WorldWideScience

Sample records for resistance nano-scale contacts

  1. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass.

    Science.gov (United States)

    Lu, Y M; Zeng, J F; Wang, S; Sun, B A; Wang, Q; Lu, J; Gravier, S; Bladin, J J; Wang, W H; Pan, M X; Liu, C T; Yang, Y

    2016-07-07

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3-0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs.

  3. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  4. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  5. Molecular statics study of depth-dependent hysteresis in nano-scale adhesive elastic contacts

    Science.gov (United States)

    Deng, Weilin; Kesari, Haneesh

    2017-07-01

    The contact force—indentation-depth (P-h) measurements in adhesive contact experiments, such as atomic force microscopy, display hysteresis. In some cases, the amount of hysteretic energy loss is found to depend on the maximum indentation-depth. This depth-dependent hysteresis (DDH) is not explained by classical contact theories, such as Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov, and is often attributed to surface moisture, material viscoelasticity, and plasticity. We present molecular statics simulations that are devoid of these mechanisms, yet still capture DDH. In our simulations, DDH is due to a series of surface mechanical instabilities. Surface features, such as depressions or protrusions, can temporarily arrest the growth or recession of the contact area. With a sufficiently large change of indentation-depth, the contact area grows or recedes abruptly by a finite amount and dissipates energy. This is similar to the pull-in and pull-off instabilities in classical contact theories, except that in this case the number of instabilities depends on the roughness of the contact surface. Larger maximum indentation-depths result in more surface features participating in the load-unload process, resulting in larger hysteretic energy losses. This mechanism is similar to the one recently proposed by one of the authors using a continuum mechanics-based model. However, that model predicts that the hysteretic energy loss always increases with roughness, whereas experimentally it is found that the hysteretic energy loss initially increases but then later decreases with roughness. Our simulations capture this non-monotonic dependence of hysteretic energy loss on roughness.

  6. Direct comparison of the performance of commonly used e-beam resists during nano-scale plasma etching of Si, SiO2, and Cr

    Science.gov (United States)

    Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike

    2015-03-01

    Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.

  7. Multiscale electrical contact resistance in clustered contact distribution

    Science.gov (United States)

    Lee, Sangyoung; Cho, Hyun; Jang, Yong Hoon

    2009-08-01

    For contact between rough surfaces of conductors in which a clustered contact spot distribution is dominant through a multiscale process, electrical contact resistance (ECR) is analysed using a smoothed version of Greenwood's model (Jang and Barber 2003 J. Appl. Phys. 94 7215), which is extended to estimate the statistical distribution of contact spots considering the size and the location simultaneously. The application of this statistical method to a contact spot distribution, generated by the finite element method using a fractal surface defined by the random midpoint displacement algorithm, identifies the effect of the clustered contact distribution on ECR, showing that including a finer scale in the fractal contact surface causes the predicted resistance to approach a finite limit. It is also confirmed that the results are close to that of Barber's analogy (Barber 2003 Proc. R. Soc. Lond. A 459 53) regarding incremental stiffness and conductance for elastic contact.

  8. Nanoscale metal-InGaAs contacts with ultra-low specific contact resistivity: Improved interfacial quality and extraction methodology

    Science.gov (United States)

    Masudy-Panah, Saeid; Wu, Ying; Lei, Dian; Kumar, Annie; Yeo, Yee-Chia; Gong, Xiao

    2018-01-01

    To enable heterogeneous integration of InGaAs based transistors with Si complementary metal-oxide-semiconductor (CMOS) devices, metal contacts to n+-InGaAs need to have high thermal stability for CMOS process compatibility and ultra-low contact resistance to achieve good device performance. In this work, n+-InGaAs contacts with ultra-low contact resistivity ρc based on refractory metals such as molybdenum (Mo) were realized. Use of refractory metal contacts achieves good thermal stability. An improved process that eliminates oxide between the metal and n+-InGaAs by using an in situ Ar+-plasma treatment prior to metal deposition achieves ultra-low ρc. Furthermore, a nano-scale transmission line method (nano-TLM) structure with significantly reduced parasitic leakage was designed and fabricated to improve the ρc extraction accuracy. The improved test structure introduces a SiO2 isolation layer between Mo and InGaAs outside the active or mesa region to eliminate a parallel leakage path that is present in other nano-TLM structures reported in the literature.

  9. The fabrication of nano-scale devices in silicon

    International Nuclear Information System (INIS)

    Ruess, F.J.; Simmons, M.Y.; Oberbeck, L.; Goh, K.E.J.; Hamilton, A.R.; Hallam, T.; Curson, N.J.; Clark, R.G.

    2004-01-01

    Full text: Over the last three years our group has solved several key issues in the fabrication of nano-scale devices in silicon using an ultra-high vacuum (UHV) scanning tunneling microscope (STM) and silicon molecular beam epitaxy (MBE). These steps include: the placement of single phosphine (PH3) molecules at predefined locations on a silicon surface using STM lithography, the controlled phosphorus incorporation from the PHs molecules into the top layer of the silicon surface with ∼ 1 nm accuracy and the encapsulation of P δ-doped layers with minimal segregation using MBE. In this talk we present our results for arguably one of the most critical steps of device fabrication using a scanning tunneling microscope - that of connecting the STM patterned buried phosphorus devices outside the vacuum environment to perform electrical measurements. We have achieved this by etching registration markers into the Si surface that allow us to align and contact the nano-scale device fabricated in the UHV system using conventional optical lithography. We present electrical transport data showing a cross over from two-dimensional to one-dimensional behaviour by confining dopants to a 90nm wide quantum wire using STM based lithography. Our results highlight the potential of this fabrication approach for the creation of electronic nano-scale devices in Si down to the atomic level including the realisation of atomically ordered transistors, quantum cellular automata, single atom memory devices and a solid-state quantum computer

  10. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  11. Magnetotransport on the nano scale

    Science.gov (United States)

    Willke, Philip; Kotzott, Thomas; Pruschke, Thomas; Wenderoth, Martin

    2017-05-01

    Transport experiments in strong magnetic fields show a variety of fascinating phenomena like the quantum Hall effect, weak localization or the giant magnetoresistance. Often they originate from the atomic-scale structure inaccessible to macroscopic magnetotransport experiments. To connect spatial information with transport properties, various advanced scanning probe methods have been developed. Capable of ultimate spatial resolution, scanning tunnelling potentiometry has been used to determine the resistance of atomic-scale defects such as steps and interfaces. Here we combine this technique with magnetic fields and thus transfer magnetotransport experiments to the atomic scale. Monitoring the local voltage drop in epitaxial graphene, we show how the magnetic field controls the electric field components. We find that scattering processes at localized defects are independent of the strong magnetic field while monolayer and bilayer graphene sheets show a locally varying conductivity and charge carrier concentration differing from the macroscopic average.

  12. Resistance switching in silver - manganite contacts

    International Nuclear Information System (INIS)

    Gomez-Marlasca, F; Levy, P

    2009-01-01

    We investigate the electric pulse induced resistance switching in a transition metal oxide-metal contact at room temperature - a non volatile, reversible and multilevel memory device. Using a simple multiterminal configuration, we find that the complementary effect -in which the contact resistance of each pulsed electrode displays variations of opposite sign- is strongly influenced by the history of the pulsing procedure. Loops performed by varying the magnitude and sign of the stimulus at each pulsed electrode allow to disentangle their sole contribution at different stages of the process. Electromigration of oxygen ions and vacancies is discussed as participating at the core of the underlying mechanisms for resistance switching.

  13. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  14. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  15. Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping

    Science.gov (United States)

    Hou, Ji-Ling; Kasemann, Daniel; Widmer, Johannes; Günther, Alrun A.; Lüssem, Björn; Leo, Karl

    2016-03-01

    Emerging organic integrated electronics require capability of high speed and the compatibility with high-resolution structuring processes such as photolithography. When downscaling the channel length, the contact resistance is known to limit the performance of the short channel devices. In this report, orthogonal photolithography is used for the patterning of the source/drain electrodes of the organic field-effect transistors (OFETs) as well as the interface dopant insertion layers for further modifications of the contact resistance. Bottom-gate top-contact pentacene OFETs with different thicknesses of the p-dopant 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile under the Au electrodes show a significant decrease in threshold voltage from -2.2 V to -0.8 V and in contact resistance from 55 k Ω cm to 10 k Ω cm by adding a 1 nm thin dopant interlayer. The influence of doping on charge carrier injection is directly visible in the temperature-dependent output characteristics and a charge-transfer activation energy of ˜20 meV is obtained. Our results provide a systematic study of interface contact doping and also show the connection between interface contact doping and improved charge carrier injection by the activation of charge transfer process.

  16. Synthesis and Characterization of Nano Scale YBCO

    International Nuclear Information System (INIS)

    Sukirman, E.; Wisnu AA; Yustinus P; Sahidin W, D.; Rina M, Th.

    2009-01-01

    Synthesis and characterization of the nano scale YBCO superconductor have been performed. The nano scale superconductor was synthesized from YBCO system (YBa 2 Cu 3 O 7-X ). Raw materials, namely Y 2 O 3 , BaCO 3 , and Cu°, were balanced and mixed with ethanol using magnetic steering as a churn in a beaker glass. Then, the precursor was calcined at T k = 900°C for 5 hours and repeated it until three times. The resulting precursor was ground by using High Energy Milling (HEM) for t = 0, 30, 50, 70, and 90 hour and hereinafter precursors are successively referred as YKM-00, YKM-30, YKM-50, YKM-70, and YKM-90. The resulting powders phase were characterized by means of x-ray diffraction technique using the Rietveld analysis method. Precursor of YKM-90 was pressed into pellets, and then sintered at various temperatures and periods. The sample phase was then characterized by using the Rietveld analysis method based on the x-ray diffraction data. The crystallites size were calculated using Scherrer formula. Results of analysis indicate that by minimizing crystallites size, period of sinter can be shortened from 10 to 1 hour, resulting crystallite size of D = 925 Å, critical current density of J c = 4 A / cm 2 , and can be grown of about 15 weight % of 211-phase in a matrix of 123-phase. The decrease of crystallite size will generate a change in physical properties dramatically, if the crystallite size of the material, D is smaller or equal to the coherence length of 10 Å. (author)

  17. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  18. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  19. Low contact resistance in epitaxial graphene devices for quantum metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yager, Tom, E-mail: yager@chalmers.se, E-mail: ywpark@snu.ac.kr; Lartsev, Arseniy; Lara-Avila, Samuel; Kubatkin, Sergey [Department of Microtechnology and Nanoscience, Chalmers University of Technology Göteborg, S-412 96 (Sweden); Cedergren, Karin [School of Physics, University of New South Wales, Sydney, NSW-2052 (Australia); Yakimova, Rositsa [Department of Physics, Chemistry and Biology (IFM), Linköping University Linköping, S-581 83 (Sweden); Panchal, Vishal; Kazakova, Olga [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Tzalenchuk, Alexander [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Department of Physics, Royal Holloway, University of London, Egham, TW20 0EX (United Kingdom); Kim, Kyung Ho; Park, Yung Woo, E-mail: yager@chalmers.se, E-mail: ywpark@snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-08-15

    We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001) for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω) suitable for high precision quantum resistance metrology.

  20. Low contact resistance in epitaxial graphene devices for quantum metrology

    Directory of Open Access Journals (Sweden)

    Tom Yager

    2015-08-01

    Full Text Available We investigate Ti/Au contacts to monolayer epitaxial graphene on SiC (0001 for applications in quantum resistance metrology. Using three-terminal measurements in the quantum Hall regime we observed variations in contact resistances ranging from a minimal value of 0.6 Ω up to 11 kΩ. We identify a major source of high-resistance contacts to be due bilayer graphene interruptions to the quantum Hall current, whilst discarding the effects of interface cleanliness and contact geometry for our fabricated devices. Moreover, we experimentally demonstrate methods to improve the reproducibility of low resistance contacts (<10 Ω suitable for high precision quantum resistance metrology.

  1. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  2. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... in this work, dealing with the coupled mechanical-electrical-thermal contact problems. The penalty method is used to impose the contact conditions in the electrical and thermal contact, as well as frictionless contact and sticking contact in the mechanical model. A node-segment contact element is the basis...

  3. Ultra-low specific contact resistivity (1.4 × 10-9 Ω.cm2) for metal contacts on in-situ Ga-doped Ge0.95Sn0.05 film

    Science.gov (United States)

    Wu, Ying; Luo, Sheng; Wang, Wei; Masudy-Panah, Saeid; Lei, Dian; Liang, Gengchiau; Gong, Xiao; Yeo, Yee-Chia

    2017-12-01

    A heavily Ga-doped Ge0.95Sn0.05 layer was grown on the Ge (100) substrate by molecular beam epitaxy (MBE), achieving an active doping concentration of 1.6 × 1020 cm-3 without the use of ion implantation and high temperature annealing that could cause Sn precipitation or surface segregation. An advanced nano-scale transfer length method was used to extract the specific contact resistivity ρc between the metal and the heavily doped p-Ge0.95Sn0.05 layer. By incorporating Sn into Ge and in-situ Ga doping during the MBE growth, an ultra-low ρc of 1.4 × 10-9 Ω.cm2 was achieved, which is 50% lower than the ρc of p+-Ge control and is also the lowest value obtained for metal/p-type semiconductor contacts.

  4. Effect of Contact Pressure on the Resistance Contact Value and Temperature Changes in Copper Busbar Connection

    Directory of Open Access Journals (Sweden)

    Agus Risdiyanto

    2012-12-01

    Full Text Available This paper discussed the influence of tightness or contacts pressure on copper busbar joints to determine changes in the value of the initial contact resistance and the maximum temperature at the joint due to high current load. The test sample was copper busbar 3 x 30 mm with configuration of bolted overlapping joint. Increasing contact pressure at the joint was measured to find out its effect on the value of contact resistance. The applied pressure was 6 to 36 MPa. Procedure of contact resistance measurement refer to the ASTM B539 standard using four-wire method. The sample subsequently loaded with the current of 350 A for 60 minutes and the maximum temperature at the joint was measured. The result showed that increasing contact pressure at the busbar joint will reduce the contact resistance and maximum temperature. The increase of contact pressure from 6 to 30 MPa causes decreasing contact resistance from 16 μΩ to 11 μΩ. Further increasing of contact pressure more than 30 MPa did not affect the contact resistance significantly. The lowest temperatur of busbar joint of 54°C was reached at a contact pressure of 36 Mpa.

  5. Electrochemical method of producing nano-scaled graphene platelets

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  6. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  7. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  8. Bias dependent specic contact resistance of phase change material to metal contacts

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha; Wolters, Robertus A.M.

    2010-01-01

    Knowledge of contact resistance of phase change materials (PCM) to metal electrodes is important for scaling, device modeling and optimization of phase change random access memory (PCRAM) cells. In this article, we report the systematic determination of the speci_c contact resistance (_c) with

  9. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  10. Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

    Science.gov (United States)

    Yang, Y.; Fu, X. L.; Wang, S.; Liu, Z. Y.; Ye, Y. F.; Sun, B. A.; Liu, C. T.

    2014-10-01

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage.

  11. Contact resistance evolution of highly cycled, lightly loaded micro-contacts

    Science.gov (United States)

    Stilson, Christopher; Coutu, Ronald

    2014-03-01

    Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.

  12. Using TLM principles to determine MOSFET contact and parasitic resistance

    Science.gov (United States)

    Reeves, Geoffrey K.; Harrison, H. Barry

    1997-08-01

    Transmission Line Model (TLM) networks are commonly used to model planar metal-semiconductor ohmic contacts. Multiple layer contacts such as non-alloyed {n +}/{n}, heterojunction and metal-silicide-silicon contacts can also be analyzed using a Tri-Layer TLM (TLTLM) network. In this article, two and three layer contact structures are combined using the appropriate TLM models in order to electrically model the gate-drain/source extension and drain/source contact region of a MOSFET. Important device properties such as contact and parasitic resistance can thus be derived for various device structures in terms of the geometrical and material parameters used in the TLM model. The developed model is used to give an example calculation of the parasitic resistance in the gate-drain extension and the resistance of the ohmic contact.

  13. Silicide-to-silicon specific contact resistance characterization

    NARCIS (Netherlands)

    Stavitski, N.

    2009-01-01

    The performance of Si integrated circuits depends on the transistor drive current. The drive current of a MOS transistor is determined by the total device resistance, which consists of the channel resistance and the parasitic resistances associated with dopant diffusion areas and contacts. It is

  14. Topology optimization for nano-scale heat transfer

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Maute, Kurt; Yang, Ronggui

    2009-01-01

    We consider the problem of optimal design of nano-scale heat conducting systems using topology optimization techniques. At such small scales the empirical Fourier's law of heat conduction no longer captures the underlying physical phenomena because the mean-free path of the heat carriers, phonons...... in our case, becomes comparable with, or even larger than, the feature sizes of considered material distributions. A more accurate model at nano-scales is given by kinetic theory, which provides a compromise between the inaccurate Fourier's law and precise, but too computationally expensive, atomistic...

  15. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  16. Contact Resistance Evolution and Degradation of Highly Cycled Micro-Contacts

    Science.gov (United States)

    2014-03-27

    to predict accurate and complex calculations of circular and rectangular contact spreading resistances [17]. The method was to solve the three... mico -contact lasted twice as long as the the contacts with the softer Au as the cathode. On 96 the RuO2 10% the same conclusion can be drawn where the...Hoppe and W. Pilz, "Microfabrication of complex surface topographies using grey-tone lithography," Sensors and Actuators A: Physical, vol. 46, pp

  17. Determination of Thermal Contact Resistances for Small TENV Electrical Machine

    OpenAIRE

    Olfa MEKSI; Mohd Azri Hizami RASID; Alejandro OSPINA; Vincent LANFRANCHI

    2016-01-01

    In this paper, a thermal study of Synchronous Reluctant motor is proposed. A specific experimental method is applied in order to identify the thermal parameters, this method focus on the study of contact resistances and total thermal capacity. Generally, in the classical thermal modeling, the thermal contact resistance (TCR) is estimated by empirical values and the thermal capacities are calculated by analytical solutions. The originality of the proposed model is based on the complementarity ...

  18. Contact Resistance Evolution and Degradation of Highly Cycled

    Science.gov (United States)

    2014-03-27

    to predict accurate and complex calculations of circular and rectangular contact spreading resistances [17]. The method was to solve the three... mico -contact lasted twice as long as the the contacts with the softer Au as the cathode. On 96 the RuO2 10% the same conclusion can be drawn where the...Hoppe and W. Pilz, "Microfabrication of complex surface topographies using grey-tone lithography," Sensors and Actuators A: Physical, vol. 46, pp

  19. Computer simulation of quantum phenomena in nano-scale devices

    NARCIS (Netherlands)

    Raedt, Hans De

    1996-01-01

    This paper reviews the general concepts for building algorithms to solve the time-dependent Schrödinger equation and to discuss ways of turning these concepts into unconditionally stable, accurate and efficient simulation algorithms. Applications to focussed electron emission from nano-scale

  20. Modeling nano-scale grain growth of intermetallics

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The Monte Carlo simulation is utilized to model the nano-scale grain growth of two nano- crystalline materials, Pd81Zr19 and RuAl. In this regard, the relationship between the real time and the time unit of simulation, i.e. Monte Carlo step (MCS), is determined. The results of modeling show that with increasing time ...

  1. An Experimental Study of the Electrical Contact Resistance in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2005-01-01

    Electrical contact resistance is of critical importance in resistance welding. In this article, the contact resistance is experimentally investigated for welding mild steel, stainless steel, and aluminum to themselves. A parametric study was carried out on a Gleeble® machine, investigating...

  2. Establishing an upper bound on contact resistivity of ohmic contacts to n-GaN nanowires

    International Nuclear Information System (INIS)

    Blanchard, Paul; Bertness, Kris A; Harvey, Todd; Sanford, Norman

    2014-01-01

    Contact resistivity ρ c is an important figure of merit in evaluating and improving the performance of electronic and optoelectronic devices. Due to the small size, unique morphology, and uncertain transport properties of semiconductor nanowires (NWs), measuring ρ c of contacts to NWs can be particularly challenging. In this work, Si-doped n-GaN NWs were grown by molecular beam epitaxy. Four-contact structures with 20 nm Ti/200 nm Al contacts were fabricated on individual NWs by photolithography, and the contacts were annealed to achieve ohmic behavior. Two-point resistances R 23  and four-point collinear resistances R 23collinear  were measured between the middle two contacts on each NW. These resistances were then modeled by taking into account the non-uniform distribution of current flow along the length of each contact. Contrary to the assumption that the resistance difference R 23 −R 23collinear  is equal to the total contact resistance R c , the distributed-current-flow contact model shows that R 23 −R 23collinear  ≪ R c when ρ c is sufficiently small. Indeed, the measured R 23 −R 23collinear  was so small in these devices that it was within the measurement uncertainty, meaning that it was not possible to directly calculate ρ c from these data. However, it was possible to calculate an upper bound on ρ c for each device based on the largest possible value of R 23 −R 23collinear . In addition, we took into account the large uncertainties in the NW transport properties by numerically maximizing ρ c with respect to the uncertainty range of each measured and assumed parameter in the contact model. The resulting upper limits on ρ c ranged from 4.2 × 10 −6  to 7.6 × 10 −6  Ω cm 2 , indicating that 20 nm Ti/200 nm Al is a good choice of ohmic contact for moderately-doped n-GaN NWs. The measurement and numerical analysis demonstrated here offer a general approach to modeling ohmic contact resistivity via NW four

  3. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo

    2018-04-14

    The thermal stability and contact resistance of TaAlN thin films as electrical contacts to SiGe thermoelectric elements are reported. We demonstrate that a sharp interface is maintained after the device annealed at 800°C for over 100h, indicating that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising contact material for high temperature thermoelectrics such as SiGe.

  4. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  5. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  6. Resistive switching in Ag-TiO{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: ghenzi@cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Stoliar, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Campus Migueletes, UNSAM, Pcia. de Buenos Aires (Argentina); Fuertes, M.C. [Gerencia Quimica, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina); Marlasca, F.G.; Levy, P. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, (1650) San Martin, Pcia. de Buenos Aires (Argentina)

    2012-08-15

    We study the electric pulse induced resistance switching of TiO{sub 2}-Ag contacts at room temperature, exploring both unipolar and bipolar switching modes. Initially we observed unipolar response. After hundred pulsing cycles the unipolar switching response vanishes but the device can still be operated in bipolar switching regime. The underlying mechanism for resistance switching is modeled in terms of formation and rupture of filament, and movement of oxygen vacancies.

  7. Transmission of methicillin-resistant Staphylococcus aureus to household contacts

    NARCIS (Netherlands)

    F.P.N. Mollema (Femke); J.H. Richardus (Jan Hendrik); M.D. Behrendt (Myra); N. Vaessen (Norbert); W. Lodder; W. Hendriks; H.A. Verbrugh (Henri); A. Voss (Andreas)

    2010-01-01

    textabstractThe frequency of and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) transmission from a MRSA index person to household contacts were assessed in this prospective study. Between January 2005 and December 2007, 62 newly diagnosed MRSA index persons (46 patients and 16

  8. Controlling mechanical properties of bio-inspired hydrogels by modulating nano-scale, inter-polymeric junctions

    Directory of Open Access Journals (Sweden)

    Seonki Hong

    2014-06-01

    Full Text Available Quinone tanning is a well-characterized biochemical process found in invertebrates, which produce diverse materials from extremely hard tissues to soft water-resistant adhesives. Herein, we report new types of catecholamine PEG derivatives, PEG-NH-catechols that can utilize an expanded spectrum of catecholamine chemistry. The PEGs enable simultaneous participation of amine and catechol in quinone tanning crosslinking. The intermolecular reaction between PEG-NH-catechols forms a dramatic nano-scale junction resulting in enhancement of gelation kinetics and mechanical properties of PEG hydrogels compared to results obtained by using PEGs in the absence of amine groups. Therefore, the study provides new insight into designing new crosslinking chemistry for controlling nano-scale chemical reactions that can broaden unique properties of bulk hydrogels.

  9. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  10. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    NARCIS (Netherlands)

    Hajlasz, M.; Donkers, J.J.T.M.; Sque, S.J.; Heil, S.B.S.; Gravesteijn, Dirk J; Rietveld, F.J.R.; Schmitz, Jurriaan

    2014-01-01

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact

  11. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  12. Design Optimization of Radionuclide Nano-Scale Batteries

    International Nuclear Information System (INIS)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  13. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  14. Contact printed masks for 3D microfabrication in negative resists

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  15. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-05-09

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene\\'s most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  16. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  17. Z-Pinch Wire-Electrode Contact Resistance Studies Using Weighted and Soft Metal Gasket Contacts*

    Science.gov (United States)

    Gomez, M. R.; Zier, J. C.; Thurtell, A. F.; French, D. M.; Gilgenbach, R. M.; Tang, W.; Lau, Y. Y.

    2008-11-01

    The contact made between z-pinch wires and electrodes has a significant effect on both the energy deposited in the wires and the uniformity of the expansion profile of the wires. We have shown that using soft metal gaskets can improve wire-electrode contact significantly over typical weighted contacts. Images of wire expansion profile and wire plasma emission will be presented for single and double wire shots on a 16 kA, 100 kV 4-stage Marx bank with 150 ns risetime. Bench resistance measurements for aluminum, stainless steel, and tungsten wires with diameters ranging from 7.5 um to 30 um will be presented. These measurements utilized both soft metal gasket contacts (gaskets include: indium, silver, aluminum, tin, and lead) and double-ended wire weight contacts (weights ranged from 0.4 g to 1.9 g). *This research was supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the University of Michigan. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship sponsored by Sandia National Labs.

  18. Contact Resistance of Ceramic Interfaces Between Materials Used for Solid Oxide Fuel Cell Applications

    DEFF Research Database (Denmark)

    Koch, Søren

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may...... be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (stron-tium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere......, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found...

  19. Contact resistance characteristics of Ag–SnO2 contact materials with high SnO2 content

    International Nuclear Information System (INIS)

    Wang, Jun; Tie, Shengnian; Kang, Yongqiang; Wang, Yaping

    2015-01-01

    Highlights: • Surface morphologies of arc eroded Ag–SnO 2 samples were stable and uniform. • Contact resistance of Ag–30SnO 2 samples increased by 33% and stabilize in 5 mΩ. • Contact resistance can be reduced significantly by increasing the contact force. • The present results provide an effective way to low and stable contact resistance. - Abstract: The contact resistance and surface morphologies characteristics of Ag–SnO 2 contact materials with high SnO 2 content was investigated in make-and-break operations. The microstructure and arc eroded surface morphologies of Ag–SnO 2 samples were researched by Scanning Electron Microscopy (SEM). The surface profiles and average surface roughness S a of arc eroded Ag–SnO 2 samples were also analyzed by Scanning Laser Microscope (SLM) 3D surface technique. With the SnO 2 content increase from 15 wt.% to 30 wt.%, it was found that contact resistance of Ag–SnO 2 materials increased by 33% and stabilize in 5 mΩ when contact force over than 70 N. The surface morphologies of arc eroded Ag–SnO 2 samples were stable and uniform compared with the original samples. The theoretical analysis and experimental results of contact resistance characteristic indicated that contact force is the predominant factor for the contact resistances of Ag–SnO 2 materials with high SnO 2 content and contact resistance of high SnO 2 content Ag–SnO 2 materials can be reduced significantly by increasing the contact force

  20. CORROSION RESISTANCE OF ALUMINUM CANS IN CONTACT WITH BEER

    Directory of Open Access Journals (Sweden)

    Luiza Esteves

    2015-07-01

    Full Text Available Aluminum cans with an organic coating are used in Brazil as packaging for carbonated beverages (soft drinks, beer, which act as electrolyte solutions. These electrolytes, in contact with the inner metal can, initiate a corrosion process of aluminum. The presence of metallic ions can change the flavor of the beverage, compromising the product quality. This work aims to evaluate the corrosion resistance of aluminum in beer environment using the technique of Electrochemical Impedance Spectroscopy (EIS. The Scanning Electron Microscopy (SEM and the Energy Dispersive Spectroscopy (EDS were used to evaluate the metal surface. Two batches with different coating thickness were analyzed for the same date of manufacture. The electrolyte resistance and the aluminum charge transfer resistance in beer varied depending on the batch analyzed.

  1. Method of separate determination of high-ohmic sample resistance and contact resistance

    Directory of Open Access Journals (Sweden)

    Vadim A. Golubiatnikov

    2015-09-01

    Full Text Available A method of separate determination of two-pole sample volume resistance and contact resistance is suggested. The method is applicable to high-ohmic semiconductor samples: semi-insulating gallium arsenide, detector cadmium-zinc telluride (CZT, etc. The method is based on near-contact region illumination by monochromatic radiation of variable intensity from light emitting diodes with quantum energies exceeding the band gap of the material. It is necessary to obtain sample photo-current dependence upon light emitting diode current and to find the linear portion of this dependence. Extrapolation of this linear portion to the Y-axis gives the cut-off current. As the bias voltage is known, it is easy to calculate sample volume resistance. Then, using dark current value, one can determine the total contact resistance. The method was tested for n-type semi-insulating GaAs. The contact resistance value was shown to be approximately equal to the sample volume resistance. Thus, the influence of contacts must be taken into account when electrophysical data are analyzed.

  2. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation

    OpenAIRE

    Yu, Ning; Nakajima, Masahiro; Shi, Qing; Yang, Zhan; Wang, Huaping; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    A high contact resistance restricts the application of carbon nanotubes (CNTs) in fabrication of field-effect transistors (FETs). Thus, it is important to decrease the contact resistance and investigate the critical influence factors such as the contact length and contact force. This study uses nanomanipulation to characterize both the resistance and the force at a CNT/Au side-contact interface inside a scanning electron microscopy (SEM). Two-terminal CNT manipulation methods, and models for ...

  3. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  4. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  5. Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters.

    Science.gov (United States)

    Shi, Jing; Wang, Yachao; Yang, Xiaoping

    2013-11-22

    In this study, a comprehensive investigation on nano-scale machining of polycrystalline copper structures is carried out by molecular dynamics (MD) simulation. Simulation cases are constructed to study the impacts of grain size, as well as various machining parameters. Six polycrystalline copper structures are produced, which have the corresponding equivalent grain sizes of 5.32, 6.70, 8.44, 13.40, 14.75, and 16.88 nm, respectively. Three levels of depth of cut, machining speed, and tool rake angle are also considered. The results show that greater cutting forces are required in nano-scale polycrystalline machining with the increase of depth of cut, machining speed, and the use of the negative tool rake angles. The distributions of equivalent stress are consistent with the cutting force trends. Moreover, it is discovered that in the grain size range of 5.32 to 14.75 nm, the cutting forces and equivalent stress increase with the increase of grain size for the nano-structured copper, while the trends reserve after the grain size becomes even higher. This discovery confirms the existence of both the regular Hall-Petch relation and the inverse Hall-Petch relation in polycrystalline machining, and the existence of a threshold grain size allows one of the two relations to become dominant. The dislocation-grain boundary interaction shows that the resistance of the grain boundary to dislocation movement is the fundamental mechanism of the Hall-Petch relation, while grain boundary diffusion and movement is the reason of the inverse Hall-Petch relation.

  6. Study of the Contact Resistance of Interlaced Stainless Steel Yarns Embedded in Hybrid Woven Fabrics

    Directory of Open Access Journals (Sweden)

    Vasile Simona

    2017-06-01

    Full Text Available The contact resistance of two interlacing electro-conductive yarns embedded in a hybrid woven fabric will constitute a problem for electro-conductive textiles under certain circumstances. A high contact resistance can induce hotspots, while a variable contact resistance may cause malfunctioning of the components that are interconnected by the electro-conductive yarns. Moreover, the contact robustness should be preserved over time and various treatments such as washing or abrading should not alter the functioning of the electro-conductive textiles. The electrical resistance developed in the contact point of two interlacing electro-conductive yarns is the result of various factors. The influence of diameter of the electro-conductive stainless steel yarns, the weave pattern, the weft density, and the abrasion on the contact resistance was investigated. Hybrid polyester fabrics were produced according to the design of experiments (DoE and statistical models were found that describe the variation of the contact resistance with the selected input parameters. It was concluded that the diameter of the stainless steel warp and weft yarns has a statistically significant influence on the contact resistance regardless of the weave. Weft density had a significant influence on the contact resistance but only in case of the twill fabrics. Abrasion led to an increase in contact resistance regardless of the weave pattern and the type of stainless steel yarn that was used. Finally, a combination of parameters that leads to plain and twill fabrics with low contact resistance and robust contacts is recommended.

  7. Ultra-low contact resistance in graphene devices at the Dirac point

    Science.gov (United States)

    Anzi, Luca; Mansouri, Aida; Pedrinazzi, Paolo; Guerriero, Erica; Fiocco, Marco; Pesquera, Amaia; Centeno, Alba; Zurutuza, Amaia; Behnam, Ashkan; Carrion, Enrique A.; Pop, Eric; Sordan, Roman

    2018-04-01

    Contact resistance is one of the main factors limiting performance of short-channel graphene field-effect transistors (GFETs), preventing their use in low-voltage applications. Here we investigated the contact resistance between graphene grown by chemical vapor deposition (CVD) and different metals, and found that etching holes in graphene below the contacts consistently reduced the contact resistance, down to 23 Ω \\cdot μ m with Au contacts. This low contact resistance was obtained at the Dirac point of graphene, in contrast to previous studies where the lowest contact resistance was obtained at the highest carrier density in graphene (here 200 Ω \\cdot μ m was obtained under such conditions). The ‘holey’ Au contacts were implemented in GFETs which exhibited an average transconductance of 940 S m-1 at a drain bias of only 0.8 V and gate length of 500 nm, which out-perform GFETs with conventional Au contacts.

  8. Effects of pressure and temperature on thermal contact resistance between different materials

    Directory of Open Access Journals (Sweden)

    Zhao Zhe

    2015-01-01

    Full Text Available To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.

  9. Normalized Contact Force to Minimize "Electrode-Lead" Resistance in a Nanodevice

    OpenAIRE

    Lee, Seung-Hoon; Bae, Jun; Lee, Seung Woo; Jang, Jae-Won

    2014-01-01

    In this report, the contact resistance between "electrode" and "lead" is investigated for reasonable measurements of samples' resistance in a polypyrrole (PPy) nanowire device. The sample's resistance, including "electrode-lead" contact resistance, shows a decrease as force applied to the interface increases. Moreover, the sample's resistance becomes reasonably similar to, or lower than, values calculated by resistivity of PPy reported in previous studies. The decrease of electrode-lead conta...

  10. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation.

    Science.gov (United States)

    Yu, Ning; Nakajima, Masahiro; Shi, Qing; Yang, Zhan; Wang, Huaping; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    A high contact resistance restricts the application of carbon nanotubes (CNTs) in fabrication of field-effect transistors (FETs). Thus, it is important to decrease the contact resistance and investigate the critical influence factors such as the contact length and contact force. This study uses nanomanipulation to characterize both the resistance and the force at a CNT/Au side-contact interface inside a scanning electron microscopy (SEM). Two-terminal CNT manipulation methods, and models for calculating the resistance and force at contact area, are proposed to guide the measurement experiments of a total resistance and a cantilever's elastic deformation. The experimental results suggest that the contact resistance of CNT/Au interface is large (189.5 kΩ) when the van der Waals force (282.1 nN) dominates the contact force at the interface. Electron-beam-induced deposition (EBID) is then carried out to decrease the contact resistance. After depositing seven EBID points, the resistance is decreased to 7.5 kΩ, and the force increases to 1339.8 nN at least. The resistance and force at the contact area where CNT was fixed exhibit a negative exponential correlation before and after EBID. The good agreement of this correlation with previous reports validates the proposed robotic system and methods for characterizing the contact resistance and force.

  11. Nano-scale processes behind ion-beam cancer therapy

    Science.gov (United States)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  12. Electron transport in nano-scaled piezoelectronic devices

    Science.gov (United States)

    Jiang, Zhengping; Kuroda, Marcelo A.; Tan, Yaohua; Newns, Dennis M.; Povolotskyi, Michael; Boykin, Timothy B.; Kubis, Tillmann; Klimeck, Gerhard; Martyna, Glenn J.

    2013-05-01

    The Piezoelectronic Transistor (PET) has been proposed as a post-CMOS device for fast, low-power switching. In this device, the piezoresistive channel is metalized via the expansion of a relaxor piezoelectric element to turn the device on. The mixed-valence compound SmSe is a good choice of PET channel material because of its isostructural pressure-induced continuous metal insulator transition, which is well characterized in bulk single crystals. Prediction and optimization of the performance of a realistic, nano-scaled PET based on SmSe requires the understanding of quantum confinement, tunneling, and the effect of metal interface. In this work, a computationally efficient empirical tight binding (ETB) model is developed for SmSe to study quantum transport in these systems and the scaling limit of PET channel lengths. Modulation of the SmSe band gap under pressure is successfully captured by ETB, and ballistic conductance shows orders of magnitude change under hydrostatic strain, supporting operability of the PET device at nanoscale.

