked molecular markers to facilitate breeding. With this end in view, we assessed resistance using a highly reproducible artificial inoculation method on a diverse collection of 101 soybean lines, mostly composed of plant introductions (PIs) and some of which had previously been reported to be resistant to sclerotinia stem rot. Overall, 50% of the lines exhibited a level of resistance equal to or better than the resistant checks among elite material. Of the 50 lines previously reported to be resistant, only 20 were in this category and a few were highly susceptible under these inoculation conditions. The collection of lines was genetically characterized using a genotyping by sequencing (GBS) protocol that we have optimized for soybean. A total of 8,397 single nucleotide polymorphisms (SNPs) were obtained and used to perform an association analysis for SSR by using a mixed linear model as implemented in the TASSEL software. Three genomic regions were found to exhibit a significant association at a stringent threshold (q = 0.10) and all of the most highly resistant PIs shared the same alleles at these three QTLs. The strongest association was found on chromosome Gm03 (P-value = 2.03 × 10(-6)). The other significantly associated markers were found on chromosomes Gm08 and Gm20 with P-values resistance to Sclerotinia stem rot through the use of these PIs.

  11. Wheat (Triticum aestivum L. Cultivar Selection Affects Double-Crop and Relay-Intercrop Soybean (Glycine max L. Response on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2010-01-01

    Full Text Available Field research (2003–2005 evaluated the effect of wheat row spacing (19 and 38 cm and cultivar on double-cropped (DC soybean response, 38-cm wheat on relay-intercrop (RI response, and wheat cultivar selection on gross margins of these cropping systems. Narrow-row wheat increased grain yield 460 kg ha−1, light interception (LI 7%, and leaf area index (LAI 0.5 compared to wide rows, but did not affect DC soybean yield. High yielding wheat (P25R37 with greater LI and LAI produced lower (330 kg ha−1 soybean yields in an RI system than a low yielding cultivar (Ernie. Gross margins were $267 ha−1 greater when P25R37 was RI with H431 Intellicoat (ITC soybean compared to Ernie. Gross margins were similar for monocrop H431 non-coated (NC or ITC soybean, P25R37 in 19- or 38-cm rows with DC H431 NC soybean, and P25R37 in 38-cm rows with RI H431 ITC soybean in the absence of an early fall frost.

  12. The Lesion Simulating Disease (LSD) gene family as a variable in soybean response to Phakopsora pachyrhizi infection and dehydration.

    Science.gov (United States)

    Cabreira, Caroline; Cagliari, Alexandro; Bücker-Neto, Lauro; Wiebke-Strohm, Beatriz; de Freitas, Loreta B; Marcelino-Guimarães, Francismar C; Nepomuceno, Alexandre L; Margis-Pinheiro, Márcia M A N; Bodanese-Zanettini, Maria H

    2013-08-01

    The Lesion Simulating Disease (LSD) genes encode a family of zinc finger proteins that are reported to play an important role in the hypersensitive response and programmed cell death (PCD) that are caused by biotic and abiotic stresses. In the present study, 117 putative LSD family members were identified in Viridiplantae. Genes with one, two, or three conserved LSD domains were identified. Proteins with three LSD domains were highly represented in the species analyzed and were present in basal organisms. Proteins with two LSD domains were identified only in the Embryophyte clade, and proteins possessing one LSD domain were highly represented in grass species. Expression analyses of Glycine max LSD (GmLSD) genes were performed by real-time quantitative polymerase chain reaction. The results indicated that GmLSD genes are not ubiquitously expressed in soybean organs and that their expression patterns are instead organ-dependent. The expression of the majority of GmLSD genes is modulated in soybean during Phakopsora pachyrhizi infection. In addition, the expression of some GmLSD genes is modulated in plants under dehydration stress. These results suggest the involvement of GmLSD genes in the response of soybean to both biotic and abiotic stresses.

  13. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  14. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean.

    Science.gov (United States)

    Qin, Lu; Guo, Yongxiang; Chen, Liyu; Liang, Ruikang; Gu, Mian; Xu, Guohua; Zhao, Jing; Walk, Thomas; Liao, Hong

    2012-01-01

    Phosphorus (P) is essential for plant growth and development. Phosphate (Pi) transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide. We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14) in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean. The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.

  15. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean.

    Directory of Open Access Journals (Sweden)

    Lu Qin

    Full Text Available BACKGROUND: Phosphorus (P is essential for plant growth and development. Phosphate (Pi transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide. PRINCIPAL FINDINGS: We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14 in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean. CONCLUSIONS: The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.

  16. Resistência de genótipos de soja à Phakopsora pachyrhizi Resistance of soybean genotipes of the cerrado region to rust caused by Phakopsora pachyrhizi

    Directory of Open Access Journals (Sweden)

    Luís Antônio Siqueira de Azevedo

    2007-09-01

    Full Text Available O presente trabalho teve como objetivo, quantificar a resistência à Phakopsora pachyrhizi em 50 genótipos de soja na região do cerrado. Foi conduzido em Uberlândia, MG , um experimento em casa de vegetação, durante o período de janeiro a julho de 2004. Foram avaliados os seguintes parâmetros de resistência: período latente médio, número médio de pústulas por cm² e severidade da ferrugem. Com base nesses parâmetros, calculou-se a área abaixo da curva de progresso da doença. Após, análise de variância e teste de médias que foram comparadas pelo teste de Duncan ao nível de 5% de probabilidade, utilizando-se o software ESTAT. Foram encontradas diferenças significativas entre os genótipos de soja para os parâmetros estudados. As cultivares Emgopa 313 e Monsoy 8211 apresentaram menor período latente médio, menor número de pústulas, severidade e área abaixo da curva do progresso da doença, sendo classificadas como resistentes ao patógeno no experimento realizado.The aim of the present study, was to quantify the resistance in fifty soybean genotipes of the cerrado region to the rust caused by Phakopsora pachyrhizi .One experiment in greenhouse were conducted in Uberlândia , MG from January to July 2004. Average latent period, number of pustules per cm² and disease severity were evaluated. Based on these parameters, it was calculated the area under the disease progress curve. Significant differences were found among the soybean genotipes to the three studied parameters. The cultivars Emgopa 313 and Monsoy 8211 were more resistant to Pkakopsora pachyrhizi in greenhouse experiment.

  17. Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    Full Text Available Molybdenum cofactor (Moco is required for the activities of Moco-dependant enzymes. Cofactor for nitrate reductase and xanthine dehydrogenase (Cnx1 is known to be involved in the biosynthesis of Moco in plants. In this work, a soybean (Glycine max L. Cnx1 gene (GmCnx1 was transferred into soybean using Agrobacterium tumefaciens-mediated transformation method. Twenty seven positive transgenic soybean plants were identified by coating leaves with phosphinothricin, bar protein quick dip stick and PCR analysis. Moreover, Southern blot analysis was carried out to confirm the insertion of GmCnx1 gene. Furthermore, expression of GmCnx1 gene in leaf and root of all transgenic lines increased 1.04-2.12 and 1.55-3.89 folds, respectively, as compared to wild type with GmCnx1 gene and in line 10 , 22 showing the highest expression. The activities of Moco-related enzymes viz nitrate reductase (NR and aldehydeoxidase (AO of T1 generation plants revealed that the best line among the GmCnx1 transgenic plants accumulated 4.25 μg g(-1 h(-1 and 30 pmol L(-1, respectively (approximately 2.6-fold and 3.9-fold higher than non-transgenic control plants.In addition, overexpression ofGmCnx1boosted the resistance to various strains of soybean mosaic virus (SMV. DAS-ELISA analysis further revealed that infection rate of GmCnx1 transgenic plants were generally lower than those of non-transgenic plants among two different virus strains tested. Taken together, this study showed that overexpression of a GmCnx1 gene enhanced NR and AO activities and SMV resistance, suggesting its important role in soybean genetic improvement.

  18. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency

    Science.gov (United States)

    Wang, Xiurong; Zhao, Shaopeng; Bücking, Heike

    2016-01-01

    Background and Aims Arbuscular mycorrhizal (AM) fungi play a key role in the phosphate (P) uptake of many important crop species, but the mechanisms that control their efficiency and their contribution to the P nutrition of the host plant are only poorly understood. Methods The P uptake and growth potential of two soybean genotypes that differ in their root architectural traits and P acquisition efficiency were studied after colonization with different AM fungi and the transcript levels of plant P transporters involved in the plant or mycorrhizal P uptake pathway were examined. Key Results The mycorrhizal growth responses of both soybean genotypes ranged from highly beneficial to detrimental, and were dependent on the P supply conditions, and the fungal species involved. Only the colonization with Rhizophagus irregularis increased the growth and P uptake of both soybean genotypes. The expression of GmPT4 was downregulated, while the mycorrhiza-inducible P transporter GmPT10 was upregulated by colonization with R. irregularis. Colonization with both fungi also led to higher transcript levels of the mycorrhiza-inducible P transporter GmPT9, but only in plants colonized with R. irregularis were the higher transcript levels correlated to a better P supply. Conclusions The results suggest that AM fungi can also significantly contribute to the P uptake and growth potential of genotypes with a higher P acquisition efficiency, but that mycorrhizal P benefits depend strongly on the P supply conditions and the fungal species involved. PMID:27208734

  19. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing.

    Science.gov (United States)

    Cheng, Yanbo; Ma, Qibin; Ren, Hailong; Xia, Qiuju; Song, Enliang; Tan, Zhiyuan; Li, Shuxian; Zhang, Gengyun; Nian, Hai

    2017-05-01

    Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao. Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F 2 individuals and 196 F 7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F 2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.

  20. Children's responses to violence: resisting misunderstanding

    NARCIS (Netherlands)

    Bonnah, Shelly

    2016-01-01

    I have found that when young people begin to acknowledge their own history of responses to, and resistance against violence an awareness of their pre-existing capacities takes precedence over a focus on deficiencies. There is liberation in the knowledge that they are active rather than passive

  1. The Difference of Photosynthetic Responses to the Cadmium Stress Between a Wild Soybean (Glycine soja Sieb. et Zucc.) and a Cultivated Soybean.

    Science.gov (United States)

    Xue, Zhongcai; Gao, Huiyuan

    2017-09-01

    The effects of Cd on a halophyte of Doingying wild soybean (DY-03262) were studied by comparing it with a cultivated soybean (SN-11) via investigating photosynthetic activity, chlorophyll fluorescence and Cd concentrations in leaves after treatment with different concentrations of Cd (0, 50, and 100 μM) for 10 days. There were no significant differences in photosynthetic rate (P N ), actual photochemical efficiency of PSII (Φ PSII ), stomatal conductance (g s ), and photochemical quenching (qP) between the both soybean species without Cd treatment, but they decreased greater in DY-03262 than that in SN-11 leaves after Cd treatment. The study demonstrated that the decrease in P N were significantly correlated with Cd concentrations in the leaves of both soybeans species. The greater decreases in photosynthetic activity of the DY-03262 were due to the higher Cd concentrations in its leaves.

  2. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    Science.gov (United States)

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  3. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    OpenAIRE

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. ...

  4. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  5. O papel de Rhizoctonia spp. binucleadas na indução de resistência a mela da soja = The role of binucleate Rhizoctonia spp. inducing resistance to the soybean foliar blight

    Directory of Open Access Journals (Sweden)

    Marco Antonio Basseto

    2008-04-01

    Full Text Available O papel de Rhizoctonia spp. binucleadas (RBN, no biocontrole de doenças causadas por R. solani Kühn em várias culturas, tem sido relatado na literatura. No entanto, não há informação, no Brasil, sobre o potencial de RBN como agentes de biocontrole contradoenças causadas por Rhizoctonia na soja. A hipótese testada foi de que isolados de RBN podem induzir resistência na soja contra a mela, causada por R. solani do grupo de anastomose (AG 1 IA. Desta forma, o objetivo deste trabalho foi avaliar isolados de RBN, obtidos de amendoim, feijão e soja quanto à capacidade de induzir resistência na soja contra a mela, em condições de casa de vegetação. Esta pesquisa evidencia a ação de RBN na indução de resistência em plantas de soja contra a mela. Entretanto, a manifestação e a efetividade do fenômeno de indução de resistência são dependentes da época de cultivo da soja.The role of non-pathogenic binucleate Rhizoctonia spp. (BNR onthe biocontrol of diseases caused by R. solani on many crops has been reported in the literature. However, in Brazil, there is no information about the potential of BNR as biocontrol agents against Rhizoctonia diseases on soybean. On this research we tested thehypothesis that BNR can induce resistance on soybean against the foliar blight caused by R. solani anastomosis group (AG 1 IA. Thus, the objective of this research was to evaluate BNR isolates isolated from peanuts, snapbeans and soybean according to their ability forinducing resistance on soybean against the foliar blight disease, under greenhouse conditions. This research evidenced the role of BNR inducing resistance on soybeans against the foliar blight. However, both the occurrence and effectiveness of the phenomenon of induced resistance are dependent on the soybean cultivation season.

  6. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) is the major oilseed crop in the world and is a main source of oil and high-quality protein for both humans and animals worldwide. Plant diseases inflict heavy losses on soybean yield that negatively impact the US economy. Implicit in the high economic value of this ...

  7. Quality and yield response of soybean ( Glycine max L. Merrill) to ...

    African Journals Online (AJOL)

    However, plants droughted during the vegetative stage of development produced the highest yield per unit of irrigation water applied (that is, irrigation water use efficiency). This research results will be useful for maximizing soybean production and/or seed quality when irrigation water is limited. Key words: Glycine max, ...

  8. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  9. Increasing sugar transport to improve soybean response to elevated [CO2

    Science.gov (United States)

    Elevated atmospheric [CO2] causes a direct increase in instantaneous photosynthesis and sugar production in C3 plants, leading to a yield increase which is promising to meet future food demand. However, previous studies have shown that soybean yield does not increase as much as predicted under eleva...

