WorldWideScience

Sample records for resistance microstructure impact

  1. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds

    Science.gov (United States)

    Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-01-01

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262

  2. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.

    Science.gov (United States)

    Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-12-18

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.

  3. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  4. Role of Soil Microstructure in Microbially-mediated Drying Resistance

    Science.gov (United States)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.

    2015-12-01

    The retention of soil moisture between rainfall or irrigation events is imperative to the productivity of terrestrial ecosystems. Amplified weather conditions are expected to result in widespread reduction in soil moisture. Extracellular polysaccharides (EPS) produced by soil bacteria have the ability to influence soil moisture by (i) retaining water directly within the hydrogel matrix, and (ii) promoting an aggregated soil structure. We have developed microfluidic devices that emulate realistic soil microstructures and enable direct observation of EPS production and drying resistance. The objective of this study was to compare moisture retention in emulated soil micromodels containing different soil microstructures. "Aggregated" devices contain a greater number of small (100 μm) pores, while "non-aggregated" devices contained more intermediate-sized (30-100 μm) pores. Particle-size distributions, similar to a sandy loam, were identical in both cases. Dilute suspensions of either of two strains of Sinorhizobium meliloti were introduced into replicate micromodels: one strain produced EPS ("EPS+") and the other did not produce EPS ("EPS-"). Loaded micromodels were equilibrated at saturated conditions, then dried at 83% RH for several days. Direct observation showed micro-scale patterns of air infiltration. The rate and extent of moisture loss was determined as a function of bacterial strain and microstructure aggregation state. Results showed devices loaded with EPS+ bacteria retained moisture longer than devices loaded with EPS- bacteria. Moisture retention by EPS+ bacteria was enhanced in aggregated versus non-aggregated microstructures. This work illustrates how moisture retention in soil is the result of microbial processes acting within pore-scale soil microstructures. Validated microfluidics-based approaches may help quantitatively link pore-scale phenomena to ecosystem function.

  5. Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation.

    Science.gov (United States)

    Cui, Jiaolong; Tkachenko, Olga; Gogel, Hannah; Kipman, Maia; Preer, Lily A; Weber, Mareen; Divatia, Shreya C; Demers, Lauren A; Olson, Elizabeth A; Buchholz, Jennifer L; Bark, John S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S

    2015-02-01

    Sleep deprivation (SD) can degrade cognitive functioning, but growing evidence suggests that there are large individual differences in the vulnerability to this effect. Some evidence suggests that baseline differences in the responsiveness of a fronto-parietal attention system that is activated during working memory (WM) tasks may be associated with the ability to sustain vigilance during sleep deprivation. However, the neurocircuitry underlying this network remains virtually unexplored. In this study, we employed diffusion tensor imaging (DTI) to investigate the association between the microstructure of the axonal pathway connecting the frontal and parietal regions--i.e., the superior longitudinal fasciculus (SLF)--and individual resistance to SD. Thirty healthy participants (15 males) aged 20-43 years underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) at rested wakefulness prior to a 28-hour period of SD. Task-related fronto-parietal fMRI activation clusters during a Sternberg WM Task were localized and used as seed regions for probabilistic fiber tractography. DTI metrics, including fractional anisotropy, mean diffusivity, axial and radial diffusivity were measured in the SLF. The psychomotor vigilance test (PVT) was used to evaluate resistance to SD. We found that activation in the left inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) positively correlated with resistance. Higher fractional anisotropy of the left SLF comprising the primary axons connecting IPL and DLPFC was also associated with better resistance. These findings suggest that individual differences in resistance to SD are associated with the functional responsiveness of a fronto-parietal attention system and the microstructural properties of the axonal interconnections. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Influence of Al-Si alloy microstructure on the corrosion resistance of coatings formed by the microarc oxidation method

    Directory of Open Access Journals (Sweden)

    Dudareva Natalia.Y.

    2017-01-01

    Full Text Available The impact of the high-silicon aluminum alloy initial microstructure on the quality of the coating formed by microarc oxidation (MAO has been studied. The MAO treatment is applied to AK12D samples in the initial coarse-grained state and after high pressure torsion. The following coating properties are studied: thickness, microhardness, porosity and corrosion resistance. It is established that the MAO layers properties depend on the base microstructure much. High pressure torsion applied to AK12D samples before MAO results in increase of the coating thickness by ∼ 2 times. The microhardness of coatings reduces and their corrosion resistance degrades by ∼ 10 times.

  7. Microstructure and Oxidation Resistance of Laser Remelted Plasma Sprayed Nicraly Coating

    Directory of Open Access Journals (Sweden)

    Niemiec D.

    2016-06-01

    Full Text Available The article presents results of research relating to the impact of laser treatment done to the surface of plasma sprayed coatings NiCrAlY. Analysis consisted microstructure and oxidation resistance of coatings subjected to two different laser melting surfaces. The test were performed at a temperature 1000°C the samples were removed from the furnace after 25, 300, 500, 750 and 1000 hours. The investigations range included analysis of top surface of coatings by XRD characterization oxides formed types and microscopic investigations of coatings morphology

  8. Effect of Microstructure and Environment on Static Crack Growth Resistance in Alloy 706

    Science.gov (United States)

    Yang, Ling; Hawk, Jeffrey A.; Duquette, David J.; Schwant, Robin C.

    2009-06-01

    The relationship between thermo-mechanical processing, resultant microstructure, and mechanical properties has been of interest in the field of metallurgy for centuries. In this work, the effect of heat treatment on microstructure and key mechanical properties important for turbine rotor design has been investigated. Specifically, the tensile yield strength and crack growth resistance for a nickel-iron based superalloy 706 has been examined. Through a systematic study, a correlation was found between the processing parameters and the microstructure. Specifically, differences in grain boundary and grain interior precipitates were identified and correlated with processing conditions. Further, a strong relationship between microstructure and mechanical properties was identified. The type and orientation of grain boundary precipitates affect time-dependent crack propagation resistance, and the size and volume fraction of grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time-dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. Microstructures with η decorated grain boundaries were more resistant to environmental damage through oxygen embrittlement than microstructures with no η phase on the grain boundaries. An effort was made to explore the mechanisms of improving the time-dependent crack propagation resistance through thermo-mechanical processing, and several mechanisms were identified in both the environment-dependent and the environment-independent category. These mechanisms were ranked based on their contributions to crack propagation resistance.

  9. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.T.; Chang, H.T.; Huang, B.M. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Huang, C.Y. [Iron and Steel R& D Department, China Steel Corporation, Kaohsiung, Taiwan, ROC (China); Yang, J.R., E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  10. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel

    International Nuclear Information System (INIS)

    Kumar, Avnish; Sharma, Ashok; Goel, S.K.

    2015-01-01

    Effects of heat treatment on microstructure, mechanical properties and erosion behavior of cast 23-8-N nitronic steel were studied. A series of heat treatments were carried out in the temperature range of 1180–1240 °C to observe the effect on microstructure. Optimum heat treatment cycle was obtained at 1220 °C for holding time of 150 min, which leads to dissolution of carbides, formation of equiaxed grains and twins. Heat treatment has shown improvement in tensile strength, toughness, impact strength and work hardening capacity, however at the cost of marginal reduction in hardness and yield strength. This resulted in improvement of erosion resistance of cast 23-8-N nitronic steel. The microstructures, fractured surfaces and phases were studied by optical microscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis respectively

  11. The microstructural dependence of wear resistance in austenite containing plate steels

    Science.gov (United States)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  12. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Unknown

    YS: 624 MPa), low chromium (0⋅55%) addition produced the .... denum tends to hinder self-diffusion of iron (Houdremont. 1953), thus increasing the ..... microstructural heterogeneity leading to formation of local- ized carbide rich areas that aided ...

  13. Microstructure and abrasion resistance of plasma sprayed titania coatings

    Science.gov (United States)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  14. Microstructure refinement of tungsten by surface deformation for irradiation damage resistance

    International Nuclear Information System (INIS)

    Efe, Mert; El-Atwani, Osman; Guo, Yang; Klenosky, Daniel R.

    2014-01-01

    Surface deformation by machining is demonstrated as a way to engineer microstructures of pure tungsten for extreme irradiation environments. Thermomechanical conditions are established for microstructure refinement in the chips and the workpiece subsurface. Ultrafine grains are observed both in the chip and the subsurface, at depths relevant to the typical thickness of the irradiation-induced damage. Guidelines for producing a uniform, ultrafine-grained structure via machining and other surface deformation processes are discussed along with the implications of such microstructures for damage resistance

  15. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Unknown

    Report 66 29. Ho C Y, Powell R W and Liley P E 1975 Thermal conductivity of the elements: A comprehensive review (NewYork: AIP). Honeycombe R W K 1981 Steel microstructure and properties. (London: Edward Arnold; Ohio : ASM). Houdremont E 1953 Handbook of special steels (Berlin: Springer Verlag) 1. Irvine K J ...

  16. Correlation of microstructure and fatigue crack growth resistance in Ti-6Al-4V alloy

    CSIR Research Space (South Africa)

    Masete, Stephen

    2016-10-01

    Full Text Available of Microstructure and Fatigue Crack Growth Resistance in Ti-6Al-4V alloy Stephen Masete,1,2* Kalenda Mutombo1,2*, Roelf Mostert2, Charles Siyasiya2 and Waldo Stumpf2 1MSM/Light Metals, Council for Scientific and Industrial Research, (CSIR), Pretoria..., South Africa 2Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria, South Africa *Email: smasete@csir.co.za, kmutombo@csir.co.za The effect of the microstructure on fatigue crack growth resistance...

  17. Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure.

    Science.gov (United States)

    Munde, M S; Mehonic, A; Ng, W H; Buckwell, M; Montesi, L; Bosman, M; Shluger, A L; Kenyon, A J

    2017-08-24

    We studied intrinsic resistance switching behaviour in sputter-deposited amorphous silicon suboxide (a-SiO x ) films with varying degrees of roughness at the oxide-electrode interface. By combining electrical probing measurements, atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM), we observe that devices with rougher oxide-electrode interfaces exhibit lower electroforming voltages and more reliable switching behaviour. We show that rougher interfaces are consistent with enhanced columnar microstructure in the oxide layer. Our results suggest that columnar microstructure in the oxide will be a key factor to consider for the optimization of future SiOx-based resistance random access memory.

  18. Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304

    International Nuclear Information System (INIS)

    Zhang Ziying; Han Dong; Jiang Yiming; Shi Chong; Li Jin

    2012-01-01

    Highlights: ► The relationship between pitting corrosion resistance and annealing temperature for UNS S32304 was systemically studied. ► The specimens annealed at 1080 °C for 1 h, quenched in water exhibit the best pitting corrosion resistance. ► The relationship between microstructural evolution and pitting resistance of annealed UNS S32304 was discussed in detail. ► The pitting corrosion resistance is consistent with pitting resistance equivalent number of weaker phase for UNS S32304 alloy. - Abstract: The effect of annealing temperature in the range from 1000 to 1200 °C on the pitting corrosion behavior of duplex stainless steel UNS S32304 was investigated by the potentiodynamic polarization and potentiostatic critical pitting temperature techniques. The microstructural evolution and pit morphologies were studied using a scanning electron microscopy with energy dispersive X-ray spectroscopy. The results demonstrated that the nucleation of metastable pits transformed from austenite phase to ferrite phase with the increasing annealing temperature. As the annealing temperature increased, the pitting corrosion resistance firstly increased and then decreased. The highest pitting corrosion resistance was obtained at 1080 °C with the highest critical pitting temperature value and pitting nucleation resistance. The results could be well explained by the microstructural evolution of ferrite and austenite phases induced by annealing treatment.

  19. Correlation of electrical resistivity with microstructure in an Fe-Co-2% V alloy

    International Nuclear Information System (INIS)

    Ashby, J.A.; Flower, H.M.; Rawlings, R.D.

    1978-01-01

    The resistivity of an Fe-Co-2% V alloy in the 1) disordered and 2) disordered and cold-worked states is measured as a function of ageing temperature and time. A number of microstructural changes occur on ageing and these result in complex ageing time-temperature dependences of the resistivity. It is found that the changes that lead to an increase in resistivity are (i) the initial stages of ordering and (ii) vanadium segregation, whereas the later stages of ordering, domain growth, recovery, and γ-phase precipitation are accompanied by a decrease in resistivity. (author)

  20. Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

    International Nuclear Information System (INIS)

    Jiang, Liang-Ting; Huang, Tzu-Chien; Chang, Chih-Yuan; Ciou, Jian-Ren; Yang, Sen-Yeu; Huang, Po-Hsun

    2008-01-01

    This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time

  1. Impact resistant battery enclosure systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  2. Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber – Epoxy Composite Tube

    Directory of Open Access Journals (Sweden)

    Roy Y. Allwin

    2017-09-01

    Full Text Available Carbon fiber reinforced polymeric (CFRP composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.

  3. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratory conditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060°C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.

  4. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Six microstructural variants of Prime Candidate Alloy (PCA) were evaluated for swelling resistance during HFIR irradiation, together with several heats of type 316 stainless steel (316). Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variability among alloys at 400 0 C, but again 25%-cold-worked PCA was the best. Microstructurally, swelling resistance correlated with development of fine, stable bubbles whereas high swelling was due to coarser distributions of bubbles becoming unstable and converting to voids (bias-driven cavities)

  5. Microstructure and mechanical properties of resistance upset butt welded 304 austenitic stainless steel joints

    International Nuclear Information System (INIS)

    Sharifitabar, M.; Halvaee, A.; Khorshahian, S.

    2011-01-01

    Graphical abstract: Three different microstructural zones formed at different distances from the joint interface in resistance upset butt welding of 304 austenitic stainless steel. Highlights: → Evaluation of microstructure in resistance upset welding of 304 stainless steel. → Evaluation of welding parameters effects on mechanical properties of the joint. → Introducing the optimum welding condition for joining stainless steel bars. -- Abstract: Resistance upset welding (UW) is a widely used process for joining metal parts. In this process, current, time and upset pressure are three parameters that affect the quality of welded products. In the present research, resistance upset butt welding of 304 austenitic stainless steel and effect of welding power and upset pressure on microstructure, tensile strength and fatigue life of the joint were investigated. Microstructure of welds were studied using scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was used to distinguish the phase(s) that formed at the joint interface and in heat affected zone (HAZ). Energy dispersive spectroscopy (EDS) linked to the SEM was used to determine chemical composition of phases formed at the joint interface. Fatigue tests were performed using a pull-push fatigue test machine and the fatigue properties were analyzed drawing stress-number of cycles to failure (S-N) curves. Also tensile strength tests were performed. Finally tensile and fatigue fracture surfaces were studied by SEM. Results showed that there were three different microstructural zones at different distances from the joint interface and delta ferrite phase has formed in these regions. There was no precipitation of chromium carbide at the joint interface and in the HAZ. Tensile and fatigue strengths of the joint decreased with welding power. Increasing of upset pressure has also considerable influence on tensile strength of the joint. Fractography of fractured samples showed that formation of hot spots at

  6. Microstructure and Hot Oxidation Resistance of SiMo Ductile Cast Irons Containing Si-Mo-Al

    Science.gov (United States)

    Ibrahim, Mervat M.; Nofal, Adel; Mourad, M. M.

    2017-04-01

    SiMo ductile cast irons are used as high-temperature materials in automotive components, because they are microstructurally stable at high operating temperatures. The effect of different amounts of Si and Mo as well as the addition of 3 wt pct Al on the microstructure, high-temperature oxidation, and mechanical properties of SiMo ductile cast iron was studied. Dilatometric measurements of SiMo ductile iron exhibited obvious differences in the transformation temperature A 1 due to presence of Al and the increase of Si. The microstructure of the SiMo alloys without Al addition showed outstanding nodularity and uniform nodule distribution. However, by adding 3 wt pct Al to low Si-SiMo ductile iron, some compacted graphite was observed. The results of oxidation experiments indicated that high Si-SiMo ductile iron containing 4 and 4.9 wt pct Si had superior resistance to lower Si-SiMo and SiMo ductile iron containing 3 wt pct Al. The results showed also that with increasing Si up to 4.9 wt pct or by replacing a part of Si with 3 wt pct Al, tensile strength increased while elongation and impact toughness decreased.

  7. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  8. Studying microstructure of heat resistant steel deoxidized by barium ferrosilicon

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2016-07-01

    Full Text Available The paper examined the nature and distribution of non-metallic inclusions in the heat-resistant steel 12H1MF (0,12 % С, 1 % Сr, 0,5 - 0,6 Mo, 0,5 % V, ferrosilicobarim. As a reference, used by steel, deoxidized silicon. Melting was carried out in a laboratory, research-metallic inclusions, their shape and distribution, pollution index were studied according to conventional methods. Studies have shown that ferrosilicobarim deoxidation in an amount of 0,1 - 0,2 %, reduce the overall pollution index of non-metallic inclusions and change the nature of their distribution.

  9. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    OpenAIRE

    Li, Guo-lu; Li, Ya-long; Dong, Tian-shun; Wang, Hai-dou; Zheng, Xiao-dong; Zhou, Xiu-kai

    2018-01-01

    The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG) arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in th...

  10. Enhanced stress corrosion resistance from steels having a dual-phase austenite-martensite microstructure

    International Nuclear Information System (INIS)

    Venkatasubramanian, T.V.; Baker, T.J.

    1983-01-01

    A high strength steel with an austenite-martensite duplex microstructure has been produced by extruding nickel coated steel powder. The austenite is present as a continuous network surrounding a high strength martensite. The steel exhibits superior resistance to stress corrosion cracking in 3.5 pct NaCl solution, the effectiveness of the austenite in improving stress corrosion cracking resistance increases as yield strength increases. The austenite reduces the effective stress intensity at the advancing crack tip and at the same time shields the crack tip from the corrosive environment

  11. Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness

    Science.gov (United States)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2014-10-01

    The present paper is the final part of a two-part paper where the influence of coiling temperature on the final microstructure and mechanical properties of Nb-Mo microalloyed steels is described. More specifically, this second paper deals with the different mechanisms affecting impact toughness. A detailed microstructural characterization and the relations linking the microstructural parameters and the tensile properties have already been discussed in Part I. Using these results as a starting point, the present work takes a step forward and develops a methodology for consistently incorporating the effect of the microstructural heterogeneity into the existing relations that link the Charpy impact toughness to the microstructure. In conventional heat treatments or rolling schedules, the microstructure can be properly described by its mean attributes, and the ductile-brittle transition temperatures measured by Charpy tests can be properly predicted. However, when different microalloying elements are added and multiphase microstructures are formed, the influences of microstructural heterogeneity and secondary hard phases have to be included in a modified equation in order to accurately predict the DB transition temperature in Nb and Nb-Mo microalloyed steels.

  12. Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors.

    Science.gov (United States)

    Jin, Lihua; Chortos, Alex; Lian, Feifei; Pop, Eric; Linder, Christian; Bao, Zhenan; Cai, Wei

    2018-02-27

    A basic need in stretchable electronics for wearable and biomedical technologies is conductors that maintain adequate conductivity under large deformation. This challenge can be met by a network of one-dimensional (1D) conductors, such as carbon nanotubes (CNTs) or silver nanowires, as a thin film on top of a stretchable substrate. The electrical resistance of CNT thin films exhibits a hysteretic dependence on strain under cyclic loading, although the microstructural origin of this strain dependence remains unclear. Through numerical simulations, analytic models, and experiments, we show that the hysteretic resistance evolution is governed by a microstructural parameter [Formula: see text] (the ratio of the mean projected CNT length over the film length) by showing that [Formula: see text] is hysteretic with strain and that the resistance is proportional to [Formula: see text] The findings are generally applicable to any stretchable thin film conductors consisting of 1D conductors with much lower resistance than the contact resistance in the high-density regime.

  13. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  14. Reduction of resistivity in Cu thin films by partial oxidation: Microstructural mechanisms

    International Nuclear Information System (INIS)

    Prater, Walter L.; Allen, Emily L.; Lee, Wen-Y.; Toney, Michael F.; Daniels, Jonathan; Hedstrom, Jonathan A.

    2004-01-01

    We report on the electrical resistance and microstructure of sputter deposited copper thin films grown in an oxygen containing ion-beam sputtering atmosphere. For films thinner than 5 nm, 6%-10% oxygen causes a minimum in film resistivity, while for thicker films, there is a monotonic increase in resistivity. X-ray reflectivity measurements show significantly smoother films for these oxygen flow rates. X-ray diffraction shows that the oxygen doping causes a refinement of the copper grain size and the formation of cuprous oxide. We suggest that the formation of cuprous oxide limits copper grain growth, which causes smoother interfaces, and thus reduces resistivity by increasing specular scattering of electrons at interfaces

  15. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  16. Microstructure and Wear Resistance of Chromium Carbide Coating IN SITU Synthesized by VEB

    Science.gov (United States)

    Lu, Binfeng; Li, Liping; Lu, Fenggui; Tang, Xinhua

    2014-08-01

    In this paper, (Cr, Fe)7C3(M7C3)/γ-Fe composite layer has been in situ fabricated on a low carbon steel surface by vacuum electron beam irradiation (VEB). Three kinds of powder mixtures were placed on a low carbon steel substrate, which was then irradiated with electron beam in vacuum condition. The microstructure and wear resistance of the composite layers has been studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and tribological tester. The chemical composition of all specimens were carefully analyzed using energy-dispersive X-ray spectroscopy (EDAX) technique. Depending on three different powder mixtures, hypereutectic and hypoeutectic microstructures were obtained on surface composite layers. No pores and cracks were found on the coatings. The amount of carbides formed in the surface composite layer was mainly determined by carbon concentration. The microstructure close to the fusion line was largely primary austenite dendrite. The hardness and wear resistance of the surface composite layer has been greatly improved due to the extensive distribution of carbides.

  17. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    Science.gov (United States)

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters. © IMechE 2015.

  18. Effects of manufacturing process on impact properties and microstructures of ODS steels

    Science.gov (United States)

    Tanno, Takashi; Ohtsuka, Satoshi; Yano, Yasuhide; Kaito, Takeji; Tanaka, Kenya

    2014-12-01

    Oxide dispersion strengthened (ODS) steels are notable advanced alloys with durability to a high-temperature and high-dose neutron irradiation environment because of their good swelling resistance and mechanical properties under neutron irradiation. 9-12Cr-ODS martensite steels have been developed in the Japan Atomic Energy Agency as the primary candidate material for the fast reactor fuel cladding tubes. They would also be good candidates for the fusion reactor blanket material which is exposed to high-dose neutron irradiation. In this work, modification of the manufacturing process of 11Cr-ODS steel was carried out to improve its impact property. Two types of 11Cr-ODS steels were manufactured: pre-mix and full pre-alloy ODS steels. Miniature Charpy impact tests and metallurgical observations were carried out on these steels. The impact properties of full pre-alloy ODS steels were shown to be superior to those of pre-mix ODS steels. It was demonstrated that the full pre-alloy process noticeably improved the microstructure homogeneity (i.e. reduction of inclusions and pores).

  19. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels

    International Nuclear Information System (INIS)

    Yan, Dingshun; Tasan, Cemal Cem; Raabe, Dierk

    2015-01-01

    Microstructures of multi-phase alloys undergo morphological and crystallographic changes upon deformation, corresponding to the associated microstructural strain fields. The multiple length and time scales involved therein create immense complexity, especially when microstructural damage mechanisms are also activated. An understanding of the relationship between microstructure and damage initiation can often not be achieved by post-mortem microstructural characterization alone. Here, we present a novel multi-probe analysis approach. It couples various scanning electron microscopy methods to microscopic-digital image correlation (μ-DIC), to overcome various challenges associated with concurrent mapping of the deforming microstructure along with the associated microstrain fields. For this purpose a contrast- and resolution-optimized μ-DIC patterning method and a selective pattern/microstructure imaging strategy were developed. They jointly enable imaging of (i) microstructure-independent pattern maps and (ii) pattern-independent microstructure maps. We apply this approach here to the study of damage nucleation in ferrite/martensite dual-phase (DP) steel. The analyses provide four specific design guidelines for developing damage-resistant DP steels

  20. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  1. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  2. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  3. MICROSTRUCTURE AND MECHANICAL PROPERTIES DEGRADATION OF CrMo CREEP RESISTANT STEEL OPERATING UNDER CREEP CONDITIONS

    Directory of Open Access Journals (Sweden)

    Ján Micheľ

    2011-07-01

    Full Text Available In this contribution microstructure degradation of a steam tube is analysed. The tube is made of CrMo creep resistant steel and was in service under creep conditions at temperature 530°C and calculated stress level in the tube wall 46.5 MPa. During service life in the steel gradual micro structure changes were observed, first pearlite spheroidization, precipitation, coagulation and precipitate coarsening. Despite the fact that there were evident changes in the micro structure the strength and deformation properties of the steel (Re, Rm, A5, Z, the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2.1x10 5 hours in service. The steam tube is now in service more than 2.6x10 5 h.

  4. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  5. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  6. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratoryconditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.The Cr content decrease, in ferritic-austenitic cast steels (duplex, from 24-26%Cr to 18% leads to the changes of the castingsmicrostructure and eliminating of a brittle  phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.

  7. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  8. Corrosion resistance and microstructure characterization of rare-earth-transition metal-aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Banczek, E.P.; Zarpelon, L.M.C.; Faria, R.N.; Costa, I.

    2009-01-01

    This paper reports the results of investigation carried out to evaluate the corrosion resistance and microstructure of some cast alloys represented by the general formula: La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0, 0.1, 0.3, 0.5, and 0.7). Scanning electron microscopy (SEM) and electrochemical methods, specifically, polarization curves and electrochemical impedance spectroscopy (EIS), have been employed in this study. The effects of Pr substitution on the composition of the various phases in the alloys and their corrosion resistance have been studied. The electrochemical results showed that the alloy without Pr and the one with total La substitution showed the highest corrosion resistance among the studied alloys. The corrosion resistance of the alloys decreased when Pr was present in the lowest concentrations (0.1 and 0.3), but for higher Pr concentrations (0.5 and 0.7), the corrosion resistance increased. Corrosion occurred preferentially in a Mg-rich phase.

  9. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang; Jing, Hongyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Han, Yongdian; Zhao, Lei [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Zhang, Jianli [Welding laboratory, Offshore Oil Engineering (Qing Dao) Company, Qing Dao 266520 (China)

    2017-02-01

    Highlights: • N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the austenite. • Secondary austenite had higher Ni but lower Cr and Mo than primary austenite. • Pitting corrosion preferentially occurred at secondary austenite and Cr{sub 2}N. • Adding N{sub 2} in shielding gas improved pitting corrosion resistance of GTAW joint. • E2209T{sub 1} weld metal had very poor pitting corrosion resistance due to inclusions. - Abstract: The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N{sub 2} in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr{sub 2}N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitrogen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T{sub 1}). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential

  10. Double layer resist process scheme for metal lift-off with application in inductive heating of microstructures

    DEFF Research Database (Denmark)

    Ouattara, Lassana; Knutzen, Michael; Keller, Stephan Urs

    2010-01-01

    We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end of the proce......We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end...

  11. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  12. Effects of insulin resistance on white matter microstructure in middle-aged and older adults

    Science.gov (United States)

    Coutu, Jean-Philippe; Rosas, H. Diana; Salat, David H.

    2014-01-01

    Objective: To investigate the potential relationship between insulin resistance (IR) and white matter (WM) microstructure using diffusion tensor imaging in cognitively healthy middle-aged and older adults. Methods: Diffusion tensor imaging was acquired from 127 individuals (age range 41–86 years). IR was evaluated by the homeostasis model assessment of IR (HOMA-IR). Participants were divided into 2 groups based on HOMA-IR values: “high HOMA-IR” (≥2.5, n = 27) and “low HOMA-IR” (HOMA-IR group demonstrated decreased axial diffusivity broadly throughout the cerebral WM in areas such as the corpus callosum, corona radiata, cerebral peduncle, posterior thalamic radiation, and right superior longitudinal fasciculus, and WM underlying the frontal, parietal, and temporal lobes, as well as decreased fractional anisotropy in the body and genu of corpus callosum and parts of the superior and anterior corona radiata, compared with the low HOMA-IR group, independent of age, WM signal abnormality volume, and antihypertensive medication status. These regions additionally demonstrated linear associations between diffusion measures and HOMA-IR across all subjects, with higher HOMA-IR values being correlated with lower axial diffusivity. Conclusions: In generally healthy adults, greater IR is associated with alterations in WM tissue integrity. These cross-sectional findings suggest that IR contributes to WM microstructural alterations in middle-aged and older adults. PMID:24771537

  13. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    Science.gov (United States)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  14. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    Directory of Open Access Journals (Sweden)

    Maryana Zagula-Yavorska

    2017-12-01

    Full Text Available A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a, rhodium-modified (b, and rhodium- and hafnium-modified (c. All three coatings consisted of two layers: the additive layer and the interdiffusion layer. Rhodium-doped (rhodium- and hafnium-doped β-NiAl phase was found in the additive layer of the rhodium-modified (rhodium- and hafnium-modified aluminide coating. Topologically Closed-Pack (μ and σ phases precipitated in the matrix of the interdiffusion layer. Rhodium also dissolved in the β-NiAl phase between the additive and interdiffusion layers, whereas Hf-rich particles precipitated in the (Ni,RhAl phase at the additive/interdiffusion layer interface in the rhodium- and hafnium-modified coating (c. The rhodium-modified aluminide coating (b has better oxidation resistance than the nonmodified one (a, whereas the rhodium- and hafnium-modified aluminide coating (c has better oxidation resistance than the rhodium-modified (b and nonmodified (a ones.

  15. Effect of phytic acid on the microstructure and corrosion resistance of Ni coating

    Energy Technology Data Exchange (ETDEWEB)

    Meng Guozhe, E-mail: mengguozhe@hrbeu.edu.c [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun Feilong [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China); Shaoa Yawei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang Tao; Wang Fuhui [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Harbin 150001 (China)] [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Dong Chaofang [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Li, Xiaogang [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)] [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China)

    2010-08-01

    In this work, the pure Ni coatings were synthesized on Q235 steel by using reverse pulsed electrodeposition technique in sulphate-based baths with 0, 0.1, 0.2 and 0.3 g/L phytic acid additive. The effect of phytic acid on the microstructure and micro-morphology of the sample was observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. And the effect of phytic acid on the corrosion resistance of the sample was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that the addition of phytic acid was in favor of the growth of nano-scale twins (NT) in the interior of grains, which was due to the lowered stacking fault energies of Ni during the electrodeposition, and the typical morphology of pyramidal islands on the surface. The results also demonstrated that the effect of phytic acid was not monotonous with increasing concentration: the passive current density i{sub p} was minimum and the charge transfer resistance R{sub t} was maximum for the sample obtained from the bath with 0.2 g/L phytic acid, indicating that the sample obtained from the bath with 0.2 g/L phytic acid showed the best corrosion resistance.

  16. Effect of Laser Surface Melting on the Microstructure and Pitting Corrosion Resistance of 304L SS Weldment

    Science.gov (United States)

    Suresh, Girija; Dasgupta, Arup; Kishor, P. S. V. R. A.; Upadhyay, B. N.; Saravanan, T.; Mallika, C.; Mudali, U. Kamachi

    2017-10-01

    The manuscript presents the effect of laser surface melting (LSM) on the microstructural variations and pitting corrosion resistance of 304L SS weldment fabricated by gas tungsten arc welding of 304L SS plates using 308L SS filler wire. The weld region was examined by X-ray radiography for defect detection. LSM of 304L SS weldment was performed using Nd:YAG pulsed laser. Microstructural evaluation was carried out using optical and electron back scatter diffraction techniques. The microstructure of 304L SS base was found to be austenitic, while the weld region of 304L SS weldment contained delta ferrite distributed in austenite matrix. The microstructure of LSM 304L SS weldment was found to be homogeneous austenite matrix with sparsely distributed ferrite. Ferrite measurements showed a decrease in the percentage ferrite in the fusion zone of 304L SS weldment after LSM. A profound enhancement in the pitting corrosion resistance was observed after LSM, which could be attributed to the homogeneous microstructure and decrease in the ferrite content. Pit density was found to be higher in the heat-affected zone of the weldment. Very few pits were observed in the LSM 304L SS weldment compared to the as-weldment.

  17. Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys

    Science.gov (United States)

    Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan

    2017-12-01

    Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.

  18. Microstructures and properties of aluminum die casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  19. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  20. Effect of heat treatment on cyclic fatigue resistance, thermal behavior and microstructures of K3 NiTi rotary instruments.

    Science.gov (United States)

    Chang, Seok Woo; Kim, Yu-Chan; Chang, Hyejung; Jee, Kwang-Koo; Zhu, Qiang; Safavi, Kamran; Shon, Won-Jun; Bae, Kwang-Shik; Spangberg, Larz Sw; Kum, Kee-Yeon

    2013-11-01

    The aim of this study was to investigate the effect of heat treatment on the cyclic fatigue resistance, thermal behavior and microstructural changes of K3 NiTi rotary instruments. Twelve control (as-received) and 12 experimental (heat-treated) K3 NiTi rotary instruments were compared in this study. Those experimental K3 instruments were heated in a furnace for 30 min at 450°C and then quenched in water. The cyclic fatigue resistance was measured with a fatigue tester. The thermal characteristic and the microstructures of both instruments were investigated by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM), respectively. There was a significant increase in the cyclic fatigue resistance between the heat-treated instruments and the as-received instruments (T-test, p NiTi files and changed the thermal behavior of the instruments without marked changes in the constituting phases of NiTi alloy.

  1. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Science.gov (United States)

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  2. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories

    Science.gov (United States)

    Huger, M.; Ota, T.; Tessier-Doyen, N.; Michaud, P.; Chotard, T.

    2011-10-01

    This work is devoted to the study of thermomechanical properties of several industrial and model refractory materials in relation with the evolution of their microstructure during thermal treatments. The aim is, in particular, to highlight the role of thermal expansion mismatches existing between phases which can induce damage at local scale. The resulting network of microcracks is well known to improve thermal shock resistance of materials, since it usually involves a significant decrease in elastic properties. Moreover, this network of microcracks can strongly affect the thermal expansion at low temperature and the stress-strain behaviour in tension. Even if these two last aspects are not so much documented in the literature, they certainly also constitute key points for the improvement of the thermal shock resistance of refractory materials. Evolution of damage during thermal cycling has been monitored by a specific ultrasonic device at high temperature. Beyond its influence on Young's modulus, this damage also allows to decrease the thermal expansion and to improve the non-linear character of the stress-strain curves determined in tension. The large increase in strain to rupture, which results from this non-linearity, is of great interest for thermal shock application.

  3. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    Science.gov (United States)

    Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  4. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories

    International Nuclear Information System (INIS)

    Huger, M; Tessier-Doyen, N; Michaud, P; Chotard, T; Ota, T

    2011-01-01

    This work is devoted to the study of thermomechanical properties of several industrial and model refractory materials in relation with the evolution of their microstructure during thermal treatments. The aim is, in particular, to highlight the role of thermal expansion mismatches existing between phases which can induce damage at local scale. The resulting network of microcracks is well known to improve thermal shock resistance of materials, since it usually involves a significant decrease in elastic properties. Moreover, this network of microcracks can strongly affect the thermal expansion at low temperature and the stress-strain behaviour in tension. Even if these two last aspects are not so much documented in the literature, they certainly also constitute key points for the improvement of the thermal shock resistance of refractory materials. Evolution of damage during thermal cycling has been monitored by a specific ultrasonic device at high temperature. Beyond its influence on Young's modulus, this damage also allows to decrease the thermal expansion and to improve the non-linear character of the stress-strain curves determined in tension. The large increase in strain to rupture, which results from this non-linearity, is of great interest for thermal shock application.

  5. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  6. Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented.

    The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and

  7. Effects of Dynamic Impact Loading on Microstructure of FCC (TWIP) Steel

    Science.gov (United States)

    2014-08-01

    thesis on superconductors . He has been employed as a materials scientist at DSTO Maritime Platforms Division since 1998. During the period 1998 to...figure 4 and 7(d). The hardness decreases with increasing sample number and the grain size increases with increasing sample number. Based on this result...microstructure evolution of TWIP steel subjected to impact loading, J of Iron and Steel Research, 17 (6), 67-73. 12. A.A. Saleh, E.V. Pereloma, A.A

  8. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  9. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    International Nuclear Information System (INIS)

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity — sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  10. The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using ultrasonic vibration assisted welding process

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng

    2017-12-01

    The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5  ±  3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261  ±  7.5 MPa and fracture occurs near the heat affected zone of the joint.

  11. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    Science.gov (United States)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  12. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  13. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    Science.gov (United States)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  14. Microstructure and Wear Resistance of Al2O3 Coatings on Functional Structure

    Directory of Open Access Journals (Sweden)

    Jiang Chao-Ping

    2016-01-01

    Full Text Available To enhance the wear properties of function structure, Al2O3-13%TiO2 (AT13 coatings were plasma sprayed on 45 steel functional structure using micro and nano powders. The microstructures and phase compositions of the coatings were investigated by scanning electron microscopy and X-ray diffraction, respectively. Results show that the nano powder coating consists of fully-melted region and partially-melted region. The fully-melted regions show a lamellar structure, while the partially-melted regions retain the powders structure. The phases of coatings are α-A12O3 and TiO2.The wear test was carried out on a ML-10 friction and wear tester under dry sliding condition. It is found that the wear resistance of the micro powder coating is higher than that of nano powder coating. This is mainly ascribe to the breakage of the nano powder coating resulted from low agglomerated binding force.

  15. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    Science.gov (United States)

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-01-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  17. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  18. Impact of Microstructure on MoS2 Oxidation and Friction.

    Science.gov (United States)

    Curry, John F; Wilson, Mark A; Luftman, Henry S; Strandwitz, Nicholas C; Argibay, Nicolas; Chandross, Michael; Sidebottom, Mark A; Krick, Brandon A

    2017-08-23

    This work demonstrates the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2 ). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures-amorphous and planar/highly-ordered-before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showed a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.

  19. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W2B, the rod-like (Fe, W3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W3B phase. The resultant Fe-3.5B-11W (wt % alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper.

  20. Effects of Microstructural Inhomogeneity on Charpy Impact Properties for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Reactor pressure vessel (RPV) steels are fabricated by vacuum carbon deoxidation (VCD), and then heat treatment of quenching and tempering is conducted after forging. The through-the-thickness variation of microstructure in RPV can occur due to the cooling rate gradient during quenching and inhomogeneous deformation during forging process. The variation of microstructure in RPV affects the mechanical properties, and inhomogeneity in mechanical properties can occur. The evaluation of mechanical properties of RPV is conducted at thickness of 1/4T. In order to evaluate the safety of RPV more correctly, the research about the through-the-thickness variation of microstructure and mechanical properties in RPV is need. 1. The fine low bainite (LB) is the dominant phase at the inner-surface (0T), but coarse upper bainite (UB) is the dominant phase at the center (1/2T). This is because cooling rate gradient from surface to center occurs during quenching. 2. Inter-lath carbides act as fracture initiation site, and it reduces impact toughness. 3. The upper shelf energy is low and the reference temperatures are high at the 1/4T. Impact properties are poor at 1/4T because of the formation of coarse upper bainite structure and coarse inter-lath carbides.

  1. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  2. An investigation on the crack growth resistance of human tooth enamel: Anisotropy, microstructure and toughening

    Science.gov (United States)

    Yahyazadehfar, Mobin

    The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. The primary objective of this dissertation is to characterize the role of enamel's microstructure and degree of decussation on the fracture behavior of human enamel. The importance of the protein content and aging on the fracture toughness of enamel were also explored. Incremental crack growth in sections of human enamel was achieved using a special inset Compact Tension (CT) specimen configuration. Crack extension was achieved in two orthogonal directions, i.e. longitudinal and transverse to the prism axes. Fracture surfaces and the path of crack growth path were evaluated using scanning electron microscopy (SEM) to understand the fundamental mechanisms of crack growth extension. Furthermore, a hybrid approach was adopted to quantify the contribution of toughening mechanisms to the overall toughness. Results of this investigations showed that human enamel exhibits rising R-curve for both directions of crack extension. Cracks extending transverse to the rods in the outer enamel achieved lower rise in toughness with crack extension, and significantly lower toughness (1.23 +/- 0.20 MPa·m 0.5) than in the inner enamel (1.96 +/- 0.28 MPa· 0.5) and in the longitudinal direction (2.01 +/- 0.21 MPa· 0.5). The crack growth resistance exhibited both anisotropy and inhomogeneity, which arise from the complex hierarchical microstructure and the decussated prism structure. Decussation causes deflection of cracks extending from the enamel surface inwards, and facilitates a continuation of transverse crack extension within the outer enamel. This process dissipates fracture energy and averts cracks from extending toward the dentin and vital pulp. This study is the first to investigate the importance of proteins and the effect of

  3. Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys

    Science.gov (United States)

    Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.