  13. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  14. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  15. Multiscale Design of Nanostructured Thermoelectric Coolers: Effects of Contact Resistances

    Science.gov (United States)

    Sharmin, Afsana; Rashid, Mohammad; Gaddipati, Vamsi; Sadeque, Abu; Ahmed, Shaikh

    2015-06-01

    Our objective is to develop a multiscale simulator for thermoelectric cooler devices, in which the material parameters are obtained atomistically using a combination of molecular dynamics and tight-binding simulations and then used in the system level design. After benchmarking the simulator against a recent experimental work, we carry out a detailed numerical investigation of the performance of Bi2Te3 nanowire-based thermoelectric devices for hot-spot cooling. The results suggest that active hotspot cooling of as much as 23°C with a high heat flux is achievable using such low-dimensionality structures. However, it has been observed that thermal and electrical contact resistances, which are quite large in nanostructures, play a critical role in determining the cooling range and lead to significant performance degradation that must be addressed before these devices can be deployed in such applications.

  16. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  17. Vertical soil profiling using a galvanic contact resistivity scanning approach.

    Science.gov (United States)

    Pan, Luan; Adamchuk, Viacheslav I; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S; Dabas, Michel

    2014-07-23

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  18. Contact Resistance of Tantalum Coatings in Fuel Cells and Electrolyzers using Acidic Electrolytes at Elevated Temperatures

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Christensen, Erik; Barner, Jens H. Von

    2014-01-01

    Tantalum has so far been found to be the only construction material with sufficient corrosion resistance for high temperature polymer electrolyte membrane electrolyzers using acidic electrolytes above 100◦C. In this work the interfacial contact resistances of tantalum plates and tantalum coated...... stainless steel were found to be far below the US Department of Energy target value of 10mcm2. The good contact resistance of tantalum was demonstrated by simulating high temperature polymer electrolyte membrane electrolysis conditions by anodization performed in 85% phosphoric acid at 130◦C, followed...... by contact resistance measurements. Upon anodization the contact resistances remained unchanged....

  19. 21 CFR 800.12 - Contact lens solutions and tablets; tamper-resistant packaging.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Contact lens solutions and tablets; tamper....12 Contact lens solutions and tablets; tamper-resistant packaging. (a) General. Unless contact lens solutions used, for example, to clean, disinfect, wet, lubricate, rinse, soak, or store contact lenses and...

  20. Fracture behavior of nano-scale rubber-modified epoxies

    Science.gov (United States)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By

  1. Nano-scaled semiconductor devices physics, modelling, characterisation, and societal impact

    CERN Document Server

    Gutiérrez-D, Edmundo A

    2016-01-01

    This book describes methods for the characterisation, modelling, and simulation prediction of these second order effects in order to optimise performance, energy efficiency and new uses of nano-scaled semiconductor devices.

  2. On the Challenges of Reducing Contact Resistances in Thermoelectric Generators Based on Half-Heusler Alloys

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Van Nong, Ngo; Le, Thanh Hung

    2016-01-01

    -type, respectively. Using this method, the quality of the HH–electrode contacts is improved due to their low electrical contact resistance and less reaction– diffusion layer. The microstructure and chemical composition of the joints were examined using a scanning electron microscope equipped with energydispersive x......-ray analysis. The electrical characteristics of the interfaces at the contacts were studied based on electrical contact resistance and Seebeck scanning microprobe measurements. In this paper, we show that joining the HH to a Ag electrode directly using fast hot pressing resulted in lower contact resistance...

  3. Method for making low-resistivity contacts to high T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Ekin, J.W.; Panson, A.J.; Blankenship, B.A.

    1988-01-01

    A method for making low-resistivity contacts to high T/sub c/ superconductors has been developed, which has achieved contact surface resistivities less than 10 μΩ cm 2 at 76 K and does not require sample heating above ∼150 0 C. This is an upper limit for the contact resistivity obtained at high current densities up to 10 2 --10 3 A/cm 2 across the contact interface. At lower measuring current densities the contact resistivities were lower and the voltage-current curve was nonlinear, having a superconducting transition character. On cooling from 295 to 76 K, the contact resistivity decreased several times, in contrast to indium solder contacts where the resistivity increased on cooling. The contacts showed consistently low resistivity and little degradation when exposed to dry air over a four-month period and when repeatedly cycled between room temperature and 76 K. The contacts are formed by sputter depositing a layer of a noble metal-silver and gold were used-on a clean superconductor surface to protect the surface and serve as a contact pad. External connections to the contact pads have been made using both solder and wire-bonding techniques

  4. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    Science.gov (United States)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  5. Effect of Nano-Scale Roughness on Particle Wetting and on Particle-Mediated Emulsion Stability

    Science.gov (United States)

    San Miguel, Adriana; Behrens, Sven

    2012-02-01

    Colloidal particles can strongly adsorb to liquid interfaces and stabilize emulsions against droplet coalescence, the effectiveness of which depends crucially on the particle wettability. From the study of macroscopic solids, surface wetting is known to be influenced strongly by nano-scale roughness (as seen e.g. in the ``Lotus effect'' or in anti-fog coatings); similarly, strong effects of particle roughness on particle-stabilized emulsions should be expected. Here we report the first experimental study of particle wetting and particle-mediated emulsion stability in which particle roughness could be varied continuously without varying the surface chemistry. We demonstrate an enabling method for preparing particles and macroscopic substrates with tunable nano-roughness and correlate the extent of roughness quantitatively with surface wetting (measured via the three-phase contact angle) and with emulsion stability (quantifiable via the maximum capillary pressure). Our results confirm a dramatic influence of roughness on wetting, emulsion stability, and even the type of emulsion formed (o/w vs. w/o) upon mixing oil with an aqueous particle dispersion. Whether particle roughness benefits emulsion stability or not is seen to depend on both the size and shape of the surface features.

  6. Abnormal contact resistance reduction of bonded copper interconnects in three-dimensional integration during current stressing

    Science.gov (United States)

    Chen, K. N.; Tan, C. S.; Fan, A.; Reif, R.

    2005-01-01

    Bonded copper interconnects were stressed with current to measure the specific contact resistance. For bonded copper interconnects without a prebonding HCl clean, the corresponding specific contact resistance did not change while increasing the stress current. However, for some interconnects with the prebonding HCl clean, an abnormal contact resistance reduction was observed during the increase of the stress current. The rise of temperature at the bonding interface area due to Joule heating under high current density may have caused the decrease of contact resistance. This behavior may be one option for quality enhancement in 3D integration at low temperature.

  7. Experimental consideration of contact resistance related to modified configuration of line contact; Sen sessyokusi no sessyoku keitai ni tomonau sessyoku teiko no jikkenteki kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Aichi, H. [Daido Institute of Technology, Aichi (Japan); Miyachi, I. [Aichi Institute of Technology, Aichi (Japan)

    1997-06-20

    The contact form of electric contact which is used on a switchgear is roughly divided to a point, a line and a plane contact. Among them, a point contact is considered as the foundation of contact form and according to the contact structures such as spherical surface vs. spherical surface and spherical surface vs. plane and so on, one of the minute circular contacts, so called a point contact, is formed. On the most of the connectors and the circuit-breakers, the line or the plane contact member is applied. Authors have been developed an unique contact model be able to measure the contact resistance of any form. In this model, it is available to select the size, the member and the configuration of contact spots by macroscopic arrangement of some metal electrodes immersed in electrolyte solution of dilute sulfuric acid. In this paper, the contact resistance of a case that changes from line to plane contact and that of several line contacts in parallel are studied. The experimental results obtained clarify that the characteristics of contact resistance changed form line to plane contact are equivalent to those of a point contact, the contact resistance of line contacts in parallel has the same characteristics as that of a long line contact and so forth. 9 refs., 8 figs.

  8. Superelasticity and shape memory at nano-scale: Size effects on the martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es [Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Nó, M.L. [Dpt. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2013-11-15

    Highlights: ► Shape memory alloys exhibit different properties at nano-scale than in bulk materials. ► An overview of the size-effects at nano-scale on the martensitic transformation is presented. ► The size-effects observed on the superelastic behavior at nano-scale are explained in terms of the microscopic mechanisms operating at this small scale. -- Abstract: In this work we overview the extrinsic size-effects on the martensitic transformation reported in the literature by nano compression tests in micro and sub-micrometer pillars, as well as by in situ superelastic tests at the transmission electron microscope. Three different size-effects are described: The increase of the critical stress for superelasticity at nano scale, the decrease of the stress for recovery during the reverse stress-induced martensitic transformation at micro and nano scale and finally the change of the selection rule for the martensitic variants promoted at micro and nano scale. New results are presented to illustrate the behavior of these size-effects and the microscopic origin of such effects is discussed. A consistent interpretation is given and explained for each one of the reported size-effects on the martensitic transformation.

  9. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    Science.gov (United States)

    Coso, Dusan

    The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat

  10. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact.

    Science.gov (United States)

    Ye, Xiaohua; Fan, Yanping; Wang, Xiaolin; Liu, Weidong; Yu, Haifeng; Zhou, Junli; Chen, Sidong; Yao, Zhenjiang

    2016-01-12

    This study aimed to explore the association of livestock-associated S. aureus with occupational pig contact and pet contact. In this cross-sectional study, 1,422 participants (including 244 pig workers, 200 pet-owning workers and 978 control workers) responded to a questionnaire and provided a nasal swab for S. aureus analysis. Resulting isolates were tested for antibiotic susceptibility, the immune evasion cluster (IEC) genes, and multilocus sequence type. Compared with controls, the pig workers demonstrated a greater prevalence of multidrug-resistant S. aureus (MDRSA) [prevalence ratio (PR) = 3.38; 95% CI: 2.07-5.53] and methicillin-resistant S. aureus (MRSA) (PR = 7.42; 95% CI: 3.71-14.83), but the prevalence of MDRSA and MRSA was similar in pet-owning workers and controls. There was a positive relation of frequency of pig contact with prevalence of MDRSA and MRSA carriage. Only pig workers carried MDRSA CC9 (16 isolates) and MRSA CC9 (16 isolates), and all of these isolates were tetracycline resistant and absent of IEC genes. These findings suggest that livestock-associated MRSA and MDRSA(CC9, IEC-negative, tetracycline-resistant) in humans is associated with occupational pig contact, not pet contact, and support growing concern about antibiotics use in pig farms and raising questions about the potential for occupational exposure to opportunistic S. aureus.

  11. Quasicontinuum simulations of geometric effect on onset plasticity of nano-scale patterned lines

    Science.gov (United States)

    Jin, Jianfeng; Cao, Jingyi; Zhou, Siyuan; Yang, Peijun; Guo, Zhengxiao

    2017-09-01

    Onset plasticity of metallic nano-lines or nano-beams is of considerable scientific and technological interest in micro-/nano- mechanics and interconnects of patterned lines in electronic devices, where capability of resistance to deformation is important. In this study, a multiscale quasicontinuum (QC) method was used to explore such an issue in a nano-scale copper (Cu) line protruding from a relatively large single crystal Cu substrate during compression. The results show that the yield stress of a rectangular beam on the substrate can be greatly reduced compared with that of a flat surface of the same area. For the rectangular line, the aspect ratio (width/height) affects dislocation morphology at the onset plasticity without much change of yield stress. However, for the trapezoidal line, the yield stress decreases with the base angle (α), especially when the α is over 54.7°. As the sidewall orientation changes from at α = 0°, then to at α = 54.7° and finally to at α = 90°, a higher surface energy could enable easier dislocation formation and lower yield stress. Meanwhile, it is found that the interaction between the line and the support substrate also shows a great effect on yield stress. Moreover, although it is possible to open two extra dislocation slip planes inside from the two bottom corners of the Cu line with the α over 54.7°, dislocation nucleation derived from them is only observed at α = 90°.

  12. A method for direct contact resistance evaluation in low voltage coplanar organic field-effect transistors

    Science.gov (United States)

    Lai, S.; Cosseddu, P.; Bonfiglio, A.

    2017-04-01

    In this paper, a method for the extrapolation of contact resistance in organic field-effect transistors (OFETs) from a single transfer characteristic curve in the linear regime is proposed. The method, namely DIrect Contact Resistance Extrapolation (DICRE), is based on the idea of making the current dependent only on contact resistance by setting the device in large over-threshold conditions. Constant contact resistance with respect to gate-to-source voltage is considered as an acceptable approximation, as confirmed by other examples in the literature. The effectiveness of the method is demonstrated by extrapolating the contact resistance of two different OFET structures (self-aligned and not self-aligned) and comparing the results with standard reference techniques, namely the Modified Transmission Line Method (M-TLM) and the Y function method. The results demonstrate that the DICRE method can be applied to low voltage devices without any damage to the gate insulator, even if the applied gate-to-source voltage drop is well beyond the values normally employed for transistor operation. The proposed method allows extrapolating a value of contact resistance comparable with the ones derived by TLM, with restrained variability. Moreover, the capability of properly recognizing the differences in contact resistance values between OFET structures with different features in terms of source/drain-gate overlap is reported. Finally, the possibility of correctly deriving the contact resistance dependence on drain-to-source voltage using DICRE is discussed.

  13. The Universal Influence of Contact Resistance on the Efficiency of a Thermoelectric Generator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2015-01-01

    . For all systems, a universal influence of both the electrical and thermal contact resistance is observed on the leg’s efficiency, when the systems are analyzed in terms of the contribution of the contact resistance to the total resistance of the leg. The results are compared with the analytical model......The influence of electrical and thermal contact resistance on the efficiency of a segmented thermoelectric generator is investigated. We consider 12 different segmented p-legs and 12 different segmented n-legs, using eight different p-type and eight different n-type thermoelectric materials...

  14. Cross-Bridge Kelvin resistor structures for reliable measurement of low contact resistances and contact interface characterization

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2009-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?�c) have been extensively discussed during last few decades and the minimum of the �?�c value, which could be accurately extracted, was

  15. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  16. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  17. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  18. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface

    Science.gov (United States)

    Sun, Huabin; Yin, Yao; Wang, Qijing; Jun, Qian; Wang, Yu; Tsukagoshi, Kazuhito; Wang, Xizhang; Hu, Zheng; Pan, Lijia; Zheng, Youdou; Shi, Yi; Li, Yun

    2015-08-01

    The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.

  19. A contact resistance model for scanning probe phase-change memory

    International Nuclear Information System (INIS)

    Wang, Lei; Ying, Jin; Wei Yang, Guo; Wright, David; Aziz, Mustafa

    2014-01-01

    A novel mechanical model was proposed to calculate the contact resistance at tip and capping layer interface for scanning probe phase-change memory applications. The resulting I–V curve calculated from this model that combines Hertzian contact theory with the Schottky diode effect has exhibited a good agreement with the experimental measurements under the same system architecture. The role of contact resistance on the write efficacy of scanning probe phase-change memory was also evaluated by introducing the calculated contact resistance into the previous electrothermal simulations for cases of writing crystalline bits in amorphous starting phase and writing amorphous bits in crystalline starting phase. The consequent written marks and I–V curve show a closer match with the experimental observation compared to the case without including contact resistance. (technical note)

  20. Investigation into Contact Resistance And Damage of Metal Contacts Used in RF-MEMS Switches

    Science.gov (United States)

    2009-09-01

    during this study. XPS analysis accomplished at Lehigh University determined that the contaminant on the test cantilever appeared to be a hydrocar- bon ...fabricate sil- icon cantilevers with a contact bump. The preparation and etch of contact bumps onto custom SOIMUMPS die consisted of the following...Run. Icon is on desktop. 20. Select COM3 as the port and 9600 baud to connect to C-865. 21. Select Connect Stage -- connect to M663.465. Note: Do NOT

  1. Low resistive edge contacts to CVD-grown graphene using a CMOS compatible metal

    Energy Technology Data Exchange (ETDEWEB)

    Shaygan, Mehrdad; Otto, Martin; Sagade, Abhay A.; Neumaier, Daniel [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany); Chavarin, Carlos A. [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany); Innovations for High Performance Microelectronics, IHP GmbH, Frankfurt (Oder) (Germany); Bacher, Gerd; Mertin, Wolfgang [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany)

    2017-11-15

    The exploitation of the excellent intrinsic electronic properties of graphene for device applications is hampered by a large contact resistance between the metal and graphene. The formation of edge contacts rather than top contacts is one of the most promising solutions for realizing low ohmic contacts. In this paper the fabrication and characterization of edge contacts to large area CVD-grown monolayer graphene by means of optical lithography using CMOS compatible metals, i.e. Nickel and Aluminum is reported. Extraction of the contact resistance by Transfer Line Method (TLM) as well as the direct measurement using Kelvin Probe Force Microscopy demonstrates a very low width specific contact resistance down to 130 Ωμm. The contact resistance is found to be stable for annealing temperatures up to 150 C enabling further device processing. Using this contact scheme for edge contacts, a field effect transistor based on CVD graphene with a high transconductance of 0.63 mS/μm at 1 V bias voltage is fabricated. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Optical 3D shape measurement for nano-scale thin film buckling

    Science.gov (United States)

    Wang, S. B.; Xiao, Y.; Jia, H. K.; Li, L. A.

    2008-11-01

    This research focused on observing and measuring the 3D shape for nano-scale thin film buckling of 150nm Ti-film material deposited on organic glass substrates. With the aid of an optical microscope (2000×), the particular approaches were designed using optical wedge stepped in horizontal displacement approach and micro mechanical vertical displacement approach. The 3D shape measurement of thin film buckling on nano-scale level was carried out based on focusing-evaluation-function theory, gaussian interpolation and other theories related to digital image. After comparing the different measuring results and data from different focusing evaluation functions, an error analysis was established on the nature of such functions. In this experiment, we only focused on the measurement on the 3D shape for 150nm-thick thin film buckling. This research makes promotion in measurement on 3D shape of thin film buckling on nano-scale level.

  3. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo

    2016-12-28

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post-annealing temperatures were studied to determine the thermal stability of each contact metal. The specific contact resistivity (SCR) was determined using the Cross Bridge Kelvin Resistor (CBKR) method. Ni contacts exhibits the best thermal stability, maintaining stability up to 400 °C, with a SCR of approximately 10−2 Ω-cm2 after annealing. The increased SCR after high temperature annealing is correlated with the formation of a Mg-Si-Ni mixture identified by cross-sectional scanning transmission electron microscopy (STEM) characterization, X-ray diffraction characterization (XRD) and other elemental analyses. The formation of this Mg-Si-Ni mixture is attributed to Ni diffusion and its reaction with the Mg2Si film.

  4. Rational control of nano-scale metal-catalysts for biomass conversion.

    Science.gov (United States)

    Wang, Yunzhu; De, Sudipta; Yan, Ning

    2016-05-07

    Nano-scale metal particles have huge potential due to their wide range of diverse catalytic applications. Recently, they have found numerous applications in the field of biomass conversion. The proposed contribution is aimed at providing a brief account of remarkable recent findings and advances in the design of metal-based nanocatalysts for biomass valorization. We have discussed the rational control of the size, shape, composition and surface properties of nano-scale metal catalysts. Following that, the interplay between various structural parameters and the catalytic properties in the transformation of cellulose, chitin, lignin and lipids has been critically discussed.

  5. Special Issue on the Second International Workshop on Micro- and Nano-Scale Thermal Radiation

    Science.gov (United States)

    Zhang, Zhuomin; Liu, Linhua; Zhu, Qunzhi; Mengüç, M. Pinar

    2015-06-01

    Micro- and nano-scale thermal radiation has become one of the fastest growing research areas because of advances in nanotechnology and the development of novel materials. The related research and development includes near-field radiation transfer, spectral and directional selective emitters and receivers, plasmonics, metamaterials, and novel nano-scale fabrication techniques. With the advances in these areas, important applications in energy harvesting such as solar cells and thermophotovoltaics, nanomanufacturing, biomedical sensing, thermal imaging as well as data storage with the localized heating/cooling have been pushed to higher levels.

  6. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism

    Science.gov (United States)

    Zhang, Jing

    2018-01-01

    High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651

  7. Experimental consideration on the contact resistance caused by the distribution of contact spots with the contact model using electrolyte bath; Denkai yokuso wo mochiita sesshoku model ni yoru sesshokuten no bunpu to sesshoku teiko tokusei ni kansuru jikkenteki kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Aichi, H. [Daido Institute of Technology, Aichi (Japan); Miyachi, I. [Aichi Institute of Technology, Aichi (Japan)

    1996-09-20

    Electric contact members are classified by the form such as a point, a line, and a plane. Particularly, the point contact member which makes a small circular contact spot is basis of the contact form. Also, the plane contact member will make many contact spots which are different in size and distributing over the contacting portion. Authors have been developing the contact model to measure the contact resistance. In this model, it is available to select the size, the number, and the arrangement of contact spots by the macroscopical contact spots which are formed with some metal electrodes arranged in electrolyte solution of dilute sulfuric acid. In this paper, the fundamental characteristics of the contact resistance caused by the construction of current are investigated with 1 to 3 contact spot models. Then the relations between the contact resistance and the distribution of the contact spots are examined with 2 to 9 multi-contact spot models. As the results, it is cleared that the proposed contact model presents the successful experimental method for the analysis of the contact resistance. 9 refs., 8 tabs.

  8. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing.

    Science.gov (United States)

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  9. Simultaneous atomic force microscopy measurement of topography and contact resistance of metal films and carbon nanotubes

    International Nuclear Information System (INIS)

    Stadermann, M.; Grube, H.; Boland, J.J.; Papadakis, S.J.; Falvo, M.R.; Superfine, R.; Washburn, S.

    2003-01-01

    We present a quartz tuning-fork-based atomic force microscopy (AFM) setup that is capable of mapping the surface contact resistance while scanning topography. The tuning-fork setup allows us to use etched Pt/Ir tips, which have higher durability and better conductivity than probes used in earlier AFM conductance measurements. The performance of the method is demonstrated with contact resistance measurements of gold lines on silicon dioxide and carbon nanotubes on graphite

  10. Negative-resistance voltage-current characteristics of superconductor contact junctions for macro-scale applications

    CERN Document Server

    Takayasu, M; Minervini, J V; 10.1109/TASC.2003.812854

    2003-01-01

    Voltage-current characteristics of mechanical pressure contact junctions between superconducting wires are investigated using a voltage-driving method. It is found that the switching regions at low voltages result from negative resistance of the contact junction. The current transport of the contact junctions is discussed from the perspective of two existing models: the multiple Andreev reflections at the two SN interfaces of a SNS (Superconductor/Normal metal /Superconductor) junction and the inhomogeneous multiple Josephson weak-link array. (13 refs).

  11. Contact resistance of TiW to ultra-thin phase change material layers

    NARCIS (Netherlands)

    Roy, Deepu; Klootwijk, J.H.; Gravesteijn, Dirk J; Wolters, Robertus A.M.

    2011-01-01

    In this article we report on the change in contact resistance of TiW to doped-Sb2Te in the 5nm-50nm thickness range of the PCM layer. This interface is characterized both in the amorphous and in crystalline state of doped-Sb2Te. The nature of the interface is characterized by electrical contact

  12. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  13. Effect of nano-scaled rabbit bone powder on physicochemical properties of rabbit meat batter.

    Science.gov (United States)

    Li, Shaobo; He, Zhifei; Li, Hongjun

    2018-02-27

    To explore a new method of deep processing and to improve the value of rabbit bone, the authors prepared a nano-scaled rabbit bone powder by dry ball milling and compared the effect of different particle sizes of rabbit bone powder (fine-scaled (236.01 ± 5.99) μm, superfine-scaled (65.92 ± 1.71) μm, nano-scaled (502.52 ± 11.72) nm) on the nutritional characteristics, pH, color, water-holding capacity, textural and rheological attributes of rabbit meat batter. The rabbit bone powder significantly affected nutritional characteristics of meat batters; in particular, it increased the contents of calcium, regardless of particle size. Additionally, the rabbit meat batter, which contained 20 g kg -1 of the nano-scaled rabbit bone, had the lowest centrifugal loss and cooking loss among the treatments. Based on the textural and rheological attributes of the rabbit meat batters, the addition of 20 g kg -1 nano-scaled rabbit bone was the best treatment, which are very important for deep processing of rabbit bone in the rabbit meat industry. This article is protected by copyright. All rights reserved.

  14. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non...

  15. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    Science.gov (United States)

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  16. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  17. Fatigue resistant carbon coatings for rolling/sliding contacts

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman; Greco, Aaron; Doll, Gary; Erdemir, Ali

    2016-06-01

    The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gears to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.

  18. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  19. Reconsidering contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus.

    Science.gov (United States)

    Morgan, Daniel J; Murthy, Rekha; Munoz-Price, L Silvia; Barnden, Marsha; Camins, Bernard C; Johnston, B Lynn; Rubin, Zachary; Sullivan, Kaede V; Shane, Andi L; Dellinger, E Patchen; Rupp, Mark E; Bearman, Gonzalo

    2015-10-01

    Whether contact precautions (CP) are required to control the endemic transmission of methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) in acute care hospitals is controversial in light of improvements in hand hygiene, MRSA decolonization, environmental cleaning and disinfection, fomite elimination, and chlorhexidine bathing. To provide a framework for decision making around use of CP for endemic MRSA and VRE based on a summary of evidence related to use of CP, including impact on patients and patient care processes, and current practices in use of CP for MRSA and VRE in US hospitals. A literature review, a survey of Society for Healthcare Epidemiology of America Research Network members on use of CP, and a detailed examination of the experience of a convenience sample of hospitals not using CP for MRSA or VRE. Hospital epidemiologists and infection prevention experts. No high quality data support or reject use of CP for endemic MRSA or VRE. Our survey found more than 90% of responding hospitals currently use CP for MRSA and VRE, but approximately 60% are interested in using CP in a different manner. More than 30 US hospitals do not use CP for control of endemic MRSA or VRE. Higher quality research on the benefits and harms of CP in the control of endemic MRSA and VRE is needed. Until more definitive data are available, the use of CP for endemic MRSA or VRE in acute care hospitals should be guided by local needs and resources.

  20. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  1. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat.

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C; Gorbunova, Vera

    2009-11-17

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.

  2. Evaluation of contact precautions for methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus.

    Science.gov (United States)

    Bardossy, Ana Cecilia; Alsafadi, Muhammad Yasser; Starr, Patricia; Chami, Eman; Pietsch, Jennifer; Moreno, Daniela; Johnson, Laura; Alangaden, George; Zervos, Marcus; Reyes, Katherine

    2017-12-01

    There are limited controlled data demonstrating contact precautions (CPs) prevent methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) infections in endemic settings. We evaluated changes in hospital-acquired MRSA and VRE infections after discontinuing CPs for these organisms. This is a retrospective study done at an 800-bed teaching hospital in urban Detroit. CPs for MRSA and VRE were discontinued hospital-wide in 2013. Data on MRSA and VRE catheter-associated urinary tract infections (CAUTIs), ventilator-associated pneumonia (VAP), central line-associated bloodstream infections (CLABSIs), surgical site infections (SSIs), and hospital-acquired MRSA bacteremia (HA-MRSAB) rates were compared before and after CPs discontinuation. There were 36,907 and 40,439 patients hospitalized during the two 12-month periods: CPs and no CPs. Infection rates in the CPs and no-CPs periods were as follows: (1) MRSA infections: VAP, 0.13 versus 0.11 (P = .84); CLABSI, 0.11 versus 0.19 (P = .45); SSI, 0 versus 0.14 (P = .50); and CAUTI, 0.025 versus 0.033 (P = .84); (2) VRE infections: CAUTI, 0.27 versus 0.13 (P = .19) and CLABSI, 0.29 versus 0.3 (P = .94); and (3) HA-MRSAB rates: 0.14 versus 0.11 (P = .55), respectively. Discontinuation of CPs did not adversely impact endemic MRSA and VRE infection rates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Origin of the abnormal behavior of contact resistance in Ohmic contacts to laser-irradiated n-type GaN

    International Nuclear Information System (INIS)

    Jang, Ho Won; Lee, Jong-Lam

    2009-01-01

    Abnormal behavior of contact resistance with annealing in Ohmic contacts to laser-irradiated n-GaN is investigated. Ti/Al contacts on as-grown n-GaN shows no change in contact resistivity with annealing at the temperature range of 100-400 deg. C. However, the annealing results in the significant increase in contact resistivity in the contacts on laser-irradiated n-GaN. Synchrotron radiation photoemission study reveals the reduction of the concentration of donor-like N vacancies near the surface by the annealing. These results suggest that preventing the annihilation of N vacancies in the laser-irradiated n-GaN is important in improving the performance of vertical-structure GaN-based light-emitting diodes fabricated by laser lift-off.

  4. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    Science.gov (United States)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  5. Engineered nano-scale ceramic supports for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Blackmore, Karen J [Los Alamos National Laboratory; Burrell, Anthony K [Los Alamos National Laboratory; Henson, Neil J [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

    2010-01-01

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the major aim of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. This latter aspect is key to attaining the 2015 DOE technical targets for platinum group metal (PGM) loadings (0.20 mg/cm{sup 2}). The benefits of the use of carbon-supported catalysts to drastically reduce Pt loadings from the early, conventional Pt-black technology are well known. The supported platinum catalyzed membrane approach widely used today for fabrication of membrane electrode assemblies (MEAs) was developed shortly thereafter these early reports. Of direct relevance to this present work, are the investigations into Pt particle growth in PEM fuel cells, and subsequent follow-on work showing evidence of Pt particles suspended free of the support within the catalyst layer. Further, durability work has demonstrated the detrimental effects of potential cycling on carbon corrosion and the link between electrochemical surface area and particle growth. To avoid the issues with carbon degradation altogether, it has been proposed by numerous fuel cell research groups to replace carbon supports with conductive materials that are ceramic in nature. Intrinsically, these many conductive oxides, carbides, and nitrides possess the prerequisite electronic conductivity required, and offer corrosion resistance in PEMFC environments; however, most reports indicate that obtaining sufficient surface area remains a significant barrier to obtaining desirable fuel ceU performance. Ceramic materials that exhibit high electrical conductivity and necessary stability under fuel

  6. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  7. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  8. Surface roughness: A review of its measurement at micro-/nano-scale

    Science.gov (United States)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  9. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    International Nuclear Information System (INIS)

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-01-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  10. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    Energy Technology Data Exchange (ETDEWEB)

    Brocchi, E.A. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Motta, M.S. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Solorzano, I.G. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)]. E-mail: guilsol@dcmm.puc-rio.br; Jena, P.K. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil); Moura, F.J. [Department of Material Science and Metallurgy, Catholic University of Rio de Janeiro, DCMM-PUC-RIO, R. Margues de S. Vicente 225, C.P 3890-Gavea, 22451-970 Rio de Janeiro (Brazil)

    2004-09-25

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented.

  11. Alternative chemical-based synthesis routes and characterization of nano-scale particles

    International Nuclear Information System (INIS)

    Brocchi, E.A.; Motta, M.S.; Solorzano, I.G.; Jena, P.K.; Moura, F.J.

    2004-01-01

    Different nano-scale particles have been synthesized by alternative routes: nitrates dehydratation and oxide, or co-formed oxides, reduction by hydrogen. Chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support the feasibility for obtaining single-phase oxides and co-formed two-phase oxides. In addition, the reduction reaction has been applied to successfully produce metal/ceramic nanocomposites. Structural characterization has been carried out by means of X-ray diffraction and, more extensively, transmission electron microscopy operating in conventional diffraction contrast mode (CTEM) and high-resolution mode (HRTEM). Nano-scale size distribution of oxide particles is well demonstrated together with their defect-free structure in the lower range, around 20 nm, size. Structural features related to the synthesized nano-composites are also presented

  12. Semianalytical model of the contact resistance in two-dimensional semiconductors

    Science.gov (United States)

    Grassi, Roberto; Wu, Yanqing; Koester, Steven J.; Low, Tony

    2017-10-01

    Contact resistance is a severe performance bottleneck for electronic devices based on two-dimensional (2D) layered semiconductors, whose contacts are Schottky rather than Ohmic. Although there is a general consensus that the injection mechanism changes from thermionic to tunneling with gate biasing, existing models tend to oversimplify the transport problem, by neglecting the 2D transport nature and the modulation of the Schottky barrier height, the latter being of particular importance in back-gated devices. In this paper, we develop a semianalytical model based on Bardeen's transfer Hamiltonian approach to describe both effects. Remarkably, our model is able to reproduce several experimental observations of a metallic behavior in the contact resistance, i.e., a decreasing resistance with decreasing temperature, occurring at high gate voltages.

  13. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  14. An analytical solution for contact resistance of staggered organic field-effect transistors

    Science.gov (United States)

    Karimi-Alavijeh, Hamidreza; Katebi-Jahromi, Alireza

    2017-03-01

    We have developed analytical models for bias dependent contact resistance (RC) and output characteristics of staggered organic field-effect transistors (OFETS) based on a bulk resistance-approximated and mobility-modified current-crowding method. Numerical evaluations of RC and its resistive components show that the bias dependency of the bulk resistance is negligible. Consequently, the properties of the active layer interfaces determine RC and its characteristics. Effective parameters include a normally constant charge injection barrier at the organic-metal interface (Eb) and a gate induced surface carrier-concentration (PS0) at the organic-insulator boundary. The energy barrier pertains to the fabrication process, and its related resistance (rc) can be determined as the fitting parameter of the theoretical model. However, PS0 is strongly gate bias dependent and the results of the numerical model indicate that the resulting component (rch) is dominant and has a considerable effect on RC and its characteristics. More importantly, PS0 as the key parameter of the contact resistance is analytically expressible and by using a proposed mobility-modified current-crowding model, the contact resistance can be analytically formulated. Accordingly, the output characteristics of the OFETs in the triode region can be also analytically modeled using the developed relation of RC.

  15. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  16. Low interfacial contact resistance of Al-graphene composites via interface engineering

    Science.gov (United States)

    Hahm, Myung Gwan; Nam, Jaewook; Choi, Minseok; Park, Chi-Dong; Cho, Byungjin; Kazunori, Sanada; Ahm Kim, Yoong; Kim, Dong Young; Endo, Morinobu; Kim, Dong-Ho; Vajtai, Robert; Ajayan, Pulickel M.; Moo Song, Sung

    2015-05-01

    Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode.

  17. Method for forming low-resistance ohmic contacts on semiconducting oxides

    Science.gov (United States)

    Narayan, J.

    1979-10-01

    The invention provides a new method for the formation of high-quality ohmic contacts on wide-band-gap semiconducting oxides. As exemplified by the formation of an ohmic contact on n-type BaTiO/sub 3/ containing a p-n junction, the invention entails depositing a film of a metallic electroding material on the BaTiO/sub 3/ surface and irradiating the film with a Q-switched laser pulse effecting complete melting of the film and localized melting of the surface layer of oxide immediately underlying the film. The resulting solidified metallic contact is ohmic, has unusually low contact resistance, and is thermally stable, even at elevated temmperatures. The contact does not require cleaning before attachment of any suitable electrical lead. This method is safe, rapid, reproducible, and relatively inexpensive.

  18. Lack of evidence to support policy development for management of contacts of multidrug-resistant tuberculosis patients: two systematic reviews

    NARCIS (Netherlands)

    van der Werf, M. J.; Langendam, M. W.; Sandgren, A.; Manissero, D.

    2012-01-01

    BACKGROUND: Existing international guidelines provide different recommendations for the management of contacts of multidrug-resistant tuberculosis (MDR-TB) patients. OBJECTIVE: To conduct two systematic reviews with the aim of identifying chemoprophylactic approaches that are effective in contacts

  19. Extraction of contact resistance and channel parameters from the electrical characteristics of a single bottom-gate/top-contact organic transistor

    Science.gov (United States)

    Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei

    2016-03-01

    A parameter extraction procedure for staggered-type organic field-effect transistors (OFETs), in which only the electrical characteristics of a single device are needed, was newly considered. The existing differential method and the transition voltage method for evaluating contact and channel parameters in OFETs were complementarily combined. The calibration of the total resistance between the source and the drain was also incorporated to compensate discrepancies in the total resistances calculated from output and transfer characteristics, caused by the existence of nonignorable contact resistance and carrier traps. By using our proposed method, gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact pentacene thin-film transistors, and the channel-length dependence of these parameters was investigated. A series of results of parameter extraction confirm the validity of our proposed method, which is advantageous in avoiding the influences of characteristic variations that are frequently observed in practical OFET devices.

  20. Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components

    Science.gov (United States)

    Dorin, Bryce; Parkinson, Patrick; Scully, Patricia

    2018-04-01

    The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.

  1. Intergrain contact density indices for granular mixes—II: Liquefaction resistance

    Science.gov (United States)

    Thevanayagam, S.