  10. Modelling and optimization of texture profile of fermented soybean using response surface methodology

    Directory of Open Access Journals (Sweden)

    Birabrata Nayak

    2016-10-01

    Full Text Available In the present research, a meaty textured soybean was prepared by solid-state fermentation using Rhizopus oligosporus and dried Agaricus mushroom. The textural profile of the fermented soybean was optimized, modelled and validated by comparing the product with poultry meat. Under the optimum condition; thickness of solid substrate, inoculums volume and quantity of Agaricus mushroom powder were measured to be 1.12 cm, 5.92% (v/w and 4.84 % (w/w, respectively. The final product is found to possess hardness 538.11 g, cohesiveness 0.41, springiness 0.39, gumminess 314.85 g, chewiness 79.43 g and resilience 0.45. There is an increase in absorbable isoflavone (daidzein and antioxidant activity with lower carbohydrate and saturated fat content due to fermentation of soybean with R. oligosporus. The developed product possesses good nutritional (17.4% protein and 15.12% total fiber and functional (3.9 g/100 g diadzein; antioxidant activity 3.9 mMTR quality with low calorific value of 212.10 kCal/100 g, and it can be considered as a good “meat analogue” having the nutritional and nutraceutical richness of fermented soybeans and mushroom.

  11. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  12. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils

    NARCIS (Netherlands)

    Navarrete, A.A.; Kuramae, E.E.; De Hollander, M.; Pijl, A.S.; Van Veen, J.A.; Tsai, S.M.

    2013-01-01

    This study focused on the impact of land-use changes and agricultural management of soybean in Amazon forest soils on the abundance and composition of the acidobacterial community. Quantitative real-time PCR (q-PCR) assays and pyrosequencing of 16S rRNA gene were applied to study the acidobacterial

  13. Variable responses to CO2 of the duration of vegetative growth within maturity group IV soybeans

    Science.gov (United States)

    Prior experiments in indoor chambers and in the field using free-air carbon dioxide enrichment (FACE) systems indicated variation among soybean cultivars in whether and how much elevated CO2 prolonged vegetative development. However, the cultivars tested differed in maturity group, and it is not kn...

  14. From select agent to established pathogen: The response to Phakopsora pachyrhizi (soybean rust) in North America

    Science.gov (United States)

    The pathogen causing soybean rust, Phakopsora pachyrhizi Syd., was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 200...

  15. Beyond Focal Pests: Impact of a Neonicotinoid Seed Treatment and Resistant Soybean Lines on a Non-Target Arthropod

    Directory of Open Access Journals (Sweden)

    Tülin Özsisli

    2016-11-01

    Full Text Available Integrated pest management (IPM tactics may effectively control focal pests, but it is also important to test the compatibility of different tactics, and consider non-target organisms. We investigated the effects of a neonicotinoid seed treatment and Rag resistance genes used for soybean aphid (Aphis glycines Matsumura control on reproduction of a non-target herbivore (twospotted spider mite, Tetranychus urticae Koch in short-term greenhouse experiments. We also examined interactions between spider mites and a specialist phytoseiid mite [Ambylseius fallacis (Garman] and assessed the effects of a co-occurring opportunistic omnivore [Frankliniella occidentalis (Pergande] by including thrips density as a covariate. There were no interactive or main effects of the presence of Rag genes on the densities of any of the arthropods. Overall, effects of the seed treatment on spider mite densities varied, with no difference when mites were confined in clip cages, and higher populations on seed-treated plants when on whole plants. Predatory mites had a consistent negative impact on spider mites, and densities of A. fallacis immatures were similar between seed treated and non-seed treated plants. However, the relationship between spider mite and thrips densities was different between these two plant types, but only in the clip cage experiment lacking predatory mites. This research highlights the importance of considering how IPM tactics might affect non-target organisms.

  16. Soybean response to implementation of agrotechnical measures under various weather conditions during the year

    Directory of Open Access Journals (Sweden)

    Л. І. Прус

    2017-06-01

    Full Text Available Purpose. To substantiate and develop breeding technologies of soybean cultivation under various weather conditions of the Western Forest-Steppe zone. Methods. Laboratory test, statistical and mathematical analysis. Results. Analysis of the data of yielding increase due to the use of seed inoculation, green manure and spraying of crops with microbial prepa­rations showed that their effect was much dependent on the weather conditions during the year. Based on the analysis of productivity of such early ripening varieties of soybean as ‘Lehenda’, ‘Anzhelika’ and ‘Ksenia’ during 2011–2015, it was found that the influence of agrometeorological conditions during the vegetation period accounted for 47.8%. The results of the analysis of five-year data of productivity of the late soybean variety ‘Heorhina’ indicated that the share of influence of agrometeorological conditions during the vege­tation period on the studied variety was 48.8%. The use of microbial strains of nodule bacteria Bradyrhizobium japonicum 634b, 614A and M-8 against two backgrounds (in case of green manure application and without it was compared, and microbial culture Hetomik application during the vege­tation period. Conclusion. All biological preparations and green manure considerably increased yield of soybean seeds in moderately humidified and elevated temperature conditions. For soybean growing, the application of green manure, seed inoculation with strains of M-8, 614A and Hetomik spraying of crops was effective. The use of these methods for gro­wing ‘Lehenda’ variety was the most effective. Such varieties as ‘Lehenda’ and ‘Anzhelika’ showed more stable results as compared to others in case of considerable variations of agrometeorological conditions.

  17. Fighting Asian soybean rust

    Directory of Open Access Journals (Sweden)

    Caspar eLangenbach

    2016-06-01

    Full Text Available Phakopsora pachyrhizi is a biotrophic fungus provoking Asian soybean rust (SBR disease. SBR poses a major threat to global soybean production. Though several resistance genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.

  18. Review of the Rpt3 Genes Encoding Part of the 26S Proteasome Associated with Loci Underlying Disease Resistance in Soybean

    Directory of Open Access Journals (Sweden)

    Shivani Malik, Sukesh Bhaumik and David A. Lightfoot*

    2012-05-01

    Full Text Available The 26S proteasomal complex is a multifunctional proteolyticmachinery of the cell. The proteasome plays role in myriadof cellular functions, which have been further diversified byits separable proteolytic and non-proteolytic sub-complexes.Protein quality control and turnover, cell cycle regulation,gene regulation and DNA repair are among the key processescontrolled by the proteasome. Disease resistance inplants invokes changes in all the processes controlled by the26S proteasome. In this review, the potential contribution ofgenes encoding the proteasome to disease resistance in soybean(Glycine max L. Merr. was examined.

  19. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Sun, Jutao; Li, Lihong; Zhao, Jinming; Huang, Jing; Yan, Qiang; Xing, Han; Guo, Na

    2014-04-01

    We finely map a novel resistance gene ( RpsJS ) to Phytophthora sojae in soybean. RpsJS was mapped in 138.9 kb region, including three NBS-LRR type predicted genes, on chromosome 18. Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) has been reported in most soybean-growing regions throughout the world. Development of PRR resistance varieties is the most economical and environmentally safe method for controlling this disease. Chinese soybean line Nannong 10-1 is resistant to many P. sojae isolates, and shows different reaction types to P. sojae isolates as compared with those with known Rps (Resistance to P. sojae) genes, which suggests that the line may carry novel Rps genes or alleles. A mapping population of 231 F(2) individuals from the cross of Nannong 10-1 (Resistant, R) and 06-070583 (Susceptible, S) was used to map the Rps gene. The segregation fits a ratio of 3R:1S within F(2) plants, indicating that resistance in Nannong 10-1 is controlled by a single dominant gene (designated as RpsJS). The results showed that RpsJS was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by SSR (simple repeat sequences) markers BARCSOYSSR_18_1859 and SSRG60752K at a distance of 0.9 and 0.4 cm, respectively. Among the 14 genes annotated in this 138.9 kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950 and Glyma18g51960) are the nucleotide-binding site and a leucine-rich repeat (NBS-LRR) type gene, which may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on marker-assisted resistance spectrum analyses of RpsJS and the mapping results, we inferred that RpsJS was a novel gene or a new allele at the Rps4, Rps5 or Rps6 loci.

  20. Manganese uptake and redistribution in soybean as affected by glyphosate

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2010-12-01

    Full Text Available Detrimental effects of glyphosate on plant mineral nutrition have been reported in the literature, particularly on Mn uptake and redistribution. However, in most of the experiments conducted so far glyphosate-susceptible plants were used. Effects of glyphosate on Mn absorption kinetics, accumulation, and distribution within the plant, as well as soybean response to Mn as affected by glyphosate were studied in three experiments. In the first experiment, in nutrient solution, the effect of glyphosate on soybean Mn uptake kinetic parameters (Imax, Km and Cmin was determined. In a second experiment, also in nutrient solution, differential Mn accumulation and distribution were studied for a conventional soybean cultivar and its near-isogenic glyphosate-resistant counterpart as affected by glyphosate. In a third experiment, response of glyphosate-resistant soybean cultivars to Mn application was studied in the presence of glyphosate, in pots with Mn-deficient soil. Maximum Mn influx (Imax was higher in the herbicide-resistant (GR cultivar than in its conventional counterpart. Glyphosate applied to nutrient solution at low rates decreased Km and Cmin. A few days after herbicide treatment, RR soybean plants developed yellowish leaves, a symptom which, in the field, could be misinterpreted as Mn deficiency, but herbicide application had no effect on Mn uptake or distribution within the plant. In the soil experiment, soybean Mn uptake was increased by Mn application, with no effect of glyphosate. Under greenhouse conditions, there was no evidence of deleterious effects of glyphosate on Mn absorption, accumulation and distribution in the plant and on soybean cultivars response to Mn application.

  1. Cornstarch complexed with a soybean oil component imparts water resistance to paper

    Science.gov (United States)

    The increasing trend of using paper instead of plastic for many products for environmental and sustainability reasons has generated much interest new technologies for making paper water resistant. Most of the widely used methods and recent reports involve the use of non-biobased, synthetic materials...

  2. Development of SCAR marker linked to stem canker resistance gene in soybean

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio Gavioli

    2007-01-01

    Full Text Available Stem canker caused by the fungus Diaporthe phaseolorum f. sp. meridionalis is a disease that limits soybeancultivation. Phenotypic evaluations aiming at disease resistance require labor-intensive processes, as for instance handlingand transport of phytopathogens. The use of DNA markers in the selective procedures eases certain phases, besides beingpractical, safe and reliable. A RAPD fragment of 588pb was identified among bulks of resistant and susceptible plants in thecross BR92-15454 (R x IAC-11 (S. Through co-segregation, the distance between the resistance locus and the fragment wasestimated at 7.4 ± 2.1 cM, with a Lodmax. of 23.072 (first year and at 6.0 ± 3.4 cM with a Lodmax. of 7.806 (second year. Thefragment was converted into a SCAR marker and digested with enzyme Hinc II, which made the classification in homozygousresistant, heterozygous resistant and susceptible plants possible. This SCAR marker is suitable for use in the improvementprogram conducted in Jaboticabal.

  3. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum.

    Science.gov (United States)

    Arfaoui, Arbia; El Hadrami, Abdelbasset; Daayf, Fouad

    2018-01-01

    Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H 2 O 2 ), anion superoxide (O 2 - ) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  5. Molecular Soybean-Pathogen Interactions.

    Science.gov (United States)

    Whitham, Steven A; Qi, Mingsheng; Innes, Roger W; Ma, Wenbo; Lopes-Caitar, Valéria; Hewezi, Tarek

    2016-08-04

    Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.

  6. Resistance of soybean genotipes of the cerrado region to rust caused by Phakopsora pachyrhizi

    OpenAIRE

    Azevedo, Luís Antônio Siqueira de; Juliatti, Fernando Cezar; Barreto, Modesto

    2007-01-01

    O presente trabalho teve como objetivo, quantificar a resistência à Phakopsora pachyrhizi em 50 genótipos de soja na região do cerrado. Foi conduzido em Uberlândia, MG , um experimento em casa de vegetação, durante o período de janeiro a julho de 2004. Foram avaliados os seguintes parâmetros de resistência: período latente médio, número médio de pústulas por cm² e severidade da ferrugem. Com base nesses parâmetros, calculou-se a área abaixo da curva de progresso da doença. Após, análise de va...

  7. Processing soybeans of different origins : response of a Chinese and a western pig breed to dietary inclusion

    OpenAIRE

    Qin, G.

    1996-01-01


    Soybeans (Glycine max) have high nutritional value for domestic animals, due to their protein and energy contents. The feeding effects of full-fat soybeans for non-ruminant and immature ruminant animals, however, are limited by the presence of some antinutritional factors (ANFs). Therefore, processing is needed to inactivate these ANFs before the soybeans are used to feed animals. The nature and levels of ANFs may be quite variable between soybeans of different...

  8. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean

    NARCIS (Netherlands)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without

  9. Assesing Bemisia tabaci (Genn.) biotype B resistance in soybean genotypes: Antixenosis and antibiosis Evaluación de la resistencia de genotipos de soya a Bemisia tabaci (Genn.) biotipo B: Antixenosis y antibiosis

    OpenAIRE

    José Paulo Gonçalves Franco da Silva; Edson Luiz Lopes Baldin; Efrain Santana de Souza; André Luiz Lourenção

    2012-01-01

    Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci Genn., Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to whit...

  10. Root morphological responses of five soybean [Glycine max (L.) Merr] cultivars to cadmium stress at young seedlings.

    Science.gov (United States)

    Wang, Peng; Deng, Xiaojuan; Huang, Yian; Fang, Xiaolong; Zhang, Jie; Wan, Haibo; Yang, Cunyi

    2016-01-01

    To examine the differences in root morphological responses of soybean cultivars with different cadmium (Cd) tolerance and accumulation to Cd stress, the biomass, Cd concentration, and root morphological features of five soybean cultivars were determined under 0, 9, 23, 45, and 90 μM Cd stress via hydroponic experiments. Significantly genotypic differences in Cd tolerance and Cd concentration were observed between five soybean cultivars at four Cd levels. For Cd tolerance, HX3 showed a strong Cd tolerance with tolerance indexes of shoot biomass at 92.49, 76.44, 60.21, and 46.45% after 18 days at four Cd levels, and others had similar weak tolerance at young seedling. For Cd accumulation, Cd concentration in roots showed far higher than that in shoots. The different accumulation features in roots and shoots among five cultivars were found at four Cd levels. Comparing with the control, the total root length (RL), root surface area (SA), and root volume (RV) of all cultivars were decreased significantly at four Cd levels. Tolerant cultivar HX3 had the largest root system and sensitive cultivar BX10 had the smallest root system at young seedling stage. Correlation analysis indicated that RL, SA, and RV were positively correlated with root biomass and shoot biomass under 9 and 23 μM Cd treatments, but root average diameter (RD) was negatively correlated with shoot biomass and root biomass only under 9 μM Cd treatments, while RL and SA were negatively correlated with root Cd concentration under 23 and 45 μM Cd treatments. The results suggested that root morphological traits were closely related to Cd tolerance at young seedlings under Cd treatments.