    2017-09-01

    Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.

  4. Impact resistance of guards on grinding machines.

    Science.gov (United States)

    Mewes, Detlef; Mewes, Olaf; Herbst, Peter

    2011-01-01

    Guards on machine tools are meant to protect persons from injuries caused by parts ejected with high kinetic energy from the machine's working zone. With respect to stationary grinding machines, Standard No. EN 13218:2002, therefore, specifies minimum wall thicknesses for guards. These values are mainly based on estimations and experience instead of systematic experimental investigations. This paper shows to what extent simple impact tests with standardizable projectiles can be used as basis for the evaluation of the impact resistance of guards, provided that not only the kinetic energy of the projectiles used but also, among others, their geometry corresponds to the abrasive product fragments to be expected.

  5. Properties, microstructure and resistance to metal corrosion from pure runoff of supermartensitic stainless steel

    International Nuclear Information System (INIS)

    Zappa, S; Burgueno, A; Svoboda, H. G; Ramini de Rissone, M; Surian, E. S

    2008-01-01

    Supermartensitic stainless steels (AISM) are characterized by their very low carbon content, providing good tenacity and weldability. They also contain Ni as a stabilizing agent of the austenite and Mo to improve corrosion resistance. The weldability of these materials is fundamentally important for their applications, mainly in the gas and oil industries. The presence of CO 2 , H 2 S, water with a high solids content and condensed water in the production of hydrocarbons together with the large amounts of Cl in these aqueous phases make localized corrosion one of the mechanisms for the degradation of these steels while in service. The protective gases used in the semiautomatic welding process with heavy or tubular wires (GMAW, FCAW) affect the chemical composition of the deposits, particularly the contents of C, O and N, generating variations in their properties. The mechanical properties of these steels are usually optimized after a post-welding heat treatment (PWHT), which may also significantly affect the corrosion resistance of the welding deposits. This work studied the influence of the welding procedure (protective gas and PWHT) on corrosion resistance from pitting of the unalloyed AISM metal. Two test pieces of unalloyed metal were welded according to ANSI/AWS A5.22-95 with a GMAW process using a 1.2 mm diameter tubular wire with metal filling that deposits a supermartensitic stainless steel. The effect of the gas protection was evaluated, welding one of the test pieces with Ar- 5%He and the other with Ar-18%CO 2 . The effect of the PWHT was analyzed, for which samples were extracted from each welded test piece, which were thermally treated at 650 o C for 15 minutes, producing as-welded (AW) samples and with PWHT. The chemical composition for both welding conditions was determined. Microstructural characterization was carried out for the four conditions , using optic and scanning electron microscopy and X-ray diffraction, and the Vickers microhardness was

  6. Influence of Vanadium and Boron Additions on the Microstructure, Fracture Toughness, and Abrasion Resistance of Martensite-Carbide Composite Cast Steel

    Directory of Open Access Journals (Sweden)

    Waleed Elghazaly

    2016-01-01

    Full Text Available High chromium cast steel alloys are being used extensively in many industrial services where dry or wet abrasion resistance is required. Such steel castings are demanded for cement, stoneware pipes, and earth moving industries. In this research, five steel heats were prepared in 100 kg and one-ton medium frequency induction furnaces and then sand cast in both Y-block and final impact arm spare parts, respectively. Vanadium (0.5–2.5% and boron (120–150 ppm were added to the 18Cr-1.9C-0.5Mo steel heats to examine their effects on the steel microstructure, mechanical properties especially impact, fracture toughness and abrasion resistance. Changes in the phase transformation after heat treatment were examined using inverted, SEM-EDX microscopy; however, the abrasion resistance was measured in dry basis using the real tonnage of crushed and milled stoneware clay to less than 0.1 mm size distribution.

  7. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  8. Effect of inoculation on microstructure, mechanical and corrosion properties of high manganese ductile Ni-resist alloy

    International Nuclear Information System (INIS)

    Mohd Rashidi, M.; Idris, Mohd Hasbullah

    2013-01-01

    Highlights: • Experimental purpose of mechanical properties of modified ductile Ni-resist. • Evaluation of the influence of high manganese content on mechanical properties and corrosion behaviour. • Metallurgical, phases analysis and microstructural parameters determination. - Abstract: The performance of modified ductile Ni-resist (DNR) adapted with higher manganese content, may be improved by inoculation in order that it may be of use in corrosive and high temperature application. In this study, DNR cast alloy was casting to different manganese content before undergoing inoculation process with various inoculation percentages. Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy SEM/EDS characterized the corrosion products. The results showed that increasing inoculation did decreased carbide formation led to improved tensile value and decreased hardness value. Moreover, inoculation led to uniform distribution of graphite resulted in lower corrosion rates. It can be concluded that inoculation process improved the mechanical properties of the alloy and satisfy the corrosion resistance criteria required for corrosive environment

  9. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  10. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    International Nuclear Information System (INIS)

    Rojas Jara, David

    2011-01-01

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M 23 C 6 carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M 23 C 6 precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure evolution and creep

  11. Characterization of Microstructure and Wear Resistance of PEO Coatings Containing Various Microparticles on Ti6Al4V Alloy

    Science.gov (United States)

    Li, Xinyi; Dong, Chaofang; Zhao, Qing; Pang, Yu; Cheng, Fasong; Wang, Shuaixing

    2018-02-01

    Titania-based composite coatings were prepared by plasma electrolytic oxidation (PEO) treatment of Ti6Al4V alloy in electrolyte with α-Al2O3, Cr2O3 or h-BN microparticles in suspension. The microstructure, composition of PEO composite coatings were analyzed by SEM, EDS and XRD. The wear resistance of composite ceramic coatings was studied by ball-on-disk wear test at ambient temperature and 300 °C. The results showed that the addition of microparticles accelerated the growth rate of PEO coating and changed the microstructure and composition of PEO coating. PEO coating was porous and mainly composed of rutile-TiO2, anatase-TiO2 and Al2TiO5. PEO/α-Al2O3 (Cr2O3 or h-BN) composite coating only had small micropores and appeared some α-Al2O3 (Cr2O3 or h-BN) phase. Besides, the addition of α-Al2O3 (Cr2O3 or h-BN) microparticles greatly improved the wear resistance of PEO coating. At ambient temperature, abrasive wear dominated the wear behavior of PEO coating, but abrasive wear and adhesive peel simultaneously happened at 300 °C. Whether at ambient temperature or 300 °C, PEO composite coating had better wear resistance than PEO coating. Besides, PEO/h-BN composite coating outperformed other composite coatings regardless of the temperature.

  12. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    International Nuclear Information System (INIS)

    Cui, W.F.; Liu, N.; Qin, G.W.

    2016-01-01

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  13. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  14. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    Science.gov (United States)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  15. A new method for testing thermal shock resistance properties of soapstone – Effects of microstructures and mineralogical variables

    Directory of Open Access Journals (Sweden)

    A. Huhta

    2016-09-01

    Full Text Available Soapstone industry utilizes different types of soapstone mainly as a construction material for fireplaces. In this application soapstone has to meet different temperature requirements in different parts of fireplaces. Mineralogical and structural information is needed for placing an appropriate type of soapstone in an appropriate position in the fireplace construction. This allows employment of higher temperatures resulting in more particulate-free combustion, which makes it possible for soapstone industry to develop more efficient and environmentally friendly fireplaces. Of many soapstone types, which differ from each other in their chemical composition and thermal properties, carbonate soapstone and its microstructural variations were investigated in this study. A new method was developed to measure thermal shock resistant of natural stones. By exposing carbonate soapstone samples of different textural types to rapid temperature changes, it was possible to determine the parameters that affect the capacity of the rock to resist thermal shock. The results indicate that the type of microtexture is an important factor in controlling the thermal shock resistance of carbonate soapstone. The soapstone samples with a high thermal shock resistance show deformation textures, such as crenulation cleavage and S/C mylonite. A strong negative correlation was observed between the thermal shock resistance and length of cleavage domains in foliated rocks. Also a slight elevation in the iron concentration of talc and magnesite was discovered to improve the thermal shock resistance of carbonate soapstone. Attention should especially be paid to the length and planarity of cleavage domains of spaced foliation.

  16. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Michael

    2016-04-04

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO{sub 2} emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized

  17. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    International Nuclear Information System (INIS)

    Rhode, Michael

    2016-01-01

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO 2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized with

  18. Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pogrebnjak, Alexander D. [Sumy State University, Sumy (Ukraine); Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, 20-618 Lublin (Poland); Yakushchenko, Ivan V.; Bondar, Oleksandr V. [Sumy State University, Sumy (Ukraine); Beresnev, Vyacheslav M. [Karazin National University, Kharkiv (Ukraine); Oyoshi, Keiji [National Institute for Material Science (NIMS), Tsukuba (Japan); Ivasishin, Orest M. [V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, Kiev (Ukraine); Amekura, Hiroshi; Takeda, Yoshihiko [National Institute for Material Science (NIMS), Tsukuba (Japan); Opielak, Marek, E-mail: m.opielak@pollub.pl [Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, 20-618 Lublin (Poland); Kozak, Czeslaw [Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 20-618 Lublin (Poland)

    2016-09-15

    Nitrides of high-entropy alloys (TiHfZrNbVTa)N were fabricated using cathodic-vacuum-arc-vapor-deposition method. Morphology and topology of the surface of the coatings, roughness, elemental and phase composition, microstructure and mechanical properties were investigated. Dependence of deposition parameters on surface morphology and elemental composition was demonstrated. Influence of the heavy negative charged Au{sup −} ions implantation on phase structure, microstructure and hardness of nitride (TiHfZrNbVTa)N coatings was investigated. - Highlights: • (TiHfZrNbVTa)N fabricated using cathodic-vacuum-arc-vapor-deposition method. • Roughness, elemental and phase composition, microstructure and mechanical properties. • Influence of the heavy negative charged Au- ions implantation on mechanical properties.

  19. Effects of Thermal Aging on Microstructure and Impact Properties of 316LN Stainless Steel Weld

    Directory of Open Access Journals (Sweden)

    LUO Qiang

    2017-12-01

    Full Text Available To study the thermal aging of nuclear primary pipe material 316LN stainless steel weld, accelerated thermal aging experiment was performed at 400℃ for 15000h. Microstructure evolution of weld after aging was investigated by TEM and HREM. Impact properties of weld thermally aged at different time was measured by Charpy impact test. Meanwhile, taking Charpy impact energy as the standard of thermal aging embrittlement, the thermal kinetics formula was obtained by the fitting method. Finally, the Charpy impact properties of the weld during 60 years of service at the actual operation temperature were estimated by the thermal kinetics formula. The results indicate that the spinodal decomposition occurs in the ferrite of the weld after thermal aging at 400℃ for 1000h, results in α (Fe-rich and α'(Cr-rich phases, and meanwhile, the G-phase is precipitated in the ferrite; the spinodal decomposition and the G-phase precipitation lead to the decrease in the impact energy of weld as time prolongs; the prediction results show that the Charpy impact energy of weld decreases quickly in the early 25 years, and then undergoes a slow decrease during the subsequent operation process.

  20. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel; Avaliacao mecanica e microestrutural de um aco resistente ao desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P., E-mail: falletti@hotmail.co [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  1. Changes in White Matter Microstructure Impact Cognition by Disrupting the Ability of Neural Assemblies to Synchronize.

    Science.gov (United States)

    Bells, Sonya; Lefebvre, Jérémie; Prescott, Steven A; Dockstader, Colleen; Bouffet, Eric; Skocic, Jovanka; Laughlin, Suzanne; Mabbott, Donald J

    2017-08-23

    Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals. SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human

  2. Surface Layers of Zr-18%Nb Alloy Modified by Ultrasonic Impact Treatment: Microstructure, Hardness and Corrosion

    Science.gov (United States)

    Khripta, N. I.; Karasevska, O. P.; Mordyuk, B. N.

    2017-11-01

    Near-surface layers in Zr-18%Nb alloy were modified using ultrasonic impact treatment (UIT). The effects of the UIT processing time on a microstructural formation, omega/alpha precipitations, microhardness and corrosion are analyzed. XRD analysis, TEM and SEM observations and EDX characterization allow establishing the links between the microstructure, microhardness and corrosion behavior of the surface layers formed. At the strain extent up to e ≈ 0.3, structural formation occurs under influence of deformation induced heating, which facilitates omega precipitation in beta phase and mechanically induced oxygen transport and oxide formation. XRD analysis reveals moderate compressive residual stresses (- 160 MPa) and pronounced {110} texture after the UIT process. Generation of dislocations and hindering of their movement by nanoscale omega precipitates manifest themselves as the broadening of diffraction peaks occurred mainly owing to the lattice microstrains, and they provide marked strain hardening. The enhanced anticorrosion properties of Zr-18%Nb alloy in saline solution were concluded to be a result of the formation of a protective oxide film, {110} texture and compressive stresses.

  3. Influence of Cr and Y Addition on Microstructure, Mechanical Properties, and Corrosion Resistance of SPSed Fe-Based Alloys

    Science.gov (United States)

    Muthaiah, V. M. Suntharavel; Mula, Suhrit

    2018-03-01

    Present work investigates the microstructural stability during spark plasma sintering (SPS) of Fe-Cr-Y alloys, its mechanical properties and corrosion behavior for its possible applications in nuclear power plant and petrochemical industries. The SPS was carried out for the Fe-7Cr-1Y and Fe-15Cr-1Y alloys at 800 °C, 900 °C, and 1000 °C due to their superior thermal stability as reported in Muthaiah et al. [Mater Charact 114:43-53, 2016]. Microstructural analysis through TEM and electron back scattered diffraction confirmed that the grain sizes of the sintered samples depicted a dual size grain distribution with >50 pct grains within a range of 200 nm and remaining grains in the range 200 nm to 2 µm. The best combination of hardness, wear resistance, and corrosion behavior was achieved for the samples sintered at 1000 °C. The high hardness (9.6 GPa), minimum coefficient of friction (0.25), and extremely low wear volume (0.00277 × 10-2 mm3) and low corrosion rate (3.43 mpy) are discussed in the light of solid solution strengthening, grain size strengthening, grain boundary segregation, excellent densification due to diffusion bonding, and precipitation hardening due to uniformly distributed nanosize Fe17Y2 phase in the alloy matrix. The SEM analysis of the worn surface and corroded features corroborated well with the wear resistance and corrosion behavior of the corresponding samples.

  4. The interrelation between mechanical properties, corrosion resistance and microstructure of Pb-Sn casting alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970, Campinas - SP (Brazil)

    2010-01-15

    It is well known that there is a strong influence of thermal processing variables on the solidification structure and as a direct consequence on the casting final properties. The morphological microstructural parameters such as grain size and cellular or dendritic spacings will depend on the heat transfer conditions imposed by the metal/mould system. There is a need to improve the understanding of the interrelation between the microstructure, mechanical properties and corrosion resistance of dilute Pb-Sn casting alloys which are widely used in the manufacture of battery components. The present study has established correlations between cellular microstructure, ultimate tensile strength and corrosion resistance of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys by providing a combined plot of these properties as a function of cell spacing. It was found that a compromise between good corrosion resistance and good mechanical properties can be attained by choosing an appropriate cell spacing range. (author)

  5. Overview: Global and Local Impact of Antibiotic Resistance.

    Science.gov (United States)

    Watkins, Richard R; Bonomo, Robert A

    2016-06-01

    The rapid and ongoing spread of antibiotic resistance poses a serious threat to global public health. The indiscriminant use of antibiotics in agriculture and human medicine along with increasingly connected societies has fueled the distribution of antibiotic-resistant bacteria. These factors together have led to rising numbers of infections caused by multidrug-resistant and pan-resistant bacteria, with increases in morbidity and mortality. This article summarizes the trends in antibiotic resistance, discusses the impact of antibiotic resistance on society, and reviews the use of antibiotics in agriculture. Feasible ways to tackle antibiotic resistance to avert a post-antibiotic era are suggested. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of heat treatment conditions on the microstructure and impact properties of EUROFER 97 ODS steel

    Science.gov (United States)

    Di Martino, S. F.; Faulkner, R. G.; Riddle, N. B.; Monge, M. A.; Munoz, A.

    2011-12-01

    Probably the most important range of materials to consider for the blanket material in the tokamak design for fusion reactors such as ITER and DEMO is the high alloy Fe9Cr oxide dispersion strengthened (ODS) ferritic steels. These steels possess exceptional thermal conductivity and low thermal expansion while being strongly resistant to void swelling. Their main drawback is the high ductile-to-brittle transition temperature (DBTT), particularly in the ODS versions of the material. This paper describes attempts that are being made to reduce this DBTT in as yet unirradiated materials by a novel heat treatment procedure. The principle behind this approach is that low DBTT in the unirradiated materials will lead to relatively low DBTT even in He-containing material that has been irradiated with fusion blanket-type irradiations. New batches of high alloy Fe9Cr ODS (EUROFER) ferritic steel have been produced by a powder metallurgical route, and relatively homogeneous material has been produced by a hot isostatic pressing procedure. Mini-Charpy test specimens were made from materials that had been subjected to a matrix of heat treatments designed to show up variations in solution treatment (ST) temperature, cooling rate from the ST temperature and tempering treatment. The initial DBTT was in the range 150-200 °C. Extremely interesting results have been obtained. DBTT downward shifts of up to 200 °C have been observed by using a high 1300 °C ST temperature and a low cooling rate. The paper goes on to describe the microstructure of this material, and discusses the possible microstructural factors needed to produce these very high DBTT downward shifts. Low dissolved carbon and higher proportions of low-angle grain boundaries seem to provide the key to the understanding of the alloy behaviour.

  7. Microstructure and wear-resistance of laser clad TiC particle-reinforced coating

    NARCIS (Netherlands)

    Lei, T.C.; Ouyang, J.H.; Pei, Y.T.; Zhou, Y.

    A TiC-Ni alloy composite coating was clad to 1045 steel substrate using a 2kW CO2 laser. The microstructural constituents of the clad layer are found to be gamma-Ni and TiCp in the dendrites, and a fine eutectic of gamma-Ni plus (Fe, Cr)(23)C-6 in the interdendritic areas. Partial dissolution and

  8. Resistance to wear and microstructure of martensitic welds deposits for recharge

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; Vedia, Luis A

    2006-01-01

    This work studied the welding metal for a martensitic steel (alloyed to Cr, Mn, Mo, V and W), deposited with a tubular metal-cored wire with gaseous protection of 82%Ar-18%Co 2 on a low carbon steel using the semi-automatic welding process. Transverse pieces were cut from the welded coupon for microstructural characterization, measurement of hardness profiles, determination of the chemical composition and wear trials. The microstructural characterization was done using optic and scanning electronic microscopes, X-rays diffraction and energy-dispersive X-ray spectroscopy and Vicker microhardness (1 kg.) was measured. The wear trials (metal-metal) were performed in an Amsler machine under pure flow conditions. Different loads were used and the reference material was a SAE 1020 steel. The temperatures for each case were measured and the weight loss curves were defined as a function of the distance run and of the load. After testing the wear surfaces and the debris were measured. The microstructure of the welded deposit mostly consists of martensite and some retained austenite, with a pattern of dendritic segregation, and a hardness on the surface of 612 HVI. A lineal variation between the weight loss and the load applied was obtained as a response to the wear. The following phenomena were observed: abrasion, plastic deformation, oxidation and adhesion to the wear surfaces, as well as a tempering effect in the condition of the biggest load. The wear mechanisms acting on both surfaces were identified (CW)

  9. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    Science.gov (United States)

    Dong, Anping; Li, Baoping; Lu, Yanling; Zhu, Guoliang; Xing, Hui; Shu, Da; Sun, Baode; Wang, Jun

    2017-01-01

    The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM) coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM). The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products. PMID:28829393

  10. The impact of anticoccidial drug resistance on poultry production - a ...

    African Journals Online (AJOL)

    This review, using coccidiosis and anticoccidial drug resistance highlighted the economic impact of drug resistance on livestock industry but also suggested ways of preventing or minimizing drug resistance on the farm. This way, economic loss will be minimized and more protein from animal origin will be made available to ...

  11. The effect of long-term impact of elevated temperature on changes in the microstructure of inconel 740H alloy

    Directory of Open Access Journals (Sweden)

    M. Sroka

    2017-01-01

    Full Text Available This paper presents the results of investigations on microstructure changes after the long-term impact of temperature. The microstructure investigations were carried out by light microscopy and scanning electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray phase composition analysis. The effect of elevated temperature on precipitation processes of test material were described. The obtained results of investigations form part of the material characteristics of new-generation alloys, which can be indirectly associated with the stability of functional properties under the simultaneous effect of high temperature and stress.

  12. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2015-01-01

    Full Text Available The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure, geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  13. Distribution of Silicified Microstructures, Regulation of Cinnamyl Alcohol Dehydrogenase and Lodging Resistance in Silicon and Paclobutrazol Mediated Oryza sativa

    Directory of Open Access Journals (Sweden)

    Deivaseeno Dorairaj

    2017-07-01

    Full Text Available Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si, a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD, a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.

  14. Influence of thermomechanical treatment on microstructure and mechanical properties of a microalloyed (Nb + V) weather-resistant steel

    International Nuclear Information System (INIS)

    Prasad, S.N.; Sarma, D.S.

    2005-01-01

    The influence of thermomechanical treatment after soaking at 1000 and 1100 deg. C on the structure and properties of a microalloyed (Nb + V) weather-resistant steel has been studied. The steel contains 0.2% C, 1% Mn, 0.3% Si, 0.5% Cr, 0.45% Cu, 0.3 % Ni, 0.054% Nb and 0.046% V. It has been found that after soaking at 1000 deg. C, the yield strength of the steel has increased considerably when rolled to 25 or 50% on decreasing the rolling temperature from 900 to 700 deg. C. The UTS and hardness have not been significantly affected by the rolling temperatures between 800 and 900 deg. C. However, there has been a considerable increase in UTS and hardness after rolling at 700 deg. C. The steel has given ferrite-pearlite microstructure at all rolling temperatures studied. The ferrite grain size decreases with decreasing rolling temperature and increasing deformation. While the ferrite morphology is polygonal after rolling at 900 and 800 deg. C, it is non-polygonal after rolling at 700 deg. C. After soaking at 1100 deg. C, the yield strength increases slightly after rolling 50% at 800 deg. C while the UTS increases markedly. The microstructure changes to that of mixed ferrite and granular bainite with the preponderance of martensite/austenite constituent as revealed by transmission electron microscopy. Thermomechanical treatment (with ≥50% deformation at ∼800 deg. C) is very effective in increasing YS and UTS

  15. Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints

    International Nuclear Information System (INIS)

    Zhang, Hongqiang; Wei, Ajuan; Qiu, Xiaoming; Chen, Jianhe

    2014-01-01

    Highlights: • We examine changes of microstructure of dissimilar thickness DP600/DP780 joints. • The hardness profile of RSW joints can be predicted by the equation. • Failure modes, peak load and energy describes the mechanical properties of joints. • The nugget diameter is the key factor of transition between the failure modes. - Abstract: In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints

  16. Magnetic and microstructural characterisation of FeNi: Insight into the formation and impact history of the IAB parent body

    Science.gov (United States)

    Nichols, C. I. O.; Krakow, R.; Herrero-Albillos, J.; Kronast, F.; Northwood-Smith, G.; Harrison, R. J.

    2017-12-01

    The IABs represent one of only two groups of iron meteorites that did not form by fractional crystallization of liquid Fe-Ni in the core of a differentiated planetesimal. Instead, they are believed to originate from a partially differentiated body that was severely disrupted by one or more impacts during its early history. Paleomagnetic signals from two IABs, Toluca and Odessa, were investigated using X-ray magnetic circular dichroism (XMCD) and X-ray photoemission electron microscopy (X-PEEM) to image the magnetisation of the cloudy zone. The IABs do not appear to have experienced a magnetic field, consistent with the lack of a metallic core on the parent body. We also present a detailed microstructural and magnetic study of the observed FeNi microstructures, characterising their properties using XMCD and X-PEEM. The crystallographic architecture of the microstructures was analysed using electron backscatter diffraction (EBSD). Odessa and Toluca both exhibit a complex series of microstructures, requiring an unusual evolution during slow cooling. A conventional Widmanstätten sequence of kamacite, tetrataenite rim and cloudy zone developed via slow cooling to temperatures below 400 ºC. Subsequent modification of the microstructures resulted in the formation of pearlitic plessite and spheroidized plessite. Compositional and crystallographic analysis suggests that pearlitic and spheroidized plessite formed by impact modification of the cloudy zone and martensite, respectively. This study highlights the importance of characterising microstructures in order to corroborate paleomagnetic observations, as well as improving our understanding of the processes effecting planetary formation and evolution.

  17. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  18. Microstructure and Tensile-Shear Properties of Resistance Spot Welded 22MnMoB Hot-Stamping Annealed Steel

    Science.gov (United States)

    Li, Yang; Cui, Xuetuan; Luo, Zhen; Ao, Sansan

    2017-01-01

    The present paper deals with the joining of 22MnMoB hot-stamping annealed steel carried out by the spot welding process. Microstructural characterization, microhardness testing and tensile-shear testing were conducted. The effects of the welding parameters, including the electrode tip diameter, welding current, welding time and electrode force upon the tensile-shear properties of the welded joints, were investigated. The results showed that a weld size of 9.6 mm was required to ensure pullout failure for the 1.8 -mm-thick hot-stamping annealed steel sheet. The welding current had the largest influence upon the tensile-shear properties of the 22MnMoB steel welded joint. The bulk resistance should play an important role in the nugget formation. In pullout failure mode, failure was initiated at the heat-affected zone, where softening occurs owing to the tempering of martensite.

  19. Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhang, Jinghuai; Li, Guoqiang; Feng, Yan; Su, Minliang; Wu, Ruizhi; Zhang, Zhongwu [Harbin Engineering Univ. (China). Key Laboratory of Superlight Material and Surface Technology; Jiao, Yufeng [Jiamusi Univ. (China). College of Materials Science and Engineering

    2017-05-15

    The thermal stability of Al-RE (rare earth) intermetallic phases with individual RE for heat-resistant high-pressure die-casting Mg-Al-RE alloys is investigated. The results of this study show that the main strengthening phase of Mg-4Al-4Ce alloy is Al{sub 11}Ce{sub 3}, whose content is about 5 wt.% according to quantitative X-ray diffraction phase analysis. The Al{sub 11}Ce{sub 3} phase appears to have high thermal stability at 200 C and 300 C, while phase morphology change with no phase structure transition could occur for Al{sub 11}Ce{sub 3} when the temperature reaches 400 C. Furthermore, besides the kinds of rare earths and temperature, stress is also an influencing factor in the microstructural stability of Mg-4Al-4Ce alloy.

  20. Effect of Coiling Temperature on Microstructure, Properties and Resistance to Fish-Scaling of Hot Rolled Enamel Steel.

    Science.gov (United States)

    Zhao, Yang; Huang, Xueqi; Yu, Bo; Yuan, Xiaoyun; Liu, Xianghua

    2017-08-31

    The microstructure, mechanical properties, and hydrogen permeation behavior of hot rolled enamel steel were investigated. Three coiling temperatures were adopted to gain different sizes of ferrite grain and TiC precipitates. The results show that a large number of interphase precipitates of nano-sized TiC can be obtained at coiling temperatures of 650 and 700 °C, while a few precipitates are found in experimental steel when coiling temperature is 600 °C. The yield strength and ultimate tensile strength decrease with increasing coiling temperature, while elongation increases. The experimental steel has the best resistance to fish-scaling at coiling temperature of 700 °C, due to the large quantities of nano-sized interphase precipitates of TiC.

  1. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  2. Impact of the nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E., E-mail: eric.hug@ensicaen.fr [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Prasath Babu, R. [School of Materials, University of Manchester, M13 9PL (United Kingdom); Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Monnet, I. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Etienne, A. [Groupe de Physique des Matériaux, UMR CNRS 6634, Université et INSA de Rouen, Normandie Université, Saint-Etienne du Rouvray Cedex (France); Moisy, F. [Centre de recherches sur les Ions, les Matériaux et la Photonique CEA-CNRS, Normandie Université, 6 Bd Maréchal Juin, 14050 Caen (France); Pralong, V. [Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, CNRS UMR 6508, 6 Bd Maréchal Juin, 14050 Caen (France); Enikeev, N. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); Saint Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured Materials, 198504 St. Petersburg (Russian Federation); Abramova, M. [Institute of Physics of Advanced Materials, Ufa (Russian Federation); and others

    2017-01-15

    Highlights: • Impacts of nanostructuration and irradiation on the properties of 316 stainless steels are reported. • Irradiation of nanostructured samples implies chromium depletion as than depicted in coarse grain specimens. • Hardness of nanocrystalline steels is only weakly affected by irradiation. • Corrosion resistance of the nanostructured and irradiated samples is less affected by the chromium depletion. - Abstract: The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV {sup 56}Fe{sup 5+} ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.

  3. Abrasion resistance, microhardness and microstructures of single-phase niobium nitride films

    International Nuclear Information System (INIS)

    Singer, I.L.; Bolster, R.N.; Wolf, S.A.; Skelton, E.F.; Jeffries, R.A.

    1983-01-01

    The relative abrasive wear resistance of single-phase niobium nitride films deposited at 900 and 500 0 C was measured. Wear resistance versus depth profiles of films abraded against 1-5 μm diamond were obtained by weight loss methods. A β phase Nb 2 N film was five to 20 times more abrasion resistant, but only slightly (40%) harder, than the delta phase NbN films made at the same temperature. The β-Nb 2 N film was deformed plastically during wear, reorienting the [002] c axis perpendicular to the plane of the substrate. The abrasion resistance of the delta-NbN films was initially proportional to the microhardness. Two films had changes in their abrasion resistance as wear proceeded: for one film the change was attributable to deviations in stoichiometry and for the other film it was attributable to increased lattice distortion. (Auth.)

  4. Microstructure and heat resistance of Mg-Al-Zn alloys containing metastable phase

    International Nuclear Information System (INIS)

    Kim, Jeong-Min; Park, Bong-Koo; Jun, Joong-Hwan; Shin, Keesam; Kim, Ki-Tae; Jung, Woon-Jae

    2007-01-01

    In this research microstructural studies have been made on cast specimens of AZ91 base alloys containing various amounts of Zn. As the amount of Zn addition increased up to 2%, any new Zn-containing phase did not appear while the Zn content in Mg 17 Al 12 phase continuously increased. A quasi-crystalline phase started to form at Mg 17 Al 12 phase when the added Zn content was about 3 wt.%. The tensile strength and elongation of the alloys at 175 deg. C were observed to increase significantly with increasing Zn content. The quasi-crystalline phase was found to be stable up to 300 deg. C, based on scanning electron microscopy examinations of the specimens heated at different temperatures for 24 h

  5. Ballistic impact resistance of selected organic ophthalmic lenses.

    Science.gov (United States)

    Chou, B Ralph; Yuen, Gloria S-C; Dain, Stephen J

    2011-11-01

    The aim was to assess the impact resistance of coated and uncoated mid-index spectacle lens materials using the ballistic impact test. Nominally plano lenses of each material in three thicknesses were obtained. The lenses were flat edged to a 50 mm diameter. Each lens was impacted by a 6.35 mm steel ball. Impact velocities were selected using the Zippy Estimation by Sequential Testing protocol to determine the threshold fracture impact velocity. Threshold fracture impact velocity generally increased with thickness; however, there was a wide variation in performance among the various lens materials at each thickness. In all but two instances, the differences in impact velocity at each thickness of lens material were significant. Comparison of the data for CR39 and Hoya Phoenix with the results of earlier studies showed that the lens mounting is a significant factor. The fracture velocities found in the present study were significantly lower than the fracture velocities found when the lens edge is restrained in the mounting. A scratch resistant coating reduced the impact resistance of CR39. The effect of the antireflection coating on the fracture velocity depended on the nature of the base scratch-resistant coating. Mid-index lens materials of the same thickness show widely varying levels of impact resistance under the ballistic test. Impact resistance increases non-linearly with centre thickness. The lens mounting might affect the results of the ballistic impact test. The presence of 'cushion coatings' might enhance impact resistance. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  6. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  7. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  8. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  9. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-12-01

    Full Text Available Ni-based alloy powders with different contents of cobalt (Co have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM, an electron probe microanalyzer (EPMA, X-ray diffraction (XRD, a hardness tester, and a wear tester. The results show that the phases in the cladding layers are mainly γ, M7(C, B3, M23(C, B6, and M2B. With the increase in Co content, the amounts of M7(C, B3, M23(C, B6, and M2B gradually decrease, and the width of the eutectic structure in the cladding layer also gradually decreases. The microhardness decreases but the wear resistance of the cladding layer gradually improves with the increase of Co content. The wear resistance of the NiCo30 cladding layer is 3.6 times that of the NiCo00 cladding layer. With the increase of Co content, the wear mechanism of the cladding layer is changed from abrasive wear to adhesive wear.

  10. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  11. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  12. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li Qingfen [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Li Ying; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Jin Guo [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: jg97721@yahoo.com.cn; Ding Minghui [School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2008-12-30

    In this paper, a new innoxious and pollution-free chemical protective coating for magnesium alloys, phytic acid conversion coating, was prepared. The conversion coatings are found to have high cover ratio and no cracks are found by atomic force microscopes (AFM) and scanning electron microscopy (SEM). The main elements of the conversion coatings are Mg, Al, O, P and C by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The chemical state of the elements in the coatings was also investigated by Fourier transform infrared spectroscopy (FTIR). AES depth profile analysis suggests that the thickness of the conversion coating is about 340 nm. The corrosion resistance of the coatings was evaluated by polarization curves. The results indicate that the corrosion resistance for the conversion coated AZ91D magnesium alloys in 3.5% NaCl solution increases markedly. The mechanisms of corrosion resistance and coatings formation are also discussed.

  13. Study on impact properties of creep-resistant steel thermally simulated heat affected zone

    Directory of Open Access Journals (Sweden)

    Mitrović Radivoje M.

    2012-01-01

    Full Text Available The steam pipe line (SPL and steam line material, along with its welded joints, subject to damage that accumulates during operation in coal power plants. As a result of thermal fatigue, dilatation of SPL at an operating temperature may lead to cracks initiation at the critical zones within heat affected zone (HAZ of steam pipe line welded joints. By registration of thermal cycle during welding and subsequent HAZ simulation is possible to obtain target microstructure. For the simulation is chosen heat resisting steel, 12H1MF (designation 13CrMo44 according to DIN standard. From the viewpoint of mechanical properties, special attention is on impact toughness mostly because very small number of available references. After simulation of single run and multi run welding test on instrumented Charpy pendulum. Metallographic and fractographic analysis is also performed, on simulated 12H1MF steel from service and new, unused steel. The results and correlation between microstructure and impact toughness is discussed, too.

  14. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous

  15. Microstructure and Impact Toughness of the Intercritically Reheated Coarse-grained Heat Affected Zone of 13MnNiMoR Steel

    Science.gov (United States)

    Han, Yang; Jinbo, Qu

    The microstructure and impact toughness of intercritically reheated coarse-grained heat affected zone (ICCGHAZ) of 13MnNiMoR and the effect of post-welding heat treatment (PWHT) process were investigated by means of welding thermal simulation test. The result shows that after the first welding thermal cycle, the microstructure of the coarse-grained heat affected zone (CGHAZ) mainly consists of granular bainite and lath bainite, with good impact toughness. After the second thermal cycle with a peak temperature of 650 to 700°C, the CGHAZ microstructure experiences a tempering process and its impact toughness improves due to the precipitation of carbides and reduction of dislocations. With a second peak temperature of 750 to 850°C, part of the CGHAZ microstructure retransforms to austenite and during cooling, martensite-austenite (MA) constituents forms along grain boundaries in the ICCGHAZ microstructure, leading to a sharp drop of toughness. When the second thermal cycle peak temperature is up to 900°C, the CGHAZ microstructure is fully austenitized, and the final microstructure mainly consists of ferrite and granular bainite. After a PWHT process in the temperature range of 560 to 640°C, the impact toughness of ICCGHAZ is markedly improved, primarily due to the decomposition of MA constituents.

  16. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  17. Microstructural design of PCA austenitic stainless steel for improved resistance to helium embrittlement under HFIR irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1983-01-01

    Several variants of Prime Candidate Alloy (PCA) with different preirradiation thermal-mechanical treatments were irradiated in HFIR and were evaluated for embrittlement resistance via disk-bend tensile testing. Comparison tests were made on two heats of 20%-cold-worked type 316 stainless steel. None of the alloys were brittle after irradiation at 300 to 400 0 C to approx. 44 dpa and helium levels of 3000 to approx.3600 at. ppm. However, all were quite brittle after similar exposure at 600 0 C. Embrittlement varied with alloy and pretreatment for irradiation to 44 dpa at 500 0 C and to 22 dpa at 600 0 C. Better relative embrittlement resistance among PCA variants was found in alloys which contained prior grain boundary MC carbide particles that remained stable under irradiation

  18. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    Science.gov (United States)

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  19. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    OpenAIRE

    Chunglok, Aoythip; Muensit, Nantakan; Daengngam, Chalongrat

    2016-01-01

    We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the...

  20. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  1. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  2. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  3. Microstructure Control of Fire-resistant, Low-alloy Steel; An in-situ 3D X-ray Diffraction and A Small-angle X-ray Scattering Study

    NARCIS (Netherlands)

    Dere, E.G.

    2013-01-01

    The research presented in this thesis aims at deepening our understanding of the formation of the microstructure of steel during thermal processing in order to control the microstructure and thereby improve the fire-resistance of low-alloy steel. The strength of steel decreases during a fire mainly

  4. Microstructure and phase analysis of 0.5Cr-0.5Mo-0.25V creep-resistant steels after long-term service

    Czech Academy of Sciences Publication Activity Database

    Výrostková, A.; Svoboda, Milan; Homolová, V.; Falat, L.; Kepič, J.

    2011-01-01

    Roč. 105, - (2011), s. 452-454 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z20410507 Keywords : low-alloy steels * microstructure * phase analysis Subject RIV: JG - Metallurgy Impact factor: 0.529, year: 2011

  5. The impact of cooling rates on the microstructure of Al-U alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Zenou, V.Y.; Cotler, C.; Talyanker, M.

    1997-01-01

    The impact of cooling rates on the microstructure of Al-U alloys was studied by optical, scanning electron, and transmission electron microscopy. A variety of solidification techniques were employed to obtain cooling rates ranging between 3 x 10 -2 and 10 6 K/s. High-purity uranium (99.9 pct) and high-purity aluminum (99.99 pct), or commercially pure type Al-1050 aluminum alloys were used to prepare Al-U alloys with U concentration ranging between 3 and 22 wt pct. The U concentration at which a coupled eutectic growth was observed depends on the cooling rates imposed during solidification and ranged from 13.8 wt pct for the slower cooling rates to more than 22 wt pct for the fastest cooling rates. The eutectic morphology and its distribution depends on the type of aluminum used in preparing the alloys and on the cooling rates during solidification. The eutectic in alloys prepared from pure aluminum was evenly distributed, while for those prepared from Al-1050, the eutectic was unevenly distributed, with eutectic colonies of up to 3 mm in diameter. Two lamellar eutectic structures were observed in alloys prepared from pure aluminum containing more than 18 wt pct U, which solidified by cooling rates of about 10 K/s. One structure consisted of the stable eutectic between UAl 4 and Al lamella. The other structure consisted of a metastable eutectic between UAl 3 and Al lamella. At least three different eutectic morphologies were observed in alloys prepared from Al-1050

  6. The impact of cooling rates on the microstructure of Al-U alloys

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Zenou, V.Y.; Cotler, C. [Nuclear Research Center-Negev, Beer-Sheva (Israel); Talyanker, M. [Ben-Gurion Univ. of the Negev, Beer-Sheva (Israel). Dept. of Materials Engineering

    1997-04-01

    The impact of cooling rates on the microstructure of Al-U alloys was studied by optical, scanning electron, and transmission electron microscopy. A variety of solidification techniques were employed to obtain cooling rates ranging between 3 {times} 10{sup {minus}2} and 10{sup 6} K/s. High-purity uranium (99.9 pct) and high-purity aluminum (99.99 pct), or commercially pure type Al-1050 aluminum alloys were used to prepare Al-U alloys with U concentration ranging between 3 and 22 wt pct. The U concentration at which a coupled eutectic growth was observed depends on the cooling rates imposed during solidification and ranged from 13.8 wt pct for the slower cooling rates to more than 22 wt pct for the fastest cooling rates. The eutectic morphology and its distribution depends on the type of aluminum used in preparing the alloys and on the cooling rates during solidification. The eutectic in alloys prepared from pure aluminum was evenly distributed, while for those prepared from Al-1050, the eutectic was unevenly distributed, with eutectic colonies of up to 3 mm in diameter. Two lamellar eutectic structures were observed in alloys prepared from pure aluminum containing more than 18 wt pct U, which solidified by cooling rates of about 10 K/s. One structure consisted of the stable eutectic between UAl{sub 4} and Al lamella. The other structure consisted of a metastable eutectic between UAl{sub 3} and Al lamella. At least three different eutectic morphologies were observed in alloys prepared from Al-1050.