    2007-06-01

    Whether the presence of non-plastic silt in a granular mix soil impact its liquefaction potential and how to evaluate liquefaction resistance of sand containing different amounts of silt contents are both controversial issues. This paper presents the results of an experimental evaluation to address these issues. Two parameters, namely, equivalent intergranular void ratio ( e c)eq and equivalent interfine void ratio ( e f)eq, proposed in a companion paper (Thevanayagam, 2007) as indices of active grain contacts in a granular mix, are used to characterize liquefaction resistance of sands and silty sands. Results indicate that, at the same global void ratio ( e), liquefaction resistance of silty sand decreases with an increase in fines content ( C F) up to a threshold value ( C Fth). This is due to a reduction in intergrain contact density between the coarse grains. Beyond C Fth, with further addition of fines, the interfine contacts become significant while the inter-coarse grain contacts diminish and coarse grains become dispersed. At the same e, the liquefaction resistance increases and the soil becomes stronger with a further increase in silt content. Beyond a limiting fines content ( C FL), the liquefaction resistance is controlled by interfine contacts only. When C F resistance of silty sand is comparable to that of the host clean sand at a void ratio equal to ( e c)eq. When C F > C Fth, at the same ( e f)eq, the cyclic strength of a sandy silt is comparable to the host silt at a void ratio equal to ( e f)eq.

  2. Thermal resistance of indium coated sapphire-copper contacts below 0.1 K

    Science.gov (United States)

    Eisel, T.; Bremer, J.; Koettig, T.

    2014-11-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (Ø 20 mm × 1.5 mm) to investigate the phonon scattering at the boundaries. All sandwiches apply indium foils as intermediate layers on both sides of the sapphire. Additionally to the indium foils, thin indium films are vapour deposited onto both sides of one rough and one polished sapphire in order to improve the contact to the sapphire. Significantly different thermal resistances have been found amongst the investigated sandwiches. The lowest total thermal resistivity (roughly 26 cm2 K4/W at 30 mK helium temperature) is achieved across a sandwich consisting of a polished sapphire with indium vapour deposition. The thermal boundary resistance between indium and sapphire is estimated from the total thermal resistivity by assuming the scattering at only one boundary, which is the warm sapphire boundary where phonons impinge, and taking the scattering in the sapphire bulk into account. The so derived thermal boundary resistance agrees at low temperatures very well with the acoustic mismatch theory.

  3. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance �?c, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  4. Cross-bidge Kelvin resistor (CBKR) structures for measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Boksteen, B.K.; Boksteen, B.K.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2007-01-01

    A convenient test structure for measurement of the specific contact resistance (�?c) of metal-semiconductor junctions is the CBKR structure. During last few decades the parasitic factors which may strongly affect the measurements accuracy for �?c < 10-6 Ω • cm2 have been sufficiently discussed and

  5. A study of cross-bridge kelvin resistor structures for reliable measurement of low contact resistances

    NARCIS (Netherlands)

    Stavitski, N.; Klootwijk, J.H.; van Zeijl, H.W.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    The parasitic factors that strongly influence the measurement accuracy of Cross-Bridge Kelvin Resistor (CBKR) structures for low specific contact resistances (�?c) have been extensively discussed during last few decades and the minimum of the �?c value, which could be accurately extracted, was

  6. Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles

    Science.gov (United States)

    Choi, Jung-Yeol; Oh, Tae Sung

    2014-12-01

    Flip-chip bonding to a Cu lead frame transferred to a fabric was achieved by use of a non-conducting adhesive. Average contact resistance of the flip-chip joints was evaluated on variation of the Cu and Sn thickness of Cu/Sn bumps of size 150 × 220 μm2. The total thickness of the Cu/Sn bumps was fixed at 15 μm. The average contact resistance of the flip-chip joints on the fabric was 5.4-10.8 mΩ, depending on the Sn thickness of the Cu/Sn bumps; this was lower than for flip-chip joints on a rigid Si substrate (15.6-26.5 mΩ). The average contact resistance of flip-chip joints on the fabric decreased from 10.8 mΩ to 5.5 mΩ when the chip-bump configuration was changed from 15- μm-thick Sn to 7- μm-thick Cu/8- μm-thick Sn. The contact resistance of flip-chip joints bonded with the 7- μm-thick Cu/8- μm-thick Sn bumps remained below 10 mΩ for up to 750 h in the 85°C/85% relative humidity test and even decreased to below 4 mΩ in the storage test at 125°C for up to 1000 h.

  7. Control of contact resistance by strand surface coating in 36-strands NbTi CICC's

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.; Duchateau, Jean-Luc; Decool, Patrick

    2001-01-01

    The stability and AC loss of NbTi cable-in-conduit conductors (CICCs) is largely determined by the interstrand contact resistance (Rc). Rc is predominantly established by the strand surface properties. Five 36-strand CICCs, fully identical except for the plating of the strand surface or the presence

  8. Four-terminal resistance in a clean interacting quantum wire with invasive contacts

    Energy Technology Data Exchange (ETDEWEB)

    Aita, H., E-mail: lili@df.uba.ar [Departamento de Fisica, Facultad de Ciencias Exactas-UNLP, CC 67, La Plata 1900 (Argentina); IFLP-CONICET (Argentina); Arrachea, L. [Departamento de Fisica and IFIBA, Universidad de Buenos Aires, Pebellon I, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Naon, C. [Departamento de Fisica, Facultad de Ciencias Exactas-UNLP, CC 67, La Plata 1900 (Argentina); IFLP-CONICET (Argentina)

    2012-08-15

    We investigate the behavior of the four-terminal resistance R{sub 4pt} in an interacting quantum wire described by a Luttinger liquid with an applied bias voltage V and coupled to two voltage probes. We extend previous results, obtained for very weakly coupled contacts, to the case in which the effects of the probes become non-trivially correlated.

  9. Four-terminal resistance in a clean interacting quantum wire with invasive contacts

    Science.gov (United States)

    Aita, H.; Arrachea, L.; Naón, C.

    2012-08-01

    We investigate the behavior of the four-terminal resistance R4pt in an interacting quantum wire described by a Luttinger liquid with an applied bias voltage V and coupled to two voltage probes. We extend previous results, obtained for very weakly coupled contacts, to the case in which the effects of the probes become non-trivially correlated.

  10. A Feasibility Study on the Worn Area Estimation by Measuring a Contact Resistance (I)

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    In order to improve the fretting wear resistance of the nuclear fuel rod with considering the effect of the contacting spring shape, it is necessary to examine the formation procedure of the worn area during the fretting wear experiments with including its shape, size and the debris removal path. This is because the wear volume and the maximum wear depth are dominantly affected by the worn area and the wear resistance of the nuclear fuel rod was dominantly affected by the spring shape rather than the test environment and the contact mode (i.e. impact, sliding, rubbing, etc.). Unfortunately, it is almost impossible to archive the size and shape of the worn area on real-time basis because the contact surfaces are always hidden. If we could measure the worn area properties during fretting wear tests, it enables us to promptly estimate the wear resistance or behavior with various contacting spring shapes. Generally, fretting wear degradation is generated by the localized plastic deformation, fracture and finally detachment of wear debris. Generally, wear debris easily oxidized by frictional heat, test environment, etc. From the previous studies, most of the wear debris was detached from the worn surface in the distilled water condition while the wear debris in the dry condition remained on or adhered to the worn surface. At this time, it is reasonable that the accumulated wear debris on the worn surface is existed in the form of oxide. If small amount of electric current was applied between the contacting surfaces, wear debris could be an obstacle to flow the electric current. This means that the variation of the contact resistance under constant electric current during the fretting wear tests has much information on the formation of the worn area even though the applying current could accelerate the oxidation of the generated wear debris. So, in this study, fretting wear tests have been performed with applying an electric current in room temperature air in order to

  11. The Neurologic Assessment in Neuro-Oncology (NANO) Scale as an Assessment Tool for Survival in Patients With Primary Glioblastoma.

    Science.gov (United States)

    Ung, Timothy H; Ney, Douglas E; Damek, Denise; Rusthoven, Chad G; Youssef, A Samy; Lillehei, Kevin O; Ormond, D Ryan

    2018-03-30

    The Neurologic Assessment in Neuro-Oncology (NANO) scale is a standardized objective metric designed to measure neurological function in neuro-oncology. Current neuroradiological evaluation guidelines fail to use specific clinical criteria for progression. To determine if the NANO scale was a reliable assessment tool in glioblastoma (GBM) patients and whether it correlated to survival. Our group performed a retrospective review of all patients with newly diagnosed GBM from January 1, 2010, through December 31, 2012, at our institution. We applied the NANO scale, Karnofsky performance score (KPS), Eastern Cooperative Oncology Group (ECOG) scale, Macdonald criteria, and the Response Assessment in Neuro-Oncology (RANO) criteria to patients at the time of diagnosis as well as at 3, 6, and 12 mo. Initial NANO score was correlated with overall survival at time of presentation. NANO progression was correlated with decreased survival in patients at 6 and 12 mo. A decrease in KPS was associated with survival at 3 and 6 mo, an increase in ECOG score was associated only at 3 mo, and radiological evaluation (RANO and Macdonald) was correlated at 3 and 6 mo. Only the NANO scale was associated with patient survival at 1 yr. NANO progression was the only metric that was linked to decreased overall survival when compared to RANO and Macdonald at 6 and 12 mo. The NANO scale is specific to neuro-oncology and can be used to assess patients with glioma. This retrospective analysis demonstrates the usefulness of the NANO scale in glioblastoma.

  12. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  13. A theoretical model for metal-graphene contact resistance using a DFT-NEGF method.

    Science.gov (United States)

    Ji, Xiang; Zhang, Jinyu; Wang, Yan; Qian, He; Yu, Zhiping

    2013-11-07

    The contact resistance (R(c)) between graphene and metal electrodes is of crucial importance for achieving potentially high performances for graphene devices. However, previous analytical models based on Landauer's approach have failed to include the Fermi velocity difference between the graphene under the metal and the pure graphene channel. Hereby we report a theoretical model to estimate the R(c) using density-functional theory and non-equilibrium Green's function methods. Our model not only presents a clear physical picture of the metal-graphene contacts, but also generates R(c) values which are in good agreement with the experimental results: 210 Ω μm for double-sided Pd contacts compared with 403 Ω μm for single-sided Pd contact.

  14. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  15. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    Science.gov (United States)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of 2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  16. Internal resistance of rear totally diffused solar cells with line shaped contacts

    Science.gov (United States)

    Meier, Sebastian; Saint-Cast, Pierre; Wöhrle, Nico; Fell, Andreas; Greulich, Johannes; Wolf, Andreas; Glunz, Stefan W.

    2017-11-01

    We present an analytical model for the internal resistance of passivated emitter and rear totally diffused (PERT) solar cells. First, we apply the model of Saint-Cast for the spreading resistance of a passivated emitter and rear cell (PERC) structure with line-shaped contacts. To account for the additional vertical current flow through the silicon wafer and the lateral current flow through the back surface field of a PERT structure, we add a parallel current path using common analytical expressions. We compare the analytical models with two-dimensional numerical simulations based on Quokka 3 and find deviations of less than 6% for the internal resistance. In addition, we compare the analytical model of the internal resistance of PERC and PERT solar cells with experimental data of the series resistance of PERC and PERT solar cells.

  17. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  18. Writing to and reading from a nano-scale crossbar memory based on memristors

    International Nuclear Information System (INIS)

    Vontobel, Pascal O; Robinett, Warren; Kuekes, Philip J; Stewart, Duncan R; Straznicky, Joseph; Stanley Williams, R

    2009-01-01

    We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded demultiplexers implemented using mixed-scale crossbars (in which CMOS-wires cross nano-wires and in which the crosspoint junctions have one-time configurable memristors). This memory system does not utilize the kind of devices (diodes or transistors) that are normally used to isolate the memory cell being written to and read from in conventional memories. Instead, special techniques are introduced to perform the writing and the reading operation reliably by taking advantage of the nonlinearity of the type of memristors used. After discussing both writing and reading strategies for our memory system in general, we focus on a 64 x 64 memory array and present simulation results that show the feasibility of these writing and reading procedures. Besides simulating the case where all device parameters assume exactly their nominal value, we also simulate the much more realistic case where the device parameters stray around their nominal value: we observe a degradation in margins, but writing and reading is still feasible. These simulation results are based on a device model for memristors derived from measurements of fabricated devices in nano-scale crossbars using Pt and Ti nano-wires and using oxygen-depleted TiO 2 as the switching material.

  19. New approaches to image processing based failure analysis of nano-scale ULSI devices

    CERN Document Server

    Zalevsky, Zeev; Gur, Eran

    2013-01-01

    New Approaches to Image Processing Based Failure Analysis of Nano-Scale ULSI Devices introduces the reader to transmission and scanning microscope image processing for metal and non-metallic microstructures. Engineers and scientists face the pressing problem in ULSI development and quality assurance: microscopy methods can't keep pace with the continuous shrinking of feature size in microelectronics. Nanometer scale sizes are below the resolution of light, and imaging these features is nearly impossible even with electron microscopes, due to image noise. This book presents novel ""smart"

  20. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  1. Effects of ultra-vacuum and space environment on contact ohmic resistance: LDEF experiment AO 138-11

    Science.gov (United States)

    Assie, Jean-Pierre; Perotto, Alfred

    1992-01-01

    The FRECOPA experimentation of chemical resistance of electrical connector contacts, as described, has evidenced the detrimental time variations of nickel plated conductors and gilded copper contacts, irrespective of crimping storage or metal peening conditions. With a view to reorient aluminum technology a silvered aluminum conductor/gilded aluminum contact solution was evaluated.

  2. Rolling-contact and wear resistance of hard coatings on bearing-steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.

    1992-02-01

    Ever-increasing needs for high-performance ball- and roller-bearing components that can endure extreme applications have led to a growing interest in hard coatings for improved fatigue life and wear resistance. In particular, hard TiN and TiC coatings and, quite recently, diamond like carbon films have attracted much attention from manufacturers that produce bearing systems for both rolling- and sliding-contact applications. This paper presents an overview that highlights recent incremental progress in achieving improved fatigue and wear resistance in bearing steels through the use of hard coatings. Effects of coating adhesion, thickness, and morphology on fatigue and wear resistance of hard coatings are discussed in detail. Specific references are made to a few mechanistic models that correlate coating thickness and adhesion to improved fatigue life and wear resistance.

  3. Low Resistance Ohmic Contacts to Bi[sub 2]Te[sub 3] Using Ni and Co Metallization

    KAUST Repository

    Gupta, Rahul P.

    2010-04-27

    A detailed study of the impact of surface preparation and postdeposition annealing on contact resistivity for sputtered Ni and Co contacts to thin-film Bi2 Te3 is presented. The specific contact resistivity is obtained using the transfer length method. It is observed that in situ sputter cleaning using Ar bombardment before metal deposition gives a surface free of oxides and other contaminants. This surface treatment reduces the contact resistivity by more than 10 times for both Ni and Co contacts. Postdeposition annealing at 100°C on samples that were sputter-cleaned further reduces the contact resistivity to < 10-7 cm2 for both Ni and Co contacts to Bi2 Te3. Co as a suitable contact metal to Bi2 Te3 is reported. Co provided similar contact resistance values as Ni, but had better adhesion and less diffusion into the thermoelectric material, making it a suitable candidate for contact metallization to Bi2 Te3 based devices. © 2010 The Electrochemical Society.

  4. Serum vitamin d level and susceptibility to multidrug-resistant tuberculosis among household contacts

    Science.gov (United States)

    Herlina, N.; Sinaga, B. Y. M.; Siagian, P.; Mutiara, E.

    2018-03-01

    Low levels of vitamin D is a predisposing factor for Multidrug-resistant tuberculosis. Family members in contact with the patient are also at risk of infection. Currently, there is no study that compares vitamin D levels between MDR-TB patients and household contact. This study aims to identify the association between level vitamin D within MDR-TB occurrence. This was a case-control study, with the number of samples in each group (MDR-TB) patients and household contactswere40 people. Each member of each group was checked for vitamin D levels using enzyme-linked immunosorbent assay (ELISA) technique. Statistical analysis was by using Chi-Square analysis using SPSS. Mean levels of vitamin D in MDR-TB patients were 32.21, household contact 31.7. There was anosignificant association between vitamin D levels and MDR-TB occurrence (p=1.0).No significant associationbetween vitamin D level with theMDR-TB occurrence.

  5. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  6. Nano-scale characterization of fracture surfaces of blended epoxy resins related to fracture properties

    Energy Technology Data Exchange (ETDEWEB)

    Haris, Andi [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Adachi, Tadaharu [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)], E-mail: adachi@mech.titech.ac.jp; Araki, Wakako [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2008-11-25

    The fracture surface morphologies of epoxy resins with different macromolecular structures created by blending two epoxy monomers with different molecular weights (Epikote 828 and Epikote 1001) were characterized using atomic force microscopy with different sampling intervals. A measured fracture surface parameter (roughness ratio, S{sub dr}) was quantitatively analyzed from the topographic images and then correlated to the measured fracture energy, G{sub IC}. The fracture energy increased with the content of Epikote 1001 monomer, {phi}. The nano-scale surface roughness strongly depended on {phi}, meaning that each epoxy resin can be considered to have a different material structure in several nano-scales; heterogeneity, network or crosslink, which can be observed at higher resolution, 6 nm for 3 x 3 {mu}m{sup 2} scanning area, and 2 nm for 1 x 1 {mu}m{sup 2} scanning area. The fracture property is thus sensitive to the observed nano-structure whereas the glassy modulus is not. Therefore, the combination of the viscoelastic and fracture properties can be tailored by changing the network or crosslink structure by blending monomers with different molecular weights.

  7. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  10. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, A., E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Motoi, K.; Miyajima, H. [Department of Physics, Keio University, Hiyoshi, Yokohama, Kanagawa 223-8522 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices. - Highlights: • We describe an experimental investigation of the magnetic response of a single layered ferromagnetic nano-scale wire. • We present the conventional broadband microwave spectroscopy with a vector network analyzer and rectifying spectroscopy obtained with a Wheatstone bridge technique. • The investigation enables us to characterize the size effect on the ferromagnetic response and also to detect the magnetization precession induced by the thermal fluctuations.

  11. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    International Nuclear Information System (INIS)

    Chen Jikun; Zhu Yingjie; Chen Nuofu; Liu Xinling; Sun Zhengliang; Huang Zhenghong; Kang Feiyu; Gao Qiuming; Jiang Jun; Chen Lidong

    2011-01-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi 2 Te 3 , Bi 2 Se 3 , and Bi 2 Se 0.3 Te 2.7 , through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  12. Contact resistance problems applying ERT on low bulk density forested stony soils. Is there a solution?

    Science.gov (United States)

    Deraedt, Deborah; Touzé, Camille; Robert, Tanguy; Colinet, Gilles; Degré, Aurore; Garré, Sarah

    2015-04-01

    Electrical resistivity tomography (ERT) has often been put forward as a promising tool to quantify soil water and solute fluxes in a non-invasive way. In our experiment, we wanted to determine preferential flow processes along a forested hillslope using a saline tracer with ERT. The experiment was conducted in the Houille watershed, subcatchment of the Meuse located in the North of Belgian Ardennes (50° 1'52.6'N, 4° 53'22.5'E). The climate is continental but the soil under spruce (Picea abies (L.) Karst.) and Douglas fire stand (Pseudotsuga menziesii (Mirb.) Franco) remains quite dry (19% WVC in average) during the whole year. The soil is Cambisol and the parent rock is Devonian schist covered with variable thickness of silty loam soil. The soil density ranges from 1.13 to 1.87 g/cm3 on average. The stone content varies from 20 to 89% and the soil depth fluctuates between 70 and 130 cm. The ERT tests took place on June 1st 2012, April 1st, 2nd and 3rd 2014 and May 12th 2014. We used the Terrameter LS 12 channels (ABEM, Sweden) in 2012 test and the DAS-1 (Multi-Phase Technologies, United States) in 2014. Different electrode configurations and arrays were adopted for different dates (transect and grid arrays and Wenner - Schlumberger, Wenner alpha and dipole-dipole configurations). During all tests, we systematically faced technical problems, mainly related to bad electrode contact. The recorded data show values of contact resistance above 14873 Ω (our target value would be below 3000 Ω). Subsequently, we tried to improve the contact by predrilling the soil and pouring water in the electrode holes. The contact resistance improved to 14040 Ω as minimum. The same procedure with liquid mud was then tested to prevent quick percolation of the water from the electrode location. As a result, the lower contact resistance dropped to 11745 Ω. Finally, we applied about 25 litre of saline solution (CaCl2, 0.75g/L) homogeneously on the electrode grid. The minimum value of

  13. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  14. Is Chemoprophylaxis for Child Contacts of Drug-Resistant TB Patients Beneficial? A Systematic Review

    Directory of Open Access Journals (Sweden)

    C. Padmapriyadarsini

    2018-01-01

    Full Text Available Background. Preventive therapy for child contacts of multidrug-resistant tuberculosis (MDR-TB patients is poorly studied, and no consensus about the role and the rationale of chemoprophylaxis has been reached. Objective. To conduct systematic review with an aim to determine the effectiveness of TB preventive therapy in reducing the incidence of TB disease in pediatric contacts of MDR-TB patients. Methods. We conducted a literature search for randomized control trials, cohort studies, and case reports of chemoprophylaxis for pediatric contacts of MDR-TB patients in PubMed, EMBASE, Cochrane Databases of Systematic Reviews, metaRegister of Controlled Trials, and other clinical registries through March 2017, using appropriate search strategy. In addition we searched abstracts from international conferences and references of published articles and reviews. Results. Of the 153 references assessed from various databases, seven studies were identified as relevant after adaption of eligibility criteria and assessed for systematic review. Of these, only two studies contributed data for the pooled meta-analysis. Conclusions. Though the available evidences suggest that the chemoprophylaxis for child contacts of MDR-TB patients is beneficial, data to support or reject preventive therapy is very limited. Further clinical research, in Tb endemic settings like India, needs to be performed to prove the beneficial effect of chemoprophylaxis for pediatric contacts of MDR-TB.

  15. Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene

    Science.gov (United States)

    Barnat-Hunek, Danuta; Łagód, Grzegorz; Klimek, Beata

    2017-07-01

    The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparation based on organosilicon compounds for surface protection on the heat-insulating mortars modified with polystyrene. The work discusses issues related to wettability, absorptivity and frost resistance of the surface layer of mortars. The experimental part pertains to the physical and mechanical properties of polystyrene-modified mortars and the influence of hydrophobic preparation on the contact angle and frost resistance. The frost resistance of mortars was examined following 25 cycles of freezing and thawing. The contact angle of light mortars (θw) was determined before and after the tests of frost resistance, in the function of time using a single measurement liquid. This provided a basis for calculating the surface free energy with Neumann method, characterizing the wettability and adhesion of mortars under normal conditions and with damages resulting from frost weathering. The structure of mortars and the adhesion of lightweight aggregate to cement paste were presented by means of scanning electron microscopy. The studies enabled to determine the hydrophobisation efficiency of heat-insulating mortars with polystyrene. The obtained results confirmed the possibility of producing heat-insulating mortars modified with polystyrene along with proper surface protection against moisture and frost.

  16. Thermal resistance of indium coated sapphire–copper contacts below 0.1K

    CERN Document Server

    Eisel, T; Koettig, T

    2014-01-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (empty set 20 mm x 1.5 mm) to investigate the phonon scattering at the bo...

  17. Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    Science.gov (United States)

    Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.

    2018-01-01

    A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.

  18. Series Resistance Analysis of Passivated Emitter Rear Contact Cells Patterned Using Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Martha A. T. Lenio

    2012-01-01

    Full Text Available For higher-efficiency solar cell structures, such as the Passivated Emitter Rear Contact (PERC cells, to be fabricated in a manufacturing environment, potentially low-cost techniques such as inkjet printing and metal plating are desirable. A common problem that is experienced when fabricating PERC cells is low fill factors due to high series resistance. This paper identifies and attempts to quantify sources of series resistance in inkjet-patterned PERC cells that employ electroless or light-induced nickel-plating techniques followed by copper light-induced plating. Photoluminescence imaging is used to determine locations of series resistance losses in these inkjet-patterned and plated PERC cells.

  19. An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application

    Science.gov (United States)

    Li, Jing; Fan, Kun; Cai, Weiwei; Ma, Liying; Xu, Guoxiao; Xu, Sen; Ma, Liang; Cheng, Hansong

    2016-11-01

    A novel in-situ nano-scale swelling-filling (SF) strategy is proposed to modify commercial Nafion membranes for performance enhancement of direct methanol fuel cells (DMFCs). A Nafion membrane was filled in-situ with proton conductive macromolecules (PCMs) in the swelling process of a Nafion membrane in a PCM solution. As a result, both proton conductivity and methanol-permeation resistivity of the SF-treated Naifion membrane was substantially improved with the selectivity nearly doubled compared to the original Nafion membrane. The mechanical strength of the optimal SF treated Nafion membrane was also enforced due to the strong interaction between the PCM fillers and the Nafion molecular chains. As a result, a DMFC equipped with the SF-treated membrane yielded a 33% higher maximum power density than that offered by the DMFC with the original Nafion membrane.

  20. A Compact P⁺ Contact Resistance Model for Characterization of Substrate Coupling in Modern Lightly Doped CMOS Processes

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Jensen, Ole Kiel

    2012-01-01

    Compact modeling of P+ contact resistances is important for characterization of substrate noise coupling in mixed-signal System on Chips (SoCs). Existing contact resistance models can handle uniformly doped bulk or epitaxial substrates. However, compact contact resistance models feasible for modern......, and it is scalable to layout/substrate parameters. The proposed model can also be used to predict noise coupling in terms of S-parameters. The model validation has been done by both EM simulations and measurements, and satisfactory agreement is found between the modeled and measured resistances as well as S-parameters....... lightly-doped CMOS processes with P-well layers are still unavailable. This paper presents a new compact resistance model aiming at solving this problem. A Conformal Mapping(CM) method was used to derive the closed-form expressions for the resistances in the model. The model requires no fitting factors...

  1. Resistance networks as a model for conduction on the nano-scale

    Science.gov (United States)

    Walker, Benjamin Ashley

    In this thesis, we calculate transport properties of amorphous materials in one, two, and three dimensions. We take into account site disorder, manifest as a random variation of the locations of atomic species. We employ a resistor network model as a theoretical framework for calculating transport characteristics. The numerical calculations we employ are based on an iterative algorithm used as an improvement over the direct solution of the relevant linear systems. The Monte Carlo calculations are used to validate analytical perturbative treatment valid in the bulk limit. In approaching random resistor networks, we discuss and apply a paradigm based on the connectivity of nodes instead of mesh currents where the applicability is limited to a specific set of geometries. We argue that this perspective is very useful in strongly disordered systems, especially for three-dimensional cases.

  2. Dielectric relaxation in metal-coated particles: the dramatic role of nano-scale coatings

    International Nuclear Information System (INIS)

    Youngs, I J; Bowler, N; Lymer, K P; Hussain, S

    2005-01-01

    Insulating materials filled with conducting particles permit tailoring of electrical, electromagnetic and thermal properties of the resulting composite. When the filler particles are small and metallic, a dielectric relaxation due to interfacial polarization is commonly observed at optical or smaller wavelengths. Here, experimental results are presented in which the dielectric relaxation is shifted to microwave frequencies as a result of using metal-coated dielectric particles with a nano-scale coating thickness. The results are analysed in the context of effective medium theory adapted for multi-layer particles. Such a large shift in relaxation frequency, compared with that for a similar composite with solid metal filler particles, is shown to be a function of both the coating geometry and a thin-film-related reduction in the conductivity of the metal. The observed broadening of the relaxation peak is attributed to non-uniformity of the coating thickness and a consequent distribution of coating conductivity

  3. AFM study of hippocampal cells cultured on silicon wafers with nano-scale surface topograph.

    Science.gov (United States)

    Ma, J; Liu, B F; Xu, Q Y; Cui, F Z

    2005-08-01

    The rat hippocampal cells were selected as model to study the interaction between the neural cells and silicon substrates using atomic force microscopy (AFM). The hippocampal cells show tight adherence on silicon wafers with nano-scale surface topograph. The lateral friction force investigated by AFM shows significant increase on the boundary around the cellular body. It is considered to relate to the cytoskeleton and cellular secretions. After ultrasonic wash in ethanol and acetone step by step, the surface of silicon wafers was observed by AFM sequentially. We have found that the culture leftovers form tight porous networks and a monolayer on the silicon wafers. It is concluded that the leftovers overspreading on the silicon substrates are the base of cell adherence on such smooth inert surfaces.

  4. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto De

    2008-01-01

     The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson-Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates...... are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double...... be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures...

  5. A combined method for correlative 3D imaging of biological samples from macro to nano scale

    Science.gov (United States)

    Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko

    2016-10-01

    Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.

  6. Broadband spectroscopy of magnetic response in a nano-scale magnetic wire

    Science.gov (United States)

    Yamaguchi, A.; Motoi, K.; Miyajima, H.; Utsumi, Y.

    2014-09-01

    We measure the broadband spectra of magnetic response in a single layered ferromagnetic nano-scale wire in order to investigate the size effect on the ferromagnetic resonance. We found that the resonance frequency difference between 300-nm- and 5-μm-wide wires was varied by about 5 GHz due to the shape anisotropy. Furthermore, we experimentally detected the magnetization precession induced by the thermal fluctuation via the rectification of a radio-frequency (rf) current by incorporating an additional direct current (dc) by using Wheatstone bridge circuit. Our investigation renders that the shape anisotropy is of great importance to control the resonance frequency and to provide thermal stability of the microwave devices.

  7. Simulation of laser-induced rectification in a nano-scale diode

    Science.gov (United States)

    Kidd, Daniel; Xu, Xiaojia; Covington, Cody; Watanabe, Kazuyuki; Varga, Kálmán

    2018-02-01

    Time-dependent density functional theory is utilized to simulate an asymmetrical jellium model, representing a nano-scale vacuum-tube diode comprised of bulk lithium. A sharp tip on one end of the jellium model allows for enhanced field emission upon interaction with an external laser field, leading to a preferential net current direction. This is verified by comparing the rate of electron transfer between the effective anode and cathode tips for both the diode jellium model and a symmetric cylinder jellium shape for various laser phase parameters. This rate of transfer is shown to significantly increase with smaller separation distances. With stronger laser intensities, this rate similarly increases but levels off as local near-field enhancements become negligible.

  8. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  9. Recovery of resistant bacteria from mattresses of patients under contact precautions.

    Science.gov (United States)

    Viana, Roberta El Hariri; dos Santos, Simone G; Oliveira, Adriana C

    2016-04-01

    Microorganisms may contaminate hospital mattresses even after terminal cleaning. We investigated the recovery of resistant bacteria from the mattresses of patients under contact precautions at a university hospital. We conducted a cross-sectional study. Samples were obtained from the surface of mattresses, spread on replicate organism detection and counting plates, and cultivated at 37°C for 48 hours. After collecting samples, we identified microorganisms and tested for antimicrobial susceptibility using the Vitek 2 (bioMérieux SA, Marcy-l'Etoile, France) automation system. We evaluated 51 mattresses. A total of 26 had resistant bacteria on the surface; the predominant species were Acinetobacter baumannii (69.2%), Klebsiella pneumoniae (11.5%), and Pseudomonas aeruginosa (11.5%). The median length of hospital stay was 41 days; the bed occupancy for patients under contact precautions and the time at which the patient was diagnosed as a carrier of resistant bacteria was 18 days. The phenotypic similarity of A baumannii in inpatient units (mattresses) suggests circulation of the same strain. These results highlight the importance of controlling the potential spread of microorganisms through hospital mattresses. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  11. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  12. An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers

    Science.gov (United States)

    Bhole, A. A.; Gandhare, W. Z.

    2016-06-01

    With the deregulation of the electrical power industry, utilities and service companies are operating in a changing business environment. High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The need to predict the proper function of circuit breaker grew over the years as the transmission networks expanded. The maintenance of circuit breakers deserves special consideration because of their importance for routine switching and for protection of other equipments. Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance. Dynamic Contact Resistance Measurement (DCRM) is known as an effective technique for assessing the condition of power circuit breakers contacts and operating mechanism. This paper gives a general review about DCRM. It discusses the practical case studies on use of DCRM for condition assessment of high voltage circuit breakers.

  13. Characteristics of contact resistance for Ag, Cu and Al spot contact under DC current flow of 300A; Gin, do oyobi arumi tensesshokushi no chokuryu 300A tsudenji ni okeru sesshoku teiko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aichi, H. [Daido Institute of Technology, Nagoya (Japan); Matsumura, T. [Nagoya University, Nagoya (Japan); Miyachi, I. [Aichi Inst. of Technology, Aichi (Japan)

    1997-07-01

    The temperature rise of the contact spot by Joule`s heat under high current flow may result in the softening or welding of the contact materials. Contact resistances of Ag, Cu and Al spot contacts have been observed under the current flow of up to 300A DC. The contact resistances of Ag and Cu with clean surfaces were revealed to be kept constant independent of the magnitude of the applied current flow. On the other hand, contact resistances of Al and Cu with oxidized surfaces were greatly reduced with the increasing current flow. 7 refs., 5 figs., 2 tabs.

  14. Deformation and fatigue resistance of Al/a-Si core-shell nanostructures subjected to cyclic nanoindentation

    Science.gov (United States)

    Steck, Jason G.; Fleming, Robert A.; Goss, Josue A.; Zou, Min

    2018-03-01

    Nanostructure-textured surfaces can reduce friction and adhesion of micro- and nano-electromechanical systems (MEMS/NEMS). For MEMS/NEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (DMA) techniques. Fatigue testing with nano-scale DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 20 GPa. For bare Al nanodots which lack the hard a-Si shell, significant nanostructure deformation results due to repeated cyclic loading. In addition, for the Al/a-Si layered thin film which lacks the geometric and dislocation confinement properties of CSNs, cyclic loading results in fatigue failure of the a-Si layer. Even at elevated contact pressures, CSNs demonstrate none of the failure mechanisms exhibited by the other two control structures. The unique properties displayed by CSNs when subjected to fatigue testing establish their prolonged reliability and durability when implemented in micro- and nano-scale applications.

  15. Preparation of electrodes on cfrp composites with low contact resistance comprising laser-based surface pre-treatment

    KAUST Repository

    Almuhammadi, Khaled Hamdan

    2016-12-29

    Various examples are provided related to the preparation of electrodes on carbon fiber reinforced polymer (CFRP) composites with low contact resistance. Laser-based surface preparation can be used for bonding to CFRP composites. In one example, a method includes preparing a pretreated target area on a CFRP composite surface using laser pulsed irradiation and bonding an electrode to exposed fibers in the pretreated target area. The surface preparation can allow the electrode to have a low contact resistance with the CFRP composite.

  16. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    Science.gov (United States)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  17. The effect of thermal contact resistance on the thermosetting pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    In the present study the control volume based finite difference (CV/FD) method is utilized to perform thermo-chemical simulation of the pultrusion process of a composite rod. Preliminary, the model is applied for a simple setup without die and heaters and the results match well with those obtained...... experimentally in the literature. In order to study the effects of the thermal contact resistance (TCR), which can also be expressed by the heat transfer coefficient (HTC), on the pultrusion process, a cylindrical die block and heaters are added to the original problem domain. The significance of using the TCR...

  18. Mechanical and electrical contact resistance characteristics of a cellular assembly of carbon nanotubes

    International Nuclear Information System (INIS)

    Kiran, M S R N; Ramamurty, U; Misra, Abha

    2013-01-01

    We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region. (paper)

  19. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  20. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Tang, Guangze; Luo, Dian; Fan, Guohua; Ma, Xinxin; Wang, Liqin

    2017-01-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  1. Strengthening effect of nano-scaled precipitates in Ta alloying layer induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangze; Luo, Dian; Fan, Guohua [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin, E-mail: maxin@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-05-01

    Highlights: • Ta alloying layer are fabricated by magnetron sputtering and high current pulsed electron beam. • Nano-scaled TaC precipitates forms within the δ-Fe grain after tempering treatment. • The mean diameter of TaC particles is about 5–8 nm. • The hardness of alloying layer increased by over 50% after formation of nano-scaled TaC particle. - Abstract: In this study, the combination of magnetron sputtering and high current pulsed electron beam are used for surface alloying treatment of Ta film on high speed steel. And the Ta alloying layer is about 6 μm. After tempering treatment, TaC phase forms in Ta alloying layer when the treated temperature is over 823 K. Through the TEM and HRTEM observation, a large amount of nano-scaled precipitates (mean diameter 5–8 nm) form within the δ-Fe grain in Ta alloying layer after tempering treatment and these nano-scaled precipitates are confirmed as TaC particles, which contribute to the strengthening effect of the surface alloying layer. The hardness of tempered alloying layer can reach to 18.1 GPa when the treated temperature is 823 K which increase by 50% comparing with the untreated steel sample before surface alloying treatment.

  2. Stability of Nb-Ti Rutherford Cables Exhibiting Different Contact Resistances

    CERN Document Server

    Willering, G P; Kaugerts, J; ten Kate, H H J

    2008-01-01

    Dipole magnets for the so-called SIS-300 heavy-ion synchrotron at GSI are designed to generate 6 T with a field sweep rate of 1 T/s. It is foreseen to wind the magnets with a 36 strands Nb-Ti Rutherford cable. An important issue in the cable design is sufficiently low AC loss and stability as well. In order to keep the AC loss at low level, the contact resistance between crossing strands Rc is kept high by putting a stainless steel core in the cable. The contact resistance between adjacent strands Ra is controlled by oxidation of the Sn-Ag coating of the strands, like in the LHC. In order to investigate the effect of Ra on the stability of the cable, we prepared four samples with different Ra by varying the heat treatment and applying a soldering technique, resulting in values between 1 mW to 9 mW. The stability of each sample against transient point-like heat pulses was measured. The results of the stability experiments and a comparison with calculations using the network model CUDI are presented...