  11. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  12. Evolutionary relationship of disease resistance genes in soybean and Arabidopsis specific for the Pseudomonas syringae effectors AvrB and AvrRpm1.

    Science.gov (United States)

    Ashfield, Tom; Redditt, Thomas; Russell, Andrew; Kessens, Ryan; Rodibaugh, Natalie; Galloway, Lauren; Kang, Qing; Podicheti, Ram; Innes, Roger W

    2014-09-01

    In Arabidopsis (Arabidopsis thaliana), the Pseudomonas syringae effector proteins AvrB and AvrRpm1 are both detected by the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) disease resistance (R) protein. By contrast, soybean (Glycine max) can distinguish between these effectors, with AvrB and AvrRpm1 being detected by the Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r R proteins, respectively. We have been using these genes to investigate the evolution of R gene specificity and have previously identified RPM1 and Rpg1b. Here, we report the cloning of Rpg1r, which, like RPM1 and Rpg1b, encodes a coiled-coil (CC)-nucleotide-binding (NB)-leucine-rich repeat (LRR) protein. As previously found for Rpg1b, we determined that Rpg1r is not orthologous with RPM1, indicating that the ability to detect both AvrB and AvrRpm1 evolved independently in soybean and Arabidopsis. The tightly linked soybean Rpg1b and Rpg1r genes share a close evolutionary relationship, with Rpg1b containing a recombination event that combined a NB domain closely related to Rpg1r with CC and LRR domains from a more distantly related CC-NB-LRR gene. Using structural modeling, we mapped polymorphisms between Rpg1b and Rpg1r onto the predicted tertiary structure of Rpg1b, which revealed highly polymorphic surfaces within both the CC and LRR domains. Assessment of chimeras between Rpg1b and Rpg1r using a transient expression system revealed that AvrB versus AvrRpm1 specificity is determined by the C-terminal portion of the LRR domain. The P. syringae effector AvrRpt2, which targets RPM1 INTERACTOR4 (RIN4) proteins in both Arabidopsis and soybean, partially blocked recognition of both AvrB and AvrRpm1 in soybean, suggesting that both Rpg1b and Rpg1r may detect these effectors via modification of a RIN4 homolog. © 2014 American Society of Plant Biologists. All Rights Reserved.

  13. Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis.

    Science.gov (United States)

    Jing, Maofeng; Ma, Hongyu; Li, Haiyang; Guo, Baodian; Zhang, Xin; Ye, Wenwu; Wang, Haonan; Wang, Qiuxia; Wang, Yuanchao

    2015-07-01

    Few proteomic studies have focused on the plant- Phytophthora interactions, our study provides important information regarding the use of proteomic methods for investigation of the basic mechanisms of plant-Phytophthora interactions. Phytophthora sojae is a fast-spreading and devastating pathogen that is responsible for root and stem rot in soybean crops worldwide. To better understand the response of soybean seedlings to the stress of infection by virulent and avirulent pathogens at the proteomic level, proteins extracted from the hypocotyls of soybean reference cultivar Williams 82 infected by P. sojae P6497 (race 2) and P7076 (race 19), respectively, were analyzed by two-dimensional gel electrophoresis. 95 protein spots were differently expressed, with 83 being successfully identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to further analysis. Based on the majority of the 83 defense-responsive proteins, and defense-related pathway genes supplemented by a quantitative reverse transcription PCR assay, a defense-related network for soybean infected by virulent and avirulent pathogens was proposed. We found reactive oxygen species (ROS) burst, the expression levels of salicylic acid (SA) signal pathway and biosynthesis of isoflavones were significantly up-regulated in the resistant soybean. Our results imply that following the P. sojae infection, ROS and SA signal pathway in soybean play the major roles in defense against P. sojae. This research will facilitate further investigation of the molecular regulatory mechanism of the defense response in soybean following infection by P. sojae.

  14. Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome.

    Science.gov (United States)

    Babujia, Letícia Carlos; Silva, Adriana Pereira; Nakatani, André Shigueyoshi; Cantão, Mauricio Egidio; Vasconcelos, Ana Tereza Ribeiro; Visentainer, Jesuí Vergilio; Hungria, Mariangela

    2016-08-01

    The transgenic soybean [Glycine max (L.) Merrill] occupies about 80 % of the global area cropped with this legume, the majority comprising the glyphosate-resistant trait (Roundup Ready(®), GR or RR). However, concerns about possible impacts of transgenic crops on soil microbial communities are often raised. We investigated soil chemical, physical and microbiological properties, and grain yields in long-term field trials involving conventional and nearly isogenic RR transgenic genotypes. The trials were performed at two locations in Brazil, with different edaphoclimatic conditions. Large differences in physical, chemical and classic microbiological parameters (microbial biomass of C and N, basal respiration), as well as in grain production were observed between the sites. Some phyla (Proteobacteria, Actinobacteria, Acidobacteria), classes (Alphaproteobacteria, Actinomycetales, Solibacteres) and orders (Rhizobiales, Burkholderiales, Myxococcales, Pseudomonadales), as well as some functional subsystems (clustering-based subsystems, carbohydrates, amino acids and protein metabolism) were, in general, abundant in all treatments. However, bioindicators related to superior soil fertility and physical properties at Londrina were identified, among them a higher ratio of Proteobacteria:Acidobacteria. Regarding the transgene, the metagenomics showed differences in microbial taxonomic and functional abundances, but lower in magnitude than differences observed between the sites. Besides the site-specific differences, Proteobacteria, Firmicutes and Chlorophyta were higher in the transgenic treatment, as well as sequences related to protein metabolism, cell division and cycle. Although confirming effects of the transgenic trait on soil microbiome, no differences were recorded in grain yields, probably due to the buffering capacity associated with the high taxonomic and functional microbial diversity observed in all treatments.

  15. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    Science.gov (United States)

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  16. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    Science.gov (United States)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  17. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  18. Suppression or Activation of Immune Responses by Predicted Secreted Proteins of the Soybean Rust Pathogen Phakopsora pachyrhizi.

    Science.gov (United States)

    Qi, Mingsheng; Grayczyk, James P; Seitz, Janina M; Lee, Youngsill; Link, Tobias I; Choi, Doil; Pedley, Kerry F; Voegele, Ralf T; Baum, Thomas J; Whitham, Steven A

    2018-01-01

    Rust fungi, such as the soybean rust pathogen Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are hyphal structures intimately associated with host-plant cell membranes. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characterization of effector proteins of rust fungi is important for understanding mechanisms that underlie their virulence and pathogenicity. Hundreds of candidate effector proteins have been predicted for rust pathogens, but it is not clear how to prioritize these effector candidates for further characterization. There is a need for high-throughput approaches for screening effector candidates to obtain experimental evidence for effector-like functions, such as the manipulation of host immune systems. We have focused on identifying effector candidates with immune-related functions in the soybean rust fungus P. pachyrhizi. To facilitate the screening of many P. pachyrhizi effector candidates (named PpECs), we used heterologous expression systems, including the bacterial type III secretion system, Agrobacterium infiltration, a plant virus, and a yeast strain, to establish an experimental pipeline for identifying PpECs with immune-related functions and establishing their subcellular localizations. Several PpECs were identified that could suppress or activate immune responses in nonhost Nicotiana benthamiana, N. tabacum, Arabidopsis, tomato, or pepper plants.

  19. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors.

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R

    2010-03-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.

  20. Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R.

    2010-01-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1–3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl2, and AgNO3. Dose–response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl2, and 42% for AgNO3. These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl2, TR of PI 416937 was insensitive to AgNO3 exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136. PMID:19969533

  1. Gamma Radiation-Induced Mutations in Soybeans

    International Nuclear Information System (INIS)

    Smutkupt, S.

    1998-01-01

    The main objective of soybean radiation experiments was to create genetic variability in soybeans of various cultivars, mutants and mutation-derived lines with the aim of producing superior breeding lines with resistance to soybean rust (Phakopsora pachyhrizi Syd.) It took altogether 12 generations over six years after gamma irradiation if soybean seeds to produce the best resistant line (81-1-038) which a variety could be developed from it. This Line 81-1-038 showed a very good specific resistance to soybean rust, Thai race 2 and moderately resistance to Thai race 1. In the rainy season of 1985, Line 81-1-038 out yielded S.J.4 (a mother line) by 868 kg/ha in a yield trail at Suwan Farm, Pak Chong, Nakorn Rajchasima. This soybean rust mutant was later named D oi Kham

  2. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  3. Soybean germplasm accession seedling reactions to soybean rust isolates from Georgia

    Science.gov (United States)

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a threat to soybean [Glycine max (L.) Merr.] production in regions of the world where winters are not cold enough to completely eliminate the many hosts of the fungus, so resistant soybean cultivars would be useful in managing this disease. Res...

  4. Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae in transgenic soybean (Glycine max (L. Merrill Fabales, Fabaceae cultivar IAS5 expressing a modified Cry1Ac endotoxin

    Directory of Open Access Journals (Sweden)

    Milena Schenkel Homrich

    2008-01-01

    Full Text Available Somatic embryos of the commercial soybean (Glycine max cultivar IAS5 were co-transformed using particle bombardment with a synthetic form of the Bacillus thuringiensis delta-endotoxin crystal protein gene cry1Ac, the beta-glucuronidase reporter gene gusA and the hygromycin resistance gene hpt. Hygromycin-resistant tissues were proliferated individually to give rise to nine sets of clones corresponding to independent transformation events. The co-bombardment resulted in a co-transformation efficiency of 44%. Many histodifferentiated embryos and 30 well-developed plants were obtained. Twenty of these plants flowered and fourteen set seeds. The integration and expression of the cry1Ac, gusA and hpt transgenes into the genomes of a sample of transformed embryos and all T0, T1, T2 and T3 plants were confirmed by Gus activity, PCR, Southern and western blot, and ELISA techniques. Two T0 plants out of the seven co-transformed plants produced seeds and were analyzed for patterns of integration and inheritance until the T3 generation. Bioassays indicated that the transgenic plants were highly toxic to the velvetbean caterpillar Anticarsia gemmatalis, thus offering a potential for effective insect resistance in soybean.

  5. Caracteres epidemiológicos e uso da análise de agrupamento para resistência parcial à ferrugem da soja Epidemiological characters and the use of cluster analysis for characterizing partial resistance to soybean rust

    Directory of Open Access Journals (Sweden)

    Juliana Araújo Santos

    2007-03-01

    Full Text Available O objetivo deste trabalho foi avaliar a resistência parcial de genótipos de soja ao fungo Phakopsora pachyrhizi. Calcularam-se o número médio de pústulas, a severidade e a área abaixo da curva de progresso da doença. Foram encontradas diferenças significativas entre os genótipos quanto ao número médio de pústulas e severidade, aos 12 dias após a inoculação. A análise de agrupamento permitiu a discriminação de genótipos parcialmente resistentes. Os genótipos G4, G41 e G42, referentes aos parentais Cristalina e IAC 100, foram detectados como os de maior resistência parcial à ferrugem da soja.The objective of this work was to evaluate the partial resistance of soybean genotypes against Phakopsora pachyrhizi. Resistance characteristics were: average number of pustules, rust severity and the area under the disease progress curve. Significant differences were found among the genotypes for the average number of pustules and rust severity. Multivariate analysis allowed the discrimination of partially resistant genotypes. Three genotypes (G4, G41, and G42, referring to parents Cristalina and IAC 100, presented greater partial resistance to soybean rust.

  6. Growth, nodulation and yield response of soybean to biofertilizers and organic manures

    International Nuclear Information System (INIS)

    Javaid, A.; Mahmood, N.

    2010-01-01

    A field experiment was conducted to investigate the effect of a symbiotic nitrogen fixing bacterium Bradyrhizobium japonicum strain TAL-102 and a commercial biofertlizer EM (effective microorganisms) on growth, nodulation and yield of soybean [Glycine max (L.) Wilczek] in soils amended either with farmyard manure or Trifolium alexandrinum L. green manure at the rate 20 tons ha/sup -1/ each. In green manure amendment, B. japonicum inoculation significantly enhanced number and biomass of nodules resulting in a significant increase of 27, 65 and 55% in shoot biomass and number and biomass of pods, respectively. In farmyard manure amended soil, B. japonicum inoculation significantly enhanced fresh biomass of nodules. As a result a significant increase of 45 and 47% in shoot biomass and number of pods was recorded, respectively. Generally, the effect of sole EM application on various studied parameters was insignificant in both the soil amendment systems. Combined application of EM and B. japonicum in green manure amended soil reduced shoot growth and number of pods as compared to sole B. japonicum inoculation. Conversely, in farmyard manure amendment, plants co-inoculated with B. japonicum and EM exhibited highest and significantly greater shoot biomass, and number and biomass of pods as compared to all other treatments. The present study concludes that soybean yield can be significantly enhanced by the application of B. japonicum and EM in farmyard manure amendment. (author)

  7. Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2017-09-01

    Full Text Available Nitrogen deficiency limits crop performance under elevated CO2 (eCO2, depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2 or 550 ppm CO2 (eCO2. The plants were supplied with 100 mg N kg−1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5 and full-mature (R8 stages. Increased yield in response to eCO2 correlated highly (r = 0.95 with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  8. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance.