  7. Influence of SMA reinforcement on the impact resistance of GFRP ...

    Indian Academy of Sciences (India)

    short strips of shape memory alloy (SMA) were prepared by hand lay-up method. The SMA strip reinforcement was placed at ... GFRP laminates; shape memory alloy; low velocity impact; impact resistance; SEM. 1. Introduction. Composite materials offer ..... C. Thus, a working environment arround the critical temperature will ...

  8. Effects of prestressing on impact resistance of concrete beams

    International Nuclear Information System (INIS)

    Mikami, H.; Kishi, N.; Matsuoka, K.G.; Mikami, T.; Nomachi, S.G.

    1995-01-01

    In this paper, the effects of prestressing on impact resistance of concrete beams using two types of prestressed concrete (PC) tendons are discussed based on experimental results. Aramids Fiber Reinforced Plastic rods and PC steel strand were used as PC tendons. To clarify the effects of prestressing on concrete beam impact resistance, dynamic behavior of prestressed and/or non-prestressed concrete beams with different PC tendon arrangements were considered. Impact test were performed using a 200 kg f free falling steel weight on to the center of beam. (author). 10 refs., 5 figs., 2 tabs

  9. Improved swelling resistance for PCA austenitic stainless steel under HFIR irradiation through microstructural control

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1984-01-01

    Swelling evaluation of PCA variants and 20%-cold-worked (N-Lot) type 316 stainless steel (CW 316) at 300 to 600 0 C was extended to 44 dpa. Swelling was negligible in all the steels at 300 0 C after approx. 44 dpa. At 500 to 600 0 C 25%-cold-worked PCA showed better void swelling resistance than type 316 at approx. 44 dpa. There was less swelling variation among alloys at 400 0 C, but again 25%-cold-worked PCA was the best

  10. Effect of Weld Current on the Microstructure and Mechanical Properties of a Resistance Spot-Welded TWIP Steel Sheet

    Directory of Open Access Journals (Sweden)

    Mumin Tutar

    2017-11-01

    Full Text Available In this study the effect of the weld current on the microstructure and mechanical properties of a resistance spot-welded twinning-induced plasticity (TWIP steel sheet was investigated using optical microscopy, scanning electron microscopy–electron back-scattered diffraction (SEM–EBSD, microhardness measurements, a tensile shear test and fractography. Higher weld currents promoted the formation of a macro expulsion cavity in the fusion zone. Additionally, higher weld currents led to a higher indentation depth, a wider heat-affected zone (HAZ, coarser grain structure and thicker annealing twins in the HAZ, and a relatively equiaxed dendritic structure in the centre of the fusion zone. The hardness values in the weld zone were lower than that of the base metal. The lowest hardness values were observed in the HAZ. No strong relationship was observed between the hardness values in the weld zone and the weld current. A higher joint strength, tensile deformation and failure energy absorption capacity were obtained with a weld current of 12 kA, a welding time of 300 ms and an electrode force of 3 kN. A complex fracture surface with both brittle and limited ductile manner was observed in the joints, while the base metal exhibited a ductile fracture. Joints with a higher tensile shear load (TSL commonly exhibited more brittle fracture characteristics.

  11. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  12. Microstructure and mechanical properties of high temperature creep resisting superalloy René 77 modified CoAl2O4

    OpenAIRE

    M. Poręba; J. Sieniawski; M. Zielinska

    2007-01-01

    Purpose: Nickel based superalloys are widely used for turbine and stator blades of compressor in aero-engines. The objective of this work is to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: Experimentally investigated castings have been made of commercially produced nickel superalloy René 77. Stepp...

  13. MICROSTRUCTURE AND CORROSION RESISTANCE OF CHROMIUM NITRIDES OBTAINED BY VACUUM GAS NITRIDING OF ELECTROLYTIC CHROMIUM DEPOSITED ON AISI H13 STEEL

    OpenAIRE

    H. Cifuentes; J. J. Olaya

    2013-01-01

    In this scientific research paper, the microstructure and corrosion resistance of chromium nitrides obtained from a duplex treatment consisting of an electroplated hard chromium coating applied on a steel AISI H13 follow by a thermochemical treatment in vacuum using NH3 as precursor gas of nitrogen, is evaluated. This type of duplex treatments combine the benefits of each individual treatment in order to obtain, with this synergic effect, compounds type CrxN more economic than those obtained ...

  14. Impact of the Microstructure of Polymer Drag Reducer on Slick-Water Fracturing

    Directory of Open Access Journals (Sweden)

    Zhi-yu Liu

    2017-01-01

    Full Text Available Many studies have focused on the drag reduction performance of slick-water, but the microdrag reduction mechanism remains unclear since the microstructure of the drag reducer and its effect on this mechanism have not been well studied. In this study, the microstructure of the drag reducer in slick-water was effectively characterized by transmission electron microscopy. The viscoelasticity and drag reduction performance of the drag reducer with different microstructures were then investigated. Further, the effects of the microstructure of the drag reducer on the viscoelasticity and drag reduction performance of slick-water were analyzed. The results demonstrated that the viscoelasticity of slick-water is governed by the microstructure of the drag reducer, which exhibits a network structure. In addition, the drag reduction performance is related to the viscoelasticity. At low flow rates, the drag reduction performance is dominantly influenced by viscosity, whereas, at high flow rates, it is governed mainly by elasticity. Furthermore, the drag reducer with a uniformly distributed network structure exhibits the most stable drag reduction performance. This drag reducer was used in a field test and the obtained results were consistent with those of a laboratory experiment.

  15. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy

    Science.gov (United States)

    Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu

    2018-04-01

    Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.

  16. Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology

    Science.gov (United States)

    Rani, R.; Kumar, N.; Lin, I.-Nan

    2016-05-01

    Nanostructured diamond films are having numerous unique properties including superior tribological behavior which is promising for enhancing energy efficiency and life time of the sliding devices. High wear resistance is the principal criterion for the smooth functioning of any sliding device. Such properties are achievable by tailoring the grain size and grain boundary volume fraction in nanodiamond film. Ultra-nanocrystalline diamond (UNCD) film was attainable using optimized gas plasma condition in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. Crystalline phase of ultra-nanodiamond grains with matrix phase of amorphous carbon and short range ordered graphite are encapsulated in nanowire shaped morphology. Film showed ultra-high wear resistance and frictional stability in micro-tribological contact conditions. The negligible wear of film at the beginning of the tribological contact was later transformed into the wearless regime for prolonged sliding cycles. Both surface roughness and high contact stress were the main reasons of wear at the beginning of sliding cycles. However, the interface gets smoothened due to continuous sliding, finally leaded to the wearless regime.

  17. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    Science.gov (United States)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  18. Microstructure and mechanical properties of heat resistant composites reinforced with basalt fibres

    Czech Academy of Sciences Publication Activity Database

    Glogar, Petr; Sucharda, Zbyněk; Černý, Martin; Puchegger, S.; Peterlik, H.

    2007-01-01

    Roč. 51, č. 4 (2007), s. 190-197 ISSN 0862-5468 R&D Projects: GA ČR GA106/05/0817 Institutional research plan: CEZ:AV0Z30460519 Keywords : ceramic matrix composites * thermosetting resin * basalt fibre Subject RIV: JI - Composite Materials Impact factor: 0.488, year: 2007

  19. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  20. Effect of CeO₂ on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding.

    Science.gov (United States)

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-12-31

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.

  1. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  2. Extreme Wetting-Resistant Multiscale Nano-/Microstructured Surfaces for Viscoelastic Liquid Repellence

    Directory of Open Access Journals (Sweden)

    Aoythip Chunglok

    2016-01-01

    Full Text Available We demonstrate exceptional wetting-resistant surfaces capable of repelling low surface tension, non-Newtonian, and highly viscoelastic liquids. Theoretical analysis and experimental result confirm that a higher level of multiscale roughness topography composed of at least three structural length scales, ranging from nanometer to supermicron sizes, is crucial for the reduction of liquid-solid adhesion hysteresis. With Cassie-Baxter nonwetting state satisfied at all roughness length scales, the surface has been proven to effectively repel even highly adhesive liquid. Practically, this high-level hierarchical structure can be achieved through fractal-like structures of silica aggregates induced by siloxane oligomer interparticle bridges. The induced aggregation and surface functionalization of the silica particles can be performed simultaneously within a single reaction step, by utilizing trifunctional fluoroalkylsilane precursors that largely form a disordered fluoroalkylsiloxane grafting layer under the presence of sufficient native moisture preadsorbed at the silica surface. Spray-coating deposition of a particle surface layer on a precoated primer layer ensures facile processability and scalability of the fabrication method. The resulting low-surface-energy multiscale roughness exhibits outstanding liquid repellent properties, generating equivalent lotus effect for highly viscous and adhesive natural latex concentrate, with apparent contact angles greater than 160°, and very small roll-off angles of less than 3°.

  3. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  4. Effect of microstructure on the impact toughness of high strength steels

    Directory of Open Access Journals (Sweden)

    Gutiérrez, Isabel

    2014-12-01

    Full Text Available One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design.El desarrollo de nuevos grados de acero se tropieza con frecuencia con la necesidad de incrementar la resistencia mecánica al mismo tiempo que se reduce la temperatura de transición dúctil-frágil y se eleva la energía del palier dúctil. Hacer frente a este reto requiere un diseño microestructural. La tenacidad en aceros está controlada por diferentes constituyentes microestructurales. Algunos de ellos, como las inclusiones son intrínsecos, pero otros que se manifiestan a diferentes escalas microestructurales dependen de las condiciones de proceso. Existen algunas ecuaciones empíricas que permiten calcular para ferrita-perlita en aceros de bajo carbono la temperatura de transición como suma de contribuciones de elementos en solución sólida, nitrógeno libre, carburos, fracción de perlita, tamaño de grano y, eventualmente

  5. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    International Nuclear Information System (INIS)

    Ghazanfari, H.; Naderi, M.; Iranmanesh, M.; Seydi, M.; Poshteban, A.

    2012-01-01

    Highlights: ► Hardness mapping is a novel method to identify different phases. ► Surface hardness mapping, tabulates the hardness of a large area of weld. ► Hardness maps can be used to depict the strength map through the specimen. ► Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to calculate the ultimate tensile stress and yield stress from the weld. The calculated data were compared

  6. Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti–6Al–4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Buirette, Christophe, E-mail: christophe.buirette@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Huez, Julitte, E-mail: julitte.huez@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Gey, Nathalie, E-mail: Nathalie.gey@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Île du Saulcy, 57045 METZ Cedex 1 (France); DAMAS, Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures, Université de Lorraine (France); Vassel, Alain, E-mail: alain.vassel@titane.asso.fr [Association Française du Titane, 16 quai Ernest Renaud, BP 70515, 44105 Nantes Cedex 4 (France); Andrieu, Eric, E-mail: eric.andrieu@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France)

    2014-11-17

    The impact toughness of two highly textured rolled plates of Ti–6Al–4V alloy with an α equiaxed and an α lamellar microstructures has been investigated. The results show a strong anisotropy of the fracture energy for both materials and underline that a coincidence of the prismatic planes with the shear bands at the notch tip is favorable for higher fracture energies. Moreover, it is pointed out, as it was already done by previous studies, that the α lamellar microstructure presents higher fracture energy than the α equiaxed one. Thanks to electron back scattering diffraction, and tensile tests, local microstructure heterogeneities, called macrozones, have been observed and characterized. Their size depends on microstructure element and is larger for α lamellar microstructure than for the α equiaxed. High strain is localized on the macrozones favorably oriented for prismatic slip with respect to the direction of impact and leads to a particular dimple free zone on the fracture surface. The contribution of these macrozones in the fracture behavior, and more precisely on the crack propagation rate was evaluated; thus the effects of the macroscopic texture and of the microstructure element on the impact toughness are discussed separately.

  7. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  8. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Pardal, J.M.; Lima, L.D.; Bastos, I.N.; Nascimento, A.M.; Souza, J.A. de

    2007-01-01

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H 2 SO 4 media

  9. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  10. Antibiotic resistance along an urban river impacted by treated wastewaters.

    Science.gov (United States)

    Proia, Lorenzo; Anzil, Adriana; Subirats, Jessica; Borrego, Carles; Farrè, Marinella; Llorca, Marta; Balcázar, Jose Luis; Servais, Pierre

    2018-07-01

    Urban rivers are impacted ecosystems which may play an important role as reservoirs for antibiotic-resistant (AR) bacteria. The main objective of this study was to describe the prevalence of antibiotic resistance along a sewage-polluted urban river. Seven sites along the Zenne River (Belgium) were selected to study the prevalence of AR Escherichia coli and freshwater bacteria over a 1-year period. Culture-dependent methods were used to estimate E. coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. The concentrations of these four antibiotics have been quantified in the studied river. The antibiotic resistance genes (ARGs), sul1, sul2, tetW, tetO, blaTEM and qnrS were also quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed an effect of treated wastewaters release on the spread of antibiotic resistance along the river. Although an increase in the abundance of both AR E. coli and resistant heterotrophic bacteria was observed from upstream to downstream sites, the differences were only significant for AR E. coli. A significant positive regression was also found between AR E. coli and resistant heterotrophic bacteria. The concentration of ARGs increased from upstream to downstream sites for both particle-attached (PAB) and free-living bacteria (FLB). Particularly, a significant increase in the abundance of four among six ARGs analyzed was observed after crossing urban area. Although concentrations of tetracycline significantly correlated with tetracycline resistance genes, the antibiotic levels were likely too low to explain this correlation. The analysis of ARGs in different fractions revealed a significantly higher abundance in PAB compared to FLB for tetO and sul2 genes. This study demonstrated that urban activities may increase the spread of antibiotic resistance even in an already impacted river. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    Science.gov (United States)

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  12. Radiation crosslinked block copolymer blends with improved impact resistance

    International Nuclear Information System (INIS)

    Saunders, F.L.; Pelletier, R.R.

    1976-01-01

    Polymer blends having high impact resistance after mechanical working are produced by blending together a non-elastomeric monovinylidene aromatic polymer such as polystyrene with an elastomeric copolymer, such as a block copolymer of styrene and butadiene, in the form of crosslinked, colloidal size particles

  13. Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses.

    Science.gov (United States)

    Takeuchi, H; Taki, Y; Hashizume, H; Asano, K; Asano, M; Sassa, Y; Yokota, S; Kotozaki, Y; Nouchi, R; Kawashima, R

    2016-12-01

    Videogame play (VGP) has been associated with numerous preferred and non-preferred effects. However, the effects of VGP on the development of microstructural properties in children, particularly those associated with negative psychological consequences of VGP, have not been identified to date. The purpose of this study was to investigate this issue through cross-sectional and longitudinal prospective analyses. In the present study of humans, we used the diffusion tensor imaging mean diffusivity (MD) measurement to measure microstructural properties and examined cross-sectional correlations with the amount of VGP in 114 boys and 126 girls. We also assessed correlations between the amount of VGP and longitudinal changes in MD that developed after 3.0±0.3 (s.d.) years in 95 boys and 94 girls. After correcting for confounding factors, we found that the amount of VGP was associated with increased MD in the left middle, inferior and orbital frontal cortex; left pallidum; left putamen; left hippocampus; left caudate; right putamen; right insula; and thalamus in both cross-sectional and longitudinal analyses. Regardless of intelligence quotient type, higher MD in the areas of the left thalamus, left hippocampus, left putamen, left insula and left Heschl gyrus was associated with lower intelligence. We also confirmed an association between the amount of VGP and decreased verbal intelligence in both cross-sectional and longitudinal analyses. In conclusion, increased VGP is directly or indirectly associated with delayed development of the microstructure in extensive brain regions and verbal intelligence.

  14. Study of radiation effects on zircaloy 4 microstructure (Impact on susceptibility to fuel pellet-cladding interaction in PWR)

    International Nuclear Information System (INIS)

    Lefebvre, F.

    1989-01-01

    In PWR the fast neutron flux is an important parameter for fuel can aging by modification of zircaloy-4 microstructure: amorphisation and dissolution of intermetallic precipitates. These phenomena are both analysed and their influence on fuel-cladding interaction is discussed. Irradiations by 1 MeV electrons, Ar ions, Kr ions and fast neutrons are realized for comparison of damages with different defect creation kinetics. Amorphisation is explained as the crystal amorphous state transformation allowing precipitate dissolution by creation of a chemical potential gradient between matrix and amorphous phase. Progressive dissolution of precipitates produced by irradiation decrease the number of potential sites for stress corrosion cracking, improving rupture resistance of the alloy by fuel-cladding interaction [fr

  15. Impact of Surface and Volume Modification of Nickel Superalloys IN-713C and MAR-247 on High Temperature Creep Resistance

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2012-12-01

    Full Text Available Impact of surface and volume modification and double filtration during pouring the moulds on basic mechanical properties and creep resistance of nickel superalloys IN-713C and MAR-247 in conditions of accelerated creep of castings made of post-production scrap of these alloys is evaluated in this paper. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of stereological properties of material macro- and microstructure. It has been proven that in the conditions of hightemperature creep at 980°C and at stress σ = 150 MPa, creep resistance of superalloy MAR-247 is more than 10 times higher than the creep resistance of IN-713C alloy. In case of IN-713C alloy, the creep resistance negligibly depends on macrograin sizes. But, the macrograin size considerably affects the time to failure of specimens made of alloy MAR-247. Creep resistance of specimens made of coarse grain material was 20% higher than the resistance of fine grain materials.

  16. Study of microstructure and augmentation of DC electrical resistivity due to Al3+ substitution in Ni-Zn nano ferrite system synthesized via auto combustion

    Science.gov (United States)

    Babu, B. Rajesh; Ramesh, K. V.; Prasad, M. Sivaram; Purushotham, Y.

    2015-09-01

    Nanocrystalline Ni-Zn-Al spinel ferrite was synthesized via citrate-gel auto combustion method. The as-prepared powders have been separated into two batches in which one batch of powders were sintered at 1000∘C for 4 h and the other batch were pressed into pellets and were sintered at the same temperature. Sintering of the samples was done in air atmosphere followed by natural cooling to room temperature. The heat treated powders have then been characterized using TG-DTA, XRD, SEM and TEM for thermal, structural and microstructural aspects while the DC electrical resistivity measurements were carried out on the sintered pellets. The X-ray diffraction patterns displayed the formation of the spinel phase for all powders and the lattice parameter was obtained using Bragg’s law. The crystallite size for all compositions were found to be in nano dimensions and obtained from the Williamson-Hall method. TG-DTA analysis of the undoped Ni0.5Zn0.5Fe2O4 indicated the formation of the spinel phase is around 400∘C while almost uniform microstructure with a more or less spherical grains has been noticed in the SEM micrograph. An enhancement in the DC electrical resistivity ( ≥ 108Ω-cm) has been observed in Ni0.5Zn0.5Fe2O4 synthesized using this technique in comparison with that processed through conventional ceramic technique and a modification in the resistivity has been observed on substituting Al3+ in place of Fe3+. High electrical resistivity makes these ferrites suitable for high-frequency applications due to possible reduction of the eddy current losses. The observed variation in resistivity has been discussed on amendments in structure, microstructure and unavailability of Fe3+ ions with increasing Al3+ ions in the light of existing understanding. The decrease in resistivity with increasing temperature confirms the semiconducting behavior of all samples. Activation energies for conduction were obtained from the slope of the log ρ versus 1/T plots and observed to

  17. The Current State of Macrolide Resistance in Campylobacter spp.: Trends and Impacts of Resistance Mechanisms.

    Science.gov (United States)

    Bolinger, Hannah; Kathariou, Sophia

    2017-06-15

    Campylobacter spp., especially Campylobacter jejuni and C. coli , are leading bacterial foodborne pathogens worldwide. In the United States, an estimated 0.8 million cases of campylobacteriosis occur annually, mostly involving C. jejuni Campylobacteriosis is generally self-limiting, but in severe cases, treatment with antibiotics may be mandated. The increasing incidence of fluoroquinolone resistance in Campylobacter has rendered macrolides such as erythromycin and azithromycin the drugs of choice for human campylobacteriosis. The prevalence of macrolide resistance in C. jejuni remains low, but macrolide resistance can be common in C. coli Substitutions in the 23S rRNA gene, specifically A2075G, and less frequently A2074C/G, remain the most common mechanism for high-level resistance to macrolides. In C. jejuni , resistance mediated by such substitutions is accompanied by a reduced ability to colonize chickens and other fitness costs, potentially contributing to the low incidence of macrolide resistance. Interestingly, similar fitness impacts have not been noted in C. coli Also noteworthy is a novel mechanism first reported in 2014 for a C. coli isolate from China and mediated by erm (B) harbored on multidrug resistance genomic islands. The incidence of erm (B) appears to reflect clonal expansion of certain strains, and whole-genome sequencing has been critical to the elucidation of erm (B)-associated macrolide resistance in Campylobacter spp. With the exception of one report from Spain, erm (B)-mediated macrolide resistance has been restricted to Campylobacter spp., mostly C. coli , of animal and human origin from China. If erm (B)-mediated macrolide resistance does not confer fitness costs in C. jejuni , the range of this gene may expand in C. jejuni , threatening to compromise treatment effectiveness for severe campylobacteriosis cases. Copyright © 2017 American Society for Microbiology.

  18. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  19. Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions

    International Nuclear Information System (INIS)

    Yan, Peng; Liu, Zhengdong; Bao, Hansheng; Weng, Yuqing; Liu, Wei

    2013-01-01

    Evolution of microstructures and high-temperature strength at 650 °C of 9Cr–3W–3Co martensitic heat resistant steel after aging at 650 °C and 700 °C for different time durations have been experimentally investigated using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and post-aged tensile tests. The results show that after aging at 650 °C, the high-temperature strength and the microstructures of 9Cr–3W–3Co steel keep almost stable with increasing aging time from 300 h to 3000 h. In comparison, after aging at 700 °C, there are obvious changes in the high-temperature strength and the microstructures. The strengthening mechanisms of the 9Cr–3W–3Co steel were also discussed and the athermal yield stresses were calculated. The change of the high-temperature strength is mainly affected by the evolution of dislocations and laths. The precipitates mainly act as obstacles against motion of dislocations and lath boundaries

  20. Impact Resistance Performance of Kenaf Fibre Reinforced Concrete

    Science.gov (United States)

    Che Muda, Zakaria; Liyana Mohd Kamal, Nur; Syamsir, Agusril; Sheng, Chiam Yung; Beddu, Salmia; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of kenaf fibre mesh reinforced concrete (KFMRC) with varied kenaf fibre mesh reinforcement content for the concrete slab of 300mm × 300mm size reinforced with different mesh diameter at constant spacing with varied slab thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.40 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of mesh reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against kenaf fiber diameters by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the slab thickness. The threshold (highest) values for service crack and ultimate crack is 47.9 N/mm2 and 130.58 N/mm2 respectively observed and computed for 50 mm slab with 7 mm diameter mesh.

  1. Effect of Heat Treatment on Microstructure and Impact Toughness of Ti-6Al-4V Manufactured by Selective Laser Melting Process

    Directory of Open Access Journals (Sweden)

    Lee K.-A.

    2017-06-01

    Full Text Available This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

  2. MICROSTRUCTURE AND CORROSION RESISTANCE OF CHROMIUM NITRIDES OBTAINED BY VACUUM GAS NITRIDING OF ELECTROLYTIC CHROMIUM DEPOSITED ON AISI H13 STEEL

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2013-06-01

    Full Text Available In this scientific research paper, the microstructure and corrosion resistance of chromium nitrides obtained from a duplex treatment consisting of an electroplated hard chromium coating applied on a steel AISI H13 follow by a thermochemical treatment in vacuum using NH3 as precursor gas of nitrogen, is evaluated. This type of duplex treatments combine the benefits of each individual treatment in order to obtain, with this synergic effect, compounds type CrxN more economic than those obtained by other kind of treatments e.g. physical vapor deposition (PVD. The results obtained by X-Ray Diffraction (XRD indicate the surface and subsurface transformation of the electrolytic hard chromium coating by formation of CrN and Cr2N phases. Likewise, potentiodynamic polarization tests indicate an increase in corrosion resistance of such kind of compounds in comparison with the obtained results with electroplated hard chromium.

  3. Effect of WO3 nanoparticle loading on the microstructural, mechanical and corrosion resistance of Zn matrix/TiO2-WO3 nanocomposite coatings for marine application

    Science.gov (United States)

    Popoola, A. P. I.; Daniyan, A. A.; Umoru, L. E.; Fayomi, O. S. I.

    2017-03-01

    In this study, for marine application purposes, we evaluated the effect of process parameter and particle loading on the microstructure, mechanical reinforcement and corrosion resistance properties of a Zn-TiO2-WO3 nanocomposite produced via electrodeposition. We characterized the morphological properties of the composite coatings with a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS). We carried out mechanical examination using a Dura Scan hardness tester and a CERT UMT-2 multi-functional tribological tester. We evaluated the corrosion properties by linear polarization in 3.5% NaCl. The results show that the coatings exhibited good stability and the quantitative particle loading greatly enhanced the structural and morphological properties, hardness behavior and corrosion resistance of the coatings. We observed the precipitation of this alloy on steel is greatly influenced by the composite characteristics.

  4. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, Pavol

    2016-01-01

    Here we present the fabrication of a solid-core microstructured polymer optical fiber (mPOF) made of polycarbonate (PC), and report the first experimental demonstration of a fiber Bragg grating (FBG) written in a PC optical fiber. The PC used in this work has a glass transition temperature of 145°C...

  5. Comprehensive analysis of fractures, microstructure, and physical and mechanical properties for the evaluation of the crack resistance of medium-carbon Cr-Ni-Mo steel

    Science.gov (United States)

    Vorob'ev, R. A.; Dubinskii, V. N.; Evstifeeva, V. V.

    2017-10-01

    The crack resistance of the 38CrNi3MoV (34NiCrMoV14—5. 35NiCrMoV12—5) tempered steel (at various tempering temperatures) has been estimated based on a comprehensive study of the steel fractures, microstructure, physical, and mechanical properties. Stress-intensity factor K 1C at the apex of the crack is growing continuously with an increase in the tempering temperature from 200 to 620°C. This indicates that K 1C is a structural-sensitive parameter, which depends on the steel microstructure and submicrostructure, the fracture mechanism that occurs under these structural conditions, the internal stress level, and the existence of microdefects and microcracks. The linear correlation dependence is found between the coefficient K 1C and the transverse velocity V transv. The obtained results reveal that the acoustic method can be used to quickly and efficiently estimate the crack resistance of the thermostrengthened steel without the recourse to labor-consuming mechanical tests and computations of the K 1C value.

  6. Impact des fluctuations longitudinales d'une fibre microstructurée sur des applications à haut-débit

    OpenAIRE

    Kibler, Bertrand; Finot, Christophe

    2008-01-01

    National audience; L'impact des fluctuations longitudinales des paramètres géométriques d'une fibre microstructurée est étudié numériquement pour deux techniques de compression d'impulsion à 40 GHz.A

  7. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  8. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    . The zone is austenitic at the exposure temperature but transforms to ferrite during cooling. When a CeO2 nickel diffusion barrier layer was used The ASR was considerably higher. These results imply that nickel diffusion is not only detrimental: It leads to microstructural instability but also results......Metallic interconnects in solid oxide fuel cell (SOFC) stacks are often in direct contact with a nickel/yttria stabilized zirconia (Ni/YSZ) cermet anode. Interdiffusion between the two components may occur at the operating temperature of 700–850◦C. The alteration of chemical composition can result...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  9. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-05-09

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene\\'s most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  10. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    Science.gov (United States)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  11. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH.

    Science.gov (United States)

    Wang, Ying-Ying; Lai, Samuel K; Ensign, Laura M; Zhong, Weixi; Cone, Richard; Hanes, Justin

    2013-12-09

    The protective barrier, lubricant, and clearance functions of mucus are intimately coupled to its microstructure and bulk rheology. Mucus gels consist of a network of mucin biopolymers along with lipids, salts, and other proteins and exhibit similar biochemical and physical properties across diverse mucosal surfaces. Nevertheless, mucus is exposed to a broad range of pH values throughout the human body. Protein functions are typically sensitive to small changes in pH, and prior investigations using reconstituted, purified mucin gels suggested mucus undergoes a transition from a low-viscosity liquid at neutral pH to a highly viscoelastic solid at low pH. We sought to determine whether those observations hold for fresh, minimally perturbed human mucus ex vivo by using different-sized muco-inert nanoparticles to probe microstructure and cone-and-plate rheometry to measure bulk rheology. We demonstrate that both the microstructure and bulk rheology of fresh, undiluted, and minimally perturbed cervicovaginal mucus exhibit relatively minor changes from pH 1-2 to 8-9, in marked contrast with the pH sensitivity of purified mucin gels. Our work also suggests additional components in mucus secretions, typically eliminated during mucin purification and reconstitution, may play an important role in maintaining the protective properties of mucus.

  12. Effect of melt treatment on microstructure and impact properties of Al ...

    Indian Academy of Sciences (India)

    WINTEC

    ment, modification and combined action of both on the impact toughness. Keywords. Grain refinement; modification; impact ... improved quality (better structure and mechanical proper- ties) involves: (i) addition of alloying ..... ment of fatigue crack growth rates, Annual Book of ASTM. Standards, Vol. 03.01. Basavakumar K G ...

  13. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal-matrix composites

    International Nuclear Information System (INIS)

    Ilo, S.; Just, Ch.; Badisch, E.; Wosik, J.; Danninger, H.

    2010-01-01

    Research highlights: The dissolution reaction kinetics and the formation of intermediate layers of tungsten carbides in Ni-(Cr)-B-Si matrices were studied in liquid-phase sintering with well-defined temperature/time relationship. → The internal intermediate layer formation, close to the original primary tungsten carbide showed diffusion-controlled kinetic (∼t 0.5 ), whereas the outside layer thickness formation, proportional to the processing time (∼t), was formed by the subsequent eutectic reaction of the Ni-(Cr)-B-Si matrix with the WC/W 2 C component. → Cr-addition in the matrix highly influences the inner layer thickness caused probably by increasing the C-diffusion rate, whereas the outer layer thickness was not dependent on the initial Cr-content in the matrix. Generally, the Cr-addition in the Ni-based matrix increased the hardness and elastic modulus of the intermediate phases along the carbide/matrix interface. → The different microstructure gradients are depended mainly on the interface growth kinetics. → The intermediate layers are hard phases (carbides, borides or carbo-borides). → The hardness of the carbide/matrix interface area is significantly lower as the hardness of the original primary tungsten carbides. - Abstract: Hard-particle metal-matrix composites (MMC) are generally used to increase the lifetime of machinery equipment exposed to severe wear conditions. Depending on the manufacturing technology, dissolution reactions of hard phases undergo different temperature/time profiles during processing affecting the microstructure and mechanical properties of the MMCs. Therefore, quantification of the carbide dissolution effects on the microstructure and micro-mechanical properties is the key to success in the development and optimisation of MMCs. Dissolution kinetics of WC/W 2 C in Ni-based matrices were determined in the liquid-sintering with a well-defined temperature/time profile. Microscopic evaluation of the samples showed two

  14. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Science.gov (United States)

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Residual Stress Distribution and Microstructure at a Laser Spot of AISI 304 Stainless Steel Subjected to Different Laser Shock Peening Impacts

    Directory of Open Access Journals (Sweden)

    Wenquan Zhang

    2015-12-01

    Full Text Available The effects of different laser shock peening (LSP impacts on the three-dimensional displayed distributions of surface and in-depth residual stress at a laser spot of AISI 304 stainless steel were investigated by X-ray diffraction technology with the sin2φ method and MATLAB 2010a software. Microstructural evolution in the top surface subjected to multiple LSP impacts was presented by means of cross-sectional optical microscopy (OM and transmission electron microscopy (TEM observations. Experimental results and analysis indicated that residual stress distribution and microstructure at a laser spot depended strongly on the number of multiple LSP impacts, and refined grain and ultra-high strain rate play an important role in the improvement of compressive residual stress of AISI 304 stainless steel. The analysis of treatment of the extended surface was presented to obtain uniform surface properties on the top surface of AISI 304 stainless steel.

  16. Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below

    Science.gov (United States)

    Eckner, R.; Reichel, B.; Savinykh, A. S.; Krüger, L.; Razorenov, S. V.; Garkushin, G. V.

    2016-01-01

    A low-carbon metastable austenitic CrMnNi cast steel was investigated under shock conditions in a flyer-plate impact test. The samples were impacted by aluminum flyer-plates with impact velocities of 620 ± 30 m/s. Depending on deformation temperature and strain rate, the material exhibited different deformation mechanisms (dislocation glide, martensitic transformation, and mechanical twinning), which determined the microstructural evolution and mechanical behavior. Flyer-plate impact tests were carried out at 213 K and 293 K (-60 °C and +20 °C). A soft recovered sample revealed microstructural changes directly after impact. The subsequent microstructural investigations via light-optical microscopy and scanning electron microscopy revealed that transformation-induced plasticity (TRIP effect) was the primary deformation mechanism. Moreover, it was possible to quantify the martensite volume fraction by different methods and to identify the hcp ɛ-martensite phase as an intermediate transformation stage. A decrease in temperature also increased the driving force for the martensitic transformation.

  17. Understanding the impact of polymer self-organization on the microstructure and charge transport in poly(3-hexylthiophene)

    Science.gov (United States)

    Aiyar, Avishek R.

    Conjugated polymers represent the next generation of conducting materials that will enable technological devices incorporating thin film transistors, photovoltaic (PV) cells etc. in a cost effective roll-to-roll manner. The charge carrier mobility, which characterizes the ease with which charges can be transported through the material, is the key metric by which these materials are gaged and is also a decisive factor that limits device performance. Given the impact of microstructure on charge transport, ordered self-assembly in polymeric semiconductors assumes paramount relevance. This thesis outlines a fundamental investigation of the correlations between the morphology and microstructure of a model conjugated polymer, poly(3-hexylthiophene) (P3HT), and its corresponding charge transport properties in an organic field effect transistor (OFET) geometry. Moreover, the evolution of the structural and electrical properties are mapped, which provide new insights into the self-assembly process. The variation in the electrical properties is studied as film formation evolves as a function of solvent evaporation from a sessile P3HT solution droplet. The channel formation process is mapped using four contact field effect measurements. The channel formation study is complimented by interrogating the evolution of the polymer chain conformations using in situ Raman spectroscopy, which reveals the presence of an intermediate lyotropic liquid crystalline phase before film crystallization. The manifestation of the liquid crystalline phase offers a potential rationale to the mobility profiles recorded by the in situ electrical measurements. A joint investigation of both measurements reveals that the onset of channel current occurs well before polymer crystallization and that the subtle structural changes in the P3HT film continue to evolve even after crystallization, which further impact the observed drain current. The large impact of polymer chain conformations on the drain

  18. Effect of Post-deformation Annealing Treatment on the Microstructural Evolution of a Cold-Worked Corrosion-Resistant Superalloy (CRSA) Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Mohamadizadeh, A.; Lin, Y. C.

    2018-03-01

    The post-deformation annealing treatments of a commercial cold-worked corrosion-resistant superalloy steel (Sanicro 28 steel) were carried out at different temperatures in the range of 900-1100 °C for different holding durations of 5, 10, and 15 min. The effects of post-deformation annealing time and temperature on the microstructural evolution and subsequent mechanical properties of the processed Sanicro 28 steel were investigated. The observations indicated that twin-twin hardening in cold deformation condition mainly correlates with abundant nucleation of mechanical twins in multiple directions resulting in considerable strain hardening behavior. Microstructural investigations showed that the static recrystallization takes place after isothermal holding at 900 °C for 5 min. Increasing the annealing temperature from 900 to 1050 °C leads to recrystallization development and grain refinement in the as-recrystallized state. In addition, an increase in annealing duration from 5 to 15 min leads to subgrain coarsening and subsequently larger recrystallized grains size. The occurrence of large proportion of the grain refinement, which is achieved in the first annealing stage at 1050 °C after 5 min, is considered as the main factor for the maximum elongation at this stage.

  19. Effect of Post-deformation Annealing Treatment on the Microstructural Evolution of a Cold-Worked Corrosion-Resistant Superalloy (CRSA) Steel

    Science.gov (United States)

    Mirzaei, A.; Zarei-Hanzaki, A.; Mohamadizadeh, A.; Lin, Y. C.

    2018-02-01

    The post-deformation annealing treatments of a commercial cold-worked corrosion-resistant superalloy steel (Sanicro 28 steel) were carried out at different temperatures in the range of 900-1100 °C for different holding durations of 5, 10, and 15 min. The effects of post-deformation annealing time and temperature on the microstructural evolution and subsequent mechanical properties of the processed Sanicro 28 steel were investigated. The observations indicated that twin-twin hardening in cold deformation condition mainly correlates with abundant nucleation of mechanical twins in multiple directions resulting in considerable strain hardening behavior. Microstructural investigations showed that the static recrystallization takes place after isothermal holding at 900 °C for 5 min. Increasing the annealing temperature from 900 to 1050 °C leads to recrystallization development and grain refinement in the as-recrystallized state. In addition, an increase in annealing duration from 5 to 15 min leads to subgrain coarsening and subsequently larger recrystallized grains size. The occurrence of large proportion of the grain refinement, which is achieved in the first annealing stage at 1050 °C after 5 min, is considered as the main factor for the maximum elongation at this stage.

  20. Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    Science.gov (United States)

    Ambrose, John R.

    1992-01-01

    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.

  1. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  2. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  3. Microstructure Control of High-alloyed White Cast Iron

    Directory of Open Access Journals (Sweden)

    Kawalec M.

    2014-03-01

    Full Text Available This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.

  4. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  5. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    OpenAIRE

    Hong Zhang, Shi; Xi Li, Ming; Hong Yoon, Jae; Yul Cho, Tong; Zhu He, Yi; Gyu Lee, Chan

    2008-01-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prep...

  6. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    OpenAIRE

    Shi Hong Zhang et al

    2008-01-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared unde...

  7. HVOF- and HVAF-Sprayed Cr3C2-NiCr Coatings Deposited from Feedstock Powders of Spherical Morphology: Microstructure Formation and High-Stress Abrasive Wear Resistance Up to 800 °C

    Science.gov (United States)

    Janka, L.; Norpoth, J.; Trache, R.; Thiele, S.; Berger, L.-M.

    2017-10-01

    Chromium carbide-based coatings are commonly applied to protect surfaces against wear at high temperatures. This work discusses the influence of feedstock powder and spray torch selection on the microstructure and high-stress abrasion resistance of thermally sprayed Cr3C2-NiCr coatings. Four commercial feedstock powders with spherical morphology and different microstructures were deposited by different high-velocity spray processes, namely third-generation gas- and liquid-fueled HVOF torches and by the latest generation HVAF torch. The microstructures of the coatings were studied in the as-sprayed state and after various heat treatments. The high-stress abrasion resistance of as-sprayed and heat-treated coatings was tested at room temperature and at 800 °C. The study reveals that the selection of the spray torch mainly affects the room temperature abrasion resistance of the as-sprayed coatings, which is due to differences in the embrittlement of the binder phase generated by carbide dissolution. At elevated temperatures, precipitation and growth of secondary carbides yields a fast equalization of the various coatings microstructures and wear properties.