  3. Minimization of contact resistance between metal and polymer by surface doping

    International Nuclear Information System (INIS)

    Mukherjee, A K; Thakur, A K; Takashima, W; Kaneto, K

    2007-01-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude

  4. Minimization of contact resistance between metal and polymer by surface doping

    Science.gov (United States)

    Mukherjee, A. K.; Thakur, A. K.; Takashima, W.; Kaneto, K.

    2007-03-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude.

  5. Potential resistant morphotypes of Acanthamoeba castellanii expressed in multipurpose contact lens disinfection systems.

    Science.gov (United States)

    Ahearn, Donald G; Simmons, Robert B; Ward, Michael A; Stulting, R Doyle

    2012-11-01

    The free-living amoeba Acanthamoeba castellanii is a rare cause of contact lens-associated microbial keratitis. The cyst stage of this amoeba is noted for its resistance to disinfection by multipurpose contact lens solutions (MPS). This report examines and reviews the potential survival modes of A. castellanii in MPS. Trophozoites of A. castellanii (ATCC 30234) at densities from 10 to near 10 were incubated in 3 different MPS in a laminar flow hood for 24 hours at ambient temperatures. The dried films of MPS and phosphate-buffered saline (PBS) controls were examined before and after the addition of a peptone-yeast extract-glucose recovery broth (PYG) for the presence of amoeboid trophozoites and resistance stages over at least 7 days. The parallel exposure of trophozoites to MPS without evaporation or addition of PYG was similarly examined. Amoeboid trophozoites were not recovered in PYG nor were cyst-like structures observed in any MPS with near 10 densities. Progressively with 10 to 10 trophozoites, varied survival modes, particularly aggregates of trophozoites associated with cyst-like structures and occasional amoeboid forms and double-walled cysts with ostioles, became more evident. These morphotypes were most prominent after evaporation and typically first observed in the PYG. Trophozoites of A. castellanii near 10 and progressively to 10 densities are capable of expressing a variety of "short-term" survival modes in MPS, notably with the added stress of evaporation. Expression of these alternate survival modes in MPS may relate, in part, to contamination of contact lens cases and difficulties in developing standardized MPS efficacy tests.

  6. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  7. The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    Directory of Open Access Journals (Sweden)

    Florent Ravaux

    2017-06-01

    Full Text Available To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM structures of molybdenum (Mo were fabricated on indium phosphide (InP substrate on the top of an indium gallium arsenide (InGaAs layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS showed that the amount of oxides (InxOy, GaxOy or AsxOy was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process.

  8. Effect of electroless nickel on the series resistance of high-efficiency inkjet printed passivated emitter rear contacted solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lenio, Martha A.T. [REC Technology US, Inc., 1159 Triton Dr., Foster City, CA 94301 (United States); Lennon, A.J.; Ho-Baillie, A.; Wenham, S.R. [ARC Photovoltaics Centre of Excellence, University of NSW, Sydney, NSW 2052 (Australia)

    2010-12-15

    Many existing and emerging solar cell technologies rely on plated metal to form the front surface contacts, and aluminium to form the rear contact. Interactions between the metal plating solutions and the aluminium rear can have a significant impact on cell performance. This paper describes non-uniform nickel deposition on the sintered aluminium rear surface of passivated emitter and rear contacted (PERC) cells patterned using an inkjet printing technique. Rather than being plated homogeneously over the entire rear surface as is observed on an alloyed aluminium rear, the nickel is plated only in the vicinity of the point openings in the rear surface silicon dioxide dielectric layer. Furthermore, this non-uniform nickel deposition was shown to increase the contact resistance of the rear point contacts by an order of magnitude, resulting in higher series resistance values for these fabricated PERC cells. (author)

  9. Direct observation of contact and channel resistance in pentacene four-terminal thin-film transistor patterned by laser ablation method

    International Nuclear Information System (INIS)

    Yagi, Iwao; Tsukagoshi, Kazuhito; Aoyagi, Yoshinobu

    2004-01-01

    We established a dry-etching patterning process for the channel formation of pentacene thin-film transistor, and fabricated a four-terminal device equipped with a gate electrode. The four-terminal device enabled us to divide two-terminal source-drain resistance into two components of contact resistance and pentacene channel resistance. We obtained direct evidence of a gate-voltagedependent contact resistance change: the gate-induced charge significantly reduced the contact resistance and increased source-drain current. Furthermore, the temperature dependence of the device clearly indicated that the contact resistance was much higher than the channel resistance and was dominated in the two-terminal total resistance of the device below 120 K. An observed activation energy of 80 meV for contact resistance was higher than that of 42 meV for pentacene channel resistance

  10. Finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor

    KAUST Repository

    Sun, Jian

    2011-08-06

    In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89 × 104% and 0.02%/(10-4 T), respectively, at 1 Tesla. For values of contact resistivity up to 10-8cm2 the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5 × 10-6 cm2 of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. © Springer Science+Business Media, LLC 2011.

  11. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  12. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  13. Culture of neural cells on silicon wafers with nano-scale surface topograph.

    Science.gov (United States)

    Fan, Y W; Cui, F Z; Hou, S P; Xu, Q Y; Chen, L N; Lee, I-S

    2002-10-15

    The adherence and viability of central neural cells (substantia nigra) on a thin layer of SiO(2) on Si wafers with different surface roughness were investigated. Variable roughness of the Si wafer surface was achieved by etching. The nano-scale surface topography was evaluated by atomic force microscopy. The adherence and subsequent viability of the cells on the wafer were examined by scanning electron microscopy (SEM) and fluorescence immunostaining of tyrosine hydroxylase (TH). It is found that the surface roughness significantly affected cell adhesion and viability. Cells survived for over 5 days with normal morphology and expressed neuronal TH when grown on surfaces with an average roughness (Ra) ranging from 20 to 50 nm. However, cell adherence was adversely affected when surfaces with Ra less than 10 nm and rough surfaces with Ra above 70 nm were used as the substrate. Such a simple preparation procedure may provide a suitable interface surface for silicon-based devices and neurones or other living tissues.

  14. Long-Duration Carbon Dioxide Anesthesia of Fish Using Ultra Fine (Nano-Scale Bubbles.

    Directory of Open Access Journals (Sweden)

    Kenji Kugino

    Full Text Available We investigated whether adding ultrafine (nano-scale oxygen-carrying bubbles to water concurrently with dissolved carbon-dioxide (CO2 could result in safe, long-duration anesthesia for fish.To confirm the lethal effects of CO2 alone, fishes were anesthetized with dissolved CO2 in 20°C seawater. Within 30 minutes, all fishes, regardless of species, died suddenly due to CO2-induced narcosis, even when the water was saturated with oxygen. Death was attributed to respiration failure caused by hypoxemia. When ultrafine oxygen-carrying bubbles were supplied along with dissolved CO2, five chicken grunts were able to remain anesthetized for 22 hours and awoke normally within 2-3 hours after cessation of anesthesia.The high internal pressures and oxygen levels of the ultrafine bubbles enabled efficient oxygen diffusion across the branchia and permitted the organismal oxygen demands of individual anesthetized fish to be met. Thus, we demonstrated a method for safe, long-duration carbon dioxide anesthesia in living fish under normal water temperatures.

  15. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    International Nuclear Information System (INIS)

    Chen, L-C; Huang, Y-T; Chang, P-B

    2006-01-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed

  16. Measurement profiles of nano-scale ion beam for optimized radiation energy losses

    International Nuclear Information System (INIS)

    Woo, T.H.; Cho, H.S.

    2011-01-01

    The behavior of charged particles is investigated for nano-scale ion beam therapy using a medical accelerator. Computational work is performed for the Bragg-peak simulation, which is focused on human organ material of pancreas and thyroid. The Results show that the trends of the dose have several different kinds of distributions. Before constructing a heavy ion collider, this study can give us the reliability of the therapeutic effect. Realistic treatment using human organs is calculated in a simple and cost effective manner using the computational code, the Stopping and Range of Ions in Matter 2008 (SRIM 2008). Considering the safety of the therapy, it is suggested to give a patient orient planning of the cancer therapy. The energy losses in ionization and phonon are analyzed, which are the behaviors in the molecular level nano-scopic investigation. The different fluctuations are shown at 150 MeV, where the lowest temperature is found in proton and pancreas case. Finally, the protocol for the radiation therapy is constructed by the simulation in which the procedure for a better therapy is selected. An experimental measurement incorporated with the simulations could be programmed by this protocol.

  17. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  18. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  19. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  20. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  1. Functionalized Carbon Nano-scale Drug Delivery Systems From Biowaste Sago Bark For Cancer Cell Imaging.

    Science.gov (United States)

    Abdul Manaf, Shoriya Aruni; Hegde, Gurumurthy; Mandal, Uttam Kumar; Wui, Tin Wong; Roy, Partha

    2017-01-01

    Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application. The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications. This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques. The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure. Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  3. Contact Bioassays with Phenoxybenzyl and Tetrafluorobenzyl Pyrethroids against Target-Site and Metabolic Resistant Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sebastian Horstmann

    Full Text Available Mosquito strains that exhibit increased tolerance to the chemical class of compounds with a sodium channel modulator mode of action (pyrethroids and pyrethrins are typically described as "pyrethroid resistant". Resistance to pyrethroids is an increasingly important challenge in the control of mosquito-borne diseases, such as malaria or dengue, because one of the main interventions (the distribution of large numbers of long-lasting insecticide-treated bed nets currently relies entirely on long-lasting pyrethroids. Increasing tolerance of target insects against this class of insecticides lowers their impact in vector control. The current study suggests that the level of metabolic resistance depends on the structure of the molecule and that structurally different compounds may still be effective because detoxifying enzymes are unable to bind to these uncommon structures.Treated surface contact bioassays were performed on susceptible Aedes aegypti, East African knockdown resistance (kdr Anopheles gambiae (strain RSP-H and metabolically resistant Anopheles funestus (strain FUMOZ-R with different pyrethroids, such as cypermethrin, ß-cyfluthrin, deltamethrin, permethrin and transfluthrin (alone and in combination with the synergist piperonyl butoxide. The nonfluorinated form of transfluthrin was also assessed as a single agent and in combination with piperonyl butoxide.Although the dosages for pyrethroids containing a phenoxybenzyl moiety have exhibited differences in terms of effectiveness among the three tested mosquito species, the structurally different transfluthrin with a polyfluorobenzyl moiety remained active in mosquitoes with upregulated P450 levels. In trials with transfluthrin mixed with piperonyl butoxide, the added synergist exhibited no efficacy-enhancing effect.The results of this study suggest that transfluthrin has the potential to control P450-mediated metabolically resistant mosquitoes because the structural formula of

  4. Contact Bioassays with Phenoxybenzyl and Tetrafluorobenzyl Pyrethroids against Target-Site and Metabolic Resistant Mosquitoes.

    Science.gov (United States)

    Horstmann, Sebastian; Sonneck, Rainer

    2016-01-01

    Mosquito strains that exhibit increased tolerance to the chemical class of compounds with a sodium channel modulator mode of action (pyrethroids and pyrethrins) are typically described as "pyrethroid resistant". Resistance to pyrethroids is an increasingly important challenge in the control of mosquito-borne diseases, such as malaria or dengue, because one of the main interventions (the distribution of large numbers of long-lasting insecticide-treated bed nets) currently relies entirely on long-lasting pyrethroids. Increasing tolerance of target insects against this class of insecticides lowers their impact in vector control. The current study suggests that the level of metabolic resistance depends on the structure of the molecule and that structurally different compounds may still be effective because detoxifying enzymes are unable to bind to these uncommon structures. Treated surface contact bioassays were performed on susceptible Aedes aegypti, East African knockdown resistance (kdr) Anopheles gambiae (strain RSP-H) and metabolically resistant Anopheles funestus (strain FUMOZ-R) with different pyrethroids, such as cypermethrin, ß-cyfluthrin, deltamethrin, permethrin and transfluthrin (alone and in combination with the synergist piperonyl butoxide). The nonfluorinated form of transfluthrin was also assessed as a single agent and in combination with piperonyl butoxide. Although the dosages for pyrethroids containing a phenoxybenzyl moiety have exhibited differences in terms of effectiveness among the three tested mosquito species, the structurally different transfluthrin with a polyfluorobenzyl moiety remained active in mosquitoes with upregulated P450 levels. In trials with transfluthrin mixed with piperonyl butoxide, the added synergist exhibited no efficacy-enhancing effect. The results of this study suggest that transfluthrin has the potential to control P450-mediated metabolically resistant mosquitoes because the structural formula of transfluthrin differs

  5. Theoretical study of potential performance of armchair graphene nanoribbon field effect transistors: Dependence on channel dimensions and contact resistance

    Science.gov (United States)

    Hur, Ji-Hyun; Kim, Deok-kee

    2017-12-01

    In this paper, we examine the performance limitations of graphene nanoribbon field effect transistors (GNRFETs) with various channel dimensions and electrode contact resistances. To do this, we formulate a self-consistent non-equilibrium Green's function method in conjunction with the Poisson equation. We model the behavior of GNRFETs with nanometer dimensions and relatively large bandgaps operating as metal-oxide-semiconductor field effect transistors (MOSFETs) and calculate their performance including contact resistance effects typically occurring at the graphene nanoribbon (GNR) channel and electrodes. We propose a metric for GNRFETs to compete with the current silicon CMOS high performance or low power devices and explain that this can vary significantly depending on the contact resistance.

  6. Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.

    Science.gov (United States)

    Ling, Haifeng; Yi, Mingdong; Nagai, Masaru; Xie, Linghai; Wang, Laiyuan; Hu, Bo; Huang, Wei

    2017-09-01

    Conductive filaments (CFs)-based resistive random access memory possesses the ability of scaling down to sub-nanoscale with high-density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium-tin-oxide (ITO), with poly(9-vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic-gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone-shaped contact via a one-step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of robot head module using contact resistance force sensor for human robot interaction and its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ki; Kim, Jong Ho [Korea Reserch Institute of Standards and Science, Daejeon (Korea, Republic of); Kwon, Hyun Joon [Univ. of Maryland, Maryland (United States); Kwon, Young Ha [Kyung Hee Univ., Gyunggi Do (Korea, Republic of)

    2012-10-15

    This paper presents a design of a robot head module with touch sensing algorithms that can simultaneously detect contact force and location. The module is constructed with a hemisphere and three sensor units that are fabricated using contact resistance force sensors. The surface part is designed with the hemisphere that measures 300 mm in diameter and 150 mm in height. Placed at the bottom of the robot head module are three sensor units fabricated using a simple screen printing technique. The contact force and the location of the model are evaluated through the calibration setup. The experiment showed that the calculated contact positions almost coincided with the applied load points as the contact location changed with a location error of about {+-}8.67 mm. The force responses of the module were evaluated at two points under loading and unloading conditions from 0 N to 5 N. The robot head module showed almost the same force responses at the two points.

  8. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  9. Complementary techniques for solid oxide cell characterisation on micro- and nano-scale

    International Nuclear Information System (INIS)

    Wiedenmann, D.; Hauch, A.; Grobety, B.; Mogensen, M.; Vogt, U.

    2009-01-01

    High temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a way with great potential to transform clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. Also, as SOEC can operate in the reverse mode as solid oxide fuel cells (SOFC), during high peak hours e.g. hydrogen can be used in a very efficient way to reconvert chemically stored energy into electrical energy. As solid oxide cells (SOC) are working at high temperatures (700-900 o C), material degradation and evaporation can occur e.g. from the cell sealing material, leading to poisoning effects and aging mechanisms which are decreasing the cell efficiency and long-term durability. In order to investigate such cell degradation processes, thorough examination on SOC often requires the chemical and structural characterisation on the microscopic and the nanoscopic level. The combination of different microscope techniques like conventional scanning electron microscopy (SEM), electron-probe microanalysis (EPMA) and the focused ion-beam (FIB) preparation technique for transmission electron microscopy (TEM) allows performing post mortem analysis on a multi scale level of cells after testing. These complementary techniques can be used to characterize structural and chemical changes over a large and representative sample area (micro-scale) on the one hand, and also on the nano-scale level for selected sample details on the other hand. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Riso DTU, Denmark. Also, results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation from sealing material are discussed. (author)

  10. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  11. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  12. Electron-enhanced nano scaled atomic processes in classic semiconductors and polymers

    International Nuclear Information System (INIS)

    Turaeva, N.N.

    2007-06-01

    Key words:quasiparticles, self-trapping, polaron, inversion, fluctuon, exciton, defect, quantum diffusion, dislocation, dispersion, amorphization, polymer, hydrogen key, photo-destruction, conformation, persistent length, mutation, self-compensation. Subjects of the inquiry: silicon, hydrogenated amorphous silicon, porous semiconductors, polymers, DNA, polymer solutions. Aim of the inquiry: Investigation of electron-enhanced atomic re buildings in classic semiconductors and polymers on nano scales. Method of inquiry: solid states theory, quantum mechanics, statistic physics, thermodynamics, theory aspects of radiation physics of condensed matter, self-trapping theory, scattering theory, polymer physics. The results achieved and their novelty: For the first time it was shown that electron-phonon interaction was able to amplify the quantum nature of atomic subsystem in condensed matter by means of De Boer parameter increasing of one and multi-atomic defects. It was constructed the exciton theory of Staebler Wronsky effect in hydrogenated amorphous silicon which was based on the Rice, Kossel, Paspreger mechanism of hydrogen atom dissociation. It was constructed the theoretical model of radiation defect production in porous semiconductors by particle (electrons and neutrons) irradiation in frames of stochastic model of defect production. In frames of scattering matrix formalism was received the dispersion law of the quasiparticle-inversion responsible for interstitial atom migration at low temperatures in semiconductors. It was constructed the theoretical model of nano scaled dislocation kinks tunneling amplifying by electrons self-trapping on them. It was worked out the theoretical model of disordering and annealing in semiconductors taking into account the electrons stopping at ionic irradiation. It was shown that disordering was the accumulation of nano scaled exciton-lattice excitements(fluctuons). It was worked out the Auger-destruction theory in polymers taking

  13. Reducing the contact resistance in bottom-contact-type organic field-effect transitors using an AgO x interface layer

    Science.gov (United States)

    Minagawa, Masahiro; Kim, Yeongin; Claus, Martin; Bao, Zhenan

    2017-09-01

    Bottom-contact organic field-effect transistors (OFETs) are prepared by inserting an AgO x layer between a pentacene layer and the source-drain electrodes. The contact resistance in the device is ˜8.1 kΩ·cm with an AgO x layer oxidized for 60 s but reaches 116.9 kΩ·cm with a non-oxidized Ag electrode. The drain current and mobility in the OFETs with the AgO x layer increase with the oxidization time and then gradually plateau, and this trend strongly depends on the work function of the Ag surface. Further, the hole injection is enhanced by the presence of Ag2O but inhibited by the presence of AgO.

  14. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  15. Evaluation of Double Process Lithography (DPL) with bi-layer photo-resist process for contact layer-patterning

    Science.gov (United States)

    Chen, Gong; Wu, Kevin

    2008-10-01

    Double Process Lithography (DPL) has been widely accepted as a viable printing technique for critical layers at 45nm nodes and below. In addition, DPL technique also allows us to use available process tool-sets with less capability to develop the next node CMOS devices in early research and development stages with additional photo-masks. One practical issue of applying DPL technique is the process crosstalk, which is the impact of the existing etched patterns after the 1st process to the overall lithography performance during the 2nd printing process. In this paper, we evaluated the DPL process for contact holetype patterning with a 193nm silicon-containing bi-layer photo-resist. We explained the bi-layer photoresist process flow and its low process cross-talk characteristics when applied in our DPL process. We also discussed the challenges of printing small contacts in the DPL process. The preliminary experiment results indicated that silicon-containing photo-resist process is a good candidate for DPL process in the contact hole-type of patterns, and it has good characteristics of low process cross-talk. The flexibility of the drydevelop process in bi-layer resist also offered us another way to form small contacts in the substrate film. At the end, we provided some suggestions in contact pattern decomposition algorithm and related exposure-tool alignment strategies for future implementation of DPL technology.

  16. Experimental investigation of the contact resistance of Graphene/MoS2 interface treated with O2 plasma

    Science.gov (United States)

    Lu, Qin; Liu, Yan; Han, Genquan; Fang, Cizhe; Shao, Yao; Zhang, Jincheng; Hao, Yue

    2018-02-01

    High contact resistance has been a major bottleneck for MoS2 to achieve high performances among two-dimensional material based optoelectronic and electronic devices. In this study, we investigate the contact resistances of different layered graphene film with MoS2 film with Ti/Au electrodes under different O2 plasma treatment time using the circular transmission line model (CTLM). Annealing process followed O2 plasma process to reduce the oxygen element introduced. Raman and X-ray photoelectric spectroscopy were used to analyze the quality of the materials. Finally, the current and voltage curve indicates good linear characteristics. Under the optimized condition of the O2 plasma treatment, a relatively low contact resistance (∼35.7 Ohm mm) without back gate voltage in single-layer graphene/MoS2 structure at room temperature was achieved compared with the existing reports. This method of introducing graphene as electrodes for MoS2 film demonstrates a remarkable ability to improve the contact resistance, without additional channel doping for two-dimensional materials based devices, which paves the way for MoS2 to be a more promising channel material in optoelectronic and electronic integration.

  17. Impact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors

    KAUST Repository

    Wondmagegn, Wudyalew T.

    2010-09-24

    The contact resistance of field effect transistors based on pentacene and parylene has been investigated by experimental and numerical analysis. The device simulation was performed using finite element two-dimensional drift-diffusion simulation taking into account field-dependent mobility, interface/bulk trap states and fixed charge density at the organic/insulator interface. The width-normalized contact resistance extracted from simulation which included an interface dipole layer between the gold source/drain electrodes and pentacene was 91 kΩcm. However, contact resistance extracted from the simulation, without consideration of interface dipole was 52.4 kΩcm, which is about half of the experimentally extracted 108 kΩcm. This indicates that interface dipoles are critical effects which degrade performances of organic field effect transistors by increasing the contact resistance. Using numerical calculations and circuit simulations, we have predicted a 1 MHz switching frequency for a 1 μm channel length transistor without dipole interface between gold and pentacene. The transistor with dipole interface is predicted, via the same methods, to exhibit an operating frequency of less than 0.5 MHz. © 2010 Springer Science+Business Media LLC.

  18. A physics-based model of gate-tunable metal–graphene contact resistance benchmarked against experimental data

    International Nuclear Information System (INIS)

    Chaves, Ferney A; Jiménez, David; Sagade, Abhay A; Neumaier, Daniel; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri

    2015-01-01

    Metal–graphene contact resistance is a technological bottleneck in the realization of viable graphene-based electronics. We report a model that is useful for finding the gate-tunable components of this resistance, determined by the tunneling of carriers between the 3D metal and 2D graphene underneath, followed by Klein tunneling to the graphene in the channel. This model quantifies the intrinsic factors that control that resistance, including the effect of unintended chemical doping. Our results agree with experimental results for several metals. (paper)

  19. Degowning the controversies of contact precautions for methicillin-resistant Staphylococcus aureus: A review.

    Science.gov (United States)

    Kullar, Ravina; Vassallo, Angela; Turkel, Sarah; Chopra, Teena; Kaye, Keith S; Dhar, Sorabh

    2016-01-01

    Contact precautions (CPs) are recommended to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission in institutions. Rising doubts about CP effectiveness and recognition of unintended consequences for patients have raised questions about the benefit. The objective of this study was to evaluate the effectiveness and adverse outcomes associated with CPs for prevention of MRSA transmission. We searched PubMed, Embase, and the Cochrane Library for articles related to effectiveness and adverse outcomes of CPs in patients with MRSA. Criteria for inclusion included the following: articles conducted in the United States, articles performed in an acute care setting, articles that were not a case series or review, and those with standardized collection of data or inclusion of case and control groups. Results were summarized and examined for potential limitations. Recommendations were based on our findings. CPs reduced MRSA transmission in epidemic settings and in instances with high compliance, but a decrease in infection rates was not shown. Unintended consequences of CPs include decreased health care provider (HCP) time spent with patients, low HCP compliance, decreased perceptions of comfort from patients, and greater likelihood of patient complaints and negative psychologic implications. In endemic settings, there are few data to support routine use of CPs to control the spread of MRSA. Education should be performed in hospitals to improve patients' perception of care and understanding of CPs when implemented and HCPs' adherence to good hand hygiene and standard precautions practices. Published by Elsevier Inc.

  20. Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide

    Science.gov (United States)

    Wietler, T. F.; Tetzlaff, D.; Krügener, J.; Rienäcker, M.; Haase, F.; Larionova, Y.; Brendel, R.; Peibst, R.

    2017-06-01

    In the pursuit of ever higher conversion efficiencies for silicon photovoltaic cells, polycrystalline silicon (poly-Si) layers on thin silicon oxide films were shown to form excellent carrier-selective junctions on crystalline silicon substrates. Investigating the pinhole formation that is induced in the thermal processing of the poly-Si on oxide (POLO) junctions is essential for optimizing their electronic performance. We observe the pinholes in the oxide layer by selective etching of the underlying crystalline silicon. The originally nm-sized pinholes are thus readily detected using simple optical and scanning electron microscopy. The resulting pinhole densities are in the range of 6.6 × 106 cm-2 to 1.6 × 108 cm-2 for POLO junctions with selectivities close to S10 = 16, i.e., saturation current density J0c below 10 fA/cm2 and contact resistivity ρc below 10 mΩcm2. The measured pinhole densities agree with values deduced by a pinhole-mediated current transport model. Thus, we conclude pinhole-mediated current transport to be the dominating transport mechanism in the POLO junctions investigated here.

  1. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  2. Synthesis, fabrication, and spectroscopy of nano-scale photonic noble metal materials

    Science.gov (United States)

    Egusa, Shunji

    Nanometer is an interesting scale for physicists, chemists, and materials scientists, in a sense that it lies between the macroscopic and the atomic scales. In this regime, materials exhibit distinct physical and chemical properties that are clearly different from those of atoms or macroscopic bulk. This thesis is concerned about both physics and chemistry of noble metal nano-structures. Novel chemical syntheses and physical fabrications of various noble metal nano-structures, and the development of spectroscopic techniques for nano-structures are presented. Scanning microscopy/spectroscopy techniques inherently perturbs the true optical responses of the nano-structures. However, by using scanning tunneling microscope (STM) tip as the nanometer-confined excitation source of surface plasmons in the samples, and subsequently collecting the signals in the Fourier space, it is shown that the tip-perturbed part of the signals can be deconvoluted. As a result, the collected signal in this approach is the pure response of the sample. Coherent light is employed to study the optical response of nano-structures, in order to avoid complication from tip-perturbation as discussed above. White-light super-continuum excites the nano-structure, the monolayer of Au nanoparticles self-assembled on silicon nitride membrane substrates. The coherent excitation reveals asymmetric surface plasmon resonance in the nano-structures. One of the most important issues in nano-scale science is to gain control over the shape, size, and assembly of nanoparticles. A novel method is developed to chemically synthesize ligand-passivated atomic noble metal clusters in solution phase. The method, named thermal decomposition method, enables facile yet robust synthesis of fluorescent atomic clusters. Thus synthesized atomic clusters are very stable, and show behaviors of quantum dots. A novel and versatile approach for creation of nanoparticle arrays is developed. This method is different from the

  3. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.

    Science.gov (United States)

    Wang, Jianli; Wu, Zhizheng; Mao, Chengkun; Zhao, Yunfeng; Yang, Juekuan; Chen, Yunfei

    2018-03-20

    The electrical and thermal properties of metallic nanostructures have attracted considerable fundamental and technological interests. Recent studies confirmed a dramatic decrease in the electrical and thermal conductivities when the dimension is comparable or even smaller than the electron mean free path. However, the verification of the Wiedemann-Franz law in these nanostructures remains hotly debated. The Lorenz number obtained from the two-probe measurement is found to be much larger than that from the four-probe measurement. Here, we reported the electrical and thermal properties of the individual silver nanowires measured by the two-probe and four-probe configurations. The measured electrical contact resistance is found to be nearly temperature-independent, indicating a ballistic-dominant electronic transport at the contacts. When the effect of thermal contact resistance is diminished, the Lorenz number measured by the four-probe configuration is comparable to the Sommerfeld value, verifying that the Wiedemann-Franz law holds in the monocrystalline-like silver nanowire. Comparatively, the derived electrical conductivity becomes smaller and the thermal conductivity becomes larger in the two-probe measurement, confirming that the electrical contact resistance will introduce a large error. The present study experimentally demonstrates a reasonable explanation to the discouragingly broad span in the Lorenz number obtained from different metallic nanostructures.

  4. Relationships among the contact patch length and width, the tire deflection and the rolling resistance of a free-running wheel in a soil bin facility

    Energy Technology Data Exchange (ETDEWEB)

    Tomaraee, P.; Mardani, A.; Mohebbi, A.; Taghavifar, H.

    2015-07-01

    Qualitative and quantitative analysis of contact patch length-rolling resistance, contact patch width-rolling resistance and tire deflection-rolling resistance at different wheel load and inflation pressure levels is presented. The experiments were planned in a randomized block design and were conducted in the controlled conditions provided by a soil bin environment utilizing a well-equipped single wheel-tester of Urmia University, Iran. The image processing technique was used for determination of the contact patch length and contact patch width. Analysis of covariance was used to evaluate the correlations. The highest values of contact length and width and tire deflection occurred at the highest wheel load and lowest tire inflation pressure. Contact patch width is a polynomial (order 2) function of wheel load while there is a linear relationship between tire contact length and wheel load as well as between tire deflection and wheel load. Correlations were developed for the evaluation of contact patch length-rolling resistance, contact patch width-rolling resistance and tire deflection-rolling resistance. It is concluded that the variables studied have a significant effect on rolling resistance. (Author)

  5. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  6. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Eun Beom; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of); Takahashi, Kosuke [Dept. of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo (Korea, Republic of)

    2014-10-15

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  7. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    International Nuclear Information System (INIS)

    Vecchiola, Aymeric; Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric; Delprat, Sophie; Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard; Tatay, Sergio; Geffroy, Bernard

    2016-01-01

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  8. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Energy Technology Data Exchange (ETDEWEB)

    Vecchiola, Aymeric [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric, E-mail: frederic.houze@geeps.centralesupelec.fr [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Delprat, Sophie [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); UPMC, Université Paris 06, 4 place Jussieu, 75005 Paris (France); Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Tatay, Sergio [Molecular Science Institute, University of Valencia, 46980 Paterna (Spain); Geffroy, Bernard [Lab. Physique des Interfaces et Couches minces (PICM), UMR 7647 CNRS-École polytechnique, 91128 Palaiseau (France); Lab. d' Innovation en Chimie des Surfaces et Nanosciences (LICSEN), NIMBE UMR 3685 CNRS-CEA Saclay, 91191 Gif-sur-Yvette (France); and others

    2016-06-13

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  9. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  10. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  11. Yield of facility-based verbal screening amongst household contacts of patients with multi-drug resistant tuberculosis in Pakistan

    Directory of Open Access Journals (Sweden)

    Ejaz Qadeer

    2017-05-01

    Full Text Available Background: Household contacts of multidrug-resistant tuberculosis (MDR-TB patients are at a high risk of getting infected with TB/MDR-TB, therefore symptomatic or vulnerable individuals should be screened and treated early. Methods: A cross-sectional study was conducted among household contacts of MDR-TB patients in three high-burden TB sites in Pakistan from July 2013 to June 2014. MDR-TB index patients were asked to provide a list of all members of their household and were asked whether any of them had TB symptoms such as productive cough, fever, weight loss and night sweat (“facility-based verbal screening”. Symptomatic contacts were defined as presumptive TB cases and were invited for investigations at the facility. Those who did not come were paid a home-visit. Confirmed TB/MDR-TB patients were registered in the nearest treatment facility. Results: Of 209 MDR-TB index patients, 1467 household contacts were identified and screened, 95 of them children < 5 years. Of these 172 (12% were symptomatic. Most common symptoms were cough 157 (91% and fever 107 (62%. 58 (34% presumptive TB contacts were not investigated. Of total contacts, 56 (3.8% were diagnosed with TB, among them 54(96% with MDR-TB and 2(4% with drug-susceptible-TB. The number needed to screen (NNS to identify a new MDR-TB case among adult household contacts was 27 and among presumptive adult and pediatric TB contacts was three. All 56 confirmed patients were registered for treatment. Conclusion: Screening household contacts of MDR-TB index cases may be considered a feasible and high yield option, in high-burden, low-resource settings within Pakistan. The number of presumptive TB contacts required to screen to identify a new MDR-TB case was unusually low, indicating an effective strategy that could easily be scaled-up. The screening and management of vulnerable adults and children living with patients having TB of any form is a major priority in the combined efforts

  12. Screening and contact precautions – A survey on infection control measures for multidrug-resistant bacteria in German university hospitals

    Directory of Open Access Journals (Sweden)

    Lena M. Biehl

    2017-04-01

    Full Text Available Abstract To assess the scope of infection control measures for multidrug-resistant bacteria in high-risk settings, a survey among university hospitals was conducted. Fourteen professionals from 8 sites participated. Reported policies varied largely with respect to the types of wards conducting screening, sample types used for screening and implementation of contact precautions. This variability among sites highlights the need for an evidence-based consensus of current infection control policies.

  13. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  14. Analysis of the nano-scale structure of a natural clayey soil using the small angle neutron scattering method

    International Nuclear Information System (INIS)

    Itakura, T.; Bertram, W.K.; Hathaway, P.V.; Knott, R.B.

    2001-01-01

    The small angle neutron scattering method (SANS) was used to analyze the nano-structure of a natural clayey soil used for containment of industrial liquid wastes. A Tertiary clay deposit called the Londonderry clay was used to contain the wastes in a state-run landfill facility in NSW. A number of site assessments have been carried out at the site and continual efforts have been made to characterize interactions between soil materials and contaminants at the site. Hence, it is of research and practical interest to investigate the effects of deformation on the nano-scale structure of the soil. Experiments have been conducted to analyze the structure of reconstituted clayey soil samples that were subjected to uniaxial compression ranging from 200 kPa to 800 kPa. The small angle neutron scattering instrument was used to measure the scattering intensity of these samples at a scattering vector (q) range between 0.01 and 0.1 Angstroms -1 . The sector integration technique was used to analyse elliptical scattering patterns along the major and minor axes. A relation between stress, void ratio and nano-scale structure properties was then briefly discussed for use in assessing the performance of clayey soils as in situ barriers

  15. Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu–Ni–Co alloy

    Science.gov (United States)

    Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto

    2018-03-01

    We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster–Korringa–Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.

  16. Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance

    Science.gov (United States)

    Frise, Rebecca; Bradley, Konrad; van Doremalen, Neeltje; Galiano, Monica; Elderfield, Ruth A.; Stilwell, Peter; Ashcroft, Jonathan W.; Fernandez-Alonso, Mirian; Miah, Shahjahan; Lackenby, Angie; Roberts, Kim L.; Donnelly, Christl A.; Barclay, Wendy S.

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution. PMID:27430528

  17. Contact angle measurement - a reliable supportive method for screening water-resistance of ultraviolet-protecting products in vivo.

    Science.gov (United States)

    Hagens, R; Mann, T; Schreiner, V; Barlag, H G; Wenck, H; Wittern, K-P; Mei, W

    2007-08-01

    Substantivity of sunscreen formulations is affected by the wash-out rate of ultraviolet-absorber and -reflector compounds in water. Water-resistance of sunscreen formulations is currently determined according to a standardized European Cosmetic Toiletry and Perfumery Association (COLIPA) protocol, encompassing the determination of a minimal erythemal dose before and after a defined immersion step in water. It can be supposed that the higher the wettability of a treated skin area, the higher is the wash-out rate of sunscreen compounds. This present report addresses the validity of determining the wettability of treated skin alone as a measure for the water-resistance of sunscreen products. The report addresses the robustness, accuracy and congruence of a recently developed wettability test, based on the measurement of the contact angle (CA) of a sessile water drop on treated skin areas. Contact angle data of 66 sunscreen formulations are compared with the corresponding results of 81 water-resistance tests, using the sun protection factor (SPF)/immersion/SPF method. Sunscreen products tested by the CA method were applied to the skin of the volar forearm of test subjects at a defined dose and drying-time, using a standardized application and recording device. Contact angles between a sessile water drop and skin were recorded by a Charge-Coupled Device (CCD) camera and subjected to automatic contour analysis. Taking the SPF/immersion/SPF method as gold standard, accuracy parameters of the CA method were determined. By using an appropriate cut-off level of CAs, the CA method has a specificity and positive-predictive value of 100%, and turns out to be a reliable screening method to identify water-resistant formulations. Based on our findings, those formulations that give CAs above 30 degrees may be categorized water-proof without further testing by the COLIPA water-resistance method.