    Science.gov (United States)

    González-Ferrero, C; Irache, J M; González-Navarro, C J

    2018-01-15

    The present work describes the encapsulation of probiotics using a by-product as wall material and a process feasible to be scaled-up: coacervation of soybean protein concentrate (SPC) by using calcium salts and spray-drying. SPC was extracted from soybean flour, produced during the processing of soybean milk, by alkaline extraction following isoelectric precipitation. Two probiotic strains were selected for encapsulation (Lactobacillus plantarum CECT 220 and Lactobacillus casei CECT 475) in order to evaluate the ability of SPC to encapsulate and protect bacteria from stress conditions. The viability of these encapsulated strains under in vitro gastrointestinal conditions and shelf-life during storage were compared with the most common forms commercialized nowadays. Results show that SPC is a feasible material for the development of probiotic microparticles with adequate physicochemical properties and enhanced significantly both probiotic viability and tolerance against simulated gastrointestinal fluids when compared to current available commercial forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Coordination of MicroRNAs, PhasiRNAs, and NB-LRR Genes in Response to a Plant Pathogen: Insights from Analyses of a Set of Soybean Rps Gene Near-Isogenic Lines

    Directory of Open Access Journals (Sweden)

    Meixia Zhao

    2015-03-01

    Full Text Available Disease-related genes, particularly the nucleotide binding site (NB–leucine-rich repeat (LRR class of plant genes can be triggered by microRNAs (miRNAs to generate phased small interfering RNAs (phasiRNAs, which could reduce the transcript levels of their targets. However, how global changes in transcript levels coordinate with changes in miRNA and phasiRNA levels in defense responses remains largely unknown. Here, we investigated changes in the relative abundance of small RNAs (sRNAs, with a focus on miRNAs and phasiRNAs and their potential targets in response to the pathogen in the susceptible soybean [Glycine max (L. Merr.] ‘Williams’ and nine resistant near-isogenic lines (NILs, each carrying a unique ( gene. In total, 369 distinct miRNAs, including 78 new ones, were identified in the 10 soybean lines. The majority of miRNAs were downregulated by the pathogen. Of the 525 genes found in the soybean reference genome, 257 were predicted to be the targets of eight abundant miRNA families and 126 (dubbed or were predicted to have produced phasiRNAs. Upregulation of 15 was associated with downregulation of their corresponding phasiRNAs in the NILs; these phasiRNAs were predicted to regulate 75 additional s in . In addition, we identified putative 24-nucleotide (nt phasiRNAs from transposons, possibly representing a novel general epigenetic mechanism for regulation of transposon activity under biotic stresses. Together, these observations suggest that miRNAs and phasiRNAs play an important role in response to plant pathogens through complex, multiple layers of post-transcriptional regulation.

  10. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress.

    Science.gov (United States)

    Dolatabadian, Aria; Modarres Sanavy, Seyed Ali Mohammad; Ghanati, Faezeh; Gresshoff, Peter M

    2013-07-01

    We evaluated response differences of normal and transformed (so-called 'hairy') roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in 'hairy' roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.

  11. SCREENING SOYBEAN GENOTYPES FOR PROMISCUOUS ...

    African Journals Online (AJOL)

    ACSS

    2016-02-25

    Feb 25, 2016 ... Symbiotic potential, competitiveness and compatibility of indigenous. Bradyrhizobium Japonicum isolates to three soybean genotypes of two distinct agro- climatic regions of Rajasthan, India. Saudi. Journal of Biological Sciences 17: 303- 310. Muhammad, A. 2010. Response of a promiscuous soybean ...

  12. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  13. Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping.

    Science.gov (United States)

    Han, Yingpeng; Zhao, Xue; Cao, Guanglu; Wang, Yan; Li, Yinghui; Liu, Dongyuan; Teng, Weili; Zhang, Zhiwu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Li, Wenbin

    2015-08-13

    Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were

  14. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  15. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    Science.gov (United States)

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  16. Identification of SNPs in RNA-seq data of two cultivars of Glycine max (soybean) differing in drought resistance

    Science.gov (United States)

    Vidal, Ramon Oliveira; do Nascimento, Leandro Costa; Mondego, Jorge Maurício Costa; Pereira, Gonçalo Amarante Guimarães; Carazzolle, Marcelo Falsarella

    2012-01-01

    The legume Glycine max (soybean) plays an important economic role in the international commodities market, with a world production of almost 260 million tons for the 2009/2010 harvest. The increase in drought events in the last decade has caused production losses in recent harvests. This fact compels us to understand the drought tolerance mechanisms in soybean, taking into account its variability among commercial and developing cultivars. In order to identify single nucleotide polymorphisms (SNPs) in genes up-regulated during drought stress, we evaluated suppression subtractive libraries (SSH) from two contrasting cultivars upon water deprivation: sensitive (BR 16) and tolerant (Embrapa 48). A total of 2,222 soybean genes were up-regulated in both cultivars. Our method identified more than 6,000 SNPs in tolerant and sensitive Brazilian cultivars in those drought stress related genes. Among these SNPs, 165 (in 127 genes) are positioned at soybean chromosome ends, including transcription factors (MYB, WRKY) related to tolerance to abiotic stress. PMID:22802718

  17. Biotechnology in soybean breeding

    Directory of Open Access Journals (Sweden)

    Sudarić Aleksandra

    2010-01-01

    Full Text Available Biotechnology can be defined broadly as a set of tools that allows scientists to genetically characterize or improve living organisms. Several emerging technologies, such as molecular characterization and genetic transformation, are already being used extensively for the purpose of plant improvement. Other emerging sciences, including genomics and proteomics, are also starting to impact plant improvement. Tools provided by biotechnology will not replace classical breeding methods, but rather will help provide new discoveries and contribute to improved nutritional value and yield enhancement through greater resistance to disease, herbicides and abiotic factors. In soybeans, biotechnology has and will continue to play a valuable role in public and private soybean breeding programs. Based on the availability and combination of conventional and molecular technologies, a substantial increase in the rate of genetic gain for economically important soybean traits can be predicted in the next decade. In this paper, a short review of technologies for molecular markers analysis in soybean is given as well as achievements in the area of genetic transformation in soybean.

  18. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi.

    Science.gov (United States)

    Langenbach, Caspar; Campe, Ruth; Schaffrath, Ulrich; Goellner, Katharina; Conrath, Uwe

    2013-04-01

    Nonhost resistance (NHR) of plants to fungal pathogens comprises different defense layers. Epidermal penetration resistance of Arabidopsis to Phakopsora pachyrhizi requires functional PEN1, PEN2 and PEN3 genes, whereas post-invasion resistance in the mesophyll depends on the combined functionality of PEN2, PAD4 and SAG101. Other genetic components of Arabidopsis post-invasion mesophyll resistance remain elusive. We performed comparative transcriptional profiling of wild-type, pen2 and pen2 pad4 sag101 mutants after inoculation with P. pachyrhizi to identify a novel trait for mesophyll NHR. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis and microscopic analysis confirmed the essential role of the candidate gene in mesophyll NHR. UDP-glucosyltransferase UGT84A2/bright trichomes 1 (BRT1) is a novel component of Arabidopsis mesophyll NHR to P. pachyrhizi. BRT1 is a putative cytoplasmic enzyme in phenylpropanoid metabolism. BRT1 is specifically induced in pen2 with post-invasion resistance to P. pachyrhizi. Silencing or mutation of BRT1 increased haustoria formation in pen2 mesophyll. Yet, the brt1 mutation did not affect NHR to P. pachyrhizi in wild-type plants. We assign a novel function to BRT1, which is important for post-invasion NHR of Arabidopsis to P. pachyrhizi. BRT1 might serve to confer durable resistance against P. pachyrhizi to soybean. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    Gholamreza Heidari

    2016-11-01

    Full Text Available Tillage operation and fertilizer type play important roles in soil properties as far as soil microbial condition is concerned. Information regarding the simultaneous evaluation of the effect of long-term tillage and fertilization on the soil microbial traits of soybean farms is not available. Accordingly, it was hypothesized that, the microbial biomass and enzyme activity, more often than not, respond quickly to changes in soil tillage and fertilization. Therefore, the experiments were aimed at analyzing the responses of soil microbial traits to tillage and fertilization in a soybean field in Kurdistan University, Iran. The field soil is categorized into coarse Loamy, mixed, superactive, calcareous, and mesic Typic Xerorthents. The experiments were arranged in split plot, based on randomized complete block design with three replications. Main plots consisted of long-term (since 2002 tillage systems including conventional tillage (CT, minimum tillage (MT and no-tillage (NT. Eight fertilization methods were employed in the sub-plots, including (F1: farmyard manure (FYM; (F2: compost; (F3: chemical fertilizers; (F4: FYM + compost; (F5: FYM + chemical fertilizers; (F6: compost + chemical fertilizers; (F7: FYM + compost + chemical fertilizers and (F8: Control (without fertilizer. The highest microbial biomass carbon (385.1 μg was observed in NT-F4 treatment. The NT treatment comparatively recorded higher values of acid phosphatase (189.1 μg PNP g-1 h-1, alkaline phosphatase (2879.6 μg PNP g-1 h-1 and dehydrogenase activity (68.1 μg PNP g-1 h-1. The soil treated with a mixture of compost and FYM inputs had the maximum urease activity of all tillage treatments. Organically manured treatment (F4 showed more activity in dehydrogenase (85.7 μg PNP g-1 h-1, acid phosphatase (199.1 µg PNP g-1 h-1 and alkaline phosphatase (3183.6 µg PNP g-1 h-1 compared to those treated with chemical fertilizers. In NT-F4 treatment, using on-farm inputs is most

  20. Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth

    International Nuclear Information System (INIS)

    Yan Shengrong; Yang Chunhe; Zhang Yuequn

    2009-01-01

    [Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [Result] The results showed that under irradiation of UV-B(T1-0.15 W/m2 and T2-0.45 W/m2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1-5d) and then increased during the restoration phase (6-9d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1-5d) and subsequently decreased during recovery from UV-B stress (6-9d) . With adding of La (Ⅲ) with the concentration of 20mg•L-1, the decline/rise trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [Conclusion] It suggests that the regulation of La (Ⅲ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species (ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La (Ⅲ) was better under low UV-B radiation than under high one

  1. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Cooper, James W; Kunert, Karl J; Foyer, Christine H

    2015-04-01

    Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identification of large variation in the photosynthetic induction response among 37 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state photosynthetic capacity.

    Science.gov (United States)

    Soleh, M A; Tanaka, Y; Kim, S Y; Huber, S C; Sakoda, K; Shiraiwa, T

    2017-03-01

    Irradiance continuously fluctuates during the day in the field. The speed of the induction response of photosynthesis in high light affects the cumulative carbon gain of the plant and could impact growth and yield. The photosynthetic induction response and its relationship with the photosynthetic capacity under steady-state conditions (P max ) were evaluated in 37 diverse soybean [Glycine max (L.) Merr.] genotypes. The induction response of leaf photosynthesis showed large variation among the soybean genotypes. After 5 min illumination with strong light, genotype NAM23 had the highest leaf photosynthetic rate of 33.8 µmol CO 2 m -2  s -1 , while genotype NAM12 showed the lowest rate at 4.7 µmol CO 2 m -2  s -1 . Cumulative CO 2 fixation (CCF) during the first 5 min of high light exposure ranged from 5.5 mmol CO 2 m -2 for NAM23 to 0.81 mmol CO 2 m -2 for NAM12. The difference in the induction response among genotypes was consistent throughout the growth season. However, there was no significant correlation between CCF and P max among genotypes suggesting that different mechanisms regulate P max and the induction response. The observed variation in the induction response was mainly attributed to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activation, but soybean lines differing in the induction response did not differ in the leaf content of Rubisco activase α- and β-proteins. Future studies will be focused on identifying molecular determinants of the photosynthetic induction response and determining whether this trait could be an important breeding target to achieve improved growth of soybeans in the field.

  3. Processing soybeans of different origins : response of a Chinese and a western pig breed to dietary inclusion

    NARCIS (Netherlands)

    Qin, G.

    1996-01-01


    Soybeans (Glycine max) have high nutritional value for domestic animals, due to their protein and energy contents. The feeding effects of full-fat soybeans for non-ruminant and immature ruminant animals, however, are limited by the presence of some antinutritional

  4. Genetic diversity, QoI fungicide resistance, and mating type distribution of Cercospora sojina-Implications for the disease dynamics of frogeye leaf spot on soybean.

    Science.gov (United States)

    Shrestha, Sandesh Kumar; Cochran, Alicia; Mengistu, Alemu; Lamour, Kurt; Castro-Rocha, Arturo; Young-Kelly, Heather

    2017-01-01

    Frogeye leaf spot (FLS), caused by Cercospora sojina, causes significant damage to soybean in the U.S. One control strategy is the use of quinone outside inhibitor (QoI) fungicides. QoI resistant isolates were first reported in Tennessee (TN) in 2010. To investigate the disease dynamics of C. sojina, we collected 437 C. sojina isolates in 2015 from Jackson and Milan, TN and used 40 historical isolates collected from 2006-2009 from TN and ten additional states for comparison. A subset of 186 isolates, including historical isolates, were genotyped for 49 single nucleotide polymorphism (SNP) markers and the QoI resistance locus, revealing 35 unique genotypes. The genotypes clustered into three groups with two groups containing only sensitive isolates and the remaining group containing all resistant isolates and a dominant clonal lineage of 130 isolates. All 477 C. sojina isolates were genotyped for the QoI locus revealing 344 resistant and 133 sensitive isolates. All isolates collected prior to 2015 were QoI sensitive. Both mating type alleles (MAT1-1-1 and MAT1-2) were found in Jackson and Milan, TN and recovered from single lesions suggesting sexual recombination may play a role in the epidemiology of field populations. Analysis of C. sojina isolates using SNP markers proved useful to investigate population diversity and to elaborate on diversity as it relates to QoI resistance and mating type.

  5. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Xiaobang Peng

    Full Text Available In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA, growth and yield of soybean (Glycine max L. as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L. intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1, 4.2μmol·mol(-1 and 2.8μmol·mol(-1, respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  6. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada.