  8. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  9. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  10. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  11. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  12. Microstructural Stability of Dissimilar Weld Joint of Creep -Resistant Steels with Increased Nitrogen Content at 500-900oC

    Czech Academy of Sciences Publication Activity Database

    Zlámal, B.; Foret, R.; Buršík, Jiří; Svoboda, Milan

    2007-01-01

    Roč. 263, - (2007), s. 195-200 ISSN 1012-0386 Institutional research plan: CEZ:AV0Z20410507 Keywords : creep-resistant steel * weld joint * structural analyses Subject RIV: JG - Metallurgy Impact factor: 0.483, year: 2005

  13. Impacts of post-metallization annealing on the memory performance of Ti/HfO2-based resistive memory

    International Nuclear Information System (INIS)

    Chen, Pang-Shiu; Chen, Yu-Sheng; Lee, Heng-Yuan

    2013-01-01

    Impacts of post-metallization annealing (PMA) on bipolar resistance switching of Ti/HfO x stacked films were investigated. A Ti capping film as a scavenging layer with assistance of PMA is used to tune the dielectric strength of the 10-nm-thick HfO x layer. The polycrystalline microstructure of 10-nm-thick HfO x seems immune to the temperature of PMA in this work. The initial resistance and forming voltage in the Ti/HfO x devices mitigate as the increment of the annealing temperature. With enough annealing temperature (>450 °C), the device shows a good on/off ratio, high temperature operation ability and robust endurance (>10 6 cycles). Through the reaction between Ti and HfO x at 500 °C, the abundant oxygen ions are depleted from the insulator and the left charge-defects building conductive percolative paths in the dielectric layer. The operation-polarity independence of the form-free HfO x device in initial state is demonstrated. The forming-free memory with initial low resistance of 800 Ω at 0.1 V can be operated with stable bipolar resistance switching via initially positive or negative voltage sweep. The formless device with 10 nm thick HfO x also exhibits excellent nonvolatile memory performances, including enough on/off ratio, improved HRS uniformity and good high temperature retention (3 × 10 4 s at 200 °C). The results of this work suggest that the PMA temperature will affect the memory window and cycling reliability of the Ti/HfO x -based resistive memory. Optimum temperature (450 °C) will improve the memory performance of the Ti/HfO x stacked layer. (paper)

  14. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Mitali, E-mail: mitali.physics@gmail.com; Singh, Surendra, E-mail: surendra@barc.gov.in; Bhattacharya, Debarati; Basu, Saibal, E-mail: sbasu@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Ajay; Prajapat, C. L. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tokas, R.B. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-07-15

    Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50%) on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  15. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    Directory of Open Access Journals (Sweden)

    Mitali Swain

    2015-07-01

    Full Text Available Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50% on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  16. Impact and fracture resistance of an experimental acrylic polymer with elastomer in different proportions

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2009-01-01

    Full Text Available The purpose of this study was to evaluate the impact and fracture resistance of acrylic resins: a heat-polymerized resin, a high-impact resin and an experimental polymethyl methacrylate with elastomer in different proportions (10, 20, 40 and 60%. 120 specimens were fabricated and submitted to conventional heat-polymerization. For impact test, a Charpy-type impact tester was used. Fracture resistance was assessed with a 3-point bending test by using a mechanical testing machine. Ten specimens were used for each test. Fracture (MPa and impact resistance values (J.m-1 were submitted to ANOVA - Bonferroni's test - 5% significance level. Materials with higher amount of elastomer had statistically significant differences regarding to impact resistance (p < 0.05. Fracture resistance was superior (p < 0.01 for high-resistance acrylic resin. The increase in elastomer concentration added to polymethyl methacrylate raised the impact resistance and decreased the fracture resistance. Processing the material by injection decreased its resistance to impact and fracture.

  17. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, Benjamín

    2014-09-01

    Full Text Available A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ, weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discontinuous yield. Higher tensile strength was obtained for weld bead, which exhibited a lower impact energy in comparison to that of HAZ and base metal associated with brittle fracture by trans-granular cleavage. The degradation of properties was associated with the coarsening of nano-carbides observed through TEM images analysis, which was confirmed by SEM fractography of tensile and impact fracture surfaces. The weld bead reached the largest void density and highest susceptibility to corrosion in H2S media when compared to those of the HAZ and base metal.Se realizó un estudio de caracterización para analizar cómo la microestructura afecta a las propiedades mecánicas, corrosión y fractura de la zona afectada por calor (ZAC, soldadura y metal base para tubería envejecida naturalmente durante 21 años a 30 °C. Los resultados indicaron que las microestructuras presentaron daño y consecuentemente reducción en propiedades mecánicas, como consecuencia del envejecimiento por servicio. El estudio mediante MEB mostró que el metal base presenta grano ferrítico grueso. La prueba de tensión indicó que las microestructuras mostraron fluencia discontinua. La mayor resistencia a la tracción se presentó en la soldadura, la cual alcanzó menor energía de impacto en comparación con la ZAC y metal base asociado con fractura frágil por clivaje transgranular. La degradación de las propriedades está en relación con el engrosamiento de nanocarburos observados a

  18. Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-06-01

    Full Text Available Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries. These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding, leading to the improvement of creep properties. Based on this point, adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys. The present investigation, however, shows that the creep properties of binary Mg–Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg2Sn at grain boundaries. That means other possible mechanisms function to affect the creep response. It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries. Based on this observation, new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg–Sn alloys.

  19. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, W.T. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Su, C.Y., E-mail: cysu@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Huang, T.S. [China Steel Corporation, Kaohsiung, Taiwan (China); Liao, W.H. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Nano Technology Laboratory, Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2013-05-15

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C.

  20. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  1. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    -resistant bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal...

  2. Analysis of head impact exposure and brain microstructure response in a season-long application of a jugular vein compression collar: a prospective, neuroimaging investigation in American football

    Science.gov (United States)

    Myer, Gregory D; Yuan, Weihong; Barber Foss, Kim D; Thomas, Staci; Smith, David; Leach, James; Kiefer, Adam W; Dicesare, Chris; Adams, Janet; Gubanich, Paul J; Kitchen, Katie; Schneider, Daniel K; Braswell, Daniel; Krueger, Darcy; Altaye, Mekibib

    2016-01-01

    Background Historical approaches to protect the brain from outside the skull (eg, helmets and mouthpieces) have been ineffective in reducing internal injury to the brain that arises from energy absorption during sports-related collisions. We aimed to evaluate the effects of a neck collar, which applies gentle bilateral jugular vein compression, resulting in cerebral venous engorgement to reduce head impact energy absorption during collision. Specifically, we investigated the effect of collar wearing during head impact exposure on brain microstructure integrity following a competitive high school American football season. Methods A prospective longitudinal controlled trial was employed to evaluate the effects of collar wearing (n=32) relative to controls (CTRL; n=30) during one competitive football season (age: 17.04±0.67 years). Impact exposure was collected using helmet sensors and white matter (WM) integrity was quantified based on diffusion tensor imaging (DTI) serving as the primary outcome. Results With similar overall g-forces and total head impact exposure experienced in the two study groups during the season (p>0.05), significant preseason to postseason changes in mean diffusivity, axial diffusivity and radial diffusivity in the WM integrity were noted in the CTRL group (corrected p0.05). The CTRL group demonstrated significantly larger preseason to postseason DTI change in multiple WM regions compared with the collar group (corrected pfootball. Collar wearing may have provided a protective effect against brain microstructural changes after repetitive head impacts. Trial registration number NCT02696200. PMID:27307271

  3. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    International Nuclear Information System (INIS)

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  4. Memory resistive switching in CeO2-based film microstructures patterned by a focused ion beam

    DEFF Research Database (Denmark)

    Velichko, A.; Boriskov, P.; Grishin, A.

    2014-01-01

    ) with insulating properties and a semiconducting ormetallic lowresistance state (ON) with resistance ratios up to 104. The influence of micro-scaling and defects formed at the cell boundaries during etching on its electrical characteristics has been analyzed. The appearance of a switching channel at the moment......Heteroepitaxial CeO2 (80 nm)/La0.5Sr0.5CoO3 (500 nm) film structure has been pulsed laser deposited on a sapphire substrate. The Ag/CeO2 microjunctions patterned by a focused ion beam on a La0.5Sr0.5CoO3 film exhibit reproducible reversible switching between a high resistance state (OFF...... of the electrical forming, responsible for the memory effect, has been proved, along with a mechanism of a self-healing electrical breakdown. © 2014 Elsevier B.V. All rights reserved....

  5. Modification of the grain boundary microstructure of the austenitic PCA stainless steel to improve helium embrittlement resistance

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1986-01-01

    Grain boundary MC precipitation was produced by a modified thermal-mechanical pretreatment in 25% cold worked (CW) austenitic prime candidate alloy (PCA) stainless steel prior to HFIR irradiation. Postirradiation tensile results and fracture analysis showed that the modified material (B3) resisted helium embrittlement better than either solution annealed (SA) or 25% CW PCA irradiated at 500 to 600 0 C to approx.21 dpa and 1370 at. ppM He. PCA SA and 25% CW were not embrittled at 300 to 400 0 C. Grain boundary MC survives in PCA-B3 during HFIR irradiation at 500 0 C but dissolves at 600 0 C; it does not form in either SA or 25% CW PCA during similar irradiation. The grain boundary MC appears to play an important role in the helium embrittlement resistance of PCA-B3

  6. Microstructure characterization in the weld metals of HQ130 + QJ63 ...

    Indian Academy of Sciences (India)

    Unknown

    2002-11-27

    Nov 27, 2002 ... under 80% Ar + 20% CO2 gas shielded metal arc welding and different weld heat inputs, was carried out by means of scanning ... Keywords. Microstructure characterization; high strength steel; weld metals. 1. Introduction .... measured by V-type notch impact test is as low as 72 J. In order to resist cold ...

  7. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  8. Numerical microstructural analysis of automotive-grade steels when joined with an array of welding processes

    International Nuclear Information System (INIS)

    Gould, J.E.; Khurana, S.P.; Li, T.

    2004-01-01

    Weld strength, formability, and impact resistance for joints on automotive steels is dependent on the underlying microstructure. A martensitic weld area is often a precursor to reduced mechanical performance. In this paper, efforts are made to predict underlying joint microstructures for a range of processing approaches, steel types, and gauges. This was done first by calculating cooling rates for some typical automotive processes [resistance spot welding (RSW), resistance mash seam welding (RMSEW), laser beam welding (LBW), and gas metal arc welding (GMAW)]. Then, critical cooling rates for martensite formation were calculated for a range of automotive steels using an available thermodynamically based phase transformation model. These were then used to define combinations of process type, steel type, and gauge where welds could be formed avoiding martensite in the weld area microstructure

  9. Impact of Materials Processing on Microstructural Evolution and Hydrogen Isotope Storage Properties of Pd-Rh Alloy Powders.

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Joshua K [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Cryomilled Pd - 10Rh was investiga ted as potential solid - state storage material of hydrogen. Pd - 10Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd - 10Rh was then examined using microstructural characterization techniques including op tical microscopy, electron microscopy, and X - ray diffraction. Pd - 10Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd - 10Rh, generating grains at the nanom etric scale through dislocation - based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hyd rogen sorption properties until the smallest grain size (on the order of %7E25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  10. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    Science.gov (United States)

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present

  11. Impact of Corrugated Paperboard Structure on Puncture Resistance

    Directory of Open Access Journals (Sweden)

    Vaidas Bivainis

    2015-03-01

    Full Text Available Thanks to its excellentprotective properties, lightness, a reasonable price, and ecology, corrugated paperboardis one of the most popular materials used in the production of packaging for variousproducts. During transportation or storage, packaging with goods can be exposedto the mass of other commodities, dropping from heights and transportationshock loads, which can lead to their puncture damage. Depending on the purposeand size of the packaging, the thickness, grammage, constituent paper layers,numbers of layers and type of fluting of corrugated paperboard used in itsproduction differ. A standard triangular prism, corrugated paperboard fixationplates and a universal tension-compression machine were used to investigate theimpact of corrugated paperboard structure and other parameters on the punctureresistance of the material. The investigation determines the maximum punctureload and estimates energy required to penetrate the corrugated paperboard. Itwas found that the greatest puncture resistance is demonstrated by paperboardwith a larger number of corrugating flutings and the board produced from harderpaper with a smaller amount of recycled paper. It was established that thegrammage of three-layered paperboard with two different fluting profiles has thegreatest impact on the level of static puncture energy.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5713

  12. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline

    OpenAIRE

    Vargas-Arista, Benjamín; Albiter, Apolinar; García-Vázquez, Felipe; Mendoza-Camargo, Óscar; Hallen, José Manuel

    2014-01-01

    A characterization study was done to analyze how microstructural regions affect the mechanical properties, corrosion and fractography of the Heat Affected Zone (HAZ), weld bead and base metal for pipe naturally aged for 21 years at 30 °C. Results showed that microstructures exhibited damage and consequently decrease in properties, resulting in over-aged due to service. SEM analysis showed that base metal presented coarse ferrite grain. Tensile test indicated that microstructures showed discon...

  13. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  14. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  15. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    Directory of Open Access Journals (Sweden)

    Shi Hong Zhang et al

    2008-01-01

    Full Text Available Micron-size Ni-base alloy (NBA powders were mixed with both 1.5 wt.% (hereinafter % micron-size CeO2 (m-CeO2 and also 1.5% and 3.0% nano-size CeO2 (n- CeO2 powders. These mixtures were coated on low-carbon steel (Q235 by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1 by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  16. Study on microstructure evolution of deformed Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloys after solid solution and ageing

    Directory of Open Access Journals (Sweden)

    Jianmin Yu

    2016-01-01

    Full Text Available The microstructure evolution of Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloy after deformation and T5 or T6 treatment were studied. In thermoplastic deformation, dynamic recrystallization and dynamic precipitation has been taken place at the same time. The dynamic precipitation reduces the recrystallization nucleation driving force in the grain; it will prevent to occur dynamic recrystallization partially. Solid solution temperature was 530oC and hold 4h. Age hardening treatments were performed at 225oC and hold 16h. The alloy showed the comprehensive properties are obviously improved from T6 to T5 heat treatment. After T5 heat treatment the tensile strength of alloy increased to 359.3 MPa, increased by around 48.5%; Elongation is increasing from 5.17% to 6.5%. After peak ageing treatment, the main precipitation is β' phase, the precipitation phase have obvious pinning effect to grain boundary of the alloy, it will prevent the grain growth ageing for a long-time. At the same time, strengthening role of precipitate phase make its strength increased significantly.

  17. Influences of Alloying Element and Annealing on the Microstructure and Corrosion Resistance of Steam Generator Tubing Materials of Nuclear Power Plant (I)

    International Nuclear Information System (INIS)

    Kim, Young Sik; Pari, Yong Soo; Kuk, Il Hiun

    1996-01-01

    Influences of alloying elements and annealing heat treatments on Alloy 690 and Alloy 600 for steam generator tubing materials of nuclear power plants were studied. OM, SEM, TEM, and XRD analyses were used to study the microstructural changes of the alloys. Mechanical properties were investigated by means of tension tests and Rockwell hardness tests, and corrosion resistance was evaluated using the anodic polarization tests and the 65% boiling nitric acid immersion tests. Increasing the carbon content of Alloy 690, the hardness and tensile strength were increased, but the elongation and grain size were decreased. However, increasing the annealing temperature, the tensile strength and hardness were decreased, but the elongation and grain size were increased. Increasing the carbon content of Alloy 690, the results of the anodic polarization tests and the nitric acid immersion tests showed that the annealing temperature to reveal a minimum corrosion rate was increased. This behavior seemed to be due to the combination of the solid solution of carbon in the matrix and grain growth with annealing. In this work, the corrosion properties of Alloy 690 were better than that of Alloy 600, and the range of the optimum annealing temperature of Alloy 690 was from 1100 .deg. C to 1150 .deg. C

  18. Variation of Microstructure and Area Specific Resistance with Surface Roughness of a Ferritic Stainless Steel after Long-Term Oxygen Exposure

    International Nuclear Information System (INIS)

    Mumm, Daniel R.; Song, Myoung Youp

    2015-01-01

    One of the candidates for metallic interconnects of solid oxide fuel cells is a ferritic stainless steel, Crofer 22 APU. By grinding with different grit SiC grinding paper, Crofer 22 APU specimens with various surface roughness were prepared. The specimens were then thermally cycled by heating them to 1,073 K at a rate of 10 K min - 1, holding at 1,073 K for 25 h, and cooling to 298 K at a rate of 10 K min‒1. Examinations of the resulting microstructures, measurements of the area specific resistances (ASRs), and analyses of the atomic percentages of elements via energy dispersive X-ray (EDX) spectroscopy were performed. The particle size decreased as the grit number of the grinding paper used to grind the sample surfaces increased. A polished sample exhibited the smallest particle size. Plots of ln (ASR/T ) vs. 1/T for the samples ground with grit 80 and grit 400 and the polished sample after 40 thermal cycles exhibited good linearity. At the same measuring temperature, the ASR increased as the surface of the sample became rougher. This suggests that the polished Crofer 22 APU is better than those with rougher surfaces for application as interconnect of SOFC.

  19. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing.

    Science.gov (United States)

    Aghajani Derazkola, Hamed; Simchi, Abdolreza

    2018-03-01

    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al 2 O 3 ) containing up to 20vol% nanoparticles with an average diameter of 50nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600rpm/min and transverse velocity of 120mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests indicate that the strength and toughness of the material gradually increases with the nanoparticle concentration and reach to a flexural strength of 129MPa, hardness of 101 Shore D, and impact energy 2kJ/m 2 for the nanocomposite containing 20vol% alumina. These values are about 10% and 20% better than untreated and FSP-treated PMMA (without alumina addition). Fractographic studies indicate typical brittle features with crack deflection around the nanoparticles. More interestingly, the sliding wear rate in a pin-on-disk configuration and the friction coefficient are reduced up to 50% by addition of alumina nanoparticles. The worn surfaces exhibit typical sliding and ploughing features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel

    Czech Academy of Sciences Publication Activity Database

    Sobotová, J.; Jurči, P.; Dlouhý, Ivo

    2016-01-01

    Roč. 652, JAN (2016), s. 192-204 ISSN 0921-5093 Institutional support: RVO:68081723 Keywords : Fracture toughnes * Tool steel * Ledeburitic steel * Subzero treatment * Wear Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016 http://www.sciencedirect.com/science/article/pii/S0921509315306675

  1. The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel

    Czech Academy of Sciences Publication Activity Database

    Sobotová, J.; Jurči, P.; Dlouhý, Ivo

    2016-01-01

    Roč. 652, JAN (2016), s. 192-204 ISSN 0921-5093 Institutional support: RVO:68081723 Keywords : Fracture toughness * Tool steel * Ledeburitic steel Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 3.094, year: 2016 http://www.sciencedirect.com/science/article/pii/S0921509315306675

  2. Blueberries? Impact on Insulin Resistance and Glucose Intolerance

    OpenAIRE

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by hom...

  3. Tumor cell heterogeneity: impact on mechanisms of therapeutic drug resistance

    International Nuclear Information System (INIS)

    Richardson, Mary E.; Siemann, Dietmar W.

    1997-01-01

    Purpose: The aim of these studies was to determine whether chemotherapy-resistant tumor cell sublines derived from a single starting cell population with identical treatment protocols, have the same mechanism of resistance. Methods and Materials: Twelve cyclophosphamide-resistant sublines were derived from KHT-iv murine sarcoma cells by repeated exposures to 2, 4, or 8 μg/ml doses of 4-hydroperoxycyclophosphamide (4-OOHCP). To investigate possible mechanisms of resistance, glutathione (GSH) levels, glutathione S-transferase (GST) activity, and aldehyde dehydrogenase (ALDH) activity were determined. In addition, studies with the GSH depletor buthionine sulfoximine (BSO) and the ALDH inhibitor diethylamino-benzaldehyde (DEAB) were undertaken. Results: Resistant factors to 4-OOHCP, assessed at 10% clonogenic cell survival, ranged from 1.5-7.0 for the various cell lines. Crossresistance to melphalan and adriamycin also were commonly observed. Increased GSH levels, GST activity and ALDH activity were detected in the sublines but not all exhibited the same pattern of biochemical alterations. The response to GSH and ALDH inhibitors also varied among the sublines; the resistance being reversible in some cell lines but not others. Conclusion: The present results indicate that when resistant sublines are derived simultaneously from the same starting cell population, the observed mechanisms of resistance may not be the same in each of the variants. These findings support the hypothesis that preexisting cellular heterogeneity may affect mechanisms of acquired resistance

  4. Effects of thermal annealing in the post-reflow process on microstructure, tin crystallography, and impact reliability of Sn–Ag–Cu solder joints

    International Nuclear Information System (INIS)

    Chen, Wen-Lin; Yu, Chi-Yang; Ho, Cheng-Ying; Duh, Jenq-Gong

    2014-01-01

    This study aims to investigate the microstructure, β-Sn crystallography, micro-hardness and impact reliability of both Sn–3.0Ag–0.5Cu/Cu (SAC/Cu) and Sn–3.0Ag–0.5Cu/Ni (SAC/Ni) solder joints under various reflow processes. During the solidification step of the reflow process, solder joints were annealed at 210 °C for 50 s and 100 s, respectively. Network-type precipitations formed within the SAC/Cu joint, while dot-type precipitations distributed within the SAC/Ni joint. With the increase of annealing time, these precipitations grew larger; the interfacial intermetallic compounds (IMCs) became slightly thicker, and the hardness of solder alloys gradually decreased. Electron backscatter diffraction (EBSD) analysis indicates that the β-Sn grain structure depended on the distribution of precipitations. A high speed shear tester was used to evaluate the impact toughness of solder joints. Noteworthily, the short-time annealing can improve the impact reliability of solder joints. After annealing for 50 s, the average impact toughness of both SAC/Cu and SAC/Ni solder joints was enhanced, and the percentage of ductile fracture increased significantly. However, the growth of (Cu,Ni) 6 Sn 5 at the SAC/Ni interface degraded the impact toughness as the SAC/Ni joint was annealed for 100 s. The variation of impact toughness in SAC/Cu and SAC/Ni is correlated to the variation of microstructure and hardness in solder joints

  5. Multidrug resistant bacteria in companion animals: impact on animal health and zoonotic aspects

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro

    The role of companion animals as a source of antibiotic resistant bacteria has historically been given little emphasis when compared with that of food animals. However, various resistant bacteria may cause serious treatment problems in companion animal medicine. Some of the most important multidrug-resistant...... bacteria include methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. These bacteria will be described with focus on their prevalence across Europe, their impact on animal...

  6. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  7. Clinical, economic and societal impact of antibiotic resistance.

    Science.gov (United States)

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  8. Impact of variable frequency microwave and rapid thermal sintering on microstructure of inkjet-printed silver nanoparticles

    OpenAIRE

    Cauchois, Romain; Saadaoui, Mohamed; Yakoub, Abdelwahhab; Inal, Karim; Dubois-Bonvalot, Béatrice; Fidalgo, Jean-Christophe

    2012-01-01

    International audience; The effect of thermal profile on microstructure is studied in the frame of thin films deposited by inkjet-printing technology. The role of sintering temperature and thermal ramp is particularly investigated. Fast heating ramps exhibit coarse grains and pores, especially when a hybrid microwave curing is performed. This enhanced growth is attributed to the quick activation of densifying sintering regimes without undergoing thermal energy loss at low temperature. Microst...

  9. Analysis of head impact exposure and brain microstructure response in a season-long application of a jugular vein compression collar: a prospective, neuroimaging investigation in American football.

    Science.gov (United States)

    Myer, Gregory D; Yuan, Weihong; Barber Foss, Kim D; Thomas, Staci; Smith, David; Leach, James; Kiefer, Adam W; Dicesare, Chris; Adams, Janet; Gubanich, Paul J; Kitchen, Katie; Schneider, Daniel K; Braswell, Daniel; Krueger, Darcy; Altaye, Mekibib

    2016-10-01

    Historical approaches to protect the brain from outside the skull (eg, helmets and mouthpieces) have been ineffective in reducing internal injury to the brain that arises from energy absorption during sports-related collisions. We aimed to evaluate the effects of a neck collar, which applies gentle bilateral jugular vein compression, resulting in cerebral venous engorgement to reduce head impact energy absorption during collision. Specifically, we investigated the effect of collar wearing during head impact exposure on brain microstructure integrity following a competitive high school American football season. A prospective longitudinal controlled trial was employed to evaluate the effects of collar wearing (n=32) relative to controls (CTRL; n=30) during one competitive football season (age: 17.04±0.67 years). Impact exposure was collected using helmet sensors and white matter (WM) integrity was quantified based on diffusion tensor imaging (DTI) serving as the primary outcome. With similar overall g-forces and total head impact exposure experienced in the two study groups during the season (p>0.05), significant preseason to postseason changes in mean diffusivity, axial diffusivity and radial diffusivity in the WM integrity were noted in the CTRL group (corrected p0.05). The CTRL group demonstrated significantly larger preseason to postseason DTI change in multiple WM regions compared with the collar group (corrected pfootball. Collar wearing may have provided a protective effect against brain microstructural changes after repetitive head impacts. NCT02696200. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    April J. Stull

    2016-11-01

    Full Text Available Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM. These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR, insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM.

  11. Method of stimulus combination impacts resistance to extinction.

    Science.gov (United States)

    Podlesnik, Christopher A; Bai, John Y H

    2015-07-01

    Reinforcing an alternative response in the presence of the stimuli governing a target response increases resistance to extinction of target responding, relative to training target responding on its own. Conversely, training alternative and target responses in the presence of different stimuli and combining those stimuli only decreases resistance to extinction of target responding, relative to target responding on its own. The present study assessed how different methods of combining discriminative stimuli influence resistance to extinction of responding in pigeons. As in previous studies, combining stimuli across different keys only decreased resistance to extinction of target responding relative to target responding on its own. In comparison, combining stimuli on the same key initially increased resistance to extinction of target responding, but repeated tests resulted in similar levels of responding as target responding with stimuli combined on separate keys. Moreover, greater overall reinforcement rates produced greater resistance to extinction with both methods of combining stimuli, consistent with behavioral momentum theory. These findings reveal several behavioral processes influence the outcome of combining stimuli--including perceptual processes, discriminative control by contingencies, response competition, and behavioral momentum. © Society for the Experimental Analysis of Behavior.

  12. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting.

    Science.gov (United States)

    Lu, Yanjin; Ren, Ling; Xu, Xiongcheng; Yang, Yang; Wu, Songquan; Luo, Jiasi; Yang, Mingyu; Liu, Lingling; Zhuang, Danhong; Yang, Ke; Lin, Jinxin

    2018-05-01

    In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Impact of antimicrobial use during beef production on fecal occurrence of antimicrobial resistance

    Science.gov (United States)

    Objective: To determine the impact of typical antimicrobial use during cattle production on fecal occurrence of antimicrobial resistance by culture, quantitative PCR, and metagenomic sequencing. Experimental Design & Analysis: Feces were recovered from colons of 36 lots of "conventional" (CONV) ca...

  14. Presence of tetracycline resistance genes in ecosystems with distinct levels of human impact

    OpenAIRE

    STEHLÍKOVÁ, Zuzana

    2011-01-01

    The incidence of tetracycline resistance genes in the environments with different levels of human impact were compared in this work. The experimental part included detection of eight tetracycline resistance genes in soils from manured and non-manured farms (representing man-affected environment) and soils from national parks (representing non-affected environment).

  15. Impact of integrated fish farming on antimicrobial resistance in a pond environment

    DEFF Research Database (Denmark)

    Petersen, Andreas; Andersen, Jens Strodl; Kaewmak, T.

    2002-01-01

    investigated the impact of integrated fish farming on the levels of antimicrobial-resistant bacteria in a pond environment. One integrated broiler chicken-fish farm was studied for 2 months immediately after the start of a new fish production cycle. A significant increase over time in the resistance to six...... different antimicrobials was found for the indicator organism Acinetobacter spp. isolated from composite water-sediment samples. The initial resistance levels prior to the new production cycle were 1. to 5%. After 2 months the levels of resistance to oxytetracycline and sulfamethoxazole reached 100...... compared to the resistance levels at four control farms. In conclusion, integrated fish farming seems to favor antimicrobial-resistant bacteria in the pond environment. This could be attributed to the selective pressure of antimicrobials in the pond environment and/or to the introduction of antimicrobial-resistant...

  16. Evaluation of the Impact Resistance of Various Composite Sandwich Beams by Vibration Tests

    Directory of Open Access Journals (Sweden)

    Amir Shahdin

    2011-01-01

    Full Text Available Impact resistance of different types of composite sandwich beams is evaluated by studying vibration response changes (natural frequency and damping ratio. This experimental works will help aerospace structural engineer in assess structural integrity using classification of impact resistance of various composite sandwich beams (entangled carbon and glass fibers, honeycomb and foam cores. Low velocity impacts are done below the barely visible impact damage (BVID limit in order to detect damage by vibration testing that is hardly visible on the surface. Experimental tests are done using both burst random and sine dwell testing in order to have a better confidence level on the extracted modal parameters. Results show that the entangled sandwich beams have a better resistance against impact as compared to classical core materials.

  17. Development of impact resistant boron/aluminum composites for turbojet engine fan blades

    Science.gov (United States)

    Melnyk, P.; Toth, I. J.

    1975-01-01

    Composite fabrication was performed by vacuum press diffusion bonding by both the foil-filament array and preconsolidated monotape methods. The effect of matrix material, fiber diameter, matrix enhancement, fiber volume reinforcement, test temperature, angle-plying, notch, impact orientation, processing variables and fabrication methods on tensile strength and Charpy impact resistance are evaluated. Root attachment concepts, were evaluated by room and elevated temperature tensile testing, as well as by pendulum-Izod and ballistic impact testing. Composite resistance to foreign object damage was also evaluated by ballistic impacting of panels using projectiles of gelatin, RTV rubber and steel at various velocities, and impingement angles. A significant improvement in the pendulum impact resistance of B-Al composites was achieved.

  18. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  19. The Effect of Thickness and Mesh Spacing on the Impact Resistance of Ferrocement Slab

    Science.gov (United States)

    Che Muda, Zakaria; Ashraful Alam, Md; Syamsir, Agusril; Sulleman, Sorefan; Beddu, Salmia; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Ismail, Firas B.; Usman, Fathoni; Liyana Mohd Kamal, Nur; Birima, Ahmed H.; Itam, Zarina; Zaroog, O. S.

    2016-03-01

    This paper investigates the effect of the thickness and mesh spacing on the impact of ferrocement for the concrete slab of 300mm x 300mm size reinforced subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at height of 150 mm, 350mm, and 500mm has been used in this research work. The objective of this research is to study the relationship of impact resistance of ferrocement against slab thickness and mesh reinforcement spacing. There is a good linear correlation between impact resistance of ferrocement against slab thickness and its mesh spacing. The first and ultimate crack impact resistance for 40 mm slab are 2.00 times and 1.84 times respectively against the 20 mm slab with the same mesh spacing. The first and ultimate crack impact resistance for 40 mm slab with 20 mm mesh spacing are 2.24 times and 3.70 times respectively against 50 mm mesh spacing with the same slab thickness. The mesh with higher content of reinforcement provides more contribution to the slab resistance as compare with the thickness.

  20. Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.

  1. Impact of antibiotic restriction on resistance levels of Escherichia coli

    DEFF Research Database (Denmark)

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto

    2016-01-01

    OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted as a retrosp......OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted...... as a retrospective controlled interrupted time series (ITS) at two university teaching hospitals, intervention and control, with 736 and 552 beds, respectively. The study period was between January 2008 and September 2014. We used ITS analysis to determine significant changes in antibiotic use and resistance levels......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS...

  2. The impact of insulin resistance, gender, genes, glucocorticoids and ...

    African Journals Online (AJOL)

    2010-11-15

    Nov 15, 2010 ... to increase insulin resistance1 which, in turn, is thought to be an important aetiological factor in the development of type 2 diabetes, dyslipidaemia and cardiovascular disease.2. Body fat distribution is therefore highly important and may be seen as a possible future predictor of obesity-related disease.

  3. Impact of Maxwell rigidity transitions on resistance drift phenomena in GexTe1-x glasses

    Science.gov (United States)

    Luckas, J.; Olk, A.; Jost, P.; Volker, H.; Alvarez, J.; Jaffré, A.; Zalden, P.; Piarristeguy, A.; Pradel, A.; Longeaud, C.; Wuttig, M.

    2014-09-01

    Amorphous chalcogenides usually exhibit a resistivity, which increases with age following a power law ρ ˜ tα. Existing theories link this change in amorphous state resistivity to structural relaxation. Here, the impact of fundamental glass properties on resistance drift phenomena in amorphous GexTe1-x networks is studied. Employing Raman spectroscopy, the Maxwell rigidity transition from flexible to stressed rigid is determined to occur in the compositional range 0.250 0.265) exhibit rather strong resistance drift, where the drift parameters increase steadily from α = 0.13 for amorphous GeTe to α = 0.29 for compositions near the stiffness threshold xc. On the other hand, the drift parameter in flexible glasses (x decreases with decreasing Ge content x to values as low as α = 0.05. These findings illustrate the strong impact of the stiffness threshold on resistance drift phenomena in chalcogenides.

  4. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  5. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    Science.gov (United States)

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P hypertensive group were significantly greater than that in the normotensive group ( P hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P hypertension than hepatic insulin resistance does. © 2017 American Heart Association, Inc.

  6. Influence of SMA reinforcement on the impact resistance of GFRP ...

    Indian Academy of Sciences (India)

    stand the impact damage characteristics when SMA wires are embedded into composite laminates. Further structures are also subjected to severe environment conditions such as high temperature. The study of impact response of com- posite materials subjected to environmental conditions other than ambient is more ...

  7. The resistance to impact of spent Magnox fuel transport flasks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This book completes the papers of the four-year programme of research and demonstrations embarked upon by the CEGB in 1981, culminating in the spectacular train crash at Old Dalby in July 1984. It explains the CEGB's operations in relation to the transportation of spent Magnox fuel. The public tests described in this book are more effective in improving public understanding and confidence than any amount of explanations could have been, raising the wider question of how best the scientific community can respond to the legitimate concerns of the man and woman in the street about the generating of electricity from nuclear power. The contents are: Taking care; irradiated fuel transport in the UK; programming for flask safety; the use of scale models in impact testing; flask analytical studies; drop test facilities; demonstration drop test; a study of flask transport impact hazards; impact of Magnox irradiated fuel transport flasks into rock and concrete; rail crash demonstration scenarios; horizontal impact testing of quarter scale flasks using masonry targets; horizontal crash testing and analysis of model flatrols; flatrol test; analysis of full scale impact into an abutment; analysis of primary impact forces in the train crash demonstration; horizontal impact tests of quarter scale Magnox flasks and stylised model locomotives; predictive estimates for behaviour in the train crash demonstration; design and organization of the crash; execution of the crash demonstration by British Rail; instrumentation for the train crash demonstration; photography for the crash demonstration; a summary of the CEGB's flask accident impact studies

  8. Slip velocity has major impact on the frictional strength and microstructure of quartz-muscovite gouges under hydrothermal conditions

    Science.gov (United States)

    Niemeijer, Andre R.

    2015-04-01

    Previous friction experiments on rock analogue experiments of mixtures of salt and phyllosilicates, demonstrated the possibility of producing mylonitic fault rocks through the simultaneous operation of pressure solution and frictional sliding. This frictional-viscous flow process produces a strong velocity-dependence of friction, with friction values dropping from 0.8 to ~0.2-0.3 over just one order of magnitude decrease in sliding velocity. Here, we present the results of rotary shear experiments on simulated fault gouges of 80 wt% quartz and 20 wt% muscovite. Sliding experiments using a four orders of magnitude range of constant velocities (0.03 - 300 μm/s) to a displacement of 30 mm were done at 500 ° C, 120 MPa effective normal stress and 80 MPa fluid pressure to verify the mechanism at hydrothermal conditions and to link the produced microstructure to the observed strength. At the lowest sliding velocity tested, final friction reached a value of ~0.3, which is lower than that of pure muscovite under similar conditions. With increasing sliding velocity, friction increases, reaching a maximum of ~0.9 at 3 μm/s after which it decreases mildly to ~0.8 at 300 μm/s. The bulk microstructure of the sample sheared at 0.03 μm/s shows an anastomosing foliation of muscovite grain intervened by asymmetrical quartz clasts, with an average grain size of about 20 μm, slightly lower than the median starting size (~49 μm). In contrast, the grains of the sample deformed at 300 micron/s are very small, many of them smaller than distinguishable in the light microscope (i.e. orientations, possibly indicating a Crystallographic Preferred Orientation. These zones of uniform extinction can be found in all samples and their thickness decreases monotonically with decreasing sliding velocity. The microstructure observed at low velocity, in the frictional-viscous regime, is similar to numerous examples from natural fault rocks (e.g. the Median Tectonic Line and the Zuccale Fault

  9. Experimental Study on Impact Load Resistance of RC Beam with Corroded Reinforcement

    Directory of Open Access Journals (Sweden)

    Kuwahara Isao

    2016-01-01

    Full Text Available In Japan, many concrete bridges along the coastline have suffered corrosion due to the chloride attack from seawater and airborne salt. Therefore, now, several researches on corroded RC structures have been ongoing around the world. Especially, as a basic research, many researchers have studied on the numerical and experimental method to evaluate static load resistant capacity of RC beams with corroded reinforcements. However, there has been almost no research to evaluate impact load resistant capacity. Of course, it is important that impact load resistant capacity is clarified, if the possibility of acting of impact load including in natural disaster on corroded RC structures is dealt with. With a background like this, this paper describes an experimental investigation of the structural behavior of corroded RC beams. To be precise, in this study, RC beams with corroded reinforcement by using electrolytic corrosion method were made, and both of static loading test and repeated impact test for those RC beams were conducted in order to clarify the static and impact load resistant capacity of them. As a result, we could get some findings. At first, through repeated impact tests (which has 1.0m/s impact velocity and a 100kg steel weight, the number of impacts to the failure of corroded RC beams were less than half of healthy RC beams. It was also found that fracture pattern was completely different due to some axial cracks by corrosion. In addition, even though the corrosion rate is same level, the impact load resistant capacity reduce greatly compared to the static load resistant capacity because of the existence and pattern of cracks due to corrosion.

  10. Impact of electric and magnetic fields in a resistant medium on the ...

    African Journals Online (AJOL)

    In this paper, we compare the impact of electric and magnetic fields in a resistant medium on the velocity of a particle subject to varying path angles by using numerical integration of finite difference method. The results show that the magnetic field has much impact on the velocity than the electric field. Journal of the Nigerian ...

  11. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    Science.gov (United States)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  12. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  13. Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae: Laboratory Detection and Impact on Mortality.

    Science.gov (United States)

    Rojas, Laura J; Salim, Madiha; Cober, Eric; Richter, Sandra S; Perez, Federico; Salata, Robert A; Kalayjian, Robert C; Watkins, Richard R; Marshall, Steve; Rudin, Susan D; Domitrovic, T Nicholas; Hujer, Andrea M; Hujer, Kristine M; Doi, Yohei; Kaye, Keith S; Evans, Scott; Fowler, Vance G; Bonomo, Robert A; van Duin, David

    2017-03-15

    Polymyxins including colistin are an important "last-line" treatment for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKp). Increasing use of colistin has led to resistance to this cationic antimicrobial peptide. A cohort nested within the Consortium on Resistance against Carbapenems in Klebsiella pneumoniae (CRACKLE) was constructed of patients with infection, or colonization with CRKp isolates tested for colistin susceptibility during the study period of December, 2011 to October, 2014. Reference colistin resistance determination as performed by broth macrodilution was compared to results from clinical microbiology laboratories (Etest) and to polymyxin resistance testing. Each patient was included once, at the time of their first colistin-tested CRKp positive culture. Time to 30-day in-hospital all-cause mortality was evaluated by Kaplan-Meier curves and Cox proportional hazard modeling. In 246 patients with CRKp, 13% possessed ColR CRKp. ColR was underestimated by Etest (very major error rate = 35%, major error rate = 0.4%). A variety of rep-PCR strain types were encountered in both the ColS and the ColR groups. Carbapenem resistance was mediated primarily by blaKPC-2 (46%) and blaKPC-3 (50%). ColR was associated with increased hazard for in-hospital mortality (aHR 3.48; 95% confidence interval, 1.73-6.57; P < .001). The plasmid-associated ColR genes, mcr-1 and mcr-2 were not detected in any of the ColR CRKp. In this cohort, 13% of patients with CRKp presented with ColR CRKp. The apparent polyclonal nature of the isolates suggests de novo emergence of ColR in this cohort as the primary factor driving ColR. Importantly, mortality was increased in patients with ColR isolates.

  14. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance.

    Science.gov (United States)

    Mezzatesta, Maria Lina; Gona, Floriana; Stefani, Stefania

    2012-07-01

    Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.

  15. Effect of Steel Fibres Distribution on Impact Resistance Performance of Steel Fibre Reinforced Concrete (SFRC)

    Science.gov (United States)

    Che Muda, Zakaria; Liyana Mohd Kamal, Nur; Syamsir, Agusril; Shao Yang, Chen; Beddu, Salmia; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Itam, Zarina; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the mesh distribution on the impact performance of steel fibre reinforced concrete (SFRC) for the concrete slab of 300mm × 300mm size reinforced with varied thickness and fraction volume subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.57 m height has been used in this research work. The objective of this research is to study the effect of the mesh distribution on the impact resistance SFRC for various slab thickness and fraction volume. Random fibre distribution is the more effective than the top and bottom fibre distribution in terms of absorption of impact energy, crack resistance, the ability to control crack formation and propagation against impact energy.

  16. VLSI electronics microstructure science

    CERN Document Server

    1982-01-01

    VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI t

  17. The impact of triclosan on the spread of antibiotic resistance in the environment

    Directory of Open Access Journals (Sweden)

    Daniel E Carey

    2015-01-01

    Full Text Available Triclosan (TCS is a commonly used antimicrobial agent that enters wastewater treatment plants (WWTPs and the environment. An estimated 1.1x105 to 4.2x105 kg of TCS are discharged from these WWTPs per year in the United States. The abundance of TCS along with its antimicrobial properties have given rise to concern regarding its impact on antibiotic resistance in the environment. The objective of this review is to assess the state of knowledge regarding the impact of TCS on multidrug resistance in environmental settings, including engineered environments such as anaerobic digesters. Pure culture studies are reviewed in this paper to gain insight into the substantially smaller body of research surrounding the impacts of TCS on environmental microbial communities. Pure culture studies, mainly on pathogenic strains of bacteria, demonstrate that TCS is often associated with multidrug resistance. Research is lacking to quantify the current impacts of TCS discharge to the environment, but it is known that resistance to TCS and multidrug resistance can increase in environmental microbial communities exposed to TCS. Research plans are proposed to quantitatively define the conditions under which TCS selects for multidrug resistance in the environment.

  18. Manual Resistance versus Conventional Resistance Training: Impact on Strength and Muscular Endurance in Recreationally Trained Men.

    Science.gov (United States)

    Chulvi-Medrano, Iván; Rial, Tamara; Cortell-Tormo, Juan M; Alakhdar, Yasser; La Scala Teixeira, Caue V; Masiá-Tortosa, Laura; Dorgo, Sandor

    2017-09-01

    Manual resistance training (MRT) has been widely used in the field of physical therapy. It has also been used as a strength training method due to the accommodating resistance nature of this modality. The aim of the present study was to compare the effects of an 8-week MRT program on maximum strength and muscular endurance in comparison to conventional resistance training in recreationally trained men. Twenty healthy recreationally trained male subjects were recruited and divided into a MRT training group and a conventional training (CT) group. CT group performed bench press and lat pull-down exercises, and the MRT group performed similar movements with resistance provided by a personal trainer. Both groups completed similar training protocol and training load: 2 training sessions weekly for 3 sets of 8 repetitions at an intensity of 8 to 10 on the perceived exertion scale of 0-10. Initial maximum strength differences were not significant between the groups. Neither group showed significant changes in muscular strength or endurance. Despite the statistically non-significant pre- to post differences, a trend for improvement was observed and effect size (ES) calculations indicated greater magnitude of effects for strength and endurance changes in the MRT group in lat pulldown (g=0.84) compared to CT group. Effectiveness of MRT is similar to CT for improving muscular strength and endurance. MRT can be used as a supplemental or alternative strength training modality for recreationally trained subjects, or be considered by personal trainers especially in low equipped facility conditions.

  19. The Effect of Mortar Grade and Thickness on the Impact Resistance of Ferrocement Slab

    Science.gov (United States)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Sulleman, Sorefan; Beddu, Salmia; Thiruchelvam, Sivadass; Ismail, Firas B.; Usman, Fathoni; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Itam, Zarina; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the thickness and mesh spacing on the impact of ferrocement for the concrete slab of 300mm × 300mm size reinforced subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at height of 150 mm, 350mm, and 500mm has been used in this research work. The objective of this research is to study the relationship of impact resistance of ferrocement against the mortar grade and slab thickness. There is a good linear correlation between impact resistance of ferrocement against the mortar grade and the thickness of ferrocement slab. The first and ultimate crack impact resistance of mortar grade 43 (for 40 mm thick slab with mesh reinforcement) are 1.60 times and 1.53 times respectively against the mortar grade 17 slab (of same thickness with mesh reinforcement). The first and ultimate crack impact resistance for 40 mm thick slab (mortar grade 43 with mesh reinforcement) are 3.55 times and 4.49 times respectively against the 20 mm thick slab (of same mortar grade with mesh reinforcement).

  20. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sebastian Gagneux

    2006-06-01

    Full Text Available Understanding the ecology of drug-resistant pathogens is essential for devising rational programs to preserve the effective lifespan of antimicrobial agents and to abrogate epidemics of drug-resistant organisms. Mathematical models predict that strain fitness is an important determinant of multidrug-resistant Mycobacterium tuberculosis transmission, but the effects of strain diversity have been largely overlooked. Here we compared the impact of resistance mutations on the transmission of isoniazid-resistant M. tuberculosis in San Francisco during a 9-y period. Strains with a KatG S315T or inhA promoter mutation were more likely to spread than strains with other mutations. The impact of these mutations on the transmission of isoniazid-resistant strains was comparable to the effect of other clinical determinants of transmission. Associations were apparent between specific drug resistance mutations and the main M. tuberculosis lineages. Our results show that in addition to host and environmental factors, strain genetic diversity can influence the transmission dynamics of drug-resistant bacteria.

  1. Impact of anesthetic regimen on the respiratory pattern, EEG microstructure and sleep in the rat model of cholinergic Parkinson's disease neuropathology.

    Science.gov (United States)

    Lazic, K; Petrovic, J; Ciric, J; Kalauzi, A; Saponjic, J

    2015-09-24

    We hypothesized that the impact of distinct anesthetic regimens could be differently expressed during anesthesia and on post-anesthesia sleep in the neurodegenerative diseases. Therefore, we followed the impact of ketamine/diazepam and pentobarbital anesthesia in a rat model of the severe Parkinson's disease cholinergic neuropathology on the electroencephalographic (EEG) microstructure and respiratory pattern during anesthesia, and on the post-anesthesia sleep. We performed the experiments on adult, male, spontaneously breathing Wistar rats chronically instrumented for sleep recording. The bilateral pedunculopontine tegmental nucleus (PPT) lesion was done by ibotenic acid microinfusion. Following postoperative recovery, we recorded sleep for 6h, induced anesthesia 24h later using ketamine/diazepam or pentobarbital, and repeated sleep recordings sessions 48h and 6days later. During 20min of each anesthesia we recorded both the EEG and respiratory movements. For sleep and EEG analysis, Fourier analysis was applied on 6-h recordings, and each 10-s epoch was differentiated as a state of wakefulness (Wake), non-rapid eye movement (NREM) or rapid eye movement (REM). Additionally, the group probability density distributions of all EEG frequency band relative amplitudes were calculated for each state, with particular attention during anesthesia. For respiratory pattern analysis we used Monotone Signal Segments Analysis. The PPT lesion was identified through nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Our data show that the ketamine/diazepam anesthetic regimen in the PPT-lesioned rats induces more alterations in the EEG microstructure and respiratory pattern than does the pentobarbital anesthesia. In addition, the equal time required to establish an anesthetized state, and the long-term effect on post-anesthesia sleep in the PPT-lesioned vs. control rats suggest this anesthetic regimen as potentially more beneficial both for anesthesia

  2. Impact of violated high-dose refuge assumptions on evolution of Bt resistance.

    Science.gov (United States)

    Campagne, Pascal; Smouse, Peter E; Pasquet, Rémy; Silvain, Jean-François; Le Ru, Bruno; Van den Berg, Johnnie

    2016-04-01

    Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been widely and successfully deployed for the control of target pests, while allowing a substantial reduction in insecticide use. The evolution of resistance (a heritable decrease in susceptibility to Bt toxins) can pose a threat to sustained control of target pests, but a high-dose refuge (HDR) management strategy has been key to delaying countervailing evolution of Bt resistance. The HDR strategy relies on the mating frequency between susceptible and resistant individuals, so either partial dominance of resistant alleles or nonrandom mating in the pest population itself could elevate the pace of resistance evolution. Using classic Wright-Fisher genetic models, we investigated the impact of deviations from standard refuge model assumptions on resistance evolution in the pest populations. We show that when Bt selection is strong, even deviations from random mating and/or strictly recessive resistance that are below the threshold of detection can yield dramatic increases in the pace of resistance evolution. Resistance evolution is hastened whenever the order of magnitude of model violations exceeds the initial frequency of resistant alleles. We also show that the existence of a fitness cost for resistant individuals on the refuge crop cannot easily overcome the effect of violated HDR assumptions. We propose a parametrically explicit framework that enables both comparison of various field situations and model inference. Using this model, we propose novel empiric estimators of the pace of resistance evolution (and time to loss of control), whose simple calculation relies on the observed change in resistance allele frequency.

  3. Study of the Impact of Heat Treatment Modes on Formation of Microstructure and a Given Set of Mechanical Properties of High-Strength Flat Products with Guaranteed Hardness (400 to 450 HB) from Low-Alloyed Steel

    Science.gov (United States)

    Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu

    2017-12-01

    The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.

  4. How externalities impact an evaluation of strategies to prevent antimicrobial resistance in health care organizations

    Directory of Open Access Journals (Sweden)

    Jenine R. Leal

    2017-06-01

    Full Text Available Abstract Background The rates of antimicrobial-resistant organisms (ARO continue to increase for both hospitalized and community patients. Few resources have been allocated to reduce the spread of resistance on global, national and local levels, in part because the broader economic impact of antimicrobial resistance (i.e. the externality is not fully considered when determining how much to invest to prevent AROs, including strategies to contain antimicrobial resistance, such as antimicrobial stewardship programs. To determine how best to measure and incorporate the impact of externalities associated with the antimicrobial resistance when making resource allocation decisions aimed to reduce antimicrobial resistance within healthcare facilities, we reviewed the literature to identify publications which 1 described the externalities of antimicrobial resistance, 2 described approaches to quantifying the externalities associated with antimicrobial resistance or 3 described macro-level policy options to consider the impact of externalities. Medline was reviewed to identify published studies up to September 2016. Main body An externality is a cost or a benefit associated with one person’s activity that impacts others who did not choose to incur that cost or benefit. We did not identify a well-accepted method of accurately quantifying the externality associated with antimicrobial resistance. We did identify three main methods that have gained popularity to try to take into account the externalities of antimicrobial resistance, including regulation, charges or taxes on the use of antimicrobials, and the right to trade permits or licenses for antimicrobial use. To our knowledge, regulating use of antimicrobials is the only strategy currently being used by health care systems to reduce antimicrobial use, and thereby reduce AROs. To justify expenditures on programs that reduce AROs (i.e. to formally incorporate the impact of the negative externality of

  5. Hepatitis C Variability, Patterns of Resistance, and Impact on Therapy

    Directory of Open Access Journals (Sweden)

    Cristina Simona Strahotin

    2012-01-01

    Full Text Available Hepatitis C (HCV, a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, is the most common indication for liver transplantation in the United States. Although annual incidence of infection has declined since the 1980s, aging of the currently infected population is expected to result in an increase in HCV burden. HCV is prone to develop resistance to antiviral drugs, and despite considerable efforts to understand the virus for effective treatments, our knowledge remains incomplete. This paper reviews HCV resistance mechanisms, the traditional treatment with and the new standard of care for hepatitis C treatment. Although these new treatments remain PEG-IFN-α- and ribavirin-based, they add one of the newly FDA approved direct antiviral agents, telaprevir or boceprevir. This new “triple therapy” has resulted in greater viral cure rates, although treatment failure remains a possibility. The future may belong to nucleoside/nucleotide analogues, non-nucleoside RNA-dependent RNA polymerase inhibitors, or cyclophilin inhibitors, and the treatment of HCV may ultimately parallel that of HIV. However, research should focus not only on effective treatments, but also on the development of a HCV vaccine, as this may prove to be the most cost-effective method of eradicating this disease.

  6. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo

    2016-01-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  7. Pressure vessel with improved impact resistance and method of making the same

    Science.gov (United States)

    DeLay, Thomas K. (Inventor); Patterson, James E. (Inventor); Olson, Michael A. (Inventor)

    2010-01-01

    A composite overwrapped pressure vessel is provided which includes a composite overwrapping material including fibers disposed in a resin matrix. At least first and second kinds of fibers are used. These fibers typically have characteristics of high strength and high toughness to provide impact resistance with increased pressure handling capability and low weight. The fibers are applied to form a pressure vessel using wrapping or winding techniques with winding angles varied for specific performance characteristics. The fibers of different kinds are dispersed in a single layer of winding or wound in distinct separate layers. Layers of fabric comprised of such fibers are interspersed between windings for added strength or impact resistance. The weight percentages of the high toughness and high strength materials are varied to provide specified impact resistance characteristics. The resin matrix is formed with prepregnated fibers or through wet winding. The vessels are formed with or without liners.

  8. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length

  9. Why do woodpeckers resist head impact injury: a biomechanical investigation.

    Directory of Open Access Journals (Sweden)

    Lizhen Wang

    Full Text Available Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6-7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury.

  10. Impact Resistance of Recycled Aggregate Concrete with Single and Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Ismail Sallehan

    2016-01-01

    Full Text Available This paper presents a recycled aggregate concrete (RAC mix that has been modified by adding treated recycled concrete aggregate (RCA and various types of fiber-reinforced systems. The effectiveness of these modifications in terms of energy absorption and impact resistance was evaluated and compared with that of the corresponding regular concrete, as well as with unmodified RAC specimens. Results clearly indicate that although modification of the RAC mix with treated RCA significantly enhances the impact resistance of RAC, further diversification with additional fiber, particularly those in hybrid form, can optimize the results.

  11. Effects of Disodium Phosphate Concentration (Na2HPO4·2H2O) on Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coatings on 2024 Al Alloy

    Science.gov (United States)

    Fattah-alhosseini, Arash; Gashti, Seyed Omid; Molaie, Maryam

    2018-02-01

    Since the electrolyte composition plays a pivotal role in the microstructure and corrosion behavior of plasma electrolytic oxidation (PEO) coatings, the effects of disodium phosphate (Na2HPO4·2H2O) concentration on the microstructure and corrosion resistance of PEO coatings fabricated on 2024 Al alloy were studied in this investigation. Accordingly, electrolyte with four different concentrations of phosphate ion (5, 10, 15 and 20 g/L) was used. All PEO processes were conducted at constant current density of 15 A/dm2 for 15 min. The surface and cross-sectional morphologies of the coatings indicated that the coating formed in the electrolyte with 10 g/L Na2HPO4·2H2O (with 9.14 µm thickness) had the most compact and uniform structure with the lowest and smallest micropores. Furthermore, studying the corrosion behavior of samples in 3.5 wt.% NaCl solutions by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests revealed that the sample coated in the electrolyte with 10 g/L Na2HPO4·2H2O had the highest corrosion potential, the lowest corrosion current density and, accordingly, the best corrosion resistance. The corrosion resistance of this coating was 4.574 × 105 Ω cm2, which could increase the corrosion resistance of uncoated 2024 Al alloy substrate 48 times. The x-ray diffraction pattern of this coating proved that the coating was composed of α-Al2O3 and γ-Al2O3 phases.

  12. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  13. Microstructure effects in CVD copper

    Science.gov (United States)

    Manger, Dirk Karl

    Computer chip manufacturers are beginning to implement copper as interconnect material in high-performance microprocessor metallization architectures. Replacing currently used aluminum metallization with its copper based counterpart will result in performance gain due to the low resistivity of copper (1.67muO·cm) which generates a reduction in (resistance x capacitance) signal delay. Futhermore, enhancements in stress and electromigration resistance by up to three orders of magnitude are expected from replacing aluminum with copper. Copper deposited by chemical vapor deposition has the proven ability to yield complete fill of aggressive via and trench structures at high deposition rates. At the same time, ultrathin Cu seed layers can be controlled grown by chemical vapor deposition (CVD) for use as activation layer in electrolytic plating (EP) applications. Additionally, integration studies using single and two-level damascene interconnect structures CVD Cu showed that excellent yield can be obtained. However, before CVD Cu can be incorporated into manufacturing process flows, several key reliability issues have to be addressed and resolved. At present, electroplating has the advantage of enhanced electromigration performance compared to CVD copper. It is therefore necessary to demonstrate the systematic ability to tailor the microstructure of CVD copper with the goal of enhanced electromigration and stress migration performance through the successful formation of (111) textured Cu with bamboo type microstructure. In the present work, the evolution of as-deposited Cu resistivity, grain size, texture, and surface roughness were systematically analyzed as a function of film thickness for an optimized CVD Cu process. In particular, investigations of the influence of substrate type and surface pretreatment on texture and grain size showed that: (a) Cu grows (111) textured on PVD TiN, if (002) Ti matrix is present, and on inorganic CVD TiN, regardless of the underlying

  14. Effect of angleplying and matrix enhancement on impact-resistant boron/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Tensile and dynamic modulus tests, thin sheet Charpy and Izod impact tests, and standard full size Charpy impact tests were conducted on 0.20 mm (8 mil) diameter-B/1100 Al matrix composites. Angleplies ranged from unidirectional to + or - 30 deg. The best compromise between reduced longitudinal properties and increased transverse properties was obtained with + or - 15 deg angleply. The pendulum impact strengths of improved B/Al were higher than that of notched titanium and appear to be enough to warrant consideration of B/Cl for application to fan blades in aircraft gas turbine engines.

  15. Narrative skills of children treated for brain tumours: The impact of tumour and treatment related variables on microstructure and macrostructure.

    Science.gov (United States)

    Docking, Kimberley; Munro, Natalie; Marshall, Tara; Togher, Leanne

    2016-01-01

    The narrative skills of children with brain tumours were examined. Influence of tumour location, radiotherapy, time post-treatment and presence of hydrocephalus was also investigated, as well as associations between narrative and language abilities. Seventeen children (aged 5;6-14;11) treated for brain tumour and their matched controls completed a narrative assessment and comprehensive language testing. Audio recorded narratives were analysed for microstructure and macrostructure elements. Between-group comparisons were conducted. Narrative elements were explored in association with tumour and treatment-related variables. Correlation analysis examined relationships between narrative scores and language test performance. While significant differences were not found between two groups of children across narrative elements, sub-group comparisons revealed marginal differences in macrostructure related to tumour location and hydrocephalus. Children treated with methods other than radiotherapy showed a significant increase in number of mazes in their narratives compared to children who received radiotherapy. Strong positive correlations also existed between narrative elements and language performance. Preliminary findings highlight the importance of investigating narrative abilities as part of a comprehensive language assessment. Macrostructure should be routinely examined where children are diagnosed with either posterior fossa tumour or hydrocephalus or have undergone surgery and/or chemotherapy for brain tumour.

  16. Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM-LCR and TEM-EDX Study.

    Science.gov (United States)

    Li, Na; Gilpin, Christopher J; Taylor, Lynne S

    2017-05-01

    Miscibility is critical for amorphous solid dispersions (ASDs). Phase-separated ASDs are more prone to crystallization, and thus can lose their solubility advantage leading to product failure. Additionally, dissolution performance can be diminished as a result of phase separation in the ASD matrix. Water is known to induce phase separation during storage for some ASDs. However, the impact of water introduced during preparation has not been as thoroughly investigated to date. The purpose of this study was to develop a mechanistic understanding of the effect of water on the phase behavior and microstructure of ASDs. Evacetrapib and two polymers were selected as the model system. Atomic force microscopy coupled with Lorentz contact resonance, and transmission electron microscopy with energy dispersive X-ray spectroscopy were employed to evaluate the microstructure and composition of phase-separated ASDs. It was found that phase separation could be induced via two routes: solution-state phase separation during ASD formation caused by water absorption during film formation by a hydrophilic solvent, or solid-phase separation following exposure to high RH during storage. Water contents of as low as 2% in the organic solvent system used to dissolve the drug and polymer were found to result in phase separation in the resultant ASD film. These findings have profound implications on lab-scale ASD preparation and potentially also for industrial production. Additionally, these high-resolution imaging techniques combined with orthogonal analyses are powerful tools to visualize structural changes in ASDs, which in turn will enable better links to be made between ASD structure and performance.

  17. The Impact of Resistance Training on Swimming Performance: A Systematic Review.

    Science.gov (United States)

    Crowley, Emmet; Harrison, Andrew J; Lyons, Mark

    2017-11-01

    The majority of propulsive forces in swimming are produced from the upper body, with strong correlations between upper body strength and sprint performance. There are significant gaps in the literature relating to the impact of resistance training on swimming performance, specifically the transfer to swimming performance. The aims of this systematic literature review are to (1) explore the transfer of resistance-training modalities to swimming performance, and (2) examine the effects of resistance training on technical aspects of swimming. Four online databases were searched with the following inclusion criteria: (1) journal articles with outcome measures related to swimming performance, and (2) competitive swimmers participating in a structured resistance-training programme. Exclusion criteria were (1) participants with a mean age force resistance-training programmes are optimal. Stroke length is best achieved through resistance training with low repetitions at a high velocity/force. Resisted swims are the most appropriate training modality for improving stroke rate. Future research is needed with respect to the effects of long-term resistance-training interventions on both technical parameters of swimming and overall swimming performance. The results of such work will be highly informative for the scientific community, coaches and athletes.

  18. Microstructural stability of a NiAl-Mo eutectic alloy

    International Nuclear Information System (INIS)

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-01-01

    The microstructural stability of a directionally-solidified NiAl-9 at.% Mo quasi-binary alloy was investigated under conditions of thermal cycling between the temperatures 973K and 1,473K utilizing time-temperature heating and cooling profiles which approximate potential engine applications. Two different microstructures were examined: a cellular microstructure in which the faceted second-phase Mo rods in the NiAl matrix formed misaligned cell boundaries which separated aligned cells approximately 0.4 mm in width and 5--25 mm in length, and a nearly fault-free fully columnar microstructure well aligned along the [001] direction. Both microstructures resisted coarsening under thermal cycling, but plastic deformation induced by thermal stresses introduced significant specimen shape changes. Surprisingly, the cellular microstructure, for which the cell boundary region apparently acts as a deformation buffer, exhibited better resistance to thermal fatigue than the more fault-free and better aligned columnar microstructure

  19. Improved impact-resistant boron/aluminum composites for use as turbine engine fan blades

    Science.gov (United States)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Thin-sheet Charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on unidirectional and angleply composites containing 4, 5.6 and 8 mil boron in 1100, 2024, 5052 and 6061 Al matrices. Impact failure modes of B/Al are proposed to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of more ductile matrices and larger diameter boron fibers gave the highest impact strengths by allowing matrix shear deformation and multiple fiber breakage. Pendulum impact test results of improved B/Al were higher than notched titanium and indicate sufficient foreign object damage protection to warrant consideration of B/Al for application to fan blades in aircraft gas turbine engines.

  20. Impact resistance of uncoated SiC/SiC composites

    International Nuclear Information System (INIS)

    Bhatt, Ramakrishna T.; Choi, Sung R.; Cosgriff, Laura M.; Fox, Dennis S.; Lee, Kang N.

    2008-01-01

    Two-dimensional woven SiC/SiC composites fabricated by melt infiltration method were impact tested at room temperature and at 1316 deg. C in air using 1.59-mm diameter steel-ball projectiles at velocities ranging from 115 to 400 m/s. The extent of substrate damage with increasing projectile velocity was imaged and analyzed using optical and scanning electron microscopy, and non-destructive evaluation (NDE) methods such as pulsed thermography, and computed tomography. The impacted specimens were tensile tested at room temperature to determine their residual mechanical properties. Results indicate that at 115 m/s projectile velocity, the composite showed no noticeable surface or internal damage and retained its as-fabricated mechanical properties. As the projectile velocity increased above this value, the internal damage increased and mechanical properties degraded. At velocities >300 m/s, the projectile penetrated through the composite, but the composite retained ∼50% of the ultimate tensile strength of the as-fabricated composite and exhibited non-brittle failure. Predominant internal damages are delamination of fiber plies, fiber fracture and matrix shearing

  1. Evaluation of Impact Resistance of Concrete Overpack of Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The concrete overpack of the cask provides radiation shielding as well as physical protection for inner canister against external mechanical shock. When the overpack undergoes a severe missile impact which might be caused by tornado or aircraft crash, it should sustain minimal level of structural integrity so that the radiation shielding and the retrievability of canister are maintained. Empirical formulas have been developed for the evaluation of concrete damage but those formulas can be used only for local damage evaluation and not for global damage evaluation. In this research, a series of numerical simulations and tests have been performed to evaluate the damage of two types of concrete overpack segment models under high speed missile impact. It is shown that appropriate modeling of material failure is crucial in this kind of analyses and finding the correct failure parameters may not be straightforward. When comparing the simulation results with the test results, it is shown that neither setting, case 1 and 2 provides results with consistent agreement with test results. That is, case 1 setting is more close to reality in Type 1 model analysis, but for Type 2, case 2 setting provides more close results to the reality. In both the case, not enough deformation is predicted by simulation compared to the tests. Weak failure and eroding criteria give larger penetration depth with insufficient overall damage due to energy loss with element erosion.

  2. Impact resistance and fractography of low-alloy martensitic steels

    Directory of Open Access Journals (Sweden)

    S. Frydman

    2008-03-01

    Full Text Available In this paper dynamic properties of HTK SOOH, HTK 900H. Hardox 400 and Hardox 500 steeZs in delivcrcd stalc (aftcr hardening andtempering are considered. Charpy V - notch (CVN test rcsults in connection with fractography in the ductilc - to - brittle transitionternpcrature region were analyzed. The impact transition curve obtained from CVN tcst not always predicts properly a behavior ofmaterials in conditions of dynamic loading, so the analyze of character of fracture helps to evalitate the rcal bchavior of ma~crials. Tcstcdsamples were cut out longitudinally and transversely in relation to cold work direction. The results of CVN test far investigated steels, inthe range of temperatures from 40t o 20 "C are presented. Regarding ductilc - to - bri~tlel ransition temperature, there is a significantdiffcrcnce taking into account vatues of Charpy V cncrgy absorbcd and a character of fracture.

  3. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    Science.gov (United States)

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2017-11-13

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of low filter resistances on subjective and physiological responses to filtering facepiece respirators.

    Directory of Open Access Journals (Sweden)

    Raymond J Roberge

    Full Text Available Ten subjects underwent treadmill exercise at 5.6 km/h over one hour while wearing each of three identical appearing, cup-shaped, prototype filtering facepiece respirators that differed only in their filter resistances (3 mm, 6 mm, and 9 mm H2O pressure drop. There were no statistically significant differences between filtering facepiece respirators with respect to impact on physiological parameters (i.e., heart rate, respiratory rate, oxygen saturation, transcutaneous carbon dioxide levels, tympanic membrane temperature, pulmonary function variables (i.e., tidal volume, respiratory rate, volume of carbon dioxide production, oxygen consumption, or ventilation, and subjective ratings (i.e., exertion, thermal comfort, inspiratory effort, expiratory effort and overall breathing comfort. The nominal filter resistances of the prototype filtering facepiece respirators correspond to airflow resistances ranging from 2.1 - 6.6 mm H2O/L/s which are less than, or minimally equivalent to, previously reported values for the normal threshold for detection of inspiratory breathing resistance (6 - 7.6 mm H2O/L/sec. Therefore, filtering facepiece respirators with filter resistances at, or below, this level may not impact the wearer differently physiologically or subjectively from those with filter resistances only slightly above this threshold at low-moderate work rates over one hour.

  5. VLSI electronics microstructure science

    CERN Document Server

    1981-01-01

    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  6. Microstructure and impact properties of ferritic ODS ODM401 (14%Cr-ODS of MA957 type)

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Kazimierzak, B.; Stratil, Luděk; Dlouhý, Ivo

    2011-01-01

    Roč. 417, 1-3 (2011), s. 241-244 ISSN 0022-3115 R&D Projects: GA ČR(CZ) GAP108/10/0466; GA ČR GA106/08/1397 Institutional research plan: CEZ:AV0Z20410507 Keywords : ODM401 * MA957 * oxide dispersion strengthened * impact behaviour * KLST Subject RIV: JG - Metallurgy Impact factor: 2.052, year: 2011

  7. Impact of temperatures to Hessian Fly resistance of selected wheat cultivars in the Great Plains Region

    Science.gov (United States)

    Changes in temperature can result in fundamental changes in plant physiology. This study investigated the impact of different temperatures from 14 to 26 °C on the resistance or susceptibility to the Hessian fly, Mayetiola destructor, of selected wheat cultivars that are either currently popular in ...

  8. Morphological diversity of microstructures occurring in selected recent bivalve shells and their ecological implications

    Directory of Open Access Journals (Sweden)

    Brom Krzysztof Roman

    2016-12-01

    Full Text Available Environmental adaptation of molluscs during evolution has led to form biomineral exoskeleton – shell. The main compound of their shells is calcium carbonate, which is represented by calcite and/or aragonite. The mineral part, together with the biopolymer matrix, forms many types of microstructures, which are differ in texture. Different types of internal shell microstructures are characteristic for some bivalve groups. Studied bivalve species (freshwater species – duck mussel (Anodonta anatina Linnaeus, 1758 and marine species – common cockle (Cerastoderma edule Linnaeus, 1758, lyrate Asiatic hard clam (Meretrix lyrata Sowerby II, 1851 and blue mussel (Mytilus edulis Linnaeus, 1758 from different locations and environmental conditions, show that the internal shell microstructure with the shell morphology and thickness have critical impact to the ability to survive in changing environment and also to the probability of surviving predator attack. Moreover, more detailed studies on molluscan structures might be responsible for create mechanically resistant nanomaterials.

  9. Potential impact of intermittent preventive treatment (IPT on spread of drug-resistant malaria.

    Directory of Open Access Journals (Sweden)

    Wendy Prudhomme O'Meara

    2006-05-01

    Full Text Available Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT, is currently employed for pregnant women and is being studied for infants (IPTi as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the spread of drug-resistant parasites. This is a difficult issue to address experimentally because of the limited size and duration of IPTi trials as well as the intractability of distinguishing the spread of resistance due to conventional treatment of malaria episodes versus that due to IPTi when the same drug is used in both contexts.Using a mathematical model, we evaluated the possible impact of treating individuals with antimalarial drugs at regular intervals regardless of their infection status. We translated individual treatment strategies and drug pharmacokinetics into parasite population dynamic effects and show that immunity, treatment rate, drug decay kinetics, and presumptive treatment rate are important factors in the spread of drug-resistant parasites. Our model predicts that partially resistant parasites are more likely to spread in low-transmission areas, but fully resistant parasites are more likely to spread under conditions of high transmission, which is consistent with some epidemiological observations. We were also able to distinguish between spread of resistance due to treatment of symptomatic infections and that due to IPTi. We showed that IPTi could accelerate the spread of resistant parasites, but this effect was only likely to be significant in areas of low or unstable transmission.The results presented here demonstrate the importance of considering both the half-life of a drug and the existing level of resistance when choosing a drug for IPTi

  10. Microstructured Reactors for Electroorganic Synthesis

    Czech Academy of Sciences Publication Activity Database

    Bouzek, K.; Jiřičný, Vladimír; Kodým, R.; Křišťál, Jiří; Bystroň, T.

    2010-01-01

    Roč. 55, č. 7 (2010), s. 8172-8181 ISSN 0013-4686. [Annual Meeting of ISE /60./. Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : microstructured reactor * bipolar * electroorganic synthesis Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.642, year: 2010

  11. AISI 304 Welding Fracture Resistance by a Charpy Impact Test with a High Speed Sampling Rate

    Directory of Open Access Journals (Sweden)

    Bambang Riyanta

    2017-12-01

    Full Text Available The purpose of this study was to evaluate fracture resistance in AISI 304. The J-R curve was constructed from data, which resulted from an impact test by Charpy Impact machine equipped with high-speed sampling rate data acquisition equipment. The critical values of fracture resistance in fusion zones (FZ, high temperature heat affected zones (HTHAZ, low temperature heat affected zones (LTHAZ and unaffected base metals (UBM were obtained by calculation methods using some formulas and by graphical methods. Laboratory experiments demonstrated the relationships among the values of energy absorption along the impact test with the obstruction of dislocation movement due to the presence of chromium interstitial solute in all zones and chromium rich carbide precipitates in fusion zones and heat affected zones.

  12. Interactive impacts of a herbivore and a pathogen on two resistance types of Barbarea vulgaris (Brassicaceae)

    DEFF Research Database (Denmark)

    Heimes, Christine; Thiele, Jan; van Mölken, Tamara

    2015-01-01

    symptoms were not reduced. Most of the insect-susceptible P-plants were resistant to white rust; however, the number of flea beetle mines tended to increase in plants also exposed to Albugo, and biomass at the last harvest was slightly lower in the combined treatment. Thus, interactive impacts......It is well known that pathogens and arthropod herbivores attacking the same host plant may affect each other. Little is known, however, about their combined impact on plant fitness, which may differ from simple additive expectations. In a 2-year common garden field experiment, we tested whether...... by interactive impacts of the antagonists. Most of the insect-resistant G-plants were severely affected by white rust, which reduced biomass and reproductive potential compared to the controls. However, when also exposed to flea beetles, biomass loss was mitigated in G-plants, even though apparent disease...

  13. Diagnostic system strengthening for drug resistant tuberculosis in Nigeria: impact and challenges

    Directory of Open Access Journals (Sweden)

    Gambo Aliyu

    2017-03-01

    Full Text Available Background: The increasing prevalence of drug-resistant tuberculosis and the threat of extensively-drug-resistant tuberculosis in HIV hotspots have made the detection and treatment of drug-resistant tuberculosis in the sub-Saharan Africa setting a global public health priority. Objective: We sought to examine the impact and challenges of tuberculosis diagnostic capacity development for the detection of drug-resistant tuberculosis and bio-surveillance using a modular biosafety level 3 (BSL-3 laboratory in Nigeria. Method: In 2010, the United States President’s Emergency Plan for AIDS Relief (PEPFAR programme, through the Institute of Human Virology at the University of Maryland in Baltimore, Maryland, United States, deployed a modular, BSL-3 laboratory to support the national tuberculosis programme in drug-resistant tuberculosis detection and bio-surveillance for effective tuberculosis prevention and control. Results: From 2010 until present, sputum samples from 11 606 suspected cases in 33 states were screened for drug-resistant tuberculosis. Of those, 1500 (12.9% had mono-resistant tuberculosis strains, and 459 (4.0% cases had multidrug-resistant tuberculosis. Over the lastfour years, 133 scientists were trained in a train-the-trainer programme on advanced tuberculosis culture, drug susceptibility testing, line-probe assays and Xpert® MTB/RIF, in addition to safety operations for biosafety facilities. Power instability, running cost and seasonal dust are notable challenges to optimal performance and scale up. Conclusion: Movable BSL-3 containment laboratories can be deployed to improve diagnostic capacity for drug-resistant tuberculosis and bio-surveillance in settings with limited resources.

  14. Influence of microstructure on impact properties of 9–18%Cr ODS steels for fusion/fission applications

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Fournier, B.; Stratil, Luděk; Malaplate, J.; Rouffié, A.-L.; Wident, P.; Ziolek, L.; Béchade, J.-L.

    2011-01-01

    Roč. 411, 1-3 (2011), s. 112-118 ISSN 0022-3115 R&D Projects: GA ČR GA106/08/1397 Institutional research plan: CEZ:AV0Z20410507 Keywords : ODS steel * extrusion shape * crystallographic texture * morphologic texture * brittle fracture mechanisms Subject RIV: JG - Metallurgy Impact factor: 2.052, year: 2011

  15. Wear Resistance of Austempered Ductile Iron with Nanosized Additives

    Science.gov (United States)

    Kaleicheva, J. K.; Mishev, V.

    2018-01-01

    The wear resistance, microstructure and mechanical properties of austempered ductile iron (ADI) with nanosized additives of cubic boron nitride cBN are investigated. Samples of ductile iron are put under austhempering at the following conditions: heating at 900°С, 1 h and isothermal retention at 280оС, 2 h and 380°С, 2 h with the aim to achieve a lower bainitic structure and an upper bainitic structure. The experimental wear testing of austempered ductile irons is performed in friction conditions of a fixed abrasive by a cinematic scheme „pin - disc” using an accelerated testing method and device. The microstructure of the ADI is investigated by metallographic and X-Ray analyses. The Vickers hardness testing and impact strength examination are carried out. The influence of the nanosized additives of cBN on the wear resistance, microstructure, impact strength and hardness of the ADI is investigated.

  16. Trilogy possible meteorite impact crater at Bukit Bunuh, Malaysia using 2-D electrical resistivity imaging

    Science.gov (United States)

    Jinmin, M.; Rosli, S.; Nordiana, M. M.; Mokhtar, S.

    2017-07-01

    Bukit Bunuh situated in Lenggong (Perak) is one of Malaysia's most important areas for archeology that revealed many traces of Malaysia's prehistory. Geophysical method especially 2-D electrical resistivity imaging method is non-destructive which is applied in geo-subsurface study for meteorite impact. The study consists of two stages which are regional and detail study with a total of fourteen survey lines. The survey lines were conducted using Pole-dipole array with 5 m minimum electrode spacing. The results of each stage are correlated and combined to produce detail subsurface resistivity distribution of the study area. It shows that the area consists of two main layers which are overburden and granitic bedrock. The first layer is overburden mix with boulders with resistivity value of 10-800 Ωm while the second layer is granitic bedrock with resistivity value of >1500 Ωm. This study also shows few spotted possibility of uplift (rebound) due to the high impact which suspected from meteorite. A lot of fracture were found within the survey area which could be one of the effect of meteorite impact. The result suggest that Bukit Bunuh is under layer by a complex crater with diameter of crater rim is approximately 5-6 km.

  17. Impact Resistance Behaviour of Light Weight Rice Husk Concrete with Bamboo Reinforcement

    Science.gov (United States)

    Che Muda, Zakaria; Beddu, Salmia; Syamsir, Agusril; Sigar Ating, Joshua; Liyana Mohd Kamal, Nur; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of lightweight rice husk concrete (LWRHC) with varied bamboo reinforcement content for the concrete slab of 300mm × 300mm size reinforced with varied slab thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.65 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter and slab thickness. 5% RH content exhibit better first and ultimate crack resistance up to 1.80 times and up to 1.72 times respectively against 10% RH content.

  18. The influence of Ti, N and Ti + N implantation on phase change, microstructure, growth of metallic compounds and correlated effects in hardness and wear resistance in H13 steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Ju; Tan Fujin; Gao Yuzun

    1992-01-01

    The lattice damage, small intermetallic compound (Fe 2 Ti), metallic compound (TiN, Fe 2 N) formation and supersaturated solutions of Ti or Ti + N-ion implanted into steel with various ion doses and energies were measured by TEM and X-ray diffraction formation and growth of the metallic compound has found to depend on ion dose and energy. Change of phases and microstructure were particularly enhanced with high dose and high energy. Metal hardening also increases with increasing ion dose, energy and the amount and size of metallic compounds. Specimens implanted at target temperature ranging from 300degC to 400degC (HT) or implanted at room temperature (RT) and then annealed at temperature ranging from 300 to 500degC, showed significant increase in hardness. The wear resistance of high energy and high dose implanted steel is better than that of low energy and lower dose implantation. The wear rate decreases 2-2.6 times for low temperature implantation, 10.4 times for HT implantation and high energy implantation. The Fe 2 Ti and TiC precipitates, phase and microstructural changes in the implanted layer are responsible for such a drastic reduction in wear. (orig.)

  19. Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness

    Science.gov (United States)

    Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro

    2017-10-01

    This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.

  20. Effect of Mesh Distribution on Impact Resistance Performance of Kenaf Fibre Reinforced Concrete

    Science.gov (United States)

    Che Muda, Zakaria; Thiruchelvam, Sivadass; Syamsir, Agusril; Sheng, Chiam Yung; Beddu, Salmia; Nasharuddin Mustapha, Kamal; Usman, Fathoni; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the mesh distribution on the impact performance of kenaf fibre mesh reinforced concrete (KFMRC) for the concrete slab of 300mm × 300mm size reinforced with varied thickness and mesh diameter subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.40 m height has been used in this research work. The objective of this research is to study the effect of the mesh distribution on the impact resistance kenaf fibre mesh concrete for various slab thickness and mesh diameter. 2-layers one Top and one Bottom mesh distribution kenaf mesh is the most efficient in the ability to control crack formation and propagation against impact energy followed by 1-layer Middle mesh distribution and lastly the 1-layer Top mesh distribution is the least effective.

  1. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats.

    Science.gov (United States)

    Sacchi, Paola; Rasero, Roberto; Ru, Giuseppe; Aiassa, Eleonora; Colussi, Silvia; Ingravalle, Francesco; Peletto, Simone; Perrotta, Maria Gabriella; Sartore, Stefano; Soglia, Dominga; Acutis, Pierluigi

    2018-03-06

    The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.

  2. Impact of doctors' resistance on success of drug utilization review system.

    Science.gov (United States)

    Choi, Jong Soo; Yun, Seong Hyeon; Kim, Dongsoo; Park, Seung Woo

    2014-04-01

    The drug utilization review (DUR) system, which checks any conflict event of medications, contributes to improve patient safety. One of the important barriers in its adoption is doctors' resistance. This study aimed to analyze the impacts of doctors' resistance on the success of the DUR system. This study adopted an augmented the DeLone and McLean Information System (D&M IS) Success Model (2003), which used doctors' resistance as a socio-technological measure. This study framework is the same as that of the D&M IS Success Model in that it is based on qualities, such as system, information, and services. The major difference is that this study excluded the variable 'use' because it was not statistically significant for mandatory systems. A survey of doctors who used computers to enter prescriptions was conducted at a Korean tertiary hospital in February 2012. This study is very meaningful in that it is the first study to explore the success factors of the DUR system associated with doctors' resistance. Doctors' resistance to the DUR system was not statistically associated with user usefulness, whereas it affected user satisfaction. The results indicate that doctors still complain of discomfort in using the DUR system in the outpatient clinical setting, even though they admit that it contributes to patient safety. To mitigate doctors' resistance and raise user satisfaction, more opinions from doctors regarding the DUR system have to be considered and have to be reflected in the system.

  3. Impact of selenization pressure on the micro-structural properties of Cu2ZnSnSe4 thin films

    Science.gov (United States)

    Nagapure, Dipak Ramdas; Patil, Rhishikesh Mahadev; Chandra, G. Hema; Sunil, M. Anantha; Subbaiah, Y. P. Venkata; Gupta, Mukul; Prasada Rao, R.

    2017-10-01

    The Cu2ZnSnSe4(CZTSe) thin films were prepared by a two-step process consisting of high vacuum sequential evaporation of precursors stack (Sn/Se/ZnSe/Se/Cu/Se) in 4-folds followed by selenization at 350 °C in tubular furnace under varied argon gas pressure from 1 mbar to 600 mbar with an interval of 150 mbar. The Cu/(Zn + Sn) and Zn/Sn ratios found to vary from 1.22 to 0.93 and 1.94 to 1.08 with an increase in pressure and the stacks selenized for 600 mbar showed nearly stoichiometric composition with slight Cu-poor and Zn-rich values required for CZTSe growth. The X-ray diffraction studies revealed similar diffraction pattern with a preferred orientation along (112) plane, indicating the formation of kesterite-type CZTSe for all the selenization pressures. Raman spectra recorded using different excitation wavelength sources (785, 532 and 458 nm), revealed two main peaks at 192 and 172 cm-1 and two supplementary weak peaks at 82 and 232 cm-1 corresponding to kesterite-ordered CZTSe phase for films selenized at a pressure of 600 mbar. Appreciable changes in morphology have been noticed with increase in selenization pressure from low dense irregular rod like morphology to compact spherical grain morphology. All the samples showed high absorption coefficient (>104cm-1). A slight variation in optical band gap from 0.90 to 1.01 eV was found with increase in selenization pressure. The Hall effect measurements reveal that all the films are p-type conductive. The precursor stack films selenized at 600 mbar exhibit high mobility of 7.88 cm2(Vs)-1 with lower carrier concentration of 2.54 × 1019 cm-3 and resistivity of an order of 10-2 Ωcm, respectively.

  4. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance

    Directory of Open Access Journals (Sweden)

    Lynch Penelope A

    2012-11-01

    Full Text Available Abstract Background Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. Methods With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Results Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood

  5. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance.

    Science.gov (United States)

    Lynch, Penelope A; Grimm, Uwe; Thomas, Matthew B; Read, Andrew F

    2012-11-22

    Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood-fed mosquito can survive an encounter and thus live long enough to

  6. Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting.

    Science.gov (United States)

    Knudsen, Per Kristian; Brandtzaeg, Petter; Høiby, E Arne; Bohlin, Jon; Samuelsen, Ørjan; Steinbakk, Martin; Abrahamsen, Tore G; Müller, Fredrik; Gammelsrud, Karianne Wiger

    2017-01-01

    We prospectively studied the consequences of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF) and a cohort of children with cancer compared to healthy children with no or low antibiotic exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty longitudinally collected faecal samples from children with CF (n = 32), 88 samples from children with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined. A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalosporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the prevalence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs. 14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The prevalence of resistant enterobacteria was not significantly different in the children with cancer compared to the healthy children, not even at the end of the study when the children with cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with cancer were mainly treated with intravenous antibiotics, while the CF group mainly received peroral treatment. Our observations indicate that the mode of administration of antibiotics and the general level of antimicrobial resistance in the community may have an impact on emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS analyses detected acquired resistance genes and/or chromosomal mutations that explained the

  7. Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting

    Science.gov (United States)

    Brandtzaeg, Petter; Høiby, E. Arne; Bohlin, Jon; Samuelsen, Ørjan; Steinbakk, Martin; Abrahamsen, Tore G.; Müller, Fredrik; Gammelsrud, Karianne Wiger

    2017-01-01

    We prospectively studied the consequences of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in a cohort of children with cystic fibrosis (CF) and a cohort of children with cancer compared to healthy children with no or low antibiotic exposure. The study was conducted in Norway in a low resistance prevalence setting. Sixty longitudinally collected faecal samples from children with CF (n = 32), 88 samples from children with cancer (n = 45) and 127 samples from healthy children (n = 70) were examined. A direct MIC-gradient strip method was used to detect resistant Enterobacteriaceae by applying Etest strips directly onto agar-plates swabbed with faecal samples. Whole genome sequencing (WGS) data were analysed to identify resistance mechanisms in 28 multidrug-resistant Escherichia coli isolates. The prevalence of resistance to third-generation cephalosporins, gentamicin and ciprofloxacin was low in all the study groups. At inclusion the prevalence of ampicillin-resistant E. coli and trimethoprim-sulfamethoxazole-resistant E. coli in the CF group compared to healthy controls was 58.6% vs. 28.4% (p = 0.005) and 48.3% vs. 14.9% (p = 0.001), respectively, with a similar prevalence at the end of the study. The prevalence of resistant enterobacteria was not significantly different in the children with cancer compared to the healthy children, not even at the end of the study when the children with cancer had been treated with repeated courses of broad-spectrum antibiotics. Children with cancer were mainly treated with intravenous antibiotics, while the CF group mainly received peroral treatment. Our observations indicate that the mode of administration of antibiotics and the general level of antimicrobial resistance in the community may have an impact on emergence of resistance in intestinal enterobacteria during antibiotic treatment. The WGS analyses detected acquired resistance genes and/or chromosomal mutations that explained the

  8. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  9. An FEA study on impact resistance of bio-inspired CAD models

    OpenAIRE

    Page, T; Thorsteinsson, G

    2017-01-01

    The purpose of this paper is to explore the use of biomimetic methods in the design of armour systems. It focusses on biological structures found in nature that feature both rigid and flexible armours, analysing their structures and determining which are the most widely successful. A study was conducted on three bio-inspired structures built in Creo Parametric and tested using Finite Element Analysis (FEA) software to determine which structure had the best impact resistance. The study was con...

  10. Determine the Impact of Novel BRCA1 Translation Start Sites on Therapy Resistance in Ovarian Cancer

    Science.gov (United States)

    2017-09-01

    Impact 11 5. Changes /Problems 11 6. Products 11 7. Participants & Other Collaborating Organizations 12 8. Special Reporting Requirements 12 9...Award Number: W81XWH-15-1-0197 TITLE: PRINCIPAL INVESTIGATOR: Neil Johnson, Ph.D. CONTRACTING ORGANIZATION : Institute for Cancer Research...Therapy Resistance in Ovarian Cancer The views, opinions and/or findings contained in this report are those of the author(s) and should not be

  11. Variable hydraulic resistances and their impact on plant drought response modelling.

    Science.gov (United States)

    Baert, Annelies; De Schepper, Veerle; Steppe, Kathy

    2015-04-01

    Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Possible impact of the standardized Category IV regimen on multidrug-resistant tuberculosis patients in Mumbai.

    Science.gov (United States)

    Udwadia, Zarir F; Mullerpattan, Jai Bharat; Shah, Kushal D; Rodrigues, Camilla S

    2016-01-01

    Treatment of multidrug-resistant tuberculosis (MDR-TB) in the Programmatic Management of Drug-resistant TB program involves a standard regimen with a 6-month intensive phase and an 18-month continuation phase. However, the local drug resistance patterns in high MDR regions such as Mumbai may not be adequately reflected in the design of the regimen for that particular area. The study was carried out at a private Tertiary Level Hospital in Mumbai in a mycobacteriology laboratory equipped to perform the second-line drug susceptibility testing (DST). We attempted to analyze the impact of prescribing the standardized Category IV regimen to all patients receiving a DST at our mycobacteriology laboratory. All samples confirmed to be MDR-TB and tested for the second-line drugs at Hinduja Hospital's Mycobacteriology Laboratory in the year 2012 were analyzed. A total of 1539 samples were analyzed. Of these, 464 (30.14%) were MDR-TB, 867 (56.33%) were MDR with fluoroquinolone resistance, and 198 (12.8%) were extensively drug-resistant TB. The average number of susceptible drugs per sample was 3.07 ± 1.29 (assuming 100% cycloserine susceptibility). Taking 4 effective drugs to be the cut or an effective regimen, the number of patients receiving 4 or more effective drugs from the standardized directly observed treatment, short-course plus regimen would be 516 (33.5%) while 66.5% of cases would receive 3 or less effective drugs. Our study shows that a high proportion of patients will have resistance to a number of the first- and second-line drugs. Local epidemiology must be factored in to avoid amplification of resistance.

  13. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals

    Science.gov (United States)

    Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh

    2018-01-01

    Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive

  14. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals

    Directory of Open Access Journals (Sweden)

    Chetan Sharma

    2018-01-01

    Full Text Available Antimicrobial resistance (AMR, one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU. Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance

  15. Vitamin D Supplementation Does Not Impact Insulin Resistance in Black and White Children.

    Science.gov (United States)

    Ferira, Ashley J; Laing, Emma M; Hausman, Dorothy B; Hall, Daniel B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2016-04-01

    Vitamin D supplementation trials with diabetes-related outcomes have been conducted almost exclusively in adults and provide equivocal findings. The objective of this study was to determine the dose-response of vitamin D supplementation on fasting glucose, insulin, and a surrogate measure of insulin resistance in white and black children aged 9–13 years, who participated in the Georgia, Purdue, and Indiana University (or GAPI) trial: a 12-week multisite, randomized, triple-masked, dose-response, placebo-controlled vitamin D trial. Black and white children in the early stages of puberty (N = 323, 50% male, 51% black) were equally randomized to receive vitamin D3 (0, 400, 1000, 2000, or 4000 IU/day) for 12 weeks. Fasting serum 25-hydroxyvitamin D (25(OH)D), glucose and insulin were assessed at baseline and weeks 6 and 12. Homeostasis model assessment of insulin resistance was used as a surrogate measure of insulin resistance. Statistical analyses were conducted as intent-to-treat using a mixed effects model. Baseline serum 25(OH)D was inversely associated with insulin (r = −0.140, P = 0.017) and homeostasis model assessment of insulin resistance (r = −0.146, P = 0.012) after adjusting for race, sex, age, pubertal maturation, fat mass, and body mass index. Glucose, insulin, and insulin resistance increased (F > 5.79, P insulin resistance, vitamin D supplementation had no impact on fasting glucose, insulin, or a surrogate measure of insulin resistance over 12 weeks in apparently healthy children.

  16. The impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer and their family members: A qualitative study.

    Science.gov (United States)

    Gleeson, Aoife; Larkin, Philip; O'Sullivan, Niamh

    2016-04-01

    Little is known about the impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer, such as its impact on the quality of life of this vulnerable group. To date, research on meticillin-resistant Staphylococcus aureus in the palliative care setting has had a quantitative focus. The purpose of this study was to explore the impact of a meticillin-resistant Staphylococcus aureus diagnosis on patients and their carers. This article reports upon a qualitative interview study of nine patients with advanced cancer and meticillin-resistant Staphylococcus aureus and nine family members (n = 18). Framework analysis was used to analyse the data. Patients and family members of patients with advanced cancer either admitted to the specialist palliative care unit or receiving palliative care in the hospital setting, who had a laboratory confirmed diagnosis of meticillin-resistant Staphylococcus aureus colonisation, were considered for inclusion in the study. Four themes were identified using framework analysis: reactions to receiving a meticillin-resistant Staphylococcus aureus diagnosis, the need for effective communication of the meticillin-resistant Staphylococcus aureus diagnosis, the enigmatic nature of meticillin-resistant Staphylococcus aureus, and lessons to guide the future care of meticillin-resistant Staphylococcus aureus patients. This article indicates that meticillin-resistant Staphylococcus aureus can have a significant impact on advanced cancer patients and their families. This impact may be underestimated, but early and careful face-to-face explanation about meticillin-resistant Staphylococcus aureus and its implications can help patients and their families to cope better with it. These findings should be considered when developing policy relating to meticillin-resistant Staphylococcus aureus management and infection control in specialist palliative care settings. © The Author(s) 2015.

  17. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    Science.gov (United States)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  18. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  19. Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact

    Science.gov (United States)

    Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526

  20. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit.

    Science.gov (United States)

    Armour, Alexis D; Shankowsky, Heather A; Swanson, Todd; Lee, Jonathan; Tredget, Edward E

    2007-07-01

    Nosocomially-acquired Pseudomonas aeruginosa remains a serious cause of infection and septic mortality in burn patients. This study was conducted to quantify the impact of nosocomially-transmitted resistant P. aeruginosa in a burn population. Using a TRACS burn database, 48 patients with P. aeruginosa resistant to gentamicin were identified (Pseudomonas group). Thirty-nine were case-matched to controls without resistant P. aeruginosa cultures (control group) for age, total body surface area, admission year, and presence of inhalation injury. Mortality and various morbidity endpoints were examined, as well as antibiotic costs. There was a significantly higher mortality rate in the Pseudomonas group (33% vs. 8%, p products used (packed cells 51.1 +/- 8.0 vs. 21.1 +/- 3.4, p < 0.01; platelets 11.9 +/- 3.0 vs. 1.4 +/- 0.7, p < 0.01) were all significantly higher in the Pseudomonas group. Cost of antibiotics was also significantly higher ($2,658.52 +/- $647.93 vs. $829.22 +/- $152.82, p < 0.01). Nosocomial colonization or infection, or both, of burn patients with aminoglycoside-resistant P. aeruginosa is associated with significantly higher morbidity, mortality, and cost of care. Increased resource consumption did not prevent significantly higher mortality rates when compared with that of control patients. Thus, prevention, identification, and eradication of nosocomial Pseudomonas contamination are critical for cost-effective, successful burn care.

  1. Impact of Polyphenol Supplementation on Acute and Chronic Response to Resistance Training.

    Science.gov (United States)

    Beyer, Kyle S; Stout, Jeffrey R; Fukuda, David H; Jajtner, Adam R; Townsend, Jeremy R; Church, David D; Wang, Ran; Riffe, Joshua J; Muddle, Tyler W D; Herrlinger, Kelli A; Hoffman, Jay R

    2017-11-01

    Beyer, KS, Stout, JR, Fukuda, DH, Jajtner, AR, Townsend, JR, Church, DD, Wang, R, Riffe, JJ, Muddle, TWD, Herrlinger, KA, and Hoffman, JR. Impact of polyphenol supplementation on acute and chronic response to resistance training. J Strength Cond Res 31(11): 2945-2954, 2017-This study investigated the effect of a proprietary polyphenol blend (PPB) on acute and chronic adaptations to resistance exercise. Forty untrained men were assigned to control, PPB, or placebo. Participants in PPB or placebo groups completed a 4-week supplementation period (phase I), an acute high-volume exercise bout (phase II), and a 6-week resistance training program (phase III); whereas control completed only testing during phase II. Blood draws were completed during phases I and II. Maximal strength in squat, leg press, and leg extension were assessed before and after phase III. The exercise protocol during phase II consisted of squat, leg press, and leg extension exercises using 70% of the participant's strength. The resistance training program consisted of full-body exercises performed 3 d·wk. After phase I, PPB (1.56 ± 0.48 mM) had greater total antioxidant capacity than placebo (1.00 ± 0.90 mM). Changes in strength from phase III were similar between PPB and placebo. Polyphenol blend supplementation may be an effective strategy to increase antioxidant capacity without limiting strength gains from training.

  2. Impact Resistance Enhancement by Adding Core-Shell Particle to Epoxy Resin Modified with Hyperbranched Polymer

    Directory of Open Access Journals (Sweden)

    Shuiping Li

    2017-12-01

    Full Text Available A core-shell particle was fabricated by grafting amino-terminated hyperbranched polymer to the surface of silica nanoparticles. The influences of core-shell particle contents on the tensile and impact strength of the epoxy thermosets modified with amino-terminated hyperbranched polymer were discussed in detail. For comparison, core-shell particle was added into the epoxy/polyamide system for toughness improvement. Results from tensile and impact tests are provided. The introduction of core-shell particle into the epoxy/polyamide systems just slightly enhanced the tensile and impact strength. The incorporation of 3 wt % core-shell particle could substantially improve the tensile and impact strength of epoxy/amino-terminated hyperbranched polymer thermosets. Field emission-scanning electron microscope images of the impact fracture surfaces showed that the excellent impact resistance of epoxy/amino-terminated hyperbranched polymer/core-shell particle thermosets may be attributed to the synergistic effect of shearing deformation and crack pinning/propagation, which is induced by the good compatibility between epoxy matrix and core-shell particle in the presence of amino-terminated hyperbranched polymer.

  3. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  4. Noise in the wire: the real impact of wire resistance for the Johnson (-like) noise based secure communicator

    OpenAIRE

    Kish, Laszlo B.; Scheuer, Jacob

    2010-01-01

    We re-evaluate the impact of wire resistance on the noise voltage and current in the Johnson-(like)-noise based secure communicator, correcting the result presented in [Physics Letters A 359 (2006) 737]. The analysis shown here is based on the fluctuation-dissipation and the linear response theorems. The results indicate that the impact of wire resistance in practical communicators is significantly lower than the previous estimation.

  5. Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Scheuer, Jacob

    2010-01-01

    We re-evaluate the impact of wire resistance on the noise voltage and current in the Johnson(-like) noise based secure communicator, correcting the result presented in [J. Scheuer, A. Yariv, Phys. Lett. A 359 (2006) 737]. The analysis shown here is based on the fluctuation-dissipation and the linear response theorems. The results indicate that the impact of wire resistance in practical communicators is significantly lower than the previous estimation.

  6. Microstructure fibers for gas detection

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Mrázek, Jan; Hayer, Miloš; Peterka, Pavel; Kaňka, Jiří; Honzátko, Pavel; Berková, Daniela

    2006-01-01

    Roč. 26, 2/3 (2006), s. 317-321 ISSN 0928-4931. [MADICA 2004. Tunis, 29.11.2004-01.12.2004] R&D Projects: GA ČR(CZ) GA102/02/0779 Institutional research plan: CEZ:AV0Z2067918 Keywords : photonic crystals * crystal microstructure * optical fibres * fibre optic sensors * gas Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.325, year: 2006

  7. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem.

    Science.gov (United States)

    Riera, Elena; Cabot, Gabriel; Mulet, Xavier; García-Castillo, María; del Campo, Rosa; Juan, Carlos; Cantón, Rafael; Oliver, Antonio

    2011-09-01

    To investigate the mechanisms of carbapenem resistance in the 175 Pseudomonas aeruginosa isolates (39%; 175/448) showing non-susceptibility (European Committee on Antimicrobial Susceptibility Testing breakpoints) to imipenem (35%), meropenem (33%) and/or doripenem (33%) recovered in 2008-09 from 16 Spanish hospitals during the Comparative Activity of Carbapenem Testing (COMPACT) surveillance study. MICs (Etest), clonal relatedness (PFGE) and metallo-β-lactamase (MBL) production (Etest-MBL, PCR and sequencing) were determined. Mutation-driven resistance was studied in 60 non-MBL producers according to the doripenem MICs (15 isolates from each of four MIC groups: ≤ 1, 2-4, 8-16 and ≥ 32 mg/L). The expression of ampC, mexB, mexY, mexD and mexF was determined by real-time reverse transcription-PCR and the presence of mutations in oprD by PCR and sequencing. Isogenic mutants expressing combinations of mutation-driven carbapenem resistance were constructed. Twelve (6.9%) isolates were MBL (VIM-20, VIM-2 or VIM-13) producers and all showed high-level resistance (MIC 32 mg/L) to all three carbapenems. Regarding mutation-driven resistance, all but 1 of the 60 isolates were non-susceptible (MIC >32 mg/L) to imipenem, linked to oprD inactivation. In addition, 50% of the isolates overexpressed ampC, 33% mexY, 32% mexB and 15% mexF, while none overexpressed mexD. Increasing prevalence of ampC overexpression correlated with increasing doripenem MICs (≤ 1, 13%; 2-4, 53%; 8-16, 60%; and ≥ 32, 73%) while overexpression of efflux pumps correlated only with moderate resistance. Doripenem showed slightly higher activity than meropenem against isolates overexpressing ampC, especially mexB or mexY. The analysis of a collection of isogenic laboratory mutants supported this finding. Although the prevalence of MBL producers is increasing, mutation-driven resistance is still more frequent in Spain. Imipenem resistance was driven by OprD inactivation, while additional AmpC and

  8. The Effect of Long-Term Impact of Elevated Temperature on Changes in Microstructure and Mechanical Properties of HR3C Steel

    Directory of Open Access Journals (Sweden)

    Zieliński A.

    2016-06-01

    Full Text Available The HR3C is a new steel for pressure components used in the construction of boilers with supercritical working parameters. In the HR3C steel, due to adding Nb and N, the compounds such as MX, CrNbN and M23C6 precipitate during service at elevated temperature, resulting in changes in mechanical properties. This paper presents the results of microstructure investigations after ageing at 650, 700 and 750 °C for 5,000 h. The microstructure investigations were carried out using scanning and transmission electron microscopy. The qualitative and quantitative identification of the existing precipitates was carried out using X-ray analysis of phase composition. The effect elevated temperature on microstructure and mechanical properties of the examined steel was described.

  9. Present status of study on development of materials resistant to radiation and beam impact

    International Nuclear Information System (INIS)

    Kawai, M.; Kokawa, H.; Michiuchi, M.; Kurisihita, H.; Goto, T.; Futakawa, M.; Yoshiie, T.; Hasegawa, A.; Watanabe, S.; Yamamura, T.; Hara, N.; Kawasaki, A.; Kikuchi, K.

    2008-01-01

    Pulsed spallation neutron sources for the materials structure science are severely influenced by beam impact and radiation damage. We have developed the materials strong to these influence since 2004. In this paper, recent topics are described concerning the development of intergranular corrosion (IGC)-resistant austenitic stainless steel for target vessel and window, radiation-resistant ultra-fine grained tungsten materials (W-TiC) for a solid target, CrN film on a tungsten target by means of a molten-salt method, surface treatment of stainless steel for pitting damage in mercury target. Bubble behavior at the interface of mercury and window glass was also observed to clarify the phenomenon of the pitting damage

  10. The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Asmussen, Robert Matthew; Jakupi, Pellumb; Shoesmith, David W.; Botton, Gianluigi A.

    2013-01-01

    Highlights: •Site-specific analytical electron microscopy was performed on corroded AM50. •Areas close to eutectic microstructure show less corrosion damage. •Eutectic Mg grains develop an Al-rich layer between the alloy and corrosion product. •We demonstrate, using low-loss EELS, that the Al-rich layer is metallic in character. •Primary α-Mg grains, with lower Al content, do not develop the Al-rich layer and corrode severely. -- Abstract: Site-specific analytical electron microscopy was performed on a corroded sand-cast AM50 alloy. Areas close to partially divorced eutectic were the regions with less corrosion damage. The corrosion product layer in these areas consisted of a columnar section of predominantly amorphous MgO. At the alloy interface, an aluminum-rich layer was identified. Electron energy-loss spectroscopy suggests this layer is metallic in character. The corrosion product film on the primary α-Mg grains possessed a bi-layer morphology: a thin columnar film and a thicker, porous sub-layer. The formation of the Al-rich layer depends on the Al content in solid solution at a specific location

  11. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water.

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Gołaś, Iwona

    2015-06-01

    The aim of this study was to assess the impact of a fish farm on the structure of antibiotic resistant bacteria and antibiotic resistance genes in water of Drwęca River. Samples of upstream river waters; post-production waters and treated post-production waters from fish farm; as well as downstream river waters were monitored for tetracycline resistant bacteria, tetracycline resistant genes, basic physico-chemical parameters and tetracyclines concentration. The river waters was characterized by low levels of pollution, which was determined based on water temperature, pH and concentrations of dissolved oxygen and tetracycline antibiotics. Culture-dependent (heterotrophic plate counts, counts of bacteria resistant to oxytetracycline (OTC(R)) and doxycycline (DOX(R)), minimum inhibitory concentrations for oxytetracycline and doxycycline, multidrug resistance of OTC(R) and DOX(R), qualitative composition of OTC(R) and DOX(R), prevalence of tet genes in resistant isolates) and culture-independent surveys (quantity of tet gene copies) revealed no significant differences in the abundance of antibiotic-resistant bacteria and antibiotic resistance genes between the studied samples. The only way in which the fish farm influenced water quality in the Drwęca River was by increasing the diversity of tetracycline-resistance genes. However, it should also be noted that the bacteria of the genera Aeromonas sp. and Acinetobacter sp. were able to transfer 6 out of 13 tested tet genes into Escherichiacoli, which can promote the spread of antibiotic resistance in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of Aging Treatment on Impact Toughness and Corrosion Resistance of Super Duplex Stainless Steel

    Science.gov (United States)

    Kim, Jae-Hwan; Oh, Eun-Ji; Lee, Byung-Chan; Kang, Chang-Yong

    2016-01-01

    The effect of aging time on impact toughness and corrosion resistance of 25%Cr-7%Ni-2%Mo-4%W-0.2%N super duplex stainless steel from the viewpoint of intermetallic secondary phase variation was investigated with scanning electron microscopic observation with energy-dispersive x-ray spectroscopic analysis and transmission electron microscopy. The results clarified that R-phase is precipitated not only at the interface of ferrite and austenite but inside the ferrite at an initial stage of aging and then transformed into σ-phase from an aging time of 1 h, while the ferrite phase decomposed into γ2 and σ-phase with increase of aging time. This variation of the phases led to decrease of its impact toughness, and specifically, the R-phase was proved to be predominant in the degradation of the impact toughness at the initial stage of the aging. Additionally, these secondary phases led to deterioration of corrosion resistance because of Cr depletion.

  13. Impacts of thiamethoxam seed treatment and host plant resistance on the soybean aphid fungal pathogen, Pandora neoaphidis.

    Science.gov (United States)

    Koch, Karrie A; Ragsdale, David W

    2011-12-01

    Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.

  14. The impact of coating architecture on the hardness, friction and wear resistance of hard and tribological nanocomposite coatings

    Science.gov (United States)

    Endrino, Jose Luis

    Future generations of mechanical systems will place new demands on the tribological performance of interacting surfaces. Vapor-deposited surface coatings can provide extended lifetimes, increased efficiencies and energy savings for mechanical components and tools. These benefits can also be extended to space mechanisms and satellites with the use of vacuum solid lubricants. The material properties of surface coatings such as hardness, friction, and wear resistance in a particular environment are influenced by the characteristics of the coating microstructure which include density, grain size, grain boundary chemistry, porosity, and grain orientation. In this research effort bias sputter deposition, co-sputtering, and magnetron sputtering-pulsed laser deposition are used to deposit and control the formation of composite coating architectures. The developed microstructures were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical and tribological tests included nanoindentation and pin-on-disk. Results were analyzed in relation to the coatings' chemical composition and microstructure with the objective of establishing structure-property relations for these films. Hard coatings presented in this thesis include carbides that form a solid solution (Ti-Hf-C) as well as carbides that form composite microstructures (WC-SiC, HfC-SiC). Hardness measurements on these films indicated the potential of transition metal carbide-silicon carbide composites to be utilized as protective coatings. With the use of a substrate bias potential, a hardness of over 35 GPa was achieved for some HfC-SiC samples. By co-depositing from carbide and silver targets, composite tribological coatings (e.g. SiC-Ag, WC-Ag, TiC-Ag, HfC-Ag) were developed. These systems revealed how critical materials selection can be in the determination of a coating's architecture, and how carbide-silver films can be used to provide low friction

  15. The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies.

    Science.gov (United States)

    Kunz, M; Hölzel, M

    2017-03-01

    Recent attempts to characterize the melanoma mutational landscape using high-throughput sequencing technologies have identified new genes and pathways involved in the molecular pathogenesis of melanoma. Apart from mutated BRAF, NRAS, and KIT, a series of new recurrently mutated candidate genes with impact on signaling pathways have been identified such as NF1, PTEN, IDH1, RAC1, ARID2, and TP53. Under targeted treatment using BRAF and MEK1/2 inhibitors either alone or in combination, a majority of patients experience recurrences, which are due to different genetic mechanisms such as gene amplifications of BRAF or NRAS, MEK1/2 and PI3K mutations. In principle, resistance mechanisms converge on two signaling pathways, MAPK and PI3K-AKT-mTOR pathways. Resistance may be due to small subsets of resistant cells within a heterogeneous tumor mass not identified by sequencing of the bulk tumor. Future sequencing studies addressing tumor heterogeneity, e.g., by using single-cell sequencing technology, will most likely improve this situation. Gene expression patterns of metastatic lesions were also shown to predict treatment response, e.g., a MITF-low/NF-κB-high melanoma phenotype is resistant against classical targeted therapies. Finally, more recent treatment approaches using checkpoint inhibitors directed against PD-1 and CTLA-4 are very effective in melanoma and other tumor entities. Here, the mutational and neoantigen load of melanoma lesions may help to predict treatment response. Taken together, the new sequencing, molecular, and bioinformatic technologies exploiting the melanoma genome for treatment decisions have significantly improved our understanding of melanoma pathogenesis, treatment response, and resistance for either targeted treatment or immune checkpoint blockade.

  16. Impact of Vat resistance in melon on viral epidemics and genetic structure of virus populations.

    Science.gov (United States)

    Schoeny, Alexandra; Desbiez, Cécile; Millot, Pauline; Wipf-Scheibel, Catherine; Nozeran, Karine; Gognalons, Patrick; Lecoq, Hervé; Boissot, Nathalie

    2017-09-15

    Cultivar choice is at the heart of cropping systems and resistant cultivars should be at the heart of disease management strategies whenever available. They are the easiest, most efficient and environmentally friendly way of combating viral diseases at the farm level. Among the melon genetic resources, Vat is a unique gene conferring resistance to both the melon aphid Aphis gossypii and the viruses it carries. The 'virus side' of this pleiotropic phenotype is seldom regarded as an asset for virus control. Indeed, the effect of Vat on virus epidemics in the field is expected to vary according to the composition of aphid populations in the environment and long-term studies are needed to draw a correct trend. Therefore, the first objective of the study was to re-evaluate the potential of Vat to reduce viral diseases in melon crops. The second objective was to investigate the potential of Vat to exert a selection pressure on virus populations. We monitored the epidemics of Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV) in two melon lines having a common genetic background, a resistant line (R) and a susceptible line (S), in eight field trials conducted in southeastern France between 2011 and 2015. Vat had limited impact if any on WMV epidemics probably because A. gossypii is not the main vector of WMV in the field, but a favorable impact on CMV, yet of variable intensity probably related to the importance of A. gossypii in the total aphid population. Vat had a significant impact on CABYV epidemics with mean incidence reduction exceeding 50% in some trials. There was no effect of Vat on the structure of virus populations, both for the non-persistent WMV transmitted by numerous aphid species and for the persistent CABYV transmitted predominantly by A. gossypii. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    Science.gov (United States)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  18. Transmission of drug resistant HIV and its potential impact on mortality and treatment outcomes in resource-limited settings

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2013-01-01

    the prevalence of resistance in ART-naive people is reaching alerting levels. Whereas adherence counseling has to be an integral component of any treatment program, it is still unclear which threshold of transmitted drug resistance (TDR) should trigger additional targeted public health actions and which action...... is the most cost-effective. Mathematical models can contribute to answer these questions. In order to estimate the potential long-term impact of TDR on mortality in people on ART we used the Synthesis transmission model. TDR is predicted to have potentially significant impact on future HIV mortality....... It is critical to remain vigilant over transmission of drug-resistant HIV....

  19. Duplex stainless steel—Microstructure and properties

    Science.gov (United States)

    Debold, Terry A.

    1989-03-01

    Literature describing the microstructure of austenitic-ferritic stainless steels is reviewed, including phases which can be deleterious, such as σ and ά. The mechanical properties and corrosion resistance of Carpenter Technology's 7-Mo PLUSsr stainless (UNS S32950) demonstrate the resistance of this material to the formation of these phases and their deleterious effects. This material was evaluated in the annealed and welded conditions and after extended thermal treatments to simulate boiler and pressure vessel service.

  20. Microstructure, Residual Stress, Corrosion and Wear Resistance of Vacuum Annealed TiCN/TiN/Ti Films Deposited on AZ31

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Composite titanium carbonitride (TiCN thin films deposited on AZ31 by DC/RF magnetron sputtering were vacuum annealed at different temperatures. Vacuum annealing yields the following on the structure and properties of the films: the grain grows and the roughness increases with an increase of annealing temperature, the structure changes from polycrystalline to single crystal, and the distribution of each element becomes more uniform. The residual stress effectively decreases compared to the as-deposited film, and their corrosion resistance is much improved owing to the change of structure and fusion of surface defects, whereas the wear-resistance is degraded due to the grain growth and the increase of surface roughness under a certain temperature.

  1. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  2. Assessing the impact of dispositional resistance to change on organizational attraction.

    Science.gov (United States)

    Arciniega, Luis M; Maldonado, Adriana

    2011-11-01

    In recent years there has been an increasing interest among researchers and practitioners to analyze what makes a firm attractive in the eyes of university students, and if individual differences such as personality traits have an impact on this general affect towards a particular organization. The main goal of the present research is to demonstrate that a recently conceptualized narrow trait of personality named dispositional resistance to change (RTC), that is, the inherent tendency of individuals to avoid and oppose changes (Oreg, 2003), can predict organizational attraction of university students to firms that are perceived as innovative or conservative. Three complementary studies were carried out using a total sample of 443 college students from Mexico. In addition to validating the hypotheses, our findings suggest that as the formation of the images of organizations in students' minds is done through social cognitions, simple stimuli such as physical artifacts, when used in an isolated manner, do not have a significant impact on organizational attraction.

  3. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca; Sagals, Genadijs; Blahoianu, Andrei

    2015-12-15

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  4. The Effects of Hygrothermal Aging on the Impact Penetration Resistance of Triaxially Braided Composites

    Science.gov (United States)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.

    2016-01-01

    An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration

  5. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    Science.gov (United States)

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a 0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO 2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Impact of production system on development of insecticide resistance in Frankliniella occidentalis (Thysanoptera: Thripidae).

    Science.gov (United States)

    Bielza, P; Quinto, V; Grávalos, C; Fernández, E; Abellán, J

    2008-10-01

    The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), has become one of the most difficult insects to control in the intensive agriculture of southeastern Spain. However, resistance problems are quite different in two neighboring areas, Murcia and Almeria, with distinct production systems. Thirty-six field populations of western flower thrips from sweet pepper crops were collected in two different dates in Murcia and Almeria in 2005 and 2006. Western flower thrips populations collected were exposed to a diagnostic concentration of spinosad, methiocarb, acrinathrin, and formetanate. The results allowed the recognition of higher levels of resistance in Almeria compared with Murcia throughout the growing season. The mortality at the diagnostic concentration for spinosad (120 ppm) in western flower thrips populations ranged from 34 to 81% in Almeria, and from 73 to 100% in Murcia. The mortalities at the diagnostic concentration to acrinathrin (800 ppm) and formetanate (8000 ppm) were 17-31% in Almeria and 77-100% in Murcia, and 14-41% in Almeria and 48-99% in Murcia, respectively, indicating large geographic variations. Toxicity of methiocarb was higher for western flower thrips populations from both areas. However, mortality at the diagnostic concentration of methiocarb (2000 ppm) varied from 56 to 90% in Almeria, and it was from 94 to 100% in Murcia. The impact of production systems and agricultural practices of each area on the development and stability of insecticide resistance is discussed.

  7. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    Science.gov (United States)

    Bowles, Kenneth J.

    1988-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assesseed on the basis of loading capability, energy absorption, and extent of damage.

  8. Advances in impact resistance testing for explosion-proof electrical equipment

    Directory of Open Access Journals (Sweden)

    Pasculescu Vlad Mihai

    2017-01-01

    Full Text Available The design, construction and exploitation of electrical equipment intended to be used in potentially explosive atmospheres presents a series of difficulties. Therefore, the approach of these phases requires special attention concerning technical, financial and occupational health and safety aspects. In order for them not to generate an ignition source for the explosive atmosphere, such equipment have to be subjected to a series of type tests aiming to decrease the explosion risk in technological installations which operate in potentially explosive atmospheres. Explosion protection being a concern of researchers and authorities worldwide, testing and certification of explosion-proof electrical equipment, required for their conformity assessment, are extremely important, taking into account the unexpected explosion hazard due to potentially explosive atmospheres, risk which has to be minimized in order to ensure the occupational health and safety of workers, for preventing material losses and for decreasing the environmental pollution. Besides others, one of the type tests, which shall be applied, for explosion-proof electrical equipment is the impact resistance test, described in detail in EN 60079 which specifies the general requirements for construction, testing and marking of electrical equipment and Ex components intended for use in explosive atmospheres. This paper presents an analysis on the requirements of the impact resistance test for explosion-proof electrical equipment and on the possibilities to improve this type of test, by making use of modern computer simulation tools based on finite element analysis, techniques which are widely used nowadays in the industry and for research purposes.

  9. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  10. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae.

    Science.gov (United States)

    Lomovskaya, Olga; Sun, Dongxu; Rubio-Aparicio, Debora; Nelson, Kirk; Tsivkovski, Ruslan; Griffith, David C; Dudley, Michael N

    2017-11-01

    Vaborbactam (formerly RPX7009) is a new beta-lactamase inhibitor based on a cyclic boronic acid pharmacophore. The spectrum of beta-lactamase inhibition by vaborbactam and the impact of bacterial efflux and permeability on its activity were determined using a panel of strains with beta-lactamases cloned from various classes and a panel of Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing isogenic strains with various combinations of efflux and porin mutations. Vaborbactam is a potent inhibitor of class A carbapenemases, such as KPC, as well as an inhibitor of other class A (CTX-M, SHV, TEM) and class C (P99, MIR, FOX) beta-lactamases. Vaborbactam does not inhibit class D or class B carbapenemases. When combined with meropenem, vaborbactam had the highest potency compared to the potencies of vaborbactam in combination with other antibiotics against strains producing the KPC beta-lactamase. Consistent with broad-spectrum beta-lactamase inhibition, vaborbactam reduced the meropenem MICs for engineered isogenic strains of K. pneumoniae with increased meropenem MICs due to a combination of extended-spectrum beta-lactamase production, class C beta-lactamase production, and reduced permeability due to porin mutations. Vaborbactam crosses the outer membrane of K. pneumoniae using both OmpK35 and OmpK36, but OmpK36 is the preferred porin. Efflux by the multidrug resistance efflux pump AcrAB-TolC had a minimal impact on vaborbactam activity. Investigation of the vaborbactam concentration necessary for restoration of meropenem potency showed that vaborbactam at 8 μg/ml results in meropenem MICs of ≤2 μg/ml in the most resistant engineered strains containing multiple mutations. Vaborbactam is a highly active beta-lactamase inhibitor that restores the activity of meropenem and other beta-lactam antibiotics in beta-lactamase-producing bacteria, particularly KPC-producing carbapenem-resistant Enterobacteriaceae . Copyright © 2017 Lomovskaya et al.

  11. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research.

    Science.gov (United States)

    Lindbo, John A; Falk, Bryce W

    2017-06-01

    Worldwide, plant viruses cause serious reductions in marketable crop yield and in some cases even plant death. In most cases, the most effective way to control virus diseases is through genetically controlled resistance. However, developing virus-resistant (VR) crops through traditional breeding can take many years, and in some cases is not even possible. Because of this, the demonstration of the first VR transgenic plants in 1985 generated much attention. This seminal report served as an inflection point for research in both basic and applied plant pathology, the results of which have dramatically changed both basic research and in a few cases, commercial crop production. The typical review article on this topic has focused on only basic or only applied research results stemming from this seminal discovery. This can make it difficult for the reader to appreciate the full impact of research on transgenic virus resistance, and the contributions from fundamental research that led to translational applications of this technology. In this review, we take a global view of this topic highlighting the significant changes to both basic and applied plant pathology research and commercial food production that have accumulated in the last 30 plus years. We present these milestones in the historical context of some of the scientific, economic, and environmental drivers for developing specific VR crops. The intent of this review is to provide a single document that adequately records the significant accomplishments of researchers in both basic and applied plant pathology research on this topic and how they relate to each other. We hope this review therefore serves as both an instructional tool for students new to the topic, as well as a source of conversation and discussion for how the technology of engineered virus resistance could be applied in the future.

  12. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Qi, Qin; Preston, Gail M; MacLean, R Craig

    2014-12-09

    Fitness costs play a key role in the evolutionary dynamics of antibiotic resistance in bacteria by generating selection against resistance in the absence of antibiotics. Although the genetic basis of antibiotic resistance is well understood, the precise molecular mechanisms linking the genetic basis of resistance to its fitness cost remain poorly characterized. Here, we examine how the system-wide impacts of mutations in the RNA polymerase (RNAP) gene rpoB shape the fitness cost of rifampin resistance in Pseudomonas aeruginosa. Rifampin resistance mutations reduce transcriptional efficiency, and this explains 76% of the variation in fitness among rpoB mutants. The pleiotropic consequence of rpoB mutations is that mutants show altered relative transcript levels of essential genes. We find no evidence that global transcriptional responses have an impact on the fitness cost of rifampin resistance as revealed by transcriptome sequencing (RNA-Seq). Global changes in the transcriptional profiles of rpoB mutants compared to the transcriptional profile of the rifampin-sensitive ancestral strain are subtle, demonstrating that the transcriptional regulatory network of P. aeruginosa is robust to the decreased transcriptional efficiency associated with rpoB mutations. On a smaller scale, we find that rifampin resistance mutations increase the expression of RNAP due to decreased termination at an attenuator upstream from rpoB, and we argue that this helps to minimize the cost of rifampin resistance by buffering against reduced RNAP activity. In summary, our study shows that it is possible to dissect the molecular mechanisms underpinning variation in the cost of rifampin resistance and highlights the importance of genome-wide buffering of relative transcript levels in providing robustness against resistance mutations. Antibiotic resistance mutations carry fitness costs. Relative to the characteristics of their antibiotic-sensitive ancestors, resistant mutants show reduced growth

  13. Microstructure and Wear Resistance of Laser-Clad (Co, Ni61.2B26.2Si7.8Ta4.8 Coatings

    Directory of Open Access Journals (Sweden)

    Luan Zhang

    2017-10-01

    Full Text Available It has been reported that a quaternary Co61.2B26.2Si7.8Ta4.8 alloy is a good glass former and can be laser-clad to an amorphous composite coating with superior hardness and wear resistance. In this paper, alloys with varying Ni contents to substitute for Co are coated on the surface of #45 carbon steel using a 5-kW CO2 laser source for the purpose of obtaining protective coatings. In contrast to the quaternary case, the clad layers are characterized by a matrix of α-(Fe, Co, Ni solid solution plus CoB, Co3B, and Co3Ta types of precipitates. The cladding layer is divided into four regions: Near-surface dendrites, α-(Fe, Co, Ni solid solution plus dispersed particles in the middle zone, columnar bonding zone, and heat-affected area that consists of martensite. The hardness gradually decreases with increasing Ni content, and the maximum hardness occurs in the middle zone. Both the friction coefficient and wear volume are minimized in the alloy containing 12.2% Ni. Compared with the previous cobalt-based quaternary alloy Co61.2B26.2Si7.8Ta4.8, the addition of the Ni element reduces the glass-forming ability and henceforth the hardness and wear resistance of the clad layers.

  14. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge

    Science.gov (United States)

    Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie

    2018-01-01

    Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.

  15. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  16. Insect-resistant biotech crops and their impacts on beneficial arthropods

    Science.gov (United States)

    Gatehouse, A. M. R.; Ferry, N.; Edwards, M. G.; Bell, H. A.

    2011-01-01

    With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids. PMID:21444317

  17. Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize.

    Science.gov (United States)

    Devos, Yann; Cougnon, Mathias; Vergucht, Sofie; Bulcke, Robert; Haesaert, Geert; Steurbaut, Walter; Reheul, Dirk

    2008-12-01

    With the potential advent of genetically modified herbicide-resistant (GMHR) crops in the European Union, changes in patterns of herbicide use are predicted. Broad-spectrum, non-selective herbicides used with GMHR crops are expected to substitute for a set of currently used herbicides, which might alter the agro-environmental footprint from crop production. To test this hypothesis, the environmental impact of various herbicide regimes currently used with non-GMHR maize in Belgium was calculated and compared with that of possible herbicide regimes applied in GMHR maize. Impacts on human health and the environment were calculated through the pesticide occupational and environmental risk (POCER) indicator. Results showed that the environmental impact of herbicide regimes solely relying on the active ingredients glyphosate (GLY) or glufosinate-ammonium (GLU) is lower than that of herbicide regimes applied in non-GMHR maize. Due to the lower potential of GLY and GLU to contaminate ground water and their lower acute toxicity to aquatic organisms, the POCER exceedence factor values for the environment were reduced approximately by a sixth when GLY or GLU is used alone. However, the environmental impact of novel herbicide regimes tested may be underestimated due to the assumption that active ingredients used with GMHR maize would be used alone. Data retrieved from literature suggest that weed control efficacy is increased and resistance development delayed when GLY or GLU is used together with other herbicides in the GMHR system. Due to the partial instead of complete replacement of currently used herbicide regimes, the beneficial environmental impact of novel herbicide regimes might sometimes be reduced or counterbalanced. Despite the high weed control efficacy provided by the biotechnology-based weed management strategy, neither indirect harmful effects on farmland biodiversity through losses in food resources and shelter, nor shifts in weed communities have been

  18. A Microstructural Study on the Observed Differences in Charpy Impact Behavior Between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel

    Science.gov (United States)

    Cooper, Adam J.; Cooper, Norman I.; Bell, Andrew; Dhers, Jean; Sherry, Andrew H.

    2015-11-01

    With near-net shape technology becoming a more desirable route toward component manufacture due to its ability to reduce machining time and associated costs, it is important to demonstrate that components fabricated via Hot Isostatic Pressing (HIP) are able to perform to similar standards as those set by equivalent forged materials. This paper describes the results of a series of Charpy tests from HIP'd and forged 304L and 316L austenitic stainless steel, and assesses the differences in toughness values observed. The pre-test and post-test microstructures were examined to develop an understanding of the underlying reasons for the differences observed. The as-received microstructure of HIP'd material was found to contain micro-pores, which was not observed in the forged material. In tested specimens, martensite was detectable within close proximity to the fracture surface of Charpy specimens tested at 77 K (-196 °C), and not detected in locations remote from the fracture surface, nor was martensite observed in specimens tested at ambient temperatures. The results suggest that the observed changes in the Charpy toughness are most likely to arise due to differences in as-received microstructures of HIP'd vs forged stainless steel.

  19. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-01-01

    Full Text Available The tests of bullet impact on the base material (BM of a simple specimen with a single resistance-spot-welded (RSW nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM and the scanning electro microscope (SEM. For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling. For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the “notch tip” spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the “notch tip”, propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle

  20. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    Science.gov (United States)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile

  1. Impact of an antimicrobial resistance control program: pre- and post-training antibiotic use in children with typhoid fever

    OpenAIRE

    Elfrida A. Rachmah; Maftuchah Rochmanti; Dwiyanti Puspitasari

    2016-01-01

    Inappropriate use of antibiotics may lead to antimicrobial resistance. In 2012, Dr. Soetomo Hospital conducted training for pediatric residents on the proper use of antibiotics to limit antimicrobial resistance. Objective To evaluate the impact of a rational, antibiotic-use training program for pediatric residents on their antibiotic prescriptions for patients with typhoid fever. Methods A cross-sectional, analytic study was conducted. We collected data from children with typhoid fe...

  2. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance.

    Science.gov (United States)

    Poole, Keith

    2017-10-01

    Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of solution annealing on microstructure and mechanical properties of Maraging 300 steel

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Venceslau Xavier; Barros, Isabel Ferreira; Abreu, Hamilton Ferreira Gomes de, E-mail: venceslau@ifce.edu.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Engenharia Metalurgica e Materiais. Laboratorio de Caracterizacao de Materiais, Metalurgia Fisica e Grupo de Pesquisa de Transformacao de Fase

    2017-01-15

    Maraging 300 belongs to a family of metallic materials with extremely high mechanical strength and good toughness. Some works have been published about aging temperatures that improve ultimate strength resistance with acceptable toughness levels in this steel family, where the prior austenite grain size obtained by different solution annealing temperature influence in the final mechanical properties. Solution annealing temperatures ranging from 860 °C to 1150 deg C and were kept constant until the aging temperature. These treatments were used in order to investigate their influence on the microstructure and mechanical properties of maraging steel 300, especially with regard to toughness. The characterization of the microstructure was performed by optical microscopy, scanning electron microscope (SEM) and X-ray diffraction (XRD). Mechanical properties were evaluated by Rockwell C hardness and Charpy impact tests. The results showed that there is a temperature range where one can get some improvement in toughness without a large loss of mechanical strength. (author)

  4. Impact resistance of materials for guards on cutting machine tools--requirements in future European safety standards.

    Science.gov (United States)

    Mewes, D; Trapp, R P

    2000-01-01

    Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.

  5. Impact of insecticide resistance inAnopheles arabiensison malaria incidence and prevalence in Sudan and the costs of mitigation.

    Science.gov (United States)

    Kafy, Hmooda Toto; Ismail, Bashir Adam; Mnzava, Abraham Peter; Lines, Jonathan; Abdin, Mogahid Shiekh Eldin; Eltaher, Jihad Sulieman; Banaga, Anuar Osman; West, Philippa; Bradley, John; Cook, Jackie; Thomas, Brent; Subramaniam, Krishanthi; Hemingway, Janet; Knox, Tessa Bellamy; Malik, Elfatih M; Yukich, Joshua O; Donnelly, Martin James; Kleinschmidt, Immo

    2017-12-26

    Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions. Copyright © 2017 the Author(s). Published by PNAS.

  6. Quantitative characterization of microstructure of pure copper processed by ECAP

    Czech Academy of Sciences Publication Activity Database

    Šedivý, O.; Beneš, V.; Ponížil, P.; Král, Petr; Sklenička, Václav

    2013-01-01

    Roč. 32, č. 2 (2013), s. 65-75 ISSN 1580-3139 Institutional support: RVO:68081723 Keywords : electron backscatter diffraction * ultrafine-grained metals * microstructure * microstructure characterization * grain boundaries Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.697, year: 2013

  7. Microstructural evolution of castable during firing

    International Nuclear Information System (INIS)

    Santos, E.M.B.; Ribeiro, S.

    2011-01-01

    Castable are materials used for high temperature industrial applications, containing one or more binding agents, aggregates and additives. Calcium aluminate cement (CAC) is one of the most used binding agents, mainly due to his abundance, low cost, refractoriness and high mechanical and chemical resistance. During high temperature processes, these materials exhibit microstructural evolution that changes their properties and affect the performance. The purpose of this work was to study the microstructural changes presented by a castable, containing CAC and alumina aggregates, during heat treatment. For that, was used X-ray diffraction, thermal analyses, electron microscopy and energy dispersive spectroscopy to characterize concretes after heat treatment up to 1000 deg C. The results allowed to understand the microstructural changes at high temperature and its influence in mechanical properties of the castable. (author)

  8. Expansion of Viral Load Testing and the Potential Impact on HIV Drug Resistance.

    Science.gov (United States)

    Raizes, Elliot; Hader, Shannon; Birx, Deborah

    2017-12-01

    The US President's Emergency Plan for AIDS Relief (PEPFAR) supports aggressive scale-up of antiretroviral therapy (ART) in high-burden countries and across all genders and populations at risk toward global human immunodeficiency virus (HIV) epidemic control. PEPFAR recognizes the risk of HIV drug resistance (HIVDR) as a consequence of aggressive ART scale-up and is actively promoting 3 key steps to mitigate the impact of HIVDR: (1) routine access to routine viral load monitoring in all settings; (2) optimization of ART regimens; and (3) routine collection and analysis of HIVDR data to monitor the success of mitigation strategies. The transition to dolutegravir-based regimens in PEPFAR-supported countries and the continuous evolution of HIVDR surveillance strategies are essential elements of PEPFAR implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Impact of treatment delay in Radium-223 therapy of metastatic castration-resistant prostate cancer patients

    DEFF Research Database (Denmark)

    Fosbøl, Marie Øbro; Petersen, Peter Meidahl; Daugaard, Gedske

    2018-01-01

    BACKGROUND: Radium-223-dichloride (Ra-223) is an alpha-emitting, bone seeking radionuclide therapy approved for patients with metastatic castration-resistant prostate cancer (mCRPC). In the fall of 2014, a global temporary shortage of Ra-223 occurred for 2 months due to production irregularities....... The aim of this study was to assess whether prolonged interval between Ra-223 cycles to non-disease related causes had a negative impact on clinical outcome of therapy. MATERIALS AND METHODS: Retrospective single-center study of mCRPC patients who initiated Ra-223 therapy in the period from March 2014......, respectively. Follow-up period was 18 months after first Ra-223 cycle. RESULTS: A total of 50 consecutive patients initiated Ra-223 therapy in the time period. Seventeen of 50 patients (34%) had prolonged interval between cycles due to delivery problems. Median delay was 4 weeks (range 3-9 weeks). Patients...

  10. Safety of stationary grinding machines - impact resistance of work zone enclosures.

    Science.gov (United States)

    Mewes, Detlef; Adler, Christian

    2017-09-01

    Guards on machine tools are intended to protect persons from being injured by parts ejected with high kinetic energy from the work zone of the machine. Stationary grinding machines are a typical example. Generally such machines are provided with abrasive product guards closely enveloping the grinding wheel. However, many machining tasks do not allow the use of abrasive product guards. In such cases, the work zone enclosure has to be dimensioned so that, in case of failure, grinding wheel fragments remain inside the machine's working zone. To obtain data for the dimensioning of work zone enclosures on stationary grinding machines, which must be operated without an abrasive product guard, burst tests were conducted with vitrified grinding wheels. The studies show that, contrary to widely held opinion, narrower grinding wheels can be more critical concerning the impact resistance than wider wheels although their fragment energy is smaller.

  11. Standard Test Method for Hail Impact Resistance of Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of the impact resistance of an aerospace transparent enclosure, hereinafter called windshield, during hailstorm conditions using simulated hailstones consisting of ice balls molded under tightly controlled conditions. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 7.

  12. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  13. Quantitative description of a high Jc Nb-Ti superconductor during its final optimization strain. I. Microstructure, Tc, Hc2, and resistivity

    International Nuclear Information System (INIS)

    Meingast, C.; Lee, P.J.; Larbalestier, D.C.

    1989-01-01

    A most important step in the critical current density (J c ) optimization of Nb-Ti is the large final drawing strain, in which α-Ti precipitates, initially approximately equiaxed and 100--200 nm in diameter, are drawn into ribbons, whose thickness (1--2 nm) is less than the superconducting coherence length [ξ (4.2 K)∼5 nm]. Using transmission electron microscopy, the precipitate thickness, spacing, cross-sectional area, and circumference were measured over the whole final drawing strain range. Each of these parameters was found to have a simple power dependence on the wire diameter. T c , H c2 , and the resistivity (ρ n ) were also change considerably during the refinement of the precipitates. Directly after precipitation, T c increased, and (dH c2 /dT) T c and ρ n were reduced from the single-phase values. Drawing the wire returned these parameters to their single-phase values, as the precipitate thickness was reduced to less than ξ. This observation explains a long-standing peculiarity in this system, namely that the optimum H c2 of high J c conductors occurs for a composition close to Nb 46 wt.% Ti, even when the precipitation of 18 vol % of α-Ti shifts the matrix composition to a Nb-rich composition of theoretically lower H c2

  14. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  15. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  16. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance?

    Science.gov (United States)

    Nettleton, Jodi E; Reimer, Raylene A; Shearer, Jane

    2016-10-01

    Disruption in the gut microbiota is now recognized as an active contributor towards the development of obesity and insulin resistance. This review considers one class of dietary additives known to influence the gut microbiota that may predispose susceptible individuals to insulin resistance - the regular, long-term consumption of low-dose, low calorie sweeteners. While the data are controversial, mounting evidence suggests that low calorie sweeteners should not be dismissed as inert in the gut environment. Sucralose, aspartame and saccharin, all widely used to reduce energy content in foods and beverages to promote satiety and encourage weight loss, have been shown to disrupt the balance and diversity of gut microbiota. Fecal transplant experiments, wherein microbiota from low calorie sweetener consuming hosts are transferred into germ-free mice, show that this disruption is transferable and results in impaired glucose tolerance, a well-known risk factor towards the development of a number of metabolic disease states. As our understanding of the importance of the gut microbiota in metabolic health continues to grow, it will be increasingly important to consider the impact of all dietary components, including low calorie sweeteners, on gut microbiota and metabolic health. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mechanical Properties and Sliding-impact Wear Resistance of Self-adhesive Resin Cements.

    Science.gov (United States)

    Furuichi, T; Takamizawa, T; Tsujimoto, A; Miyazaki, M; Barkmeier, W W; Latta, M A

    2016-01-01

    The present study determined the mechanical properties and impact-sliding wear characteristics of self-adhesive resin cements. Five self-adhesive resin cements were used: G-CEM LinkAce, BeautiCem SA, Maxcem Elite, Clearfil SA Automix, and RelyX Unicem 2. Clearfil Esthetic Cement was employed as a control material. Six specimens for each resin cement were used to determine flexural strength, elastic modulus, and resilience according to ISO specification #4049. Ten specimens for each resin cement were used to determine the wear characteristics using an impact-sliding wear testing apparatus. Wear was generated using a stainless-steel ball bearing mounted inside a collet assembly. The maximum facet depth and volume loss were determined using a noncontact profilometer in combination with confocal laser scanning microscopy. Data were evaluated using analysis of variance followed by the Tukey honestly significantly different test (α=0.05). The flexural strength of the resin cements ranged from 68.4 to 144.2 MPa; the elastic modulus ranged from 4.4 to 10.6 GPa; and the resilience ranged from 4.5 to 12.0 MJ/m(3). The results for the maximum facet depth ranged from 25.2 to 235.9 μm, and volume loss ranged from 0.0107 to 0.5258 mm(3). The flexural properties and wear resistance were found to vary depending upon the self-adhesive resin cement tested. The self-adhesive cements tended to have lower mechanical properties than the conventional resin cement. All self-adhesive resin cements, apart from G-CEM LinkAce, demonstrated significantly poorer wear resistance than did the conventional resin cement.

  18. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials

    Science.gov (United States)

    Baker, Donald J.

    1994-01-01

    To use graphite polyetheretherketone (PEEK) material on highly curved surfaces requires that the material be drapable and easily conformable to the surface. This paper presents the mechanical property characterization and impact resistance results for laminates made from two types of graphite/PEEK materials that will conform to a curved surface. These laminates were made from two different material forms. These forms are: (1) a fabric where each yarn is a co-mingled Celion G30-500 3K graphite fiber and PEEK thermoplastic fiber; and (2) an interleaved material of Celion G30-500 3K graphite fabric interleaved with PEEK thermoplastic film. The experimental results from the fabric laminates are compared with results for laminates made from AS4/PEEK unidirectional tape. The results indicate that the tension and compression moduli for quasi-isotropic and orthotropic laminates made from fabric materials are at least 79 percent of the modulus of equivalent laminates made from tape material. The strength of fabric material laminates is at least 80 percent of laminates made from tape material. The evaluation of fabric material for shear stiffness indicates that a tape material laminate could be replaced by a fabric material laminate and still maintain 89 percent of the shear stiffness of the tape material laminate. The notched quasi-isotropic compression panel failure strength is 42 to 46 percent of the unnotched quasi-isotropic laminate strength. Damage area after impact with 20 ft-lbs of impact energy is larger for the co-mingled panels than for the interleaved panels. The inerleaved panels have less damage than panels made from tape material. Residual compression strength of quasi-isotropic panels after impact of 20 ft-lbs of energy varies between 33 percent of the undamaged quasi-isotropic material strength for the tape material and 38 percent of the undamaged quasi-isotropic material strength for the co-mingled fabric material.

  19. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    Directory of Open Access Journals (Sweden)

    Ali Abd_Elhakam Aliabdo

    2013-09-01

    Full Text Available This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as surface layers. The evaluating tests include standard impact test according to ASTM D 1557 and suggested simulated penetration test to measure the impact and penetration resistance of concrete. The test results of plain and fibrous concrete from ASTM D 1557 method indicated that steel fiber with different configurations and using basalt have a great positive effect on impact resistance of concrete. Moreover, the simulated penetration test indicates that steel fibers are more effective than propylene fibers, type of coarse aggregate has negligible effect, and steel fiber volume fraction has a more significant influence than fiber shape for reinforced concrete test panels. Finally, as expectable, surface properties of tested concrete panels have a significant effect on impact and penetration resistance.

  20. Impact of Rapid Susceptibility Testing and Antibiotic Selection Strategy on the Emergence and Spread of Antibiotic Resistance in Gonorrhea.

    Science.gov (United States)

    Tuite, Ashleigh R; Gift, Thomas L; Chesson, Harrell W; Hsu, Katherine; Salomon, Joshua A; Grad, Yonatan H

    2017-11-27

    Increasing antibiotic resistance limits treatment options for gonorrhea. We examined the impact of a hypothetical point-of-care (POC) test reporting antibiotic susceptibility profiles on slowing resistance spread. A mathematical model describing gonorrhea transmission incorporated resistance emergence probabilities and fitness costs associated with resistance based on characteristics of ciprofloxacin (A), azithromycin (B), and ceftriaxone (C). We evaluated time to 1% and 5% prevalence of resistant strains among all isolates with the following: (1) empiric treatment (B and C), and treatment guided by POC tests determining susceptibility to (2) A only and (3) all 3 antibiotics. Continued empiric treatment without POC testing was projected to result in >5% of isolates being resistant to both B and C within 15 years. Use of either POC test in 10% of identified cases delayed this by 5 years. The 3 antibiotic POC test delayed the time to reach 1% prevalence of triply-resistant strains by 6 years, whereas the A-only test resulted in no delay. Results were less sensitive to assumptions about fitness costs and test characteristics with increasing test uptake. Rapid diagnostics reporting antibiotic susceptibility may extend the usefulness of existing antibiotics for gonorrhea treatment, but ongoing monitoring of resistance patterns will be critical. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine.

    Science.gov (United States)

    Schwarz, Stefan; Loeffler, Anette; Kadlec, Kristina

    2017-02-01

    Antimicrobial resistance has become a major challenge in veterinary medicine, particularly in the context of bacterial pathogens that play a role in both humans and animals. This review serves as an update on acquired resistance mechanisms in bacterial pathogens of human and animal origin, including examples of transfer of resistant pathogens between hosts and of resistance genes between bacteria. Acquired resistance is based on resistance-mediating mutations or on mobile resistance genes. Although mutations are transferred vertically, mobile resistance genes are also transferred horizontally (by transformation, transduction or conjugation/mobilization), contributing to the dissemination of resistance. Mobile genes specifying any of the three major resistance mechanisms - enzymatic inactivation, reduced intracellular accumulation or modification of the cellular target sites - have been found in a variety of bacteria that may be isolated from animals. Such resistance genes are associated with plasmids, transposons, gene cassettes, integrative and conjugative elements or other mobile elements. Bacteria, including zoonotic pathogens, can be exchanged between animals and humans mainly via direct contact, but also via dust, aerosols or foods. Proof of the direction of transfer of resistant bacteria can be difficult and depends on the location of resistance genes or mutations in the chromosomal DNA or on a mobile element. The wide variety in resistance and resistance transfer mechanisms will continue to ensure the success of bacterial pathogens in the future. Our strategies to counteract resistance and preserve the efficacy of antimicrobial agents need to be equally diverse and resourceful. © 2016 ESVD and ACVD.

  2. Culture methods impact recovery of antibiotic-resistant Enterococci including Enterococcus cecorum from pre- and postharvest chicken.

    Science.gov (United States)

    Suyemoto, M M; Barnes, H J; Borst, L B

    2017-03-01

    Pathogenic strains of Enterococcus cecorum (EC) expressing multidrug resistance have emerged. In National Antimicrobial Resistance Monitoring System (NARMS) data, EC is rarely recovered from chickens. Two NARMS methodologies (FDA and USDA) were compared with standard culture (SC) techniques for recovery of EC. NARMS methods failed to detect EC in 58 caecal samples, 20 chicken breast or six whole broiler samples. EC was recovered from 1 of 38 (2·6%) and 2 of 38 (5·2%) preharvest spinal lesions (USDA and FDA method, respectively). In contrast, using the SC method, EC was recovered from 44 of 53 (83%) caecal samples, all 38 (100%) spinal lesions, 14 of 20 (70%) chicken breast samples, and all three spinal lesions identified in whole carcasses. Compared with other Enterococcus spp., EC isolates had a higher prevalence of resistance to macrolides. The NARMS methods significantly affected recovery of enterococcal species other than EC. When the postharvest FDA method was applied to preharvest caecal samples, isolates of Enterococcus faecium were preferentially recovered. All 11 E. faecium isolates were multidrug resistant, including resistance to penicillin, daptomycin and linezolid. These findings confirm that current methodologies may not accurately identify the amount and range of antimicrobial resistance of enterococci from chicken sources. Enterococci are an important reservoir for antimicrobial resistance. This study demonstrates how current culture methods underreport resistance to macrolides in enterococci by selecting against strains of Enterococcus cecorum in pre- and postharvest chicken. Further, the application of postharvest surveillance methods to preharvest samples resulted in selective recovery of Enterococcus faecium over Enterococcus faecalis. Isolates of E. faecium recovered exhibited multidrug resistance including penicillin, daptomycin and linezolid resistance. These findings suggest that culture methodology significantly impacts the range and

  3. Budget Impact of Enzalutamide for Chemotherapy-Naïve Metastatic Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Bui, Cat N; O'Day, Ken; Flanders, Scott; Oestreicher, Nina; Francis, Peter; Posta, Linda; Popelar, Breanna; Tang, Hong; Balk, Mark

    2016-02-01

    Prostate cancer is expected to account for approximately one quarter of all new diagnoses of cancer in American men in 2015. The cost of prostate cancer care is expected to reach $15.1 billion by the year 2020, up from $11.9 billion in 2010. Given the high burden of prostate cancer, health care payers are interested in quantifying the potential budget impact of new therapies. To estimate the budget impact of enzalutamide for the treatment of chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC) from a U.S. payer perspective. A model was developed to assess the budget impact of enzalutamide for treatment of chemotherapy-naïve mCRPC patients in a hypothetical 1-million-member U.S. health plan over a 1-year time horizon. Comparators included abiraterone acetate, sipuleucel-T, radium Ra 223 dichloride, and docetaxel. Epidemiologic data, including National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) incidence rates, were used to estimate the number of chemotherapy-naïve mCRPC patients. Dosing, administration, duration of therapy, and adverse event rates were based on package inserts and pivotal studies. Drug costs were obtained from RED BOOK and Centers for Medicare & Medicaid Services (CMS) average sales price pricing files, costs of administration and monitoring from the CMS physician fee schedule, and adverse events from the Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project and published literature. Market shares were estimated for each comparator before and after adoption of enzalutamide. The incremental aggregate budget impact, per patient per year (PPPY), per patient per month (PPPM), and per member per month (PMPM), was calculated. One-way sensitivity analyses were performed. In a population of 115 chemotherapy-naïve mCRPC patients, adopting enzalutamide had an annual incremental budget impact of $510,641 ($4,426 PPPY, $369 PPPM, and $0.04 PMPM). Results were most sensitive to

  4. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  5. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    Science.gov (United States)

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-12-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  6. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition.

    Science.gov (United States)

    Galtier, Matthieu; De Sordi, Luisa; Maura, Damien; Arachchi, Harindra; Volant, Stevenn; Dillies, Marie-Agnès; Debarbieux, Laurent

    2016-07-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs) worldwide, causing over 150 million clinical cases annually. There is currently no specific treatment addressing the asymptomatic carriage in the gut of UPEC before they initiate UTIs. This study investigates the efficacy of virulent bacteriophages to decrease carriage of gut pathogens. Three virulent bacteriophages infecting an antibiotic-resistant UPEC strain were isolated and characterized both in vitro and in vivo. A new experimental murine model of gut carriage of E. coli was elaborated and the impact of virulent bacteriophages on colonization levels and microbiota diversity was assessed. A single dose of a cocktail of the three bacteriophages led to a sharp decrease in E. coli levels throughout the gut. We also observed that microbiota diversity was much less affected by bacteriophages than by antibiotics. Therefore, virulent bacteriophages can efficiently target UPEC strains residing in the gut, with potentially profound public health and economic impacts. These results open a new area with the possibility to manipulate specifically the microbiota using virulent bacteriophages, which could have broad applications in many gut-related disorders/diseases and beyond. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Microstructure evolution and microstructure/mechanical properties relationships in alpha+beta titanium alloys

    Science.gov (United States)

    Lee, Eunha

    In this study, the microstructural evolution of Timetal 550 was investigated. Timetal 550 showed two types of phase transformations (martensitic and nucleation and growth) depending on the cooling rate from the beta region. The alpha phase initially precipitated at the prior beta grain boundaries, and it had a Burgers OR with one of the adjacent grains. It was found that colonies could grow, even in the fast-cooled Timetal 550 sample, from the grain boundary alpha into the prior beta grain with which it exhibited the Burgers OR. Three orientation relationships were also found between alpha laths in the basketweave microstructure. Microhardness testing demonstrated that fast-cooled Timetal 550 samples with basketweave microstructure were harder than slowly-cooled samples with colony microstructure. Orientation-dependent deformation was found in the colony microstructure. Specifically, when the surface normal is perpendicular to the [0001] of alpha, the material deforms easily in the direction perpendicular to the [0001] of alpha. Fuzzy logic and Bayesian neural network models were developed to predict the room temperature tensile properties of Timetal 550. This involved the development of a database relating microstructural features to mechanical properties. A Gleeble 3800 thermal-mechanical simulator was used to develop various microstructures. Microstructural features of tensile-tested samples were quantified using stereological procedures. The quantified microstructural features and the tensile properties were used as inputs and outputs, respectively, for modeling the relationships between them. The individual influence of five microstructural features on tensile properties was determined using the established models. The microstructural features having the greatest impact on UTS and YS were the thickness of alpha laths and the width of grain boundary alpha layer, and the microstructural features having the greatest impact on elongation were the thickness of

  8. Strain-engineered manufacturing of freeform carbon nanotube microstructures

    Science.gov (United States)

    de Volder, M.; Park, S.; Tawfick, S.; Hart, A. J.

    2014-07-01

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  9. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole.

    Science.gov (United States)

    Neyestani, Majid; Dickenson, Eric; McLain, Jean; Robleto, Eduardo; Rock, Channah; Gerrity, Daniel

    2017-09-01

    Bacteria can grow in the presence of trimethoprim and sulfamethoxazole by expressing antibiotic resistance genes or by acquiring thymine or thymidine from environmental reservoirs to facilitate DNA synthesis. The purpose of this study was to evaluate whether activated sludge serves as a reservoir for thymine or thymidine, potentially impacting the quantification of antibiotic resistant bacteria. This study also assessed the impacts of varying solids retention time (SRT) on trimethoprim and sulfamethoxazole removal during wastewater treatment and single and multi-drug resistance. When assayed in the presence of the antibiotics at standard clinical concentrations, up to 40% increases in the relative prevalence of resistant bacteria were observed with (1) samples manually augmented with reagent-grade thymidine, (2) samples manually augmented with sonicated biomass (i.e., cell lysate), (3) samples manually augmented with activated sludge filtrate, and (4) activated sludge samples collected from reactors with longer SRTs. These observations suggest that longer SRTs may select for antibiotic resistant bacteria and/or result in false positives for antibiotic resistance due to higher concentrations of free thymine, thymidine, or other extracellular constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Microstructure mechanism map of dynamically recrystallized marble

    Czech Academy of Sciences Publication Activity Database

    Ulrich, Stanislav; Thompson, A. B.; Schulmann, K.; Casey, M.

    2006-01-01

    Roč. 412, 3/4 (2006), s. 173-182 ISSN 0040-1951 Institutional research plan: CEZ:AV0Z30120515 Keywords : dynamic recrystallization * microstructure map * marble Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.675, year: 2006

  11. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto

    2015-09-01

    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  12. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    Science.gov (United States)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  13. Continuous media with microstructure

    CERN Document Server

    2010-01-01

    This book discusses the extension of classical continuum models. To the first class addressed belong various thermodynamic models of multicomponent systems, and to the second class belong primarily microstructures created by phase transformations.

  14. MDR-TB treatment as prevention: The projected population-level impact of expanded treatment for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Kendall, Emily A.; Azman, Andrew S.; Cobelens, Frank G.; Dowdy, David W.

    2017-01-01

    In 2013, approximately 480,000 people developed active multidrug-resistant tuberculosis (MDR-TB), while only 97,000 started MDR-TB treatment. We sought to estimate the impact of improving access to MDR-TB diagnosis and treatment, under multiple diagnostic algorithm and treatment regimen scenarios,

  15. 75 FR 53971 - Guidance for Industry and Food and Drug Administration Staff; Impact-Resistant Lenses: Questions...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2007-D-0367] Guidance for Industry and Food and Drug Administration Staff; Impact-Resistant Lenses: Questions and Answers; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and...

  16. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues

    NARCIS (Netherlands)

    Kleter, G.A.; Unsworth, J.B.; Harris, C.A.

    2011-01-01

    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide

  17. The spatial profiles and metabolic capabilities of microbial populations impact the growth of antibiotic-resistant mutants

    Science.gov (United States)

    Kaushik, Karishma S.; Ratnayeke, Nalin; Katira, Parag; Gordon, Vernita D.

    2015-01-01

    Antibiotic resistance adversely affects clinical and public health on a global scale. Using the opportunistic human pathogen Pseudomonas aeruginosa, we show that increasing the number density of bacteria, on agar containing aminoglycoside antibiotics, can non-monotonically impact the survival of antibiotic-resistant mutants. Notably, at high cell densities, mutant survival is inhibited. A wide range of bacterial species can inhibit antibiotic-resistant mutants. Inhibition results from the metabolic breakdown of amino acids, which results in alkaline by-products. The consequent increase in pH acts in conjunction with aminoglycosides to mediate inhibition. Our work raises the possibility that the manipulation of microbial population structure and nutrient environment in conjunction with existing antibiotics could provide therapeutic approaches to combat antibiotic resistance. PMID:25972434

  18. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential.

    Science.gov (United States)

    Arnold, Jason W; Simpson, Joshua B; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains ( L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene ( bsh ) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  19. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Directory of Open Access Journals (Sweden)

    Jason W. Arnold

    2018-02-01

    Full Text Available Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010 of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001 at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143, while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the

  20. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential

    Science.gov (United States)

    Arnold, Jason W.; Simpson, Joshua B.; Roach, Jeffrey; Kwintkiewicz, Jakub; Azcarate-Peril, M. Andrea

    2018-01-01

    Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the characterization

  1. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  2. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  3. Microstructural studies on Alloy 693

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R.; Dutta, R.S. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, P., E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Mater. Sci., Indian Institute of Technology Bombay, Mumbai 400 072 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Superalloy 693, is a newly identified ‘high-temperature corrosion resistant alloy’. Present study focuses on microstructure and mechanical properties of the alloy prepared by double ‘vacuum melting’ route. In general, the alloy contains ordered Ni{sub 3}Al precipitates distributed within austenitic matrix. M{sub 6}C primary carbide, M{sub 23}C{sub 6} type secondary carbide and NbC particles are also found to be present. Heat treatment of the alloy at 1373 K for 30 min followed by water quenching (WQ) brings about a microstructure that is free from secondary carbides and Ni{sub 3}Al type precipitates but contains primary carbides. Tensile property of Alloy 693 materials was measured with as received and solution annealed (1323 K, 60 min, WQ) and (1373 K, 30 min, WQ) conditions. Yield strength, ultimate tensile strength (UTS) and hardness of the alloy are found to drop with annealing. It is noted that in annealed condition, considerable cold working of the alloy can be performed.

  4. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  5. Impact of pesticide resistance on toxicity and tolerance of hostplant phytochemicals in Amyelois transitella (Lepidoptera: Pyralidae)

    Science.gov (United States)

    For some polyphagous insects adaptation to phytochemically novel plants confers enhanced resistance to insecticides, but whether insecticide resistance enhances tolerance to novel phytochemicals has not been assessed. We used Amyelois transitella Walker (navel orangeworm), an economically important ...

  6. Comparing the impact of explicit and implicit resistance induction strategies on message persuasiveness

    NARCIS (Netherlands)

    Fransen, M.L.; Fennis, B.M.

    2014-01-01

    Traditional strategies that help people to resist persuasive communication, such as warnings of persuasive intent, are explicit, effortful, and require cognitive capacity. Typically, however, message recipients are unable or unmotivated to allocate their cognitive resources to adopting resistance

  7. Effect of Al on the mechanical properties and corrosion resistance of Pb-Al alloy

    Science.gov (United States)

    LU, Zhicheng; LIU, Zhenlin; LI, Yongliang; WU, Dan; WANG, Fuming

    2017-05-01

    A set of binary Pb-Al alloys with different Al contents were designed in this work. The mechanical properties and corrosion resistance of Pb-Al alloys were investigated with help of tensile test, Charpy V-notch impact test and salt spray corrosion test (SSCT). And the microstructure was observed by optical microscopy. The results showed that microstructure of all alloys were twin structure, and the twin structure was gradually refined with the increase of Al content. Al dissolved in matrix could significantly improve the tensile strength, impact energy and corrosion resistance. However, a higher content of Al would harm the mechanical properties and corrosion resistance. It may be due to the heterogeneous precipitation of Al rich phase.

  8. Creep deformation in near-γ TiAl. Part 1: The influence of microstructure on creep deformation in Ti-49Al-1V

    International Nuclear Information System (INIS)

    Worth, B.D.; Jones, J.W.; Allison, J.E.

    1995-01-01

    The influence of microstructure on creep deformation was examine in the e near-γ TiAl alloy Ti-49Al-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 C and 870 C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed γ microstructure, while sub-boundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed γ microstructure, is attributed to an increase in dislocation mobility within the equiaxed γ constituent, that results from partitioning of oxygen from the γ phase to the α 2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α 2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in duplex and equiaxed γ microstructures

  9. Impact of third-generation-cephalosporin administration in hatcheries on fecal Escherichia coli antimicrobial resistance in broilers and layers.

    Science.gov (United States)

    Baron, Sandrine; Jouy, Eric; Larvor, Emeline; Eono, Florent; Bougeard, Stéphanie; Kempf, Isabelle

    2014-09-01

    We investigated the impact of the hatchery practice of administering third-generation cephalosporin (3GC) on the selection and persistence of 3GC-resistant Escherichia coli in poultry. We studied 15 3GC-treated (TB) and 15 non-3GC-treated (NTB) broiler flocks and 12 3GC-treated (TL) and 10 non-3GC-treated (NTL) future layer flocks. Fecal samples from each flock were sampled before arrival on the farm (day 0), on day 2, on day 7, and then twice more. E. coli isolates were isolated on MacConkey agar without antibiotics and screened for 3GC resistance, and any 3GC-resistant E. coli isolates were further analyzed. 3GC-resistant E. coli isolates were found in all 3GC-treated flocks on at least one sampling date. The percentages of 3GC-resistant E. coli isolates were significantly higher in TB (41.5%) than in NTB (19.5%) flocks and in TL (49.5%) than in NTL (24.5%) flocks. In the day 2 samples, more than 80% of the E. coli strains isolated were 3GC resistant. 3GC-resistant E. coli strains were still detected at the end of the follow-up period in 6 out of 27 3GC-treated and 5 out of 25 non-3GC-treated flocks. Many 3GC-resistant E. coli strains were resistant to tetracycline, and there were significant differences in the percentages of resistance to sulfamethoxazole-trimethoprim, streptomycin, or gentamicin between treated and nontreated flocks. blaCTX-M and blaCMY-2 were the most frequently detected genes. These results clearly demonstrated that 3GC-resistant strains are introduced early in flocks and that the use of 3GC in hatcheries promotes the selection of 3GC-resistant E. coli. Measures must be implemented to avoid the spread and selection of 3GC-resistant strains. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Clinical impact of antimicrobial resistance in European hospitals: excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections.

    LENUS (Irish Health Repository)

    de Kraker, Marlieke E A

    2011-04-01

    Antimicrobial resistance is threatening the successful management of nosocomial infections worldwide. Despite the therapeutic limitations imposed by methicillin-resistant Staphylococcus aureus (MRSA), its clinical impact is still debated. The objective of this study was to estimate the excess mortality and length of hospital stay (LOS) associated with MRSA bloodstream infections (BSI) in European hospitals. Between July 2007 and June 2008, a multicenter, prospective, parallel matched-cohort study was carried out in 13 tertiary care hospitals in as many European countries. Cohort I consisted of patients with MRSA BSI and cohort II of patients with methicillin-susceptible S. aureus (MSSA) BSI. The patients in both cohorts were matched for LOS prior to the onset of BSI with patients free of the respective BSI. Cohort I consisted of 248 MRSA patients and 453 controls and cohort II of 618 MSSA patients and 1,170 controls. Compared to the controls, MRSA patients had higher 30-day mortality (adjusted odds ratio [aOR] = 4.4) and higher hospital mortality (adjusted hazard ratio [aHR] = 3.5). Their excess LOS was 9.2 days. MSSA patients also had higher 30-day (aOR = 2.4) and hospital (aHR = 3.1) mortality and an excess LOS of 8.6 days. When the outcomes from the two cohorts were compared, an effect attributable to methicillin resistance was found for 30-day mortality (OR = 1.8; P = 0.04), but not for hospital mortality (HR = 1.1; P = 0.63) or LOS (difference = 0.6 days; P = 0.96). Irrespective of methicillin susceptibility, S. aureus BSI has a significant impact on morbidity and mortality. In addition, MRSA BSI leads to a fatal outcome more frequently than MSSA BSI. Infection control efforts in hospitals should aim to contain infections caused by both resistant and susceptible S. aureus.

  11. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  12. Hardmetals - microstructural design, testing and property maps

    International Nuclear Information System (INIS)

    Roebuck, B.; Gee, M.G.; Morrell, R.

    2001-01-01

    The production of WC/Co hardmetals and their analogues is considered a mature technology, however lately there has been new research results where the concept of microstructural design was used to produce alternatives to the conventional two-phase structure. This Industry is currently well served by a range of baseline established standards, which, if properly followed with good attention to correct quality procedures, will ensure consistent products. However, there are certain key properties such as corrosion, fatigue, impact wear or high temperature strength and toughness that are often measured but not always by standard tests methods. Microstructural design potential is reviewed, particularly the possibilities of performance improvement via changes in size, shape and distribution of the phases as well as recent developments in testing, specifically S-N fatigue and abrasive wear. Finally, the concept of property mapping is introduced as a tool for providing a framework for optimizing properties. Its utility in correlating performance properties and their relationships with microstructural parameters is evaluated. Two property maps are discussed: one where the property is plotted against a microstructural feature (microstructure property maps) such as WC grain size or Co binder phase content against coercivity or hardness and one where different properties, such as hardness and toughness are mapped against each other (comparative property maps). (nevyjel)

  13. Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Science.gov (United States)

    Zhang, Y.; Paris, O.; Terrill, N. J.; Gupta, H. S.

    2016-05-01

    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.

  14. The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria

    Science.gov (United States)

    Magal, Pierre; Olivier, Damien; Ruan, Shigui

    2008-01-01

    Backgroud The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. Methods/Principal Findings A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. Conclusions/Significance The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance. PMID:19112501

  15. Experimental tests of the impact of selected parameters on the indentation rolling resistances

    Science.gov (United States)

    Woźniak, Dariusz; Gładysiewicz, Lech; Konieczna, Martyna

    2018-01-01

    Belt conveyors are main part of transporting systems in mines and in many other branches of industry. During conveyor belt works different types of resistances are generated. Indentation rolling resistance is the most significant component of the resistances from the perspective of energy losses and it cause the biggest costs as well. According to latest state of analyses and measurements it is well known that theoretical rolling resistance were underestimated in comparison with the measured in-situ one. In this paper new method for determination indentation rolling resistance is presented. The authors compared theoretically and experimentally established damping factors. The relation between these two values enabled to obtain more precise equation for damping function. This function is one of the most important component in calculation of the rolling resistance. In new theoretical model value of rolling resistance is nearly twice higher than this used so far.

  16. Effect of microstructure and microhardness on the wear resistance of zirconia-alumina, zirconia-yttria and zirconia-ceria coatings manufactured by atmospheric plasma spraying; fecto de la microestructura y de la microdureza sobre la resistencia al desgaste de recubrimientos elaborados por proyeccion termica por plasma atmosferico a partir de circona-alumina, circona-itria y circona-ceria

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Gonzalez, A.; Ageorges, H.; Rojas, O.; Lopez, E.; Milena Hurtado, F.; Vargas, F.

    2015-10-01

    The effect of the structure and microhardness on the wear resistance of zirconia-alumina (ATZ), zirconia-yttria (YSZ) and zirconia-ceria (CSZ) coatings manufactured by atmospheric plasma spraying was studied. The microstructure and the fracture on the cross section of the coatings were analyzed using Scanning Electron Microscopy, the phases were identified using X-Ray Diffraction, the microhardness was measured by Vickers indentation and the wear resistance was evaluated by ball on disc test. The results showed that zirconia-alumina coating exhibits the best performance in the wear test. This behavior is closely related to their microstructure and higher microhardness, despite of its significant quantity of the monoclinic zirconia phase, which has lower mechanical properties than tetragonal zirconia phase. Tetragonal zirconia phase was predominant in the zirconia-yttria and zirconia-ceria coatings and despite this behavior; they did not have a good performance in the wear tests. This low wear resistance was mainly influenced by the columnar structure within their lamellae, which caused a greater detachment of particles in the contact surface during the ball-disc tests, increasing its wear. (Author)

  17. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    Science.gov (United States)

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway

  18. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  19. Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bruex, U.; Frommeyer, G. [Dept. of Materials Technology, Max-Planck-Inst. fuer Eisenforschung, Duesseldorf (Germany); Graessel, O. [Pierburg AG, Neuss (Germany); Meyer, L.W.; Weise, A. [Lehrstuhl Werkstoffe des Maschinenbaus, TU Chemnitz, Chemnitz (Germany)

    2002-07-01

    Iron manganese steels with Mn mass contents of 15 to 30% exhibit microstructural related superior ductility and extraordinary strengthening behaviour during plastic deformation, which strongly depends on the Mn content. This influences the austenite stability and stacking fault energy {gamma}{sub fcc} and shows a great impact on the microstructure to be developed under certain stress state or during severe plastic deformation. At medium Mn mass contents (15 to 20%) the martensitic {gamma}-{epsilon}-{alpha}' phase transformation plays an important role in the deformation mechanisms of the TRIP effect in addition to dislocation glide. With increasing Mn mass content large elongation is favoured by intensive twinning formation. The mechanical properties of plain iron manganese alloys are strongly influenced by the alloying elements, Al and Si. Alloying with Al increases the stacking fault energy and therefore strongly suppresses the martensitic {gamma}-{epsilon} transformation, while Si sustains the {gamma}-{epsilon} transformation by decreasing the stacking fault energy {gamma}{sub fcc}. The {gamma}-{epsilon} phase transformation takes place in Fe-Mn-X alloys with {gamma}{sub fcc} {<=} 20 mJm{sup -2}. The developed light weight high manganese TRIP and TWIP (twinning induced plasticity) steels exhibit high ultimate tensile strength (600 to 1100 MPa) and extremely large elongation of 60 to 95% even at high strain rates of {epsilon}= 10{sup 3} s{sup -1}. Particularly due to the advanced specific energy absorption of TRIP and TWIP steels compared to conventional deep drawing steels high dynamic tensile and compression tests were carried out in order to investigate the change in the microstructure under near crash conditions. Tensile and compression tests of iron manganese alloys with varying Mn content were performed at different temperatures and strain rates. The resulting formation of {gamma} twins, {alpha}'- and {epsilon} martensite by plastic deformation

  20. Antibiotic Resistance In Neisseria Gonorrhoeae: Impact Of Ceftriaxone Resistance On Microbial Fitness And Potential Of Resistance Determinants To Spread During Mixed Infection

    Science.gov (United States)

    2016-03-07

    mega Dalton (MDa) conjugative plasmid. Evidence supported the theory that this resistance gene was introduced into the plasmid 48 through a one...six percent of clinical Gc isolates carry a 2.6 mega Dalton (MDa) cryptic plasmid, but this plasmid is not associated with any known virulence...so many strains. This theory is supported by the fact that portions of the plasmid, both large and small, are incorporated into the chromosome

  1. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  2. Influence of stress state stiffness on wear resistance of materials under conditions of hydro- and impact abrasive wear

    International Nuclear Information System (INIS)

    Pogodaev, L.I.; Tsvetkov, Yu.N.; Khomyakova, N.F.

    1997-01-01

    Aimed to develop a universal criterion of wear resistance a wide range of steels and nonferrous alloys was tested and testing results were analyzed. The specimens were tested for hydro-abrasive and impact-abrasive wear. It is shown that wear resistance is dependent on the parameter which characterizes the stiffness of stressed state for thin wearing layers. The critical density of strain energy determined with regard to the stiffness of stressed state of surface layers is concluded to be an universal criterion of wear resistance. it is revealed that the stiffness of surface stressed state decreases with a hardness increase and with transition from tension to compression or shear. This phenomenon is considered as the protection of surface layers against catastrophic failure. The data on mechanical properties are presented for a great quantity of cast materials (stainless, chromium and manganese steels, aluminium and copper alloys)

  3. Impact of an antimicrobial stewardship programme on antibiotic usage and resistance in a tertiary hospital in China.

    Science.gov (United States)

    Zhang, Z-G; Chen, F; Ou, Y

    2017-10-01

    Antimicrobial misuse has been commonly observed in China. This phenomenon can cause antibiotic resistance. This study was designed to evaluate the impact of an antimicrobial stewardship programme implemented in a tertiary hospital in China from 2011 to 2014. The antimicrobial stewardship programme began in 2011. Data on the consumption of antibiotics and antimicrobial resistance between 2011 and 2014 were collected. Comparison of the 2011 data with those of 2014 showed that antibiotic defined daily doses/per 100 patient-days decreased from 92.5±2.8 to 35.8±1.2 (Padministrative management, especially information management, was effective in reducing antibiotic consumption and lessening antibiotic resistance. © 2017 John Wiley & Sons Ltd.

  4. Microstructure of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.

    1995-01-01

    The focus of the symposium was on the changes produced in the microstructure of metals, ceramics, and semiconductors by irradiation with energetic particles. the symposium brought together those working in the different material systems, which revealed that there are a remarkable number of similarities in the irradiation-produced microstructures in the different classes of materials. Experimental, computational and theoretical contributions were intermixed in all of the sessions. This provided an opportunity for these groups, which should interact, to do so. Separate abstracts were prepared for 58 papers in this book

  5. Hierarchical microstructures in CZT

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Henager, C.H.; Edwards, D.J.; Schemer-Kohrn, A.L.; Bliss, M.; Riley, B.R.; Toloczko, M.B.; Lynn, K.G.

    2011-01-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  6. Effect of Microstructure on HIC Susceptibility of API X70MS Linepipe Steel

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Joon-Ho; Sim, Ho-Seop; Park, Byung-Gyu [Dongkuk Steel R and D Center, Pohang (Korea, Republic of); Cho, Kyung-Mox [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The resistance of hydrogen induced cracking (HIC) was investigated with different microstructures of API X70MS steel. Ferrite/acicular ferrite (F/AF), deformed ferrite/acicular ferrite, ferrite/bainite (F/B) and single acicular ferrite (AF) were obtained by thermo-mechanical controlled process (TMCP) with changing rolling and cooling conditions. HIC resistance was found to be affected by the type as well as morphology of the microstructure, and thus the behavior of crack initiation and propagation could be analyzed. It was found that single AF and deformed F/AF with uniformly distributed dislocation reduced HIC initiation. Banded microstructure with a hardness value below 250 HV, such as AF, showed good HIC propagation resistance due to high toughness. AF generally exhibited excellent crack initiation and propagation resistance, namely the best HIC susceptibility performance. AF might redeem the HIC resistance for the banded microstructure also.

  7. Impact of hormonal crosstalk on resistance and fitness of plants under multi-attacker conditions

    Directory of Open Access Journals (Sweden)

    Irene A Vos

    2015-08-01

    Full Text Available The hormone salicylic acid (SA generally induces plant defenses against biotrophic pathogens. Jasmonic acid and its oxylipin derivatives (JAs together with ethylene (ET are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of defense hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that defense hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses.

  8. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    Science.gov (United States)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  9. Impact of 12 weeks of resistance training on physical and functional fitness in elderly women

    Directory of Open Access Journals (Sweden)

    Aline Mendes Gerage

    2013-03-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2013v15n2p145 The objective of the study was to analyze the impact of 12 weeks of resistance training (RT on physical functional fitness in elderly women. Fifty-one elderly women (66.1±4.4 years, apparently healthy, insufficiently active, and without prior experience in RT were randomly assigned into two groups: Training Group (TG = 24 and Control Group (CG = 27. The TG was submitted to a standardized RT program composed of eight exercises, performed in two sets of 10 to 15 repetitions, three times a week, and the CG was submitted to a 12 week stretching exercise program composed by two sessions per week of 30 minutes each. Their physical and functional fitness level was analyzed before and after the intervention period by motor testing to assess Right and Left Upper Limb Endurance (RULE, LULE, Lower Limb Endurance (LLE, Flexibility (FLEX, Manual Skills (MS, Ability to Put on Socks (APS, and Coordination (COORD. The TG had improved performance in LLE (+13.8%, RULE (+24.3%, LULE (+22.9%, and MS (- 0.9 s, whereas the CG improved performance in RULE (+13.9% and LULE (+14.1%, but had increased time in COORD by (+1.5 s, and these were the only tests showing significant interactions of group vs. time (p<0.05. The results suggest that 12 weeks of RT seem to be sufficient to induce positive changes on physical and functional fitness of healthy and previously untrained elderly women.

  10. Impact of Roux-en-Y Gastric Bypass on Metabolic Syndrome and Insulin Resistance Parameters

    Science.gov (United States)

    Gestic, Martinho Antonio; Utrini, Murillo Pimentel; Machado, Ricardo Rossetto; Geloneze, Bruno; Pareja, José Carlos; Chaim, Elinton Adami

    2014-01-01

    Abstract Background: Metabolic syndrome (MetS) is a complex association of clustering metabolic factors that increase risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease. Surgical treatment has become an important tool to achieve its control. The aim of this study was to evaluate the impact of Roux-en-Y gastric bypass (RYGB) on MetS and its individual components, clinical characteristics, and biochemical features. Subjects and Methods: The study is a retrospective cohort of 96 subjects with MetS who underwent RYGB and were evaluated at baseline and after surgery. Clinical and biochemical features were analyzed. Results: After surgery, significant rates of resolution for MetS (88.5%), T2DM (90.6%), hypertension (85.6%), and dyslipidemias (54.2%) were found. Significant decreases in levels of fasting glucose, fasting insulin, hemoglobin A1c, low-density lipoprotein, and triglycerides and an increase in high-density lipoprotein level were also shown. The decrease in insulin resistance evaluated by homeostasis model assessment (HOMA-IR) was consistent. MetS resolution was associated with postoperative glycemic control, decreases in levels of fasting glucose, hemoglobin A1c, HOMA-IR, and triglycerides and in antihypertensive usage, and percentage weight loss. Conclusions: This study found high rates of resolution for MetS, T2DM, hypertension, and dyslipidemias after RYGB in obese patients. This finding was consistent with current literature. Hence RYGB should be largely indicated for this group of subjects as it is a safe and powerful tool to achieve MetS control. PMID:24299427

  11. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.

    Science.gov (United States)

    Huan, Siqi; Liu, Guoxiang; Cheng, Wanli; Han, Guangping; Bai, Long

    2018-03-12

    Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.

  12. Influence of Subsurface Structure on the Linear Reciprocating Sliding Wear Behavior of Steels with Different Microstructures

    Science.gov (United States)

    Sharma, S.; Sangal, S.; Mondal, K.

    2014-12-01

    The present work investigates the influence of subsurface microstructure on the linear reciprocating sliding wear behavior of a number of steels with ferrite-pearlitic, pearlitic, bainitic, and martensitic microstructures under dry unlubricated condition. The change in the underlying microstructure with depth from worn-out surface of steel sample intimately relates to the associated hardness variation and wear volume. The present paper is not about comparison of wear resistance of steels with different structures; rather it is on mutual influence of wear and substructure for individual microstructure. Inherent toughness of the matrix and ability of microstructural components to get deformed under the reciprocating action of the ball decide the wear resistance of the steels. Bainite has good amount of stability to plastic deformation. Ferrite shows severe banding due to wear action. Work hardening renders pearlite to be wear resistant. Temperature rise and associated tempering of martensite are observed during wear.

  13. Modelling of Two-Seat Connection to the Frame of Rail Wagon in Terms of Resistance at Impact Test

    Directory of Open Access Journals (Sweden)

    Čech Rostislav

    2016-11-01

    Full Text Available This contribution explores how design changes can affect resistance of rail wagon seat-to-frame connections at impact test and proposes alternative way to construct such connections. Results were due to a nature of presented problem obtained by computer modelling using MSC Nastran with explicit finite element method solution invoked. Physical tests were also conducted and comparison with numerical results is presented.

  14. Impact of family history on relations between insulin resistance, LDL cholesterol and carotid IMT in healthy adults.

    LENUS (Irish Health Repository)

    Anderwald, Christian

    2010-08-01

    Insulin resistance (IR) is implicated as an independent risk factor for vascular disease. The aim of this study was to assess the impact of family history (FH) of type 2 diabetes (T2DM) and\\/or cardiovascular disease (CVD) on the associations between IR, low-density-lipoprotein cholesterol (LDL-C) and subclinical atherosclerosis (common and internal carotid artery intima media thickness (IMT)) in healthy European adults.

  15. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    OpenAIRE

    Ali Abd_Elhakam Aliabdo; Abd_Elmoaty Mohamed Abd_Elmoaty; Mohamed Hamdy

    2013-01-01

    This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as s...

  16. [A comparative study of split-root and medial resistance removal in extraction of medially impacted tooth].

    Science.gov (United States)

    Sun, Ren-yi; Fang, Ping-juan; Xiao, Jin; Liu, Deng-feng; Xu, Xing-qiao; Hu, Rong-dang

    2012-06-01

    To compare the operating time, root fracture and postoperative complications between split-root extraction and medial resistance removal in extraction of mandibular small-angle impacted third molars, to evaluate the advantages of split-root extraction in medially impacted tooth extraction. Forty male patients with bilaterally mandibular medial small-angle impacted third molars, having multiple roots in panoramic films, were selected. The impacted teeth on one side were extracted by using split-root method, while the similar impacted teeth on the other side were extracted by using medial resistance removal method. The operating time, root fracture, postoperative pain, facial edema, and mouth opening were recorded. SPSS11.5 software package was used and paired t test was performed to analyze the data. There were significant differences in operating time and root fracture between the two methods (Pimpacted third molars with multiple roots, the operating time of split-root extraction is shorter. The root fracture possibility of split-root extraction is smaller, and postoperative complications are less common.

  17. Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review

    International Nuclear Information System (INIS)

    Angioni, S L; Meo, M; Foreman, A

    2011-01-01

    Composite materials are known to have a poor resistance to through-the-thickness impact loading. There are various methods for improving their impact damage tolerance, such as fiber toughening, matrix toughening, interface toughening, through-the-thickness reinforcements, and selective interlayers and hybrids. Hybrid composites with improved impact resistance are particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMA) is one solution since SMA materials can absorb the energy of the impact through superelastic deformation or recovery stress, reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fiber reinforcements may vary, such as SMA wires in woven laminates or SMA foils in unidirectional laminates, only to cite two examples. We will review the state of the art of SMAHC for the purpose of damage suppression. Both the active and passive damage suppression mechanisms will be considered. (topical review)

  18. The effect of stress relieving treatment on mechanical properties and microstructure of different welding areas of A517 steel

    Science.gov (United States)

    Sharifi, Hassan; Raisi, Solyman; Tayebi, Morteza

    2017-12-01

    Quench and temper steels are classified as low alloy steels. In these types of steel, post-weld heat treatment is used to obtain high toughness, elevated strength and better corrosion resistance in addition to decline residual stress and hydrogen cracking for high pressure vessel applications. In this study, welding mechanical properties were characterized by hardness measurements, tensile and impact tests. Additionally, optical microscopy and scanning electron microscopy (SEM) was carried out in order to characterize the microstructure and the fracture analysis of A517 steel before and after the post-weld heat treatment. Residual stress examinations were employed to confirm the data reliability. Results showed no changes in the weld zone microstructures. The residual stress measurements revealed the highest and the lowest residual stresses in non-treated samples and heat treated samples in 560 °C, respectively. On the other side, hardness and ultimate tensile strength of the specimens was decreased after heat treatment.

  19. In Silico Evaluation of the Impacts of Quorum Sensing Inhibition (QSI) on Strain Competition and Development of QSI Resistance

    Science.gov (United States)

    Wei, Guopeng; Lo, Chieh; Walsh, Connor; Hiller, N. Luisa; Marculescu, Radu

    2016-10-01

    As understanding of bacterial regulatory systems and pathogenesis continues to increase, QSI has been a major focus of research. However, recent studies have shown that mechanisms of resistance to quorum sensing (QS) inhibitors (QSIs) exist, calling into question their clinical value. We propose a computational framework that considers bacteria genotypes relative to QS genes and QS-regulated products including private, quasi-public, and public goods according to their impacts on bacterial fitness. Our results show (1) QSI resistance spreads when QS positively regulates the expression of private or quasi-public goods. (2) Resistance to drugs targeting secreted compounds downstream of QS for a mix of private, public, and quasi-public goods also spreads. (3) Changing the micro-environment during treatment with QSIs may decrease the spread of resistance. At fundamental-level, our simulation framework allows us to directly quantify cell-cell interactions and biofilm dynamics. Practically, the model provides a valuable tool for the study of QSI-based therapies, and the simulations reveal experimental paths that may guide QSI-based therapies in a manner that avoids or decreases the spread of QSI resistance.

  20. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recrystallization microstructure modelling from superimposed ...

    Indian Academy of Sciences (India)

    The recovered cold rolled microstructure obtained from orientation image microstructure of Al–4%Mg–0.5%Mn alloy (AA5182 alloy) was superimposed on the grid of cellular automata based microstructure model. The Taylor factors of deformed/cold rolled orientations were considered as the driving force for recrystallization.

  2. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  3. Impact of medicated feed on the development of antimicrobial resistance in bacteria at integrated pig-fish farms in Vietnam.

    Science.gov (United States)

    Dang, Son Thi Thanh; Petersen, Andreas; Van Truong, Dung; Chu, Huong Thi Thanh; Dalsgaard, Anders

    2011-07-01

    Integrated livestock-fish aquaculture utilizes animal excreta, urine, and feed leftovers as pond fertilizers to enhance the growth of plankton and other microorganisms eaten by the fish. However, antimicrobial-resistant bacteria may be transferred and develop in the pond due to selective pressure from antimicrobials present in animal feed, urine, and feces. In an experimental pig-fish farm located in periurban Hanoi, Vietnam, nine piglets were provided feed containing 5 μg of tetracycline (TET)/kg pig weight/day and 0.45 μg of enrofloxacin (ENR)/kg pig weight/day during the second and fourth (last) months of the experiment. The aim of this study was to determine the association between the provision of pig feed with antimicrobials and the development of antimicrobial resistance, as measured in a total of 520 Escherichia coli and 634 Enterococcus strains isolated from pig manure and water-sediment pond samples. MIC values for nalidixic acid (NAL) and ENR showed that E. coli and Enterococcus spp. overall exhibited significant higher frequencies of resistance toward NAL and ENR during the 2 months when pigs were administered feed with antimicrobials, with frequencies reaching 60 to 80% in both water-sediment and manure samples. TET resistance for both indicators was high (>80%) throughout the study period, which indicates that TET-resistant E. coli and Enterococcus spp. were present in the piglets before the initiation of the experiment. PCR-based identification showed similar relative occurrences of Enterococcus faecium, Enterococcus faecalis, and other Enterococcus spp. in the water-sediment and manure samples, suggesting that Enterococcus spp. isolated in the ponds originated mainly from the pig manure. The development of antimicrobial resistance in integrated animal husbandry-fish farms and possible transfers and the impact of such resistance on food safety and human health should be further assessed.

  4. Solidification microstructure of centrifugally cast Inconel 625

    Directory of Open Access Journals (Sweden)

    Silvia Barella

    2017-07-01

    Full Text Available Centrifugal casting is a foundry process allowing the production of near net-shaped axially symmetrical components. The present study focuses on the microstructural characterization of centrifugally cast alloys featuring different chemical compositions for the construction of spheres applied in valves made of alloy IN625 for operation at high pressure. Control of the solidification microstructure is needed to assure the reliability of the castings. Actually, a Ni-base superalloy such as this one should have an outstanding combination of mechanical properties, high temperature stability and corrosion resistance. Alloys such as IN625 are characterised by a large amount of alloying elements and a wide solidification range, so they can be affected by micro-porosity defects, related to the shrinkage difference between the matrix and the secondary reinforcing phases (Nb-rich carbides and Laves phase. In this study, the microstructure characterization was performed as a function of the applied heat treatments and it was coupled with a calorimetric analysis in order to understand the mechanism ruling the formation of micro-porosities that can assure alloy soundness. The obtained results show that the presence of micro-porosities is governed by morphology and by the size of the secondary phases, and the presence of the observed secondary phases is detrimental to corrosion resistance.

  5. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    Science.gov (United States)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  6. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    Science.gov (United States)

    Szmolka, Ama; Nagy, Béla

    2013-01-01

    After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development, and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms, and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of further concern. Co-existence and co-transfer of these “bad genes” in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  7. The leak microstructure

    Indian Academy of Sciences (India)

    The capabilities of a new microstructure, anode point based, for the detection of gas ionizing radiations are presented. For every single detected ionizing radiation it gives a pair of 'induced' charges (anodic and cathodic) of the same amount (pulses of the same amplitudes), of opposite sign, with the same collection time and ...

  8. Solidification microstructure development

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In the present article, evolution of microstructure during solidi- fication, as a function of various parameters, is discussed. Macrosegregation is described as being due to insufficient diffusivity of solute in the solid. Pattern formation is discussed in the light of instabilities at the solidification growth front. An overview of ...

  9. Dynamic Microstructure Design Consortium

    Science.gov (United States)

    2011-03-23

    multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the...can alter the residual stress distribution 13. The present work ex- plores how short-range microplastic deformation during cyclic loading promotes

  10. Microstructural and Mechanical Characterization of Solidified Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Aktaş Çelik G.

    2017-09-01

    Full Text Available Among the family of stainless steels, cast austenitic stainless steels (CASSs are preferably used due to their high mechanical properties and corrosion resistance. These steels owe their properties to their microstructural features consisting of an austenitic matrix and skeletal or lathy type δ-ferrite depending on the cooling rate. In this study, the solidification behavior of CASSs (304L and 316L grades was studied using ThermoCalc software in order to determine the solidification sequence and final microstructure during cooling. Theoretical findings were supported by the microstructural examinations. For the mechanical characterization, not only hardness measurements but also tribological studies were carried out under dry sliding conditions and worn surfaces were examined by microscopy and 3D profilometric analysis. Results were discussed according to the type and amount of microstructural features.

  11. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    NARCIS (Netherlands)

    Yu, H.; Xu, W.; van der Zwaag, S.

    2017-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation.

  12. The Environmental and Impact Resistance of Adhesively Bonded Thermoplastic Fibre Composites

    Science.gov (United States)

    1992-11-01

    instrumented charpy impact test, for example, a pendulum striker impacts upon a supported specimen. Often the force transducer is mounted on the...51 2.7.4. " Introduction ...................................................... 51 2.7.4.2 Instumented Charpy impact test...2.7.4.2 Instrumented Charpy impact test An instrumented Charpy impact machine has been previously employed by Kinloch and co- workers [46, 47] to

  13. On Microstructure and Microhardness of Isothermally Aged UNS S32760 and the Effect on Toughness and Corrosion Behavior

    Science.gov (United States)

    Elsabbagh, Fady M.; Hamouda, Rawia M.; Taha, Mohamed A.

    2014-01-01

    This paper investigates the microstructure and secondary phase precipitations obtained in UNS S32760 super duplex stainless steel and their effect on impact toughness and corrosion resistance. The heat treatment included first solution annealing at 1150 °C followed by water quenching, then isothermal heating at different temperatures from 350 to 950 °C for different times, ranging from less than 1 min to 600 min, followed by water quenching again. Microscopic investigation, microhardness tests, and x-ray diffraction (XRD) analysis were used to identify the microstructure and secondary phase precipitations formed by heat treatment. The study indicates a fair correlation between the microscopic observations and microhardness results, while XRD analysis defined the phase's chemistry and confirmed the microscopic and hardness results. In addition to the austenite (γ) and ferrite (α) phases of the duplex structure, secondary phases of (σ, χ, and chromium nitrides) are observed at a high temperature range, while (ά) and (aged ά) are observed at a lower temperature range. It is concluded that the microhardness test can be used to identify the phases appearing in the microstructure, which results in fair prediction for the TTT diagram and σ-phase range. The variation of toughness and corrosion resistance by heat treatment differs depending on the secondary phase formation.

  14. Comparison of microstructural properties and Charpy impact behaviour between different plates of the Eurofer97 steel and effect of isothermal ageing

    Czech Academy of Sciences Publication Activity Database

    Stratil, Luděk; Hadraba, Hynek; Buršík, Jiří; Dlouhý, Ivo

    2011-01-01

    Roč. 416, č. 3 (2011), s. 311-317 ISSN 0022-3115 R&D Projects: GA ČR(CZ) GAP108/10/0466; GA ČR GA106/08/1397 Institutional research plan: CEZ:AV0Z20410507 Keywords : Eurofer´97 * DBTT * impact behaviour * fracture behaviour * carbide coarsening * hardness Subject RIV: JG - Metallurgy Impact factor: 2.052, year: 2011

  15. Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture, and Impact Transition Behavior of Heat-Treated Naval Grade HSLA Steel

    Science.gov (United States)

    Sk, Md. Basiruddin; Ghosh, A.; Rarhi, N.; Balamuralikrishnan, R.; Chakrabarti, D.

    2017-07-01

    In order to achieve the desired mechanical properties [YS > 390 MPa, total elongation >16 pct and Charpy impact toughness of 78 J at 213 K (-60 °C)] for naval application, samples from a low-carbon microalloyed steel have been subjected to different austenitization (1223 K to 1523 K) (950 °C to 1250 °C) and cooling treatments (furnace, air, or water cooling). The as-rolled steel and the sample air cooled from 1223 K (950 °C) could only achieve the required tensile properties, while the sample furnace cooled from 1223 K (950 °C) showed the best Charpy impact properties. Water quenching from 1223 K (950 °C) certainly contributed to the strength but affected the impact toughness. Overall, predominantly ferrite matrix with fine effective grain size and intense gamma-fiber texture was found to be beneficial for impact toughness as well as impact transition behavior. Small size and fraction of precipitates (like TiN, Nb, and V carbonitrides) eliminated the possibility of particle-controlled crack propagation and grain size-controlled crack propagation led to cleavage fracture. A simplified analytical approach has been used to explain the difference in impact transition behavior of the investigated samples.

  16. Effect of domain size and interface characteristics on the impact resistance of selected polymer composites

    Science.gov (United States)

    Viratyaporn, Wantinee

    Nanocomposite technology has advanced considerably in recent years and excellent engineering properties have been achieved in numerous systems. In multiphase materials the enhancement of properties relies heavily on the nature at the interphase region between polymer domains and nanoparticle reinforcements. Strong adhesion between the phases provides excellent load-transfer and good mechanical elastic modulus and strength, whereas weak interaction contributes to crack deflection mechanisms and toughness. Polymer molecules are large and the presence of comparably sized filler particles affects chain gyration, which in turn influences the conformation of the polymer and the properties of the composite. Nanoparticles were incorporated into a poly(methyl methacrylate) matrix by means of in situ free radical (bulk) polymerization. Aluminum oxide and zinc oxide nanoparticles were added to study the effects of particle chemistry and shape on selected mechanical properties such as impact resistance, which showed significant improvement at a certain loading of zinc oxide. The elongated shape of zinc oxide particles appears to promote crack deflection processes and to introduce a pull-out mechanism similar to that observed in fiber composite systems. Moreover, the thermal stability of PMMA was improved with the addition of nanoparticles, apparently by steric hindrance of polymer chain motion and a second mechanism related to the dipole inducing effect of the oxide particles. The sensitivity of infrared spectroscopy to changes in molecular dipoles was used to study the nature of the polymer/particle interface. The results revealed some interesting aspects of the secondary bonds between polymers and oxides. Raman spectroscopy was used to investigate the extent of polymerization and changes in polymer conformation. A degree of polymerization of 93% was achieved in neat PMMA, and even when 5.0 v/o of PGMEA was introduced into the system no monomer was detected. However, when

  17. Impact of convection and resistivity on angular momentum transport in dwarf novae

    Science.gov (United States)

    Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.

    2018-01-01

    The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires

  18. Evaluation of resistance to horizontal loads and functional failure from impacts

    Directory of Open Access Journals (Sweden)

    Mendonça, P.

    2015-09-01

    Full Text Available This paper presents and discusses the results of the serviciability and use condition tests carried on an innovative solution for partitions, designated AdjustMembrane developed within a research project. The proposed system is a modular non-loadbearing wall, tensioned between the pavements and ceiling slabs, which are used as anchoring elements. It allows several advantages, related with the weight reduction to achieve a good sustainable performance, such as the reduction of construction costs, energy, and materials, and it is easy to recycle and to reuse, allowing self-construction. Apart from a general presentation of the partition technology, this paper presents and discusses the results of experimental tests carried out. From the results obtained, it is possible to conclude that the solution fulfils the requirements for this typology of wall in terms of resistance to horizontal loads induced by soft and hard body impacts.En este trabajo se presentan y discuten los resultados de ensayos de condiciones de servicio y seguridad de uso de una solución innovadora para particiones interiores, designada por AdjustMembrane y desarrollada en un proyecto de investigación. El sistema propuesto es una solución de partición modular no estructural, tensada entre los forjados de piso y de techo, que se utilizan como elementos de anclaje. Permite varias ventajas, relacionadas con la reducción de peso para lograr buenos indicadores de sostenibilidad, tales como la reducción de los costos de construcción, energía y materiales. Es fácil de reciclar y reutilizar, lo que permite la auto-construcción. Además de una presentación general de la tecnología de pared desarrollada, se presentan y discuten los resultados de algunos ensayos experimentales efectuados. A partir de los resultados obtenidos fue posible concluir que la solución cumple con los requisitos de resistencia a cargas horizontales y daños funcionales por impacto de cuerpo duro y blando

  19. Impact of deposition parameters on the performance of ceria based resistive switching memories

    International Nuclear Information System (INIS)

    Zhang, Lepeng; Younis, Adnan; Chu, Dewei; Li, Sean

    2016-01-01

    Resistive-switching memories stacked in a metal–insulator–metal (MIM) like structure have shown great potential for next generation non-volatile memories. In this study, ceria based resistive memory stacks are fabricated by implementing different sputter conditions (temperatures and powers). The films deposited at low temperatures were found to have random grain orientations, less porosity and dense structure. The effect of deposition conditions on resistive switching characteristics of as-prepared films were also investigated. Improved and reliable resistive switching behaviors were achieved for the memory devices occupying less porosity and densely packed structures prepared at low temperatures. Finally, the underlying switching mechanism was also explained on the basis of quantitative analysis. (paper)

  20. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace

    Science.gov (United States)

    Weinstein, Robert A.

    2017-01-01

    Abstract Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase–producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. PMID:28375512

  1. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  2. Impact of a behaviorally-based weight loss intervention on parameters of insulin resistance in breast cancer survivors.

    Science.gov (United States)

    Dittus, Kim L; Harvey, Jean R; Bunn, Janice Y; Kokinda, Nathan D; Wilson, Karen M; Priest, Jeff; Pratley, Richard E

    2018-03-27

    Breast cancer survivors with excess weight are more likely to have negative breast cancer outcomes. Biomarkers related to insulin resistance may help explain this negative association. Weight loss is associated with improvements in insulin sensitivity. Our goal was to identify the impact of a behaviorally based weight loss intervention on indices of insulin resistance. Overweight, early stage breast cancer survivors who completed initial cancer therapy were enrolled in a 6 month behaviorally based weight loss intervention that included calorie reduction, exercise and behavior modification. Biomarkers related to insulin resistance were obtained at baseline and after the intervention. Results from participants who achieved ≥5% weight loss were compared to those who lost less weight. Despite not having diabetes as a preexisting diagnosis prior to the study, 69% of all participants were considered to have pre-diabetes or diabetes at baseline based on American Diabetes Association definitions. Participants who achieved ≥5% weight loss had significantly lower fasting insulin, AUC insulin, and insulin resistance as measured by HOMA-IR. Beta cell function decreased as anticipated when insulin resistance improved. Additionally, leptin levels declined. Breast cancer survivors who achieved ≥5% weight loss demonstrated significant improvements in indices of insulin resistance. Despite an exclusion criteria of diabetes at the time of enrolment, a high proportion met criteria for pre-diabetes or diabetes at baseline. Pre-diabetes appears to be under recognized in overweight breast cancer survivors. Behaviorally based weight loss interventions can result in weight loss and improvements in biomarkers related to breast cancer outcomes and additionally may decrease the chance of developing diabetes. NCT01482702 4/12/2010 (retrospectively registered).  https://clinicaltrials.gov/ct2/show/NCT01482702?term=Dittus&rank=4.

  3. Impact of Colonization Pressure and Strain Type on Methicillin-Resistant Staphylococcus aureus Transmission in Children

    OpenAIRE

    Popoola, Victor O.; Carroll, Karen C.; Ross, Tracy; Reich, Nicholas G.; Perl, Trish M.; Milstone, Aaron M.

    2013-01-01

    We studied the transmissibility of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and healthcare-associated methicillin-resistant S. aureus (HA-MRSA) strains and the association of MRSA colonization pressure and MRSA transmission in critically ill children. Importantly, we found that in hospitalized children MRSA colonization pressure above 10% increases the risk of MRSA transmission 3-fold, and CA-MRSA and HA-MRSA strains have similar transmission dynamics.

  4. Impact of colonization pressure and strain type on methicillin-resistant Staphylococcus aureus transmission in children.

    Science.gov (United States)

    Popoola, Victor O; Carroll, Karen C; Ross, Tracy; Reich, Nicholas G; Perl, Trish M; Milstone, Aaron M

    2013-11-01

    We studied the transmissibility of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) and healthcare-associated methicillin-resistant S. aureus (HA-MRSA) strains and the association of MRSA colonization pressure and MRSA transmission in critically ill children. Importantly, we found that in hospitalized children MRSA colonization pressure above 10% increases the risk of MRSA transmission 3-fold, and CA-MRSA and HA-MRSA strains have similar transmission dynamics.

  5. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Directory of Open Access Journals (Sweden)

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  6. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  7. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found

  8. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    Science.gov (United States)

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Science.gov (United States)

    Kurz, Dariusz; Nawrowski, Ryszard

    2017-10-01

    The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation bet