  18. In the eye of the beholder: eye contact increases resistance to persuasion.

    Science.gov (United States)

    Chen, Frances S; Minson, Julia A; Schöne, Maren; Heinrichs, Markus

    2013-11-01

    Popular belief holds that eye contact increases the success of persuasive communication, and prior research suggests that speakers who direct their gaze more toward their listeners are perceived as more persuasive. In contrast, we demonstrate that more eye contact between the listener and speaker during persuasive communication predicts less attitude change in the direction advocated. In Study 1, participants freely watched videos of speakers expressing various views on controversial sociopolitical issues. Greater direct gaze at the speaker's eyes was associated with less attitude change in the direction advocated by the speaker. In Study 2, we instructed participants to look at either the eyes or the mouths of speakers presenting arguments counter to participants' own attitudes. Intentionally maintaining direct eye contact led to less persuasion than did gazing at the mouth. These findings suggest that efforts at increasing eye contact may be counterproductive across a variety of persuasion contexts.

  19. Evaporation characteristics of a hydrophilic surface with micro-scale and/or nano-scale structures fabricated by sandblasting and aluminum anodization

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Kim, Joonwon

    2010-01-01

    This paper presents the results of evaporation experiments using water droplets on aluminum sheets that were either smooth or had surface structures at the micro-scale, at the nano-scale or at both micro- and nano-scales (dual-scale). The smooth surface was a polished aluminum sheet; the surface with micro-scale structures was obtained by sandblasting; the surface with nano-scale structures was obtained using conventional aluminum anodization and the surface with dual-scale structures was prepared using sandblasting and anodization sequentially. The wetting properties and evaporation rates were measured for each surface. The evaporation rates were affected by their static and dynamic wetting properties. Evaporation on the surface with dual-scale structures was fastest and the evaporation rate was analyzed quantitatively.

  20. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis

    Science.gov (United States)

    Chen, Hong; Yang, Ping; Chu, Xiaoya; Huang, Yufei; Liu, Tengfei; Zhang, Qian; Li, Quanfu; Hu, Lisi; Waqas, Yasir; Ahmed, Nisar; Chen, Qiusheng

    2016-01-01

    The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage. PMID:26992236

  1. Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis.

    Science.gov (United States)

    Chen, Hong; Yang, Ping; Chu, Xiaoya; Huang, Yufei; Liu, Tengfei; Zhang, Qian; Li, Quanfu; Hu, Lisi; Waqas, Yasir; Ahmed, Nisar; Chen, Qiusheng

    2016-04-12

    The epididymis is the location of sperm maturation and sperm storage. Recent studies have shown that nano-scale exosomes play a vital role during these complicated processes. Our aim was to analyze the secretory properties of epididymal exosomes and their ultrastructural interaction with maturing spermatozoa in the Chinese soft-shelled turtle. The exosome marker CD63 was primarily localized to the apices of principal cells throughout the epididymal epithelium. Identification of nano-scale exosomes and their secretory processes were further investigated via transmission electron microscopy. The epithelium secreted epididymal exosomes (50~300 nm in diameter) through apocrine secretion and the multivesicular body (MVB) pathway. Spermatozoa absorbed epididymal exosomes through endocytosis or membrane fusion pathways. This study shows, for the first time, that nano-scale exosomes use two secretion and two absorption pathways in the reptile, which may be contribute to long-term sperm storage.

  2. Investigation on the variation of channel resistance and contact resistance of SiZnSnO semiconductor depending on Si contents using transmission line method

    Science.gov (United States)

    Lee, Byeong Hyeon; Han, Sangmin; Lee, Sang Yeol

    2018-01-01

    Amorphous silicon-zinc-tin-oxide (a-SZTO) thin film transistors (TFTs) have been fabricated depending on the silicon ratio in channel layers. The a-SZTO TFT exhibited high electrical properties, such as high mobility of 23 cm2 V-1 s-1, subthreshold swing of 0.74 V/decade and ION/OFF of 2.8 × 108, despite of the addition of Si suppressor. The physical mechanism on the change of the sheet resistance and the contact resistance in a-SZTO TFT has been investigated and proposed closely related with the Si ratio. Both resistances were increased as increasing Si ratio, which clearly indicated that the role of Si is a carrier suppressor directly leading to the increase of channel and contact resistances. To explain the role of Si as a carrier suppressor, the conduction band offset mechanism has been also proposed depending on the change of carrier concentration in channel layer and at the interface between electrode and channel layer. 2007.01-2011.12 Senior Researcher at korea institute of science and technology (KOREA). 2008.01-2011.12 Professor at University of Science and Technology (KOREA). 1995.01-2007.12 Professor at Yonsei University (KOREA). 2002.01-2003.12 Inviting Researcher at Los Alamos National Lab (USA). 1993.01-1995.12 Senior Researcher at Electronics and Telecommunications Research Institute (KOREA). 1992.01-1993.01 Research Associate at State University of New York at Buffalo (USA).

  3. The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors

    International Nuclear Information System (INIS)

    Lee, Sunghwan; Park, Hongsik; Paine, David C.

    2012-01-01

    The effect of contact resistance on the measurement of the field effect mobility of compositionally homogeneous channel indium zinc oxide (IZO)/IZO metallization thin film transistors (TFTs) is reported. The TFTs studied in this work operate in depletion mode as n-channel field effect devices with a field effect mobility calculated in the linear regime (μ FE ) of 20 ± 1.9 cm 2 /Vs and similar of 18 ± 1.3 cm 2 /Vs when calculated in the saturation regime (μ FE sat ). These values, however, significantly underestimate the channel mobility since a large part of the applied drain voltage is dropped across the source/drain contact interface. The transmission line method was employed to characterize the contact resistance and it was found that the conducting-IZO/semiconducting-IZO channel contact is highly resistive (specific contact resistance, ρ C > 100 Ωcm 2 ) and, further, this contact resistance is modulated with applied gate voltage. Accounting for the contact resistance (which is large and modulated by gate voltage), the corrected μ FE is shown to be 39 ± 2.6 cm 2 /Vs which is consistent with Hall mobility measurements of high carrier density IZO.

  4. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    Directory of Open Access Journals (Sweden)

    Filippo Giubileo

    2016-11-01

    Full Text Available We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρ c ≈ 19 k Ω · µ m 2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements.

  5. The Variations of Thermal Contact Resistance and Heat Transfer Rate of the AlN Film Compositing with PCM

    Directory of Open Access Journals (Sweden)

    Huann-Ming Chou

    2015-01-01

    Full Text Available The electrical industries have been fast developing over the past decades. Moreover, the trend of microelements and packed division multiplex is obviously for the electrical industry. Hence, the high heat dissipative and the electrical insulating device have been popular and necessary. The thermal conduct coefficient of aluminum nitride (i.e., AlN is many times larger than the other materials. Moreover, the green technology of composite with phase change materials (i.e., PCMs is worked as a constant temperature cooler. Therefore, PCMs have been used frequently for saving energy and the green environment. Based on the above statements, it does show great potential in heat dissipative for the AlN film compositing with PCM. Therefore, this paper is focused on the research of thermal contact resistance and heat transfer between the AlN/PCM pairs. According to the experimental results, the heat transfer decreases and the thermal contact resistance increases under the melting process of PCM. However, the suitable parameters such as contact pressures can be used to improve the above defects.

  6. Select small core structure carbamates exhibit high contact toxicity to "carbamate-resistant" strain malaria mosquitoes, Anopheles gambiae (Akron).

    Science.gov (United States)

    Wong, Dawn M; Li, Jianyong; Chen, Qiao-Hong; Han, Qian; Mutunga, James M; Wysinski, Ania; Anderson, Troy D; Ding, Haizhen; Carpenetti, Tiffany L; Verma, Astha; Islam, Rafique; Paulson, Sally L; Lam, Polo C-H; Totrov, Maxim; Bloomquist, Jeffrey R; Carlier, Paul R

    2012-01-01

    Acetylcholinesterase (AChE) is a proven target for control of the malaria mosquito (Anopheles gambiae). Unfortunately, a single amino acid mutation (G119S) in An. gambiae AChE-1 (AgAChE) confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT) and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k(cat)) of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold) were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold). The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC(50)>5,000 μg/mL). However, one oxime methylcarbamate (aldicarb) and five pyrazol-4-yl methylcarbamates (4a-e) showed good to excellent toxicity to the Akron strain (LC(50) = 32-650 μg/mL). These results suggest that appropriately functionalized "small-core" carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.

  7. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  8. The effect of boron implantation on the corrosion behaviour, microhardness and contact resistance of copper and silver surfaces

    International Nuclear Information System (INIS)

    Henriksen, O.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.

    1986-01-01

    In order to investigate the influence of boron implantation on the corrosion resistance of electrical contacts, a number of pure copper, pure silver and copper edge connector samples have been implanted with boron (40 keV) to fluences of 5.10 20 m -2 and 2.10 21 m -2 . Atmospheric corrosion tests of the implanted species were conducted using the following exposures: H 2 S (12.5 ppm, 4 days), SO 2 (25 ppm, 21 days), saltfog (5% NaCl, 1 day), moist air (93% RH, 56 days), and hot/dry air (70 C, 56 days). The boron implantations lead to a significant reduction in the sulphidation rate of copper and silver. The corrosive film formed during exposure in H 2 S and SO 2 atmospheres is confined to pitted regions on the implanted areas, while a thick and relatively uniform film formation is observed on the unimplanted samples. The corrosion resistance of copper and silver in saltfog atmosphere is somewhat improved by boron implantation, whilst the results from exposures to moist air or hot/dry air are inconclusive. The improved corrosion behaviour is accompanied by an increase in the contact resistance and in the microhardness of the implanted samples. (orig.)

  9. Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography

    Science.gov (United States)

    Kashkooli, Ali Ghorbani; Farhad, Siamak; Lee, Dong Un; Feng, Kun; Litster, Shawn; Babu, Siddharth Komini; Zhu, Likun; Chen, Zhongwei

    2016-03-01

    A multiscale platform has been developed to model lithium ion battery (LIB) electrodes based on the real microstructure morphology. This multiscale framework consists of a microscale level where the electrode microstructure architecture is modeled and a macroscale level where discharge/charge is simulated. The coupling between two scales are performed in real time unlike using common surrogate based models for microscale. For microscale geometry 3D microstructure is reconstructed based on the nano-scale X-ray computed tomography data replacing typical computer generated microstructure. It is shown that this model can predict the experimental performance of LiFePO4 (LFP) cathode at different discharge rates more accurate than the conventional homogenous models. The approach employed in this study provides valuable insight into the spatial distribution of lithium -ion inside the real microstructure of LIB electrodes. The inhomogenous microstructure of LFP causes a wider range of physical and electrochemical properties in microscale compared to homogenous models.

  10. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun [National Program Center for Tera-bit-level Nonvolatile Memory Development, Department of Electronic Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Chung, Sung-Woong [Hynix Semiconductor Incorporated, Amiri, Bubaleup, Icheonsi, Gyeonggido 467-701 (Korea, Republic of); Enomoto, Hirofumi, E-mail: parkjgL@hanyang.ac.kr [Sumco Corporation, 4-3146-12 Hachimanpara, Yonezawa-shi, Yamagata 992-1128 (Japan)

    2011-08-05

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to {approx} 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 {mu}A memory margin. This is a step toward achieving a terabit volatile memory cell.

  11. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    KAUST Repository

    Almuslem, A. S.

    2017-02-14

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  12. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  13. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    Science.gov (United States)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  14. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    Science.gov (United States)

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  15. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    Science.gov (United States)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  16. Four-terminal resistance of an interacting quantum wire with weakly invasive contacts

    Science.gov (United States)

    Aita, Hugo; Arrachea, Liliana; Naón, Carlos

    2011-11-01

    We analyze the behavior of the four-terminal resistance, relative to the two-terminal resistance of an interacting quantum wire with an impurity, taking into account the invasiveness of the voltage probes. We consider a one-dimensional Luttinger model of spinless fermions for the wire. We treat the coupling to the voltage probes perturbatively, within the framework of non-equilibrium Green function techniques. Our investigation unveils the combined effect of impurities, electron-electron interactions and invasiveness of the probes on the possible occurrence of negative resistance.

  17. Nano-scale experimental investigation of in-situ wettability and spontaneous imbibition in ultra-tight reservoir rocks

    Science.gov (United States)

    Akbarabadi, Morteza; Saraji, Soheil; Piri, Mohammad; Georgi, Dan; Delshad, Mohammad

    2017-09-01

    We investigated spontaneous imbibition behavior, three-dimensional fluid occupancy maps, and in-situ wettability at the nano scale in five ultra-tight and shale reservoir rock samples. For this purpose, we developed a novel technique by integrating a custom-built in-situ miniature fluid-injection module with a non-destructive high-resolution X-ray imaging system. Small cylindrical core samples (15-60 μm in diameter) were prepared from reservoir rocks using Focused-Ion Beam (FIB) milling technique. The pore network inside the samples were first characterized using ultra-high resolution three-dimensional images obtained at initial state by X-ray nano-tomography (Nano-CT) and FIB-Scanning Electron Microscopy (FIB-SEM) techniques at the nano scale. The petrophysical parameters, including porosity, permeability, pore-size distribution, and organic content were computed for each sample using image analysis. We then performed series of imbibition experiments using brine, oil, and surfactant solutions on each core sample. We observed that both oil and brine phases spontaneously imbibe into the pore network of the rock samples at various quantities. We also, for the first time, examined fluid distribution in individual pores and found a complex wettability behavior at the pore scale in the reservoir rock samples. Three pore types were identified with water-wet, oil-wet, and fractionally-wet behaviors. This work opens a new path to developing an improved understanding of the pore-level physics involved in multi-phase flow and transport not only in tight rock samples but also in other nanoporous material used in different science and engineering applications.

  18. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  19. Biological response to nano-scale titanium dioxide (TiO2): role of particle dose, shape, and retention.

    Science.gov (United States)

    Silva, Rona M; Teesy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E; Pinkerton, Kent E

    2013-01-01

    Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 μg) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 μg at 1 d post instillation.

  20. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports the optimization of the molybdenum thin film electrode as the back contact of dye-sensitized solar cell (DSSC). The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering ...

  1. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports the optimization of the molybdenum thin film electrode as the back contact of dye-sensitized solar cell (DSSC). The molybdenum thin film was grown on the glass substrate by direct current sput- tering techniques of which the sputtering power was 150 W at 18 sccm flow rate of Ar. At such ...

  2. Contact Resistance and Stability Analysis of Oxide-Based Thin Film Transistors

    Science.gov (United States)

    2006-09-19

    SnO2 [9], as well as the single-crystalline, quaternary compound IGZO [5] have also been demonstrated as channel materials. ITO, ZnO, ZIO, and IGO...that the material properties of ITO vary greatly depending on deposition parameters: method of deposition, oxygen partial pressure, source material...the resist to the surface of the substrate and drives out excess solvent from the photoresist. The image from a mask is then transferred to the resist

  3. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  4. Interstrand contact resistance and AC loss of a 48-strands Nb3Sn CIC conductor with a Cr/Cr-oxide coating

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.; Pantsyrny, Victor; Shikov, Alexander K.

    2000-01-01

    The interstrand contact resistance (Rc) between crossing strands in Cable-In-Conduit Conductors (CICC's) determines the coupling loss and the stability against local disturbances. The surface oxidation, surface roughness and micro-scale sliding of the contact surfaces are key parameters in the Rc.

  5. Fabrication of four-point biped robot foot module based on contact-resistance force sensor and its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyun Joon; Kim, Jong Ho; Kim, Dong Ki [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kwon, Young Ha [Kyung Hee University, Yongin (Korea, Republic of)

    2011-02-15

    This paper presents the design of robot foot module of four-point biped walking robot and its fabrication. The foot module has four sensor units based on contact-resistance force sensor. The thin-film-type force sensor is fabricated by coating resistive ink on thin polyimide film using silk screening technique. The simple structure is devised and fabricated to assemble the thin force sensor rigidly. The unit force sensor module is evaluated by the calibration setup to obtain the characteristics of repeatability and hysteresis. The sensor module presents hysteresis error of about 5% and repeatability error of about 0.37%. The calculated zero moment point (ZMP) of the foot module is also compared with the measured position using static load of 50 N. The maximum location error of ZMP is less than 10%. The robot foot module shows the possibility of applying it to humanoid walking.

  6. Fabrication of four-point biped robot foot module based on contact-resistance force sensor and its evaluation

    International Nuclear Information System (INIS)

    Kwon, Hyun Joon; Kim, Jong Ho; Kim, Dong Ki; Kwon, Young Ha

    2011-01-01

    This paper presents the design of robot foot module of four-point biped walking robot and its fabrication. The foot module has four sensor units based on contact-resistance force sensor. The thin-film-type force sensor is fabricated by coating resistive ink on thin polyimide film using silk screening technique. The simple structure is devised and fabricated to assemble the thin force sensor rigidly. The unit force sensor module is evaluated by the calibration setup to obtain the characteristics of repeatability and hysteresis. The sensor module presents hysteresis error of about 5% and repeatability error of about 0.37%. The calculated zero moment point (ZMP) of the foot module is also compared with the measured position using static load of 50 N. The maximum location error of ZMP is less than 10%. The robot foot module shows the possibility of applying it to humanoid walking

  7. Influence of strand surface condition on interstrand contact resistance and coupling loss in NbTi-wound Rutherford cables

    CERN Document Server

    Sumption, M D; Scanlan, R M; Nijhuis, A; ten Kate, H H J; Kim, S W; Wake, M; Shintomi, T

    1999-01-01

    Presented in this work are the results of directly measured and AC- loss-derived interstrand contact resistance (ICR) measurements performed magnetically or resistively on bare-Cu and coated-strand pairs, calorimetrically on $9 11-strand Rutherford cables wound with strands that had been coated with various metallic and insulating layers, and calorimetrically and magnetically on 28-strand Rutherford cables (LHC-type) wound with bare-Cu-, Ni-, and $9 stabrite-plated strands. Comparisons are made of the effects of various conditions of heat treatment, HT (time and temperature), and pressure (applied during HT and then either maintained or re-applied during measurement). The $9 resulting ICRs are compared and interpreted in terms of the oxide layer on the strand coating and its response to curing conditions. (66 refs).

  8. Test structures for accurate UHF C-V measurements of nano-scale CMOSFETs with HfSiON and TiN metal gate

    NARCIS (Netherlands)

    Lee, Kyong-Taek; Schmitz, Jurriaan; Brown, George A.; Heh, Dawei; Choi, Rino; Harris, Rusty; Song, Seung-Chul; Lee, Byoung Hun; Han, In-Sikh; Lee, Hi-Deok; Jeong, Yoon-Ha

    2007-01-01

    Test structures for accurate UHF capacitance –voltage (C-V) measurements of high performance CMOSFETs with Hf-based high-k dielectric and TiN metal gate are analyzed. It is shown that series resistance or substrate resistance between the channel region and body contact plays a role in UHF C-V

  9. Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy

    International Nuclear Information System (INIS)

    Yang, Qiang; Bu, Fanqiang; Qiu, Xin; Li, Yangde; Li, Weirong; Sun, Wei; Liu, Xiaojuan; Meng, Jian

    2016-01-01

    In this paper we report a quantitative study of the age-hardening in the high-pressure die-cast Mg–4Al−5.6Sm−0.3Mn alloy. The results indicate that a number of nano-scale spherical precipitates identified as Al 3 Sm using high-angle annular dark-field scanning transmission electron microscopy, precipitated in Mg matrix after aging at 150–225 °C, with no obvious changes on grain sizes, intermetallic phases formed during solidification, and dislocation densities. From the existing strengthening theory equations in which some lacking parameters were taken from the first-principles density functional theory (DFT) calculations, a quantitative insight into the strengthening mechanisms of the nano-scale precipitate was formulated. The results are in reasonable agreement with the experimental values, and the operative mechanism of precipitation strengthening was revealed as Orowan dislocation bypassing. - Highlights: • The yield strength of Mg–Al–Sm alloy was improved by aging treatment. • A number of nano-scale precipitates formed in matrix after aging treatments. • The nanoscale precipitate was confirmed as Al 3 Sm based on the data of HAADF-STEM study. • The strengthening mechanisms of the nano-scale precipitate were quantitatively formulated. • The operative mechanism of precipitate strengthening is Orowan dislocation bypassing.

  10. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Huang, Xiaoxu

    2010-01-01

    Microstructural evolution associated with the shear banding in nano-scale twin/matrix (T/M) lamellae of a Cu–Al alloy processed by means of dynamic plastic deformation was investigated using transmission electron microscopy (TEM) and high-resolution TEM. The development of a shear band was found...

  11. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  12. Study of the resistance of SAMs on aluminium to acidic and basic solutions using dynamic contact angle measurement.

    Science.gov (United States)

    Liakos, Ioannis L; Newman, Roger C; McAlpine, Eoghan; Alexander, Morgan R

    2007-01-30

    We report the development of a method to determine the aqueous stability of self-assembled monolayers (SAMs) using the Wilhelmy plate dynamic contact angle (DCA) experiment. The DCA is measured in solutions over a range of pH values for alkyl carboxylic and alkyl phosphonic acid SAMs formed on magnetron-sputtered aluminum. The change in DCA on repeated immersion is used as a measure of the degradation of the SAMs by hydrolytic attack. The short and intermediate chain length alkyl acids are not stable in water of neutral pH, whereas molecules with the longest alkyl chains show considerably greater stability in neutral and both high and low pH solutions. The packing density inferred from the DCA and the contact angle hysteresis suggests the C18CO2H monolayer to be slightly less well packed than that of the C18P(=O)(OH)2; this is consistent with related friction force microscopy and infrared reflection absorption spectroscopy findings published elsewhere (Foster, T. T.; Alexander, M. R.; Leggett, G. J.; McAlpine, E. Langmuir 2006, 22, 9254-9259). The resistance of the SAMs to acid and alkaline environments is discussed in the context of aluminum oxide solubility, SAM packing density, and the resistance of the interfacial phosphate and carboxylate functionalities to different aqueous conditions.

  13. Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant.

    Science.gov (United States)

    Wang, Rong; Guo, Yikun; Zhang, Di; Zhou, Huiqiong; Zhao, Dahui; Zhang, Yuan

    2018-01-15

    Attaining control on charge injection properties is significant for meaningful applications of organic field-effect transistors (OFETs). Here, molecular electron-doping is applied with an air-stable dimer dopant for n-type OFETs based on (naphthalene diimide-diketopyrrolopyrrole) polymer hosts. Through investigating the doping effect on contact and transport properties, it is found that the electron transport increases in n-doped OFETs at low doping regime with remaining large on/off ratios. These favorable meliorations are reconciled by the mitigated impacts of contact resistance and interfacial traps, as well as the surface morphology exhibiting features of increased ordering. The occurrence of doping in the presence of dimer dopants is evidenced by the observed shift of Fermi level toward vacuum level coupled with compositional analysis. Without applying vacuum-deposition-based contact doping, charge injection efficiencies are gained without losing OFET characteristics using the solution-based methodology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oxidation and contact resistance of Sn–Ag coated superconducting strands for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Cantoni, M

    2006-01-01

    The oxides formed on the Sn-Ag coated LHC superconducting cables during a 200°C heat treatment in air are described and the oxide composition is compared with the interstrand contact resistance (Rc). The analysis of more than 250 interstrand contact areas shows that the higher the average Cu content with respect to the Sn content in the oxide, the higher is Rc. During the 200°C heat treatment, Sn in the coating is transformed into a Cu3Sn layer, on which an oxide grows that consists essentially of a thin outermost layer of CuO on top of Cu2O, similar to the oxide structure formed on bare Cu. The underlying Cu3Sn layer acts as an O diffusion barrier that prevents O diffusion into the Cu bulk during the subsequent cable heat treatment under high pressure. On contact zones where the Cu3Sn layer is not formed during the 200°C heat treatment mainly Sn oxide grows and Rc is comparatively low.

  15. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    Science.gov (United States)

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  16. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  17. Engineering Interfacial Processes at Mini-Micro-Nano Scales Using Sessile Droplet Architecture.

    Science.gov (United States)

    Bansal, Lalit; Sanyal, Apratim; Kabi, Prasenjit; Pathak, Binita; Basu, Saptarshi

    2018-03-01

    Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.

  18. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    . 3.5 Electrical properties of Mo thin films. The electrical properties of 400 nm Mo thin films measured by four-point probe are listed in table 1. The lowest resistivity was 10.52E−06 cm (at 1 mA applied current) when the sputtering power 150 W.

  19. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering parameters, the Mo film can reach the lowest resistivity of 1.28E−6 cm at 400 nm thick. And the reflection of Mo membrane was 82%.

  20. Routine Use of Contact Precautions for Methicillin-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococcus: Which Way Is the Pendulum Swinging?

    Science.gov (United States)

    Russell, Dana; Beekmann, Susan E; Polgreen, Philip M; Rubin, Zachary; Uslan, Daniel Z

    2016-01-01

    BACKGROUND Studies have suggested that contact precautions (CP) for methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus may have risks that outweigh the benefits. These risks, coupled with more widespread use of horizontal interventions such as daily bathing with chlorhexidine gluconate, have brought into question the value of routine CP for these organisms. OBJECTIVE To assess the state of utilization of CP as well as adjunctive measures to reduce the risk of transmission in US hospitals. DESIGN Cross-sectional survey. PARTICIPANTS Total of 751 physician members of the Emerging Infections Network. METHODS An 8-question electronic survey distributed by email. RESULTS A total of 426/751 (57%) responded to the survey; 337/364 (93%) of respondents use routine CP for methicillin-resistant S. aureus and 335/364 (92%) use routine CP for vancomycin-resistant enterococcus. The most widely used trigger for initiation of CP for both pathogens was positive clinical culture. Practices for discontinuation of isolation varied widely. We found that 325/354 (92%) perform routine chlorhexidine gluconate bathing and 236/353 (67%) perform S. aureus decolonization with mupirocin for 1 or more subsets of inpatients, and 82/356 (23%) reported using either hydrogen peroxide vapor or ultraviolet-C room disinfection at discharge. Free text responses noted frustration and variation in the application, practice, and process for initiation and discontinuation of CP. CONCLUSIONS Use of CP for methicillin-resistant S. aureus and vancomycin-resistant enterococcus remains commonplace, although horizontal interventions such as chlorhexidine gluconate bathing are increasingly used. The heterogeneity of practices and policies was striking. Evidence-based guidelines regarding CP and horizontal interventions are needed. Infect. Control Hosp. Epidemiol. 2015;37(1):36-40.

  1. Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance

    Science.gov (United States)

    Basiricò, L.; Lanzara, G.

    2012-08-01

    In this paper it is shown that the electrochemical behaviour of vertically aligned multi-walled carbon nanotube (VANT) supercapacitors is influenced by the VANTs’ length (electrode thickness), by their axial compression and by their interface with the current collector. It is found that the VANTs, which can be interpreted as a dense array of nanochannels, have an active area available to ions that is strongly affected by the electrode’s thickness and compressional state. Consequently, the tested thinner electrodes, compressed electrodes or a combination of the two were found to be characterized by a significant improvement in terms of power density (up to 1246%), knee frequency (58 822% working up to 10 kHz), equivalent series resistance (ESR, up to 67%) and capacitance (up to 21%) when compared with thicker and/or uncompressed electrodes. These values are significantly higher than those reported in the literature where long VANTs with no control on compression are typically used. It is also shown that the ESR can be reduced not only by using shorter and compressed VANTs that have a higher conductance or by improving the electrode/collector electrical contact by changing the contact morphology at the nanoscale through compression, but also by depositing a thin platinum layer on the VANT tips in contact with the current collector (73% ESR decrease).

  2. Electron transfer at the contact between Al electrode and gold nanoparticles of polymer: Nanoparticle resistive switching devices studied by alternating current impedance spectroscopy

    International Nuclear Information System (INIS)

    Ouyang, Jianyong

    2013-01-01

    Electron transfer at the contact between an Al electrode and Au nanoparticles of polymer:nanoparticle devices is studied by ac impedance spectroscopy. The devices have a polystyrene layer embedded with Au nanoparticles capped with conjugated 2-naphthalenethiol sandwiched between Al and MoO 3 /Al electrodes, and they exhibit electrode-sensitive resistive switches. The devices in the pristine or high resistance state have high capacitance. The capacitance decreases after the devices switch to a low resistance state by a voltage scan. The change in the capacitance is attributed to the voltage-induced change on the electronic structure of the contact between the Al electrode and Au nanoparticles

  3. Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-25

    A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.

  4. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  5. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  6. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    Science.gov (United States)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively

  7. Nano-scale observations of interface between lichen and basaltic rock: Pseudomorphic growth of amorphous silica on augite

    Science.gov (United States)

    Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.

    2017-12-01

    Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds

  8. A multi-physics modelling framework to describe the behaviour of nano-scale multilayer systems undergoing irradiation damage

    International Nuclear Information System (INIS)

    Villani, Aurelien

    2015-01-01

    Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors. While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited. The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement. Nano-scale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage. In addition, they exhibit outstanding mechanical properties. The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstructural evolution and behavior under irradiation. Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces. In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior. The diffusion creep strain rate is related to the gradient of the vacancy flux. A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries. In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread. The model is then implemented numerically

  9. Research of the Resistance of Contact Welding Joint of R65 Type Rail

    Directory of Open Access Journals (Sweden)

    Kęstutis Dauskurdis

    2015-03-01

    Full Text Available In the article the R65 type rail joints that were welded by resistance welding are analysed. Survey methodology of the research consists of the following parts: visual inspection of welded joint, ultrasonic rail inspection, hardness test of upper part of the rail, fusion area research, the measurement hardness test of heat-softened area, the measurement microhardness test, microstructure research of the welded joint, impact strength experiments, chemical analysis of welded joint, wheel-rail interaction research using the finite element method (FEM. The results of the research are analysed and the quality of weld is evaluated. The conclusion is based on the results of this research.

  10. Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator

    International Nuclear Information System (INIS)

    Horade, M; Kojima, M; Kamiyama, K; Kurata, T; Mae, Y; Arai, T

    2015-01-01

    In order to realize effective micro-manipulation using a micro-manipulator system, an optimum end-effector is proposed. Cell-manipulation experiments using mouse fibroblast cells are conducted, and the usability of the proposed end-effector is confirmed. A key advantage of the micro-manipulator is high-accuracy, high-speed 3D micro- and nano-scale positioning. Micro-manipulation has often been used in research involving biological cells. However, there are two important concerns with the micro-manipulator system: gripping efficiency and the release of gripped objects. When it is not possible to grip a micro-object, such as a cell, near its center, the object may be dropped during manipulation. Since the acquisition of exact position information for a micro-object in the vertical direction is difficult using a microscope, the gripping efficiency of the end-effector should be improved. Therefore, technical skill or operational support is required. Since, on the micro-scale, surface forces such as the adsorption force are greater than body forces, such as the gravitational force, the adhesion force between the end-effector and the object is strong. Therefore, manipulation techniques without adhesion are required for placed an object at an arbitrary position. In the present study, we consider direct physical contact between the end-effector and objects. First, the design and materials of the end-effector for micro-scale manipulation were optimized, and an end-effector with an optimum shape to increase the grip force was fabricated. Second, the surface of the end-effector tip was made uneven, and the adhesion force from increasing on the micro-scale was prevented. When an end-effector with an uneven surface was used, release without adhesion was successful 85.0% of the time. On the other hand, when an end-effector without an uneven surface was used, release without adhesion was successful 6.25% of the time. Therefore, the superiority of a structure with an uneven

  11. Micro-to-nano scale filling behavior of PMMA during imprinting.

    Science.gov (United States)

    Li, Jingmin; Liu, Ziyang; Liang, Chao; Li, Xia; Fan, Jinguang; Zhang, Hao; Liu, Chong

    2017-08-11

    The filling behavior of polymers in narrow gaps or small pores is important for the dynamics of polymeric micro/nanostructure fabrication. Here, the filling behavior, the mechanical properties, and the stress versus strain relationship of 996 kD poly (methyl methacrylate) (PMMA) at a scale from micron to molecular confinement are measured. It has been found that the solid polymer exhibits elastic-plastic dominant deformation behavior at micron scale. As the scale reduces to submicron, the resistance to deformation of the polymeric solid has a pronounced reduction. A softening effect and the visco-dominant behavior which is always exhibited by melt flow is observed. In confinement conditions, an anomalous hardening effect is found. The modulus and the hardness of 996 kD PMMA have been found to increase dramatically. The stress-strain curve also exhibits an obvious hardening phenomenon which is contrary to the conventional shear thinning and deformation acceleration results. The results of this paper show that the PMMA can exhibit a change of "solid-fluid-solid" in mechanical character at micron to molecular confinement scale.

  12. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  13. Thermal contact resistance measurement of conduction cooled binary current lead joint block in cryocooler based self field I-V characterization facility

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Ananya, E-mail: ananya@ipr.res.in; Das, Subrat Kumar; Agarwal, Anees Bano Pooja; Pradhan, Subrata [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-05-23

    In the present study thermal resistance of conduction cooled current lead joint block employing two different interfacial material namely AlN sheet and Kapton Film have been studied in the temperature range 5K-35K. In each case, the performance of different interlayer materials e.g. Indium foil for moderately pressurized contacts (contact pressure <1 MPa), and Apiezon N Grease, GE varnish for low pressurized contact (contact pressure <1 MPa) is studied. The performances of AlN joint with Indium foil and with Apeizon N Grease are studied and it is observed that the contact resistance reduces more with indium foil as compared to greased contact. The contact resistance measurements of Kapton film with Apiezon N grease and with GE varnish were also carried out in the same temperature range. A comparative study of AlN joint with Indium foil and Kapton with GE varnish as filler material is carried out to demonstrate better candidate material among Kapton and AlN for a particular filler material in the same temperature range.

  14. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Guridi, A. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Diederich, A.-K. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Aguila-Arcos, S.; Garcia-Moreno, M. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Blasi, R.; Broszat, M. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Schmieder, W.; Clauss-Lendzian, E. [Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany); Sakinc-Gueler, T. [University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Andrade, R. [Advanced Research Facilities (SGIker), University of the Basque Country, UPV/EHU, 48940 Leioa (Spain); Alkorta, I. [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); Meyer, C.; Landau, U. [Largentec GmbH, Am Waldhaus 32, 14129 Berlin (Germany); Grohmann, E., E-mail: elisabeth.grohmann@googlemail.com [Biophysics Unit (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa (Spain); University Medical Center Freiburg, Division of Infectious Diseases, Hugstetter Strasse 55, 79106 Freiburg (Germany); Biology II, Microbiology, Albert-Ludwigs-University Freiburg, Schänzlestrasse 1, 79104 Freiburg (Germany)

    2015-05-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented.

  15. New antimicrobial contact catalyst killing antibiotic resistant clinical and waterborne pathogens

    International Nuclear Information System (INIS)

    Guridi, A.; Diederich, A.-K.; Aguila-Arcos, S.; Garcia-Moreno, M.; Blasi, R.; Broszat, M.; Schmieder, W.; Clauss-Lendzian, E.; Sakinc-Gueler, T.; Andrade, R.; Alkorta, I.; Meyer, C.; Landau, U.; Grohmann, E.

    2015-01-01

    Microbial growth on medical and technical devices is a big health issue, particularly when microorganisms aggregate to form biofilms. Moreover, the occurrence of antibiotic-resistant bacteria in the clinical environment is dramatically growing, making treatment of bacterial infections very challenging. In search of an alternative, we studied a novel antimicrobial surface coating based on micro galvanic elements formed by silver and ruthenium with surface catalytic properties. The antimicrobial coating efficiently inhibited the growth of the nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium as demonstrated by the growth inhibition on agar surface and in biofilms of antibiotic resistant clinical E. faecalis, E. faecium, and S. aureus isolates. It also strongly reduced the growth of Legionella in a drinking water pipeline and of Escherichia coli in urine. We postulate a mode of action of the antimicrobial material, which is independent of the release of silver ions. Thus, the novel antimicrobial coating could represent an alternative to combat microbial growth avoiding the toxic side effects of high levels of silver ions on eukaryotic cells. - Highlights: • The novel antimicrobial inhibits growth of clinical staphylococci and enterococci. • The novel antimicrobial inhibits growth of Legionella in drinking water. • A putative mode of action of the antimicrobial coating is presented

  16. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems

    Directory of Open Access Journals (Sweden)

    Mokrane Boudaoud

    2014-03-01

    Full Text Available Two-fingered micromanipulation systems with an integrated force sensor are widely used in robotics to sense and control gripping forces at the micro and nano-scales. They became of primary importance for an efficient manipulation and characterization of highly deformable biomaterials and nanostructures. This paper presents a chronological overview of gripping force measurement using two-fingered micromanipulation systems. The work summarizes the major achievements in this field from the early 90s to the present, focusing in particular on the evolution of measurement technologies regarding the requirements of microrobotic applications. Measuring forces below the microNewton for the manipulation of highly deformable materials, embedding force sensors within microgrippers to increase their dexterity, and reducing the influence of noise to improve the measurement resolution are among the addressed challenges. The paper shows different examples of how these challenges have been addressed. Resolution, operating range and signal/noise ratio of gripping force sensors are reported and compared. A discussion about force measurement technologies and gripping force control is performed and future trends are highlighted.

  18. Experimental Investigations of Compressible Turbulent Boundary Layers with the Use of Nano-Scale Thermal Anemometry Probes (NSTAP)

    Science.gov (United States)

    Kokmanian, Katherine; Duvvuri, Subrahmanyam; Hultmark, Marcus

    2017-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAP) have been designed, tested and used in a wide variety of incompressible flows. These sensors are capable of measuring streamwise velocity fluctuations with an order of magnitude better resolution, both temporal and spatial, compared to conventional hot-wires, due to their miniature size and minute thermal mass (the heating element is only 60 microns long, 2 microns wide and 100 nm thick). Here we report recent efforts to redesign the NSTAP to withstand supersonic flow conditions. Work has been performed in Princeton's micro-nano fabrication laboratory in order to modify both the 2D layout and the 3D shapes of these sensors. The supersonic version of the NSTAP is evaluated in collaboration with Bundeswehr University. The ultimate objective of this work is to measure both fluctuating mass flow rate and total temperature in compressible turbulent boundary layers, by combining two supersonic sensors which operate at different overheat ratios. AFOSR FA9550-16-1-0170 (Program manager: Ivett Leyva).

  19. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  20. New tools for grazing incidence neutron scattering experiments open perspectives to study nano-scale tribology mechanisms

    Science.gov (United States)

    Frielinghaus, H.; Gvaramia, M.; Mangiapia, G.; Jaksch, S.; Ganeva, M.; Koutsioubas, A.; Mattauch, S.; Ohl, M.; Monkenbusch, M.; Holderer, O.

    2017-11-01

    Using grazing incidence scattering methods allows for depth profiling near surface structures very efficiently Dosch (1986). In parallel, layered structures have been used as resonators to enhance the wave field Kozhevnikov et al. (2007), Khaydukov et al. (2011), Kozhevnikov et al. (2011) and Nesnidal and Walker (1996) that directly increases the scattered intensity too. Third, the combination of these methods with neutron spin echo spectroscopy allows for near surface studies of dynamics Jaksch et al. (2015) and Frielinghaus et al. (2012) that can be correlated to tribological effects on the molecular level. This field of science, the tribology, - so far - has been driven mainly by the surface force balance that measures the macroscopic response of the system (latest research employs also AFM) Raviv et al. (2003) [1], Chung et al. (2016) [2] and Mocny and Klok (2016) [3]. The progress of this method was to reach the nano-scale distances that were necessary to obtain information about the friction of the nano-structures. The proposed method of grazing incidence neutron spin echo spectroscopy gives access to much more detailed information of molecular response to confinement by one or two hard walls, and therefore would pave the way for very rich and precise tribological comparisons of theory with experiments.

  1. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  2. Tortuous pathways: Fundamental characterisation of the anisotropic permeability through clay-rich shales from macro- to nano-scale.

    Science.gov (United States)

    Mitchell, T. M.; Backeberg, N. R.; Iacoviello, F.; Rittner, M.; Jones, A. P.; Wheeler, J.; Day, R.; Vermeesch, P.; Shearing, P. R.; Striolo, A.

    2017-12-01

    The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry, which determines the finite length (or tortuosity) of the interconnected pathways through the porous/permeable phases in shales. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.

  3. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  4. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    Science.gov (United States)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  5. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  6. Addressing the Recalcitrance of Cellulose Degradation through Cellulase Discovery, Nano-scale Elucidation of Molecular Mechanisms, and Kinetic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Larry P., Bergstrom, Gary; Corgie, Stephane; Craighead, Harold; Gibson, Donna; Wilson, David

    2011-06-13

    This research project was designed to play a vital role in the development of low cost sugars from cellulosic biomass and contributing to the national effort to displace fossil fuel usage in the USA transportation sector. The goal was to expand the portfolio of cell wall degrading enzymes through innovative research at the nano-scale level, prospecting for novel cellulases and building a kinetic framework for the development of more effective enzymatic conversion processes. More precisely, the goal was to elucidate the molecular mechanisms for some cellulases that are very familiar to members of our research team and to investigate what we hope are novel cellulases or new enzyme combinations from the world of plant pathogenic fungi and bacteria. Hydrolytic activities of various cellulases and cellulase cocktails were monitored at the nanoscale of cellulose fibrils and the microscale of pretreated cellulose particles, and we integrated this insight into a heterogeneous reaction framework. The over-riding approach for this research program was the application of innovative and cutting edge optical and high-throughput screening and analysis techniques for observing how cellulases hydrolyze real substrates.

  7. Micro- and nano-scale hollow TiO2 fibers by coaxial electrospinning: Preparation and gas sensing

    International Nuclear Information System (INIS)

    Zhang Jin; Choi, Sun-Woo; Kim, Sang Sub

    2011-01-01

    We report the preparation of micro- and nano-scale hollow TiO 2 fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO 2 fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO 2 fibers as a function of viscosity. The successful control over the diameter of hollow TiO 2 fibers is expected to bring extensive applications. To test a potential use of hollow TiO 2 fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature. - Graphical abstract: Microstructures of as-prepared and calcined hollow TiO 2 fibers prepared by the electrospinning technique with a coaxial needle. Dynamic response at various CO concentrations for the sensor fabricated with the hollow TiO 2 fibers. Highlights: → Hollow TiO 2 fibers were synthesized using a coaxial electrospinning technique. → Their diameter can be controlled by changing the viscosity of electrospinning solutions. → Lower viscosities produce slim hollow nanofibers. → In contrast, fat hollow microfibers are obtained in the case of higher viscosities. → Successful control over the diameter of hollow TiO 2 fibers will bring extensive applications.

  8. Slip-rolling resistance of novel Zr(C,N) thin film coatings under high Hertzian contact pressures

    Energy Technology Data Exchange (ETDEWEB)

    Manier, Charles-Alix

    2010-08-24

    Today, coatings are used in many applications ranging from the decoration purposes to the improvement of efficiency such as in machining tools, medical tools, computer devices (hard disks) and many more. Especially the automotive industry anticipates a benefit in using coatings for example in powertrains and gears where the mechanical components are stressed under slip-rolling motion. A cost effective option to increase efficiency is based on the increase of the load carrying capacity by thin film coatings. It would also represent a way towards downsizing. In the work presented here, a small review concerning rolling contact fatigue of coatings was performed. Experimentally it is then shown, that crystalline Zr(C,N) coatings can be slip-rolling resistant at 120 C in factory fill engine oil up to ten million cycles under average Hertzian contact pressures up to P{sub 0mean} = 1.94 GPa (P{sub 0max} = 2.91 GPa). Basically, it represents here the doubling of the normal force acting on the surface compared to uncoated steel traditionally lubricated with fully formulated oil. Typically, the coated substrates are made of the quenched and tempered bearing steel Cronidur 30. The Zr(C,N) coatings were fully characterized using different characterisation techniques in order to understand the difference in slip-rolling resistance under those high tribological demands. Effectively, the slip-rolling resistance of different batches of the Zr(C,N) coatings is evaluated using a defined and powerful testing procedure. Different results of lifetime were achieved without fundamental changes of the deposition procedure. The characterisation achieved permits the identification of microstructural disparities which should affect the load carrying capacity of the coating. Moreover, the efficiency of the high slip-rolling resistant Zr(C,N) coating was considered not only with respect to the improvement of the load carrying capacity of the substrate but also in terms of tribological

  9. Rolling-contact fatigue resistance of hard coatings on bearing steels.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.

    1999-08-18

    Ball- and roller-bearings of the 21st Century are expected to perform better and last longer while operating under more stringent conditions than before. To meet these great expectations, researchers have been constantly exploring new bearing designs or refining existing ones, optimizing microstructure and chemistry of bearing materials, and alternatively, they have been considering the use of thin hard coatings for improved bearing performance and durability. Already, some laboratory tests have demonstrated that hard nitride, carbide (such as TiN, TiC, etc.) and diamondlike carbon (DLC) coatings can be very effective in prolonging the fatigue lives of bearing steels. This paper provides an overview of the recent developments in hard coatings for bearing applications. Previous studies have demonstrated that thin, hard coatings can effectively prolong the fatigue lives of bearing steel substrates. In particular, thinner hard coatings (i.e., 0.2 - 1 {micro}m thick) provide exceptional improvements in the fatigue lives of bearing steel substrates. In contrast, thicker hard coatings suffer micro fracture and delamination when tested under high contact stresses, hence are ineffective and may even have a negative effect on bearing life. Overall, it was concluded that thin hard coatings may offer new possibilities for bearing industry in meeting the performance and durability needs of the 21st Century.

  10. Risk Factors for Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae (CP-CRE) Acquisition Among Contacts of Newly Diagnosed CP-CRE Patients.

    Science.gov (United States)

    Schwartz-Neiderman, Anat; Braun, Tali; Fallach, Noga; Schwartz, David; Carmeli, Yehuda; Schechner, Vered

    2016-10-01

    OBJECTIVE Carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) are extremely drug-resistant pathogens. Screening of contacts of newly identified CP-CRE patients is an important step to limit further transmission. We aimed to determine the risk factors for CP-CRE acquisition among patients exposed to a CP-CRE index patient. METHODS A matched case-control study was performed in a tertiary care hospital in Israel. The study population was comprised of patients who underwent rectal screening for CP-CRE following close contact with a newly identified CP-CRE index patient. Cases were defined as positive tests for CP-CRE. For each case patient, 2 matched controls were randomly selected from the pool of contacts who tested negative for CP-CRE following exposure to the same index case. Bivariate and multivariate analyses were conducted using conditional logistic regression. RESULTS In total, 53 positive contacts were identified in 40 unique investigations (896 tests performed on 735 contacts) between October 6, 2008, and June 7, 2012. bla KPC was the only carbapenemase identified. In multivariate analysis, risk factors for CP-CRE acquisition among contacts were (1) contact with an index patient for ≥3 days (odds ratio [OR], 9.8; 95% confidence interval [CI], 2.0-48.9), (2) mechanical ventilation (OR, 4.1; 95% CI, 1.4-11.9), and (3) carriage or infection with another multidrug-resistant organism (MDRO; OR, 2.6; 95% CI, 1.0-7.1). Among patients who received antibiotics, cephalosporins were associated with a lower risk of acquisition. CONCLUSIONS Patient characteristics (ventilation and carriage of another MDRO) as well as duration of contact are risk factors for CP-CRE acquisition among contacts. The role of cephalosporins requires further study. Infect Control Hosp Epidemiol 2016;1-7.

  11. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  12. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Science.gov (United States)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  13. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  14. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Doglioni, Carlo

    2017-08-01

    In August and October 2016, two normal fault earthquakes (Mw 6.0 and Mw 6.5, respectively) struck the Amatrice-Norcia area in the central Apennines, Italy. The mainshocks nucleated at depths of 7-9 km with the co-seismic slip propagating upward along the Mt. Gorzano Fault (MGF) and Mt. Vettore Fault System (MVFS). To recognize possible weakening mechanisms along the carbonate-hosted seismogenic faults that generated the Amatrice-Norcia earthquakes, the fresh co-seismic fault exposure (i.e., "nastrino") exposed along the Mt. Vettoretto Fault was sampled and analyzed. This exposed fault belongs to the MVFS and was exhumed from 2-3 km depth. Over the fresh fault surface, phyllosilicates concentrated and localized along mm- to μm-thick layers, and truncated clasts and fluid-like structures were found. At the nano-scale, instead of their common platy-lamellar crystallographic texture, the analyzed phyllosilicates consist of welded nm-thick nanospherules and nanotubes similar to phyllosilicates deformed in rotary shear apparatus at seismic velocities or altered under high hydrothermal temperatures (> 250 °C). Moreover, the attitude of the Mt. Vettoretto Fault and its kinematics inferred from exposed slickenlines are consistent with the co-seismic fault and slip vectors obtained from the focal mechanisms computed for the 2016 mainshocks. All these pieces of evidence suggest that the Mt. Vettoretto Fault slipped seismically during past earthquakes and that co-seismic slip was assisted and facilitated at depths of synoptic picture of co-seismic processes and weakening mechanisms that may occur in carbonate-hosted seismogenic faults.

  15. Nano-scale zero valent iron transport in a variable aperture dolomite fracture and a glass fracture

    Science.gov (United States)

    Mondal, P.; Sleep, B. E.; Cui, Z.; Zhou, Z.

    2014-12-01

    Experiments and numerical simulations are being performed to understand the transport behavior of carboxymethyl cellulose polymer stabilized nano-scale zero valent iron (nZVI) in a variable aperture dolomite rock fracture and a variable aperture glass replica of a fractured slate. The rock fracture was prepared by artificially inducing a fracture in a dolomite block along a stylolite, and the glass fracture was prepared by creating molds with melted glass on two opposing sides of a fractured slate rock block. Both of the fractures were 0.28 m in length and 0.21 m in width. Equivalent hydraulic apertures are about 110 microns for the rock fracture and 250 microns for the glass replica fracture. Sodium bromide and lissamine green B (LGB) serve as conservative tracers in the rock fracture and glass replica fracture, respectively. A dark box set-up with a light source and digital camera is being used to visualize the LGB and CMC-nZVI movement in the glass fracture. Experiments are being performed to determine the effects of water specific discharge and CMC concentration on nZVI transport in the fractures. Transmission electron microscopy, dynamic light scattering, and UV-visual spectrophotometry were performed to determine the stability and characteristics of the CMC-nZVI mixture. The transport of bromide, LGB, CMC, and CMC-nZVI in both fractures is being evaluated through analysis of the effluent concentrations. Time-lapse images are also being captured for the glass fracture. Bromide, LGB, and CMC recoveries have exceeded 95% in both fractures. Significant channeling has been observed in the fractures for CMC transport due to viscous effects.

  16. Time-temperature influence on the corrosion resistance of Ni-Cr-Nb superalloys in contact with Na2SO4-V2O5 molten mixtures

    International Nuclear Information System (INIS)

    Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P.

    1990-01-01

    Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na 2 SO 4 -V 2 O 5 molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)

  17. Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic.

    Science.gov (United States)

    Springall, Gabriella A C; Yin, Ling

    2018-03-09

    This paper reports on the mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic (ZLS) using nanoindentation with a Berkovich diamond tip and in situ scanning probe microscopy (SPM). The indentation contact hardness, the elastic modulus, and the elasticity and plasticity of the material were determined using the Oliver-Pharr method, the Sakai model and the Meyer's law at peak loads of 2.5-10 mN and a loading rate of 0.5 mN/s. The load-displacement curves at all applied loads indicate that ZLS deformed plastically without fracture. The discrete discontinuities in the load-displacement curves might have arisen from the shear plane activation for plastic deformation. The measured hardness and elastic modulus were load-independent (ANOVA, p > 0.05), in ranges of 8.17 ± 1.23 GPa to 9.86 ± 1.24 GPa and 98.55 ± 7.38 GPa to 105.78 ± 9.98 GPa, respectively. The resistance to plasticity of ZLS significantly showed a second-order polynomial load relationship or a power law load dependency. Meanwhile, both the elastic and plastic displacements also significantly revealed power law load dependencies. However, the elastic and plastic deformation components were load-independent. Increased indentation loads resulted in significant decreases in the normalized elastic strain energy (p mechanical functions of ZLS restorations, particularly facilitating abrasive machining in dental CAD/CAM processing in the ductile regime. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The role of the bimodal distribution of ultra-fine silicon phase and nano-scale V-phase (AlSi2Sc2) on spark plasma sintered hypereutectic Al–Si–Sc alloys

    International Nuclear Information System (INIS)

    Raghukiran, Nadimpalli; Kumar, Ravi

    2016-01-01

    Hypereutectic Al–Si and Al–Si–Sc alloys were spark plasma sintered from corresponding gas-atomized powders. The microstructures of the Al–Si and Al–Si–Sc alloys possessed remarkably refined silicon particles in the size range of 0.38–3.5 µm and 0.35–1.16 µm respectively in contrast to the silicon particles of size greater than 100 µm typically found in conventionally cast alloys. All the sintered alloys exhibited significant ductility of as high as 85% compressive strain without failure even with the presence of relatively higher weight fraction of the brittle silicon phase. Moreover, the Al–Si–Sc alloys have shown appreciable improvement in the compressive strength over their binary counterparts due to the presence of intermetallic compound AlSi 2 Sc 2 of size 10–20 nm distributed uniformly in the matrix of those alloys. The dry sliding pin-on-disc wear tests showed improvement in the wear performance of the sintered alloys with increase in silicon content in the alloys. Further, the Al–Si–Sc ternary alloys with relatively lesser silicon content exhibited appreciable improvement in the wear resistance over their binary counterparts. The Al–Si–Sc alloys with bimodal distribution of the strengthening phases consisting of ultra-fine (sub-micron size) silicon particles and the nano-scale AlSi 2 Sc 2 improved the strength and wear properties of the alloys while retaining significant amount of ductility.

  19. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengkun; Jiang, Feihong [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China); Lee, Tung-Ching, E-mail: lee@aesop.rutgers.edu [Department of Food Science, Rutgers, the State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901 (United States); Yue, Tianli, E-mail: yuetl305@nwsuaf.edu.cn [College of Food Science and Engineering, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-25

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe{sub 3}O{sub 4} nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe{sub 3}O{sub 4} magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe{sub 3}O{sub 4} nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe{sub 3}O{sub 4}/chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability.

  20. Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Zhou, Zhengkun; Jiang, Feihong; Lee, Tung-Ching; Yue, Tianli

    2013-01-01

    Highlights: •A new two-step route for nano-scaled magnetic chitosan particles preparation. •Triton X-100 reversed-phase microemulsion system was used for chitosan coating. •Narrow size distribution of magnetic chitosan nanoparticles was achieved. •Quantitative evaluation of recoverability for the magnetic chitosan nanoparticles. -- Abstract: A new two-step route for the preparation of nano-scaled magnetic chitosan particles has been developed, different from reported one-step in situ preparation and two-step preparation method of reversed-phase suspension, Triton X-100 reversed-phase water-in-oil microemulsion encapsulation method was employed in coating the pre-prepared Fe 3 O 4 nanoparticles with chitosan. The resultant magnetic chitosan particles owned a narrow size distribution ranging from 50 to 92 nm. X-ray diffraction patterns (XRD) indicated that the chitosan coating procedure did not change the spinal structure of Fe 3 O 4 magnetic nanoparticles. The results of Fourier transform infrared (FTIR) analysis and thermogravimetric analysis (TGA) demonstrated that the chitosan was coated on Fe 3 O 4 nanoparticles and its average mass content was ∼50%. The saturated magnetization of the magnetic Fe 3 O 4 /chitosan nanoparticles reached 18.62 emu/g, meanwhile, the nanoparticles showed the characteristics of superparamagnetism. The magnetic chitosan nanoparticles showed a high recoverability of 99.99% in 10 min when pH exceeded 4. The results suggested that the as-prepared magnetic chitosan particles were nano-scaled with a narrow size distribution and a high recoverability

  1. Assessment of nano-scale Stirling refrigerator using working fluid as Maxwell-Boltzmann gases by thermo-ecological and sustainability criteria

    Science.gov (United States)

    Açıkkalp, Emin; Savaş, Ahmet Fevzi; Caner, Necmettin; Yamık, Hasan

    2016-08-01

    Purpose of this paper is to investigate a nano scale irreversible Stirling refrigerator regarding size effects and presents one novel thermo-ecological criteria. System is researched by using four thermo-ecological and sustainable criteria. One novel criteria called modified ecological coefficient of performance (MECOP) is presented. Calculations are performed for irreversible cycle and results are obtained numerically. Finally, performance of the considered cycle is discussed and regarded criteria are compared. According to results, ESI is the most stable ecological criteria and MECOP is more stable than ECOP and x should be chosen as big as possible.

  2. Carboxymethyl Cellulose Stabilized Nano-scale Zero Valent Iron Transport in Porous Media: An Experimental and Modeling Study

    Science.gov (United States)

    Mondal, P.; Rrokaj, E.; Sleep, B. E.

    2013-12-01

    An experimental and modeling study is being conducted to evaluate carboxymethyl cellulose (CMC) stabilized nano-scale zero valent iron (nZVI) transport in porous media. A two-dimensional water-saturated glass-walled sandbox (55 cm x 45 cm x 1.3 cm in size) is being used for the study. The sandbox was packed uniformly with silica sand (600 μm to 425 μm grain diameter) under water-saturated conditions. From a series of hydraulic tests permeability of the system was calculated to be 1.0 x 10-12 m2. The transport tests are being conducted at pore-water velocities of 3, 5, and 10 m.d-1 to identify any shear-thinning effects associated with the CMC (MW = 90,000) solution, and effects of velocity on nZVI attachment to the porous media. A set of transport tests is being carried out using LissamineTM Green B (LGB) dye and CMC mixtures to characterize the CMC transport without nZVI. The transport tests are being conducted at various CMC concentrations ranging from 0.2% to 0.8% (w/v) to determine the effect of CMC concentration on nZVI transport under flowing conditions. For the CMC stabilized nZVI transport tests, nZVI is synthesized freshly in CMC solution before each experiment using sodium borohydride and ferrous sulfate. The synthesized nZVI concentrations range from 0.1 to 2.5 g.L-1. While higher nZVI concentration is desired for higher contaminant degradation, the higher nZVI concentration may cause greater aggregation and attachment to the porous media limiting the delivery distance for nZVI. In each transport experiment, the LGB-CMC solution or nZVI-CMC solution is injected into the sandbox as a pulse of 0.25 pore volume (PV). For LGB, the mass recovery was calculated to be ~ 96.5% indicating non-reactive transport in silica sand. The preliminary results also show that increased concentration of CMC (from 0.2% to 0.4 %) causes higher pressure drop across the sandbox, indicating that use of high CMC concentrations will limit injection rates with a corresponding

  3. Acquisition of methicillin-resistant Staphylococcus aureus (MRSA) in contacts of patients newly identified as colonized or infected with MRSA in the immediate postexposure and postdischarge periods.

    Science.gov (United States)

    Williams, Victoria R; Callery, Sandra; Vearncombe, Mary; Simor, Andrew E

    2017-03-01

    The acquisition of methicillin-resistant Staphylococcus aureus (MRSA) after exposure to patients colonized or infected with MRSA was assessed. Among contacts with complete surveillance screening, the rate of acquisition was 5.7% and was lower in those identified postdischarge (17/683, 2.5%) compared with those tested in the immediate postexposure period (62/706, 8.8%). Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Impact of crystal orientation on ohmic contact resistance of enhancement-mode p-GaN gate high electron mobility transistors on 200 mm silicon substrates

    Science.gov (United States)

    Van Hove, Marleen; Posthuma, Niels; Geens, Karen; Wellekens, Dirk; Li, Xiangdong; Decoutere, Stefaan

    2018-04-01

    p-GaN gate enhancement mode power transistors were processed in a Si CMOS processing line on 200 mm Si(111) substrates using Au-free metallization schemes. Si/Ti/Al/Ti/TiN ohmic contacts were formed after full recessing of the AlGaN barrier, followed by a HCl-based wet cleaning step. The electrical performance of devices aligned to the [11\\bar{2}0] and the perpendicular [1\\bar{1}00] directions was compared. The ohmic contact resistance was decreased from 1 Ω·mm for the [11\\bar{2}0] direction to 0.35 Ω·mm for the [1\\bar{1}00] direction, resulting in an increase of the drain saturation current from 0.5 to 0.6 A/mm, and a reduction of the on-resistance from 6.4 to 5.1 Ω·mm. Moreover, wafer mapping of the device characteristics over the 200 mm wafer showed a tighter statistical distribution for the [1\\bar{1}00] direction. However, by using an optimized sulfuric/ammonia peroxide (SPM/APM) cleaning step, the ohmic contact resistance could be lowered to 0.3 Ω·mm for both perpendicular directions.

  5. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  6. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  7. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  8. [Preparation of polyvinyl alcohol film inlaid with silk fibroin peptide nano-scale particles and evaluation of its function to promote cell growth].

    Science.gov (United States)

    Chen, Zhongmin; Hao, Xuefei; Fan, Kai

    2010-12-01

    Nano-scale particles of silk fibroin peptide (SFP) were prepared from discarded materials of cocoon or filature by dissolving and enzymolysis. Polyvinyl Alcohol films inlaid with silk fibroin peptide nano-scale particles (SFP in PVA) were prepared by blending nano-SFP and PVA in water according to different blending ratios. The films' characteristics and their promoting cell growth functions were investigated. Silk fibroin fiber was dissolved in 60% NaSCN solution, and was decomposed with alpha-Chymotrypsin, Trypsin and Neutral, respectively. The uniformity of size of SFP nano-particles prepared by Neutral was better and appeared about 80-150 nm. (SFP in PVA) films were characterized by infrared spectroscopy (IR) measurement which demonstrated the combination of SFP and PVA. Scanning electron microscopy revealed the PVA films already inlaid with SFP micro-segment. The surface and form stability in water of the (SFP in PVA) films with blending ratios of 10/90, 20/80, 30/70 and 40/60 were observed. And the results showed that SFP/PVA film with the blending ratio of 30/70 has smoother surface and better stability in water. The Chinese hamster ovary (CHO) cells were cultured, and the promoting cell growth function of (SFP in PVA) films was assessed by MTT colorimetric assay. These findings indicate that SFP/PVA (30/70) film has excellent function of promoting cell growth.

  9. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting

    Science.gov (United States)

    Zhang, Kedong; Deng, Jianxin; Sun, Jialin; Jiang, Chao; Liu, Yayun; Chen, Shuai

    2015-11-01

    In cutting of stainless steel with coated tool, the steel chip adhering to tool surface is usually severe and consequently causes serious adhesive and frictional problems, which is the major reason for the failure of coated tool. To solve the problem, a surface engineering approach, namely, a highly functionalization of tool surfaces by textures may be of great importance. Thus, the effect of micro/nano-scale textures on anti-adhesive wear properties of TiAlN coated tools in AISI 316 austenitic stainless steel cutting was investigated. For this purpose, two types of surface textures were fabricated on the rake faces of WC/Co carbide tools: (i) micro-scale textures fabricated by Nd:YAG laser, (ii) micro/nano-scales textures fabricated by Nd:YAG laser and femtosecond laser. Then, these textured tools were deposited with TiAlN coatings using cathode arc-evaporation technique. Wet cutting experiments were carried out with the micro-scale textured coated tool (MCT), micro/nano-scale textured coated tool (MNCT), and the conventional coated tool (CCT). Results obtained in this work demonstrated the feasibility of fabricating micro- or micro/nano-scale textures on tools substrate surfaces to improve the anti-adhesive wear properties of TiAlN coated tool. The rake face micro/nano-scale textured tool was the most effective. Moreover, mechanisms for the anti-adhesive properties enhancement were proposed.

  10. Nasal carriage of methicillin-resistant coagulase-negative staphylococci in healthy humans is associated with occupational pig contact in a dose-response manner.

    Science.gov (United States)

    Li, Ling; Chen, Zhiyao; Guo, Dan; Li, Shunming; Huang, Jingya; Wang, Xiaolin; Yao, Zhenjiang; Chen, Sidong; Ye, Xiaohua

    2017-09-01

    This study aimed to explore the association between occupational pig contact and human methicillin-resistant coagulase-negative staphylococci (MRCoNS) carriage. We conducted a cross-sectional study of pig exposed participants and controls in Guangdong, China, using a multi-stage sampling design. Participants provided a nasal swab for MRCoNS analysis and resulting isolates were tested for antibiotic susceptibility. The dose-response relation was examined using log binomial regression or Poisson regression models. The adjusted prevalence of MRCoNS carriage in pig exposed participants was 1.67 times (95% CI: 1.32-2.11) higher than in controls. The adjusted average number of resistance to different antibiotic classes of MRCoNS isolates from pig exposed participants was 1.67 times (95% CI: 1.46-1.91) higher than those from controls. Notably, we found the frequency and duration of occupational pig contact was associated with increased prevalence and increased number of resistance to different antibiotic classes of MRCoNS in a dose-response manner. When examining these relations by MRCoNS species, there was still evidence of similar exposure-response relations. Additionally, the proportion of tetracycline-resistant and tet(M)-containing MRCoNS isolates was significantly higher in pig exposed participants than in controls. These findings suggested a potential transmission of MRCoNS from livestock to humans by occupational livestock contact, and the presence of phenotypic and genotypic tetracycline resistance may aid in the differentiation of animal origins of MRCoNS isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Yirsaw Alehegne

    2011-08-01

    Full Text Available Abstract Background Salmonella are the major pathogenic bacteria in humans as well as in animals. Salmonella species are leading causes of acute gastroenteritis in several countries and salmonellosis remains an important public health problem worldwide, particularly in the developing countries. The situation is more aggravated by the ever increasing rate of antimicrobial resistance strains. Cattle have been implicated as a source of human infection with antimicrobial resistant Salmonella through direct contact with livestock and through the isolation of antimicrobial resistant Salmonella from raw milk, cheddar cheese, and hamburger meat traced to dairy farms. Despiite the presence of many studies on the prevalence and antimicrobial susceptibility pattern of Salmonella in Ethiopia, nothing has been said on the degree of the situation among apparently healthy lactating cows and in contact humans. Hence this study was conducted to determine the prevalence and antimicrobial resistance pattern of Salmonella isolates from lactating cows and in contact humans in dairy farms of Addis Ababa. Methods a cross sectional study was conducted in Addis Ababa by collecting milk and faecal samples from lactating cows and stool samples from humans working in dairy farms. Samples were pre-enriched in buffered peptone water followed by selective enrichment using selenite cysteine and Rapaport-Vassilidis broths. Isolation and identification was made by inoculating the selectively enriched sample on to Xylose Lysine Deoxycholate agar followed by confirmation of presumptive colonies using different biochemical tests. The Kibry Bauer disk diffusion method was used for antimicrobial sensitivity testing. Results 10.7% (21/195 of cows and 13.6% (3/22 of the human subjects sheded Salmonella. 83% resistance to two or more antimicrobials and 100% resistance to ampicillin were observed. Most of the isolates were relatively sensitive to ciprofloxacin, cotrimoxazole, and

  12. Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS

    Science.gov (United States)

    Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.

    2018-04-01

    A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.

  13. Geophysical Characterization of the Quaternary-Cretaceous Contact Using Surface Resistivity Methods in Franklin and Webster Counties, South-Central Nebraska

    Science.gov (United States)

    Teeple, Andrew; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.

    2009-01-01

    Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.

  14. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCCmecIV from people and their in-contact pets.

    Science.gov (United States)

    Loeffler, Anette; McCarthy, Alex; Lloyd, David H; Musilová, Eva; Pfeiffer, Dirk U; Lindsay, Jodi A

    2013-10-01

    Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. Variation in mobile genetic elements (MGEs) occurred frequently and appeared largely independent of host and in-contact pair. A plasmid (SAP078A) encoding heavy-metal resistance genes (arsR, arsA, cadA, cadC, mco and copB) was found in three of six human and none of six animal isolates. However, only two of four resistance genes were associated with human hosts (P = 0.015 for arsA and cadA). The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals. © 2013 ESVD and ACVD.

  15. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    . The zone is austenitic at the exposure temperature but transforms to ferrite during cooling. When a CeO2 nickel diffusion barrier layer was used The ASR was considerably higher. These results imply that nickel diffusion is not only detrimental: It leads to microstructural instability but also results......Metallic interconnects in solid oxide fuel cell (SOFC) stacks are often in direct contact with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Interdiffusion between the two components may occur at the operating temperature of 700–850◦C. The alteration of chemical composition can result...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  16. Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber.

    Science.gov (United States)

    Allsop, T; Neal, R; Dvorak, M; Kalli, K; Rozhin, A; Webb, D J

    2013-08-12

    Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity.

  17. An investigation of the effects of history dependent damage in time dependent fracture mechanics: nano-scale studies of damage evolution

    Energy Technology Data Exchange (ETDEWEB)

    Brust, F.W. (Bud) Jr; Mohan, R.; Yang, Y.P.; Oh, J.; Katsube, N.

    2002-12-01

    High-temperature operation of technical engineering systems is critical for system efficiency, and will be a key driver in the future US DOE energy policy. Developing an understanding of high-temperature creep and creep-fatigue failure processes is a key driver for the research work described here. The focus is on understanding the high-temperature deformation and damage development on the nano-scale (50 to 500 nm) level. The high-temperature damage development process, especially with regard to low and high cyclic loading, which has received little attention to date, is studied. Damage development under cyclic loading develops in a fashion quite different from the constant load situation. The development of analytical methodologies so that high-temperature management of new systems can be realized is the key goal of this work.

  18. Capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator

    International Nuclear Information System (INIS)

    Kim, Tae-Hyun; Park, Jea-Gun

    2013-01-01

    We investigated the combined effect of the strained Si channel and hole confinement on the memory margin enhancement for a capacitor-less memory cell fabricated on nano-scale strained Si on a relaxed SiGe layer-on-insulator (ε-Si SGOI). The memory margin for the ε-Si SGOI capacitor-less memory cell was higher than that of the memory cell fabricated on an unstrained Si-on-insulator (SOI) and increased with increasing Ge concentration of the relaxed SiGe layer; i.e. the memory margin for the ε-Si SGOI capacitor-less memory cell (138.6 µA) at a 32 at% Ge concentration was 3.3 times higher than the SOI capacitor-less memory cell (43 µA). (paper)

  19. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nano-scale Al-TiN multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Dhriti [Los Alamos National Laboratory; Mara, Nathan A [Los Alamos National Laboratory; Dickerson, Patricia O [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Hoagland, R G [Los Alamos National Laboratory

    2009-01-01

    Nano-scale multilayered Al-TiN composites were deposited with DC magnetron sputtering technique in two different layer thickness ratios - Al:TiN = 1:1 and Al:TiN = 9:1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional Transmission Electron Microscopy (TEM) was carried out on samples extracted with Focused Ion Beam (FIB) from below the nanoindents. This paper presents the results of the hardness tests in the Al-TiN multilayers with the two different thickness ratios and the observations from the cross-sectional TEM studies of the regions underneath the indents. These studies showed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

  20. In-plane anisotropy of a nano-scaled magnetic tunnel junction with perpendicular magnetic easy axis

    Science.gov (United States)

    Hirayama, Eriko; Kanai, Shun; Sato, Koji; Yamanouchi, Michihiko; Sato, Hideo; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo

    2015-04-01

    We investigate magnetic properties of a 100-nm-diameter CoFeB/MgO magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis by homodyne-detected ferromagnetic resonance (FMR) and junction resistance measurements. The resonant frequency depends clearly on the direction of the in-plane magnetic field, which is also the case for the angle dependence of the junction resistance. A good correspondence between the two independent measurements indicates the presence of unintentionally introduced in-plane magnetic anisotropy in the present MTJ.

  1. Contact Lens Risks

    Science.gov (United States)

    ... Tap and distilled water have been associated with Acanthamoeba keratitis, a corneal infection that is resistant to ... to: Advice for Patients With Soft Contact Lenses: Acanthamoeba Keratitis Infections Related to Complete® MoisturePlus Multi Purpose ...

  2. The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts

    International Nuclear Information System (INIS)

    Aydin, M.E.; Akkilic, K.; Kilicoglu, T.

    2004-01-01

    We have fabricated H-terminated Pb/p-type Si Schottky contacts with and without the native oxide layer to explain the importance of the fact that the neutral region resistance value is considered in calculating the interface state density distribution from the nonideal forward bias current-voltage (I-V) characteristics. The diodes with the native oxide layer (metal-insulating layer-semiconductor (MIS)) showed nonideal I-V behavior with an ideality factor value of 1.310 and the barrier height value of 0.746eV. An ideality factor value of 1.065 and a barrier height value of 0.743eV were obtained for the diodes without the native oxide layer (MS). At the same energy position near the top of the valance band, the calculated interface states density (Nss) values, obtained without taking into account the series resistance of the devices (i.e. without subtracting the voltage drop across the series resistance from the applied voltage values V) is almost one order of magnitude larger than Nss values obtained by taking into account the series resistance

  3. Contact and fumigant toxicity of Cyperus rotundus steam distillate constituents and related compounds to insecticide-susceptible and -resistant Blattella germanica.

    Science.gov (United States)

    Chang, Kyu-Sik; Shin, E-Hyun; Park, Chan; Ahn, Young-Joon

    2012-05-01

    We assessed the toxicity of 17 steam distillate constituents of Cyperus rotundus (L.) rhizome, another seven known compounds of C. rotundus rhizome, and 14 structurally related compounds to females from an insecticide-susceptible KSS strain and two field-collected SEL and DJN colonies of Blattella germanica (L.). High contact + fumigant toxicity to KSS females was produced by p-cymene, nerol, linalool, o-cymene, (S)-(-)-citronellal, (1S)-(-)-camphor, terpinolene, and m-cymene (LD50, 0.29-0.47 mg/cm2). The toxicity of these compounds was virtually identical against females from any of the three strains, even though SEL and DJN females were resistant to six acetylcholinesterase inhibitors and three pyrethroids (resistance ratio, 9-154 and 12-195). These results indicate that the compounds and insecticides do not share a common mode of action or elicit cross-resistance. The test compounds were effective in closed but not in open containers against SEL females, indicating that their route of insecticidal action was largely a result of vapor action. Structure-activity relationship indicates that structural characteristics, such as types of functional groups, appear to play a role in determining the terpenoid toxicities to B. germanica. C. rotundus rhizome steam distillate constituents and related compounds described merit further study as potential fumigants for the control of resistant cockroach populations in light of global efforts to reduce the level of highly toxic synthetic insecticides in indoor environments.

  4. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    . The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes...... geometries and different materials are analyzed including contact between dissimilar materials. The numerical implementation is performed with a finite element computer program based on the irreducible flow formulation, and contact between deformable objects is modelled by applying the penalty method......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  5. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  6. Effect of CeO{sub 2} addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaoben [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); College of Mechanical Engineering, Shanghai Dianji University, Shanghai 200240 (China); Zhu, Shigen, E-mail: sgzhu@dhu.edu.cn [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai 201620 (China)

    2015-09-15

    Highlights: • WC–Co powders with CeO{sub 2} were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO{sub 2} by ECS was metallurgically bonded to the substrate. • The addition of CeO{sub 2} could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO{sub 2} (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO{sub 2} were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO{sub 2} could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance.

  7. Determination of the series resistance under the Schottky contacts of AlGaN/AlN/GaN Schottky barrier diodes

    International Nuclear Information System (INIS)

    Cao Zhi-Fang; Lin Zhao-Jun; Lü Yuan-Jie; Luan Chong-Biao; Yu Ying-Xia; Chen Hong; Wang Zhan-Guo

    2012-01-01

    Rectangular AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) were fabricated, and the gate and the source of the HFETs consisted of AlGaN/AlN/GaN Schottky barrier diodes (SBDs). Based on the measured forward current-voltage and the capacitance-voltage characteristics of the AlGaN/AlN/GaN SBDs, the series resistance under the Schottky contacts (R S ) was calculated using the method of power consumption, which has been proved to be valid. Finally, the method of power consumption for calculating R S was successfully used to study the two-dimensional electron gas electron mobility for a series of circular AlGaN/AlN/GaN SBDs. It is shown that the series resistance under the Schottky contacts cannot be neglected and is important for analysing and characterizing the AlGaN/AlN/GaN SBDs and the AlGaN/AlN/GaN HFETs. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Optimization of the contact resistance in the interface structure of n-type Al/a-SiC:H by thermal annealing for optoelectronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310, Chihuahua (Mexico); Torres, Alfonso; Zuniga, Carlos; Moreno, Mario [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200, Puebla (Mexico)

    2010-07-15

    The presented work meets the requirements for integration of amorphous silicon carbon films with silicon technology in order to obtain a complete optoelectronic system such as light emitting diodes and its electronic readout circuits. The key enabler for this integration scheme is the low temperature of deposition of a-SiC:H films and an ohmic behavior in the interface metal/a-SiC:H. In this work, the optimization of the interface Al/a-SiC:H films are performed by means of thermal annealing timing. The a-SiC:H films were deposited by enhanced chemical vapor deposition from CH{sub 4}/SiH{sub 4} and C{sub 2}H{sub 2}/SiH{sub 4} mixtures. The structural and optical properties of the deposited films are presented. An implantation phosphorous dose was used for doping before fabrication of patterned aluminum contacts. The implanted films were electrically characterized by the transfer length method (TLM) measuring a sheet resistance value as low as 171 M{omega}/square. The Schottky behavior was improved to ohmic behavior after several hours in thermal annealing treatments at 350 C, which allows to obtain a reasonable contact resistance values in the range from 8.6 to 26.8 k{omega}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. The impact of drug resistance on the risk of tuberculosis infection and disease in child household contacts: a cross sectional study.

    Science.gov (United States)

    Golla, Vera; Snow, Kathryn; Mandalakas, Anna M; Schaaf, H Simon; Du Preez, Karen; Hesseling, Anneke C; Seddon, James A

    2017-08-29

    The relative fitness of organisms causing drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) is unclear. We compared the risk of TB infection and TB disease in young child household contacts of adults with confirmed DS-TB and MDR-TB. In this cross-sectional analysis we included data from two community-based contact cohort investigation studies conducted in parallel in Cape Town, South Africa. Children <5 years of age with household exposure to an infectious TB case were included between August 2008 to June 2011. Children completed investigation for TB infection (tuberculin skin test) and TB disease (symptom evaluation, chest radiograph, bacteriology) in both studies using standard approaches. The impact of MDR-TB exposure on each covariate of TB infection and TB disease was assessed using univariable and multivariable logistic regression. Of 538 children included, 312 had DS-TB and 226 had MDR-TB exposure. 107 children with DS-TB exposure had TB infection (34.3%) vs. 101 (44.7%) of children with MDR-TB exposure (adjusted Odds Ratio [aOR]: 2.05; 95% confidence interval [CI]: 1.34-3.12). A total of 15 (6.6%) MDR-TB vs. 27 (8.7%) DS-TB child contacts had TB disease at enrolment (aOR: 0.43; 95% CI: 0.19-0.97). Our results suggest a higher risk of TB infection in child contacts with household MDR-TB vs. DS-TB exposure, but a lower risk of TB disease. Although potentially affected by residual confounding or selection bias, our results are consistent with the hypothesis of impaired virulence in MDR-TB strains in this setting.

  10. Applying "Spark Plasma Sintering" Technology to Enhance the Resistance to Contact Fatigue of Sintered Steel Based on Astaloy CRL

    Science.gov (United States)

    Rodziňák, D.; Čerňan, J.; Puchý, V.

    2017-12-01

    The article deals with the effect of porosity on the contact fatigue of sintered material type Astaloy CrL with 0.3 and 0.4% C. Sets of samples were used with densities beginning from the value of 7000 kg.m-3 to the value of almost 7859 kg.m-3 which represents almost zero porosity (compact material). It has been found out that the increase of compacting pressure applied simultaneously with temperature results in the reduction of porosity from the value of 9.10% to 0.0005% and increase in hardness from 145 to 193 HV10, depending on the carbon content. Logically there is also an increase in the fatigue life by the contact fatigue tests for the value of 50×106 cycles from the value of 900 MPa to 1150 MPa for samples with 0.3% of C and from 900 MPa to 1300 MPa for samples with 0.4% C. These investigations were also carried out in the past, but to achieve the reduction of porosity, different technonologies were used at each level such as double pressing, hot pressing, saturation, hot forging, etc. In this case, the single technology of "spark plasma sintering" making use of compacting at high temperatures is capable to continuously reduce porosity to zero.

  11. Long-Term Impact of Universal Contact Precautions on Rates of Multidrug-Resistant Organisms in ICUs: A Comparative Effectiveness Study.

    Science.gov (United States)

    Furuya, E Yoko; Cohen, Bevin; Jia, Haomiao; Larson, Elaine L

    2018-03-22

    OBJECTIVE To evaluate the impact of universal contact precautions (UCP) on rates of multidrug-resistant organisms (MDROs) in intensive care units (ICUs) over 9 years DESIGN Retrospective, nonrandomized observational study SETTING An 800-bed adult academic medical center in New York City PARTICIPANTS All patients admitted to 6 ICUs, 3 of which instituted UCP in 2007 METHODS Using a comparative effectiveness approach, we studied the longitudinal impact of UCP on MDRO incidence density rates, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and carbapenem-resistant Klebsiella pneumoniae. Data were extracted from a clinical research database for 2006-2014. Monthly MDRO rates were compared between the baseline period and the UCP period, utilizing time series analyses based on generalized linear models. The same models were also used to compare MDRO rates in the 3 UCP units to 3 ICUs without UCPs. RESULTS Overall, MDRO rates decreased over time, but there was no significant decrease in the trend (slope) during the UCP period compared to the baseline period for any of the 3 intervention units. Furthermore, there was no significant difference between UCP units (6.6% decrease in MDRO rates per year) and non-UCP units (6.0% decrease per year; P=.840). CONCLUSION The results of this 9-year study suggest that decreases in MDROs, including multidrug-resistant gram-negative bacilli, were more likely due to hospital-wide improvements in infection prevention during this period and that UCP had no detectable additional impact. Infect Control Hosp Epidemiol 2018;1-7.

  12. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    Science.gov (United States)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  13. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  14. Investigation of 6T SRAM memory circuit using high-k dielectrics based nano scale junctionless transistor

    Science.gov (United States)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Mohan Kumar, N.; Ajayan, J.

    2017-04-01

    In this paper the Dual Metal Surround Gate Junctionless Transistor (DMSGJLT) has been implemented with various high-k dielectric. The leakage current in the device is analysed in detail by obtaining the band structure for different high-k dielectric material. It is noticed that with increasing dielectric constant the device provides more resistance for the direct tunnelling of electron in off state. The gate oxide capacitance also shows 0.1 μF improvement with Hafnium Oxide (HfO2) than Silicon Oxide (SiO2). This paved the way for a better memory application when high-k dielectric is used. The Six Transistor (6T) Static Random Access Memory (SRAM) circuit implemented shows 41.4% improvement in read noise margin for HfO2 than SiO2. It also shows 37.49% improvement in write noise margin and 30.16% improvement in hold noise margin for HfO2 than SiO2.

  15. Formation of a low-resistance and high reflectivity reflector on p-type GaN with a AgAl ohmic contact

    International Nuclear Information System (INIS)

    Kim, Ja-Yeon; Park, Seong-Ju; Kwon, Min-Ki

    2012-01-01

    In this study, we investigate the effect of the Al composition of a AgAl alloy reflector deposited on a p-GaN layer for use in a high-efficiency GaN flip-chip light-emitting diode (FCLED) or n-type sideup vertical LEDs. When the Al composition was 3%, the AgAl reflector showed low resistance, high reflectance and thermally stable ohmic contact properties. For an Al composition of 3% in the AgAl reflector, the optical output power was improved by 50%, and the current-voltage characteristic was improved compared to that for a Ag reflector. These results clearly indicate that a AgAl layer on p-GaN constitutes a promising reflector and ohmic scheme for achieving high-brightness FCLEDs and vertical LEDs.

  16. Characterization of multi-scale porous structure of fly ash/phosphate geopolymer hollow sphere structures: from submillimeter to nano-scale.

    Science.gov (United States)

    Li, Ruifeng; Wu, Gaohui; Jiang, Longtao; Sun, Dongli

    2015-01-01

    In the present work, the porous structure of fly ash/phosphate geopolymer hollow sphere structures (FPGHSS), prepared by pre-bonding and curing technology, has been characterized by multi-resolution methods from sub-millimeter to nano-scale. Micro-CT and confocal microscopy could provide the macroscopic distribution of porous structure on sub-millimeter scale, and hollow fly ashes with sphere shape and several sub-millimeter open cells with irregular shape were identified. SEM is more suitable to illustrate the distribution of micro-sized open and closed cells, and it was found that the open cells of FPGHSS were mainly formed in the interstitial porosity between fly ashes. Mercury porosimeter measurement showed that the micro-sized open cell of FPGHSS demonstrated a normal/bimodal distribution, and the peaks of pore size distribution were mainly around 100 and 10 μm. TEM observation revealed that the phosphate geopolymer was mainly composed of the porous area with nano-pores and dense areas, which were amorphous Al-O-P phase and α-Al2O3 respectively. The pore size of nano-pores demonstrated a quasi-normal distribution from about 10 to 100 nm. Therefore, detailed information of the porous structure of FPGHSS could be revealed using multiple methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  18. Wear out Reliability and Intermetallic Compound Diffusion Kinetics of Au and PdCu Wires Used in Nano scale Device Packaging

    International Nuclear Information System (INIS)

    Gan, C.L.; Ng, E.K.; Chan, B.L.; Gan, C.L.; Hashim, U.; Classe, F.C.; Kwuanjai, T.

    2013-01-01

    Wear out reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nano scale semiconductor device packaging. This paper discusses the HAST (with bias) and UHAST (unbiased HAST) wear out reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wear out conditions. Intermetallic compound (IMC) diffusion constants and apparent activation energies (E a a) of both wire types were investigated after high temperature storage life test (HTSL). Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wear out reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.

  19. Synthesis of Nano scale Heterostructures Comprised of Metal Nano wires, Carbon Nano tubes, and Metal Nanoparticles: Investigation of Their Structure and Electrochemical Properties

    International Nuclear Information System (INIS)

    Chopra, N.; Wu, J.; Chopra, N.; Agrawal, P.

    2014-01-01

    One-dimensional nano scale heterostructures comprised of multi segment gold-nickel nano wires, carbon nano tube, and nickel nanoparticles were fabricated in a unique approach combining top-down and bottom-up assembly methods. Porous alumina template was utilized for sequential electrodeposition of gold and nickel nano wire segments. This was followed by chemical vapor deposition growth of carbon nano tubes on multi segment gold-nickel nano wires, where nickel segment also acted as a carbon nano tube growth catalyst. The aligned arrays of these gold-nickel-carbon nano tube heterostructures were released from porous alumina template and then subjected to wet-chemical process to be decorated with nickel/nickel oxide core/shell nanoparticles. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were utilized for morphology, interface, defect, and structure characterization. The electrochemical performance of these heterostructures was studied using cyclic voltammetry method and the specific capacitance of various heterostructures was estimated and compared.

  20. Risk Factors for Nasal Colonization by Methicillin-Resistant Staphylococci in Healthy Humans in Professional Daily Contact with Companion Animals in Portugal.

    Science.gov (United States)

    Rodrigues, Ana Catarina; Belas, Adriana; Marques, Cátia; Cruz, Luís; Gama, Luís T; Pomba, Constança

    2017-09-18

    Methicillin-resistant staphylococci (MRS), namely Staphylococcus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), are opportunistic agents of great importance in human and veterinary medicine. The aims of this study were to investigate the frequency, persistence, and risk factors associated with nasal colonization by MRS in people in daily contact with animals in Portugal. Seventy-nine out of 129 (61.2%) participants were found to be colonized by, at least, one methicillin-resistant (MR) staphylococci species (MR Staphylococcus epidermidis [n = 68], MRSA [n = 19], MR Staphylococcus haemolyticus [n = 7], MRSP [n = 2], and other coagulase-negative staphylococci [n = 4]). Three lineages were identified among the MRSA isolates (n = 7): the major human healthcare clone in Portugal (ST22-t032-IV, n = 3), the livestock-associated MRSA (ST398-t108-V, n = 3), and the New York-/Japan-related clone (ST105-t002-II, n = 1). MRSP isolates belonged to the European clone ST71-II-III. We identified two risk factors for nasal colonization by MRS in healthy humans: (i) being a veterinary professional (veterinarian and veterinary nurse) (p < 0.0001, odds ratio [OR] = 6.369, 95% confidence interval [CI, 2.683-15.122]) and (ii) have contacted with one MRSA- or MRSP-positive animal (p = 0.0361, OR = 2.742, 95% CI [1.067-7.045]). The follow-up study revealed that the majority (85%) remain colonized. This study shows that MRS in veterinary clinical practice is a professional hazard and highlights the need to implement preventive measures to minimize spread.

  1. A Continuous 3D-Graphene Network to Overcome Threshold Issues and Contact Resistance in Thermally Conductive Graphene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Federico Conrado

    2017-01-01

    Full Text Available In order to overcome thermal resistance issues in polymeric matrix composites, self-standing graphene aerogels were synthetized and infiltrated with an epoxy resin, in order to create conductive preferential pathways through which heat can be easily transported. These continuous highly thermally conductive 3D-structures show, due to the high interconnection degree of graphene flakes, enhanced transport properties. Two kinds of aerogels were investigated, obtained by hydrothermal synthesis (HS and ice-templated direct freeze synthesis (DFS. Following HS method an isotropic structure is obtained, and following DFS method instead an anisotropic arrangement of graphene flakes results. The density of the structure can be tuned leading to a different amount of graphene inside the final composite. The residual oxygen, known to be detrimental to thermal properties, was removed by thermal treatment before the infiltration process. With 1,25 wt.% of graphene, using HS method, the thermal conductivity of the polymeric resin was increased by 80%, suggesting that this technique is a valid route to improve the thermal performance of graphene-based composites. When preferential orientation of the filler was present (DFS case, thermal conductivity was increased more than 25% with a graphene content of only 0,27 wt.%, demonstrating that oriented structures can further improve the thermal transport efficiency.

  2. Pinning in high performance MgB{sub 2} thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Prikhna, Tatiana, E-mail: prikhna@mail.ru [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Shapovalov, Andrey [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Eisterer, Michael [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Shaternik, Vladimir [G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, 36 Academician Vernadsky blvd., Kiev, 03680 (Ukraine); Goldacker, Wilfried [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein (Germany); Weber, Harald W. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine); Boutko, Viktor [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Grechnev, Gennadiy [B. Verkin Institute for Low Temperature Physics of the National Academy of Sciences of Ukraine, 47, Prospekt Nauky, Kharkiv 61103 (Ukraine); Gusev, Alexandr [Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, R. Luxemburg str.72, Donetsk-114, 83114 (Ukraine); Kovylaev, Valeriy; Shaternik, Anton [Institute for Superhard Materials of the National Academy of Sciences of Ukraine , 2, Avtozavodskaya Str. , Kiev 07074 (Ukraine)

    2017-02-15

    Highlights: • Pinning in MgB{sub 2} depends on the Mg-B-O nano-scaled inhomogeneities. • Finer oxygen-enriched inhomogeneities is the reason of the higher J{sub c} in MgB{sub 2} thin films as compared to bulk. • The results of DOS calculations for MgB{sub 2-x}O{sub x} compounds demonstrate that they have metal-like behavior. • Ordered oxygen distribution in MgB{sub 2} (in pairs or zigzags) reduces binding energy. - Abstract: The comparison of nano-crystalline MgB{sub 2} oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, J{sub c}, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB{sub 2} bulks with high J{sub c} in low (∼10{sup 6} A/cm{sup 2} in 0-1 T at 10 K) and medium magnetic fields contain MgB{sub 0.6-0.8}O{sub 0.8-0.9} nano-inclusions, where δT{sub c} or a combined δT{sub c} (dominant) / δ{sub l} pinning mechanism prevails, while in bulk MgB{sub 2} with high J{sub c} in high magnetic fields (B{sub irr}(18.5 K) = 15 T, B{sub c2}(0 K) = 42.1 T) MgB{sub 1.2-2.7}O{sub 1.8-2.5} nano-layers are present and δ{sub l} pinning prevails. The structure of oxygen-containing films with high J{sub c} in low and high magnetic fields (J{sub c} (0 T) = 1.8 × 10{sup 7} A/cm{sup 2} and J{sub c} (5 T) = 2 × 10{sup 6} A/cm{sup 2} at 10 K) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δ{sub l} pinning is realized. The results of DOS calculations in MgB{sub 2-x}O{sub x} cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, E{sub b}, does not increase sufficiently as compared with that for MgB{sub 2}, while when oxygen atoms form zigzag chains the calculated E{sub b} is even lower (E{sub b} = −1.15712 Ry).

  3. Effects of Bias Pulsing on Etching of SiO2 Pattern in Capacitively-Coupled Plasmas for Nano-Scale Patterning of Multi-Level Hard Masks.

    Science.gov (United States)

    Kim, Sechan; Choi, Gyuhyun; Chae, Heeyeop; Lee, Nae-Eung

    2016-05-01

    In order to study the effects of bias pulsing on the etching characteristics of a silicon dioxide (SiO2) layer using multi-level hard mask (MLHM) structures of ArF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer (ACL)/SiO2, the effects of bias pulsing conditions on the etch characteristics of a SiO2 layer with an ACL mask pattern in C4F8/CH2F2/O2/Ar etch chemistries were investigated in a dual-frequency capacitively-coupled plasma (CCP) etcher. The effects of the pulse frequency, duty ratio, and pulse-bias power in the 2 MHz low-frequency (LF) power source were investigated in plasmas generated by a 27.12 MHz high-frequency (HF) power source. The etch rates of ACL and SiO2 decreased, but the etch selectivity of SiO2/ACL increased with decreasing duty ratio. When the ACL and SiO2 layers were etched with increasing pulse frequency, no significant change was observed in the etch rates and etch selectivity. With increasing LF pulse-bias power, the etch rate of ACL and SiO2 slightly increased, but the etch selectivity of SiO2/ACL decreased. Also, the precise control of the critical dimension (CD) values with decreasing duty ratio can be explained by the protection of sidewall etching of SiO2 by increased passivation. Pulse-biased etching was successfully applied to the patterning of the nano-scale line and space of SiO2 using an ACL pattern.

  4. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in dairy sheep and in-contact humans: An intra-farm study.

    Science.gov (United States)

    Carfora, V; Giacinti, G; Sagrafoli, D; Marri, N; Giangolini, G; Alba, P; Feltrin, F; Sorbara, L; Amoruso, R; Caprioli, A; Amatiste, S; Battisti, A

    2016-06-01

    Staphylococcus aureus is involved in a wide variety of diseases in humans and animals, and it is considered one of the most significant etiological agents of intramammary infection in dairy ruminants, causing both clinical and subclinical infections. In this study, the intra-farm prevalence and circulation of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) were investigated on an Italian dairy sheep farm previously identified as MRSA-positive by testing bulk tank milk (first isolation in 2012). Human samples (nasal swabs, hand skin samples, and oropharyngeal swabs) from 3 persons working in close contact with the animals were also collected, and the genetic characteristics and relatedness of the MRSA isolates from human and animal sources within the farm were investigated. After 2yr from the first isolation, we confirmed the presence of the same multidrug-resistant strain of MRSA sequence type (ST)1, clonal complex (CC)1, spa type t127, staphylococcal cassette chromosome mec (SCCmec) type IVa, showing identical pulsed field gel electrophoresis (PFGE) and resistance profiles at the farm level in bulk tank milk. Methicillin-resistant S. aureus isolates were detected in 2 out of 556 (0.34%) individual milk samples, whereas MSSA isolates were detected in 10 samples (1.8%). The MRSA were further isolated from udder skin samples from the 2 animals that were MRSA-positive in milk and in 2 of the 3 examined farm personnel. All MRSA isolates from both ovine and human samples belonged to ST(CC)1, spa type t127, SCCmec type IVa, with some isolates from animals harboring genes considered markers of human adaptation. In contrast, all MSSA isolates belonged to ruminant-associated CC130, ST700, spa type t528. Analysis by PFGE performed on selected MRSA isolates of human and animal origin identified 2 closely related (96.3% similarity) pulsotypes, displaying only minimal differences in gene profiles (e.g., presence of the immune evasion cluster

  5. [Children exposed to multidrug-resistant tuberculosis: How should we manage? Analysis of 46 child contacts and review of the literature].

    Science.gov (United States)

    Catho, G; Sénéchal, A; Ronnaux-Baron, A-S; Valour, F; Perpoint, T; Bouaziz, A; Dumitriescu, O; Reix, P; Pedone, C; Ader, F

    2015-12-01

    Tuberculosis-related morbidity and mortality remain important. Emergence and diffusion of multidrug-resistance tuberculosis (MDR-TB) is a global public health concern. Cases of MDR-TB in children are a sentinel event indicating the spread of a mycobacterial strain within a community. Latent TB precedes MDR-TB and screening and follow-up of contact individuals are key points of TB infection control. We performed the case-investigation of 20 adult cases of MDR-TB managed in our institution. Forty-six pediatric contact individuals were identified. A high proportion of these children were lost to follow-up (80% at 12 months), showing that monitoring this reservoir population with migrant history is challenging. Five (11%) children presented a secondary infection: one child was diagnosed with active TB infection (positive tuberculin skin test associated with abnormalities on chest computer tomography [CT] scan). Four children were diagnosed with latent TB infection (isolated positive tuberculin skin test with normal CT scan). Two of these children received a treatment adjusted to the strain of the index case. In the setting of emerging MDR-TB, tuberculin skin test may be likely replaced by specific interferon-gamma release assays (IGRA), independent of prior BCG vaccination. In addition, chest CT scan is preferred to chest X-ray to detect TB lesions. The management of latent TB infection is controversial: immediate treatment with second-line anti-TB drugs adapted to the index case strain or, consistently with WHO guidelines, a simple follow-up with subsequent treatment in case of active TB. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Incremental stiffness and electrical contact conductance in the contact of rough finite bodies

    Science.gov (United States)

    Barber, J. R.

    2013-01-01

    If two half spaces are in contact, there exists a formal mathematical relation between the electrical contact resistance and the incremental elastic compliance. Here, this relation is extended to the contact of finite bodies. In particular, it is shown that the additional resistance due to roughness of the contacting surfaces (the interface resistance) bears a similar relation to the additional compliance as that obtained for the total resistance in the half-space problem.

  7. Nano-scale ferroelectric memories

    International Nuclear Information System (INIS)

    Scott, J.F.

    1998-01-01

    Since 1986 there has been a minor renaissance in the study of ferroelectrics. Studied for a century in the form of single-crystals or bulk ceramics, ferroelectrics are now fully integrated in thin-film (100 nm or less) form in both Si and GaAs chips. Four embodiments have reached large-volume commercial production. A brief review of this field of device physics is given, emphasizing memory applications. (author)

  8. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis.

    Science.gov (United States)

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2016-04-01

    This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200 g nickel-titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P titanium alloy MSIs. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The Effect of CuSn Intermetallics on the Interstrand Contact Resistance in Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Jacob, P; Leroy, D; Oberli, L R; Taborelli, M

    2005-01-01

    The LHC superconducting cables are submitted to a 200°C heat-treatment in air in order to increase the resistance between the crossing strands (RC) within the cable. During this treatment the as-applied Sn-Ag alloy strand coating is transformed into a CuSn intermetallic compound layer. The microstructure, the surface topography and the surface chemistry of the non-reacted and reacted coatings have been characterised by different techniques, notably focused ion beam (FIB), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Based on the results obtained by these techniques the different influences that the intermetallics have on RC are discussed. The desired RC is obtained only when a continuous Cu3Sn layer is formed, i.e. a sufficient wetting of the Cu substrate by the tinning alloy is crucial. Among other effects the formation of the comparatively hard intermetallics roughens the surface and, thus, reduces the true contact area and i...

  10. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  11. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  12. Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Ruth Hoskins Editor University of KwaZulu-Natal, Information Studies Programme Email: hoskinsr@ukzn.ac.za. Support Contact. Gita Ramdass Email: ramdass@ukzn.ac.za. ISSN: 1025-8892. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...

  13. Nonimpact of Decolonization as an Adjunctive Measure to Contact Precautions for the Control of Methicillin-Resistant Staphylococcus aureus Transmission in Acute Care.

    Science.gov (United States)

    Peterson, Lance R; Wright, Marc O; Beaumont, Jennifer L; Komutanon, Vanida; Patel, Parul A; Schora, Donna M; Schmitt, Bryan H; Robicsek, Ari

    2016-01-01

    This was an observational study comparing methicillin-resistant Staphylococcus aureus (MRSA) transmission with no decolonization of medical patients to required decolonization of all MRSA carriers during two consecutive periods: baseline with no decolonization of medical patients (16 months) and universal MRSA carrier decolonization (13 months). The setting was a one-hospital, 156-bed facility with 9,200 annual admissions. Regression models were used to compare rates of MRSA acquisition. The chi-square test was used to compare event frequencies. We used rates of MRSA clinical disease as an outcome monitor of the program. Analysis was done on 15,666 patients who had admission and discharge tests; 27.9% of inpatient days were occupied by a MRSA-positive patient (colonized patient-days) who received decolonization while hospitalized during the baseline period (this 27.9% represented those who had planned surgery) compared to 76.0% during the intervention period (P transmission was 97 events (1.0%) for 9,415 admissions (2.0 transmission events/1,000 patient-days) during baseline and was 87 (1.4%) for 6,251 admissions (2.7 transmission events/1,000 patient-days) during intervention (P = 0.06; rate ratio, 0.74; 95% confidence interval [CI], 0.55 to 1.00). The MRSA nosocomial clinical disease rate was 5.9 infections/10,000 patient-days in the baseline period and was 7.2 infections/10,000 patient-days for the intervention period (rate ratio, 0.82; 95% CI, 0.46 to 1.45; P = 0.49). Decolonization of MRSA patients does not add benefit when contact precautions are used for patients colonized with MRSA in acute (hospital) care. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Micro- to nano-scale mapping and characterization of low-temperature metamorphism in Archean subseafloor metabasalts with implications for early life

    Science.gov (United States)

    Grosch, Eugene; McLoughlin, Nicola

    2015-04-01

    biosignatures [3]. In-situ U-Pb dating of the titanite microtextures by laser-ablation multi-collector ICP-MS has been combined with the microscale metamorphic temperature mapping to test their syngenicity and biogenicity [4]. On-going work includes high-resolution nano-scale investigation of the mineral interfaces between titanite, chlorite and carbonate by FIB-TEM (Focussed ion beam - transmission electron microscopy). Our current results indicate that the filamentous titanite microtextures are not reliable biosignatures [4], but that microscopic sulphides may preserve sulphur isotope evidence for early Archean subseafloor microbial sulphate reduction. The search for earliest traces of life has not only contributed to developing state-of-the art analytical techniques, but has also led to development of new biogenicity criteria for subseafloor life. We propose that these new criteria and analytical mapping techniques may prove useful also in the search for microbial life in extra-terrestrial metabasalts and altered ultramafics from Mars, and/or meteorites [3]. [1]. Furnes et al., (2004), Science, 304 (5670) 578-581. [2]. McLoughlin et al., (2012) Geology, 40(11), 1031-1034. [3]. Grosch et al., (2014) Astrobiology, 14, 216-228. [4]. Grosch & McLoughlin, (2014) Proceedings of the National Academy of Sciences, 111, 8380 - 8385.

  15. On a two-layer Si{sub 3}N{sub 4}/SiO{sub 2} dielectric mask for low-resistance ohmic contacts to AlGaN/GaN HEMTs

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunyan, S. S., E-mail: spartakmain@gmail.com; Pavlov, A. Yu.; Pavlov, B. Yu.; Tomosh, K. N.; Fedorov, Yu. V. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)

    2016-08-15

    The fabrication of a two-layer Si{sub 3}N{sub 4}/SiO{sub 2} dielectric mask and features of its application in the technology of non-fired epitaxially grown ohmic contacts for high-power HEMTs on AlGaN/GaN heterostructures are described. The proposed Si{sub 3}N{sub 4}/SiO{sub 2} mask allows the selective epitaxial growth of heavily doped ohmic contacts by nitride molecular-beam epitaxy and the fabrication of non-fired ohmic contacts with a resistance of 0.15–0.2 Ω mm and a smooth surface and edge morphology.

  16. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  17. Antibiotics and Resistance: Glossary

    Science.gov (United States)

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network ...

  18. Issues of contact etching and pre-treatment in Schottky contact

    International Nuclear Information System (INIS)

    Lee, Haksun; Shin, Kyoungsub; Cho, Nammyun; Min, Gyungjin; Kang, Changjin; Han, Woosung; Moon, Jootae

    2009-01-01

    This paper reports on the process dependence of contact resistance of silicide/n+ Si and silicide/p+ Si contact. Three processes such as contact etching, Si treatment and pre-treatment are investigated with contact resistance point of view. Only silicide/p+ Si contact resistance has been changed as etching time of contact increases while silicide/n+ Si contact resistance has been regularly maintained. We have modeled that fluorine used in contact etching can scavenge or deactivate boron in p+ Si, resulting in degradation of silicide/p+ Si contact resistance. In order to confirm the model, two different gases (hydro carbon fluoride/carbon fluoride) during Si treatment right after contact etching were applied. As a result, the silicide/p+ Si contact resistance was increased in carbon fluoride case, which has higher fluorine ratio to carbon than hydro carbon fluoride case. It is also observed that the silicide/p+ Si contact resistance was increased proportionally with time of fluorine-based pre-treatment before silicide formation.

  19. Contact hysteroscopy.

    Science.gov (United States)

    Baggish, M S; Barbot, J

    1983-06-01

    In 1907 innovations in optics and illumination made by Maximilian Nitze were applied to hysteroscopy by Charles David, who wrote a treatise of hysteroscopy. David improved illumination by placing an electric incandescent bulb at the intrauterine end of his endoscope and also sealed the distal end of the tube with a piece of glass. The history of the contact endoscope that the authors personally used is connected to the invention by Vulmiere (1952) of a revolutionary illumination process in endoscopy--the "cold light" process. The components of cold light consist of a powerful external light source that is transmitted via a special optical guide into the endometrial cavity. The 1st application of his principle (1963) was an optical trochar contained in a metallic sheath. This simple endoscope was perfected, and in 1973 Barbot and Parent, in France, began to use it to examine the uterine cavity. Discussion focuses on methods, instrumentation, method for examination (grasping the instrument, setup, light source, anesthesia, dilatation, technique, and normal endometrium); cervical neoplasia; nonneoplastic lesions of the endometrium (endometrial polyp, submucous myoma, endometrial hyperplasia); intrauterine device localization; neoplastic lesions of the endometrium; precursors (adenocarcinoma); hysteroscopy in pregnancy (embryoscopy, hydatidiform mole, postpartum hemorrhage, incomplete abortion, spontaneous abortion, induced abortions, and amnioscopy); and examinations of children and infants. The contact endoscope must make light contact with the structure to be viewed. The principles of contact endoscopy depend on an interpretation of color, contour, vascular pattern, and a sense of touch. These are computed together and a diagnosis is made on the basis of previously learned clinical pathologic correlations. The contact endoscope is composed of 3 parts: an optical guide; a cylindric chamber that collects and traps ambient light; and a magnifying eyepiece. The phase of

  20. Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Osintseva, A. L.; Malygina, I. Yu.

    2018-02-01

    Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.

  1. Improvements To Micro Contact Performance And Reliability

    Science.gov (United States)

    2016-12-22

    Fulfillment of the Requirements for the Degree of Doctor of Philosophy Tod V. Laurvick, B.S.E.E., M.S.E.E. Major, USAF 22 December 2016 DISTRIBUTION...complete customization of each device if desired. Another crucial fabrication characteristic of micro-contacts involves the thin- films used as a contact...surface. This work demonstrates that integration iv of thin- film spreading resistance theory into the most advanced contact resistance models to date

  2. Transition metal contacts to graphene

    Energy Technology Data Exchange (ETDEWEB)

    Politou, Maria, E-mail: Maria.Politou@imec.be; De Gendt, Stefan; Heyns, Marc [KU Leuven, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Asselberghs, Inge; Radu, Iuliana; Conard, Thierry; Richard, Olivier; Martens, Koen; Huyghebaert, Cedric; Tokei, Zsolt [imec, Kapeldreef 75, 3001 Leuven (Belgium); Lee, Chang Seung [SAIT, Samsung Electronics Co., Suwon 443-803 (Korea, Republic of); Sayan, Safak [imec, Kapeldreef 75, 3001 Leuven (Belgium); Intel Corporation, 2200 Mission College Blvd, Santa Clara, California 95054 (United States)

    2015-10-12

    Achieving low resistance contacts to graphene is a common concern for graphene device performance and hybrid graphene/metal interconnects. In this work, we have used the circular Transfer Length Method (cTLM) to electrically characterize Ag, Au, Ni, Ti, and Pd as contact metals to graphene. The consistency of the obtained results was verified with the characterization of up to 72 cTLM structures per metal. Within our study, the noble metals Au, Ag and Pd, which form a weaker bond with graphene, are shown to result in lower contact resistance (Rc) values compared to the more reactive Ni and Ti. X-ray Photo Electron Spectroscopy and Transmission Electron Microscopy characterization for the latter have shown the formation of Ti and Ni carbides. Graphene/Pd contacts show a distinct intermediate behavior. The weak carbide formation signature and the low Rc values measured agree with theoretical predictions of an intermediate state of weak chemisorption of Pd on graphene.

  3. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  4. Nucleation at the Contact Line Observed on Nanotextured Surfaces

    Science.gov (United States)

    Kostinski, A. B.; Gurganus, C.; Charnawskas, J. C.; Shaw, R. A.

    2015-12-01

    Surface nucleation, and contact nucleation in particular, are important for many physical processes, including pharmaceutical drug synthesis, metallurgy, and heterogeneous ice nucleation. It has been conjectured that roughness plays a role in surface nucleation, the tendency for freezing to begin preferentially at the liquid-gas interface. Using high speed imaging, we sought evidence for freezing at the contact line on catalyst substrates with imposed characteristic length scales (texture). It is found that nano-scale texture causes a shift in the nucleation of ice in super-cooled water to the three-phase contact line, while micro-scale texture does not. The reduction in the Gibbs barrier for nucleation at the droplet triple line suggests that a line tension, inversely proportional to the surface feature length scale, may be the relevant physical mechanism. A survey of line tension values in literature supports this hypothesis. This work suggests that the physical morphology of a particle, and not just its chemical composition, is important for characterizing a nucleation catalyst.

  5. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  6. Simulation for fretting corrosion of tin-coated copper contacts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.Y.; Joo, H.G. [Stress Analysis and Failure Design Laboratory, School of Mechanical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, D.K. [Research and Development Division, Hyundai-Kia Motors 772-1, Jangduk-dong, Hwaseong Gyeonggi 445-706 (Korea, Republic of); Park, Y.W. [Technical Research Laboratories, POSCO, P.O.Box 36, Goedong-dong, Nam-gu, Pohang Gyeongbuk 790-300 (Korea, Republic of)

    2011-04-15

    The simulations of contact resistance variation under various oxide fractions are conducted. The copper oxide is assigned on the contact area with various fractions by the random distribution technique. The calculated contact resistance at each oxide area fraction is compared with the experimental result. The increase in contact resistance results in an increased oxide area fraction. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Prevalence and characteristics of methicillin-resistant coagulase-negative staphylococci from livestock, chicken carcasses, bulk tank milk, minced meat, and contact persons

    Directory of Open Access Journals (Sweden)

    Zweifel Claudio

    2011-01-01

    Full Text Available Abstract Background Methicillin-resistant coagulase-negative staphylococci (MR-CNS are of increasing importance to animal and public health. In veterinary medicine and along the meat and milk production line, only limited data were so far available on MR-CNS characteristics. The aim of the present study was to evaluate the prevalence of MR-CNS, to identify the detected staphylococci to species level, and to assess the antibiotic resistance profiles of isolated MR-CNS strains. Results After two-step enrichment and growth on chromogenic agar, MR-CNS were detected in 48.2% of samples from livestock and chicken carcasses, 46.4% of samples from bulk tank milk and minced meat, and 49.3% of human samples. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS, 414 selected MR-CNS strains belonged to seven different species (S. sciuri, 32.6%; S. fleurettii, 25.1%; S. haemolyticus, 17.4%; S. epidermidis, 14.5%, S. lentus, 9.2%; S. warneri, 0.7%; S. cohnii, 0.5%. S. sciuri and S. fleurettii thereby predominated in livestock, BTM and minced meat samples, whereas S. epidermidis and S. haemolyticus predominated in human samples. In addition to beta-lactam resistance, 33-49% of all 414 strains were resistant to certain non-beta-lactam antibiotics (ciproflaxacin, clindamycin, erythromycin, tetracycline. Conclusions A high prevalence of MR-CNS was found in livestock production. This is of concern in view of potential spread of mecA to S. aureus (MRSA. Multiresistant CNS strains might become an emerging problem for veterinary medicine. For species identification of MR-CNS isolated from different origins, MALDI-TOF MS proved to be a fast and reliable tool and is suitable for screening of large sample amounts.

  8. Electrical contacting techniques for high Tc superconductor applications

    International Nuclear Information System (INIS)

    Tzeng, Y.; Belser, M.

    1988-01-01

    Three methods for making low resistivity electrical contacts to high Tc superconductors have been studied. This includes vacuum deposition of silver thin films, welding of silver to HTSC, and painting or printing of silver contacts to HTSC. Specific contact resistance lower than 1 . E-8 Ohm-cm2 can routinely be achieved for both electronic and power applications. Oxygen annealing is found to improve the contact resistance significantly. Both the contact fabrication processes and the electrical properties of these contacts will be discussed

  9. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  10. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts

    International Nuclear Information System (INIS)

    Cinar, Kuebra; Coskun, C.; Aydogan, S.; Asil, Hatice; Guer, Emre

    2010-01-01

    The effect of electron irradiation on Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts has been studied by current voltage (I-V) characterization at room temperature. The diodes have been subjected to the electron irradiation at various energies (6, 12 and 15 MeV) and influence of the electron irradiation on the diode parameters such as barrier height, ideality factor, and series resistance has been studied. Cheung functions, Norde model and conductance method have been used to determine the diode parameters. The ideality factor of the diodes is greater than unity indicating activation of some other current transport mechanism(s). The series resistances of the diodes increase by increasing electron energy. The reverse current increases for the Au/Ni/6H-SiC diode after each electron irradiation experiment, while decreasing trend is observed for Au/Ni/4H-SiC diode. Decrease in the barrier height of Au/Ni/4H-SiC diode is observed and mainly attributed to the increase of the reverse current, while the decrease of the forward current is caused by increase in series resistance, for high electron irradiation energies.

  11. The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Cinar, Kuebra [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Coskun, C., E-mail: ccoskun@atauni.edu.t [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Aydogan, S.; Asil, Hatice; Guer, Emre [Department of Physics, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-03-15

    The effect of electron irradiation on Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts has been studied by current voltage (I-V) characterization at room temperature. The diodes have been subjected to the electron irradiation at various energies (6, 12 and 15 MeV) and influence of the electron irradiation on the diode parameters such as barrier height, ideality factor, and series resistance has been studied. Cheung functions, Norde model and conductance method have been used to determine the diode parameters. The ideality factor of the diodes is greater than unity indicating activation of some other current transport mechanism(s). The series resistances of the diodes increase by increasing electron energy. The reverse current increases for the Au/Ni/6H-SiC diode after each electron irradiation experiment, while decreasing trend is observed for Au/Ni/4H-SiC diode. Decrease in the barrier height of Au/Ni/4H-SiC diode is observed and mainly attributed to the increase of the reverse current, while the decrease of the forward current is caused by increase in series resistance, for high electron irradiation energies.

  12. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  13. Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field

    Directory of Open Access Journals (Sweden)

    N. Ohshima

    2017-05-01

    Full Text Available We study current-induced magnetization switching properties of a magnetic tunnel junction with junction diameter of 19 nm and resistance-area product of 6 Ωμm2 in the nanosecond regime with and without in-plane magnetic field. At zero field, for both parallel (P-to-anti-parallel (AP and AP-to-P switchings, the probability of switching PSW approaches unity with the increase of pulse voltage duration τP. However, under in-plane magnetic field, PSW for P-to-AP switching starts to saturate at a value lower than unity with increasing τP, while AP-to-P switching remains the same as in the absence of in-plane magnetic field. This in-plane field dependence of PSW can be partially explained by the influence of electric-field modulation of magnetic anisotropy.

  14. Current-induced magnetization switching in a nano-scale CoFeB-MgO magnetic tunnel junction under in-plane magnetic field

    Science.gov (United States)

    Ohshima, N.; Sato, H.; Kanai, S.; Llandro, J.; Fukami, S.; Matsukura, F.; Ohno, H.

    2017-05-01

    We study current-induced magnetization switching properties of a magnetic tunnel junction with junction diameter of 19 nm and resistance-area product of 6 Ω μ m2 in the nanosecond regime with and without in-plane magnetic field. At zero field, for both parallel (P)-to-anti-parallel (AP) and AP-to-P switchings, the probability of switching PSW approaches unity with the increase of pulse voltage duration τP. However, under in-plane magnetic field, PSW for P-to-AP switching starts to saturate at a value lower than unity with increasing τP, while AP-to-P switching remains the same as in the absence of in-plane magnetic field. This in-plane field dependence of PSW can be partially explained by the influence of electric-field modulation of magnetic anisotropy.

  15. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    Science.gov (United States)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  16. Jagged1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Yuan, Yin; Lu, Xin; Chen, Xuan; Shao, Hongwei; Huang, Shulin

    2013-10-01

    Notch signaling, which is driven by the Notch1 receptor, plays an essential role in the pathogenesis and stroma-mediated drug resistance of T-cell acute lymphoblastic leukemia (T-ALL). However, little is known about the roles of Notch ligands in the survival or drug resistance of T-ALL cells. In the present study, isolated mesenchymal stem cells (MSCs) from human umbilical cord (hUC) samples, termed hUC-MSCs, were used as stromal cells for the Jurkat T-ALL cell line. The role of the Notch ligand, Jagged1, was assessed in the survival of Jurkat T-ALL cells using this co-culture system. hUC-MSCs and Jurkat cells were observed to express Jagged1. Furthermore, co-culture with hUC-MSCs led to a significant upregulation of Jagged1 and a more significant overexpression of its receptor, Notch1, in the Jurkat cells, indicating that the receptor and ligand pair may play a role in the reciprocal or autonomous activation of the Notch pathway. In addition, a higher level of CD28 expression was observed in the Jurkat cells that were co-cultured with hUC-MSCs. Blocking Jagged1 expression using neutralizing antibodies restored drug-induced apoptosis in the Jurkat cells that were co-cultured with hUC-MSCs, and also increased the drug sensitivity of the Jurkat cells that were cultured alone. By contrast, direct incubation with exogenously recombinant Jagged1 produced the same protective effects in Jurkat cells as those induced by hUC-MSCs. These results indicate a significant role for Jagged1 in hUC-MSC-induced survival and the self-maintenance of the Jurkat T-ALL cell line, making it a potential target for the treatment of human T-ALL.

  17. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling; Etude theorique a l'echelle nanometrique du carbure de silicium sous irradiation: modelisation classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, G

    2006-10-15

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  18. Nano-scaled hydroxyapatite/polymer composite IV. Fabrication and cell adhesion properties of a three-dimensional scaffold made of composite material with a silk fibroin substrate to develop a percutaneous device.

    Science.gov (United States)

    Furuzono, Tsutomu; Yasuda, Shoji; Kimura, Tsuyoshi; Kyotani, Singo; Tanaka, Junzo; Kishida, Akio

    2004-01-01

    Nano-scaled sintered hydroxyapatite (HAp) particles with an a-axis length of 87 +/- 23 nm, a c-axis length of 236 +/- 81 nm, and a mean aspect ratio ( c/ a) of 2.72 were covalently linked onto a silk fibroin (SF) substrate chemically modified by graft polymerization with gamma-methacryloxypropyl trimethoxysilane (MPTS). Graft polymerization with poly(MPTS) on SF was conducted by free-radical initiation in a water solvent with pentaethylene glycol dodecyl ether as a nonionic surfactant. The alkoxysilyl groups of the graft polymers avoided hydrolysis and maintained their activity in coupling with the hydroxyl groups on the HAp surface despite the use of water as the reaction solvent. The weight gain of poly(MPTS) on SF increased with increasing the reaction time, eventually reaching a plateau value of about 15 wt% after 50 min of reaction time. After HAp covalent coating, the particles separated or aggregated into several crystals, as shown by scanning electron microscopic observation. L929 fibroblast cells adhered more plentifully on HAp-coated SF compared to untreated SF and hydrolyzed poly(MPTS)-grafted SF during 24 h or 48 h of incubation. The cells adhered only on the HAp surface but not at all on the dehydrated grafted surface of SF without HAp. A button-shaped prototype for a percutaneous device was manufactured by transplantation of HAp-coated SF fibers of about 100 microm in length onto silicone moldings using an adhesive, and the device showed good cell adhesiveness.

  19. An analysis of formation mechanism and nano-scale hardness of the laser-induced coating on Ni–17Mo–7Cr based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Yanming [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China); Yang, Jianguo, E-mail: yangjianguo@hit.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001 (China); Fu, Wei [Shanghai Baosteel Industry Technological Service Co., Ltd., Shanghai, 201900 (China); Wang, Limei; Gao, Zengliang [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310014 (China)

    2016-07-15

    The Ni–17Mo–7Cr based superalloy was laser surface treated in argon atmosphere to enhance its tribological property. The formation mechanism of the coating was revealed and its mechanical properties were characterized. The microstructure and phase identification in the coating were investigated by scanning electron microscope, transmission electron microscope and X-ray diffraction techniques. The mechanical properties of the coating, i.e. elastic modulus and hardness, were measured by nanoindentation tests. The SiC particles were used as the coating materials. During the laser treatment, the SiC will first decompose and the decomposition products Si will trigger the formation of MoC carbides in the coating. After complete solidification, the coating consists of the MoC equiaxed dendrites, interdendritic Ni matrix and graphite. Lot of tiny MoC and chromium carbides can also occur in the interdendritic matrix. The elastic modulus and hardness of MoC are characterized to be 394.0 GPa and 22.3 GPa, which are far higher than that of the matrix (E = 246.8 GPa, H = 5.3 GPa). In addition, the volume fraction of hard MoC can reach about 45.3% in the coating. The method reported in this work will provide us a new approach to fabricate the wear-resisting coating. - Highlights: • The SiC will decompose and the released Si atoms can trigger formation of hard MoC. • The coating consists of MoC equiaxed dendrites, interdendritic matrix and graphite. • The elastic modulus and hardness of MoC are measured to be 394.0 GPa and 22.3 GPa. • The volume fraction of hard MoC in the coating can reach approximately 45.3%.

  20. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  1. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  2. A Study on Graphene—Metal Contact

    Directory of Open Access Journals (Sweden)

    Hongyu Yu

    2013-03-01

    Full Text Available The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1 metal preparation method; (2 asymmetric conductance; (3 annealing effect; (4 interfaces impact.

  3. Contact chain measurements for ultrathin conducting films

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2009-01-01

    Test structures for the electrical characterization of ultrathin conductive (ALD) films are presented based on electrodes on which the ultrathin film is deposited. The contact resistance of the buried electrodes to the ultrathin ALD TiN films is investigated using contact chain structures. This work

  4. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011.

    Science.gov (United States)

    Larsen, Jesper; Petersen, Andreas; Sørum, Marit; Stegger, Marc; van Alphen, Lieke; Valentiner-Branth, Palle; Knudsen, Lisbet Krause; Larsen, Lars Stehr; Feingold, Beth; Price, Lance Bradley; Andersen, Paal Skytt; Larsen, Anders Rhod; Skov, Robert Leo

    2015-01-01

    Livestock constitutes a potential reservoir of meticillin-resistant Staphylococcus aureus isolates belonging to a recently derived lineage within clonal complex 398 (MRSA CC398-IIa). Since its discovery in the early 2000s, this lineage has become a major cause of human disease in Europe, posing a serious public health challenge in countries with intensive livestock production. To retrace the history of human colonisation and infection with MRSA CC398-IIa in Denmark, we conducted a nationwide, retrospective study of MRSA isolates collected from 1999 to 2011. Among 7,429 MRSA isolates screened, we identified 416 MRSA CC398-IIa isolates. Of these, 148 were from people with infections, including 51 from patients reporting no livestock exposure. The first cases of MRSA CC398-IIa infection in Denmark occurred in 2004. Subsequently, the incidence of MRSA CC398-IIa infection showed a linear annual increase of 66% from 2004 to 2011 (from 0.09 to 1.1 per 100,000 person-years). There were clear temporal and spatial relationships between MRSA CC398-IIa-infected patients with and without livestock exposure. These findings suggest substantial dissemination of MRSA CC398-IIa from livestock or livestock workers into the Danish community and underscore the need for strategies to control its spread both on and off the farm.

  5. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011

    Science.gov (United States)

    Larsen, J; Petersen, A; Sørum, M; Stegger, M; van Alphen, L; Valentiner-Branth, P; Knudsen, LK; Larsen, LS; Feingold, B; Price, LB; Andersen, PS; Larsen, AR; Skov, RL

    2016-01-01

    Livestock constitutes a potential reservoir of meticillin-resistant Staphylococcus aureus isolates belonging to a recently derived lineage within clonal complex 398 (MRSA CC398-IIa). Since its discovery in the early 2000s, this lineage has become a major cause of human disease in Europe, posing a serious public health challenge in countries with intensive livestock production. To retrace the history of human colonisation and infection with MRSA CC398-IIa in Denmark, we conducted a nationwide, retrospective study of MRSA isolates collected from 1999 to 2011. Among 7,429 MRSA isolates screened, we identified 416 MRSA CC398-IIa isolates. Of these, 148 were from people with infections, including 51 from patients reporting no livestock exposure. The first cases of MRSA CC398-IIa infection in Denmark occurred in 2004. Subsequently, the incidence of MRSA CC398-IIa infection showed a linear annual increase of 66% from 2004 to 2011 (from 0.09 to 1.1 per 100,000 person-years). There were clear temporal and spatial relationships between MRSA CC398-IIa-infected patients with and without livestock exposure. These findings suggest substantial dissemination of MRSA CC398-IIa from livestock or livestock workers into the Danish community and underscore the need for strategies to control its spread both on and off the farm. PMID:26535590

  6. Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid

    Directory of Open Access Journals (Sweden)

    Król Piotr

    2014-06-01

    Full Text Available PU elastomers were synthesized using MDI, PTMO, butane-1,4-diol or 2,2,3,3-tetrafiuorobutane-1,4-diol. Using the same diisocyanate and polyether reagents urethane segments were prepared, to be inserted in the poly(urethane-methacrylate copolymers. Bromourethane or tetraphenylethane-urethane macroinitiators were used as transitional products reacting with MMA according to the ARGET ATRP. 1H and 13C NMR spectral methods, as well as DSC and TGA thermal methods, were employed to confirm chemical structures of synthesised elastomers and copolymers. To investigate the possibility of using synthesized polymers as biomaterials a research on keeping them in physiological liquid at 37°C was performed. A loss in weight and ability to sorption of water was determined and by using GPC the molecular weight changes were compared. Additionally, changes in the thermal properties of the samples after exposure in physiological liquid were documented using both the TGA and DSC methods. The studies of surface properties (confocal microscopy and SFE of the obtained polymers were performed. The structure of the polymer chains was defined by NMR. Possible reasons of hydrolysis were discussed, stating that new copolymers are more resistant and polar biomaterials can be less interesting than elastomers.

  7. Crane-Load Contact Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact

  8. Characteristics of the Sliding Electric Contact of Pantograph/Contact Wire Systems in Electric Railways

    Directory of Open Access Journals (Sweden)

    Guangning Wu

    2017-12-01

    Full Text Available The sliding electric contact of pantograph/contact wire systems plays a significant part in the current collection stability and operation life of pantograph/contact wire systems. This paper addresses the evolutionary process of sliding electric contact of pantograph/contact wire systems by analyzing three key characteristics including contact resistance, temperature distribution and microstructure. The influence of electric current on contact resistance was interpreted. Furthermore, the evolution of the spatial temperature distribution of the carbon strip was obtained in the zigzag movement, while the dominant role of electric effect in temperature rise was demonstrated. In the end, the wear morphology differences under pure friction and current-carrying conditions were analyzed. The formation of radial cracks was illustrated and its influenced on the wear process was discussed.

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non-Prescription Contact Lens Laura: Vision ... Robyn: Blurry Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  12. Contact metallurgy optimization for ohmic contacts to InP

    DEFF Research Database (Denmark)

    Clausen, Thomas; Pedersen, Arne Skyggebjerg; Leistiko, Otto

    1991-01-01

    AuGeNi and AuZnNi metallizations to n- and p-InP were studied as a function of the annealing temperature in a Rapid Thermal Annealing (RTA) system. For n-InP (S:8×1018cm-3) a broad minimum existed from 385°C to 500°C, in which the specific contact resistance, rc, was about 10-7 ¿cm2. The lowe...

  13. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner

    2016-01-01

    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures as a func......Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  14. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    International Nuclear Information System (INIS)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-01-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  15. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr

    2016-02-15

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  16. Nano-scale effects in electrochemistry

    DEFF Research Database (Denmark)

    Meier, J.; Schiøtz, Jakob; Liu, Ping

    2004-01-01

    as the diameter of the palladium particles parallel to the support surface decreases from 200 to 6 nm. Density functional theory (DFT) calculations combined with molecular dynamics (MD) simulations have been used to investigate the origin of the effect. It is concluded that the size effect is given...

  17. [Correct contact lens hygiene].

    Science.gov (United States)

    Blümle, S; Kaercher, T; Khaireddin, R

    2013-06-01

    Although contact lenses have long been established in ophthalmology, practical aspects of handling contact lenses is becoming increasingly less important in the clinical training as specialist for ophthalmology. Simultaneously, for many reasons injuries due to wearing contact lenses are increasing. In order to correct this discrepancy, information on contact lenses and practical experience with them must be substantially increased from a medical perspective. This review article deals with the most important aspects for prevention of complications, i.e. contact lens hygiene.

  18. Mechanoluminescent Contact Type Sensor

    Directory of Open Access Journals (Sweden)

    A. K. Yefremov

    2017-01-01

    Full Text Available Mechanoluminescent sensing elements convert mechanical stress into optical radiation. Advantages of such sensors are the ability to generate an optical signal, solid-state, simple structure, and resistance to electromagnetic interference. Mechanoluminescent sensor implementations can possess the concentrated and distributed sensitivity, thereby allowing us to detect the field of mechanical stresses distributed across the area and in volume. Most modern semiconductor photo-detectors can detect mechanoluminescent radiation, so there are no difficulties to provide its detection when designing the mechanoluminescent sensing devices. Mechanoluminescent substances have especial sensitivity to shock loads, and this effect can be used to create a fuse the structure of which includes a target contact type sensor with a photosensitive actuator. The paper briefly describes the theoretical basics of mechanoluminiscence: a light signal emerges from the interaction of crystalline phosphor luminescence centers with electrically charged dislocations, moving due to the deformation of the crystal. A mathematical model of the mechanoluminescent conversion is represented as a functional interaction between parameters of the mechanical shock excitation and the sensor light emission. Examples of computing the optical mechanoluminescent output signal depending on the duration and peak level of impulse load are given. It is shown that the luminous flux, generated by mechanoluminescent sensing element when there is an ammunition-target collision causes the current emerging in photo-detector (photodiode that is sufficient for a typical actuator of the fuse train to operate. The potential possibility to create a contact target type sensor based on the light-sensitive mechanoluminescent sensor was proved by the calculation and simulation results.

  19. Decrease in electrical contact resistance of Sb-doped n+-BaSi2 layers and spectral response of an Sb-doped n+-BaSi2/undoped BaSi2 structure for solar cells

    Science.gov (United States)

    Kodama, Komomo; Takabe, Ryota; Yachi, Suguru; Toko, Kaoru; Suemasu, Takashi

    2018-03-01

    We investigated how the electron concentration n in a 300-nm-thick Sb-doped n+-BaSi2 layer grown by molecular beam epitaxy affected the contact resistance R C to surface electrodes (Al, indium-tin-oxide). As the n of n-BaSi2 increased, R C decreased and reached a minimum of 0.019 Ω cm2 at n = 2.4 × 1018 cm-3 for the Al electrodes. This value was more than 1 order of magnitude smaller than that obtained for Al/B-doped p-BaSi2. We believe that this significant decrease in R C came from Sb segregation. Furthermore, the internal quantum efficiency (IQE) spectrum was evaluated for an Sb-doped n+-BaSi2 (20 nm)/undoped BaSi2 (500 nm)/n+-Si(111) structure. Its IQE reached as high as ˜50% over a wide wavelength range under a small bias voltage of 0.1 V applied between the top and bottom electrodes.

  20. Reducing Contact Resistance Errors In Measuring Thermal ...

    African Journals Online (AJOL)

    Values of thermal conductivity (k) of glass beads, quartz sand, stone dust and clay were determined using a thermal probe with and without heat sink compounds (arctic silver grease (ASG) and white grease (WG)) at different water contents, bulk densities and particle sizes. The heat sink compounds (HSC) increased k at ...

  1. Effect of poly-hexamethylene biguanide hydrochloride (PHMB) treated non-sterile medical gloves upon the transmission of Streptococcus pyogenes, carbapenem-resistant E. coli, MRSA and Klebsiella pneumoniae from contact surfaces.

    Science.gov (United States)

    Ali, S; Wilson, A P R

    2017-08-17

    Reduction of accidental contamination of the near-patient environment has potential to reduce acquisition of healthcare-associated infection(s). Although medical gloves should be removed when soiled or touching the environment, compliance is variable. The use of antimicrobial-impregnated medical gloves could reduce the horizontal-transfer of bacterial contamination between surfaces. Determine the activity of antimicrobial-impregnated gloves against common hospital pathogens: Streptococcus pyogenes, carbapenem-resistant E.coli (CREC), MRSA and ESBL-producing Klebsiella pneumoniae. Fingerpads (~1cm 2 ) of PHMB-treated and untreated gloves were inoculated with 10 μL (~10 4 colony-forming-units [cfu]) of test-bacteria prepared in heavy-soiling (0.5%BSA), blood or distilled-water (no-soiling) and sampled after 0.25, 1, 10 or 15 min contact-time. Donor surfaces (~1cm 2 computer-keys) contaminated with wet/dry inoculum were touched with the fingerpad of treated/untreated gloves and subsequently pressed onto recipient (uncontaminated) computer-keys. Approximately 4.50log 10 cfu of all bacteria persisted after 15 min on untreated gloves regardless of soil-type. In the absence of soiling, PHMB-treated gloves reduced surface-contamination by ~4.5log 10 cfu (>99.99%) within 10 min of contact-time but only ~2.5log 10 (>99.9%) and ~1.0log 10 reduction respectively when heavy-soiling or blood was present. Gloves became highly-contaminated (~4.52log 10 -4.91log 10 cfu) when handling recently-contaminated computer-keys. Untreated gloves contaminated "recipient" surfaces (~4.5log 10 cfu) while PHMB-treated gloves transferred fewer bacteria (2.4-3.6log 10 cfu). When surface contamination was dry, PHMB gloves transferred fewer bacteria (0.3-0.6log 10 cfu) to "recipient" surfaces than untreated gloves (1.0-1.9log 10 ; P gloves may be useful in preventing dissemination of organisms in the near-patient environment during routine care. However they are not a substitute for

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in a pair of colored contact lenses, Laura Butler of Parkersburg, W.Va., had "extreme pain in ... to wear any kind of contact lens. In Butler's case, the lenses caused an infection and left ...

  6. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  7. Multiple Josephson contact interferometer

    International Nuclear Information System (INIS)

    Zappe, H.H.

    1978-01-01

    The interferometer (quantum interference between two parallel contacts) displays a mid connector and contacts of the same size, or contacts at which the middle one is twice the size as the other two, or a double connector and three contacts by which the middle contact carries twice the current as the other two. Also there can be provided interferometers with three and four contacts as well as with symmetrical double current connectors and the same largest Josephson current through all contacts. Because all contacts display the same phase state in the voltage free switching state, the amplification property can be increased and current dissipation can be decreased in a way that logic circuits with high integration degree and high switching velocities can be designed. (DG) [de

  8. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... popping touch. But colored contact lenses are popular year-round, not just at Halloween. But few know the ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over- ... without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over-the-Counter Costume Contact Lenses Can ... was in severe pain and on medication for four weeks, and couldn't see well enough to ...

  12. Corporate Consumer Contact API

    Data.gov (United States)

    General Services Administration — The data in the Corporate Consumer Contact API is based on the content you can find in the Corporate Consumer Contact listing in the Consumer Action Handbook (PDF)....

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lens because they can be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, ... Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes ...

  15. Contact Us about Asbestos

    Science.gov (United States)

    How to contact EPA for more information on asbestos, including state and regional contacts, EPA’s Asbestos Abatement/Management Ombudsman and the Toxic Substances Control Act (TSCA) Assistance Information Service (TSCA Hotline).

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... an ophthalmologist — an eye medical doctor — who will measure each eye and talk to you about proper ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  20. Contact lens in keratoconus

    OpenAIRE

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ...

  2. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact ... After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter ...

  4. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  5. Characterization of bilayer-metal contacts to high Tc superconducting films

    International Nuclear Information System (INIS)

    Ma, Q.Y.; Schmidt, M.T.; Weinman, L.S.; Yang, E.S.; Sampere, S.M.; Chan, S.

    1991-01-01

    Low resistivity normal metal contacts to YBa 2 Cu 3 O 7-x (YBCO) films have been investigated. It has previously shown that the contact resistivity of Au contact exhibits a strong temperature dependence, decreasing 2--3 orders of magnitude at a transition temperature near T c of YBCO film. Other metal contacts, including Pd and Nb, do not show this effect. The contact resistivity of metal contacts has been correlated with interfacial reactions and disruption studied by x-ray photoelectron spectroscopy (XPS). In this work we demonstrate that a thin interlayer, specifically 10 A of Au, between the YBCO and a metal contact such as Nb can allow the formation of a low resistance contact. XPS of the effect of the interlayer is presented, and the implications for carrier coupling are discussed. These results indicate a methodology for low contact resistance bilayer-metal structures for supercondcuting device applications

  6. Piezoresistive cantilevers for characterizing thin-film gold electrical contacts

    Science.gov (United States)

    Pruitt, Beth L.

    The electronics packaging and testing industry is interested in new methods for making contacts to electronic chips to allow improvement or replacement of existing interconnect technologies. One approach involves the use of flexible contact structures integrated with the package or the testing apparatus which allow the device to be fully contacted by placing and pressing the interconnect array into contact. This technoOlogy depends on the properties of low-force electrical contacts. The research presented is a careful characterization of the electromechanical properties of such contacts, using instrumented MEMS force sensors. This work provides a sensor, measurement system and methodology for low force contact resistance data collection. This research includes the design, fabrication, and characterization of a micromechanical force sensor integrated with a 4-wire electrical contact characterization capability, a set of parametric measurements in the 10nN-10mN regime, and the development of qualitative design rules for small force thin film gold electrical contacts. The sensor consists of a silicon cantilever beam with a piezoresistive force sensor suitable for high-accuracy force measurements in the mN-nN range. The contact tips consist of a glass spheres for a controlled contact geometry as well as polystyrene spheres for highly-compliant contact structures. The contact halves are coated with varying thicknesses of evaporated, sputtered, or plated thin film gold. Combined with AFM scans and nanoindentation hardness measurements, correlations are found between the contact behavior, resistance measurements, and material characteristics over varied contact sizes, film types, thicknesses, and substrates. Mean stable contact resistance (elastic contact theory are attributed to the presence of asperities on the contact spheres, plasticity in the films, and differences in material properties for thin film vs. bulk form. The two most significant factors affecting contact

  7. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  8. Contact lens in keratoconus

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  9. Contact lens in keratoconus

    Science.gov (United States)

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  10. Animal Research International: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. J. E. Eyo Dr. Department of Zoology, University of Nig Department of Zoology, POBox 3146, University of Nigeria, Nsukka, Enugu State, Nigeria. Phone: 234 42 308030. Email: joseph.eyo@unn.edu.ng. Support Contact. N. S. Oluah Phone: +234-83732127. Email: ndubusioluah@yahoo.com.

  11. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  12. Discovery and Innovation: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. Keto Mshigeni Editor-in-Chief Academy Science Publishers. PO Box 14798-00200. Nairobi. Kenya. Phone: 254 (20) 884401-5. Fax: 254 (20) 884406. Email: aas@aasciences.org. Support Contact. Prof. Keto Mshigeni Email: aas@aasciences.org. ISSN: 1015-079X. AJOL African Journals Online.

  13. LBS Management Review: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr Obinna Muogboh Managing Editor Lagos Business School Pan African University 2 Ahmed Onibudo Street, P.O. Box 73688, Victoria Island, Lagos, NIGERIA Email: omuogboh@lbs.edu.ng. Support Contact. Editor Email: omuogboh@lbs.edu.ng. ISSN: 1118-3713. AJOL African Journals Online.

  14. African Health Sciences: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr James Tumwine Editor-in-Chief. Makerere University Medical School P. O. Box 7072 Kampala Uganda. Phone: 256-41-530020/1. Email: kabaleimc@gmail.com. Support Contact. Pauline Salamula Email: paulinesalamula@gmail.com. ISSN: 1680-6905. AJOL African Journals Online. HOW TO USE ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Get follow up exams with your eye care provider. If you notice redness, swelling, excessive discharge, pain or discomfort from wearing contact lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ...

  16. Contact Quality in Participation

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Jensen, Olav Storm

    2016-01-01

    We investigate the concept of participation from the perspective of quality of the contact in the communicative interactions between participants. We argue for the need for an academic-personal competence that qualifies the human contact central in all Participatory Design (PD) activities as a wa...

  17. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are ...

  19. Sciences & Nature: Contact

    African Journals Online (AJOL)

    Principal Contact. Ehouan Etienne Ehile Professor University of Abobo-Adjamé 02 BP 801 Abidjan 02. Phone: (+225) 2030 4201. Fax: (+225) 2030 4203. Email: eh_ehile@yahoo.fr. Support Contact. Irie Zoro Bi Email: banhiakalou@yahoo.fr. ISSN: 1812-0741. AJOL African Journals Online. HOW TO USE AJOL.

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  1. African Zoology: Contact

    African Journals Online (AJOL)

    Principal Contact. Lester Isaacs Phone: +27466229698. Fax: +2746 622 9550. Email: lester@nisc.co.za. Support Contact. NISC office. Email: info@nisc.co.za. ISSN: 2224-073X. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners ...

  2. Factor XII Contact Activation.

    Science.gov (United States)

    Naudin, Clément; Burillo, Elena; Blankenberg, Stefan; Butler, Lynn; Renné, Thomas

    2017-11-01

    Contact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation-associated disease states. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Afrika Statistika: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. Gane Samb Lo Editor Université Gaston Berger BP 234, Université Saint-Louis Sénégal Phone: 221 961 23 40. Fax: 221 961 53 38. Email: ganesamblo@yahoo.com. Support Contact. Mamadou Camara Email: mdoucamara@gmail.com. ISSN: 2316-090X. AJOL African Journals Online. HOW TO ...

  4. Nigerian Food Journal: Contact

    African Journals Online (AJOL)

    Nigerian Food Journal. ... Nigerian Food Journal: Contact. Journal Home > About the Journal > Nigerian Food Journal: Contact. Log in or Register to get access to full text downloads. ... Mailing Address. Department of Food Science and Technology University of Agriculture, Makurdi, Nigeria ...

  5. Lettuce contact allergy

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus E

    2016-01-01

    degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-prick tests, and possibly scratch patch tests as well. Any...

  6. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.

    2011-02-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena that modify the expected device performance. These reactions have become more challenging and more difficult to control as new materials have been introduced and as device sizes have entered the deep nanoscale. To provide an overview of this field of inquiry, this issue of MRS Bulletin includes articles on gate and contact materials for Si-based devices, junction contact materials for Si-based devices, and contact materials for alternate channel substrates (Ge and III-V), nanodevices. © 2011 Materials Research Society.

  7. Numerical Modeling of Electrical Contact Conductance of Rough Bodies

    Directory of Open Access Journals (Sweden)

    M. V. Murashov

    2015-01-01

    Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are

  8. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ... woman from Oregon made history as the first human host for an eye worm that previously had ...

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... colored contact lenses to enhance their costumes. From blood-drenched vampire eyes to glow-in-the-dark ... properly fitted may scratch the eye or cause blood vessels to grow into the cornea. Even if ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... people with high myopia? Mar 29, 2017 New Technology Helps the Legally Blind Be More Independent Oct ... Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial Relationships with Industry Medical ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... had not been properly fitted by an eye care professional, the lenses stuck to my eye like ... lenses do not require the same level of care or consideration as a standard contact lens because ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... 2018 By Dan T. Gudgel Do you know what the difference is between ophthalmologists and optometrists? A ...

  16. Ergonomics SA: Contact

    African Journals Online (AJOL)

    Principal Contact. Mrs June McDougall. Rhodes University. Department of Human Kinetics and Ergonomics. P.O. Box 94. Rhodes University. Grahamstown. 6140. Phone: +27 46 6038471. Email: j.mcdougall@ru.ac.za ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... 13, 2017 Histoplasmosis Diagnosis Sep 01, 2017 How common is retinal detachment for people with high myopia? ...

  18. Tomato contact dermatitis

    DEFF Research Database (Denmark)

    Paulsen, Evy; Christensen, Lars P; Andersen, Klaus Ejner

    2012-01-01

    The tomato plant (Solanum lycopersicum) is an important crop worldwide. Whereas immediate-type reactions to tomato fruits are well known, contact dermatitis caused by tomatoes or tomato plants is rarely reported. The aims of this study were to present new data on contact sensitization to tomato...... plants and review the literature on contact dermatitis caused by both plants and fruits. An ether extract of tomato plants made as the original oleoresin plant extracts, was used in aimed patch testing, and between 2005 and 2011. 8 of 93 patients (9%) tested positive to the oleoresin extracts....... This prevalence is in accordance with the older literature that reports tomato plants as occasional sensitizers. The same applies to tomato fruits, which, in addition, may cause protein contact dermatitis. The allergens of the plant are unknown, but both heat-stable and heat-labile constituents seem...

  19. Fragrance allergic contact dermatitis.

    Science.gov (United States)

    Cheng, Judy; Zug, Kathryn A

    2014-01-01

    Fragrances are a common cause of allergic contact dermatitis in Europe and in North America. They can affect individuals at any age and elicit a spectrum of reactions from contact urticaria to systemic contact dermatitis. Growing recognition of the widespread use of fragrances in modern society has fueled attempts to prevent sensitization through improved allergen identification, labeling, and consumer education. This review provides an overview and update on fragrance allergy. Part 1 discusses the epidemiology and evaluation of suspected fragrance allergy. Part 2 reviews screening methods, emerging fragrance allergens, and management of patients with fragrance contact allergy. This review concludes by examining recent legislation on fragrances and suggesting potential additions to screening series to help prevent and detect fragrance allergy.

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...