    Science.gov (United States)

    Peng, Xiaobang; Thevathasan, Naresh V; Gordon, Andrew M; Mohammed, Idris; Gao, Pengxiang

    2015-01-01

    In order to study the effect of light competition and microclimatic modifications on the net assimilation (NA), growth and yield of soybean (Glycine max L.) as an understory crop, three 26-year-old soybean-tree (Acer saccharinum Marsh., Populus deltoides X nigra, Juglans nigra L.) intercropping systems were examined. Tree competition reduced photosynthetically active radiation (PAR) incident on soybeans and reduced net assimilation, growth and yield of soybean. Soil moisture of 20 cm depth close (< 3 m) to the tree rows was also reduced. Correlation analysis showed that NA and soil water content were highly correlated with growth and yield of soybean. When compared with the monoculture soybean system, the relative humidity (RH) of the poplar-soybean, silver maple-soybean, and black walnut-soybean intercropped systems was increased by 7.1%, 8.0% and 5.9%, soil water content was reduced by 37.8%, 26.3% and 30.9%, ambient temperature was reduced by 1.3°C, 1.4°C and 1.0°C, PAR was reduced by 53.6%, 57.9% and 39.9%, and air CO2 concentration was reduced by 3.7μmol·mol(-1), 4.2μmol·mol(-1) and 2.8μmol·mol(-1), respectively. Compared to the monoculture, the average NA of soybean in poplar, maple and walnut treatments was also reduced by 53.1%, 67.5% and 46.5%, respectively. Multivariate stepwise regression analysis showed that PAR, ambient temperature and CO2 concentration were the dominant factors influencing net photosynthetic rate.

  7. The response of natural enemies to selective insecticides applied to soybean.

    Science.gov (United States)

    Varenhorst, A J; O'Neal, M E

    2012-12-01

    Natural enemies of the invasive pest Aphis glycines Matsumura can prevent its establishment and population growth. However, current A. glycines management practices include the application of broad-spectrum insecticides that affect pests and natural enemies that are present in the field at the time of application. An alternative is the use of selective insecticides that affect the targeted pest species, although having a reduced impact on the natural enemies. We tested the effects of esfenvalerate, spirotetramat, imidacloprid, and a combination of spirotetramat and imidacloprid on the natural enemies in soybean during the 2009 and 2010 field season. The natural enemy community that was tested differed significantly between 2009 and 2010 (F = 87.41; df = 1, 598; P natural enemy in 2009 was Harmonia axyridis (Pallas) (56.0%) and in 2010 was Orius insidiosus (Say) (41.0%). During 2009, the abundance of natural enemies did not vary between the broad-spectrum and selective insecticides; however, the abundance of natural enemies was reduced by all insecticide treatments when compared with the untreated control. In 2010, the selective insecticide imidacloprid had more natural enemies than the broad-spectrum insecticide. Although we did not observe a difference in the abundance of the total natural enemy community in 2009, we did observe more H. axyridis in plots treated with spirotetramat. In 2010, we observed more O. insidiosus in plots treated with imidacloprid. We suggest a couple of mechanisms to explain how the varying insecticides have different impacts on separate components of the natural enemy community.

  8. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  9. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  10. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V; Uvackova, Lubica; Rashydov, Namik M; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  11. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  12. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  13. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani

    International Nuclear Information System (INIS)

    Ouf, S.A.; Abdel-Hady, N.F.

    1999-01-01

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani

  14. Ubiquitous urease affects soybean susceptibility to fungi.

    Science.gov (United States)

    Wiebke-Strohm, Beatriz; Pasquali, Giancarlo; Margis-Pinheiro, Márcia; Bencke, Marta; Bücker-Neto, Lauro; Becker-Ritt, Arlete B; Martinelli, Anne H S; Rechenmacher, Ciliana; Polacco, Joseph C; Stolf, Renata; Marcelino, Francismar C; Abdelnoor, Ricardo V; Homrich, Milena S; Del Ponte, Emerson M; Carlini, Celia R; De Carvalho, Mayra C C G; Bodanese-Zanettini, Maria Helena

    2012-05-01

    The soybean ubiquitous urease (encoded by GmEu4) is responsible for recycling metabolically derived urea. Additional biological roles have been demonstrated for plant ureases, notably in toxicity to other organisms. However, urease enzymatic activity is not related to its toxicity. The role of GmEu4 in soybean susceptibility to fungi was investigated in this study. A differential expression pattern of GmEu4 was observed in susceptible and resistant genotypes of soybeans over the course of a Phakopsora pachyrhizi infection, especially 24 h after infection. Twenty-nine adult, transgenic soybean plants, representing six independently transformed lines, were obtained. Although the initial aim of this study was to overexpress GmEu4, the transgenic plants exhibited GmEu4 co-suppression and decreased ureolytic activity. The growth of Rhizoctonia solani, Phomopsis sp., and Penicillium herguei in media containing a crude protein extract from either transgenic or non-transgenic leaves was evaluated. The fungal growth was higher in the protein extracts from transgenic urease-deprived plants than in extracts from non-transgenic controls. When infected by P. pachyrhizi uredospores, detached leaves of urease-deprived plants developed a significantly higher number of lesions, pustules and erupted pustules than leaves of non-transgenic plants containing normal levels of the enzyme. The results of the present work show that the soybean plants were more susceptible to fungi in the absence of urease. It was not possible to overexpress active GmEu4. For future work, overexpression of urease fungitoxic peptides could be attempted as an alternative approach.

  15. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Science.gov (United States)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  16. Analysis and modeling of dry matter production rate by soybean [Glycine max] community: Curvilinear response to radiation intensity

    International Nuclear Information System (INIS)

    Sameshima, R.

    1996-01-01

    The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)

  17. Fighting Asian Soybean Rust.

    Science.gov (United States)

    Langenbach, Caspar; Campe, Ruth; Beyer, Sebastian F; Mueller, André N; Conrath, Uwe

    2016-01-01

    Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.

  18. The use of refuge in host plant resistance systems for the control of virulent biotype adaptation in the soybean aphid (Hemiptera: Aphididae.

    Science.gov (United States)

    Wenger, Jacob; Ramstad, Monica; Mian, M A Rouf; Michel, Andy

    2014-08-01

    Host plant resistant (HPR) crop varieties offer control of many insect pest species. However, the evolution of virulent biotypes capable of overcoming plant resistance poses challenges for the implementation of HPR. Widespread planting of HPR crops further reduces HPR efficacy by increasing selection pressure on pests, favoring the rapid proliferation of virulence. An analogous situation occurs in managing insect resistance to transgenic Bt crops, where planting of susceptible refuges effectively delays the evolution and spread of Bt resistance. We investigated the applicability of susceptible refuges in HPR as a tactic to manage virulent biotypes, using the soybean aphid (Aphis glycines Matsumura) as a model system. The virulent biotype 3 and avirulent biotype 1 were reared in greenhouse microcosms using a variety of refuge size, HPR gene, and biotype mixture treatments, allowing us to discern how the presence of a refuge alters the relative fitness and movement of biotypes both by themselves and in competition. The virulent biotype had greater relative fitness in 10 of 12 tested microcosms, with the greatest advantage observed in refuge-free microcosms. In microcosms with a refuge, avirulent fitness increased significantly as these biotypes moved to and used refuge plants. When the two biotypes were reared in the same microcosm, biotype 3's fitness increased significantly relative to when reared in isolation, while biotype 1's fitness was slightly, but not significantly, increased. Our findings suggested that while susceptible refuges would be incapable of reversing the proliferation of virulent biotypes, they could slow the spread of virulence by maintaining avirulence.

  19. Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency.

    Science.gov (United States)

    Coutinho, Isabel D; Moraes, Tiago Bueno; Mertz-Henning, Liliane Marcia; Nepomuceno, Alexandre Lima; Giordani, Willian; Marcolino-Gomes, Juliana; Santagneli, Silvia; Colnago, Luiz Alberto

    2017-11-01

    Solid-state NMR (SSNMR) spectroscopy methods provide chemical environment and ultrastructural details that are not easily accessible by other non-destructive, high-resolution spectral techniques. High-resolution magic angle spinning (HR-MAS) has been widely used to obtain the metabolic profile of a heterogeneous sample, combining the resolution enhancement provided by MAS in SSNMR with the shimming and locking procedures in liquid-state NMR. In this work, we explored the feasibility of using the HR-MAS and SSNMR techniques to identify metabolic changes in soybean leaves subjected to water-deficient conditions. Control and water-deficient soybean leaves were analysed using one-dimensional (1D) HR-MAS and SSNMR. Total RNA was extracted from the leaves for the transcriptomic analysis. The 1 H HR-MAS and CP-MAS 13 C{ 1 H} spectra of soybean leaves grown with and without water deficiency stress revealed striking differences in metabolites. A total of 30 metabolites were identified, and the impact of water deficiency on the metabolite profile of soybean leaves was to induce amino acid synthesis. High expression levels of genes required for amino acid biosynthesis were highly correlated with the compounds identified by 1 H HR-MAS. The integration of the 1 H HR-MAS and SSNMR spectra with the transcriptomic data provided a complete picture of the major changes in the metabolic profile of soybeans in response to water deficiency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quinolone Resistance Reversion by Targeting the SOS Response.

    Science.gov (United States)

    Recacha, E; Machuca, J; Díaz de Alba, P; Ramos-Güelfo, M; Docobo-Pérez, F; Rodriguez-Beltrán, J; Blázquez, J; Pascual, A; Rodríguez-Martínez, J M

    2017-10-10

    Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog 10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog 10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this

  1. The U.S. Soybean Industry. Agricultural Economic Report Number 588.

    Science.gov (United States)

    Schaub, James; And Others

    This report describes the U.S. soybean industry from producers to consumers and provides a single source of economic and statistical information on soybeans. Highlights are as follows: U.S. soybean production has increased sevenfold since 1950, making soybeans the second highest valued crop after corn. Soybean production has risen in response to…

  2. Proteomic Profiling and the Predicted Interactome of Host Proteins in Compatible and Incompatible Interactions Between Soybean and Fusarium virguliforme.

    Science.gov (United States)

    Iqbal, M Javed; Majeed, Maryam; Humayun, Maheen; Lightfoot, David A; Afzal, Ahmed J

    2016-12-01

    Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.

  3. Resistant and susceptible responses in alfalfa (Medicago sativa to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    Directory of Open Access Journals (Sweden)

    Lev G Nemchinov

    Full Text Available Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L. Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  4. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    Science.gov (United States)

    Nemchinov, Lev G; Shao, Jonathan; Lee, Maya N; Postnikova, Olga A; Samac, Deborah A

    2017-01-01

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L). Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai) with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs) in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  5. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (< 3 nm) optical spectra (350-2500 nm) of reflectance, transmittance, and absorptance were also acquired for both adaxial and abaxial leaf surfaces. Species differences were demonstrated for several optical parameters. A 'red edge' derivative ratio determined from transmittance spectra [as the maximum first deivative, between 650-750 nm, normalized to the value at 744 nm, or Dmax/D744], was strongly associated with the C/N ratio (r(exp 2) = 0.90, P +/- 0.001). This ratio, calculated from reflectance spectra, was inversely related to chlorophyll b content (r(exp 2) = 0.91, P +/- 0.001) as was the ChlF (F685/F740) ratio obtained with 532 nm excitation (r(exp 2) = 0.76, P +/- 0.01). Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces

  6. Resistência de soja a insetos: VIII. IAC 78-2318, linhagem com resistência múltipla Resistance of soybean to insects: VIII. IAC 78-2318 line with multiple insect resistance

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenção

    1987-01-01

    Full Text Available Estudou-se, em comparação com outros genótipos de soja, o comportamento da linhagem IAC 78-2318, em relação à oviposição e colonização da mosca-branca Bemisia tabaci (Genn. e à área foliar consumida por besouros crisomelídeos e lagartas. Em Campinas, SP, em 1981, em casa de vegetação, submeteram-se os cultivares Santa Rosa, Paraná, BR-1, Bossier, IAC 8 e IAC 12 e as linhagens IAC 73-228, IAC 78-2318, D72-9601-1, PI 171451, PI 229358 e PI 274454 à infestação artificial de adultos da mosca-branca. IAC 78-2318, embora apresentando alto número de ovos, teve colonização baixa, próxima aos materiais mais resistentes (PI 171451 e PI 229358. Em Santo Antonio de Posse, SP, em 1985, em campo, IAC 78-2318, quando comparado com IAC 80-596-2, 'Santa Rosa', 'IAC 8' e 'IAC 11', mostrou a menor perda de área foliar devida à alimentação de coleópteros crisomelídeos, principalmente Cerotoma arcuata (Oliv. e Diphaulaca viridipennis Clark, e de lagartas, com predominância de Anticarsia gemmatalis (Hubn.. Como já havia sido registrado anteriormente baixo dano de Epinotia aporema (Wals. e de percevejos pentatomideos em IAC 78-2318, com as observações presentes essa linhagem fica caracterizada como portadora de resistência múltipla a insetos.The performance of the soybean line IAC 78-2318 in relation to oviposition and colonization by the whitefly Bemisia tabaci (Genn. and to defoliation by caterpillars and chrysomelidae was studied in comparison to other varieties. At Campinas, State of São Paulo - Brazil, in greenhouse, the cultivars Santa Rosa, Paraná, BR-1, Bossier, IAC 8 and IAC 12, and the lines IAC 73-228, IAC 78-2318, D72-9601-1, PI 171451, PI 229358 e PI 274454 were submitted to artificial infestation of whitefly adults from tomato plants highly infested. Despite the high number of eggs in the IAC 78-2318 folioles, this line had a low colonization, comparable to the more resistants lines (PI 171451 and PI 229358. At Santo

  7. Effects of dietary soybean isoflavones on non-specific immune responses and hepatic antioxidant abilities and mRNA expression of two heat shock proteins (HSPs) in juvenile golden pompano Trachinotus ovatus under pH stress.

    Science.gov (United States)

    Zhou, Chuanpeng; Lin, Heizhao; Huang, Zhong; Wang, Jun; Wang, Yun; Yu, Wei

    2015-12-01

    This study determined the effect of dietary soybean isoflavones on non-specific immunity and on mRNA expression of two HSPs in juvenile golden pompano Trachinotus ovatus under pH stress. Six diets were formulated to contain 0, 10, 20, 40, 60 and 80 mg/kg of soybean isoflavones. Each diet was fed to triplicate groups of fish in cylindrical tanks. After 56 days of feeding, 15 fish per tank were exposed to pH stress (pH ≈ 9.2) for 24 h. Serum total protein (TP), respiratory burst activity (RBA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), lysozyme (LYZ), complement 3 (C3), complement 4 (C4), cortisol, hepatic total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and the relative mRNA expression of heat shock protein 70 (HSP70) and 90 (HSP90) were investigated. The results showed that after pH stress, serum TP, RBA, LYZ, C4, hepatic T-AOC and CAT levels were significantly reduced (P < 0.05) while serum ALT, hepatic MDA and HSP70 and HSP90 mRNA expression levels were significantly increased (P < 0.05). On the other hand, supplementation with soybean isoflavones significantly reduced levels of serum ALT (20, 40, 60 mg/kg soybean isoflavones groups) and hepatic MDA (40, 60 and 80 mg/kg soybean isoflavones groups). Supplemented groups had increased serum TP content (40 mg/kg soybean isoflavones groups), RBA (20 and 40 mg/kg soybean isoflavones groups), LYZ (40 and 60 mg/kg soybean isoflavones groups), C3(20, 40, 60 and 80 mg/kg soybean isoflavones groups), hepatic SOD activity (40, 60 and 80 mg/kg soybean isoflavones groups) as well as increased relative mRNA expression of hepatic HSP70 (40, 60 and 80 mg/kg soybean isoflavones groups) and HSP90 (40 and 60 mg/kg soybean isoflavones groups) (P < 0.05). These results indicate that ingestion of a basal diet supplemented with 40-60 mg/kg soybean isoflavones could enhance resistance against pH stress in T. Ovatus to some degree

  8. A review of soybean rust from a South African perspective

    Directory of Open Access Journals (Sweden)

    J. Antony Jarvie

    2010-01-01

    Full Text Available This review article describes the nature of the soybean rust pathogen, its interaction with the soybean host and documents some of the history of soybean rust in South Africa. Soybean rust has affected soybean cropping in parts of South Africa since 2001. The disease causes leaf lesions, which may progress to premature defoliation and ultimately result in grain yield loss in susceptible soybean genotypes. Chemical control measures have been successfully employed to limit commercial yield losses in South Africa; however, controlling the effects of this disease through host-resistance or tolerance mechanisms remains a long-term goal.

  9. Production of Aflatoxin on Soybeans

    Science.gov (United States)

    Gupta, S. K.; Venkitasubramanian, T. A.

    1975-01-01

    Probable factors influencing resistance to aflatoxin synthesis in soybeans have been investigated by using cultures of Aspergillus parasiticus NRRL 3240. Soybeans contain a small amount of zinc (0.01 μg/g) bound to phytic acid. Autoclaving soybeans at 15 pounds (6803.88 g) for 15 min increases the aflatoxin production, probably by making zinc available. Addition of zinc to both autoclaved and nonautoclaved soybeans promotes aflatoxin production. However, addition of varying levels of phytic acid at a constant concentration of zinc depresses aflatoxin synthesis with an increase in the added phytic acid. In a synthetic medium known to give good yields of aflatoxin, the addition of phytic acid (10 mM) decreases aflatoxin synthesis. PMID:1171654

  10. EVALUATION OF SOYBEAN CULTIVARS AND LINES RESISTANCE TO Pratylenchus brachyurus AVALIAÇÃO DA RESISTÊNCIA DE CULTIVARES E LINHAGENS DE SOJA A Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Dilson da Cunha Costa

    2007-09-01

    Full Text Available

    Pratylenchus brachyurus, a plant parasitic nematode which has wide distribution due to a broad range of hosts, causes damages to soybean all over the world. Chlorosis and dwarfing in soybean plants are very common symptoms associated with this nematode infestation. The present work had as objective to evaluate the resistance of soybean cultivars and lines to P. brachyurus. Seeds of all genotypes were treated with a mixture of alcohol, sodium hypochloride, water (1:2:7. Pre-germinated seedlings were inoculated with 450 nematodes and, after 50 days under greenhouse conditions, the plants were harvested, when nematode number per root system and reproduction factors were evaluated. All genotypes tested were found to be infested with the nematode. However, 18.52% of the genotypes showed high susceptibility, 45.68% were susceptible, while 34.57% showed slight resistance and 1.23% were moderate resistant to the attack of P. brachyurus.

    KEY-WORDS: Glycine max; root-lesion; nematode.

    Pratylenchus brackyurus, que tem larga distribuição geográfica devido ao grande número de hospedeiros, causa prejuízos à soja em todo o mundo. Clorose e nanismo em plantas de soja são sintomas muito comuns associados à infestação desse nematóide. O presente trabalho teve por objetivo avaliara a resistência de cultivares e linhagens de soja a P. bhrachyurus. As sementes dos genótipos foram tratadas com uma mistura de álcool, hipoclorito de sódio e água (1:2:7 e pré-germinadas. Cada plântula foi inoculada com 450 juvenis e/ou adultos de P. brachyurus e, após 50 dias em casa de vegetação, as plantas foram colhidas, avaliando-se o número de nematóides por sistema radicular e os fatores de reprodução. A

  11. Evaluation of gelling agents on anther culture: response of two soybean cultivars

    Directory of Open Access Journals (Sweden)

    Milena Barcelos Cardoso

    2007-11-01

    Full Text Available Anthers of two soybean cultivars were cultured in B5 long basal culture media gelled with agarose or PhytagelTM. Cytological examinations of the anthers were carried out during the first 45 days of culture to assay the viability and developmental stage of microspores. Frequency of callus formation was recorded at 45 days of culture. The analysis of variance of the microspore viability assay showed significant Cultivar X Gelling Agent X Day of Culture interactions. The frequencies of viable microspores decreased significantly with time of culture, within each cultivar and gelling agent tested. The interaction Day X Cultivar was significant for the frequencies of binucleate symmetrical grains and multinucleate/multicellular structures. The effect of gelling agents on the frequency of binucleate symmetrical pollens grains and multinucleate/multicellular structures was not significant. About the frequencies of calli and embryogenic calli formed, a significant difference was detected between the cultivars (IAS5= 14.8% and BRS 133=6.6%. Gelling agents showed no effect over these frequencies.Anteras de duas cultivares de soja foram cultivadas em meio de cultura basal B5 longo gelificado com agarose ou Phytagel®. Análises citológicas das anteras foram conduzidas durante os primeiros 45 dias de cultura para avaliar a viabilidade e o estágio de desenvolvimento dos micrósporos. A freqüência de formação de calos foi analisada após 45 dias do início da cultura. A análise da variância da viabilidade do micrósporo mostrou interações significativas de Cultivar X Agente Gelificante X Dias de Cultura. As freqüências de grãos de pólen viáveis diminuíram significativamente com o tempo de cultura, dentro de cada cultivar e agente gelificante testado. A interação Dia X Cultivar foi significante para as freqüências de grãos de pólen binucleados simétricos e estruturas multinucleados/multicelulares. O efeito do agente gelificante na freq

  12. Effects of dietary fat source and supplemental lysophosphatidylcholine on performance, immune responses, and ileal nutrient digestibility in broilers fed corn/soybean meal- or corn/wheat/soybean meal-based diets.

    Science.gov (United States)

    Allahyari-Bake, S; Jahanian, R

    2017-05-01

    Two separate experiments were conducted to investigate the effect of different fat sources and a supplemental exogenous emulsifier (lysophosphatidylcholine, LPC) on growth performance, antibody production titers, and ileal nutrient digestibility in broiler chicks fed with different basal diets. A total of 288 one-day-old Ross 308 chicks were used for each trial (6 dietary treatments based on 3 × 2 factorial arrangements of treatments in both trials) with 4 replicates of 12 birds each. Dietary treatments consisted of 3 different fat sources (soy oil, SO; soy free fatty acids, SFFA; and palm fat powder, PFP) and 2 LPC levels (0 and 0.1% of diet), which were evaluated with 2 different basal diets (corn/soybean meal-based diets in Exp. 1, or corn/wheat/soybean meal-based diets in Exp. 2). In Exp. 1, average daily feed intake (ADFI) was increased (P Gumboro antibody titer, and the lowest antibody response was allotted to the birds fed PFP diets. The greatest (P < 0.05) EE digestibility was assigned to the birds fed SO and SFFA diets. The present findings showed that birds fed SFFA-containing diets had similar performance as SO birds, and supplemental LPC improved overall performance especially in SFFA-fed birds. © 2016 Poultry Science Association Inc.

  13. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32.

    Science.gov (United States)

    Zhang, Shichen; Zhang, Zhongnan; Wen, Zixiang; Gu, Cuihua; An, Yong-Qiang Charles; Bales, Carmille; DiFonzo, Chris; Song, Qijian; Wang, Dechun

    2017-12-01

    Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.

  14. Resistência de biótipos de Euphorbia heterophylla l. Aos herbicidas inibidores da enzima ALS utilizados na cultura de soja Resistance of Euphorbia heterophylla l. Biotypes to ALS enzyme inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    GERSON AUGUSTO GELMINI

    2001-01-01

    Full Text Available Os herbicidas constituem-se na principal medida de controle de plantas daninhas na cultura de soja; no entanto, a pressão de seleção causada pelo uso contínuo de produtos com o mesmo mecanismo de ação pode provocar a seleção de biótipos resistentes, como ocorreu com Euphorbia heterophylla L., que se mostrou resistente aos herbicidas inibidores da enzima acetolactato sintase (ALS em áreas dos Estados do Paraná e Rio Grande do Sul. Para comprovar possíveis novos casos, bem como alternativas para prevenção e manejo, coletaram-se sementes de plantas de E. heterophylla L., na região de Assis (SP, que sobreviveram a tratamentos, em que esses herbicidas foram sistematicamente aplicados nos últimos anos. Desenvolveu-se o experimento em casa de vegetação, comparando-se o biótipo resistente ao suscetível, quando submetido aos diversos herbicidas aplicados em pós-emergência. Aplicaram-se quando as plantas encontravam-se no estádio de duas a quatro folhas verdadeiras, nas doses zero, uma, duas, quatro e oito vezes a recomendada. Aos 20 dias após a aplicação, avaliaram-se os parâmetros relativos ao controle e produção de fitomassa epígea visando ao estabelecimento de curvas de doses-resposta, à obtenção dos fatores de resistência com base nos valores da DL50 e GR50, e à verificação da ocorrência de resistência múltipla. O biótipo resistente apresentou diferentes níveis de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. No entanto, foi eficientemente controlado nos tratamentos com fomesafen (250 g.ha-1, lactofen (120 g.ha-1, flumiclorac-pentil (40 g.ha-1, glufosinato de amônio (150 g.ha-1 e glyphosate (360 g.ha-1.Herbicides are the main tool for weed control in soybean crop, but the selection pressure attributed to the repeated application of the same herbicides and the same mechanism of action can

  15. Nitric Oxide Synthase-Mediated Phytoalexin Accumulation in Soybean Cotyledons in Response to the Diaporthe phaseolorum f. sp. meridionalis Elicitor1

    Science.gov (United States)

    Modolo, Luzia Valentina; Cunha, Fernando Queiroz; Braga, Márcia Regina; Salgado, Ione

    2002-01-01

    Phytoalexin biosynthesis is part of the defense mechanism of soybean (Glycine max) plants against attack by the fungus Diaporthe phaseolorum f. sp. meridionalis (Dpm), the causal agent of stem canker disease. The treatment of soybean cotyledons with Dpm elicitor or with sodium nitroprusside (SNP), a nitric oxide (NO) donor, resulted in a high accumulation of phytoalexins. This response did not occur when SNP was replaced by ferricyanide, a structural analog of SNP devoid of the NO moiety. Phytoalexin accumulation induced by the fungal elicitor, but not by SNP, was prevented when cotyledons were pretreated with NO synthase (NOS) inhibitors. The Dpm elicitor also induced NOS activity in soybean tissues proximal to the site of inoculation. The induced NOS activity was Ca2+- and NADPH-dependent and was sensitive to the NOS inhibitors NG-nitro-l-arginine methyl ester, aminoguanidine, and l-N6-(iminoethyl) lysine. NOS activity was not observed in SNP-elicited tissues. An antibody to brain NOS labeled a 166-kD protein in elicited and nonelicited cotyledons. Isoflavones (daidzein and genistein), pterocarpans (glyceollins), and flavones (apigenin and luteolin) were identified after exposure to the elicitor or SNP, although the accumulation of glyceollins and apigenin was limited in SNP-elicited compared with fungal-elicited cotyledons. NOS activity preceded the accumulation of these flavonoids in tissues treated with the Dpm elicitor. The accumulation of these metabolites was faster in SNP-elicited than in fungal-elicited cotyledons. We conclude that the response of soybean cotyledons to Dpm elicitor involves NO formation via a constitutive NOS-like enzyme that triggers the biosynthesis of antimicrobial flavonoids. PMID:12427995

  16. The competitive aspect of soybean ( Glysine max and velvetleaf ( Abutilon theophrasti in response to population density and planning date

    Directory of Open Access Journals (Sweden)

    mahnaz shafigh

    2009-06-01

    Full Text Available In order to study different of velvetleaf ( Abutilon theophrasti Medicus and simultaneous planting date of ( Glisine max (L. Merril and velvetleaf on yield and yield components of soybean, an experiment was conducted in 2004, at Ferdowsi University of Mashhad, College of Agriculture Experimental Station. The type of experiment was Completely Randomized Design in factorial arrangement with 3 replication in witch velvetleaf density ( 0, 2, 4, 8, plan/m2 and planting date of soybean and velvetleaf at 3 levels( April 23, May 13 and June 3 were used. Study of grain yield and yield components indicated that increase in velvetleaf density due to significant decrease in pod and grain number of soybean plant caused significant reduction of grain yield. Different planting dates had significant effect on yield and all yield components and delaying planting date, resulted in a significant reduction of yield components and yield. The interaction between density and planting date, was based on number of pod in plant and number of grain in soybean pod but significant effects on grain number per plant, 1000 grain weight and grain yield of soybean.

  17. SENSITIVE RESPONSE AND RESISTANCE TO BERY DISEASE ...

    African Journals Online (AJOL)

    AISA

    Seedling hypocotyls and attached green coffee berries of 11 Coffea arabica varieties and a Robusta coffee cultivar, with different levels of resistance to coffee berry disease (Colletotrichum kahawae), were examined under a microscope for differences in the development of infections caused by single-conidium isolates of.

  18. Quinolone Resistance Reversion by Targeting the SOS Response

    Directory of Open Access Journals (Sweden)

    E. Recacha

    2017-10-01

    Full Text Available Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs and dynamic (killing curves or flow cytometry methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs. Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h, and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy.

  19. Preliminary Analysis of Soybean Gene Expression Response to a Bradyrhizobium japonicum Type III Secretion System Mutant

    Science.gov (United States)

    Plant pathogens deliver proteinaceous effector molecules into their host via complex secretion systems, such as the type III secretion system (T3SS). Some of these T3SS effectors have been shown to function as suppressors of host defense responses. The role of the T3SS during plant interactions wit...

  20. Selection strategies of segregant soybean populations for resistance to Asian rust Estratégias de seleção de populações segregantes de soja para resistência à ferrugem-asiática

    Directory of Open Access Journals (Sweden)

    Aliny Simony Ribeiro

    2009-11-01

    Full Text Available The objective of this work was to identify the best selection strategies for the more promising parental combinations to obtain lines with good resistance to soybean Asian rust (Phakopsora pachyrhizi. Two experiments were carried out in the field during the 2006/2007 and 2007/2008 growing seasons, to determine the percentage of infected leaf area of individual plants of five parents and their segregant F2 and F3 populations. The data obtained indicates that additive genetic variance predominates in the control of soybean resistance to Asian rust, and that the year and time of assessment do not significantly influence the estimates of the genetic parameters obtained. The narrow-sense heritability (h²r ranged from 23.12 to 55.83%, and indicates the possibility of successful selection of resistant individuals in the early generations of the breeding program. All the procedures used to select the most promising populations to generate superior inbred lines for resistance to P. pachyrhizi presented similar results and identified the BR01-18437 x BRS 232 population as the best for inbred line selection.O objetivo deste estudo foi identificar as estratégias mais eficientes para selecionar as combinações parentais mais promissoras e obter linhas com bom grau de resistência à ferrugem-asiática da soja (Phakopsora pachyrhizi. Dois experimentos foram realizados em campo nos anos agrícolas 2006/2007 e 2007/2008, para avaliar a percentagem da área foliar infectada em plantas individuais de cinco parentais e das suas populações segregantes F2 e F3. Os dados obtidos indicam que a variância genética aditiva predomina no controle da resistência da soja à ferrugem-asiática e que os anos e as épocas de avaliação não influenciaram significativamente as estimativas dos parâmetros genéticos obtidos. A herdabilidade no sentido restrito (h²r variou de 23,12 a 55,83%, o que indica a possibilidade de sucesso com a seleção de indiv

  1. Assessing the potential additionality of certification by the Round table on Responsible Soybeans and the Roundtable on Sustainable Palm Oil

    Science.gov (United States)

    Garrett, Rachael D.; Carlson, Kimberly M.; Rueda, Ximena; Noojipady, Praveen

    2016-04-01

    Multi-stakeholder roundtables offering certification programs are promising voluntary governance mechanisms to address sustainability issues associated with international agricultural supply chains. Yet, little is known about whether roundtable certifications confer additionality, the benefits of certification beyond what would be expected from policies and practices currently in place. Here, we examine the potential additionality of the Round table on Responsible Soybeans (RTRS) and the Roundtable on Sustainable Palm Oil (RSPO) in mitigating conversion of native vegetation to cropland. We develop a metric of additionality based on business as usual land cover change dynamics and roundtable standard stringency relative to existing policies. We apply this metric to all countries with RTRS (n = 8) and RSPO (n = 12) certified production in 2013-2014, as well as countries that have no certified production but are among the top ten global producers in terms of soy (n = 2) and oil palm (n = 2). We find RSPO and RTRS both have substantially higher levels of stringency than existing national policies except in Brazil and Uruguay. In regions where these certification standards are adopted, the mean estimated rate of tree cover conversion to the target crop is similar for both standards. RTRS has higher mean relative stringency than the RSPO, yet RSPO countries have slightly higher enforcement levels. Therefore, mean potential additionality of RTRS and RSPO is similar across regions. Notably, countries with the highest levels of additionality have some adoption. However, with extremely low adoption rates (0.41% of 2014 global harvested area), RTRS likely has lower impact than RSPO (14%). Like most certification programs, neither roundtable is effectively targeting smallholder producers. To improve natural ecosystem protection, roundtables could target adoption to regions with low levels of environmental governance and high rates of forest-to-cropland conversion.

  2. Production traits, blood metabolic profile and fatty acids of meat and tallow in response to the partial replacement of soybean meal with peas in organic lambs' feed

    Directory of Open Access Journals (Sweden)

    Z. Antunović

    2017-11-01

    Full Text Available The aim of this research was to investigate the production traits, blood metabolic profile and fatty acids of meat and tallow in response to the partial replacement of soybean meal with peas in lambs' feed. The research was conducted on 30 Merinolandschaf lambs of 90 days' age over 30 days. Lambs were fed with feed mixture (1000 g day−1 lamb−1. In the control group protein supplement was soybean meal (SC, while in the experimental groups soybean meal was partially replaced with 13 % peas (P13 and 26 % peas (P26. In the haematological parameters of lambs' blood, concentrations of minerals (Ca, P, Mg and Fe and biochemical parameters (urea, glucose, total protein, albumin, globulins, cholesterol, HDL, LDL, triglyceride, β-hydroxybutyrate and non-esterified fatty acids as well as enzyme activity (ALT, AST, ALP, GGT and CK were determined. After slaughter, carcass development was measured. Samples of m. semimembranosus and tallow were taken in which concentrations of fatty acids were analysed. Values of meat pH and colour were taken 45 min 24 h post mortem, and water-holding capacity was calculated. By analysing the production properties of lamb, we found that slaughtering characteristics of lamb carcasses, haematological and most of the biochemical indicators did not differ. Urea concentrations were reduced in the blood of lambs in P13 and P26. Concentration of C18:2 n-6 increased in tallow of lambs of group SC compared to group P26 of lambs. The above-mentioned results indicate the possibility of partial replacement of soybean meal with peas in lambs' diets in organic farming without changes in production.

  3. Chrysodeixis includens (Lepidoptera: Noctuidae) on soybean ...

    African Journals Online (AJOL)

    Chrysodeixis includens (Lepidoptera: Noctuidae) on soybean treated with resistance inducers. P Vinicius de Souza, BR Machado, M Mueller de Freitas, F Correa, A Cirilo de Sousa Almeida, FG de Jesus ...

  4. Physiological Responses of Some Drought Resistant Cowpea ...

    African Journals Online (AJOL)

    saharan Africa One of the first physiological responses to water stress in crops is the functioning of the leaf. The aim of the present study is to determine leaf physiological responses of cowpea to water stress. The study was conducted at ...

  5. Effects of partially replacing dietary soybean meal or cottonseed meal with completely hydrolyzed feather meal (defatted rice bran as the carrier) on production, cytokines, adhesive gut bacteria, and disease resistance in hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂).

    Science.gov (United States)

    Zhang, Zhen; Xu, Li; Liu, Wenshu; Yang, Yalin; Du, Zhenyu; Zhou, Zhigang

    2014-12-01

    We formulated experimental diets for hybrid tilapia to investigate the effects of replacing dietary soybean meal (SBM) or cottonseed meal (CSM) by completely hydrolyzed feather meal (defatted rice bran as the carrier; abbreviated as CHFM), with emphasis on fish growth, the composition of adhesive gut bacteria, intestinal and hepatic immune responses, and disease resistance. A series of four isonitrogenous (33% crude protein) and isolipidic (6% crude lipid) diets were formulated to replace the isonitrogenous percentages of CSM or SBM by 6% or 12% CHFM. Quadruplicate groups of healthy and uniformly sized hybrid tilapia were assigned to each experimental diet. Fish were hand fed three times a day for 8 weeks at a rearing temperature of 25-28 °C. The growth performance of hybrid tilapia fed diets with partial replacement of dietary SBM or CSM with CHFM was comparable to the group of fish fed the control diet. The CHFM-containing diets affected the intestinal autochthonous bacterial community in similar ways. All CHFM-containing diets stimulated the expression of heat shock protein 70 in the intestine but suppressed its expression in the liver. Only the CHFM6/SBM diet stimulated the expression of interleukin-1β in intestine, and no effects were observed in all diets to the expression of interleukin-1β in liver. Thus, regarding the immune response in the intestine and liver, CHFM is a good alternative protein source that induces less stress in the host. CHFM did not affect disease resistance to Aeromonas hydrophila infection in hybrid tilapia. These data suggest that CHFM is a good alternative to partially replace SBM and CSM in tilapia feed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Lipoprotein responses to fish, coconut and soybean oil diets with and without cholesterol in the Syrian hamster.

    Science.gov (United States)

    Lin, M H; Lu, S C; Hsieh, J W; Huang, P C

    1995-12-01

    Thirty-six young male Syrian hamsters were fed with test diets containing coconut oil, soybean oil or fish oil with and without 0.5% cholesterol for 6 weeks. Without dietary cholesterol supplementation, animals on the fish oil diet had significantly lower plasma total triglyceride (TG) and total cholesterol than those on the coconut oil or soybean oil diet. The decrease of TG was seen mainly in the very low density lipoprotein (VLDL) fraction. The degree of decrease in cholesterol was similar in all of the lipoprotein fractions. With 0.5% dietary cholesterol supplementation, there was no significant difference in plasma TG level among the three dietary groups. However, the fish oil group had significantly higher plasma cholesterol than the coconut oil and soybean oil groups. The increase of cholesterol was mainly in the VLDL and low density lipoprotein (LDL) fractions. In contrast to the plasma cholesterol level, the hepatic cholesteryl ester content was significantly lower in the cholesterol-supplemented fish oil group than in the coconut oil and soybean oil counterparts. The cholesterol-supplemented fish oil group showed higher liver microsomal acyl-coenzyme A:cholesterol acyltransferase activity than the other two groups, while there was no significant difference in the excretion of fecal neutral and acidic sterols among the three dietary groups.

  7. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  8. Infestation ratings database for soybean aphid on early-maturity wild soybean lines

    Science.gov (United States)

    Soybean aphid (Aphis glycines Matsumura; SA) is a major invasive pest of soybean [Glycine max (L.) Merr.] in northern production regions of North America. Although insecticides are currently the main method for controlling this pest, SA-resistant cultivars are being developed to sustainably manage ...

  9. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate.

    Science.gov (United States)

    Moras, Benjamin; Rey, Stéphane; Vilarem, Gérard; Pontalier, Pierre-Yves

    2017-01-01

    A Doehlert experimental design was conducted and surface response methodology was used to determine the effect of temperature, contact time and solid liquid ratio on isoflavone extraction from soybean flour or Soybean Protein Isolate in pressurized water system. The optimal conditions conducted gave an extraction yield of 85% from soybean flour. For Soybean Protein Isolate compared to soybean flour, the isoflavone extraction yield is 61%. This difference could be explained by higher aglycon content, while aglycon appears to be the least extracted isoflavone by pressurized water. The solid liquid ratio in the ASE cell was the overriding factor in obtaining high yields with both soybean products, while temperature has less influence. A high temperature causes conversion of the malonyls-glucosides and glucosides isoflavone derivatives into glucosides or aglycons forms. pressurized water extraction showed a high solubilization of protein material up to 95% of inserted Soybean Protein Isolate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Alves, Murilo S; Soares, Zamira G; Vidigal, Pedro M P; Barros, Everaldo G; Poddanosqui, Adriana M P; Aoyagi, Luciano N; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Fietto, Luciano G

    2015-11-01

    Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.

  11. Soybean resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with exposure to solar UV-B radiation and correlates with isoflavonoid content in pods under field conditions.

    Science.gov (United States)

    Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L

    2015-05-01

    Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.

  12. THE IMPACT OF SOYBEAN AND CORN INTERCROPPING SYSTEM AND SOIL FERTILITY MANAGEMENT ON SOYBEAN APHID POPULATIONS APHIS GLYCINES (HEMIPTERA: APHIDIDAE AND SOYBEAN GROWTH PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Rosma Hasibuan

    2013-09-01

    Full Text Available Agricultural management cropping systems play an important role in affecting a crop plant’s ability to tolerate or resist insect pests.  Field studies were conducted to examine the effect of two strategies management systems: fertilizer treatment and intercropping soybean with corn on soybean  aphid (Aphis glycines Matsumura population and soybean growth  and yield parameters. The intercropping treatments were: soybean alone; 2:1 soybean/corn intercrop; and 3:1 soybean/corn intercrop. While the soil fertility treatments were the combination of NPK (urea 100 kg ha-1 + SP-36 200 kg ha-1 + KCl 200 kg ha-1 levels, dolomite (4 ton ha-1, compost  (10 ton ha-1, and chicken manure (10 ton ha-1.  The results of the first study showed that the intercropping soybean with corn  significantly reduced the population density of soybean aphids. However, there were no significant effects of intercropping systems on soybean growth (plant height and yield (number seed per pod and  thousand seed weight performances except on the number of soybean pods per plant. Meanwhile, the result of the second study indicated that soil fertilizer treatments had  a significant effect on the soybean plant characteristics: leaf numbers; pod numbers; and plant height.  Combining  intercropping methods and soil fertilizer management offer an opportunity to protect the soybean plants by natural and sustainable pest management.

  13. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  14. Indutores de resistência à mosca-branca Bemisia tabaci Biótipo B (GENN., 1889 (Hemiptera: Aleyrodidae em soja Resistance inducers to the whitefly Bemisia tabaci Biotype B (GENN., 1889 (Hemiptera: Aleyrodidae in soybeans

    Directory of Open Access Journals (Sweden)

    Jair Campos Moraes

    2009-10-01

    Full Text Available Objetivou-se, neste trabalho, avaliar o efeito da aplicação de indutores na resistência de duas cultivares de soja à mosca-branca Bemisia tabaci biótipo B. O experimento foi conduzido no Departamento de Entomologia - UFLA. As sementes de soja, cultivar IAC-19 e MONSOY-8001, foram previamente tratadas com o fungicida captan. Foram testados os seguintes tratamentos: T1- irrigação no solo, ao redor das plantas de cada vaso, de 250 mL de solução de ácido silícico a 1%; T2- pulverização das plantas, até o ponto de escorrimento, com solução a 0,3% de acibenzolar-s-methyl; T3- pulverização das plantas, até o ponto de escorrimento, com calda a 0,24% de pyraclostrobin+epoxiconazole e T4- testemunha. As plantas foram infestadas com 100 adultos da mosca-branca por vaso que liberados oito dias após a aplicação dos tratamentos. Avaliaram-se o número de ovos na face abaxial de cada folha, que foi marcada para posterior avaliação de ninfas; teores de taninos e de lignina; peso seco das raízes e da parte aérea. Não houve diferença para número de ovos e ninfas entre as cultivares de soja, porém, a viabilidade média de B. tabaci foi menor a cultivar IAC-19. O cultivar de soja IAC-19 demonstrou moderada resistência ao biótipo B de B. tabaci. A aplicação de silício ou acibenzolar-s-methyl induz um aumento no teor de lignina na cultivar de soja IAC-19.The objective of this paper was to evaluate the effect of the application of inducers on the resistance of two soybean cultivars to the whitefly B. tabaci Biotype B. The experiment was carried out at the Entomology Department - UFLA. The soybean seeds of cultivars IAC-19 and MONSOY-8001 were previously treated with Captan fungicide. The following treatments were tested: T1- irrigating the soil around the plants of each pot with 250 mL of solution of 1% silicic acid; T2- spraying of the plants, to the 'point of dripping', with a solution of 0.3% acibenzolar-s-methyl; T3- spraying of

  15. The current status of the Soybean-Soybean mosaic virus (SMV Pathosystem

    Directory of Open Access Journals (Sweden)

    Jianzhong Liu

    2016-11-01

    Full Text Available Soybean mosaic virus (SMV is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing (VIGS. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.

  16. Exhibiting eugenics: response and resistance to a hidden history.

    Science.gov (United States)

    Brave, Ralph; Sylva, Kathryn

    2007-01-01

    Human Plants, Human Harvest: The Hidden History of California Eugenics is the first-ever exhibition on the history of eugenics in California. The disappearance of this history for half a century, and the consequent absence of a "collective menory", were the primary factors determining the exhibit's sttrcture and content. Responses to the exhibit confirmed that most visitors "never knew" about this history. The exhibit is described in some detail, with selected imagery from the exhibit reproduced. After the initial exhibition, responses of other museums and foundation officials revealed a continuing resistance to this history being publicly displayed, though the sources of resistance varied.

  17. Kinetin modulates physio-hormonal attributes and isoflavone contents of Soybean grown under salinity stress.

    Science.gov (United States)

    Hamayun, Muhammad; Hussain, Anwar; Khan, Sumera Afzal; Irshad, Muhammad; Khan, Abdul Latif; Waqas, Muhammad; Shahzad, Raheem; Iqbal, Amjad; Ullah, Nazif; Rehman, Gauhar; Kim, Ho-Youn; Lee, In-Jung

    2015-01-01

    Crop productivity continues to decline due to a wide array of biotic and abiotic stresses. Salinity is one of the worst abiotic stresses, as it causes huge losses to crop yield each year. Kinetin (Kn) has been reported as plant growth regulator since long, but its role in improving plant growth and food quality under saline conditions through mediating phytohormonal cross-talk is poorly studied. Current study was designed to evaluate the impact of exogenously applied Kn on growth, isoflovones and endogenous phytohormones of soybean grown under NaCl induced salt stress. Soybean plants were grown in perlite (semi hydroponic), and under controlled green-house conditions. Elevated levels of exogenous Kn significantly mitigated the adverse effect of NaCl and rescued plant growth attributes, i.e., plant height, fresh and dry biomass of soybean plants grown in all treatments. Higher diadzen, glycitin, and genistin contents were observed in plants treated with elevated Kn in the presence or absence of NaCl induce salt stress. The gibberellins (GAs) biosynthesis pathway was up-regulated by Kn as the bioactive GA1 and GA4 contents were significantly higher in Kn treated plants, as compared to control, while GAs level reduced in NaCl treated plants. Contrary to GAs, the abscisic acid contents declined with Kn but promoted in NaCl stressed soybean plants. The endogenous jasmonic acid and salicylic acid contents of soybean enhanced with elevated Kn application, but they showed an antagonistic response under salt stress. Current study supports the active role of Kn to ameliorate the adverse effects of salt stress on the growth and food quality of soybean. The favorable role of Kn toward soybean growth under salt stress may be attributed to its potential to modulate cross-talk between the various phytohormones involved in soybean growth and its resistance to salinity stress.

  18. Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    Directory of Open Access Journals (Sweden)

    Musarrat Ramzan

    2017-02-01

    Full Text Available Background: The Root Knot Nematode (RKN is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR marker system to identify resistant soybean varieties against Root Knot Nematode (RKN using fifteen (15 indigenous cultivars and four (4 US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis. Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1 in all internationally confirmed resistant including six (6 native varieties. Conclusion: These investigations have identified six (6 resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan.

  19. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.

    Science.gov (United States)

    Zhen, Yan; Qi, Jin-Liang; Wang, Si-Si; Su, Jing; Xu, Guo-Hua; Zhang, Ming-Sheng; Miao, Lv; Peng, Xin-Xiang; Tian, Dacheng; Yang, Yong-Hua

    2007-12-01

    Phytotoxic aluminum (Al) is a limiting factor for crop production on acid soils. The molecular mechanism, however, underlying Al toxicity and responses in plants is still not well understood. We report here the characterization of comparative proteome of aluminum-stress-responsive proteins in a known Al-resistant soybean cultivar, Baxi 10 (BX10). To investigate time-dependent responses, 1-week-old soybean seedlings were exposed to 50 microM AlCl3 for 24, 48 and 72 h, and total proteins extracted from roots were separated by two-dimensional electrophoresis. More than 1200 root proteins of the soybean BX10 seedling were reproducibly resolved on the gels. A total of 39 differentially expressed spots in abundance were identified by mass spectrometry, with 21 upregulated, 13 newly induced and 5 downregulated. The heat shock protein, glutathione S-transferase, chalcone-related synthetase, GTP-binding protein and ABC transporter ATP-binding protein were previously detected at the transcriptional or translational level in other plants. Other proteins, identified in this study, are new Al-induced proteins. Soybean BX10 roots under aluminum stress could be characterized by the cellular activities involved in stress/defense, signal transduction, transport, protein folding, gene regulation, and primary metabolisms, which are critical for plant survival under Al toxicity. This present study expands our understanding of differentially expressed proteins associated with aluminum stress on soybean BX10.

  20. Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation

    Directory of Open Access Journals (Sweden)

    Tamashiro Wirla MSC

    2004-04-01

    Full Text Available Abstract Background The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm. Sodium nitroprusside (SNP, a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS- and LPS plus interferon-γ (IFNγ-activated murine macrophages. Results Significant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages. Conclusions These results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple

  1. Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [Glycine max (L. Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection

    Directory of Open Access Journals (Sweden)

    Wen-yu Yang

    2017-04-01

    Full Text Available Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH stress during soybean maturation in the field promotes pre-harvest mildew, resulting in damage to different organs of soybean fruits to different extents, but relatively little information on the resistance mechanisms in these fruits is available. Therefore, to understand the metabolic responses of soybean fruits to field mold (FM, the metabonomic variations induced by LTH were characterized using proton nuclear magnetic resonance spectroscopy (1H-NMR, and the primary metabolites from the pod, seed coat and cotyledon of pre-harvest soybean were quantified. Analysis of FM-damaged soybean germplasms with different degrees of resistance to FM showed that extracts were dominated by 66 primary metabolites, including amino acids, organic acids and sugars. Each tissue had a characteristic metabolic profile, indicating that the metabolism of proline in the cotyledon, lysine in the seed coat, and sulfur in the pod play important roles in FM resistance. The primary-secondary metabolism interface and its potential contribution to FM resistance was investigated by targeted analyses of secondary metabolites. Both the seed coat and the pod have distinct but nonexclusive metabolic responses to FM, and these are functionally integrated into FM resistance mechanisms.

  2. Investigating the use of Active Crop Canopy Sensors for Soybean Management in Field Research and Production

    Science.gov (United States)

    Miller, Joshua Jay

    Approximately one-third of soybean yield gain is a result of improved agronomic practices, which includes disease and insect management. Treatments containing fungicide, insecticide, biological, and nutrient components were evaluated in Nebraska soybean fields during 2013 through 2015 to determine effects on soybean yield and profitability. The greatest yield (4.83 Mg ha -1, p=0.019) was achieved with a complete seed and pod set treatment, but resulted in the second lowest calculated net return (US151 ha -1, p=0.019) after accounting for fixed and variable costs at a soybean market price of US0.367 kg-1. The most profitable treatment was the fungicide seed treatment followed by no pod set treatment (US$241 ha-1, p=0.019). The use of pod set treatments in the absence of significant disease and insect pressure was not profitable in most instances. Crop canopy reflectance was measured several times throughout the season during 2014 and 2015 to evaluate normalized difference red edge (NDRE) index to predict soybean productivity. The NDRE values were used to calculate a cumulative reflectance value through the R6 growth stage, defined as area under the reflectance progress curve (AURPC). The AURPC values and seed yield were classified as top 25%, middle 50%, or bottom 25% by location. Multinomial regression determined that bottom AURPC values correctly predicted bottom yield 52.5% of the time (p=0.033), but ranged from 46.7 to 86.2% by location. Misclassifications by incorrectly identifying a bottom yield within the top AURPC ranged from 0.0% to 16.7% by location. The AURPC offers a novel method to delineate management zones in soybean production fields. Soybean canopy reflectance was also evaluated for the relationship between NDRE and soybean response to soybean cyst nematode (SCN; Heterodera glycines Ichinohe) infection. SCN-resistant and -susceptible varieties were planted in SCN-infested and non-infested sites during 2015 and 2016. Susceptible varieties yielded

  3. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response.

    Science.gov (United States)

    Ghosh, Ajit; Islam, Tahmina

    2016-04-16

    Glyoxalase pathway consists of two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) which detoxifies a highly cytotoxic metabolite methylglyoxal (MG) to its non-toxic form. MG may form advanced glycation end products with various cellular macro-molecules such as proteins, DNA and RNA; that ultimately lead to their inactivation. Role of glyoxalase enzymes has been extensively investigated in various plant species which showed their crucial role in salinity, drought and heavy metal stress tolerance. Previously genome-wide analysis of glyoxalase genes has been conducted in model plants Arabidopsis and rice, but no such study was performed in any legume species. In the present study, a comprehensive genome database analysis of soybean was performed and identified a total of putative 41 GLYI and 23 GLYII proteins encoded by 24 and 12 genes, respectively. Detailed analysis of these identified members was conducted including their nomenclature and classification, chromosomal distribution and duplication, exon-intron organization, and protein domain(s) and motifs identification. Expression profiling of these genes has been performed in different tissues and developmental stages as well as under salinity and drought stresses using publicly available RNAseq and microarray data. The study revealed that GmGLYI-7 and GmGLYII-8 have been expressed intensively in all the developmental stages and tissues; while GmGLYI-6, GmGLYI-9, GmGLYI-20, GmGLYII-5 and GmGLYII-10 were highly abiotic stress responsive members. The present study identifies the largest family of glyoxalase proteins to date with 41 GmGLYI and 23 GmGLYII members in soybean. Detailed analysis of GmGLYI and GmGLYII genes strongly indicates the genome-wide segmental and tandem duplication of the glyoxalase members. Moreover, this study provides a strong basis about the biological role and function of GmGLYI and GmGLYII members in soybean growth, development and stress physiology.

  4. Soybean flour asthma: detection of allergens by immunoblotting

    International Nuclear Information System (INIS)

    Bush, R.K.; Schroeckenstein, D.; Meier-Davis, S.; Balmes, J.; Rempel, D.

    1988-01-01

    A 43-year-old woman developed asthma 6 years after beginning work in a food-processing plant in which soybean flour was used as a protein extender. Symptoms of sneezing, coughing, and wheezing would begin within minutes of exposure to soybean flour and resolve 2 hours after exposure ceased. Skin tests were positive to a soy extract prepared from the flour. Airway hyperreactivity was confirmed by a positive bronchial challenge to methacholine. Bronchial challenge with soybean flour produced an immediate increase in specific airway resistance from 5.0 to 22.7 L. cm of H2O/L/sec. There was no response to challenge with lactose. The patient's allergic response to soy-flour extract was further characterized by several immunologic methods. IgE binding to soy-flour protein by direct RAST was 5.98 times that of a normal control serum. The soy-flour extract was separated by dodecyl sulfate-polyacrylamide gel electrophoresis. Twenty-four protein bands were detected in the crude soy-flour extract. After immunoblotting and subsequent autoradiography, nine proteins with molecular weights ranging from 54,500 to 14,875 were found. Cross-reactivity studies with other legumes demonstrated apparent immunologic identity between a component in green pea extract and a soybean protein with a molecular weight of 17,000. The clinical significance of this cross-reactivity is not known. We conclude that in this case of occupational asthma to soybean flour, multiple allergens were involved. Immunoblotting may be useful in identifying the allergens involved in occupational asthma

  5. Control of virus diseases in soybeans.

    Science.gov (United States)

    Hill, John H; Whitham, Steven A

    2014-01-01

    Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance.