WorldWideScience

Sample records for resistance meter model

  1. The model FT-3106 nuclide activity meter

    International Nuclear Information System (INIS)

    Yang Jianming

    1999-01-01

    The author describes the important role of the nuclide activity meter in scientific research, production, medicine and health and its general situation of development in the country. The working principle, structure and feature of the new model FT-3106 nuclide activity meter are presented through description of the measures to improve the properties and quality in research and design. Finally the situation of its popularization and application are given

  2. Design and construction of a resistivity meter for shallow investigation

    African Journals Online (AJOL)

    ... the difference in readings is much. Hence, the use of this system is limited to shallow investigations where the target depth is not more than fifty metres (50m). Efforts are being made to improve on its performance. Keywords: Design and construction, resistivity meter and field testing. Nigerian Journal of Physics Vol.

  3. A Probabilistic Model of Meter Perception: Simulating Enculturation

    NARCIS (Netherlands)

    van der Weij, B.; Pearce, M.T.; Honing, H.

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter

  4. A Probabilistic Model of Meter Perception: Simulating Enculturation.

    Science.gov (United States)

    van der Weij, Bastiaan; Pearce, Marcus T; Honing, Henkjan

    2017-01-01

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  5. A Probabilistic Model of Meter Perception: Simulating Enculturation

    Directory of Open Access Journals (Sweden)

    Bastiaan van der Weij

    2017-05-01

    Full Text Available Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  6. Minnesota Digital Elevation Model - Tiled 93 Meter Resolution

    Data.gov (United States)

    Minnesota Department of Natural Resources — Digital Elevation Model (DEM) at a resolution of 93 meters. Original data resolution was 3 arc seconds which corresponds (approximately) to a matrix of points at a...

  7. Evaluation of resistivity meters for concrete quality assurance.

    Science.gov (United States)

    2015-06-01

    This research evaluated a series of MoDOT concrete mixtures to verify existing relationships between surface resistivity (SR), rapid : chloride permeability (RCP), chloride ion diffusion, and the AASHTO penetrability classes. The research also perfor...

  8. Evaluation of resistivity meters for concrete quality assurance : [research summary].

    Science.gov (United States)

    2015-07-01

    This research evaluated a series of MoDOT : concrete mixtures to verify existing : relationships between surface resistivity (SR), : rapid chloride permeability (RCP), chloride ion : diffusion, and the AASHTO penetrability : classes. The research als...

  9. Comparative Analysis of Smart Meters Deployment Business Models on the Example of the Russian Federation Markets

    Science.gov (United States)

    Daminov, Ildar; Tarasova, Ekaterina; Andreeva, Tatyana; Avazov, Artur

    2016-02-01

    This paper presents the comparison of smart meter deployment business models to determine the most suitable option providing smart meters deployment. Authors consider 3 main business model of companies: distribution grid company, energy supplier (energosbyt) and metering company. The goal of the article is to compare the business models of power companies from massive smart metering roll out in power system of Russian Federation.

  10. Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters.

    Science.gov (United States)

    Lim, Allen C; Homestead, Eric P; Edwards, Andrew G; Carver, Todd C; Kram, Rodger; Byrnes, William C

    2011-05-01

    To develop a protocol for isolating changes in aerodynamic and rolling resistances from field-based measures of power and velocity during level bicycling. We assessed the effect of body position (hands on brake hoods vs drops) and tire pressure changes (414 vs 828 kPa) on aerodynamic and rolling resistances by measuring the power (Pext)-versus-speed (V) relationship using commercially available bicycle-mounted power meters. Measurements were obtained using standard road bicycles in calm wind (Aerodynamic resistance per velocity squared (k) was calculated as the slope of a linear plot of tractive resistance (RT=power/velocity) versus velocity squared. Rolling resistance (Rr) was calculated as the intercept of this relationship. Aerodynamic resistance per velocity squared (k) was significantly greater (Paerodynamic and rolling resistances associated with modest changes in body position and substantial changes in tire pressure. © 2011 by the American College of Sports Medicine

  11. LBA-ECO LC-01 SRTM 90-Meter Digital Elevation Model, Northern Ecuadorian Amazon

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set, LBA-ECO LC-01 SRTM 90-Meter Digital Elevation Model, Northern Ecuadorian Amazon, provides 90-meter resolution Digital Elevation Model data used in the...

  12. Comparative Analysis of Smart Meters Deployment Business Models on the Example of the Russian Federation Markets

    Directory of Open Access Journals (Sweden)

    Daminov Ildar

    2016-01-01

    Full Text Available This paper presents the comparison of smart meter deployment business models to determine the most suitable option providing smart meters deployment. Authors consider 3 main business model of companies: distribution grid company, energy supplier (energosbyt and metering company. The goal of the article is to compare the business models of power companies from massive smart metering roll out in power system of Russian Federation.

  13. A Randomized Response Model For Privacy Preserving Smart Metering

    Science.gov (United States)

    Cui, Lijuan; Que, Jialan; Choi, Dae-Hyun; Jiang, Xiaoqian; Cheng, Samuel; Xie, Le

    2012-01-01

    The adoption of smart meters may bring new privacy concerns to the general public. Given the fact that metering data of individual homes/factories is accumulated every 15 minutes, it is possible to infer the pattern of electricity consumption of individual users. In order to protect the privacy of users in a completely de-centralized setting (i.e., individuals do not communicate with one another), we propose a novel protocol, which allows individual meters to report the true electricity consumption reading with a pre-determinted probability. Load serving entities (LSE) can reconstruct the total electricity consumption of a region or a district through inference algorithm, but their ability of identifying individual users’ energy consumption pattern is significantly reduced. Using simulated data, we verify the feasibility of the proposed method and demonstrate performance advantages over existing approaches. PMID:23243488

  14. Alteration in Business Models of Electricity Distribution Companies - A Case of Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Trygg, P.

    2013-09-01

    Smart metering is currently implemented in many countries. The change from traditional metering is significant and impacts many of the Distribution system operator's (DSO's) activities. This dissertation aims to provide a structured model for analysing the impacts of Smart metering on a DSO's business. Research was conducted by gathering a theoretical framework for understanding how the business operates. The concept of business model has been presented. It is used as a framework of metering business. Detailed studies on specific parts of the business model have been carried out. These concentrate on finding a theoretical background of what Smart metering can provide. Cost analyses were conducted to better understand resources required by Smart metering. Problems related to ICT resources have also been studied based on the DSO's experiences. Partner network was studied based on DSO's experiences related to service purchasing and finally experiences in working with IT services provided to the DSOs has been presented. This dissertation presents a development trend that has taken place regarding Smart metering in implementation and operation. Results are presented in a business model framework to provide a more structured view on issues related to Smart metering. Also non-technical issues should be analysed to fully understand the extent of the changes taking place when implementing Smart metering. The information presented can be utilized when significant change factors to the DSO's business models can be recognized. (orig.)

  15. THE EFFECT OF NANO METER SIZE ZRO2 PARTICLES ADDITION ON THE DENSIFICATION AND HYDRATION RESISTANCE OF MAGNESITE– DOLOMITE REFRACTORIES

    OpenAIRE

    S. Ghasemi-kahrizsangi; H. Gheisari-dehsheikh; M. Boroujerdnia

    2016-01-01

    In this study the effect of nano meter size ZrO2 particles on the microstructure, densification and hydration resistance of magnesite –dolomite refractories was investigated. 0, 2, 4, 6 and 8 wt. % ZrO2 particles that were added to magnesite –dolomite refractories containing 35 wt. % CaO. The Hydration resistance was measured by change in the weight of specimens after 72 h at 25℃ and 95% relative humidity. The results showed with addition of nano meter size ZrO2 particles, the lat...

  16. Numerical Simulation Modelling for Velocity Measurement of Electromagnetic Flow Meter

    International Nuclear Information System (INIS)

    Wang, J Z; Gong, C L; Tian, G Y; Lucas, G P

    2006-01-01

    An induced voltage EMF in the area of measuring single-phase flow rate in pipes has been used in many industrial areas. To measure the continuous phase velocity profile in multiphase flows where the continuous phase is an electrical conductor, Electrical capacitance and resistance tomography has been comprehensively investigated, except for continuous phase velocity profile measurement. This paper tries to design the numerical simulation model according to the basic electromagnetic induction law and to investigate the relationship between induced electric potential or potential drop and the velocity distribution of the conductive continuous phase in the flow. First, the 3-Dimenssion simulating module for EMF is built. Given the most simple velocity profile of the fluid in the pipe, the value of the induced potential difference between electrodes is obtained by simulation and theoretical computation according to J A Shercliff's weight function. The relative error is 6.066 . This proves that the simulation model is accurate enough to investigate the characteristic of the induced potential difference of EMF. Finally, the relationship between induced potential difference and the velocity profile is analysed in detail where the complicated velocity profile is expressed as vz = 1m/s when 0.022< x2+y2< = 0.02652 and vz = 5m/s when x2+y2< = 0.022

  17. LBA-ECO LC-01 SRTM 90-Meter Digital Elevation Model, Northern Ecuadorian Amazon

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides 90-meter resolution Digital Elevation Model data used in the University of North Carolina's Carolina Population Center (CPC) Ecuador...

  18. LBA-ECO LC-01 SRTM 90-Meter Digital Elevation Model, Northern Ecuadorian Amazon

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides 90-meter resolution Digital Elevation Model data used in the University of North Carolina's Carolina Population Center (CPC) Ecuador Projects....

  19. THE EFFECT OF NANO METER SIZE ZRO2 PARTICLES ADDITION ON THE DENSIFICATION AND HYDRATION RESISTANCE OF MAGNESITE– DOLOMITE REFRACTORIES

    Directory of Open Access Journals (Sweden)

    S. Ghasemi-kahrizsangi

    2016-12-01

    Full Text Available In this study the effect of nano meter size ZrO2 particles on the microstructure, densification and hydration resistance of magnesite –dolomite refractories was investigated. 0, 2, 4, 6 and 8 wt. % ZrO2 particles that were added to magnesite –dolomite refractories containing 35 wt. % CaO. The Hydration resistance was measured by change in the weight of specimens after 72 h at 25℃ and 95% relative humidity. The results showed with addition of nano meter size ZrO2 particles, the lattice constant of CaO increased, and the bulk density and hydration resistance of the specimens increased while apparent porosity decreased. With the addition of small amount ZrO2 the formation of CaZrO3 phase facilitated the sintering and the densification process. The mechanism of the nano meter size ZrO2 particles promoting densification and hydration resistance is decreasing the amount of free CaO in the specimens.

  20. Investigation on Meter in Generative Modeling of Music

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2010-01-01

    is divided into three parts, the immediate (subchunk), the short-term memory (chunk), and the superchunk. By review of the relevant temporal perception literature, and analysis of performances of metrical music, the necessary performance elements to add in the metrical generative model, related to the chunk......Generative models of music rhythm are in severe need of performance additions, i.e. inclusions of subtle temporal and dynamic alterations so as to render the music musical. While much of the research is based on music theory, the work presented here is based on the temporal perception, which...... memory, are obtained....

  1. Statistical modelling and deconvolution of yield meter data

    DEFF Research Database (Denmark)

    Tøgersen, Frede Aakmann; Waagepetersen, Rasmus Plenge

    2004-01-01

    This paper considers the problem of mapping spatial variation of yield in a field using data from a yield monitoring system on a combine harvester. The unobserved yield is assumed to be a Gaussian random field and the yield monitoring system data is modelled as a convolution of the yield and an i......This paper considers the problem of mapping spatial variation of yield in a field using data from a yield monitoring system on a combine harvester. The unobserved yield is assumed to be a Gaussian random field and the yield monitoring system data is modelled as a convolution of the yield...... and an impulse response function. This results in an unusual spatial covariance structure (depending on the driving pattern of the combine harverster) for the yield monitoring system data. Parameters of the impulse response function and the spatial covariance function of the yield are estimated using maximum...

  2. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  3. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  4. Measurements and modeling of the wind profile up to 600 meters at a flat coastal site

    DEFF Research Database (Denmark)

    Batchvarova, Ekaterina; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    This study shows long-term ABL wind profile features by comparing long-range wind lidar measurements and the output from a mesoscale model. The study is based on one-year pulsed lidar (Wind Cube 70) measurements of wind speed and direction from 100 to 600 meters with vertical resolution of 50......) and shape (k) parameters of the Weibull dis-tribution above 100 m. The latter signifies that the model suggests a wider distri-bution in the wind speed compared to measurements....... meters and time resolution of 10 minutes at a coastal site on the West coast of Denmark and WRF ARW (NCAR) simulations for the same period. The model evaluation is performed based on wind speed, wind direction, as well as statistical parameters of the Weibull distribution of the wind speed time series...

  5. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  6. A Dedicated Mixture Model for Clustering Smart Meter Data: Identification and Analysis of Electricity Consumption Behaviors

    Directory of Open Access Journals (Sweden)

    Fateh Nassim Melzi

    2017-09-01

    Full Text Available The large amount of data collected by smart meters is a valuable resource that can be used to better understand consumer behavior and optimize electricity consumption in cities. This paper presents an unsupervised classification approach for extracting typical consumption patterns from data generated by smart electric meters. The proposed approach is based on a constrained Gaussian mixture model whose parameters vary according to the day type (weekday, Saturday or Sunday. The proposed methodology is applied to a real dataset of Irish households collected by smart meters over one year. For each cluster, the model provides three consumption profiles that depend on the day type. In the first instance, the model is applied on the electricity consumption of users during one month to extract groups of consumers who exhibit similar consumption behaviors. The clustering results are then crossed with contextual variables available for the households to show the close links between electricity consumption and household socio-economic characteristics. At the second instance, the evolution of the consumer behavior from one month to another is assessed through variations of cluster sizes over time. The results show that the consumer behavior evolves over time depending on the contextual variables such as temperature fluctuations and calendar events.

  7. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  8. Cyber-Attacks on Smart Meters in Household Nanogrid: Modeling, Simulation and Analysis

    OpenAIRE

    Denise Tellbach; Yan-Fu Li

    2018-01-01

    The subject of cyber-security and therefore cyber-attacks on smart grid (SG) has become subject of many publications in the last years, emphasizing its importance in research, as well as in practice. One especially vulnerable part of SG are smart meters (SMs). The major contribution of simulating a variety of cyber-attacks on SMs that have not been done in previous studies is the identification and quantification of the possible impacts on the security of SG. In this study, a simulation model...

  9. Monte Carlo modeling provides accurate calibration factors for radionuclide activity meters

    International Nuclear Information System (INIS)

    Zagni, F.; Cicoria, G.; Lucconi, G.; Infantino, A.; Lodi, F.; Marengo, M.

    2014-01-01

    Accurate determination of calibration factors for radionuclide activity meters is crucial for quantitative studies and in the optimization step of radiation protection, as these detectors are widespread in radiopharmacy and nuclear medicine facilities. In this work we developed the Monte Carlo model of a widely used activity meter, using the Geant4 simulation toolkit. More precisely the “PENELOPE” EM physics models were employed. The model was validated by means of several certified sources, traceable to primary activity standards, and other sources locally standardized with spectrometry measurements, plus other experimental tests. Great care was taken in order to accurately reproduce the geometrical details of the gas chamber and the activity sources, each of which is different in shape and enclosed in a unique container. Both relative calibration factors and ionization current obtained with simulations were compared against experimental measurements; further tests were carried out, such as the comparison of the relative response of the chamber for a source placed at different positions. The results showed a satisfactory level of accuracy in the energy range of interest, with the discrepancies lower than 4% for all the tested parameters. This shows that an accurate Monte Carlo modeling of this type of detector is feasible using the low-energy physics models embedded in Geant4. The obtained Monte Carlo model establishes a powerful tool for first instance determination of new calibration factors for non-standard radionuclides, for custom containers, when a reference source is not available. Moreover, the model provides an experimental setup for further research and optimization with regards to materials and geometrical details of the measuring setup, such as the ionization chamber itself or the containers configuration. - Highlights: • We developed a Monte Carlo model of a radionuclide activity meter using Geant4. • The model was validated using several

  10. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    Science.gov (United States)

    Koehler, Sarah Muraoka

    suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive

  11. The XCNN flow meter - a combined cross-correlation and neural network model

    International Nuclear Information System (INIS)

    Roverso, Davide

    2004-05-01

    In this report we propose the XCNN flow meter model, which consists of an integration of a cross-correlator (XC) of pressure measurements and an ensemble of neural network (NN) estimators. Since pressure information does not only travel with the fluid, like for example particles, bubbles, eddies and, to a big extent, temperature, but also through the fluid, the transit time of a pressure disturbance estimated by cross-correlation needs to be corrected to take into account the propagation velocity of pressure differentials in the fluid. This correction is performed by the neural network models, which in this case are simple single input single output three layer feed-forward neural networks. Instead of a single neural network an ensemble is used to reduce the variance of the estimate. The proposed method involves several stages where pressure transmitter data is first filtered, then fed to the cross-correlator whose result is interpolated and filtered again before being fed to the ensemble of neural networks, which produce the final flow estimate. An average accuracy of 0.29% (with 0.18 standard deviation) of a reference ultrasonic meter has been obtained on experimental measurements performed at Tecnatom s.a. This report marks the conclusion of the Virtual Sensors for Feedwater Flow Measurement project at the HRP, which run in the 2001-2003 period. (Author)

  12. Modeling and clustering water demand patterns from real-world smart meter data

    Science.gov (United States)

    Cheifetz, Nicolas; Noumir, Zineb; Samé, Allou; Sandraz, Anne-Claire; Féliers, Cédric; Heim, Véronique

    2017-08-01

    Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  13. Modeling and clustering water demand patterns from real-world smart meter data

    Directory of Open Access Journals (Sweden)

    N. Cheifetz

    2017-08-01

    Full Text Available Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR, a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption data produced by smart meters. The methodology is fully data-driven using the consumption time series which are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to represent the customer habits in terms of water consumption. Two functional clustering approaches are then used to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mixture (FReMix model. The K-means approach produces a hard segmentation and K representative prototypes. On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmentation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the largest water distribution network (WDN in France. The two clustering strategies are evaluated and compared. Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed methodology.

  14. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  15. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, U.S.A

    Science.gov (United States)

    Toran, Laura; Johnson, Melanie; Nyquist, Jonathan E.; Rosenberry, Donald O.

    2010-01-01

    Electrical-resistivity surveys, seepage meter measurements, and drive-point piezometers have been used to characterize chloride-enriched groundwater in lakebed sediments of Mirror Lake, New Hampshire, U.S.A. A combination of bottom-cable and floating-cable electrical-resistivity surveys identified a conductive zone (((200–1800μeq/liter200–1800μeq/liter, and lake water has a chloride concentration of 104μeq/liter">104μeq/liter104μeq/liter. The extent of the plume was estimated and mapped using resistivity and water-sample data. The plume (20×35m">20×35m20×35m wide and at least 3m">3m3m thick) extends nearly the full length and width of a small inlet, overlying the top of a basin formed by the bedrock. It would not have been possible to mapthe plume's shape without the resistivity surveys because wells provided only limited coverage. Seepage meters were installed approximately 40m">40m40m from the mouth of a small stream discharging at the head of the inlet in an area where the resistivity data indicated lake sediments are thin. These meters recorded in-seepage of chloride-enriched groundwater at rates similar to those observed closer to shore, which was unexpected because seepage usually declines away from shore. Although the concentration of road salt in the northeast inlet stream is declining, the plume map and seepage data indicate the groundwater contribution of road salt to the lake is not declining. The findings demonstrate the benefit of combining geophysical and hydrologic data to characterize discharge of a plume beneath Mirror Lake. The extent of the plume in groundwater beneath the lake and stream indicate there will likely be a long-term source of chloride to the lake from groundwater.

  16. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    water fraction. The model intended to employ existent formulas of the medium parameters worked out by Maxwell, Bruggeman and Ramu and Rao. However, to calculate the loss due to the induced eddy currents within the medium in the particular case of the oil continuous phase, other mathematical models expressing (equivalent) medium conductivity and permittivity were required and developed in this work. Although the resonance frequency of the coil was decreasing with increasing medium conductivity, this variation was not as significant as the variation of the coil impedance. This raised the question as to whether coils having the same self-resonance frequency in different media could be constructed. This was worth investigating because it could simplify the mathematical modelling. This was indeed the case and coils featuring approximately the same resonance frequency in different media were made. Concluding, the measuring device based on the HFMFT, which was constructed, investigated and described in this work can be developed into a practical instrument for monitoring the water fraction in multiphase flows. The overall measurement accuracy when using this technique would depend on the analytical models expressing the medium parameters and circumscribing the HFMFT itself. When the mathematical modelling of the HFMFT was finalised, it was understood that many other applications of the technique were also possible. Some of these applications, which might be of interest such as a conductivity meter and a three-component ratio meter, are briefly discussed.

  17. Cyber-Attacks on Smart Meters in Household Nanogrid: Modeling, Simulation and Analysis

    Directory of Open Access Journals (Sweden)

    Denise Tellbach

    2018-02-01

    Full Text Available The subject of cyber-security and therefore cyber-attacks on smart grid (SG has become subject of many publications in the last years, emphasizing its importance in research, as well as in practice. One especially vulnerable part of SG are smart meters (SMs. The major contribution of simulating a variety of cyber-attacks on SMs that have not been done in previous studies is the identification and quantification of the possible impacts on the security of SG. In this study, a simulation model of a nanogrid, including a complete household with an SM, was developed. Different cyber-attacks were injected into the SM to simulate their effects on household nanogrid. The analysis of the impacts of different cyber-attacks showed that the effects of cyber-attacks can be sorted into various categories. Integrity and confidentiality attacks cause monetary effects on the grid. While, availability attacks have monetary effects on the grid as well, they are mainly aimed at compromising the SM communication by either delaying or stopping it completely.

  18. The vibrating reed frequency meter: digital investigation of an early cochlear model.

    Science.gov (United States)

    Bell, Andrew; Wit, Hero P

    2015-01-01

    The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1-2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed's vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  19. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  20. An innovation resistance factor model

    Directory of Open Access Journals (Sweden)

    Siti Salwa Mohd Ishak

    2016-09-01

    Full Text Available The process and implementation strategy of information technology in construction is generally considered through the limiting prism of theoretical contexts generated from innovation diffusion and acceptance. This research argues that more attention should be given to understanding the positive effects of resistance. The study develops a theoretical framing for the Integrated Resistance Factor Model (IRFM. The framing uses a combination of diffusion of innovation theory, technology acceptance model and social network perspective. The model is tested to identify the most significant resistance factors using Partial Least Square (PLS technique. All constructs proposed in the model are found to be significant, valid and consistent with the theoretical framework. IRFM is shown to be an effective and appropriate model of user resistance factors. The most critical factors to influence technology resistance in the online project information management system (OPIMS context are: support from leaders and peers, complexity of the technology, compatibility with key work practices; and pre-trial of the technology before it is actually deployed. The study provides a new model for further research in technology innovation specific to the construction industry.

  1. Rolling Resistance Measurement and Model Development

    DEFF Research Database (Denmark)

    Andersen, Lasse Grinderslev; Larsen, Jesper; Fraser, Elsje Sophia

    2015-01-01

    There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on measuring techniques......, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance...

  2. Rhythmic complexity and predictive coding: A novel approach to modeling rhythm and meter perception in music

    Directory of Open Access Journals (Sweden)

    Peter eVuust

    2014-10-01

    Full Text Available Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of predictive coding, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a predictive coding model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’ and the brain’s anticipatory structuring of music (‘meter’. Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the predictive coding theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  3. The SmartH2O project: a platform supporting residential water management through smart meters and data intensive modeling

    Science.gov (United States)

    Cominola, A.; Nanda, R.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A. E.; Maziotis, A.; Garrone, P.; Harou, J. J.

    2014-12-01

    Designing effective urban water demand management strategies at the household level does require a deep understanding of the determinants of users' consumption. Low resolution data on residential water consumption, as traditionally metered, can only be used to model consumers' behavior at an aggregate level whereas end uses breakdown and the motivations and individual attitudes of consumers are hidden. The recent advent of smart meters allows gathering high frequency consumption data that can be used both to provide instantaneous information to water utilities on the state of the network and continuously inform the users on their consumption and savings. Smart metered data also allow for the characterization of water end uses: this information, coupled with users' psychographic variables, constitutes the knowledge basis for developing individual and multi users models, through which water utilities can test the impact of different management strategies. SmartH2O is an EU funded project which aims at creating an ICT platform able to (i) capture and store quasi real time, high resolution residential water usage data measured with smart meters, (ii) infer the main determinants of residential water end uses and build customers' behavioral models and (iii) predict how the customer behavior can be influenced by various water demand management strategies, spanning from dynamic water pricing schemes to social awareness campaigns. The project exploits a social computing approach for raising users' awareness about water consumption and pursuing water savings in the residential sector. In this work, we first present the SmartH2O platform and data collection, storage and analysis components. We then introduce some preliminary models and results on total water consumption disaggregation into end uses and single user behaviors using innovative fully automated algorithms and overcoming the need of invasive metering campaigns at the fixture level.

  4. Modeling and Clustering Water Demand Patterns from Real-World Smart Meter Data

    OpenAIRE

    CHEIFETZ , Nicolas; Noumir , Zineb; Same , Allou; SANDRAZ , Anne-Claire; FELIERS , Cédric; HEIM , Véronique

    2017-01-01

    Nowadays, drinking water utilities need an acute comprehension of the water demand on their distribution network, in order to efficiently operate the optimization of resources, manage billing and propose new customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better understanding of the consumption modes is now accessible for smart cities with more granularities. In this context, this paper evaluates a novel methodology for identif...

  5. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model

    DEFF Research Database (Denmark)

    Nikolajsen, Gitte; Jensen, Morten Skovgaard; West, Mark J.

    2011-01-01

    Modern stereological techniques have been used to show that the total length of the cholinergic fibers in the cerebral cortex of the APPswe/PS1deltaE9 mouse is reduced by almost 300 meters at 18 months of age and has a nonlinear relationship to the amount of transgenetically-induced amyloidosis. ....... These data provide rigorous quantitative morphological evidence that Alzheimer's-like amyloidosis affects the axons of the cholinergic enervation of the cerebral cortex....

  6. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    Science.gov (United States)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information

  7. Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration

    International Nuclear Information System (INIS)

    Blasques, L.C.M.; Pinho, J.T.

    2012-01-01

    This paper proposes a demand-side management model integrated to a metering system for hybrid renewable energy systems in micro-grid configuration. The proposal is based on the management problems verified in most of this kind of renewable hybrid systems installed in Brazil. The main idea is the implementation of a pre-paid metering system with some control functions that directly act on the consumer demand, restricting the consumption proportionally to the monthly availability of renewable energy. The result is a better distribution of the electricity consumption by month and by consumer, preventing that only one user, with larger purchasing power, consumes all the renewable energy available at some time period. The proportionality between the consumption and the renewable energy's availability has the objective to prevent a lack of energy stored and a high use of the diesel generator-set on months of low renewable potential. This paper also aims to contribute to the Brazilian regulation of renewable energy systems supplying micro-grids. - Highlights: ► Review of the Brazilian electricity regulation for small-scale isolated systems. ► Renewable systems are the most feasible option in several isolated communities. ► One proposal is to guarantee government subsidies for renewable energy systems. ► Smart electronic meters to create electricity restrictions for the consumers.

  8. A 30 meter soil properties map of the contiguous United States for use in remote sensing and land surface models

    Science.gov (United States)

    Chaney, N.; Morgan, C.; McBratney, A.; Wood, E. F.; Yimam, Y.

    2016-12-01

    Soil moisture plays a critical role in the terrestrial water, energy, and biogeochemical cycles. For this reason, numerical weather prediction, global circulation models, and hydrologic monitoring systems increasingly emphasize modeling soil moisture and assimilating soil moisture remote sensing products. In both cases, the prescribed soil hydraulic properties play a pivotal role in accurately describing the soil moisture state. However, an accurate characterization of soil hydraulic properties remains a persistent challenge—existing continental soil databases are too coarse and outdated for contemporary applications. To address this challenge, we have developed the Probabilistic Remapping of SSURGO database (POLARIS); a new soil database that covers the contiguous United States (CONUS) at a 30-meter spatial resolution. POLARIS was constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm to remap the rich yet incomplete Soil Survey Geographic (SSURGO) database to create spatially complete probabilistic soil series maps over CONUS (Chaney et al., 2016). These maps are then combined with the vertical profile information of each soil series to create the corresponding maps of soil hydraulic properties and their associated uncertainties. The mapped soil hydraulic properties include soil texture, saturated hydraulic conductivity, porosity, field capacity, and wilting point. POLARIS provides a breakthrough in soil information. To illustrate this database's potential, we will both explore the database at multiple spatial scales and discuss recent land surface modeling results that have used POLARIS to simulate soil moisture at a 30-meter spatial resolution over CONUS between 2004 and 2014. We will discuss the added benefit of using POLARIS and the opportunity it presents to improve the characterization of soil hydraulic properties in land surface models and soil moisture remote sensing. References

  9. Increasing Helicity to Achieve a Dynamo State on the Three-Meter Model of the Earth's Core

    Science.gov (United States)

    Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    Dynamo theory describes the generation of magnetic fields in the flows of conducting fluids, for example, in stars and planetary cores. Spherical Couette flows, which are flows between two concentric and independently rotating spheres, is one of the experimental models for achieving this task in the laboratory. We have performed dynamo state search in our three-meter spherical-Couette model reaching up to Reynolds number near 108 with amplifications of the field between 10-30% but without a self-sustained dynamo magnetic field. A recent numerical work [K. Finke and A. Tilgner. Phys. Rev. E, 86:016310, Jul 2012] suggested that a roughened inner core reduces the threshold for dynamo action. The mean flow would have more poloidal component than the one we are generating with our current smooth sphere setup. With baffles flow would be expelled radially outward on the equatorial plane and returned at the poles, with opposite helicities in the two hemispheres. Baffles welded on our smooth inner sphere are proposed to achieve this task. We are working to perform experiments on a scaled water model of our experimental setup with Reynolds number near 105 to measure the helicity improvements of different baffle designs in support of upcoming Three-Meter modifications. We gratefully acknowledge support from NSF EAR-1417148.

  10. Meter-Scale Reactive Transport Modeling of CO2-Rich Fluid Flow along Debonded Wellbore Casing-Cement Interfaces.

    Science.gov (United States)

    Wolterbeek, Timotheus K T; Raoof, Amir

    2018-03-20

    Defects along wellbore interfaces constitute potential pathways for CO 2 to leak from geological storage systems. In previous experimental work, we demonstrated that CO 2 -induced reaction over length-scales of several meters can lead to self-sealing of such defects. In the present work, we develop a reactive transport model that, on the one hand, enables μm-mm scale exploration of reactions along debonding defects and, on the other hand, allows simulation of the large, 6 m-long samples used in our experiments. At these lengths, we find that interplay between flow velocity and reaction rate strongly affects opening/sealing of interfacial defects, and depth of chemical alteration. Carbonate precipitation in initially open defects decreases flow rate, leading to a transition from advection-dominated to diffusion-dominated reactive transport, with acidic conditions becoming progressively more confined upstream. We investigate how reaction kinetics, portlandite content, and the nature of the carbonate products impact the extent of cement alteration and permeability reduction. Notably, we observe that nonuniformity of the initial defect geometry has a profound effect on the self-sealing behavior and permeability evolution as observed on the meter scale. We infer that future wellbore models need to consider the effects of such aperture variations to obtain reliable upscaling relations.

  11. Internal Flow and Near-Orifice Spray Visualisations of a Model Pharmaceutical Pressurised Metered Dose Inhaler

    International Nuclear Information System (INIS)

    Versteeg, H K; Hargrave, G K; Kirby, M

    2006-01-01

    The pressurised Metered Dose Inhaler (pMDI) has become the most prescribed drug delivery system for treating the respiratory diseases. However, the spray generation mechanism of these devices has not been extensively researched and there is very little information regarding the two-phase fluid dynamics associated with pre-atomisation inside the valve stem. The aim of the work presented in this paper is to provide high-quality, time-resolved imaging of the internal flow structures of pMDIs in an attempt to link the characteristics of the internal flow to external spray atomization processes. Visualisations of the aerosols in the near-orifice region findings from previous studies of commercial pMDIs and showed the following characteristics: (i) start-up transient (ii) fully developed spray with slow spray density variations and (iii) rapid spray density pulsations with large droplet production. The results clearly highlighted the potential of optical diagnostics in the development of improved accounts of the state of the flow inside a pMDI valve and its relationship with drop formation

  12. A stochastic model for estimating groundwater and contaminant discharges from fractured rock passive flux meter measurements

    Science.gov (United States)

    Acar, Özlem; Klammler, Harald; Hatfield, Kirk; Newman, Mark A.; Annable, Michael D.; Cho, Jaehyun; Parker, Beth L.; Cherry, John A.; Pehme, Pete; Quinn, Patryk; Kroeker, Ryan

    2013-03-01

    Estimation of water and contaminant discharges is an important hydrological problem. Fractured rock aquifers are recognized as highly complex flow and transport systems, and the fractured rock passive flux meter (FRPFM) is a recently tested device to simultaneously measure cumulative water and contaminant mass fluxes in fractures intersecting an observation well (boring). Furthermore, the FRPFM is capable of indicating orientations and directions of flow in hydraulically active ("flowing") fractures. The present work develops a discharge estimator for when FRPFM measurements of fracture fluxes in the direction perpendicular to a transect (control plane) along one or more observation wells are available. In addition, estimation uncertainty in terms of a coefficient of variation is assessed based on a Monte Carlo approach under normalized conditions. Sources of uncertainty considered are spatially random fracture trace locations, random trace lengths, and orientations as well as variability of trace average fluxes (including smooth spatial trends), variability of local fluxes within traces, and flux measurement errors. Knowledge about the trace length distribution, which is commonly not available from borehole surveys, is not required for discharge estimation. However, it does affect the uncertainty assessment, and equations for upper uncertainty bounds are given as an alternative. In agreement with general statistical inference, it is found that discharge uncertainty decreases proportionally with the number of fluxes measured. Results are validated, and an example problem illustrates practical application and performance.

  13. Comparison of the TSI Model 3306 Impactor Inlet with the Andersen Cascade Impactor: solution metered dose inhalers.

    Science.gov (United States)

    Myrdal, Paul B; Stein, Stephen W; Mogalian, Erik; Hoye, William; Gupta, Abhishek

    2004-09-01

    The product performance of a series of solution Metered Dose Inhalers (MDIs) were evaluated using the TSI Model 3306 Impactor Inlet and the Andersen Cascade Impactor (ACI). The goal of the study was to test whether the fine particle and coarse particle depositions obtained using the Model 3306 were comparable to those results obtained by ACI testing. The analysis using the Model 3306 was performed as supplied by the manufacturer as well as with 20 cm and 40 cm vertical extensions that were inserted between the Model 3306 and the USP Inlet. Nine different solution formulations were evaluated. The drug concentrations ranged from 0.08 to 0.8% w/w and the ethanol cosolvent concentration varied between 5 and 20% w/w. In general, it was found that good correlations between the two instruments were obtained. However, for formulations containing 10-20% w/w ethanol it is shown that an extension fitted to the Model 3306 yielded an improved correlation to those obtained from the ACI.

  14. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Duggen, Lars; Lassen, Benny

    2016-01-01

    of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating......A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... under multiphase flow conditions is carried out....

  15. Tests of 1.5 meter model 50mm SSC collider dipoles at Fermilab

    International Nuclear Information System (INIS)

    Wake, M.; Bossert, R.; Carson, J.; Coulter, K.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.; Sims, R.; Winters, M.

    1991-05-01

    A series of 50mm diameter 1.5m model magnets have been constructed. The test of these magnets gave convincing results concerning the design of the 50mm cross section of the SSC collider dipoles. 9 refs., 6 figs

  16. FULLY AUTOMATED GENERATION OF ACCURATE DIGITAL SURFACE MODELS WITH SUB-METER RESOLUTION FROM SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  17. Current meter data from moored current meter casts in the Northeast Pacific Ocean as part of the Ocean Prediction Through Observation Modeling and Analysis (OPTOMA) project, 1984-09-26 to 1985-07-16 (NODC Accession 9600075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the Northeast Pacific Ocean from September 26, 1984 to July 16, 1985. Data were submitted by...

  18. Some difficulties and inconsistencies when using habit strength and reasoned action variables in models of metered household water conservation.

    Science.gov (United States)

    Jorgensen, Bradley S; Martin, John F; Pearce, Meryl; Willis, Eileen

    2013-01-30

    Research employing household water consumption data has sought to test models of water demand and conservation using variables from attitude theory. A significant, albeit unrecognised, challenge has been that attitude models describe individual-level motivations while consumption data is recorded at the household level thereby creating inconsistency between units of theory and measurement. This study employs structural equation modelling and moderated regression techniques to addresses the level of analysis problem, and tests hypotheses by isolating effects on water conservation in single-person households. Furthermore, the results question the explanatory utility of habit strength, perceived behavioural control, and intentions for understanding metered water conservation in single-person households. For example, evidence that intentions predict water conservation or that they interact with habit strength in single-person households was contrary to theoretical expectations. On the other hand, habit strength, self-reports of past water conservation, and perceived behavioural control were good predictors of intentions to conserve water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Comparison of 4-kilometer and 800-meter transient PRISM climate datasets and their influence on hydrologic modeling

    Science.gov (United States)

    Stern, M. A.; Flint, A. L.; Curtis, J. A.; Flint, L. E.

    2011-12-01

    Historical climate maps in the form of gridded monthly precipitation and maximum and minimum air temperature are available at a 4-kilometer (km) and 800-meter (m) resolution from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon State University. The PRISM climate maps include weighting functions for distance, elevation, topographic facet, atmospheric layer, orographic effectiveness, and coastal proximity. Many researchers rely on these datasets as inputs to computer models and statistical analyses that are used for making land and resource management decisions. We compared the 1970-2000 precipitation, maximum air temperature (Tmax), and minimum air temperature (Tmin) from the two datasets nationally and for California. At the national scale we averaged climate parameters by state and found variable results indicating differences between the two data sets. When comparing average precipitation data by state, the 4-km and 800-m data are strikingly similar with a mean difference of less than 0.1%. Comparisons of Tmax showed a mean difference of less than 1% except for two states, Wyoming and Idaho. Comparison of Tmin indicates greater than 1% difference with the greatest differences in California and Arkansas. For California we used the 35 Jepson Eco-region districts to provide a more detailed analysis of within-state variation. We found that the most significant differences between the datasets are in the Warner Mountains, Channel Islands, and southern Sierra Nevada Foothills. To assess accuracy differences between the two datasets, we compared the 4-km and the 800-m datasets to weather station data from the U.S. Historical Climatology Network (HCN). The 4-km and 800-m datasets were used as the climate input for a monthly water-balance model (Basin Characterization Model; BCM) of California to evaluate differences in simulated hydrologic output (recharge, runoff, and snowmelt). The 4-km BCM simulated recharge and runoff

  20. One-meter topobathymetric digital elevation model for Majuro Atoll, Republic of the Marshall Islands, 1944 to 2016

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Poppenga, Sandra K.; Danielson, Jeffrey J.; Tyler, Dean J.; Gesch, Dean B.; Kottermair, Maria; Jalandoni, Andrea; Carlson, Edward; Thatcher, Cindy A.; Barbee, Matthew M.

    2018-03-30

    Atoll and island coastal communities are highly exposed to sea-level rise, tsunamis, storm surges, rogue waves, king tides, and the occasional combination of multiple factors, such as high regional sea levels, extreme high local tides, and unusually strong wave set-up. The elevation of most of these atolls averages just under 3 meters (m), with many areas roughly at sea level. The lack of high-resolution topographic data has been identified as a critical data gap for hazard vulnerability and adaptation efforts and for high-resolution inundation modeling for atoll nations. Modern topographic survey equipment and airborne lidar surveys can be very difficult and costly to deploy. Therefore, unmanned aircraft systems (UAS) were investigated for collecting overlapping imagery to generate topographic digital elevation models (DEMs). Medium- and high-resolution satellite imagery (Landsat 8 and WorldView-3) was investigated to derive nearshore bathymetry.The Republic of the Marshall Islands is associated with the United States through a Compact of Free Association, and Majuro Atoll is home to the capital city of Majuro and the largest population of the Republic of the Marshall Islands. The only elevation datasets currently available for the entire Majuro Atoll are the Shuttle Radar Topography Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 elevation data, which have a 30-m grid-cell spacing and a 8-m vertical root mean square error (RMSE). Both these datasets have inadequate spatial resolution and vertical accuracy for inundation modeling.The final topobathymetric DEM (TBDEM) developed for Majuro Atoll is derived from various data sources including charts, soundings, acoustic sonar, and UAS and satellite imagery spanning over 70 years of data collection (1944 to 2016) on different sections of the atoll. The RMSE of the TBDEM over the land area is 0.197 m using over 70,000 Global Navigation Satellite

  1. Topogrid Derived 10 Meter Resolution Digital Elevation Model of the Shenandoah National Park and Surrounding Region, Virginia

    Science.gov (United States)

    Chirico, Peter G.; Tanner, Seth D.

    2004-01-01

    Explanation The purpose of developing a new 10m resolution DEM of the Shenandoah National Park Region was to more accurately depict geologic structure, surfical geology, and landforms of the Shenandoah National Park Region in preparation for automated landform classification. Previously, only a 30m resolution DEM was available through the National Elevation Dataset (NED). During production of the Shenandoah10m DEM of the Park the Geography Discipline of the USGS completed a revised 10m DEM to be included into the NED. However, different methodologies were used to produce the two similar DEMs. The ANUDEM algorithm was used to develop the Shenadoah DEM data. This algorithm allows for the inclusion of contours, streams, rivers, lake and water body polygons as well as spot height data to control the elevation model. A statistical analysis using over 800 National Geodetic Survey (NGS) first and second order vertical control points reveals that the Shenandoah10m DEM, produced as a part of the Appalachian Blue Ridge Landscape project, has a vertical accuracy of ?4.87 meters. The metadata for the 10m NED data reports a vertical accuracy of ?7m. A table listing the NGS control points, the elevation comparison, and the RMSE for the Shenandoah10m DEM is provided. The process of automated terrain classification involves developing statistical signatures from the DEM for each type of surficial deposit and landform type. The signature will be a measure of several characteristics derived from the elevation data including slope, aspect, planform curvature, and profile curvature. The quality of the DEM is of critical importance when extracting terrain signatures. The highest possible horizontal and vertical accuracy is required. The more accurate Shenandoah 10m DEM can now be analyzed and integrated with the geologic observations to yield statistical correlations between the two in the development of landform and surface geology mapping projects.

  2. Tumour resistance to cisplatin: a modelling approach

    International Nuclear Information System (INIS)

    Marcu, L; Bezak, E; Olver, I; Doorn, T van

    2005-01-01

    Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure

  3. Sieving through gut models of colonization resistance.

    Science.gov (United States)

    Mullineaux-Sanders, Caroline; Suez, Jotham; Elinav, Eran; Frankel, Gad

    2018-02-01

    The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.

  4. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    Science.gov (United States)

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  5. Mathematical modeling of a survey-meter used to measure radioactivity in human thyroids: Monte Carlo calculations of the device response and uncertainties

    Science.gov (United States)

    Khrutchinsky, Arkady; Drozdovitch, Vladimir; Kutsen, Semion; Minenko, Victor; Khrouch, Valeri; Luckyanov, Nickolas; Voillequé, Paul; Bouville, André

    2012-01-01

    This paper presents results of Monte Carlo modeling of the SRP-68-01 survey meter used to measure exposure rates near the thyroid glands of persons exposed to radioactivity following the Chernobyl accident. This device was not designed to measure radioactivity in humans. To estimate the uncertainty associated with the measurement results, a mathematical model of the SRP-68-01 survey meter was developed and verified. A Monte Carlo method of numerical simulation of radiation transport has been used to calculate the calibration factor for the device and evaluate its uncertainty. The SRP-68-01 survey meter scale coefficient, an important characteristic of the device, was also estimated in this study. The calibration factors of the survey meter were calculated for 131I, 132I, 133I, and 135I content in the thyroid gland for six age groups of population: newborns; children aged 1 yr, 5 yr, 10 yr, 15 yr; and adults. A realistic scenario of direct thyroid measurements with an “extended” neck was used to calculate the calibration factors for newborns and one-year-olds. Uncertainties in the device calibration factors due to variability of the device scale coefficient, variability in thyroid mass and statistical uncertainty of Monte Carlo method were evaluated. Relative uncertainties in the calibration factor estimates were found to be from 0.06 for children aged 1 yr to 0.1 for 10-yr and 15-yr children. The positioning errors of the detector during measurements deviate mainly in one direction from the estimated calibration factors. Deviations of the device position from the proper geometry of measurements were found to lead to overestimation of the calibration factor by up to 24 percent for adults and up to 60 percent for 1-yr children. The results of this study improve the estimates of 131I thyroidal content and, consequently, thyroid dose estimates that are derived from direct thyroid measurements performed in Belarus shortly after the Chernobyl accident. PMID:22245289

  6. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  7. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  8. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  9. Your Glucose Meter

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...

  10. Peak flow meter (image)

    Science.gov (United States)

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  11. The reactor neutron flux and period measure meter

    International Nuclear Information System (INIS)

    Wei Ying

    1997-11-01

    The main performance indexes of developed reactor neutron flux and period measure meter (as an intermediate range measuring instrument of nuclear instrumentation system in nuclear power plant) are introduced. The meter's function, working principle, hardware constitution, application software, and the characteristics of the meter are described. The meter adopts the advanced digital technology, it can do calculating and processing by a microprocessor to get the values of power and period. It also can give the output singles as required. The characters of the meter are high accuracy, good ability to resist disturbance, small temperature coefficient and convenient for operation, etc

  12. Analysis and modeling of resistive switching mechanisms oriented to resistive random-access memory

    International Nuclear Information System (INIS)

    Huang Da; Wu Jun-Jie; Tang Yu-Hua

    2013-01-01

    With the progress of the semiconductor industry, the resistive random-access memory (RAM) has drawn increasing attention. The discovery of the memristor has brought much attention to this study. Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms. We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models. Finally, simulations are presented. We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms, which are applied to explain their resistive switchings

  13. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...... of the bandwidth requirements are analysed. For this analysis the assumptions and limitations are defined. The results obtained by the analysis show, that the amount of data collected and transferred by a smart meter is very low compared to the available bandwidth of most internet connections. The results show...

  14. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  15. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  16. Digital reactivity meter for NPP Krsko

    International Nuclear Information System (INIS)

    Glumac, B.; Vidmar, M.; Ravnik, M.

    1984-01-01

    Digital or analog reactivity meter is needed in order to perform the necessary low power physics tests after core reload in a nuclear power plant. Nuclear power plant Krsko ordered the construction of such digital reactivity meter on the basis of 'mikro-m' modular computer system that has been developed by IJS. Input signal sampling model as well as realtime reactivity calculation on the basis of the reactor inverse kinetic equation have also been developed by IJS. This digital reactivity meter has already been used to perform the start-up tests in NPP Krsko following first reload in fall of 1983. (author)

  17. Epidemiological models for the spread of anti-malarial resistance

    Directory of Open Access Journals (Sweden)

    Antia R

    2003-02-01

    Full Text Available Abstract Background The spread of drug resistance is making malaria control increasingly difficult. Mathematical models for the transmission dynamics of drug sensitive and resistant strains can be a useful tool to help to understand the factors that influence the spread of drug resistance, and they can therefore help in the design of rational strategies for the control of drug resistance. Methods We present an epidemiological framework to investigate the spread of anti-malarial resistance. Several mathematical models, based on the familiar Macdonald-Ross model of malaria transmission, enable us to examine the processes and parameters that are critical in determining the spread of resistance. Results In our simplest model, resistance does not spread if the fraction of infected individuals treated is less than a threshold value; if drug treatment exceeds this threshold, resistance will eventually become fixed in the population. The threshold value is determined only by the rates of infection and the infectious periods of resistant and sensitive parasites in untreated and treated hosts, whereas the intensity of transmission has no influence on the threshold value. In more complex models, where hosts can be infected by multiple parasite strains or where treatment varies spatially, resistance is generally not fixed, but rather some level of sensitivity is often maintained in the population. Conclusions The models developed in this paper are a first step in understanding the epidemiology of anti-malarial resistance and evaluating strategies to reduce the spread of resistance. However, specific recommendations for the management of resistance need to wait until we have more data on the critical parameters underlying the spread of resistance: drug use, spatial variability of treatment and parasite migration among areas, and perhaps most importantly, cost of resistance.

  18. Estuarine Bathymetric Digital Elevation Models (30 meter resolution) Derived From Source Hydrographic Survey Soundings Collected by NOAA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These Bathymetric Digital Elevation Models (DEM) were generated from original point soundings collected during hydrographic surveys conducted by the National Ocean...

  19. Effect of Rolling Resistance in Dem Models With Spherical Bodies

    Directory of Open Access Journals (Sweden)

    Dubina Radek

    2016-12-01

    Full Text Available The rolling resistance is an artificial moment arising on the contact of two discrete elements which mimics resistance of two grains of complex shape in contact rolling relatively to each other. The paper investigates the influence of rolling resistance on behaviour of an assembly of spherical discrete elements. Besides the resistance to rolling, the contacts between spherical particles obey the Hertzian law in normal straining and Coulomb model of friction in shear.

  20. Digital Capacitance Meter

    OpenAIRE

    Indra Budi Cahya Ardi; Luyung Dinaini Skom, MM

    2002-01-01

    This thesis explores the design, build, analyze the work circuit, and test a series ofDigital Capacitance Meter. It works by using two monostable multivibrator as shownon the input from the output through seven segment indicator. As the source voltageused 9-volt battery.This tool is used to determine condition and capacity of a capacitor in the variousunits, namely: Pikko farad (pF), nano-farad (nF), micro and milli farad farad (MF).

  1. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Science.gov (United States)

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  2. Streamlining Smart Meter Data Analytics

    OpenAIRE

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, ...

  3. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  4. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P

    2013-01-01

    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  5. Good standards for smart meters

    NARCIS (Netherlands)

    Hoenkamp, R.A.; Huitema, G.B.

    2012-01-01

    This paper examines what lessons can be learned from the rollout of smart meters in the Netherlands to improve the European smart meter standardization. This study is based on the case of the Dutch meter rollout which preparations started in 2005 but finally was delayed until 2011 by governmental

  6. Peak flow meter use - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100202.htm Peak flow meter use - Series—Peak flow meter use - part one To use the sharing ... slide 7 out of 7 Overview A peak flow meter helps you check how well your asthma ...

  7. Modeling of shaft tombs in western Mexico by mean of resistive tomography

    Science.gov (United States)

    Alatorre-Zamora, M. A.; Gutierrez-Peña, Q. J.; Gomez-Gomez, G.; Rosas-Elguera, J.

    2013-05-01

    The archaeological affluence of Mexico is huge. However, the western part of the country is viewed as lacking of important prehispanic constructions. Discoveries since 1970 have exposed an ancient culture that has been termed as Teuchitlan Tradition. This culture is characterized by ceremonial centers formed with circular pyramids and several rectangular platforms surrounding them, and tombs below any of these structures. The tombs in turn are typically composed of a vertical shaft and one to three horizontal chambers, where bodies were placed. Due to this character is also referred to as Shaft Tombs Culture. The tombs are located mainly in low cohesion pumice, welded tephras and volcanic ash deposits. The vertical shafts were usually filled, and there was always the camera. Two major centers developed by this culture are found in Teuchitlan and El Arenal, in the western state of Jalisco. The former has been rebuilt and is currently open to tourism, while the latter is not restored yet. The latter apparently has two ceremonial centers located at two different altitudes. We conducted a survey in both sites with resistive tomography. The first study was conducted in Teuchitlan, on a circular platform. In this structure there are already located three shaft tombs. The results obtained using the Wenner alpha array with equidistance of 0.5 and 1 meter, are successful. The data have been modeled using the program RES2DINV, and models obtained show the presence of a boot-shaped tomb and other like bottle. The graves are identified with higher resistivity values, while values lower than 30 ohm-m indicate moisture leaks at the ends of the structure. Theoretical modeling of the tombs and the building was carried out, which is compared with the actual sections and their inversion models. Coincidences are appreciable. With this results, were conducted two lines in ceremonial centers of El Arenal, to identify the occurrence of shaft tombs. The two centers are separated by

  8. Advanced metering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, R.F.

    1993-01-01

    The goal of the US Department of Energy Federal Energy Management Program (FEMP) is to facilitate energy-efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools and procedures used to identify and evaluate efficiency improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy-use efficiency. To assist in implementing energy-efficiency measures, FEMP helps federal agencies with identifying efficiency opportunities and in implementing energy-efficiency and demand-side management programs at federal sites. As the lead laboratory for FEMP, Pacific Northwest Laboratory (PNL) provides technical assistance to federal agencies to better understand and characterize energy systems. The US Army Forces Command (FORSCOM) has tasked PNL to provide technical assistance to characterize and modernize energy systems at FORSCOM installations. As part of that technical assistance, PNL performed an in-depth examination of automatic meter-reading system technologies currently available. The operating characteristics and relative merits of all the major systems were reviewed in the context of applicability to federal installations. That review is documented in this report.

  9. Predictor model for seasonal variations in skid resistance, volume 1

    Science.gov (United States)

    Henry, J. J.; Saito, K.; Blackburn, R.

    1984-04-01

    Two models, utilizing data collected in 1979 and 1980, were developed to predict variations in skid resistance due to rainfall conditions, temperature effects, and time of the year. A generalized predictor model was developed from purely statistical considerations and a mechanistic model was developed from hypothesized mechanisms. This model may be utilized to estimate the skid resistance at any time in the season from a measurement made during the same season, or to adjust skid-resistance measurement made at any time during the season to the end-of-season level. The mechanistic model requires, in addition to the above inputs, two pavement properties describing the polishing characteristics of the aggregate and an estimate of the percent normalized gradient of the skid resistance. The application of these models is summarized.

  10. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  11. Filamentary model in resistive switching materials

    Science.gov (United States)

    Jasmin, Alladin C.

    2017-12-01

    The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.

  12. Testing and Modeling of Machine Properties in Resistance Welding

    DEFF Research Database (Denmark)

    Wu, Pei

    The objective of this work has been to test and model the machine properties including the mechanical properties and the electrical properties in resistance welding. The results are used to simulate the welding process more accurately. The state of the art in testing and modeling machine properties...... in resistance welding has been described based on a comprehensive literature study. The present thesis has been subdivided into two parts: Part I: Mechanical properties of resistance welding machines. Part II: Electrical properties of resistance welding machines. In part I, the electrode force in the squeeze...... it is lower than the spring force. The work in part I is focused on the dynamic mechanical properties of resistance welding machines. A universal method has been developed to characterize the dynamic mechanical behaviour of C-frame machines. The method is based on a mathematical model, in which three...

  13. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    International Nuclear Information System (INIS)

    Pradeep, Chaminda; Yan, Ru; Mylvaganam, Saba; Vestøl, Sondre; Melaaen, Morten C

    2014-01-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  14. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    Science.gov (United States)

    Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba

    2014-07-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  15. E-meter with PLC-based automated meter reading

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, M. [Texas Instruments, Toronto, ON (Canada)

    2007-11-15

    Data can be transferred from electronic meters (e-meters) to a concentrator or other device in a variety of ways. However, new ways of communication are needed for automated meter reading (AMR) in order to avoid visits by utility officials to properties where meters are installed. In addition to remote meter reading, e-meters can have functions implemented to lower costs for electricity providers or to provide new features for end customers. This would only be possible if the meter could also receive data via a 2-way communication link. This article presented powerline communication (PLC), a completely different technique for AMR in which the power lines are used as the communication media. The major technologies used in PLC in Europe were discussed along with the challenges of overcoming quality problems. The ability to integrate all required functionality for a complex e-meter with PLC modem into small central processing units (CPUs) was also discussed. Texas Instruments offers a digital signal processor (DSP) that ensures reliable PLC. The way in which these microcomputers process electrical signals was also outlined in this article, with particular reference to how the information is made accessible for the CPUs and for metering devices. 3 figs.

  16. Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array

    Directory of Open Access Journals (Sweden)

    Octova Adree

    2017-01-01

    Full Text Available Mining industry is an industry with very high risk (losses. In order that mining activities can be run well, then the potential of the Earth’s resources must be known for sure. one of the Earth’s resources of high economic value is the iron ore. Iron ore is rarely found in a free state in nature, it is usually associated with other minerals and exposed randomly. With these properties, iron ore needs to be modeled before doing mining activities in order to avoid large losses. Iron ore deposits can be modeled with geoelectrical resistivity method. Dipole-dipole array will produce good imaging both vertically and laterally. From the measurement results of geoelectrical resistivity with dipole-dipole array will be obtained the value of measuring the current and potential difference. This value will generate into 2D and 3D model of the cross section of the iron ore deposits. One of the areas in West Sumatra has the potential for iron ore. Five lines were applied in this area. The result of cross section got the iron minerals associated with quartzite at 30 meters depth below the surface.

  17. Micro-gen metering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elland, J.; Dickson, J.; Cranfield, P.

    2003-07-01

    This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.

  18. Structure of the Scientific Community Modelling the Evolution of Resistance

    OpenAIRE

    2007-01-01

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expec...

  19. Myths, models and mitigation of resistance to pesticides.

    Science.gov (United States)

    Hoy, M A

    1998-10-29

    Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. 'Resistance management' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a 'solution' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to

  20. A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization

    Science.gov (United States)

    Spicknall, Ian H.; Foxman, Betsy; Marrs, Carl F.; Eisenberg, Joseph N. S.

    2013-01-01

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection. PMID:23660797

  1. A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization.

    Science.gov (United States)

    Spicknall, Ian H; Foxman, Betsy; Marrs, Carl F; Eisenberg, Joseph N S

    2013-08-15

    Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection.

  2. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... (AMI) Smart Meters. The target audience for Draft NISTIR 7823 includes numerous stakeholders in the...

  3. IMPORTANT: Fluke is recalling Digital Clamp Meters

    CERN Multimedia

    2013-01-01

    Fluke is voluntarily recalling four models of Digital Clamp Meters: Fluke 373, 374, 375 and 376. If you own one of these clamp meters, please stop using it and send it back to Fluke for repair even if you have not experienced problems.   Description of the problem: "The printed circuit assembly may not be properly fastened to the test lead input jack. This may result in inaccurate voltage readings, including a low or no-voltage reading on a circuit energised with a hazardous voltage, presenting a shock, electrocution or thermal burn hazard." To determine if your clamp meter is affected by this recall notice, and for more information, click here.

  4. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance.

    Science.gov (United States)

    Boëlle, Pierre-Yves; Thomas, Guy

    2016-12-01

    The rise of bacterial resistance to antibiotics is a major Public Health concern. It is the result of two interacting processes: the selection of resistant bacterial strains under exposure to antibiotics and the dissemination of bacterial strains throughout the population by contact between colonized and uncolonized individuals. To investigate the resulting time evolution of bacterial resistance, Temime et al. (Emerg Infect Dis 9:411-417, 2003) developed a stochastic SIS model, which was structured by the level of resistance of bacterial strains. Here we study the asymptotic properties of this model when the population size is large. To this end, we cast the model within the framework of measure valued processes, using point measures to represent the pattern of bacterial resistance in the compartments of colonized individuals. We first show that the suitably normalized model tends in probability to the solution of a deterministic differential system. Then we prove that the process of fluctuations around this limit tends in law to a Gaussian process in a space of distributions. These results, which generalize those of Kurtz (CBMS-NSF regional conference series in applied mathematics, vol 36. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1981, chap. 8) on SIR models, support the validity of the deterministic approximation and quantify the rate of convergence.

  5. Gamin partable radiation meter with alarm threshold

    International Nuclear Information System (INIS)

    Payat, Rene.

    1981-10-01

    The Gamin Radiation meter is a direct reading, portable, battery-powered gamma doserate meter featuring alarm thresholds. Doserate is read on a micro-ammeter with a millirad-per-hour logarithmic scale, covering a range of 0,1 to 1000 millirads/hour. The instrument issues an audible warning signal when dose-rate level exceeds a threshold value, which can be selected. The detector tube is of the Geiger-Muller counter, energy compensated type. Because of its low battery drain, the instrument can be operated continously for 1000 hours. It is powered by four 1.5 volt alcaline batteries of the R6 type. The electronic circuitry is housed in a small lightweight case made of impact resistant plastic. Applications of the Gamin portable radiation monitor are found in health physics, safety departments, medical facilities, teaching, civil defense [fr

  6. Radiofrequency energy exposure from the Trilliant smart meter.

    Science.gov (United States)

    Foster, Kenneth R; Tell, Richard A

    2013-08-01

    This paper reviews radiofrequency (RF) field levels produced by electric utility meters equipped with RF transceivers (so-called Smart Meters), focusing on meters from one manufacturer (Trilliant, Redwood City, CA, USA, and Granby, QC, Canada). The RF transmission levels are summarized based on publicly available data submitted to the U.S. Federal Communications Commission supplemented by limited independent measurements. As with other Smart Meters, this meter incorporates a low powered radiofrequency transceiver used for a neighborhood mesh network, in the present case using ZigBee-compliant physical and medium access layers, operating in the 2.45 GHz unlicensed band but with a proprietary network architecture. Simple calculations based on a free space propagation model indicate that peak RF field intensities are in the range of 10 mW m or less at a distance of more than 1-2 m from the meters. However, the duty cycle of transmission from the meters is very low (meter that were consistent with data reported by the vendor to the U.S. Federal Communications Commission. Limited measurements conducted in two houses with the meters were unable to clearly distinguish emissions from the meters from the considerable electromagnetic clutter in the same frequency range from other sources, including Wi-Fi routers and, when it was activated, a microwave oven. These preliminary measurements disclosed the difficulties that would be encountered in characterizing the RF exposures from these meters in homes in the face of background signals from other household devices in the same frequency range. An appendix provides an introduction to Smart Meter technology. The RF transmitters in wireless-equipped Smart Meters operate at similar power levels and in similar frequency ranges as many other digital communications devices in common use, and their exposure levels are very far below U.S. and international exposure limits.

  7. A New Product Development Partnership Model for Antibiotic Resistance.

    Science.gov (United States)

    Billington, John K

    2016-05-01

    Antibiotics have prevented countless deaths from common infections and have made possible many modern medical procedures. Over the past few decades, antibiotic-resistant bacteria have become a global threat, spreading between healthcare facilities and throughout communities worldwide at an alarming pace. Antibiotic overuse and misuse in humans, animals, and the environment accelerate resistance by selecting for bacteria with antibiotic-resistant traits, which then become predominant and infect others. Meanwhile, few antibiotics remain active against the most resistant bacteria. There is an urgent need for new antibiotics and other antibacterial products to replace second-line and last resort therapies when they no longer work. This Article proposes a new U.S.-based, non-governmental, not-for-profit product development partnership (PDP) model specifically designed for antibacterial development. This new model should both supplement and complement existing government-led efforts and should be built with mechanisms in place to balance the values of innovation, access, and conservation.

  8. Research on Operation Assessment Method for Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  9. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson

    2008-01-01

    The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase...

  10. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  11. Modeling of EUV photoresists with a resist point spread function

    International Nuclear Information System (INIS)

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01

    Extreme ultraviolet (EUV) lithography is under development for possible deployment at the 32-nm technology node. One active area of research in this field is the development of photoresists that can meet the stringent requirements (high resolution, high sensitivity, low LER, etc.) of lithography in this regime. In order to facilitate research in this and other areas related to EUV lithography, a printing station based upon the 0.3-NA Micro Exposure Tool (MET) optic was established at the Advanced Light Source, a synchrotron facility at Lawrence Berkeley National Laboratory. A resist modeling technique using a resist point spread function has been shown to have good agreement with experiments for certain EUV resists such as Shipley EUV-2D [2]. The resist point spread function is a two-dimensional function that, when convolved with the simulated aerial image for a given mask pattern and applied to a threshold function, gives a representation of the photoresist pattern remaining after development. The simplicity of this modeling approach makes it attractive for rapid modeling of photoresists for process development applications. In this work, the resist point spread functions for three current high-resolution EUV photoresists [Rohm and Haas EUV-2D, Rohm and Haas MET-1K (XP 3454C), and KRS] are extracted experimentally. This model is then used in combination with aerial image simulations (including effects of projection optic aberrations) to predict the resist pattern for a variety of test patterns. A comparison is made between these predictions and experimental results to evaluate the effectiveness of this modeling technique for newer high-resolution EUV resists

  12. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  13. Preference, resistance to change, and the cumulative decision model.

    Science.gov (United States)

    Grace, Randolph C

    2018-01-01

    According to behavioral momentum theory (Nevin & Grace, 2000a), preference in concurrent chains and resistance to change in multiple schedules are independent measures of a common construct representing reinforcement history. Here I review the original studies on preference and resistance to change in which reinforcement variables were manipulated parametrically, conducted by Nevin, Grace and colleagues between 1997 and 2002, as well as more recent research. The cumulative decision model proposed by Grace and colleagues for concurrent chains is shown to provide a good account of both preference and resistance to change, and is able to predict the increased sensitivity to reinforcer rate and magnitude observed with constant-duration components. Residuals from fits of the cumulative decision model to preference and resistance to change data were positively correlated, supporting the prediction of behavioral momentum theory. Although some questions remain, the learning process assumed by the cumulative decision model, in which outcomes are compared against a criterion that represents the average outcome value in the current context, may provide a plausible model for the acquisition of differential resistance to change. © 2018 Society for the Experimental Analysis of Behavior.

  14. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Lewis, Russell E; Verweij, Paul E

    2017-08-15

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    an important role for the evolution of resistance. When growing under stressed conditions, such as in the presence of antibiotics, mutators are considered to have an advantages in comparison to non-mutators. This has been supported by a mathematical model for competing growth between a mutator and a non......This thesis applies mathematical modelling and statistical methods to investigate the dynamics and mechanisms of bacterial evolution. More specifically it is concerned with the evolution of antibiotic resistance in bacteria populations, which is an increasing problem for the treatment of infections...... in humans and animals. To prevent the evolution and spread of resistance, there is a need for further understanding of its dynamics. A grey-box modelling approach based on stochastic differential equations is the main and innovative method applied to study bacterial systems in this thesis. Through...

  16. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    Smart meters are the cornerstone in the new conception of the electrical network or Smart Grid (SG), providing detailed information about users' energy consumption and allowing the suppliers to remotely collect data for billing. Nevertheless, their features are not only useful for the energy...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  17. Liquid Flow Meter based on a Thermal Anemometer Microsensor

    OpenAIRE

    Oleg Sazhin

    2016-01-01

    An analytical model of a thermal anemometer sensor is developed. A thermal anemometer microsensor utilizing doped polycrystalline silicon is created. A liquid flow meter prototype based on a thermal anemometer microsensor is designed. Results of the flow meter testing are presented.

  18. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... in this work, dealing with the coupled mechanical-electrical-thermal contact problems. The penalty method is used to impose the contact conditions in the electrical and thermal contact, as well as frictionless contact and sticking contact in the mechanical model. A node-segment contact element is the basis...

  19. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  20. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  1. Healthcare Energy Metering Guidance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This brochure is intended to help facility and energy managers plan and prioritize investments in energy metering. It offers healthcare-specific examples of metering applications, benefits, and steps that other health systems can reproduce. It reflects collaborative input from the U.S. Department of Energy national laboratories and the health system members of the DOE Hospital Energy Alliance's Benchmarking and Measurement Project Team.

  2. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  3. Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion

    DEFF Research Database (Denmark)

    Foged, N.; Marker, Pernille Aabye; Christiansen, A. V.

    2014-01-01

    and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey...... in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively....

  4. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  5. Survey of chemically amplified resist models and simulator algorithms

    Science.gov (United States)

    Croffie, Ebo H.; Yuan, Lei; Cheng, Mosong; Neureuther, Andrew R.

    2001-08-01

    Modeling has become indespensable tool for chemically amplified resist (CAR) evaluations. It has been used extensively to study acid diffusion and its effects on resist image formation. Several commercial and academic simulators have been developed for CAR process simulation. For commercial simulators such as PROLITH (Finle Technologies) and Solid-C (Sigma-C), the user is allowed to choose between an empirical model or a concentration dependant diffusion model. The empirical model is faster but not very accurate for 2-dimension resist simulations. In this case there is a trade off between the speed of the simulator and the accuracy of the results. An academic simulator such as STORM (U.C. Berkeley) gives the user a choice of different algorithms including Fast Imaging 2nd order finite difference algorithm and Moving Boundary finite element algorithm. A user interested in simulating the volume shrinkage and polymer stress effects during post exposure bake will need the Moving Boundary algorithm whereas a user interested in the latent image formation without polymer deformations will find the Fast Imaging algorithm more appropriate. The Fast Imaging algorithm is generally faster and requires less computer memory. This choice of algorithm presents a trade off between speed and level of detail in resist profile prediction. This paper surveys the different models and simulator algorithms available in the literature. Contributions in the field of CAR modeling including contributions to characterization of CAR exposure and post exposure bake (PEB) processes for different resist systems. Several numerical algorithms and their performances will also be discussed in this paper.

  6. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  7. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus

    NARCIS (Netherlands)

    Lewis, R.E.; Verweij, P.E.

    2017-01-01

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment

  8. Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation

    Science.gov (United States)

    Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.

    2003-04-01

    Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.

  9. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  10. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  11. Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling.

    Directory of Open Access Journals (Sweden)

    Matthieu Jacobs

    2016-03-01

    Full Text Available Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS were performed for models with one susceptible bacterial population without (M1 or with a resting stage (M2, a one population model with adaptive resistance (M5, models with pre-existing susceptible and resistant populations without (M3 or with (M4 inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6. For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h. Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10% and had good imprecision (<30%. However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and

  12. Weather Impact on Airport Arrival Meter Fix Throughput

    Science.gov (United States)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  13. Arduino based radiation survey meter

    International Nuclear Information System (INIS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee; Muzakkir, Amir

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr −1 ). Conversion factor (CF) value for conversion of CPM to μSvhr −1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  14. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  15. Smarter energy from smart metering to the smart grid

    CERN Document Server

    Sun, Hongjian; Poor, H Vincent; Carpanini, Laurence; Fornié, Miguel Angel Sánchez

    2016-01-01

    This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.

  16. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  17. Resistance analysis of unsymmetrical trimaran model with outboard sidehulls configuration

    Science.gov (United States)

    Yanuar; Gunawan; Talahatu, M. A.; Indrawati, Ragil T.; Jamaluddin, A.

    2013-09-01

    The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years. Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved, compared to the mono-hull and catamaran hull forms. The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration ( S/ L) 0.1-0.3 and R/ L=0.1-0.2. Unsymmetrical trimaran ship model with main dimensions: L=2000mm, B=200 mm and T=45 mm. Experimental methods (towing tank) were performed in the study using speed variations at Froude number 0.1-0.6. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was measured precisely by using a load cell transducer. The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number. The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/ L=0.1.

  18. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    Science.gov (United States)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  19. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  20. Detailed models for timing and efficiency in resistive plate chambers

    CERN Document Server

    AUTHOR|(CDS)2067623; Lippmann, Christian

    2003-01-01

    We discuss detailed models for detector physics processes in Resistive Plate Chambers, in particular including the effect of attachment on the avalanche statistics. In addition, we present analytic formulas for average charges and intrinsic RPC time resolution. Using a Monte Carlo simulation including all the steps from primary ionization to the front-end electronics we discuss the dependence of efficiency and time resolution on parameters like primary ionization, avalanche statistics and threshold.

  1. Implementing Project-based Learning in making a weight meter

    Science.gov (United States)

    Muliawan, W.; Nahar, W. S.; Sebastian, C. E.; Yuliza, E.; Khairurrijal

    2016-08-01

    Project-based learning (PjBL) is an activity, which can be done individually or in groups, that goes on over a period of time and its objective can be a product, presentation, or performance. It can make students develop their skills and become more engaged in learning because they can solve problems that are met in real life through a project. The project was a weight meter using a d.c. deflection-type bridge circuit and a VU meter, which was realized by a group of three students (the first three authors). We were of the 2nd year of undergraduate physics program that are taking the Measurement and Data Processing Techniques course in the period of January to April 2015. We worked together with our lecturer and tutor as our advisers. In making the weight meter, we have done the following roles in PjBL: 1. Planning the project and setting a timeline, 2. Doing research, 3. Creating first draft, 4. Rewriting the project report, and 5. Submitting the project. Under the guidance of timeline, the project has been completed timely. A force sensing resistor (FSR) sensor was employed to convert a body mass to resistance of the bridge circuit and the VU meter was modified to be a display of the weight meter. The weight meter could be used to measure a body mass up to 5 kg.

  2. Arrival metering fuel consumption analysis

    Science.gov (United States)

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  3. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing...

  4. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    Science.gov (United States)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  5. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  6. Akaike information criterion to select well-fit resist models

    Science.gov (United States)

    Burbine, Andrew; Fryer, David; Sturtevant, John

    2015-03-01

    In the field of model design and selection, there is always a risk that a model is over-fit to the data used to train the model. A model is well suited when it describes the physical system and not the stochastic behavior of the particular data collected. K-fold cross validation is a method to check this potential over-fitting to the data by calibrating with k-number of folds in the data, typically between 4 and 10. Model training is a computationally expensive operation, however, and given a wide choice of candidate models, calibrating each one repeatedly becomes prohibitively time consuming. Akaike information criterion (AIC) is an information-theoretic approach to model selection based on the maximized log-likelihood for a given model that only needs a single calibration per model. It is used in this study to demonstrate model ranking and selection among compact resist modelforms that have various numbers and types of terms to describe photoresist behavior. It is shown that there is a good correspondence of AIC to K-fold cross validation in selecting the best modelform, and it is further shown that over-fitting is, in most cases, not indicated. In modelforms with more than 40 fitting parameters, the size of the calibration data set benefits from additional parameters, statistically validating the model complexity.

  7. Accuracy of cuticular resistance parameterizations in ammonia dry deposition models

    Science.gov (United States)

    Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem

    2016-04-01

    Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to

  8. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  9. Empirical validation of landscape resistance models: insights from the Greater Sage-Grouse (Centrocercus urophasianus)

    Science.gov (United States)

    Andrew J. Shirk; Michael A. Schroeder; Leslie A. Robb; Samuel A. Cushman

    2015-01-01

    The ability of landscapes to impede species’ movement or gene flow may be quantified by resistance models. Few studies have assessed the performance of resistance models parameterized by expert opinion. In addition, resistance models differ in terms of spatial and thematic resolution as well as their focus on the ecology of a particular species or more generally on the...

  10. The host model Galleria mellonella is resistant to taylorellae infection.

    Science.gov (United States)

    Hébert, L; Rincé, I; Sanna, C; Laugier, C; Rincé, A; Petry, S

    2014-10-01

    The genus Taylorella is composed of two species: (i) Taylorella equigenitalis, the causative agent of CEM, a venereally transmitted infection of Equidae and (ii) Taylorella asinigenitalis, a closely related species considered to be nonpathogenic, although experimental infection of mares with this bacterium resulted in clinical signs of vaginitis, cervicitis or endometritis. Currently, there is a need for an alternative host model to further study the taylorellae species. In this context, we explored Galleria mellonella larvae as potential alternative model hosts for taylorellae. Our results showed that infection of G. mellonella larvae with a high concentration of taylorellae did not induce overt G. mellonella mortality and that taylorellae were not able to proliferate within G. mellonella. In conclusion, G. mellonella larvae are resistant to taylorellae infection and therefore do not constitute a relevant alternative system for studying the virulence of taylorellae species. Significance and impact of the study: To date, the pathogenicity and host colonization capacity of Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM) and T. asinigenitalis, the second species within the Taylorella genus, remain largely unknown. In this study, we evaluated the relevance of Galleria mellonella as an infection model for taylorellae; we showed that G. mellonella are resistant to taylorellae infection and therefore do not constitute a suitable host model for taylorellae. © 2014 The Society for Applied Microbiology.

  11. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  12. NUCLEAR MIXING METERS FOR CLASSICAL NOVAE

    International Nuclear Information System (INIS)

    Kelly, Keegan J.; Iliadis, Christian; Downen, Lori; Champagne, Art; José, Jordi

    2013-01-01

    Classical novae are caused by mass transfer episodes from a main-sequence star onto a white dwarf via Roche lobe overflow. This material possesses angular momentum and forms an accretion disk around the white dwarf. Ultimately, a fraction of this material spirals in and piles up on the white dwarf surface under electron-degenerate conditions. The subsequently occurring thermonuclear runaway reaches hundreds of megakelvin and explosively ejects matter into the interstellar medium. The exact peak temperature strongly depends on the underlying white dwarf mass, the accreted mass and metallicity, and the initial white dwarf luminosity. Observations of elemental abundance enrichments in these classical nova events imply that the ejected matter consists not only of processed solar material from the main-sequence partner but also of material from the outer layers of the underlying white dwarf. This indicates that white dwarf and accreted matter mix prior to the thermonuclear runaway. The processes by which this mixing occurs require further investigation to be understood. In this work, we analyze elemental abundances ejected from hydrodynamic nova models in search of elemental abundance ratios that are useful indicators of the total amount of mixing. We identify the abundance ratios ΣCNO/H, Ne/H, Mg/H, Al/H, and Si/H as useful mixing meters in ONe novae. The impact of thermonuclear reaction rate uncertainties on the mixing meters is investigated using Monte Carlo post-processing network calculations with temperature-density evolutions of all mass zones computed by the hydrodynamic models. We find that the current uncertainties in the 30 P(p, γ) 31 S rate influence the Si/H abundance ratio, but overall the mixing meters found here are robust against nuclear physics uncertainties. A comparison of our results with observations of ONe novae provides strong constraints for classical nova models

  13. BH3105 type neutron dose equivalent meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Enshan; Yang Jianfeng; Zhang Hong; Huang Jiling

    1995-10-01

    It is noted that to design a neutron dose meter of high sensitivity is almost impossible in the frame of traditional designing principle--'absorption net principle'. Based on a newly proposed principle of obtaining neutron dose equi-biological effect adjustment--' absorption stick principle', a brand-new neutron dose-equivalent meter with high neutron sensitivity BH3105 has been developed. Its sensitivity reaches 10 cps/(μSv·h -1 ), which is 18∼40 times higher than one of foreign products of the same kind and is 10 4 times higher than that of domestic FJ342 neutron rem-meter. BH3105 has a measurement range from 0.1μSv/h to 1 Sv/h which is 1 or 2 orders wider than that of the other's. It has the advanced properties of gamma-resistance, energy response, orientation, etc. (6 tabs., 5 figs.)

  14. Myths, models and mitigation of resistance to pesticides.

    OpenAIRE

    Hoy, M A

    1998-01-01

    Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about 'resistance management' has been based on 'myths'. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natu...

  15. Ramp - Metering Algorithms Evaluated within Simplified Conditions

    Science.gov (United States)

    Janota, Aleš; Holečko, Peter; Gregor, Michal; Hruboš, Marián

    2017-12-01

    Freeway networks reach their limits, since it is usually impossible to increase traffic volumes by indefinitely extending transport infrastructure through adding new traffic lanes. One of the possible solutions is to use advanced intelligent transport systems, particularly ramp metering systems. The paper shows how two particular algorithms of local and traffic-responsive control (Zone, ALINEA) can be adapted to simplified conditions corresponding to Slovak freeways. Both control strategies are modelled and simulated using PTV Vissim software, including the module VisVAP. Presented results demonstrate the properties of both control strategies, which are compared mutually as well as with the initial situation in which no control strategy is applied

  16. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  17. Failure of Homeostatic Model Assessment of Insulin Resistance to Detect Marked Diet-Induced Insulin Resistance in Dogs

    Science.gov (United States)

    Ader, Marilyn; Stefanovski, Darko; Richey, Joyce M.; Kim, Stella P.; Kolka, Cathryn M.; Ionut, Viorica; Kabir, Morvarid; Bergman, Richard N.

    2014-01-01

    Accurate quantification of insulin resistance is essential for determining efficacy of treatments to reduce diabetes risk. Gold-standard methods to assess resistance are available (e.g., hyperinsulinemic clamp or minimal model), but surrogate indices based solely on fasting values have attractive simplicity. One such surrogate, the homeostatic model assessment of insulin resistance (HOMA-IR), is widely applied despite known inaccuracies in characterizing resistance across groups. Of greater significance is whether HOMA-IR can detect changes in insulin sensitivity induced by an intervention. We tested the ability of HOMA-IR to detect high-fat diet–induced insulin resistance in 36 healthy canines using clamp and minimal model analysis of the intravenous glucose tolerance test (IVGTT) to document progression of resistance. The influence of pancreatic function on HOMA-IR accuracy was assessed using the acute insulin response during the IVGTT (AIRG). Diet-induced resistance was confirmed by both clamp and minimal model (P HOMA-IR ([fasting insulin (μU/mL) × fasting glucose (mmol)]/22.5) did not detect reduced sensitivity induced by fat feeding (P = 0.22). In fact, 13 of 36 animals showed an artifactual decrease in HOMA-IR (i.e., increased sensitivity). The ability of HOMA-IR to detect diet-induced resistance was particularly limited under conditions when insulin secretory function (AIRG) is less than robust. In conclusion, HOMA-IR is of limited utility for detecting diet-induced deterioration of insulin sensitivity quantified by glucose clamp or minimal model. Caution should be exercised when using HOMA-IR to detect insulin resistance when pancreatic function is compromised. It is necessary to use other accurate indices to detect longitudinal changes in insulin resistance with any confidence. PMID:24353184

  18. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  19. Twin Cities ramp meter evaluation : executive summary

    Science.gov (United States)

    2001-02-01

    This report details the results of a study on the traffic flow and safety impacts of ramp metering. The study served two important public purposes. 1. It thoroughly documented the benefits resulting from ramp metering to traffic operations and relate...

  20. Calibration of dose meters used in radiotherapy

    International Nuclear Information System (INIS)

    1979-01-01

    This manual is a practical guide, not a comprehensive textbook, to the instrumentation and procedures necessary to calibrate a radiation dose meter used in clinical practice against a secondary standard dose meter

  1. Analysing Smart Metering Systems from a Consumer Perspective

    Science.gov (United States)

    Yesudas, Rani

    Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability

  2. A theoretical quantitative model for evolution of cancer chemotherapy resistance

    Directory of Open Access Journals (Sweden)

    Gatenby Robert A

    2010-04-01

    Full Text Available Abstract Background Disseminated cancer remains a nearly uniformly fatal disease. While a number of effective chemotherapies are available, tumors inevitably evolve resistance to these drugs ultimately resulting in treatment failure and cancer progression. Causes for chemotherapy failure in cancer treatment reside in multiple levels: poor vascularization, hypoxia, intratumoral high interstitial fluid pressure, and phenotypic resistance to drug-induced toxicity through upregulated xenobiotic metabolism or DNA repair mechanisms and silencing of apoptotic pathways. We propose that in order to understand the evolutionary dynamics that allow tumors to develop chemoresistance, a comprehensive quantitative model must be used to describe the interactions of cell resistance mechanisms and tumor microenvironment during chemotherapy. Ultimately, the purpose of this model is to identify the best strategies to treat different types of tumor (tumor microenvironment, genetic/phenotypic tumor heterogeneity, tumor growth rate, etc.. We predict that the most promising strategies are those that are both cytotoxic and apply a selective pressure for a phenotype that is less fit than that of the original cancer population. This strategy, known as double bind, is different from the selection process imposed by standard chemotherapy, which tends to produce a resistant population that simply upregulates xenobiotic metabolism. In order to achieve this goal we propose to simulate different tumor progression and therapy strategies (chemotherapy and glucose restriction targeting stabilization of tumor size and minimization of chemoresistance. Results This work confirms the prediction of previous mathematical models and simulations that suggested that administration of chemotherapy with the goal of tumor stabilization instead of eradication would yield better results (longer subject survival than the use of maximum tolerated doses. Our simulations also indicate that the

  3. Capacitive level meter for liquid hydrogen

    OpenAIRE

    Matsumoto, Koichi; Sobue, Masamitsu; Asamoto, Kai; Nishimura, Yuta; Abe, Satoshi; Numazawa, Takenori

    2011-01-01

    A capacitive level meter working at low temperatures was made to use in magnetic refrigerator for hydrogen liquefaction. The liquid level was measured from the capacitance between parallel electrodes immersed in the liquid. The meter was tested for liquid nitrogen, hydrogen, and helium. The operation was successful using an AC capacitance bridge. The estimated sensitivity of the meter is better than 0.2 mm for liquid hydrogen. The meter also worked with pressurized hydrogen. © 2010.

  4. Computational modeling of drug-resistant bacteria. Final report

    International Nuclear Information System (INIS)

    2015-01-01

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  5. Computational modeling of drug-resistant bacteria. Final report

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Preston [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  6. Scanray radiation meter type 751

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.; White, D.F.

    1978-04-01

    This instrument is a portable, battery-powered exposure rate meter with a digital display covering the exposure rate range from 0.1 mR h -1 to 1.999 R h -1 . It is designed to measure X- and γ-radiation exposure rates over the energy range from 50 keV to 2.5 MeV. The radiation detector of the instrument is a GM tube. The report falls under the headings: general description, facilities and controls, radiation characteristics, electrical characteristics, environmental characteristics, construction, summary of performance, conclusions, manufacturer's comments. (U.K.)

  7. Smart meter status report from Toronto

    International Nuclear Information System (INIS)

    O'Brien, D.

    2006-01-01

    An update of Toronto Hydro's smart metering program was presented. Electricity demand is expected to keep increasing, and there is presently insufficient generation to match supply needs in Ontario. The smart metering program was introduced to aid in the Ontario government's energy conservation strategy, as well as to address peak supply problems that have led to power outages. It is expected that the smart metering program will reduce provincial peak supply by 5 per cent, as the meters support both time-of-use rates and critical peak pricing. Over 800,000 smart meters will be supplied to customers by 2007, and all 4.3 million homes in Toronto will have a smart meter by 2010. In order to meet targets for 2010, the utility will continue to install more 15,000 meters each month for the next 4 years. While the Ontario government has planned and coordinated the rollout and developed smart metering specifications and standards, Toronto Hydro is responsible for the purchase, installation, operation and maintenance of the meters. Advance testing of each meter is needed to ensure billing accuracy, and customer education on meter use is also. The complexity of the metering program has led the utility to establish a rigid project management process. Customer education pilot program are currently being conducted. Experience gained during the earlier phases of the program have enabled the utility to select appropriate metering systems based on density, topography and physical conditions. Project expenditures have been within budget due to improved project estimating and planning. The metering program has been conducted in tandem with the utility's peakSAVER program, a residential and small commercial load control program that has been successful in reducing summer peak demand by cycling air conditioners without causing discomfort. It was concluded that the utility will continue with its mass deployment of smart meters, and is currently preparing its call center to handled

  8. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  9. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  10. Too cheap to meter what?

    International Nuclear Information System (INIS)

    Wedekind, Lothar

    2004-01-01

    Full text: 50 years ago, at 17:30 hours, 26 June 1954, in the town of Obninsk, near Moscow, the first nuclear power plant sent electricity to residences and businesses. Atomic energy had crossed the divide from military uses to peaceful ones, demonstrating the potential to fuel civilian electric power plants. The milestone is being marked this year at an IAEA international nuclear power conference in Obninsk. Past experience will be reviewed, but the focus is on meeting future challenges. Though it has come a long way in 50 years, nuclear energy today finds itself in a struggle of the fittest to carve a niche over the next fifty - in the marketplace and in the public eye. Cliches and sound bites tell part of the nuclear story. Visionary talk by nuclear proponents in 1954 was about future energy sources that would be 'too cheap to meter', a phrase critics pounced upon. Today in 2004 the 'too cheap to meter' phrase occasionally haunts the atom, but pops up more often than not in promotional ads for anything from wind power to web sites. Talk of nuclear energy now is of a 'renaissance' and 'second wind.' New nuclear plants are most attractive where energy demand is growing and resources are scarce, and where energy security, air pollution and greenhouse gases are priorities, IAEA Director General Mohamed ElBaradei points out. In cities, towns, and villages, reality is different, or too much the same, depending how you see and live it. Cheap or not, nuclear energy today supplies one-sixth of the world's electricity in some 30 countries. Still, it does not produce enough power. Neither does any other energy source. More than 1.5 billion people have no electricity to meter whatsoever - not from renewables, solar, nuclear, biomass, wind, coal, oil, gas, firewood, or hydrogen, the publicized promise of tomorrow. So what will it take? Maybe bigger blackouts or hotter days than the world has seen. Certainly needed are more attention, action, and money. In dollar terms

  11. Genetic analysis of baculovirus resistance in lepidopteran model ...

    African Journals Online (AJOL)

    In order to clarify the resistant mechanism of BmNPV in silkworm, and from negative to prove agricultural pest inheritance of virus resistance, in this study, we used the highly resistant strain NB and susceptible strain 306 as the material through the method of classical genetics experiment, and proved that the baculovirus ...

  12. Animal models of resistance exercise and their application to neuroscience research.

    Science.gov (United States)

    Strickland, Justin C; Smith, Mark A

    2016-11-01

    Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. Various models have been developed to examine resistance exercise in laboratory animals. Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Vertical electrical resistivity investigation of foundation conditions ...

    African Journals Online (AJOL)

    The topmost layer is followed in succession by clayey layer, clay/silt, fine sand and coarse sand. The topsoil and clay layers resistivities range between 28.8 to 168 ohm's meters and 115.3 to 120.5 ohm's meters respectively. The maximum resistivity obtained for the fine sand layer ranges between 421 to 885 ohm's meters.

  14. Necessity of resist model in source mask optimization for negative tone development process

    Science.gov (United States)

    Zhao, Lijun; Dong, Lisong; Chen, Wenhui; Wei, Yayi; Ye, Tianchun; Yue, Liwan; Jiang, Yuntao; Wu, Qiang

    2017-07-01

    As the semiconductor technology node comes to 14 nm and below, using bright-field exposure with negative tone development (NTD) has been a dominant lithographic solution for metal and contact layers, which has benefits of larger process windows and higher image contrasts than positive tone development (PTD). For PTD, a resist model is usually optional in source mask optimization (SMO) because optical models with aerial image blur can predict resist behaviors in most cases. However, NTD has much stronger resist effects, such as resist shrinkage and two-dimensional-effect-induced local stress. It has been suggested that the calibrated resist model is strongly required in the SMO of NTD process. We clarify this issue-the necessity of resist model in SMO for NTD process. First, we analyze the mismatch between simulation and experimental data when the aerial image blur is only used to simulate resist effects. Second, we present the calibration flow of resist model. Finally, we use the calibrated resist model to check the test pattern and run the SMO. The result demonstrates that the simulation data have the same tendency with experimental data, and the model has a good prediction on NTD resist behaviors under different conditions.

  15. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling.

    Science.gov (United States)

    van Westen, Gerard J P; Bender, Andreas; Overington, John P

    2014-10-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of 'orthogonally resistant' agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed 'proteochemometric modelling' (PCM), from the field of chemoinformatics, could aid in the quantification and prediction of resistance that acts via point mutations in the target proteins of an agent. The technique combines information from both the chemical and biological domain to generate bioactivity models across large numbers of ligands as well as protein targets. PCM has previously been validated in prospective, experimental work in the medicinal chemistry area, and it draws on the growing amount of bioactivity information available in the public domain. Here, two potential applications of proteochemometric modelling to agrochemical data are described, based on previously published examples from the medicinal chemistry literature.

  16. Simplified phase noise model for negative-resistance oscillators and a comparison with feedback oscillator models.

    Science.gov (United States)

    Everard, Jeremy; Xu, Min; Bale, Simon

    2012-03-01

    This paper describes a greatly simplified model for the prediction of phase noise in oscillators which use a negative resistance as the active element. It is based on a simple circuit consisting of the parallel addition of a noise current, a negative admittance/resistance, and a parallel (Qlimited) resonant circuit. The transfer function is calculated as a forward trans-resistance (VOUT/IIN) and then converted to power. The effect of limiting is incorporated by assuming that the phase noise element of the noise floor is kT/2, i.e., -177 dBm/Hz at room temperature. The result is the same as more complex analyses, but enables a simple, clear insight into the operation of oscillators. The phase noise for a given power in the resonator appears to be lower than in feedback oscillators. The reasons for this are explained. Simulation and experimental results are included.

  17. Antibiotic Resistances in Livestock: A Comparative Approach to Identify an Appropriate Regression Model for Count Data

    Directory of Open Access Journals (Sweden)

    Anke Hüls

    2017-05-01

    Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate

  18. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  19. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.

    Science.gov (United States)

    Rouch, D A; Lee, B T; Morby, A P

    1995-02-01

    Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

  20. The skill and style to model the evolution of resistance to pesticides and drugs.

    Science.gov (United States)

    2010-07-01

    Resistance to pesticides and drugs led to the development of theoretical models aimed at identifying the main factors of resistance evolution and predicting the efficiency of resistance management strategies. We investigated the various ways in which the evolution of resistance has been modelled over the last three decades, by reviewing 187 articles published on models of the evolution of resistance to all major classes of pesticides and drugs. We found that (i) the technical properties of the model were most strongly influenced by the class of pesticide or drug and the target organism, (ii) the resistance management strategies studied were quite similar for the different classes of pesticides or drugs, except that the refuge strategy was mostly used in models of the evolution of resistance to insecticidal proteins, (iii) economic criteria were rarely used to evaluate the evolution of resistance and (iv) the influence of mutation, migration and drift on the speed of resistance development has been poorly investigated. We propose guidelines for the future development of theoretical models of the evolution of resistance. For instance, we stress the potential need to give more emphasis to the three evolutionary forces migration, mutation and genetic drift rather than simply selection.

  1. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  2. Off-level corrections for gravity meters

    Science.gov (United States)

    Niebauer, T. M.; Blitz, Thomas; Constantino, Andy

    2016-04-01

    Gravity meters must be aligned with the local gravity at any location on the surface of the earth in order to measure the full amplitude of the gravity vector. The gravitational force on the sensitive component of the gravity meter decreases by the cosine of the angle between the measurement axis and the local gravity vector. Most gravity meters incorporate two horizontal orthogonal levels to orient the gravity meter for a maximum gravity reading. In order to calculate a gravity correction it is often necessary to estimate the overall angular deviation between the gravity meter and the local gravity vector using two measured horizontal tilt meters. Typically this is done assuming that the two horizontal angles are independent and that the product of the cosines of the horizontal tilts is equivalent to the cosine of the overall deviation. These approximations, however, break down at large angles. This paper derives analytic formulae to transform angles measured by two orthogonal tilt meters into the vertical deviation of the third orthogonal axis. The equations can be used to calibrate the tilt sensors attached to the gravity meter or provide a correction for a gravity meter used in an off-of-level condition.

  3. Modelling nasal high flow therapy effects on upper airway resistance and resistive work of breathing.

    Science.gov (United States)

    Adams, Cletus F; Geoghegan, Patrick H; Spence, Callum J; Jermy, Mark C

    2018-04-07

    The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30-60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (V t ) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. NHF was applied via three different cannula sizes to a 3-D printed human upper airway. Pressure drop and flow rate were measured and used to estimate inspiratory and expiratory upper airway resistances. The resistance information was used to compute the muscular work required to overcome the resistance of the upper airway to flow. NHF raises expiratory resistance relative to spontaneous breathing if the breathing pattern does not change but reduces work of breathing if peak expiratory flow falls. Of the cannula sizes used, the large cannula produced the greatest resistance and the small cannula produced the least. The work required to cause tracheal flow through the upper airway was reduced if the RR and minute volume are reduced by NHF. NHF has been observed to do so in COPD patients (Bräunlich et al., 2013). A reduction in I:E ratio due to therapy was found to reduce work of breathing if the peak inspiratory flow is less than the flow below which no inspiratory effort is required to overcome upper airway resistance. NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of

  4. Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland

    International Nuclear Information System (INIS)

    Kaufmann, Simon; Künzel, Karoline; Loock, Moritz

    2013-01-01

    Implementing smart metering is an important field for energy policy to successfully meet energy efficiency targets. From an integrated social acceptance and customer-perceived value theory perspective we model the importance of customer value of smart metering in this regard. We further shape the model on a choice-based conjoint experiment with Swiss private electricity customers. The study finds that overall customers perceive a positive value from smart metering and are willing to pay for it. Further, based on a cluster analysis of customers’ value perceptions, we identify four customer segments, each with a distinct value perception profile for smart metering. We find that energy policy and management should integrate a solid understanding of customer value for smart metering in their initiatives and consider different smart metering market segments within their measures. - Highlights: ► We model the importance of customer value of smart metering. ► We shape the model on a choice-based conjoint experiment. ► Overall customers perceive a positive value from smart metering. ► Customers are willing to pay for smart metering. ► There are four distinct customer segments with different value perceptions.

  5. Construction of the 16 meter Large Lunar Telescope (LLT)

    Science.gov (United States)

    Omar, Husam Anwar

    1990-01-01

    The different materials that could be used to design the pedestal for a Moon based 16 meter telescope are discussed. The material that should be used has a low coefficient of thermal expansion, high modulus of elasticity, and high compressive and tensile strengths. For the model developed in this study, an aluminum-manganese alloy was used because of its low coefficient of thermal expansion. Due to variations in lunar soil conditions, both vertically and horizontally, three foundation systems are presented. The spudcan footing can be used in the case where dense soil is more than three meters. The spread footing is recommended where the dense soil is between one and three meters. Finally, in the third system, the Lunar Excursion Vehicle (LEV) is used as a base support for the telescope's pedestal. The LEV support requires a prepared site. The soil should be compacted and stabilized, if necessary, to reduce settlement.

  6. Induced mutations for horizontal resistance. A model study using leaf rust resistance in wheat

    International Nuclear Information System (INIS)

    Chopra, V.L.; Sawhney, R.N.; Kumar, R.

    1983-01-01

    A mutant with seemingly non-specific resistance to leaf rust was obtained some time ago from the wheat variety Kharchia Local treated with NMH. This mutant is being studied genetically and in its disease reaction by laboratories in Australia, Canada and India in co-operation. The mutant showed a dominant inheritance of resistance in F 1 , but different segregation in F 2 and F 3 . This peculiar genetic behaviour has so far not been explained. (author)

  7. Mathematical Model of Plasmid-Mediated Resistance to Ceftiofur in Commensal Enteric Escherichia coli of Cattle

    Science.gov (United States)

    Volkova, Victoriya V.; Lanzas, Cristina; Lu, Zhao; Gröhn, Yrjö Tapio

    2012-01-01

    Antimicrobial use in food animals may contribute to antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of animal intestine may serve as a reservoir of resistance-genes. To understand the dynamics of plasmid-mediated resistance to cephalosporin ceftiofur in enteric commensals of cattle, we developed a deterministic mathematical model of the dynamics of ceftiofur-sensitive and resistant commensal enteric Escherichia coli (E. coli) in the absence of and during parenteral therapy with ceftiofur. The most common treatment scenarios including those using a sustained-release drug formulation were simulated; the model outputs were in agreement with the available experimental data. The model indicated that a low but stable fraction of resistant enteric E. coli could persist in the absence of immediate ceftiofur pressure, being sustained by horizontal and vertical transfers of plasmids carrying resistance-genes, and ingestion of resistant E. coli. During parenteral therapy with ceftiofur, resistant enteric E. coli expanded in absolute number and relative frequency. This expansion was most influenced by parameters of antimicrobial action of ceftiofur against E. coli. After treatment (>5 weeks from start of therapy) the fraction of ceftiofur-resistant cells among enteric E. coli, similar to that in the absence of treatment, was most influenced by the parameters of ecology of enteric E. coli, such as the frequency of transfer of plasmids carrying resistance-genes, the rate of replacement of enteric E. coli by ingested E. coli, and the frequency of ceftiofur resistance in the latter. PMID:22615803

  8. Modeling deployment of Pierce’s disease resistant grapevines

    Science.gov (United States)

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  9. An Experimental Model for Resistance Exercise in Rodents

    Directory of Open Access Journals (Sweden)

    Humberto Nicastro

    2012-01-01

    Full Text Available This study aimed to develop an equipment and system of resistance exercise (RE, based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction. Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions, and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and “disturbing” stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.

  10. Research note: Calibrating a disc pastures meter to estimate grass ...

    African Journals Online (AJOL)

    Sampling with more than 100 readings is not, however, recommended owing to the poor reward (precision) per unit of sampling effort. Keywords: coastal forest; disc meter; fire management; fuel load; grass; grasses; herbage mass; pastures; precision; regression model; sample size; south africa; standing crop; thornveld; ...

  11. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  12. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply.

    Science.gov (United States)

    Criminisi, A; Fontanazza, C M; Freni, G; Loggia, G La

    2009-01-01

    Apparent losses are usually caused by water theft, billing errors, or revenue meter under-registration. While the first two causes are directly related to water utility management and may be reduced by improving company procedures, water meter inaccuracies are considered to be the most significant and hardest to quantify. Water meter errors are amplified in networks subjected to water scarcity, where users adopt private storage tanks to cope with the intermittent water supply. The aim of this paper is to analyse the role of two variables influencing the apparent losses: water meter age and the private storage tank effect on meter performance. The study was carried out in Palermo (Italy). The impact of water meter ageing was evaluated in laboratory by testing 180 revenue meters, ranging from 0 to 45 years in age. The effects of the private water tanks were determined via field monitoring of real users and a mathematical model. This study demonstrates that the impact on apparent losses from the meter starting flow rapidly increases with meter age. Private water tanks, usually fed by a float valve, overstate meter under-registration, producing additional apparent losses between 15% and 40% for the users analysed in this study.

  13. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  14. FLOW METERS WITH VERY GOOD PERFORMANCES

    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU

    2011-11-01

    Full Text Available We present the theoretical calculus of a patented flow meter, concerning such the thermodynamic and aerodynamic calculus, as well as the offered precision to measure the flow of the air in any meteorological conditions. In the same time we remark that the proposed flow meter, by its positioning, has not loss of head.

  15. Simplified Processing Method for Meter Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Downs, Janelle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Sadie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vernon, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Simple/Quick metered data processing method that can be used for Army Metered Data Management System (MDMS) and Logistics Innovation Agency data, but may also be useful for other large data sets. Intended for large data sets when analyst has little information about the buildings.

  16. Evaluating Metal Probe Meters for Soil Testing.

    Science.gov (United States)

    Hershey, David R.

    1992-01-01

    Inexpensive metal probe meters that are sold by garden stores can be evaluated by students for their accuracy in measuring soil pH, moisture, fertility, and salinity. The author concludes that the meters are inaccurate and cannot be calibrated in standard units. However, the student evaluations are useful in learning the methods of soil analysis…

  17. Development of a contour meter

    International Nuclear Information System (INIS)

    Andrada C, F.A.; Sanz, D.E.

    2006-01-01

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  18. Design And Construction Of Digital Multi-Meter Using PIC Microcontroller

    OpenAIRE

    Khawn Nue; Dr. KyawSoe Lwin; Hla Myo Tun

    2015-01-01

    Abstract This thesis describes the design and construction of digital multi-meter using PIC microcontroller. In this system a typical multi-meter may include features such as the ability to measure ACDC voltage DC current resistance temperature diodes frequency and connectivity. This design uses of the PIC microcontroller voltage rectifiers voltage divide potentiometer LCD and other instruments to complete the measure. When we used what we have learned of microprocessors and adjust the progra...

  19. Hydro Ottawa achieves Smart Meter milestone

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    As Ontario's second largest municipal electricity company, Hydro Ottawa serves more than 285,000 residential and business customers in the city of Ottawa and the village of Casselman. Since 2006, the utility has installed more than 230,000 Smart Meters throughout its service territory in an effort to provide better services to its customers. This initiative represents the largest operational advanced metering infrastructure network in Canada. This move was necessary before time-of-use rates can be implemented in Ottawa. The Smart Meters deliver data wirelessly to Hydro Ottawa's Customer Information System for billing and eliminating manual readings. The Smart Meters are designed to promote more efficient use of electricity. The Government of Ontario has passed legislation requiring the installation of Smart Meters throughout the province by the end of 2010

  20. Cry1F resistance among lepidopteran pests: a model for improved resistance management?

    Science.gov (United States)

    Vélez, Ana M; Vellichirammal, Neetha Nanoth; Jurat-Fuentes, Juan Luis; Siegfried, Blair D

    2016-06-01

    The Cry1Fa protein from the bacterium Bacillus thuringiensis (Bt) is known for its potential to control lepidopteran pests, especially through transgenic expression in maize and cotton. The maize event TC1507 expressing the cry1Fa toxin gene became commercially available in the United States in 2003 for the management of key lepidopteran pests including the European corn borer, Ostrinia nubilalis, and the fall armyworm, Spodoptera frugiperda. A high-dose/refuge strategy has been widely adopted to delay evolution of resistance to event TC1507 and other transgenic Bt crops. Efficacy of this strategy depends on the crops expressing a high dose of the Bt toxin to targeted pests and adjacent refuges of non-Bt host plants serving as a source of abundant susceptible insects. While this strategy has proved effective in delaying O. nubilalis resistance, field-evolved resistance to event TC1507 has been reported in S. frugiperda populations in Puerto Rico, Brazil, and the southeastern United States. This paper examines available information on resistance to Cry1Fa in O. nubilalis and S. frugiperda and discusses how this information identifies opportunities to refine resistance management recommendations for Bt maize. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comparison of different initiation protocols in the resistant hepatocyte model

    International Nuclear Information System (INIS)

    Espandiari, Parvaneh; Robertson, Larry W.; Srinivasan, Cidambi; Glauert, Howard P.

    2005-01-01

    Several models in rat liver have been developed to study multistage carcinogenesis, including the Solt-Farber resistant hepatocyte model. In this model, initiation consists of either a necrogenic dose of a hepatocarcinogen or a non-necrogenic dose in conjunction with partial hepatectomy (PH). As an alternative to PH, we investigated two different procedures: fasting for 96 h followed by refeeding, or the use of one-day-old neonates. Male Fisher 344 rats were injected p.o. with diethylnitrosamine (DEN) (0, 20, or 100 mg/kg) 24 h after refeeding or PH (controls received DEN alone with no proliferative stimulus). For the neonatal group, male and female Fisher 344 rats were treated with DEN (0 or 20 mg/kg, i.p.) at one day of age. All initiated animals were treated at the same age (11 weeks) with the following selection agents: three daily doses of 2-acetylaminofluorene (AAF) (30 mg/kg), followed by a single dose of carbon tetrachloride (2 ml/kg), followed by three additional daily treatments of AAF (30 mg/kg). Rats were euthanized 2 weeks after the last AAF injection. The PH, neonatal male, and neonatal female groups receiving DEN developed more γ-glutamyl transpeptidase (GGT)-positive foci per cubic centimeter and foci per liver as compared to untreated rats receiving the same proliferative stimulus, whereas the fasting/refeeding group and the group receiving no proliferative stimulus did not. All DEN-treated groups receiving one of the proliferative stimuli had more foci per cubic centimeter than the DEN-treated group receiving no proliferative stimulus. The volume fractions of GGT-positive foci in the PH/DEN and neonatal male/DEN groups were higher than those of both the DEN-treated group receiving no proliferative stimulus and the groups receiving the same proliferative stimulus without DEN. In neonatal females-receiving DEN, the volume fraction was not different from either neonatal females not receiving DEN or DEN-treated rats receiving no proliferative

  2. Predictor model for seasonal variations in skid resistance. Volume 2: Comprehensive report

    Science.gov (United States)

    Henry, J. J.; Saito, K.; Blackburn, R.

    1984-04-01

    Two models, utilizing data collected in 1979 and 1980, were developed to predict variations in skid resistance due to rainfall conditions, temperature effects, and time of the year. A generalized predictor model was developed from purely statistical considerations and a mechanistic model was developed from hypothesized mechanisms. This model may be utilized to estimate the skid resistance at any time in the season from a measurement made during the same season, or to adjust skid-resistance measurement made at any time during the season to the end-of-season level.

  3. Mathematical model for the transport of fluoroquinolone and its resistant bacteria in aquatic environment.

    Science.gov (United States)

    Gothwal, Ritu; Thatikonda, Shashidhar

    2017-08-05

    Development of antibiotic resistance in environmental bacteria is a direct threat to public health. Therefore, it becomes necessary to understand the fate and transport of antibiotic and its resistant bacteria. This paper presents a mathematical model for spatial and temporal transport of fluoroquinolone and its resistant bacteria in the aquatic environment of the river. The model includes state variables for organic matter, fluoroquinolone, heavy metals, and susceptible and resistant bacteria in the water column and sediment bed. Resistant gene is the factor which makes bacteria resistant to a particular antibiotic and is majorly carried on plasmids. Plasmid-mediated resistance genes are transferable between different bacterial species through conjugation (horizontal resistance transfer). This model includes plasmid dynamics between susceptible and resistant bacteria by considering the rate of horizontal resistance gene transfer among bacteria and the rate of losing resistance (segregation). The model describes processes which comprise of advection, dispersion, degradation, adsorption, diffusion, settling, resuspension, microbial growth, segregation, and transfer of resistance genes. The mathematical equations were solved by using numerical methods (implicit-explicit scheme) with appropriate boundary conditions. The development of the present model was motivated by the fact that the Musi River is heavily impacted by antibiotic pollution which led to the development of antibiotic resistance in its aquatic environment. The model was simulated for hypothetical pollution scenarios to predict the future conditions under various pollution management alternatives. The simulation results of the model for different cases show that the concentration of antibiotic, the concentration of organic matter, segregation rate, and horizontal transfer rate are the governing factors in the variation of population density of resistant bacteria. The treatment of effluents for

  4. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption.

    Science.gov (United States)

    Arepyeva, M A; Kolbin, A S; Sidorenko, S V; Lawson, R; Kurylev, A A; Balykina, Yu E; Mukhina, N V; Spiridonova, A A

    2017-03-01

    Infections that are inadequately treated owing to acquired bacterial resistance are a leading cause of mortality. Rates of multidrug-resistant bacteria are rising, resulting in increased antibiotic failures and worsening patient outcomes. Mathematical modelling makes it possible to predict the future spread of bacterial antimicrobial resistance. The aim of this study was to construct a mathematical model that can describe the dependency between the level of antimicrobial resistance and the amount of antibiotic usage. After reviewing existing mathematical models, a cross-sectional, retrospective study was carried out to collect clinical and microbiological data across 3000 patients for the construction of the mathematical model. Based on these data, a model was developed and tested to determine the dependency between antibiotic usage and resistance. Consumption of inhibitor/cephalosporins and fluoroquinolones increases inhibitor/penicillin resistance. Consumption of inhibitor/penicillins increases cephalosporin resistance. Consumption of inhibitor/penicillins increases inhibitor/cephalosporin resistance. It was demonstrated that in some antibiotic-micro-organism pairs, the level of antibiotic usage significantly influences the level of resistance. The model makes it possible to predict the change in resistance and also shows the quantitative effect of antibiotic consumption on the level of bacterial resistance. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  5. Identifying the Reducing Resistance to Change Phase in an Organizational Change Model

    OpenAIRE

    Daniela Bradutanu

    2012-01-01

    In this article we examine where in an organizational change process it is better to place the reducing resistance to change phase, so that employees would accept the new changes easier and not manifest too much resistance. After analyzing twelve organizational change models we have concluded that the place of the reducing resistance to change phase in an organizational change process is not the same, it being modified according to the type of change. The results of this study are helpful for...

  6. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  7. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  8. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  9. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  10. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  11. Electrical Resistivity Based Empirical Model For Delineating Some Selected Soil Properties On Sandy-Loam Soil

    Directory of Open Access Journals (Sweden)

    Joshua

    2015-08-01

    Full Text Available Electrical Resistivity ER survey was conducted on a Sandy-loam soil with a view to evaluate some selected soil properties. Electrical Resistivity was measured from the soil surface at 0 0.3 m ER30 and 0 0.9 m ER90 soil depths using multi-electrode Wenner array and Miller 400D resistance meter. Soil samples were collected to a depth 0.3 m at points where ER was measured and analyzed for properties such as Organic Matter OM Cation Exchange Capacity CEC Soil Water Content SWC Sand Silt and Clay contents using standard methods. The results indicated that lower ER areas exhibit higher content of soil properties than higher ER areas. The ER90 correlates insignificantly to the soil properties while ER30 correlates significantly to the soil properties except clay r 0.63 - 0.75. The relationship between ER30 and soil properties were best fitted to multiple linear regression R2 0.90 and Boltzmann distribution R2 0.80 - 0.84. The study indicates the ability of ER to delineate some soil properties influencing yield on sandy-loam soil. This will help farmers take decisions that can improve yields.

  12. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  13. Physical model of a fumarolic system inferred from a high-resolution 3-D Resistivity image of Solfatara volcano

    Science.gov (United States)

    Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita

    2017-04-01

    Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a

  14. Interfacing of high temperature Z-meter setup using python

    Science.gov (United States)

    Patel, Ashutosh; Sisodia, Shashank; Pandey, Sudhir K.

    2017-05-01

    In this work, we interface high temperature Z-meter setup to automize the whole measurement process. A program is built on open source programming language `Python' which convert the manual measurement process into fully automated process without any cost addition. Using this program, simultaneous measurement of Seebeck coefficient (α), thermal conductivity (κ) and electrical resistivity (ρ), are performed and using all three, figure-of-merit (ZT) is calculated. Developed program is verified by performing measurement over p-type Bi0.36Sb1.45Te3 sample and the data obtained are found to be in good agreement with the reported data.

  15. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    Science.gov (United States)

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  16. An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Angela J. Westover

    2016-01-01

    Full Text Available Obesity is associated with tissue inflammation which is a crucial etiology of insulin resistance. This inflammation centers around circulating monocytes which form proinflammatory adipose tissue macrophages (ATM. Specific approaches targeting monocytes/ATM may improve insulin resistance without the adverse side effects of generalized immunosuppression. In this regard, a biomimetic membrane leukocyte processing device, called the selective cytopheretic device (SCD, was evaluated in an Ossabaw miniature swine model of insulin resistance with metabolic syndrome. Treatment with the SCD in this porcine model demonstrated a decline in circulating neutrophil activation parameters and monocyte counts. These changes were associated with improvements in insulin resistance as determined with intravenous glucose tolerance testing. These improvements were also reflected in lowering of homeostatic model assessment- (HOMA- insulin resistant (IR scores for up to 2 weeks after SCD therapy. These results allow for the planning of first-in-man studies in obese type 2 diabetic patients.

  17. The establishment of insulin resistance model in FL83B and L6 cell

    Science.gov (United States)

    Liu, Lanlan; Han, Jizhong; Li, Haoran; Liu, Mengmeng; Zeng, Bin

    2017-10-01

    The insulin resistance models of mouse liver epithelial and rat myoblasts cells were induced by three kinds of inducers: dexamethasone, high insulin and high glucose. The purpose is to select the optimal insulin resistance model, to provide a simple and reliable TR cell model for the study of the pathogenesis of TR and the improvement of TR drugs and functional foods. The MTT method is used for toxicity screening of three compounds, selecting security and suitable concentration. We performed a Glucose oxidase peroxidase (GOD-POD) method involving FL83B and L6 cell with dexamethasone, high insulin and high glucose-induced insulin resistance. Results suggested that FL83B cells with dexamethasone-induced (0.25uM) were established insulin resistance and L6 cells with high-glucose (30mM) and dexamethasone-induced (0.25uM) were established insulin resistance.

  18. Two-dimensional modeling of apparent resistivity pseudosections in the Cerro Prieto region

    Energy Technology Data Exchange (ETDEWEB)

    Vega, R.; Martinez, M.

    1981-01-01

    Using a finite-difference program (Dey, 1976) for two-dimensional modeling of apparent resistivity pseudosections obtained by different measuring arrays, four apparent resistivity pseudosections obtained at Cerro Prieto with a Schlumberger array by CFE personnel were modeled (Razo, 1978). Using geologic (Puente and de la Pena, 1978) and lithologic (Diaz, et al., 1981) data from the geothermal region, models were obtained which show clearly that, for the actual resistivity present in the zone, the information contained in the measured pseudosections is primarily due to the near-surface structure and does not show either the presence of the geothermal reservoir or the granitic basement which underlies it.

  19. Soft-sensing, non-intrusive multiphase flow meter

    NARCIS (Netherlands)

    Wrobel, K.; Schiferli, W.

    2009-01-01

    For single phase flow meters more and better non-intrusive or even clamp-on meters become available. This allows for a wider use of meters and for easier flow control. As the demand for multiphase meters is increasing, the current aim is to develop a non-intrusive multiphase flow meter. The

  20. The Early Diffusion of Smart Meters in the US Electric Power Industry

    Science.gov (United States)

    Strong, Derek Ryan

    The impact of new technologies within and across industries is only felt through their widespread diffusion, yet studies of technology diffusion are scarce compared to other aspects of the innovation process. The electric power industry is one industry that is currently undergoing substantial change as a result of both technological and institutional innovations. In this dissertation I examine the economic rationale for the adoption of smart meters by electric power utilities and the relationship between smart meters and the evolving electric power industry. I contribute to empirical research on technology diffusion by studying the early diffusion of smart meters in the US electric power industry. Using a panel dataset and econometric models, I analyze the determinants of both the interfirm and intrafirm diffusion of smart meters in the United States. The empirical findings suggest multiple drivers of smart meter diffusion. Policy and regulatory support have had a significant, positive impact on adoption but have not been the only relevant determinants. The findings also suggest that utility characteristics and some combination of learning, cost reductions, and technology standards have been important determinants affecting smart meter diffusion. I also explore the policy implications resulting from this analysis for enhancing the diffusion of smart meters. The costs and benefits of adopting smart meters have been more uncertain than initially thought, suggesting that some policy support for adoption was premature. The coordination of policies is also necessary to achieve the full benefits of using smart meters.

  1. Resistance and support to electronic government, building a model of innovation

    NARCIS (Netherlands)

    Ebbers, Wolfgang E.; van Dijk, Johannes A.G.M.

    2007-01-01

    In several countries forces that resist e-government innovations apparently override those that support them. A first step is taken in order to identify organizational processes of resistance and support to e-government innovations. A multi-disciplinary and non-linear innovation model is proposed

  2. Clothing evaporative heat resistance - Proposal for improved representation in standards and models

    NARCIS (Netherlands)

    Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.

    1999-01-01

    Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement

  3. Testing a Model of Resistance to Peer Pressure among Mexican-Origin Adolescents

    Science.gov (United States)

    Bamaca, Mayra Y.; Umana-Taylor, Adriana J.

    2006-01-01

    This study examined the factors associated with resistance to peer pressure toward antisocial behaviors among a sample of Mexican-origin adolescents (n=564) living in a large Southwestern city in the U.S. A model examining the influence of generational status, emotional autonomy from parents, and self-esteem on resistance to peer pressure was…

  4. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    Science.gov (United States)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  5. EMMNet: Sensor Networking for Electricity Meter Monitoring

    Directory of Open Access Journals (Sweden)

    Zhi-Ting Lin

    2010-06-01

    Full Text Available Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  6. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  7. Opportunities for smart meters in Germany

    International Nuclear Information System (INIS)

    Wolff, J.

    2010-10-01

    Germany has the ambitious goal of lowering its CO2 emission with 80 percent until 2050 as compared to 1990. Sustainable energy and the deployment of smart meters are starting to play increasingly important roles. [nl

  8. Image based automatic water meter reader

    Science.gov (United States)

    Jawas, N.; Indrianto

    2018-01-01

    Water meter is used as a tool to calculate water consumption. This tool works by utilizing water flow and shows the calculation result with mechanical digit counter. Practically, in everyday use, an operator will manually check the digit counter periodically. The Operator makes logs of the number shows by water meter to know the water consumption. This manual operation is time consuming and prone to human error. Therefore, in this paper we propose an automatic water meter digit reader from digital image. The digits sequence is detected by utilizing contour information of the water meter front panel.. Then an OCR method is used to get the each digit character. The digit sequence detection is an important part of overall process. It determines the success of overall system. The result shows promising results especially in sequence detection.

  9. VT USGS NED DEM (10 meter) - statewide

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is derived from the multi-resolution National Elevation Dataset (NED), at resolutions of both 1/3 arc-second (approx. 10 meters) and...

  10. USGS Digital Orthophoto Quad (DOQ) - 3 meter

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data files are a collection of the USGS standard DOQs that have been resampled to a 3-meter cell resolution and mosaiced into quad format vs quarter quad...

  11. Informatics Solutions for Smart Metering Systems Integration

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica OPREA

    2015-01-01

    Full Text Available In this paper different aspects regarding smart metering systems integration have been depicted. Smart metering systems, renewable energy sources integration and advanced tariff systems implementation require informatics solution that could automatically collect and process data, forecast the behavior of electricity consumers, analyze trends regarding electricity prices, optimize the consumption of consumers, provide friendly interfaces, etc. They are advanced technologies that represent solutions for insufficient conventional primary energy sources, gas emissions, dependency on energy sources located outside European Union and issues related to energy efficiency. This paper mainly describes several informatics solutions correlated with operational requirements for smart metering system and our proposal for simplified architecture of smart metering systems, with three distinct levels (base level, middle level and top level and load profile calculation methods.

  12. Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy

    Directory of Open Access Journals (Sweden)

    Javier Baez

    2016-11-01

    Full Text Available Predicting the timing of a castrate resistant prostate cancer is critical to lowering medical costs and improving the quality of life of advanced prostate cancer patients. We formulate, compare and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA. We accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT. While these models are simplifications of a previously published model, they fit data with similar accuracy and improve forecasting results. Both models describe the progression of androgen resistance. Although Model 1 is simpler than the more realistic Model 2, it can fit clinical data to a greater precision. However, we found that Model 2 can forecast future PSA levels more accurately. These findings suggest that including more realistic mechanisms of androgen dynamics in a two population model may help androgen resistance timing prediction.

  13. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  14. Scenario Evaluator for Electrical Resistivity Survey Pre-modeling Tool

    Science.gov (United States)

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, su...

  15. Comparison of five portable peak flow meters

    Directory of Open Access Journals (Sweden)

    Glaucia Nency Takara

    2010-01-01

    Full Text Available OBJECTIVE: To compare the measurements of spirometric peak expiratory flow (PEF from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS: Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05, Spearman's correlation test and Bland-Altman's agreement test. RESULTS: The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263-688 L/min, 450 (350-800 L/min, 420 (310-720 L/min, 380 (300-735 L/min, 400 (310-685 L/min and 415 (335-610 L/min, respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001 and Galemed ® (p<0.01 meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS: The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  16. Comparison of five portable peak flow meters.

    Science.gov (United States)

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05), Spearman's correlation test and Bland-Altman's agreement test. The median and interquartile ranges for the spirometric values and the Air Zone, Assess, Galemed, Personal Best and Vitalograph meters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (p<0.001) and Galemed (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  17. Capacitive level meter for liquid rare gases

    Science.gov (United States)

    Sawada, R.; Kikuchi, J.; Shibamura, E.; Yamashita, M.; Yoshimura, T.

    2003-08-01

    An international project to search μ→eγ decay includes the use of a liquid xenon gamma ray detector. So, a liquid level meter working at a low temperature with low outgassing is needed and the prototype is constructed. The meter shows the liquid level by measuring the capacitance between electrodes with small intervals immersed in the liquid. The operation was successful with the estimated precision of 1 mm in RMS or better.

  18. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  19. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  20. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  1. Smart meters. Smart metering. A solution module for a future-oriented energy system; Intelligente Zaehler. Smart Metering. Ein Loesungsbaustein fuer ein zukunftsfaehiges Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Nadia; Seidl, Hans (comps.)

    2011-12-15

    The German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on smart metering as a solution module for a future-oriented energy system by means of the following contributions: (1) Key role for smart meters; (2) What is smart metering? (3) Implementation of smart metering in Europe; (4) The market development to date in Germany; (5) Practical experiences with smart metering in Germany; (6) Frequently asked questions; (7) Smart metering in intelligent networks; (8) Legal framework conditions; (9) Data security and data protection in the utilisation of smart meters; (10) Ongoing information; (11) Efficient energy systems.

  2. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  3. A computational model to monitor and predict trends in bacterial resistance.

    Science.gov (United States)

    Alawieh, Ali; Sabra, Zahraa; Bizri, Abdul Rahman; Davies, Christopher; White, Roger; Zaraket, Fadi A

    2015-09-01

    Current concern over the emergence of multidrug-resistant superbugs has renewed interest in approaches that can monitor existing trends in bacterial resistance and make predictions of future trends. Recent advances in bacterial surveillance and the development of online repositories of susceptibility tests across wide geographical areas provide an important new resource, yet there are only limited computational tools for its exploitation. Here we propose a hybrid computational model called BARDmaps for automated analysis of antibacterial susceptibility tests from surveillance records and for performing future predictions. BARDmaps was designed to include a structural computational model that can detect patterns among bacterial resistance changes as well as a behavioural computational model that can use the detected patterns to predict future changes in bacterial resistance. Data from the European Antimicrobial Resistance Surveillance Network (EARS-Net) were used to validate and apply the model. BARDmaps was compared with standard curve-fitting approaches used in epidemiological research. Here we show that BARDmaps can reliably predict future trends in bacterial resistance across Europe. BARDmaps performed better than other curve-fitting approaches for predicting future resistance levels. In addition, BARDmaps was also able to detect abrupt changes in bacterial resistance in response to outbreaks and interventions as well as to compare bacterial behaviour across countries and drugs. In conclusion, BARDmaps is a reliable tool to automatically predict and analyse changes in bacterial resistance across Europe. We anticipate that BARDmaps will become an invaluable tool both for clinical providers and governmental agencies to help combat the threat posed by antibiotic-resistant bacteria.

  4. A Light-Weight Metering File System for Sustainable Real-Time Meter Data Management

    Directory of Open Access Journals (Sweden)

    Gangman Yi

    2014-09-01

    Full Text Available A real-time smart metering system has strict requirements, since every piece of data gathered from various meters every hour is of importance, and each component consisting of metering infrastructure should be sustainable. Therefore, it is necessary to efficiently manage the meter data set in smart metering networks as well as in a server. Therefore, we propose a dedicated file system, a LIght-weight Metering File System (LIMFS, which is capable of not only efficiently storing and searching meter data but also performing distributed fault-tolerant meter data management for real-time smart meter devices. The proposed LIMFS exploits accumulated data sliding storage (ADSS for lost data recovery and latest-first error-ignorant data management (LEDM to reduce memory wastage, coping with dynamic report interval. Experimental results demonstrate that LIMFS has as a small enough overhead to be considered negligible, and provides flexible memory capacity according to dynamic report interval, in spite of lost data recovery functionality.

  5. Robust stator resistance identification of an IM drive using model reference adaptive system

    International Nuclear Information System (INIS)

    Madadi Kojabadi, Hossein; Abarzadeh, Mostafa; Aghaei Farouji, Said

    2013-01-01

    Highlights: ► We estimate the stator resistance and rotor speed of the IM. ► We proposed a new quantity to estimate the speed and stator resistance of IM. ► The proposed algorithm is robust to rotor resistance variations. ► We estimate the IM speed and stator resistance simultaneously to avoid speed error. - Abstract: Model reference adaptive system (MRAS) based robust stator resistance estimator for sensorless induction motor (IM) drive is proposed. The MRAS is formed with a semi-active power quantity. The proposed identification method can be achieved with on-line tuning of the stator resistance with robustness against rotor resistance variations. Stable and efficient estimation of IM speed at low region will be guaranteed by simultaneous identification of IM speed and stator resistance. The stability of proposed stator resistance estimator is checked through Popov’s hyperstability theorem. Simulation and experimental results are given to highlight the feasibility, the simplicity, and the robustness of the proposed method.

  6. Assessment of the reliability of reproducing two-dimensional resistivity models using an image processing technique.

    Science.gov (United States)

    Ishola, Kehinde S; Nawawi, Mohd Nm; Abdullah, Khiruddin; Sabri, Ali Idriss Aboubakar; Adiat, Kola Abdulnafiu

    2014-01-01

    This study attempts to combine the results of geophysical images obtained from three commonly used electrode configurations using an image processing technique in order to assess their capabilities to reproduce two-dimensional (2-D) resistivity models. All the inverse resistivity models were processed using the PCI Geomatica software package commonly used for remote sensing data sets. Preprocessing of the 2-D inverse models was carried out to facilitate further processing and statistical analyses. Four Raster layers were created, three of these layers were used for the input images and the fourth layer was used as the output of the combined images. The data sets were merged using basic statistical approach. Interpreted results show that all images resolved and reconstructed the essential features of the models. An assessment of the accuracy of the images for the four geologic models was performed using four criteria: the mean absolute error and mean percentage absolute error, resistivity values of the reconstructed blocks and their displacements from the true models. Generally, the blocks of the images of maximum approach give the least estimated errors. Also, the displacement of the reconstructed blocks from the true blocks is the least and the reconstructed resistivities of the blocks are closer to the true blocks than any other combined used. Thus, it is corroborated that when inverse resistivity models are combined, most reliable and detailed information about the geologic models is obtained than using individual data sets.

  7. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance.

    Science.gov (United States)

    Atkins, Katherine E; Lafferty, Erin I; Deeny, Sarah R; Davies, Nicholas G; Robotham, Julie V; Jit, Mark

    2017-11-13

    Antibiotic resistance is a major global threat to the provision of safe and effective health care. To control antibiotic resistance, vaccines have been proposed as an essential intervention, complementing improvements in diagnostic testing, antibiotic stewardship, and drug pipelines. The decision to introduce or amend vaccination programmes is routinely based on mathematical modelling. However, few mathematical models address the impact of vaccination on antibiotic resistance. We reviewed the literature using PubMed to identify all studies that used an original mathematical model to quantify the impact of a vaccine on antibiotic resistance transmission within a human population. We reviewed the models from the resulting studies in the context of a new framework to elucidate the pathways through which vaccination might impact antibiotic resistance. We identified eight mathematical modelling studies; the state of the literature highlighted important gaps in our understanding. Notably, studies are limited in the range of pathways represented, their geographical scope, and the vaccine-pathogen combinations assessed. Furthermore, to translate model predictions into public health decision making, more work is needed to understand how model structure and parameterisation affects model predictions and how to embed these predictions within economic frameworks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  9. The 4-meter lunar engineering telescope

    Science.gov (United States)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-09-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  10. Anti-Theft Automatic Metering Interface

    Directory of Open Access Journals (Sweden)

    Abhijeet Das

    2015-08-01

    Full Text Available Abstract Electricity is now more than a necessity and its need is increasing day by day resulting in power theft and power scarcity. The purpose of this project is to provide automatic control and monitoring of the Domestic Energy Meter enabling the Electricity Department to read meter readings without anyone visiting each house and also prevent electricity theft .This can be achieved by the use of a Microcontroller Unit that continuously monitors and records the Energy Meter readings in its permanent memory location. This system also makes use of a GSM module for remote monitoring and control of Energy Meter with the help of an interfacing circuitry. The Microcontroller based system continuously records the readings and the live meter reading can be sent to the Electricity department after a count period or on request. This system also can be used to disconnect the power supply to the house in case of non-payment of electricity bills. The Substation will be the receiving end. The data received is fed to a microcontroller at the Substation which will automatically calculate the bill based on tariff provider and display it.

  11. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals.

    Science.gov (United States)

    Cen, Xiuli; Feng, Zhilan; Zheng, Yiqiang; Zhao, Yulin

    2017-12-01

    Antibiotic-resistant bacteria have posed a grave threat to public health by causing a number of nosocomial infections in hospitals. Mathematical models have been used to study transmission dynamics of antibiotic-resistant bacteria within a hospital and the measures to control antibiotic resistance in nosocomial pathogens. Studies presented in Lipstich et al. (Proc Natl Acad Sci 97(4):1938-1943, 2000) and Lipstich and Bergstrom (Infection control in the ICU environment. Kluwer, Boston, 2002) have provided valuable insights in understanding the transmission of antibiotic-resistant bacteria in a hospital. However, their results are limited to numerical simulations of a few different scenarios without analytical analyses of the models in broader parameter regions that are biologically feasible. Bifurcation analysis and identification of the global stability conditions can be very helpful for assessing interventions that are aimed at limiting nosocomial infections and stemming the spread of antibiotic-resistant bacteria. In this paper we study the global dynamics of the mathematical model of antibiotic resistance in hospitals considered in Lipstich et al. (2000) and Lipstich and Bergstrom (2002). The invasion reproduction number [Formula: see text] of antibiotic-resistant bacteria is derived, and the relationship between [Formula: see text] and two control reproduction numbers of sensitive bacteria and resistant bacteria ([Formula: see text] and [Formula: see text]) is established. More importantly, we prove that a backward bifurcation may occur at [Formula: see text] when the model includes superinfection, which is not mentioned in Lipstich and Bergstrom (2002). More specifically, there exists a new threshold [Formula: see text], such that if [Formula: see text], then the system can have two positive interior equilibria, which leads to an interesting bistable phenomenon. This may have critical implications for controlling the antibiotic-resistance in a hospital.

  12. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...

  13. Smart meter adoption and deployment strategy for residential buildings in Indonesia

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Gusti Ayu Novi Yutami, I

    2014-01-01

    Highlights: • Limited consumer awareness of smart meters contributes to skepticism. • Data obtained from a survey of energy users are analyzed using SEM. • A CAP index is developed via SEM results to measure consumer propensity for adopting smart meters. • The findings of this study enhance understanding of consumer perceptions and behaviors. • Concrete strategies are proposed to help policy makers and utility companies. - Abstract: For countries pursuing sustainable development and energy efficiency, the use of smart meters is considered a first step in allowing residential consumers to remotely control their energy consumption, and a promising technology for conserving limited energy resources. However, despite the growing interest in smart meters, limited consumer awareness, knowledge, and understanding of these devices contributes to skepticism. This study thus developed an index to measure consumer propensity to adopt smart meters in residential buildings. Data obtained from a survey of energy use by Indonesian households were analyzed using structural equation modeling to determine the interacting factors in consumer acceptance of smart meters. Consumer perceptions, expectations, and intentions regarding the potential use of smart meters in Indonesia were also discussed. The findings of this study enhance understanding of consumer perceptions and behaviors, and can help decision makers and energy utility companies develop policies and strategies for a “one-size-fits-all” program related to smart meter applications in future residential buildings

  14. DEM investigation on characteristics of rolling resistance for modelling particle shape

    Science.gov (United States)

    Zhou, Lunlun; Chu, Xihua; Xu, Yuanjie

    2017-06-01

    To examine the capability of rolling resistance to model the effects of particle shape, two sets of samples, composed of binary clumped particles and circular particles with rolling resistance, are tested in DEM simulation. The coefficient of rolling friction is estimated based on the energy dissipation. The effects of rolling resistance and particle shape on the shear strength, deformation behavior and non-coaxiality are compared. The numerical results show that rolling resistance reproduces well the effect of particle shape on the peak strength. However, other macro-properties, such as residual strength, elasticity modulus, poisson's ratio, dilatancy and non-coaxiality, introduced by rolling resistance both exist certain differences compared with the effect of particle shape. The discrepancies is thought to be due to the increasing compressibility of samples as the particle shape becomes more elongated, which cannot be reproduced by increasing rolling friction.

  15. Household Classification Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Carroll Paula

    2018-03-01

    Full Text Available This article describes a project conducted in conjunction with the Central Statistics Office of Ireland in response to a planned national rollout of smart electricity metering in Ireland. We investigate how this new data source might be used for the purpose of official statistics production. This study specifically looks at the question of determining household composition from electricity smart meter data using both Neural Networks (a supervised machine learning approach and Elastic Net Logistic regression. An overview of both classification techniques is given. Results for both approaches are presented with analysis. We find that the smart meter data alone is limited in its capability to distinguish between household categories but that it does provide some useful insights.

  16. Implementation plan for smart meters in Ontario

    International Nuclear Information System (INIS)

    2004-01-01

    This paper presents Ontario Energy Board's implementation plan to install 800,000 smart meters by December 31, 2007. The objective is to help consumers control their electricity bills through conservation and demand response. The three conditions that will change power consumption habits are price changes in response to demand and supply forces; the ability of consumers to see and respond to the price signals; and, a measurement of the response so that consumers get credit for their actions. This paper identifies the mandatory technical requirements for smart meters and the support operations of distributors. It sets priorities, identifies barriers and regulatory mechanisms for cost recovery. It also discusses options for ownership of the meters. 18 refs., 1 tab., 2 figs

  17. A Compact P⁺ Contact Resistance Model for Characterization of Substrate Coupling in Modern Lightly Doped CMOS Processes

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Jensen, Ole Kiel

    2012-01-01

    Compact modeling of P+ contact resistances is important for characterization of substrate noise coupling in mixed-signal System on Chips (SoCs). Existing contact resistance models can handle uniformly doped bulk or epitaxial substrates. However, compact contact resistance models feasible for modern......, and it is scalable to layout/substrate parameters. The proposed model can also be used to predict noise coupling in terms of S-parameters. The model validation has been done by both EM simulations and measurements, and satisfactory agreement is found between the modeled and measured resistances as well as S-parameters....... lightly-doped CMOS processes with P-well layers are still unavailable. This paper presents a new compact resistance model aiming at solving this problem. A Conformal Mapping(CM) method was used to derive the closed-form expressions for the resistances in the model. The model requires no fitting factors...

  18. Simple meters get smart? Cost benefit analysis of smart metering infrastructure

    International Nuclear Information System (INIS)

    Van Gerwen, R.J.F.; Jaarsma, S.A.; Koenis, F.T.C.

    2005-08-01

    The Dutch Ministry of Economic Affairs requested a cost-benefit analysis of the large scale introduction of a smart meter infrastructure for gas and electricity consumption by small consumers. The questions asked in the study need to be answered in order to enable a well-founded evaluation of the implementation of smart meters. [mk] [nl

  19. Privacy friendly aggregation of smart meter readings, even when meters crash

    NARCIS (Netherlands)

    Hoepman, J.H.

    2017-01-01

    A well studied privacy problem in the area of smart grids is the question of how to aggregate the sum of a set of smart meter readings in a privacy friendly manner, i.e., in such a way that individual meter readings are not revealed to the adversary. Much less well studied is how to deal with

  20. High Mountain Asia 8-meter DEMs Derived from Cross-track Optical Imagery V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 8-meter Digital Elevation Model (DEM) mosaics of high mountain Asia glacier and snow regions generated from from very-high-resolution...

  1. A carrier transport model in the high-resistance state of lead-methylamine iodide-based resistive memory devices

    Directory of Open Access Journals (Sweden)

    Yongwoo Kwon

    2017-08-01

    Full Text Available Methylamine lead iodide (CH3NH3PbI3, which has recently been in the spotlight as a solar cell material, has also recently shown promise for use as an active material in resistive memory cells with ultralow operation voltages, good transparencies, and flexibilities. The material’s defects, which govern its properties, differ vastly depending on the fabrication process. However, the defect chemistry is not yet entirely understood. We have therefore established a macroscopic transport model with defect-related model parameters, such as trap density, trap energy level, and Fermi level, in order to estimate these parameters for fabricated samples based on their electrical data. Our model will serve as an efficient way to analyze the properties of the active material.

  2. Comparison of clinical prediction models for resistant bacteria in community-onset pneumonia.

    Science.gov (United States)

    Self, Wesley H; Wunderink, Richard G; Williams, Derek J; Barrett, Tyler W; Baughman, Adrienne H; Grijalva, Carlos G

    2015-06-01

    Six recently published algorithms classify pneumonia patients presenting from the community into high- and low-risk groups for resistant bacteria. Our objective was to compare performance of these algorithms for identifying patients infected with bacteria resistant to traditional community-acquired pneumonia antibiotics. This was a retrospective study of consecutive adult patients diagnosed with pneumonia in an emergency department and subsequently hospitalized. Each patient was classified as high or low risk for resistant bacteria according to the following algorithms: original health care-associated pneumonia (HCAP) criteria, Summit criteria, Brito and Niederman strategy, Shorr model, Aliberti model, and Shindo model. The reference for comparison was detection of resistant bacteria, defined as methicillin-resistant Staphylococcus aureus or Gram-negative bacteria resistant to ceftriaxone or levofloxacin. A total of 614 patients were studied, including 36 (5.9%) with resistant bacteria. The HCAP criteria classified 304 (49.5%) patients as high risk, with an area under the receiver operating characteristic curve (AUC) of 0.63 (95% confidence interval [CI] = 0.54 to 0.72), sensitivity of 0.69 (95% CI = 0.52 to 0.83), and specificity of 0.52 (95% CI = 0.48 to 0.56). None of the other algorithms improved both sensitivity and specificity or significantly improved the AUC. Compared to the HCAP criteria, the Shorr and Aliberti models classified more patients as high risk, resulting in higher sensitivity and lower specificity. The Shindo model classified fewer patients as high risk, with lower sensitivity and higher specificity. All algorithms for identification of resistant bacteria included in this study had suboptimal performance to guide antibiotic selection. New strategies for selecting empirical antibiotics for community-onset pneumonia are necessary. © 2015 by the Society for Academic Emergency Medicine.

  3. A Simple Model of Tetracycline Antibiotic Resistance in the Aquatic Environment (with Application to the Poudre River

    Directory of Open Access Journals (Sweden)

    Sarah Sanchez

    2011-02-01

    Full Text Available Antibiotic resistance is a major concern, yet it is unclear what causes the relatively high densities of resistant bacteria in the anthropogenically impacted environment. There are various possible scenarios (hypotheses: (A Input of resistant bacteria from wastewater and agricultural sources is significant, but they do not grow in the environment; (B Input of resistant bacteria is negligible, but the resistant bacteria (exogenous or endogenous grow due to the selection pressure of the antibiotic; (C Exogenous bacteria transfer the resistance to the endogenous bacteria and those grow. This paper presents a simple mechanistic model of tetracycline resistance in the aquatic environment. It includes state variables for tetracyclines, susceptible and resistant bacteria, and particulate and dissolved organic matter in the water column and sediment bed. The antibiotic partitions between freely dissolved, dissolved organic matter (DOM-bound and solids-bound phases, and decays. Bacteria growth is limited by DOM, inhibited by the antibiotic (susceptible bacteria only and lower due to the metabolic cost of carrying the resistance (resistant bacteria only. Resistant bacteria can transfer resistance to the susceptible bacteria (conjugation and lose the resistance (segregation. The model is applied to the Poudre River and can reproduce the major observed (literature data patterns of antibiotic concentration and resistance. The model suggests observed densities of resistant bacteria in the sediment bed cannot be explained by input (scenario A, but require growth (scenarios B or C.

  4. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  5. Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials.

    Science.gov (United States)

    Dudaniec, Rachael Y; Worthington Wilmer, Jessica; Hanson, Jeffrey O; Warren, Matthew; Bell, Sarah; Rhodes, Jonathan R

    2016-01-01

    Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical. © 2015 John Wiley & Sons Ltd.

  6. Design and construction of portable survey meter

    Science.gov (United States)

    Singseeta, W.; Thong-aram, D.; Pencharee, S.

    2017-09-01

    This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.

  7. Development of the impedance void meter

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs

  8. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  9. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuations...

  10. The accuracy and limitations of a new meter used to measure aqueous carbon dioxide

    DEFF Research Database (Denmark)

    Moran, Damian; Tirsgård, Bjørn; Steffensen, John F.

    2010-01-01

    The OxyGuard CO2 Analyzer is a novel meter that can directly measure aqueous CO2 gas pressure using a water-resistant gas-permeable membrane and infra-red absorption cell. The pCO2 is converted to a concentration via a solubility factor determined from the calibration procedure and a thermistor. ...

  11. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance.

    Science.gov (United States)

    LeBeau, Aaron M; Sevillano, Natalia; King, Mandy L; Duriseti, Sai; Murphy, Stephanie T; Craik, Charles S; Murphy, Laura L; VanBrocklin, Henry F

    2014-01-01

    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.

  12. Simian-tropic HIV as a model to study drug resistance against integrase inhibitors.

    Science.gov (United States)

    Wares, Melissa; Hassounah, Said; Mesplède, Thibault; Sandstrom, Paul A; Wainberg, Mark A

    2015-04-01

    Drug resistance represents a key aspect of human immunodeficiency virus (HIV) treatment failure. It is important to develop nonhuman primate models for studying issues of drug resistance and the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses for studying resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell-tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1 were replaced with their SIV counterparts (simian-tropic HIV-1 [stHIV-1](SCA,SVIF)) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H, and R263K on drug resistance, viral infectivity, and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their effects in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the role of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI resistance substitutions on viral persistence, transmissibility, and pathogenesis in a nonhuman primate model. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. In-Vacuum Photogrammetry of a 10-Meter Solar Sail

    Science.gov (United States)

    Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.

    2005-01-01

    In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.

  14. Visualization Techniques for Electrical Grid Smart Metering Data

    DEFF Research Database (Denmark)

    Stefan, Maria; Lopez, Jose Manuel Guterrez Lopez; Andreasen, Morten Henius

    2017-01-01

    presented, as a motivation for the choice of the relevant state of the art research. In relation to the knowledge provided by the metering data, a definition of the big data concept will be further introduced, according to the requirements established by the project definition. Geographic Information System...... (GIS) tools are useful to help visualize the collected big data in near-real time. For this reason, a survey of existing GIS software will be made so that the choice of the most suitable tool can be justified. Also, the integration of GIS technologies into the Common Information Model (CIM) aims...... status of the grid. The prediction of future possible critical situations would then be feasible using the available information, whereas, based on historical data, further grid expansion and reinforcement may be planned. A proper presentation and visualization of the near-real time metering data may...

  15. Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent antimicrobial resistance in pigs.

    Science.gov (United States)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo; Toft, Nils; Matthews, Louise; Nielsen, Søren Saxmose

    2015-03-01

    High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma concentration profiles of tetracycline. All dosing regimens result in a clear growth advantage for resistant strains. Short treatment duration was found to be preferable, since it allowed less time for resistant strains to outcompete the susceptible ones. Dosing frequency appeared to be ineffective at reducing the resistance levels. The number of competing strains had no apparent effect on the resistance level during treatment, but possession of fewer strains reduced the time to reach equilibrium after the end of treatment. To sum up, epidemiological parameters may have more profound influence on growth dynamics than dosing regimens and should be considered when designing improved treatment protocols. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Nonlinear inversion of resistivity sounding data for 1-D earth models using the Neighbourhood Algorithm

    Science.gov (United States)

    Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.

    2018-01-01

    To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.

  17. A contact resistance model for scanning probe phase-change memory

    International Nuclear Information System (INIS)

    Wang, Lei; Ying, Jin; Wei Yang, Guo; Wright, David; Aziz, Mustafa

    2014-01-01

    A novel mechanical model was proposed to calculate the contact resistance at tip and capping layer interface for scanning probe phase-change memory applications. The resulting I–V curve calculated from this model that combines Hertzian contact theory with the Schottky diode effect has exhibited a good agreement with the experimental measurements under the same system architecture. The role of contact resistance on the write efficacy of scanning probe phase-change memory was also evaluated by introducing the calculated contact resistance into the previous electrothermal simulations for cases of writing crystalline bits in amorphous starting phase and writing amorphous bits in crystalline starting phase. The consequent written marks and I–V curve show a closer match with the experimental observation compared to the case without including contact resistance. (technical note)

  18. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  19. EnviroMeter: A Platform for Querying Community-Sensed Data

    OpenAIRE

    Sathe, Saket; Oviedo, Arthur; Chakraborty, Dipanjan; Aberer, Karl

    2013-01-01

    Efficiently querying data collected from Large-area Communitydriven Sensor Networks (LCSNs) is a new and challenging problem. In our previous works, we proposed adaptive techniques for learning models (e.g., statistical, non-parametric, etc.) from such data, considering the fact that LCSN data is typically geo-temporally skewed. In this paper, we present a demonstration of EnviroMeter. EnviroMeter uses our adaptive model creation techniques for processing continuous queries on community-sense...

  20. Modelling the influence of steel fibres on the electrical resistivity of cementitious composites

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Stang, Henrik

    2009-01-01

    One of the governing factors on the corrosion of embedded reinforcement is the electrical resistivity of the concrete. The combination of steel fibres and conventional reinforcement bars has been used in a number of structures. However, the addition of electrical con-ductive fibres might influence...... of steel fibre reinforced concrete (SFRC). The parameters investigated in the following are the fibre geometry, the fibre volume and the transitional resistance. On basis of the experimental results, a model, taking the resistivity of the fibres and the concrete matrix into account is proposed....

  1. Positive and normative modeling for Palmer amaranth control and herbicide resistance management.

    Science.gov (United States)

    Frisvold, George B; Bagavathiannan, Muthukumar V; Norsworthy, Jason K

    2017-06-01

    Dynamic optimization models are normative; they solve for what growers 'ought to do' to maximize some objective, such as long-run profits. While valuable for research, such models are difficult to solve computationally, limiting their applicability to grower resistance management education. While discussing properties of normative models in general, this study presents results of a specific positive model of herbicide resistance management, applied to Palmer amaranth control on a representative cotton farm. This positive model compares a proactive resistance management strategy to a reactive strategy with lower short-run costs, but greater risk of herbicide resistance developing. The proactive strategy can pay for itself within 1-4 years, with a yield advantage of 4% or less if the yield advantage begins within 1-2 years of adoption. Whether the proactive strategy is preferable is sensitive to resistance onset and yield losses, but less sensitive to cotton prices or baseline yields. Industry rebates to encourage residual herbicide use (to delay resistance to post-emergence treatments) may be too small to alter grower behavior or they may be paid to growers who would have used residuals anyway. Rebates change grower behavior over a relatively narrow range of model parameters. The size of rebates needed to induce a grower to adopt the proactive strategy declines significantly if growers extend their planning horizon from 1 year to 3-4 years. Whether proactive resistance management is more profitable than a reactive strategy is more sensitive to biological parameters than economic ones. Simulation results suggest growers with longer time horizons (perhaps younger ones) would be more responsive to rebate programs. More empirical work is needed to determine how much rebates increase residual use above what would occur without them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  3. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  4. Trait Stress Resistance and Dynamic Stress Dissipation on Health and Well-Being: The Reservoir Model

    OpenAIRE

    Bergeman, C. S.; Deboeck, Pascal R.

    2014-01-01

    Daily data from the NDHWB (n = 783; age range 37–90) were analyzed to produce ‘dynamic characteristic’ estimates of stress input and dissipation. These were used in multi-level modeling (with age and trait stress resistance) to predict depression and health trajectories. Main effects suggest that dissipation and stress resistance predict lower depression and better health, but lower stress input was only related to lower depression. Interactions revealed that subjects with above average stres...

  5. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    The digital water current meter with infrared display velocity readings obtained per second. To confirm the accuracy of the infrared current meter, it was tested alongside with a conventional water current meter. The measurements performed with the infrared current meter compared well with the measurement performed with ...

  6. 49 CFR 192.353 - Customer meters and regulators: Location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Location. 192.353... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.353 Customer meters and regulators: Location. (a) Each meter and service...

  7. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    NARCIS (Netherlands)

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  8. Parameterization of canopy resistance for modeling the energy partitioning of a paddy rice field

    NARCIS (Netherlands)

    Yan, H.; Zhang, C.; Hiroki, Oue

    2018-01-01

    Models for predicting hourly canopy resistance (rc) and latent heat flux (LET) based on the Penman–Monteith (PM) and bulk transfer methods are presented. The micrometeorological data and LET were observed during paddy rice-growing seasons in 2010 in Japan. One approach to model

  9. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste

  10. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  11. Modelling of electrical resistance of semiconductive polymer pressed sample at the uniaxial compression

    International Nuclear Information System (INIS)

    Karimov, Kh.S.; Radzhabov, A.K.; Akhmedov, Yh.; Valiev, J.; Homidov, I.

    1999-01-01

    In the study the electrical resistance of pressed samples of the poly-N-methylcarbazole complex with iodine (PNMC) under uniaxial compression has been investigated by modeling. Physical model of the samples is considered in the form of contiguous of semiconducting spheres grains. It was investigated the influence of change of geometrical dimensions of the sample and electrical conductivity to resistance at the compression. For description of the polymers conductivity the hoping polaron mechanism of charge transfer was used. In the result of experimental data analysis, mathematical and physical models have been established: constant errors of the experiments are negligible in the linear dependence of the relative resistance on uniaxial pressures; tensity resistive effect caused by change of geometrical dimensions of the sample at the compression is less in comparison with increase of conductivity; the increase of the PMNC conductivity at the uniaxial compression may be result by increase of polaron's radius and dielectric permeability and decrease of polaron's jump length too. Received formula of the relative longitudinal resistance dependence on uruiaxial pressure may be used at the analysis of tensity resistive effect. (author)

  12. Smart meters and economies in energy use

    International Nuclear Information System (INIS)

    Zelem, Marie-Christine

    2014-01-01

    A central theme promoted by the government for the energy transition, the mastering of energy consumption features notably the setting up of intelligent electricity networks and the installation of what are known as smart meters. Yet will consumers actually be in a position to become proponents of more sober use of energy? (author)

  13. Smart wavelength meter for integrated photonics

    NARCIS (Netherlands)

    Benelajla, Meryem; Taballione, Caterina; Boller, Klaus J.

    2017-01-01

    Thermally tunable SiN waveguide microring resonators in connection with neural network readout algorithms appear promising for use as integrated optical wavelength meters. So far, we have observed long-term reliability and a temperature immunity of the readout across several degrees of ambient

  14. Field test of coordinated ramp metering (CRM).

    Science.gov (United States)

    2017-03-15

    This project has focused on field implementation and testing of a Coordinated Ramp Metering (CRM) algorithm at California State Route 99 : Northbound corridor in Sacramento between Calvine Road and the SR50 interchange after 12th Ave. It is a 9 mile ...

  15. Meter Designs Reduce Operation Costs for Industry

    Science.gov (United States)

    2013-01-01

    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  16. Weak measurements with a qubit meter

    DEFF Research Database (Denmark)

    Wu, Shengjun; Mølmer, Klaus

    2009-01-01

    We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...

  17. Optical system for a universal luminance meter

    NARCIS (Netherlands)

    Schreuder, D.A.

    1965-01-01

    There is a need for luminance meters in various fields of photometry having these characteristics: a- objective method of measurements. b. variable shape and size of measurement area. c- absence of parallax during aiming operations. d- Possibility of observing the part of the field of view to be

  18. Mechanisms of Therapy Resistance in Patient-Derived Xenograft Models of BRCA1-Deficient Breast Cancer.

    Science.gov (United States)

    Ter Brugge, Petra; Kristel, Petra; van der Burg, Eline; Boon, Ute; de Maaker, Michiel; Lips, Esther; Mulder, Lennart; de Ruiter, Julian; Moutinho, Catia; Gevensleben, Heidrun; Marangoni, Elisabetta; Majewski, Ian; Józwiak, Katarzyna; Kloosterman, Wigard; van Roosmalen, Markus; Duran, Karen; Hogervorst, Frans; Turner, Nick; Esteller, Manel; Cuppen, Edwin; Wesseling, Jelle; Jonkers, Jos

    2016-11-01

    Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms. © The Author 2016. Published by Oxford University Press. All rights reserved

  19. Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System.

    Science.gov (United States)

    Llop, Pablo; Latorre, Amparo; Moya, Andrés

    2018-02-01

    Antibiotic resistance is recognized as one of the major challenges in public health. The global spread of antibiotic resistance is the consequence of a constant flow of information across multi-hierarchical interactions, involving cellular (clones), subcellular (resistance genes located in plasmids, transposons, and integrons), and supracellular (clonal complexes, genetic exchange communities, and microbiotic ensembles) levels. In order to study such multilevel complexity, we propose to establish an experimental epidemiology model for the transmission of antibiotic resistance with the cockroach Blatella germanica . This paper reports the results of five types of preliminary experiments with B. germanica populations that allow us to conclude that this animal is an appropriate model for experimental epidemiology: (i) the composition, transmission, and acquisition of gut microbiota and endosymbionts; (ii) the effect of different diets on gut microbiota; (iii) the effect of antibiotics on host fitness; (iv) the evaluation of the presence of antibiotic resistance genes in natural- and lab-reared populations; and (v) the preparation of plasmids harboring specific antibiotic resistance genes. The basic idea is to have populations with higher and lower antibiotic exposure, simulating the hospital and the community, respectively, and with a certain migration rate of insects between populations. In parallel, we present a computational model based on P-membrane computing that will mimic the experimental system of antibiotic resistance transmission. The proposal serves as a proof of concept for the development of more-complex population dynamics of antibiotic resistance transmission that are of interest in public health, which can help us evaluate procedures and design appropriate interventions in epidemiology.

  20. Revealing household characteristics from smart meter data

    International Nuclear Information System (INIS)

    Beckel, Christian; Sadamori, Leyna; Staake, Thorsten; Santini, Silvia

    2014-01-01

    Utilities are currently deploying smart electricity meters in millions of households worldwide to collect fine-grained electricity consumption data. We present an approach to automatically analyzing this data to enable personalized and scalable energy efficiency programs for private households. In particular, we develop and evaluate a system that uses supervised machine learning techniques to automatically estimate specific “characteristics” of a household from its electricity consumption. The characteristics are related to a household's socio-economic status, its dwelling, or its appliance stock. We evaluate our approach by analyzing smart meter data collected from 4232 households in Ireland at a 30-min granularity over a period of 1.5 years. Our analysis shows that revealing characteristics from smart meter data is feasible, as our method achieves an accuracy of more than 70% over all households for many of the characteristics and even exceeds 80% for some of the characteristics. The findings are applicable to all smart metering systems without making changes to the measurement infrastructure. The inferred knowledge paves the way for targeted energy efficiency programs and other services that benefit from improved customer insights. On the basis of these promising results, the paper discusses the potential for utilities as well as policy and privacy implications. - Highlights: • Many household characteristics can be automatically inferred from smart meter data. • We develop a system to infer employment status and number of occupants, for instance. • We evaluate our system analyzing data collected from 4232 households in Ireland. • The insights enable personalized and scalable efficiency campaigns for utilities. • Energy efficiency measures must be complemented by privacy protection

  1. Unlocking the potential for efficiency and demand response throughadvanced metering

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Roger; Herter, Karen; Wilson, John

    2004-06-30

    Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options. Historically, implementation of the advanced metering infrastructure (AMI) necessary for the successful efficiency and demand response programs has been prevented by inadequate cost-benefit analyses. A recent California effort has produced an expanded cost-effectiveness methodology for AMI that introduces previously excluded benefits. In addition to utility-centric costs and benefits, the new model includes qualitative and quantitative costs and benefits that accrue to both customers and society.

  2. A simplified model to estimate thermal resistance between carbon nanotube and sample in scanning thermal microscopy

    Science.gov (United States)

    Nazarenko, Maxim; Rosamond, Mark C.; Gallant, Andrew J.; Kolosov, Oleg V.; Dubrovskii, Vladimir G.; Zeze, Dagou A.

    2017-12-01

    Scanning thermal microscopy (SThM) is an attractive technique for nanoscale thermal measurements. Multiwalled carbon nanotubes (MWCNT) can be used to enhance a SThM probe in order to drastically increase spatial resolution while keeping required thermal sensitivity. However, an accurate prediction of the thermal resistance at the interface between the MWCNT-enhanced probe tip and a sample under study is essential for the accurate interpretation of experimental measurements. Unfortunately, there is very little literature on Kapitza interfacial resistance involving carbon nanotubes under SThM configuration. We propose a model for heat conductance through an interface between the MWCNT tip and the sample, which estimates the thermal resistance based on phonon and geometrical properties of the MWCNT and the sample, without neglecting the diamond-like carbon layer covering the MWCNT tip. The model considers acoustic phonons as the main heat carriers and account for their scattering at the interface based on a fundamental quantum mechanical approach. The predicted value of the thermal resistance is then compared with experimental data available in the literature. Theoretical predictions and experimental results are found to be of the same order of magnitude, suggesting a simplified, yet realistic model to approximate thermal resistance between carbon nanotube and sample in SThM, albeit low temperature measurements are needed to achieve a better match between theory and experiment. As a result, several possible avenues are outlined to achieve more accurate predictions and to generalize the model.

  3. Expert-based versus habitat-suitability models to develop resistance surfaces in landscape genetics.

    Science.gov (United States)

    Milanesi, Pietro; Holderegger, R; Caniglia, R; Fabbri, E; Galaverni, M; Randi, E

    2017-01-01

    Landscape genetics aims to investigate functional connectivity among wild populations by evaluating the impact of landscape features on gene flow. Genetic distances among populations or individuals are generally better explained by least-cost path (LCP) distances derived from resistance surfaces than by simple Euclidean distances. Resistance surfaces reflect the cost for an organism to move through particular landscape elements. However, determining the effects of landscape types on movements is challenging. Because of a general lack of empirical data on movements, resistance surfaces mostly rely on expert knowledge. Habitat-suitability models potentially provide a more objective method to estimate resistance surfaces than expert opinions, but they have rarely been applied in landscape genetics so far. We compared LCP distances based on expert knowledge with LCP distances derived from habitat-suitability models to evaluate their performance in landscape genetics. We related all LCP distances to genetic distances in linear mixed effect models on an empirical data set of wolves (Canis lupus) from Italy. All LCP distances showed highly significant (P ≤ 0.0001) standardized β coefficients and R 2 values, but LCPs from habitat-suitability models generally showed higher values than those resulting from expert knowledge. Moreover, all LCP distances better explained genetic distances than Euclidean distances, irrespective of the approaches used. Considering our results, we encourage researchers in landscape genetics to use resistance surfaces based on habitat suitability which performed better than expert-based LCPs in explaining patterns of gene flow and functional connectivity.

  4. Semianalytical model of the contact resistance in two-dimensional semiconductors

    Science.gov (United States)

    Grassi, Roberto; Wu, Yanqing; Koester, Steven J.; Low, Tony

    2017-10-01

    Contact resistance is a severe performance bottleneck for electronic devices based on two-dimensional (2D) layered semiconductors, whose contacts are Schottky rather than Ohmic. Although there is a general consensus that the injection mechanism changes from thermionic to tunneling with gate biasing, existing models tend to oversimplify the transport problem, by neglecting the 2D transport nature and the modulation of the Schottky barrier height, the latter being of particular importance in back-gated devices. In this paper, we develop a semianalytical model based on Bardeen's transfer Hamiltonian approach to describe both effects. Remarkably, our model is able to reproduce several experimental observations of a metallic behavior in the contact resistance, i.e., a decreasing resistance with decreasing temperature, occurring at high gate voltages.

  5. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations.

    Science.gov (United States)

    Holding, Matthew L; Drabeck, Danielle H; Jansa, Sharon A; Gibbs, H Lisle

    2016-11-01

    SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Simulation and resistivity modeling of a geothermal reservoir with waters of different salinity

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Wilt, M.; Bodvarsson, G.S.; Goldstein, N.E.

    1982-10-01

    Apparent resistivities measured by means of repetitive dipole-dipole surveys show significant changes within the Cerro Prieto reservoir. The changes are attributed to production and natural recharge. To better understand the observed geophysical phenomena a simple reservoir simulation study combined with the appropriate DC resistivity calculations to determine the expected magnitude of apparent resistivity change. We consider production from a liquid-dominated reservoir with dimensions and parameters of the Cerro Prieto A reservoir and assume lateral and vertical recharge of colder and less saline waters. Based on rather schematic one- and two-dimensional reservoir simulations, we calculate changes in formation resistivity which we then transform into changes in apparent resistivity that would be observed at the surface. Simulated changes in apparent resistivities over the production zone show increases of 10 to 20% over a 3 year period at the current rate of fluid extraction. Changes of this magnitude are not only within our ability to discern using proper field techniques, but are consistent in magnitude with some of the observed effects. However, the patterns of apparent resistivity changes in the simulated dipole-dipole pseudosection only partially resemble the observed field data. This is explained by the fact that the actual fluid recharge into the A reservoir is more complicated than assumed in our simple, schematic recharge models.

  7. Gene flow from single and stacked herbicide-resistant rice (Oryza sativa): modeling occurrence of multiple herbicide-resistant weedy rice.

    Science.gov (United States)

    Dauer, Joseph; Hulting, Andrew; Carlson, Dale; Mankin, Luke; Harden, John; Mallory-Smith, Carol

    2018-02-01

    Provisia™ rice (PV), a non-genetically engineered (GE) quizalofop-resistant rice, will provide growers with an additional option for weed management to use in conjunction with Clearfield ® rice (CL) production. Modeling compared the impact of stacking resistance traits versus single traits in rice on introgression of the resistance trait to weedy rice (also called red rice). Common weed management practices were applied to 2-, 3- and 4-year crop rotations, and resistant and multiple-resistant weedy rice seeds, seedlings and mature plants were tracked for 15 years. Two-year crop rotations resulted in resistant weedy rice after 2 years with abundant populations (exceeding 0.4 weedy rice plants m -2 ) occurring after 7 years. When stacked trait rice was rotated with soybeans in a 3-year rotation and with soybeans and CL in a 4-year rotation, multiple-resistance occurred after 2-5 years with abundant populations present in 4-9 years. When CL rice, PV rice, and soybeans were used in 3- and 4-year rotations, the median time of first appearance of multiple-resistance was 7-11 years and reached abundant levels in 10-15 years. Maintaining separate CL and PV rice systems, in rotation with other crops and herbicides, minimized the evolution of multiple herbicide-resistant weedy rice through gene flow compared to stacking herbicide resistance traits. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Psychological modeling and adaptations in cognitive representations with increased resistance during motor skill acquisition.

    Science.gov (United States)

    Catina, Peter

    2009-03-01

    It was hypothesized that subjects receiving increased resistance in the squat exercise would demonstrate better technique and better understanding of how to perform the skill than subjects performing the exercise with no increase in resistance. Scores were recorded on the following analyses: the questionnaire analysis, which measured cognitive representation; the video analysis, which measured squat performance technique; and the 3-dimensional figure analysis, which measured the degree of similarity between the position of the model and the position of the subjects during the performance task. Ten undergraduate students were sampled, half of whom received increased resistance in the squat exercise. Admission requirements were that the subjects be men, be matched for age, body weight, and height, and have no experience in resistance training or formal instruction in proper squat technique. After measuring subjects' cognitive representation with the questionnaire, subsequent analyses were conducted to further clarify treatment effects. The second analysis involved measuring differences between the videotaped performance of the model and the videotaped performance of naive subjects. The third analysis consisted of subjects assembling a 3-dimensional wooden figure to duplicate the proper biomechanics of the expert model, which was then photographed and compared with the model's template assembly of the wooden figure. It was concluded that subjects performing the squat with increased resistance showed significant (p technique compared with subjects who performed the squat with no increase in resistance. The directional hypothesis was supported. Namely, the scores of subjects receiving the treatment were predicted to be significantly greater than the scores of those who received no treatment. These data suggest that increasing the resistance in subsequent trials of the squat exercise may be a positive factor in enhancing the performance and improving the biomechanical

  9. The model of mechanisms of materials resistance to fracture

    International Nuclear Information System (INIS)

    Tyugashov, P.F.

    1994-01-01

    A description is made for shear, break-up and combined fracture mechanisms. The potentiality of the model proposed is demonstrated on study of load-elongation diagram for titanium alloy type VT3-1. Comparison of calculation result to with available experimental data confirms the validity of assumptions about materials behaviour under creep conditions. 3 refs., 3 tabs

  10. Low resistive trasparent conductors with metallic grids : modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Rendering, H.; Mannetje, H.H 't; Klerk, L.; Hovestad, A.

    2012-01-01

    At present, transparent conducting oxides (TCOs) are still superior in performance to most other transparent conductors. Results on opto-electronic modeling and design optimization of TCOs are presented using a monolithically integrated CIGS cell configuration as case. For various cell dimensions

  11. Pharmacokinetic-Pharmacodynamic Model To Evaluate Intramuscular Tetracycline Treatment Protocols To Prevent Antimicrobial Resistance in Pigs

    DEFF Research Database (Denmark)

    Ahmad, Amais; Græsbøll, Kaare; Christiansen, Lasse Engbo

    2015-01-01

    to which resistant strains outcompete susceptible strains under antimicrobial pressure may depend not only on the antimicrobial treatment strategies but also on the epidemiological parameters, such as the composition of the bacterial strains in a pig. This study evaluated how variation in the dosing......High instances of antimicrobial resistance are linked to both routine and excessive antimicrobial use, but excessive or inappropriate use represents an unnecessary risk. The competitive growth advantages of resistant bacteria may be amplified by the strain dynamics; in particular, the extent...... protocol for intramuscular administration of tetracycline and the composition of bacterial strains in a pig affect the level of resistance in the intestine of a pig. Predictions were generated by a mathematical model of competitive growth of Escherichia coli strains in pigs under specified plasma...

  12. Direct-current resistivity profiling at the Pecos River Ecosystem Project study site near Mentone, Texas, 2006

    Science.gov (United States)

    Teeple, Andrew; McDonald, Alyson K.; Payne, Jason; Kress, Wade H.

    2009-01-01

    The U.S. Geological Survey, in cooperation with Texas A&M University AgriLife, did a surface geophysical investigation at the Pecos River Ecosystem Project study site near Mentone in West Texas intended to determine shallow (to about 14 meters below the water [river] surface) subsurface composition (lithology) in and near treated (eradicated of all saltcedar) and control (untreated) riparian zone sites during June-August 2006. Land-based direct-current resistivity profiling was applied in a 240-meter section of the riverbank at the control site, and waterborne direct-current continuous resistivity profiling (CRP) was applied along a 2.279-kilometer reach of the river adjacent to both sites to collect shallow subsurface resistivity data. Inverse modeling was used to obtain a nonunique estimate of the true subsurface resistivity from apparent resistivity calculated from the field measurements. The land-based survey showed that the sub-surface at the control site generally is of relatively low resis-tivity down to about 4 meters below the water surface. Most of the section from about 4 to 10 meters below the water surface is of relatively high resistivity. The waterborne CRP surveys convey essentially the same electrical representation of the lithology at the control site to 10 meters below the water surface; but the CRP surveys show considerably lower resistivity than the land-based survey in the subsection from about 4 to 10 meters below the water surface. The CRP surveys along the 2.279-kilometer reach of the river adjacent to both the treated and control sites show the same relatively low resistivity zone from the riverbed to about 4 meters below the water surface evident at the control site. A slightly higher resistivity zone is observed from about 4 to 14 meters below the water surface along the upstream approximately one-half of the profile than along the downstream one-half. The variations in resistivity could not be matched to variations in lithology because

  13. Smart meters and routers radiofrequency disturbances study with pacemakers and implantable cardiac defibrillators.

    Science.gov (United States)

    Ostiguy, Geneviève; Black, Tom; Bluteau, Louis-Jean; Dupont, Louis; Dyrda, Katia; Girard, Guillaume; Nguyen, Duc-Hai; Plante, Michel; Thibault, Bernard

    2013-11-01

    There is no scientific literature that examines radiofrequency (RF) interference from Smart Meters with cardiac implantable electronic devices (CIEDs). The objective of this in vitro study was to assess any potential interference with Medtronic CIEDs (Medtronic Inc., Minneapolis, MN, USA). In the Quebec testing, five models of Medtronic CIEDs were placed in an acrylic cylinder filled with a saline solution and faced a Landis+Gyr Smart Meter or Router (Landis+Gyr AG, Zug, Switzerland). The distance between CIEDs and the meter casing or router antenna was 10 cm. The Meter's normal operating conditions were modified to artificially set the number of impulsions at an abnormally high level (one, two, and three impulses per second). Each scenario was repeated one to five times, for 1 minute each. In the U.S. testing, 6 cm and 15 cm (∼2.25' and ∼6') separated the six models of Medtronic CIEDs from the Schlumberger Smart Meter (Itron Inc., Liberty Lake, WA, USA), which generally sent out a 96-bit Standard Consumption Message over 3 seconds. The transmission varied in frequencies along with the interval between cycles. A total of 6,966 RF transmissions were completed during the 34 tests conducted in Quebec. In the United States, the CIED was exposed to the meter for 10 minutes to provide a minimum of 200 completed RF transmissions. No interference was observed in worst-case scenarios (testing of meters and CIEDs at their performance limits). Landis+Gyr Smart Meters/Routers and Schlumberger Smart Meters do not interfere with the functioning of the Medtronic CIEDs tested, when placed, respectively, 10 cm and 6 cm and 15 cm apart. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  14. Analytical 1D models of the wall thermal resistance of rectangular minichannels applied in heat exchangers

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2016-09-01

    Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.

  15. Investigation of Shallow Paleochannel in Banda Aceh based on Electrical Resistivity Tomography

    Directory of Open Access Journals (Sweden)

    Muzakir Zainal

    2017-01-01

    Full Text Available Pembentukan daratan pesisir sangat dipengaruhi oleh proses sedimentasi dari material hasil rombakan. Proses sedimentasi pada masa lampau dapat dikaji dengan mempelajari sungai purba sebagai media transportasi material. Survey geofisika metode electrical resistivty tomography dilakukan untuk investigasi sungai purba di Ulee Kareng Banda Aceh. Untuk memetakan sedimen dan geometri sungai purba, pengukuran electrical resistivity dilakukan di sepanjang dua lintasan dengan panjang 240 meter dan spasi elektroda 2 meter. Proses inversi model resistivitas 2D telah dilakukan pada masing – masing lintasan data yang terukur. Hasil electrical resistivity tomography mampu membedakan batas – batas antara setiap lapisan sedimen yang terendapkan di lokasi paleochannel. Sedimen paleochannel secara jelas diidentifikasi dari distribusi nilai resistivitas yang lebih tinggi (15.2–31.6 Ω.m. Berdasarkan interpretasi dari metode electrical resistivity tomography area persawahan merupakan lokasi sungai purba pada masa lampau.   The formation of coastal area is influenced by sedimentation process. The sedimentation process along the coastal line in the past one can be explained by studying existence of paleochannels located around the area. Deposition of the sediment along the coast is carried by river activities in the past. We have investigated paleochannel structure in Ulee Kareng, Banda Aceh using electrical resistivity tomography survey. The measurements were performed along two profiles with 240 meters and 2 meters spacing between electrodes crossing the paddy. The method measured apparent resistivity data along the profiles. The 2D resistivity models were inverted from the apparent resistivity data using Res2Div program. The inverted models clearly show indication of paleochannel structure based on distribution of resistivity values within the subsurface. The paleochannel area was characterize by high resistivity i.e. 15.2–31.6 Ω.m.

  16. Narcissistic Force Meets Systemic Resistance: The Energy Clash Model.

    Science.gov (United States)

    Sedikides, Constantine; Campbell, W Keith

    2017-05-01

    This article focuses on the interplay between narcissistic leaders and organizations. It attempts to capture the gist of this interplay with a model outlining the narcissistic organizational trajectory. The Energy Clash Model borrows and adapts a phase/state physics metaphor to conceptualize narcissism as a force that enters or emerges in a stable system (i.e., organization) as a leader, destabilizes it, and stabilizes it at a different state or is expelled. The model consists of three time-contingent phases: perturbation, conflict, and resolution. Narcissists create instability through waves of excitement, proposed reforms, and an inspiring vision for organization's future ( perturbation). With the passage of time, though, systemic awareness and alertness intensify, as organizational costs-in terms of human resources and monetary losses-accrue. Narcissistic energy clashes directly with the organization ( conflict), a clash likely to restabilize the system eventually. The conflict may provoke the exit of the narcissistic leader or his or her accommodation, that is, steps or controls negotiated between the system and the leader ( resolution). Although narcissism is subject to organizational liability, narcissistic energy, when managed and directed properly, may contribute to organizational innovation and evolution. Thus, several interventions for working with narcissistic leaders are discussed.

  17. Accuracy Improvement of Boron Meter Adopting New Fitting Function and Multi-Detector

    Directory of Open Access Journals (Sweden)

    Chidong Kong

    2016-12-01

    Full Text Available This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  18. Robust, non-invasive methods for metering groundwater well extraction in remote environments

    Science.gov (United States)

    Bulovic, Nevenka; Keir, Greg; McIntyre, Neil

    2017-04-01

    Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.

  19. A new inexpensive electrochemical meter for oxygen in sodium coolant

    International Nuclear Information System (INIS)

    Periaswami, G.; Rajan Babu, S.S.; Mathews, C.K.

    1987-01-01

    This report describes the development of an inexpensive oxygen meter for sodium coolant and gives the results of the test experiments. Calcia stabilized zirconia has been found to have necessary domain boundary characteristics at low temperatures for use as oxygen sensor in liquid sodium system. It is possible to obtain acceptable sensor cell resistance at temperatures as low as 230 C if K, K 2 O or Na, Na 2 O is used as reference electrode. The performance of these cells has been tested in bench top sodium loops over long periods. Their performance in terms of cell-out put variation with change in oxygen concentration in sodium has been found to be satisfactory. They also have sufficiently long life times since the kinetics of sodium attack on the electrolyte is slow at low temperatures. (author). 17 refs., 6 figs

  20. Variable hydraulic resistances and their impact on plant drought response modelling.

    Science.gov (United States)

    Baert, Annelies; De Schepper, Veerle; Steppe, Kathy

    2015-04-01

    Plant drought responses are still not fully understood. Improved knowledge on drought responses is, however, crucial to better predict their impact on individual plant and ecosystem functioning. Mechanistic models in combination with plant measurements are promising for obtaining information on plant water status and can assist us in understanding the effect of limiting soil water availability and drought stress. While existing models are reliable under sufficient soil water availability, they generally fail under dry conditions as not all appropriate mechanisms seem yet to have been implemented. We therefore aimed at identifying mechanisms underlying plant drought responses, and in particular investigated the behaviour of hydraulic resistances encountered in the soil and xylem for grapevine (Vitis vinifera L.) and oak (Quercus robur L.). A variable hydraulic soil-to-stem resistance was necessary to describe plant drought responses. In addition, implementation of a variable soil-to-stem hydraulic resistance enabled us to generate an in situ soil-to-stem vulnerability curve, which might be an alternative to the conventionally used vulnerability curves. Furthermore, a daily recalibration of the model revealed a drought-induced increase in radial hydraulic resistance between xylem and elastic living tissues. Accurate information on plant hydraulic resistances and simulation of plant drought responses can foster important discussions regarding the functioning of plants and ecosystems during droughts. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Directory of Open Access Journals (Sweden)

    Marc Souris

    Full Text Available Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  2. Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos.

    Science.gov (United States)

    Souris, Marc; Marcombe, Sébastien; Laforet, Julie; Brey, Paul T; Corbel, Vincent; Overgaard, Hans J

    2017-01-01

    Climatic, sociological and environmental conditions are known to affect the spatial distribution of malaria vectors and disease transmission. Intensive use of insecticides in the agricultural and public health sectors exerts a strong selective pressure on resistance genes in malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species' presence were developed to estimate the probability of presence of malaria vectors and insecticide resistance in Lao PDR. These models were based on environmental and meteorological conditions, and demographic factors. GIS software was used to build and manage a spatial database with data collected from various geographic information providers. GIS was also used to build and run the models. Results showed that potential insecticide use and therefore the probability of resistance to insecticide is greater in the southwestern part of the country, specifically in Champasack province and where malaria incidence is already known to be high. These findings can help national authorities to implement targeted and effective vector control strategies for malaria prevention and elimination among populations most at risk. Results can also be used to focus the insecticide resistance surveillance in Anopheles mosquito populations in more restricted area, reducing the area of surveys, and making the implementation of surveillance system for Anopheles mosquito insecticide resistance possible.

  3. Calibration of reference KAP-meters at SSDL and cross calibration of clinical KAP-meters

    International Nuclear Information System (INIS)

    Hetland, Per O.; Friberg, Eva G.; Oevreboe, Kirsti M.; Bjerke, Hans H.

    2009-01-01

    In the summer of 2007 the secondary standard dosimetry laboratory (SSDL) in Norway established a calibration service for reference air-kerma product meter (KAP-meter). The air-kerma area product, PKA, is a dosimetric quantity that can be directly related to the patient dose and used for risk assessment associated with different x-ray examinations. The calibration of reference KAP-meters at the SSDL gives important information on parameters influencing the calibration factor for different types of KAP-meters. The use of reference KAP-meters calibrated at the SSDL is an easy and reliable way to calibrate or verify the PKA indicated by the x-ray equipment out in the clinics. Material and methods. Twelve KAP-meters were calibrated at the SSDL by use of the substitution method at five diagnostic radiation qualities (RQRs). Results. The calibration factors varied from 0.94 to 1.18. The energy response of the individual KAP-meters varied by a total of 20% between the different RQRs and the typical chamber transmission factors ranged from 0.78 to 0.91. Discussion. It is important to use a calibrated reference KAP-meter and a harmonised calibration method in the PKA calibration in hospitals. The obtained uncertainty in the PKA readings is comparable with other calibration methods if the information in the calibration certificate is correct used, corrections are made and proper positioning of the KAP-chamber is performed. This will ensure a reliable estimate of the patient dose and a proper optimisation of conventional x-ray examinations and interventional procedures

  4. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  5. PELATIHAN RENANG GAYA DADA 8 KALI 25 METER 4 SET LEBIH MENINGKATKAN KECEPATAN RENANG 100 METER GAYA DADA DARIPADA 4 KALI 50 METER 4 SET PADA RENANG PEMULA PUTRA

    Directory of Open Access Journals (Sweden)

    I Wayan Suarta

    2013-07-01

    Full Text Available Sports pool in Indonesia are well known to the public, which is reduced when driving (after the end of the recovery to begin hand pull another hand, the breaststroke is the style of the most interesting because it does not quickly tiring when compared with other styles, because the process of respiration take place with ease, making them easier use in long-distance swim, at the start to affect the pace to continue this next movement needs to get training and a variety of training models, especially at students aged 10-12 years. Training pool 8 times 25 times 50 meters and 4 meters is one of the training methods that can speed up travel time. The best training model has not been encountered in the data. So do the research to find a model training 25 meter pool 8 times and 4 times 4 sets of 50 meters. The study was conducted with pretest-postes group design. Samples taken from the novice swimmer Toya Ening on Dalung Badung, as many as 26 people were randomly selected simple. Samples were divided into 2 groups each group totaled 13 people. Both groups were equally give training in the first group to pool 8 by 25 feet 4 sets, and 4 times the second group of 4 sets of 50 meters. 0.05 ab. Differences in results were analyzed statistically with  The data analyzed were age, height, weight, leg length and physical fitness.  13.49 seconds.± 107.69, and 126.38 ±The mean test results of the final 100 meter breaststroke swimming in a row 12.14 seconds  F count the results obtained respectively by 0.95 seconds with p = 0.59 and 0.93 seconds with a value of p = 0.34. Data showed significant differences significant (p> 0.05. These results indicate that the training of swimming the breaststroke 8 by 25 feet 4 sets is better than 4 times in 4 sets of 50 meter speed up travel time 100-meter breaststroke swimming novice men (p <0.05. Suggested the use of breaststroke swimming training method 8 by 25 feet 4 sets to be intensified to provide training pool at 100

  6. Extracting urban water usage habits from smart meter data: a functional clustering approach

    OpenAIRE

    CHEIFETZ, Nicolas; SAME, Allou; NOUMIR, Zineb; SANDRAZ, Anne Claire; FELIERS, Cédric; HEIM, Véronique

    2017-01-01

    Through automated meter reading systems, recent development of smart grids offers the opportunity for an efficient and responsible management of water resources. The present paper describes a novel methodology for identifying relevant usage profiles from hourly water consumption series collected by smart meters located on a water distribution network. The proposed approach operates in two stages. First, an additive time series decomposition model is used in order to extract seasonal patterns ...

  7. Modelling of soil penetration resistance for an oxisol under no-tillage

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2012-02-01

    Full Text Available Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G, bulk density (D and organic matter content (M. The penetration resistance curve (PR was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md, where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.

  8. Efficacy of Ceftaroline Fosamil against Penicillin-Sensitive and -Resistant Streptococcus pneumoniae in an Experimental Rabbit Meningitis Model

    OpenAIRE

    Cottagnoud, P.; Cottagnoud, M.; Acosta, F.; Stucki, A.

    2013-01-01

    Ceftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain of S. pneumoniae in an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was a...

  9. Critical Review of Directional Neutron Survey Meters

    International Nuclear Information System (INIS)

    Balmer, M.J.I.; Gamage, K.A.A.; Taylor, G.C.

    2013-06-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. (authors)

  10. Smart data acquisition system for utilities metering

    Science.gov (United States)

    Ileana, I.; Risteiu, M.; Tulbure, A.; Rusu, M.

    2009-01-01

    The paper approaches the task of automatically reading and recognition of registered data on the utility meters of the users and is a part of a more complex project of our team concerning the remote data acquisition from industrial processes. A huge amount of utility meters in our country is of mechanical type without remote acquiring facilities and as an intermediate solution we propose an intelligent optical acquisition system which will store the read values in desktop and mobile devices. The main requirements of such a system are: portability, data reading accuracy, fast processing and energy independence. The paper analyses several solutions (including Artificial Neural Networks approach) tested by our team and present the experimental results and our conclusions.

  11. This is the size of one meter

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Ryberg, Thomas

    2017-01-01

    In CSCL studies, language is often foregrounded as the primary resource for engaging in collaborative learning, while the body is more often positioned as a secondary resource. There is, however, a growing interest in the body as a resource in learning and collaboration in and outside CSCL......, the pair engages in a discussion regarding the size of one meter through language, gestures and manipulation of the material resources. The analysis shows two distinct ways of understanding the length of one meter, which primarily are visible through the children’s gestures and bodily movements....... In the analysis we show how the children dynamically produce body-material resources for communicative and illustrative purposes; moreover, they use body-material resources as a cognitive tool and as a way of shepherding each other. The study forms part of a body of studies analysing and theorizing the body...

  12. Critical review of directional neutron survey meters

    Science.gov (United States)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument.

  13. Application of DOI index to analysis of selected examples of resistivity imaging models in Quaternary sediments

    Directory of Open Access Journals (Sweden)

    Glazer Michał

    2014-12-01

    Full Text Available Interpretation of resistivity cross sections may be in many cases unreliable due to the presence of artifacts left by the inversion process. One way to avoid erroneous conclusions about geological structure is creation of Depth of Investigation (DOI index maps, which describe durability of prepared model with respect to variable parameters of inversion. To assess the usefulness of this interpretation methodology in resistivity imaging method over quaternary sediments, it has been used to one synthetic data set and three investigation sites. Two of the study areas were placed in the Upper Silesian Industrial District region: Bytom - Karb, Chorzów - Chorzow Stary; and one in the Southern Pomeranian Lake District across Piława River Valley. Basing on the available geological information the results show high utility of DOI index in analysis of received resistivity models, on which areas poorly constrained by data has been designated.

  14. Leveraging Resistance to Change and the Skunk Works Model of Innovation

    DEFF Research Database (Denmark)

    Fosfuri, Andrea; Rønde, Thomas

    We study a situation in which an R&D department promotes the introduction of an innovation, which results in costly re-adjustments for production workers. In response, the production department tries to resist change by improving the existing technology. We show that firms balancing the strengths...... of the two departments perform better. This principle is employed to derive several implications concerning the hiring of talents, monetary incentives, and technology investment policies. As a negative effect, resistance to change might distort the R&D department's effort away from radical innovations....... The firm can solve this problem by implementing the so-called "skunk works model" of innovation where the R&D department is isolated from the rest of the organization. Resistance to change, innovation, skunk works model, contest....

  15. Prediction of Corrosion Resistance of Some Dental Metallic Materials with an Adaptive Regression Model

    Science.gov (United States)

    Chelariu, Romeu; Suditu, Gabriel Dan; Mareci, Daniel; Bolat, Georgiana; Cimpoesu, Nicanor; Leon, Florin; Curteanu, Silvia

    2015-04-01

    The aim of this study is to investigate the electrochemical behavior of some dental metallic materials in artificial saliva for different pH (5.6 and 3.4), NaF content (500 ppm, 1000 ppm, and 2000 ppm), and with albumin protein addition (0.6 wt.%) for pH 3.4. The corrosion resistance of the alloys was quantitatively evaluated by polarization resistance, estimated by electrochemical impedance spectroscopy method. An adaptive k-nearest-neighbor regression method was applied for evaluating the corrosion resistance of the alloys by simulation, depending on the operation conditions. The predictions provided by the model are useful for experimental practice, as they can replace or, at least, help to plan the experiments. The accurate results obtained prove that the developed model is reliable and efficient.

  16. From Smart Metering to Smart Grid

    Science.gov (United States)

    Kukuča, Peter; Chrapčiak, Igor

    2016-06-01

    The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.

  17. Electricity Consumption Clustering Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Alexander Tureczek

    2018-04-01

    Full Text Available Electricity smart meter consumption data is enabling utilities to analyze consumption information at unprecedented granularity. Much focus has been directed towards consumption clustering for diversifying tariffs; through modern clustering methods, cluster analyses have been performed. However, the clusters developed exhibit a large variation with resulting shadow clusters, making it impossible to truly identify the individual clusters. Using clearly defined dwelling types, this paper will present methods to improve clustering by harvesting inherent structure from the smart meter data. This paper clusters domestic electricity consumption using smart meter data from the Danish city of Esbjerg. Methods from time series analysis and wavelets are applied to enable the K-Means clustering method to account for autocorrelation in data and thereby improve the clustering performance. The results show the importance of data knowledge and we identify sub-clusters of consumption within the dwelling types and enable K-Means to produce satisfactory clustering by accounting for a temporal component. Furthermore our study shows that careful preprocessing of the data to account for intrinsic structure enables better clustering performance by the K-Means method.

  18. Topical Metered-dosing Dispenser Performance Evaluation.

    Science.gov (United States)

    Liu, Qiang; Kupiec, Thomas C; Vu, Nicole T

    2016-01-01

    Topical metered-dosing dispensers are designed for dosing accuracy and ease-of-use by the patients while protecting the packaged products from environmental exposure and contamination. The objective of this study was to evaluate the accuracy, precision, and residual of available topical metered-dosing dispensers with different types of topical cream for practical application. Triplicate samples of five different dispensers were tested. This test was completed using three types of commercial topical cream-bases of dissimilar Total Active Pharmaceutical Ingredient Load Percentages, Transdermal Penetration Percentages, and Specific Gravities. The dispensers were evaluated according to specified dose-uniformity criteria for a total dispensing capacity of 30 mL at 0.5 mL per dose for 60 doses. The study shows Topi-CLICK performed with the best precision and accuracy of dosing in comparison to the airless-pump type dispensers. While the dispensing was highly variable with airless pumps and may require calibration for each packaged product, remarkably the performance of Topi-CLICK was not affected by different types of cream-bases and does not require additional metering calibration. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  19. Route Optimization for Offloading Congested Meter Fixes

    Science.gov (United States)

    Xue, Min; Zelinski, Shannon

    2016-01-01

    The Optimized Route Capability (ORC) concept proposed by the FAA facilitates traffic managers to identify and resolve arrival flight delays caused by bottlenecks formed at arrival meter fixes when there exists imbalance between arrival fixes and runways. ORC makes use of the prediction capability of existing automation tools, monitors the traffic delays based on these predictions, and searches the best reroutes upstream of the meter fixes based on the predictions and estimated arrival schedules when delays are over a predefined threshold. Initial implementation and evaluation of the ORC concept considered only reroutes available at the time arrival congestion was first predicted. This work extends previous work by introducing an additional dimension in reroute options such that ORC can find the best time to reroute and overcome the 'firstcome- first-reroute' phenomenon. To deal with the enlarged reroute solution space, a genetic algorithm was developed to solve this problem. Experiments were conducted using the same traffic scenario used in previous work, when an arrival rush was created for one of the four arrival meter fixes at George Bush Intercontinental Houston Airport. Results showed the new approach further improved delay savings. The suggested route changes from the new approach were on average 30 minutes later than those using other approaches, and fewer numbers of reroutes were required. Fewer numbers of reroutes reduce operational complexity and later reroutes help decision makers deal with uncertain situations.

  20. Critical review of directional neutron survey meters

    International Nuclear Information System (INIS)

    Balmer, Matthew J.I.; Gamage, Kelum A.A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. -- Highlights: • We critically review the existing literature into directional survey meters. • Instruments which could be adapted for this purpose are also reviewed. • Investigate the potential of much lighter portable real-time instrument. • Improvements to existing instruments are suggested to improve their design. • Boron-Doped liquid scintillator design is the most promising, but needs further work

  1. Classical and quantum stochastic models of resistive and memristive circuits

    Science.gov (United States)

    Gough, John E.; Zhang, Guofeng

    2017-07-01

    The purpose of this paper is to examine stochastic Markovian models for circuits in phase space for which the drift term is equivalent to the standard circuit equations. In particular, we include dissipative components corresponding to both a resistor and a memristor in series. We obtain a dilation of the problem which is canonical in the sense that the underlying Poisson bracket structure is preserved under the stochastic flow. We do this first of all for standard Wiener noise but also treat the problem using a new concept of symplectic noise, where the Poisson structure is extended to the noise as well as the circuit variables, and in particular where we have canonically conjugate noises. Finally, we construct a dilation which describes the quantum mechanical analogue.

  2. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  3. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    Science.gov (United States)

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  4. Performance of Virtual Current Meters in Hydroelectric Turbine Intakes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Romero-Gomez, Pedro D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group; Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Hydrology Group

    2016-04-30

    Standards provide recommendations for the best practices in the installation of current meters for measuring fluid flow in closed conduits. These include PTC-18 and IEC-41 . Both of these standards refer to the requirements of the ISO Standard 3354 for cases where the velocity distribution is assumed to be regular and the flow steady. Due to the nature of the short converging intakes of Kaplan hydroturbines, these assumptions may be invalid if current meters are intended to be used to characterize turbine flows. In this study, we examine a combination of measurement guidelines from both ISO standards by means of virtual current meters (VCM) set up over a simulated hydroturbine flow field. To this purpose, a computational fluid dynamics (CFD) model was developed to model the velocity field of a short converging intake of the Ice Harbor Dam on the Snake River, in the State of Washington. The detailed geometry and resulting wake of the submersible traveling screen (STS) at the first gate slot was of particular interest in the development of the CFD model using a detached eddy simulation (DES) turbulence solution. An array of virtual point velocity measurements were extracted from the resulting velocity field to simulate VCM at two virtual measurement (VM) locations at different distances downstream of the STS. The discharge through each bay was calculated from the VM using the graphical integration solution to the velocity-area method. This method of representing practical velocimetry techniques in a numerical flow field has been successfully used in a range of marine and conventional hydropower applications. A sensitivity analysis was performed to observe the effect of the VCM array resolution on the discharge error. The downstream VM section required 11–33% less VCM in the array than the upstream VM location to achieve a given discharge error. In general, more instruments were required to quantify the discharge at high levels of accuracy when the STS was

  5. Modeling evolution of resistance of sugarcane borer (Lepidoptera: Crambidae) to transgenic Bt corn.

    Science.gov (United States)

    Kang, J; Huang, F; Onstad, D W

    2014-08-01

    Diatraea saccharalis (F.) (Lepidoptera: Crambidae) is a target pest of transgenic corn expressing Bacillus thuringiensis (Bt) protein, and the first evidence of resistance by D. saccharalis to Cry1Ab corn was detected in a field population in northeast Louisiana in 2004. We used a model of population dynamics and genetics of D. saccharalis to 1) study the effect of interfield dispersal, the first date that larvae enter diapause for overwintering, toxin mortality, the proportion of non-Bt corn in the corn patch, and the area of a crop patch on Bt resistance evolution; and 2) to identify gaps in empirical knowledge for managing D. saccharalis resistance to Bt corn. Increasing, the proportion of corn refuge did not always improve the durability of Bt corn if the landscape also contained sugarcane, sorghum, or rice. In the landscape, which consisted of 90% corn area, 5% sorghum area, and 5% rice area, the durability of single-protein Bt corn was 40 yr when the proportion of corn refuge was 0.2 but 16 yr when the proportion of corn refuge was 0.5. The Bt resistance evolution was sensitive to a change (from Julian date 260 to 272) in the first date larvae enter diapause for overwintering and moth movement. In the landscapes with Bt corn, non-Bt corn, sugarcane, sorghum, and rice, the evolution of Bt resistance accelerated when larvae entered diapause for overwintering early. Intermediate rates of moth movement delayed evolution of resistance more than either extremely low or high rates. This study suggested that heterogeneity in the agrolandscapes may complicate the strategy for managing Bt resistance in D. saccharalis, and designing a Bt resistance management strategy for D. saccharalis is challenging because of a lack of empirical data about overwintering and moth movement.

  6. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance �?c, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  7. Are Available Models Reliable for Predicting the FRP Contribution to the Shear Resistance of RC Beams?

    DEFF Research Database (Denmark)

    Sas, G.; Täljsten, Björn; Barros, J.

    2009-01-01

    In this paper the trustworthiness of the existing theory for predicting the fiber-reinforced plastic contribution to the shear resistance of reinforced concrete beams is discussed. The most well-known shear models for external bonded reinforcement are presented, commented on, and compared...

  8. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population

    OpenAIRE

    Yamada, Chizumi; Mitsuhashi, Toshitake; Hiratsuka, Noboru; Inabe, Fumiyo; Araida, Nami; Takahashi, Eiko

    2011-01-01

    Abstract The aim of the present study was to establish a reference interval for homeostasis model assessment of insulin resistance (HOMA‐IR) in a Japanese population based on the C28‐A3 document from the Clinical and Laboratory Standards Institute (CLSI). We selected healthy subjects aged 20–79 years, with fasting plasma glucose 

  9. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...

  10. Safety Analysis of the Patch Load Resistance of Plate Girders: Influence of Model Error and Variability

    Directory of Open Access Journals (Sweden)

    Farzad Shahabian

    2013-12-01

    Full Text Available This study aims to undertake a statistical study to evaluate the accuracy of nine models that have been previously proposed for estimating the ultimate resistance of plate girders subjected to patch loading. For each model, mean errors and standard errors, as well as the probability of underestimating or overestimating patch load resistance, are estimated and the resultant values are compared one to another. Prior to that, the models are initially calibrated in order to improve interaction formulae using an experimental data set collected from the literature. The models are then analyzed by computing design factors associated with a target risk level (probability of exceedance. These models are compared one to another considering uncertainties existed in material and geometrical properties. The Monte Carlo simulation method is used to generate random variables. The statistical parameters of the calibrated models are calculated for various coefficients of variations regardless of their correlation with the random resistance variables. These probabilistic results are very useful for evaluating the stochastic sensitivity of the calibrated models.

  11. Modeling the Responses to Resistance Training in an Animal Experiment Study

    Directory of Open Access Journals (Sweden)

    Antony G. Philippe

    2015-01-01

    Full Text Available The aim of the present study was to test whether systems models of training effects on performance in athletes can be used to explore the responses to resistance training in rats. 11 Wistar Han rats (277 ± 15 g underwent 4 weeks of resistance training consisting in climbing a ladder with progressive loads. Training amount and performance were computed from total work and mean power during each training session. Three systems models relating performance to cumulated training bouts have been tested: (i with a single component for adaptation to training, (ii with two components to distinguish the adaptation and fatigue produced by exercise bouts, and (iii with an additional component to account for training-related changes in exercise-induced fatigue. Model parameters were fitted using a mixed-effects modeling approach. The model with two components was found to be the most suitable to analyze the training responses (R2=0.53; P<0.001. In conclusion, the accuracy in quantifying training loads and performance in a rodent experiment makes it possible to model the responses to resistance training. This modeling in rodents could be used in future studies in combination with biological tools for enhancing our understanding of the adaptive processes that occur during physical training.

  12. Discourse in Action: Parents' use of medical and social models to resist disability stigma.

    Science.gov (United States)

    Manago, Bianca; Davis, Jenny L; Goar, Carla

    2017-07-01

    For parents of children with disabilities, stigmatization is part of everyday life. To resist the negative social and emotional consequences of stigma, parents both challenge and deflect social devaluations. Challenges work to upend the stigmatizing structure, while deflections maintain the interaction order. We examine how parents of children with disabilities deploy deflections and challenges, and how their stigma resistance strategies combine with available models of disability discourse. Disability discourse falls into two broad categories: medical and social. The medical model emphasizes diagnostic labels and treats impairment as an individual deficit, while the social model centralizes unaccommodating social structures. The social model's activist underpinnings make it a logical frame for parents to use as they challenge disability stigma. In turn, the medical model's focus on individual "improvement" seems to most closely align with stigma deflections. However, the relationship between stigma resistance strategies and models of disability is an empirical question not yet addressed in the literature. In this study, we examine 117 instances of stigmatization from 40 interviews with 43 parents, and document how parents respond. We find that challenges and deflections do not map cleanly onto the social or medical models. Rather, parents invoke medical and social meanings in ways that serve diverse ends, sometimes centralizing a medical label to challenge stigma, and sometimes recognizing disabling social structures, but deflecting stigma nonetheless. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Resistive MHD modeling of Coaxial Helicity Injection (CHI) in NSTX

    Science.gov (United States)

    Hooper, E. B.; Raman, R.; Menard, J. E.; Sovinec, C. R.

    2010-11-01

    CHI has generated plasma with current, density, and temperature appropriate for NSTX startup [1] offering the potential of solenoid-free operation of an advanced ST. Whole-device simulations using the NIMROD MHD code [2] have been initiated to extend physics understanding of CHI in NSTX and other STs and to help guide experiments. A computational grid has been developed and boundary conditions applied for external magnetic fields including eddy currents in walls and stabilizing plates. Injection and absorber slots are modeled with current specified at the injector and ExB drift at the absorber to prevent compression of the vacuum toroidal magnetic field, as done in simulations on HIT-II. [3] Initial results will be presented and compared with experiment. Results will also be compared with simulations of the SSPX spheromak [4] to examine the different behaviors in the (q>1) ST and (qPhys. Rev. Letters 104, 095003 (2010). 2. C.R. Sovinec, et al., J. Comp. Phys 195, 355 (2004). 3. A. Bayless, C.R. Sovinec, unpublished. 4. E. B. Hooper, et al., Phys. Plasmas 15, 032502 (2008).

  14. Dynamics of an HBV Model with Drug Resistance Under Intermittent Antiviral Therapy

    Science.gov (United States)

    Zhang, Ben-Gong; Tanaka, Gouhei; Aihara, Kazuyuki; Honda, Masao; Kaneko, Shuichi; Chen, Luonan

    2015-06-01

    This paper studies the dynamics of the hepatitis B virus (HBV) model and the therapy regimens of HBV disease. First, we propose a new mathematical model of HBV with drug resistance, and then analyze its qualitative and dynamical properties. Combining the clinical data and theoretical analysis, we demonstrate that our model is biologically plausible and also computationally viable. Second, we demonstrate that the intermittent antiviral therapy regimen is one of the possible strategies to treat this kind of complex disease. There are two main advantages of this regimen, i.e. it not only may delay the development of drug resistance, but also may reduce the duration of on-treatment time compared with the long-term continuous medication. Moreover, such an intermittent antiviral therapy can reduce the adverse side effects. Our theoretical model and computational results provide qualitative insight into the progression of HBV, and also a possible new therapy for HBV disease.

  15. Towards predictive resistance models for agrochemicals by combining chemical and protein similarity via proteochemometric modelling

    OpenAIRE

    van Westen, Gerard J. P.; Bender, Andreas; Overington, John P.

    2014-01-01

    Resistance to pesticides is an increasing problem in agriculture. Despite practices such as phased use and cycling of ‘orthogonally resistant’ agents, resistance remains a major risk to national and global food security. To combat this problem, there is a need for both new approaches for pesticide design, as well as for novel chemical entities themselves. As summarized in this opinion article, a technique termed ‘proteochemometric modelling’ (PCM), from the field of chemoinformatics, could ai...

  16. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model

    OpenAIRE

    Anderson, KE; Inouye, BD; Underwood, N

    2015-01-01

    © 2015 by the Ecological Society of America. Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all model...

  17. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Maksimov, G. V.; Mosekilde, Erik

    2011-01-01

    . Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes...... in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from...

  18. Corrosion resistance of the Delhi iron pillar-Scale characterisation and passive film growth models

    International Nuclear Information System (INIS)

    Balasubramaniam, R.; Dillmann, P.

    2003-01-01

    The corrosion resistance of the Delhi pillar iron has been reviewed. The corrosion products on several ancient Indian irons have been characterised. The role of entrapped slag particles in aiding passive film formation in ancient Indian iron has been analysed by mixed potential theory. The protective rust formation process has been elucidated and possible models proposed. After an initial period of high corrosion rate, the initial corrosion resistance is conferred by the formation of protective amorphous compact layer of δ-FeOOH. The corrosion rate is further lowered by the formation of phosphates and their phase transformations. (authors)

  19. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.

    Directory of Open Access Journals (Sweden)

    Ann W Walsh

    Full Text Available BACKGROUND: Entecavir (ETV is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT domain involve lamivudine-resistance (LVDr substitutions in the conserved YMDD motif (M204V/I +/- L180M, plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. METHODS/PRINCIPAL FINDINGS: To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of

  20. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.

    Science.gov (United States)

    Walsh, Ann W; Langley, David R; Colonno, Richard J; Tenney, Daniel J

    2010-02-12

    Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position

  1. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  2. 40 CFR 1065.220 - Fuel flow meter.

    Science.gov (United States)

    2010-07-01

    ... flow meter that meets the specifications in Table 1 of § 1065.205. We recommend a fuel flow meter that... diameters) or by using specially designed tubing bends, straightening fins, or pneumatic pulsation dampeners...

  3. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  4. Why did the bear cross the road? Comparing the performance of multiple resistance surfaces and connectivity modeling methods

    Science.gov (United States)

    Samuel A. Cushman; Jesse S. Lewis; Erin L. Landguth

    2014-01-01

    There have been few assessments of the performance of alternative resistance surfaces, and little is known about how connectivity modeling approaches differ in their ability to predict organism movements. In this paper, we evaluate the performance of four connectivity modeling approaches applied to two resistance surfaces in predicting the locations of highway...

  5. Multivariate analysis and extraction of parameters in resistive RAMs using the Quantum Point Contact model

    Science.gov (United States)

    Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.

    2018-01-01

    A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.

  6. Leveraging Resistance to Change and the Skunk Works Model of Innovation

    DEFF Research Database (Denmark)

    Fosfuri, Andrea; Rønde, Thomas

    We study a situation in which an R&D department promotes the introduction of an innovation that results in costly re-adjustments for a production department. In response, the production department tries to resist change by improving the existing technology. We show that firms balancing...... the strengths of the two departments perform better. As a negative effect, resistance to change might distort the R&D department's effort away from radical innovations. The firm can solve this problem by implementing the so-called skunk works model of innovation where the R&D department is isolated from...... the rest of the organization. Several implications for managing resistance to change and for the optimal design of R&D activities are derived...

  7. Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations.

    Science.gov (United States)

    Volkova, Victoriya V; Lu, Zhao; Lanzas, Cristina; Scott, H Morgan; Gröhn, Yrjö T

    2013-01-01

    The ubiquitous commensal bacteria harbour genes of antimicrobial resistance (AMR), often on conjugative plasmids. Antimicrobial use in food animals subjects their enteric commensals to antimicrobial pressure. A fraction of enteric Escherichia coli in cattle exhibit plasmid-gene mediated AMR to a third-generation cephalosporin ceftiofur. We adapted stochastic differential equations with diffusion approximation (a compartmental stochastic mathematical model) to research the sources and roles of stochasticity in the resistance dynamics, both during parenteral antimicrobial therapy and in its absence. The results demonstrated that demographic stochasticity among enteric E. coli in the occurrence of relevant events was important for the AMR dynamics only when bacterial numbers were depressed during therapy. However, stochasticity in the parameters of enteric E. coli ecology, whether externally or intrinsically driven, contributed to a wider distribution of the resistant E. coli fraction, both during therapy and in its absence, with stochasticities in individual parameters interacting in their contribution.

  8. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    generated by a mathematical model of the competitive growth of multiple strains of Escherichia coli.Results: Simulation studies showed that sequential use of tetracycline and ampicillin reduced the level of double resistance, when compared to the combination treatment. The effect of the cycling frequency...... (how frequently antibiotics are alternated in a sequential treatment) of the two drugs was dependent upon the order in which the two drugs were used.Conclusion: Sequential treatment was more effective in preventing the growth of resistant strains when compared to the combination treatment. The cycling...... frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes....

  9. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo

    2016-01-01

    frequency did not play a role in suppressing the growth of resistant strains, but the specific order of the two antimicrobials did. Predictions made from the study could be used to redesign multidrug treatment strategies not only for intramuscular treatment in pigs, but also for other dosing routes.......Background: Combination treatment is increasingly used to fight infections caused by bacteria resistant to two or more antimicrobials. While multiple studies have evaluated treatment strategies to minimize the emergence of resistant strains for single antimicrobial treatment, fewer studies have...... considered combination treatments. The current study modeled bacterial growth in the intestine of pigs after intramuscular combination treatment (i.e. using two antibiotics simultaneously) and sequential treatments (i.e. alternating between two antibiotics) in order to identify the factors that favor...

  10. Why Did the Bear Cross the Road? Comparing the Performance of Multiple Resistance Surfaces and Connectivity Modeling Methods

    Directory of Open Access Journals (Sweden)

    Samuel A. Cushman

    2014-12-01

    Full Text Available There have been few assessments of the performance of alternative resistance surfaces, and little is known about how connectivity modeling approaches differ in their ability to predict organism movements. In this paper, we evaluate the performance of four connectivity modeling approaches applied to two resistance surfaces in predicting the locations of highway crossings by American black bears in the northern Rocky Mountains, USA. We found that a resistance surface derived directly from movement data greatly outperformed a resistance surface produced from analysis of genetic differentiation, despite their heuristic similarities. Our analysis also suggested differences in the performance of different connectivity modeling approaches. Factorial least cost paths appeared to slightly outperform other methods on the movement-derived resistance surface, but had very poor performance on the resistance surface obtained from multi-model landscape genetic analysis. Cumulative resistant kernels appeared to offer the best combination of high predictive performance and sensitivity to differences in resistance surface parameterization. Our analysis highlights that even when two resistance surfaces include the same variables and have a high spatial correlation of resistance values, they may perform very differently in predicting animal movement and population connectivity.

  11. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  12. Efficacy of ceftaroline fosamil against penicillin-sensitive and -resistant streptococcus pneumoniae in an experimental rabbit meningitis model.

    Science.gov (United States)

    Cottagnoud, P; Cottagnoud, M; Acosta, F; Stucki, A

    2013-10-01

    Ceftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain of S. pneumoniae in an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was approximately 14%. Ceftaroline fosamil was slightly superior to ceftriaxone against the penicillin-sensitive strain and significantly superior to the combination of ceftriaxone and vancomycin against the penicillin-resistant strain.

  13. Compact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM

    Directory of Open Access Journals (Sweden)

    Marc Bocquet

    2014-01-01

    Full Text Available Emerging non-volatile memories based on resistive switching mechanisms attract intense R&D efforts from both academia and industry. Oxide-based Resistive Random Acces Memories (OxRAM gather noteworthy performances, such as fast write/read speed, low power and high endurance outperforming therefore conventional Flash memories. To fully explore new design concepts such as distributed memory in logic, OxRAM compact models have to be developed and implemented into electrical simulators to assess performances at a circuit level. In this paper, we present compact models of the bipolar OxRAM memory based on physical phenomenons. This model was implemented in electrical simulators for single device up to circuit level.

  14. Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-25

    A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.

  15. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  16. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  17. A prepaid meter using mobile communication | Jain | International ...

    African Journals Online (AJOL)

    sophisticated and accurate digital and electronic meters. A high percentage of electricity revenue is lost to power theft, incorrect meter reading and billing, and reluctance of consumers towards paying electricity bills on time. Considerable amount of revenue losses can be reduced by using Prepaid Energy Meters. A prepaid ...

  18. 18 CFR 367.9020 - Account 902, Meter reading expenses.

    Science.gov (United States)

    2010-04-01

    ... clocks, checking seals, and other similar items, when performed by meter readers and the work represents... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 902, Meter... GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9020 Account 902, Meter reading...

  19. 24 CFR 965.401 - Individually metered utilities.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Individual Metering of Utilities for Existing PHA-Owned Projects § 965.401 Individually metered utilities. (a) All utility service shall be... supplier or through the use of checkmeters, unless: (1) Individual metering is impractical, such as in the...

  20. 7 CFR 801.6 - Tolerances for moisture meters.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for moisture meters. 801.6 Section 801.6... FOR GRAIN INSPECTION EQUIPMENT § 801.6 Tolerances for moisture meters. (a) The maintenance tolerances for Motomco 919 moisture meters used in performing official inspection services shall be: (1...

  1. The disc pasture meter: Possible applications in grazing management.

    African Journals Online (AJOL)

    The disc meter is a simple inexpensive instrument which may be used to make rapid yield estimates of standing forage. Linear regression relationships between meter reading and pasture dry matter yield are usually fairly good, but these may be affected by a number of different factors. The meter should therefore be ...

  2. Static energy meter errors caused by conducted electromagnetic interference

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Keyer, Cornelis H.A.; Melentjev, Anton

    2017-01-01

    Static, or electronic, energy meters are replacing the conventional electromechanical meters. Consumers are some-times complaining about higher energy readings and billing after the change to a static meter, but there is not a clear common or root cause at present. Electromagnetic interference has

  3. 49 CFR 192.357 - Customer meters and regulators: Installation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Installation. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.357 Customer meters and regulators: Installation. (a...

  4. 49 CFR 192.359 - Customer meter installations: Operating pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meter installations: Operating pressure... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.359 Customer meter installations: Operating pressure...

  5. Modeling and inversion Matlab algorithms for resistivity, induced polarization and seismic data

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Minsley, B. J.; Werkema, D. D.

    2011-12-01

    M. Karaoulis (1), D.D. Werkema (3), A. Revil (1,2), A., B. Minsley (4), (1) Colorado School of Mines, Dept. of Geophysics, Golden, CO, USA. (2) ISTerre, CNRS, UMR 5559, Université de Savoie, Equipe Volcan, Le Bourget du Lac, France. (3) U.S. EPA, ORD, NERL, ESD, CMB, Las Vegas, Nevada, USA . (4) USGS, Federal Center, Lakewood, 10, 80225-0046, CO. Abstract We propose 2D and 3D forward modeling and inversion package for DC resistivity, time domain induced polarization (IP), frequency-domain IP, and seismic refraction data. For the resistivity and IP case, discretization is based on rectangular cells, where each cell has as unknown resistivity in the case of DC modelling, resistivity and chargeability in the time domain IP modelling, and complex resistivity in the spectral IP modelling. The governing partial-differential equations are solved with the finite element method, which can be applied to both real and complex variables that are solved for. For the seismic case, forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wavepaths are materialized by Fresnel volumes rather than by conventional rays. This approach accounts for complicated velocity models and is advantageous because it considers frequency effects on the velocity resolution. The inversion can accommodate data at a single time step, or as a time-lapse dataset if the geophysical data are gathered for monitoring purposes. The aim of time-lapse inversion is to find the change in the velocities or resistivities of each model cell as a function of time. Different time-lapse algorithms can be applied such as independent inversion, difference inversion, 4D inversion, and 4D active time constraint inversion. The forward algorithms are benchmarked against analytical solutions and inversion results are compared with existing ones. The algorithms are packaged as Matlab codes with a simple Graphical User Interface. Although the code is parallelized for multi

  6. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, M.R.

    1988-06-01

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  7. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to Streptococcus pneumoniae.

    Science.gov (United States)

    Blanquart, François; Lehtinen, Sonja; Fraser, Christophe

    2017-05-31

    The frequency of resistance to antibiotics in Streptococcus pneumoniae has been stable over recent decades. For example, penicillin non-susceptibility in Europe has fluctuated between 12% and 16% without any major time trend. In spite of long-term stability, resistance fluctuates over short time scales, presumably in part due to seasonal fluctuations in antibiotic prescriptions. Here, we develop a model that describes the evolution of antibiotic resistance under selection by multiple antibiotics prescribed at seasonally changing rates. This model was inspired by, and fitted to, published data on monthly antibiotics prescriptions and frequency of resistance in two communities in Israel over 5 years. Seasonal fluctuations in antibiotic usage translate into small fluctuations of the frequency of resistance around the average value. We describe these dynamics using a perturbation approach that encapsulates all ecological and evolutionary forces into a generic model, whose parameters quantify a force stabilizing the frequency of resistance around the equilibrium and the sensitivity of the population to antibiotic selection. Fitting the model to the data revealed a strong stabilizing force, typically two to five times stronger than direct selection due to antibiotics. The strong stabilizing force explains that resistance fluctuates in phase with usage, as antibiotic selection alone would result in resistance fluctuating behind usage with a lag of three months when antibiotic use is seasonal. While most antibiotics selected for increased resistance, intriguingly, cephalosporins selected for decreased resistance to penicillins and macrolides, an effect consistent in the two communities. One extra monthly prescription of cephalosporins per 1000 children decreased the frequency of penicillin-resistant strains by 1.7%. This model emerges under minimal assumptions, quantifies the forces acting on resistance and explains up to 43% of the temporal variation in resistance.

  8. Seismic resistant analysis of coupled model of reactor coolant system and reactor building

    International Nuclear Information System (INIS)

    Wang Xiaowen; Xia Zufeng

    2005-01-01

    Reactor coolant system(RCS) and reactor building are actually coupled with each other. SRP (Revision 2) edited by USNRC particularly pointed out in 3.7.2 that RCS, which is considered a subsystem but is usually analyzed using a coupled model with building. Under this background, this paper selects PC-NPP as a study object, and seismic resistant analysis is performed with a coupled model of building and RCS using response spectrum method and time history method. Finally, analyzed results are compared with those of uncoupled RCS model. In the analysis, building is simulated with cantilever beam model of shear wall combination. In the uncoupled model, each supporting of equipment is modeled using elastic beam element with actual supporting stiffness, which is connected to a rigid cantilever (single-point input) and to an elastic cantilever (multipoint input). Seismic load of coupled model is input from the bottom of building. After comparison, it is shown that the effect of interaction between RCS and building can not be ignored, and the uncoupled model for seismic resistant analysis is inappropriate to be applied in actual seismic design. Through this research, we can control the seismic analysis technique in coupled model and enhance our analysis level of NPP. (authors)

  9. Thermus Thermophilus as a Model System for the Study of Ribosomal Antibiotic Resistance

    Science.gov (United States)

    Gregory, Steven T.

    2018-03-01

    Ribosomes are the intracellular ribonucleoprotein machines responsible for the translation of mRNA sequence into protein sequence. As an essential cell component, the ribosome is the target of numerous antibiotics that bind to critical functional sites to impair protein synthesis. Mutations causing resistance to antibiotics arise in antibiotic binding sites, and an understanding of the basis of resistance will be an essential component of efforts to develop new antibiotics by rational drug design. We have identified a number of antibiotic-resistance mutations in ribosomal genes of the thermophilic bacterium Thermus thermophilus. This species offers two primary advantages for examining the structural basis of antibiotic-resistance, in particular, its potential for genetic manipulation and the suitability of its ribosomes for analysis by X-ray crystallography. Mutations we have identified in this organism are in many instances identical to those found in other bacterial species, including important pathogens, a result of the extreme conservation of ribosome functional sites. Here I summarize the advantages of this organism as a model system to study antibiotic-resistance mechanisms at the molecular level.

  10. Identifying the Reducing Resistance to Change Phase in an Organizational Change Model

    Directory of Open Access Journals (Sweden)

    Daniela Bradutanu

    2012-04-01

    Full Text Available In this article we examine where in an organizational change process it is better to placethe reducing resistance to change phase, so that employees would accept the new changes easier andnot manifest too much resistance. After analyzing twelve organizational change models we haveconcluded that the place of the reducing resistanceto change phase in an organizational changeprocess is not the same, it being modified according to the type of change. The results of this studyare helpful for researchers, but especially for organizational change leaders. As change leaders areusually the ones confronted with resistance from their subordinates, they must know exactly how todeal with it and when is the best moment to reduceit, depending on the type of change that is desiredto be implemented. The key contribution to this paper is that the best way to gain employee’s supportand change attachment is to try and reduce resistance to change before the actual implementation.Only when an immediate or imposed change is required to be implemented, the methods and ways forovercoming resistance should be applied during andafter the implementation stage, to ensure asuccessful implementation of the change.

  11. Identification of cutoff points for Homeostatic Model Assessment for Insulin Resistance index in adolescents: systematic review

    Science.gov (United States)

    de Andrade, Maria Izabel Siqueira; Oliveira, Juliana Souza; Leal, Vanessa Sá; da Lima, Niedja Maria Silva; Costa, Emília Chagas; de Aquino, Nathalia Barbosa; de Lira, Pedro Israel Cabral

    2016-01-01

    Abstract Objective: To identify cutoff points of the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index established for adolescents and discuss their applicability for the diagnosis of insulin resistance in Brazilian adolescents. Data source: A systematic review was performed in the PubMed, Lilacs and SciELO databases, using the following descriptors: "adolescents", "insulin resistance" and "Receiver Operating Characteristics Curve". Original articles carried out with adolescents published between 2005 and 2015 in Portuguese, English or Spanish languages, which included the statistical analysis using Receiver Operating Characteristics Curve to determine the index cutoff (HOMA-IR) were included. Data synthesis: A total of 184 articles were identified and after the study phases were applied, seven articles were selected for the review. All selected studies established their cutoffs using a Receiver Operating Characteristics Curve, with the lowest observed cutoff of 1.65 for girls and 1.95 for boys and the highest of 3.82 for girls and 5.22 for boys. Of the studies analyzed, one proposed external validity, recommending the use of the HOMA-IR cutoff>2.5 for both genders. Conclusions: The HOMA-IR index constitutes a reliable method for the detection of insulin resistance in adolescents, as long as it uses cutoffs that are more adequate for the reality of the study population, allowing early diagnosis of insulin resistance and enabling multidisciplinary interventions aiming at health promotion of this population. PMID:26559605

  12. Uncertainty Analysis of Resistance Tests in Ata Nutku Ship Model Testing Laboratory of Istanbul Technical University

    Directory of Open Access Journals (Sweden)

    Cihad DELEN

    2015-12-01

    Full Text Available In this study, some systematical resistance tests, where were performed in Ata Nutku Ship Model Testing Laboratory of Istanbul Technical University (ITU, have been included in order to determine the uncertainties. Experiments which are conducted in the framework of mathematical and physical rules for the solution of engineering problems, measurements, calculations include uncertainty. To question the reliability of the obtained values, the existing uncertainties should be expressed as quantities. The uncertainty of a measurement system is not known if the results do not carry a universal value. On the other hand, resistance is one of the most important parameters that should be considered in the process of ship design. Ship resistance during the design phase of a ship cannot be determined precisely and reliably due to the uncertainty resources in determining the resistance value that are taken into account. This case may cause negative effects to provide the required specifications in the latter design steps. The uncertainty arising from the resistance test has been estimated and compared for a displacement type ship and high speed marine vehicles according to ITTC 2002 and ITTC 2014 regulations which are related to the uncertainty analysis methods. Also, the advantages and disadvantages of both ITTC uncertainty analysis methods have been discussed.

  13. Digital radioisotope moisture-density meter

    International Nuclear Information System (INIS)

    Bychvarov, N.; Vankov, I.; Dimitrov, L.

    1982-01-01

    The primary information from the detectors of a combined radioisotope moisture-density meter is obtained as pulses, their counting rate being functionally dependent on the humidity per unit volume and the wet density. However, most practical cases demand information on the moisture per unit weight and the mass density of the dry skeleton. The paper describes how the proposed electronic circuit processes the input primary information to obtain the moisture in weight % and the mass density of the dry skeleton in g/cm 3 . (authors)

  14. PRESCILA: a new, lightweight neutron rem meter.

    Science.gov (United States)

    Olsher, Richard H; Seagraves, David T; Eisele, Shawna L; Bjork, Christopher W; Martinez, William A; Romero, Leonard L; Mallett, Michael W; Duran, Michael A; Hurlbut, Charles R

    2004-06-01

    Conventional neutron rem meters currently in use are based on 1960's technology that relies on a large neutron moderator assembly surrounding a thermal detector to achieve a rem-like response function over a limited energy range. Such rem meters present an ergonomic challenge, being heavy and bulky, and have caused injuries during radiation protection surveys. Another defect of traditional rem meters is a poor high-energy response above 10 MeV, which makes them unsuitable for applications at high-energy accelerator facilities. Proton Recoil Scintillator-Los Alamos (PRESCILA) was developed as a low-weight (2 kg) alternative capable of extended energy response, high sensitivity, and moderate gamma rejection. An array of ZnS(Ag) based scintillators is located inside and around a Lucite light guide, which couples the scintillation light to a sideview bialkali photomultiplier tube. The use of both fast and thermal scintillators allows the energy response function to be optimized for a wide range of operational spectra. The light guide and the borated polyethylene frame provide moderation for the thermal scintillator element. The scintillators represent greatly improved versions of the Hornyak and Stedman designs from the 1950's, and were developed in collaboration with Eljen Technology. The inherent pulse height advantage of proton recoils over electron tracks in the phosphor grains eliminates the need for pulse shape discrimination and makes it possible to use the PRESCILA probe with standard pulse height discrimination provided by off-the-shelf health physics counters. PRESCILA prototype probes have been extensively tested at both Los Alamos and the German Bureau of Standards, Physikalisch-Technische Bundesanstalt. Test results are presented for energy response, directional dependence, linearity, sensitivity, and gamma rejection. Initial field tests have been conducted at Los Alamos and these results are also given. It is concluded that PRESCILA offers a viable

  15. Fibre optic power meter calibration uncertainties

    CSIR Research Space (South Africa)

    Nel, M

    2010-06-01

    Full Text Available The method to empirically quantify the effect that flexing (movement) of the fibre has on the output power was determined by connecting an optical fibre to a power meter head and performing controlled movements of the head (displacements and rotations..., and with their optical axes roughly parallel to one another to reduce the effect of fibre flexing when interchanging from one detector head to another. Excessive flexing and moving of the fibre can cause differences in the radiant power emerging from the fibre...

  16. Optimal metering plan for measurement and verification on a lighting case study

    International Nuclear Information System (INIS)

    Ye, Xianming; Xia, Xiaohua

    2016-01-01

    M&V (Measurement and Verification) has become an indispensable process in various incentive EEDSM (energy efficiency and demand side management) programmes to accurately and reliably measure and verify the project performance in terms of energy and/or cost savings. Due to the uncertain nature of the unmeasurable savings, there is an inherent trade-off between the M&V accuracy and M&V cost. In order to achieve the required M&V accuracy cost-effectively, we propose a combined spatial and longitudinal MCM (metering cost minimisation) model to assist the design of optimal M&V metering plans, which minimises the metering cost whilst satisfying the required measurement and sampling accuracy of M&V. The objective function of the proposed MCM model is the M&V metering cost that covers the procurement, installation and maintenance of the metering system whereas the M&V accuracy requirements are formulated as the constraints. Optimal solutions to the proposed MCM model offer useful information in designing the optimal M&V metering plan. The advantages of the proposed MCM model are demonstrated by a case study of an EE lighting retrofit project and the model is widely applicable to other M&V lighting projects with different population sizes and sampling accuracy requirements. - Highlights: • A combined spatial and longitudinal optimisation model is proposed to reduce M&V cost. • The combined optimisation model handles M&V sampling uncertainty cost-effectively. • The model exhibits a better performance than the separate spatial or longitudinal models. • The required 90/10 criterion sampling accuracy is satisfied for each M&V report.

  17. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  18. Metering, settlement and export reward options for micro-generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a study carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme to evaluate the costs and benefits of various metering, settlement and export reward opportunities for both renewable and non-renewable forms of microgeneration based on existing projections to 2020. The technologies studied included single and three-phase applications of: solar photovoltaic (rated at 1 kW per installation); small-scale wind generation (rated at 1 kW per installation); micro-CHP (combined heat and power) (rated at 1.1 kW per installation); and micro-hydropower (rated at 3.7 and 6.4 kW per installation). The report outlines a number of different options for metering, settlement and export rewards, and describes the development of an economic model to quantify their costs and benefits. This model is then used to predict the future costs and benefits of the various options. The potential value of the options to the UK economy and any environmental benefits are discussed and a commentary on possible barriers to implementation is provided.

  19. Identification of ND 2000 survey meter response to standard Cs-137 and Co-60 gamma ray sources

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Rasmawati Abd Latif; Zelina Mat Zin

    2005-01-01

    The purpose of this study is to identify the response of 104 units of survey meter, model ND2000 to standard Cs-137 and Co-60 gamma ray sources. The survey meters were irradiated with a standard gamma ray sources of gamma irradiator, model OB 85. The calibration data for a period of one year are gathered from the calibration performed at the SSDL. In this study, the calibration factor (CF) which is refer to the ratio of standard gamma exposure to the survey meter reading are determined and the average value were then calculated. The survey meter is considered in a good response if the CF value is equal to one. Result shows that the average CF values are 1.01 and 0.96 for Cs-137 and Co-60 respectively. Study shows that this type of survey meter have a good response as the CF values obtained against Cs-137 is closes to one. (Author)

  20. Detection of antibiotic resistance is essential for gonorrhoea point-of-care testing: a mathematical modelling study.

    Science.gov (United States)

    Fingerhuth, Stephanie M; Low, Nicola; Bonhoeffer, Sebastian; Althaus, Christian L

    2017-07-26

    Antibiotic resistance is threatening to make gonorrhoea untreatable. Point-of-care (POC) tests that detect resistance promise individually tailored treatment, but might lead to more treatment and higher levels of resistance. We investigate the impact of POC tests on antibiotic-resistant gonorrhoea. We used data about the prevalence and incidence of gonorrhoea in men who have sex with men (MSM) and heterosexual men and women (HMW) to calibrate a mathematical gonorrhoea transmission model. With this model, we simulated four clinical pathways for the diagnosis and treatment of gonorrhoea: POC test with (POC+R) and without (POC-R) resistance detection, culture and nucleic acid amplification tests (NAATs). We calculated the proportion of resistant infections and cases averted after 5 years, and compared how fast resistant infections spread in the populations. The proportion of resistant infections after 30 years is lowest for POC+R (median MSM: 0.18%, HMW: 0.12%), and increases for culture (MSM: 1.19%, HMW: 0.13%), NAAT (MSM: 100%, HMW: 99.27%), and POC-R (MSM: 100%, HMW: 99.73%). Per 100 000 persons, NAAT leads to 36 366 (median MSM) and 1228 (median HMW) observed cases after 5 years. Compared with NAAT, POC+R averts more cases after 5 years (median MSM: 3353, HMW: 118). POC tests that detect resistance with intermediate sensitivity slow down resistance spread more than NAAT. POC tests with very high sensitivity for the detection of resistance are needed to slow down resistance spread more than by using culture. POC with high sensitivity to detect antibiotic resistance can keep gonorrhoea treatable longer than culture or NAAT. POC tests without reliable resistance detection should not be introduced because they can accelerate the spread of antibiotic-resistant gonorrhoea.

  1. An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere

    Science.gov (United States)

    Swidinsky, Andrei; Liu, Lifei

    2017-11-01

    We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.

  2. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia.

    Science.gov (United States)

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-12-25

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.

  3. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model.

    Directory of Open Access Journals (Sweden)

    Jangsup Moon

    Full Text Available BACKGROUND: Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE. In our study, spontaneous recurrent seizures (SRSs were investigated by video-EEG monitoring during the entire procedure. METHODS/PRINCIPAL FINDINGS: In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV and valproate (VPA in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS group or VPA (n = 7, LEV resistant/VPA sensitive (LRVS group, while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR group. On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p, which were differently modulated in the MDR group versus both control and LS groups. CONCLUSION: This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.

  4. Study on modeling of resist heating effect correction in EB mask writer EBM-9000

    Science.gov (United States)

    Nomura, Haruyuki; Kamikubo, Takashi; Suganuma, Mizuna; Kato, Yasuo; Yashima, Jun; Nakayamada, Noriaki; Anze, Hirohito; Ogasawara, Munehiro

    2015-07-01

    Resist heating effect which is caused in electron beam lithography by rise in substrate temperature of a few tens or hundreds of degrees changes resist sensitivity and leads to degradation of local critical dimension uniformity (LCDU). Increasing writing pass count and reducing dose per pass is one way to avoid the resist heating effect, but it worsens writing throughput. As an alternative way, NuFlare Technology is developing a heating effect correction system which corrects CD deviation induced by resist heating effect and mitigates LCDU degradation even in high dose per pass conditions. Our developing correction model is based on a dose modulation method. Therefore, a kind of conversion equation to modify the dose corresponding to CD change by temperature rise is necessary. For this purpose, a CD variation model depending on local pattern density was introduced and its validity was confirmed by experiments and temperature simulations. And then the dose modulation rate which is a parameter to be used in the heating effect correction system was defined as ideally irrelevant to the local pattern density, and the actual values were also determined with the experimental results for several resist types. The accuracy of the heating effect correction was also discussed. Even when deviations depending on the pattern density slightly remains in the dose modulation rates (i.e., not ideal in actual), the estimated residual errors in the correction are sufficiently small and acceptable for practical 2 pass writing with the constant dose modulation rates. In these results, it is demonstrated that the CD variation model is effective for the heating effect correction system.

  5. A Two-Dimensional Modeling Procedure to Estimate the Loss Equivalent Resistance Including the Saturation Effect

    Directory of Open Access Journals (Sweden)

    Rosa Ana Salas

    2013-11-01

    Full Text Available We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.

  6. From Policy to Implementation. The Status of Europe's Smart Metering Market

    International Nuclear Information System (INIS)

    Shargal, M.

    2009-04-01

    In the last five years there has been a major policy shift from keeping the electricity price as low as possible in a free and competitive market to reducing carbon emissions. This shift has also resulted in decisions to look at the deployment of smart meters to help customers understand when they use electricity and to help them plan savings. Today, smart metering and smart grid initiatives are forcing another major transformation in the utility industry. Many utilities are rethinking their business models and business processes as a result of the shift in the way energy is generated, delivered and consumed. The state of the regulation and implementation of smart metering varies across Europe on a country by country basis. This results in wide a difference as to which is leading the smart meters rollout - the government or the industry. The variance leads to different players taking the initiative - regulatory pull to utilities push. To a large extent the adoption of smart metering in Europe is driven by regulation. National concerns over the future energy situation and European initiatives such as EU Energy Efficiency have led several countries to define mandatory requirements for the deployment of smart metering within a set timeframe. But the reality is that the compliance-based industry in which utilities operate does not offer enough incentive for consumers, regulators or utilities to take the difficult steps necessary to make electrical energy markets operate efficiently.

  7. State of the Art and Trends Review of Smart Metering in Electricity Grids

    Directory of Open Access Journals (Sweden)

    Noelia Uribe-Pérez

    2016-02-01

    Full Text Available Climate change, awareness of energy efficiency, new trends in electricity markets, the obsolescence of the actual electricity model, and the gradual conversion of consumers to prosumer profiles are the main agents of progressive change in electricity systems towards the Smart Grid paradigm. The introduction of multiple distributed generation and storage resources, with a strong involvement of renewable energies, exposes the necessity of advanced metering or Smart Metering systems, able to manage and control those distributed resources. Due to the heterogeneity of the Smart Metering systems and the specific features of each grid, it is easy to find in the related literature a wide range of solutions with different features. This work describes the key elements in a Smart Metering system and compiles the most employed technologies and standards as well as their main features. Since Smart Metering systems can perform jointly with other activities, these growing initiatives are also addressed. Finally, a revision of the main trends in Smart Metering uses and deployments worldwide is included.

  8. A Self-diagnostic Method for the Electrode Adhesion of an Electromagnetic Flow-meter

    Directory of Open Access Journals (Sweden)

    Wen-Hua Cui

    2014-07-01

    Full Text Available Electrodes of electromagnetic flow-meter are subject to contamination in sewage measurement. In this paper, the relationship between the internal resistance of the flow-induced voltage and the electrode contamination is analyzed on the basis of numerical analysis. A new self- diagnostic method for electrode adhesion with additional excitation based on photovoltaic cell is proposed, in which magnetic excitation for flow-rate measurement and electric excitation for electrode self-diagnosis is divided in both time domain and frequency domain. A dual-excited electromagnetic flow-meter with electrode self-diagnosis was designed and validated. Simulation experiments based on the change of the internal resistance of the flow-induced voltage were carried out. And the experimental results fully show that this new method is feasible and promising.

  9. Smart meter users give a thumbs up

    International Nuclear Information System (INIS)

    Horne, D.

    2007-01-01

    The Ontario Energy Board conducted a pilot study with the support of Hydro Ottawa to better understand how consumers change their electricity consumption behaviour with smart meters and time-of-use (TOU) prices. The project enabled consumers to learn the most cost-effective times to use energy. Results from the Ontario Smart Price Pilot reveal that consumers like to have control over how much and when they use their electricity. Although the savings were only small for some clients involved in the study, they appreciated having their metering bills in greater detail. At the end of the pilot project, participants reduced electricity consumption by 6 per cent. Nearly 90 per cent of the participants paid lower energy bills and nearly 80 per cent indicated they would recommend TOU pricing to their friends because it motivated them to shift some of their electricity use away from peak hours. The average reduction in electricity demand among the two-thirds of participants on critical pricing plans was more than 20 per cent during high demand or critical peak hours in summer. Demand reduction on winter critical peak days was much lower for all participants. 1 fig

  10. Sodium salicylate reduced insulin resistance in the retina of a type 2 diabetic rat model.

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J; Steinle, Jena J

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models.

  11. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    Science.gov (United States)

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  12. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture......, and validate its effectiveness to interact with smart meters....

  13. Automatic ranging circuit for a digital panel meter

    International Nuclear Information System (INIS)

    Mueller, T.R.; Ross, H.H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to ensure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit. The system was designed for readout of a fluorescence analyzer for uranium analysis

  14. Long Island Smart Metering Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-30

    The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA's Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software over the air (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate without the cost guarantee at the end of that year. The customer who chose not to continue on the rate was also the one who achieved the

  15. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  16. SICR rumor spreading model in complex networks: Counterattack and self-resistance

    Science.gov (United States)

    Zan, Yongli; Wu, Jianliang; Li, Ping; Yu, Qinglin

    2014-07-01

    Rumor is an important form of social interaction. However, spreading of harmful rumors could have a significant negative impact on the well-being of the society. In this paper, considering the counterattack mechanism of the rumor spreading, we introduce two new models: Susceptible-Infective-Counterattack-Refractory (SICR) model and adjusted-SICR model. We then derive mean-field equations to describe their dynamics in homogeneous networks and conduct the steady-state analysis. We also introduce the self-resistance parameter τ, and study the influence of this parameter on rumor spreading. Numerical simulations are performed to compare the SICR model with the SIR model and the adjusted-SICR model, respectively, and we investigate the spreading peak of the rumor and the final size of the rumor with various parameters. Simulation results are congruent exactly with the theoretical analysis. The experiment reveals some interesting patterns of rumor spreading involved with counterattack force.

  17. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  18. A hybrid ICT-solution for smart meter data analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2016-01-01

    Smart meters are increasingly used worldwide. Smart meters are the advanced meters capable of measuring energy consumption at a fine-grained time interval, e.g., every 15 min. Smart meter data are typically bundled with social economic data in analytics, such as meter geographic locations, weather...... conditions and user information, which makes the data sets very sizable and the analytics complex. Data mining and emerging cloud computing technologies make collecting, processing, and analyzing the so-called big data possible. This paper proposes an innovative ICT-solution to streamline smart meter data...... analytics. The proposed solution offers an information integration pipeline for ingesting data from smart meters, a scalable platform for processing and mining big data sets, and a web portal for visualizing analytics results. The implemented system has a hybrid architecture of using Spark or Hive for big...

  19. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    regards to their basic contribution to the study of empirical adaptive landscapes, and in terms of how they inform new models for the evolution of drug resistance. PMID:26808374

  20. Biological variation of homeostasis model assessment-derived insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Jayagopal, Vijay; Kilpatrick, Eric S; Jennings, Paul E; Hepburn, David A; Atkin, Stephen L

    2002-11-01

    Individuals with type 2 diabetes are particularly vulnerable to cardiovascular disease. Insulin resistance is a major determinant of this increased risk and is a potential therapeutic target. This study was undertaken to establish the natural biological variation of insulin resistance in individuals with type 2 diabetes. The biological variation of insulin resistance was assessed by measuring insulin resistance at 4-day intervals on 10 consecutive occasions in 12 postmenopausal women with diet-controlled type 2 diabetes and in 11 weight- and age-matched postmenopausal women without type 2 diabetes. Insulin resistance was derived using the homeostasis model assessment for insulin resistance (HOMA-IR) method. The distribution of HOMA-IR was log Gaussian in the type 2 diabetic study group and Gaussian in the control group. The HOMA-IR in the type 2 diabetic group was significantly greater than that of the control group (mean +/- SD: 4.33 +/- 2.3 vs. 2.11 +/- 0.79 units, P = 0.001). After accounting for analytical variation, the mean intraindividual variation was also substantially greater in the type 2 diabetic group than in the control group (mean 1.05 vs. 0.15, P = 0.001). Consequently, at any level of HOMA-IR, a subsequent sample must increase by >90% or decrease by >47% to be considered significantly different from the first. HOMA-IR is significantly greater and more variable for individuals with type 2 diabetes. Therefore, this inherent variability needs to be accounted for in studies evaluating therapeutic reduction of HOMA-IR in this group.

  1. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...... and discharge observations. The method was applied to field data collected at a Danish field site. Our results show that a competitive hydrological model can be constructed from the AEM dataset using the automatic procedure outlined above....

  2. Automatic generation of groundwater model hydrostratigraphy from AEM resistivity and boreholes

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Foged, N.; Christiansen, A. V.

    2014-01-01

    and heterogeneity, which spatially scarce borehole lithology data may overlook, are well resolved in AEM surveys. This study presents a semi-automatic sequential hydrogeophysical inversion method for the integration of AEM and borehole data into regional groundwater models in sedimentary areas, where sand/ clay...... distribution govern groundwater flow. The coupling between hydrological and geophysical parameters is managed using a translator function with spatially variable parameters followed by a 3D zonation. The translator function translates geophysical resistivities into clay fractions and is calibrated...... with observed lithological data. Principal components are computed for the translated clay fractions and geophysical resistivities. Zonation is carried out by k-means clustering on the principal components. The hydraulic parameters of the zones are determined in a hydrological model calibration using head...

  3. A Collective Study on Modeling and Simulation of Resistive Random Access Memory

    Science.gov (United States)

    Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen

    2018-01-01

    In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.

  4. A Dynamic Decision Model of Technology Adoption under Uncertainty: Case of Herbicide-Resistant Rice

    OpenAIRE

    Annou, Mamane Malam; Wailes, Eric J.; Thomsen, Michael R.

    2005-01-01

    Herbicide-resistant (HR) rice technology is a potential tool for control of red rice in commercial rice production. Using an ex ante mathematical programming framework, this research presents an empirical analysis of HR rice technology adoption under uncertainty. The analysis accounts for stochastic germination of red rice and sheath blight to model a profit maximization problem of crop rotation among HR rice, regular rice, and soybeans. The results demonstrate that risk attitudes and technol...

  5. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  6. Low-dimensional model of resistive interchange convection in magnetized plasma

    International Nuclear Information System (INIS)

    Bazdenkov, S.; Sato, Tetsuya

    1997-09-01

    Self-organization and generation of large shear flow component in turbulent resistive interchange convection in magnetized plasma is considered. The effect of plasma density-electrostatic potential coupling via the inertialess electron dynamics along the magnetic field is shown to play significant role in the onset of shear component. The results of large-scale numerical simulation and low-dimensional (reduced) model are presented and compared. (author)

  7. The magnetic flywheel flow meter: Theoretical and experimental contributions

    Science.gov (United States)

    Buchenau, D.; Galindo, V.; Eckert, S.

    2014-06-01

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book "The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962" a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  8. A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes.

    Science.gov (United States)

    Zheng, Xueying; Huang, Bin; Luo, Sihui; Yang, Daizhi; Bao, Wei; Li, Jin; Yao, Bin; Weng, Jianping; Yan, Jinhua

    2017-05-01

    Insulin resistance (IR) is a risk factor to assess the development of micro- and macro-vascular complications in type 1 diabetes (T1D). However, diabetes management in adults with T1D is limited by the difficulty of lacking simple and reliable methods to estimate insulin resistance. The aim of this study was to develop a new model to estimate IR via clinical parameters in adults with T1D. A total of 36 adults with adulthood onset T1D (n = 20) or childhood onset T1D (n = 16) were recruited by quota sampling. After an overnight insulin infusion to stabilize the blood glucose at 5.6 to 7.8 mmol/L, they underwent a 180-minute euglycemic-hyperinsulinemic clamp. Glucose disposal rate (GDR, mg kg -1  min -1 ) was calculated by data collected from the last 30 minutes during the test. Demographic factors (age, sex, and diabetes duration) and metabolic parameters (blood pressure, glycated hemoglobin A 1c [HbA 1c ], waist to hip ratio [WHR], and lipids) were collected to evaluate insulin resistance. Then, age at diabetes onset and clinical parameters were used to develop a model to estimate lnGDR by stepwise linear regression. From the stepwise process, a best model to estimate insulin resistance was generated, including HbA 1c , diastolic blood pressure, and WHR. Age at diabetes onset did not enter any of the models. We proposed the following new model to estimate IR as in GDR for adults with T1D: lnGDR = 4.964 - 0.121 × HbA 1c (%) - 0.012 × diastolic blood pressure (mmHg) - 1.409 × WHR, (adjusted R 2  = 0.616, P Insulin resistance in adults living with T1D can be estimated using routinely collected clinical parameters. This simple model provides a potential tool for estimating IR in large-scale epidemiological studies of adults with T1D regardless of age at onset. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Applications of resistivity modeling in reservoir development: examples from Balder Field, Norwegian North Sea

    Science.gov (United States)

    Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.

    2001-01-01

    The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and

  10. Study of abrasive resistance of foundries models obtained with use of additive technology

    Science.gov (United States)

    Ol'khovik, Evgeniy

    2017-10-01

    A problem of determination of resistance of the foundry models and patterns from ABS (PLA) plastic, obtained by the method of 3D printing with using FDM additive technology, to abrasive wear and resistance in the environment of foundry sand mould is considered in the present study. The description of a technique and equipment for tests of castings models and patterns for wear is provided in the article. The manufacturing techniques of models with the use of the 3D printer (additive technology) are described. The scheme with vibration load was applied to samples tests. For the most qualitative research of influence of sandy mix on plastic, models in real conditions of abrasive wear have been organized. The results also examined the application of acrylic paintwork to the plastic model and a two-component coating. The practical offers and recommendation on production of master models with the use of FDM technology allowing one to reach indicators of durability, exceeding 2000 cycles of moulding in foundry sand mix, are described.

  11. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    Science.gov (United States)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  12. Log-rise of the resistivity in the holographic Kondo model

    Science.gov (United States)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  13. Association of Adipokine Resistin With Homeostasis Model Assessment of Insulin Resistance in Type II Diabetes

    Directory of Open Access Journals (Sweden)

    Sokhanguei

    2015-03-01

    Full Text Available Background Resistin is a recently discovered signal molecule that has been linked to obesity, type II diabetes mellitus (T2DM and metabolic syndrome. Objectives This study aimed to assess whether serum resistin is associated with insulin resistance and glucose concentration in males with T2DM. Patients and Methods Thirty two adult non-trained males with type II diabetes, 34-48 years old and 88-110 kg of body weight, participated in this study by accessible sampling. Fasting blood samples were collected from all participants in order to measure serum resistin, insulin and glucose concentration. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated using fasting insulin and glucose. Relations between variables were determined by Pearson correlations. Results We found that serum resistin had a positive significant correlation with insulin resistance (P = 0.000, r = 0.64. No significant correlation was found between serum resistin and fasting glucose concentration in the studied patients (P = 0.21, r = 0.23. Conclusions Based on these data, we can argue that circulating glucose concentration is not directly affected by serum resistin in T2DM. It seems that resistin affects glucose indirectly, through insulin resistance.

  14. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  15. A multistate model of cognitive dynamics in relation to resistance training: the contribution of baseline function.

    Science.gov (United States)

    Fallah, Nader; Hsu, Chun L; Bolandzadeh, Niousha; Davis, Jennifer; Beattie, B Lynn; Graf, Peter; Liu-Ambrose, Teresa

    2013-08-01

    We investigated: (1) the effect of different targeted exercise training on an individual's overall probability for cognitive improvement, maintenance, or decline; and (2) the simultaneous effect of targeted exercise training and baseline function on the dynamics of executive functions when a multistate transition model is used. Analyses are based on a 12-month randomized clinical trial including 155 community-dwelling women 65-75 years of age who were randomly allocated to once-weekly resistance training (1x RT; n = 54), twice-weekly resistance training (2x RT; n = 52), or twice-weekly balance and tone training (BAT; n = 49). The primary outcome measure was performance on the Stroop test, an executive cognitive test of selective attention and conflict resolution. Secondary outcomes of executive functions were set shifting and working memory. Individuals in the 1x RT or 2x RT group demonstrated a significantly greater probability for improved performance on the Stroop Test (0.49; 95% confidence interval, 0.41-0.57) compared with those in the BAT group (0.25; 95% confidence interval, 0.25-0.40). Resistance training had significant effects on transitions in selective attention and conflict resolution. Resistance training is efficacious in improving a measure of selective attention and conflict resolution in older women, probably more so among those with greater baseline cognitive function. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study.

    Science.gov (United States)

    Sharma, Aditya; Hill, Andrew; Kurbatova, Ekaterina; van der Walt, Martie; Kvasnovsky, Charlotte; Tupasi, Thelma E; Caoili, Janice C; Gler, Maria Tarcela; Volchenkov, Grigory V; Kazennyy, Boris Y; Demikhova, Olga V; Bayona, Jaime; Contreras, Carmen; Yagui, Martin; Leimane, Vaira; Cho, Sang Nae; Kim, Hee Jin; Kliiman, Kai; Akksilp, Somsak; Jou, Ruwen; Ershova, Julia; Dalton, Tracy; Cegielski, Peter

    2017-07-01

    Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR

  17. Berthold contamination meter type LB1210B

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1981-04-01

    This instrument is a well designed, well constructed contamination monitor that has unusual versatility. Where large surface areas require to be monitored it is particularly useful because of the large area of the detector. It is suitable for monitoring β surface contamination of energy equal to and above that of 14 C, and for X- and low-energy γ-emitting nuclides. It has an adequate battery life, good temperature stability, comprehensive but simple controls, and a clear and accurate meter. A useful check source is provided. The only criticisms of the limitations of the alarm warning, the rather quiet click for each event detected, the rough surface finish, and the effects of high humidity. (author)

  18. Handheld Multi-Gas Meters Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Gustavious [Brigham Young Univ., Provo, UT (United States); Wald-Hopkins, Mark David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Obrey, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Akhadov, Valida Dushdurova [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-27

    Handheld multi-gas meters (MGMs) are equipped with sensors to monitor oxygen (O2) levels and additional sensors to detect the presence of combustible or toxic gases in the environment. This report is limited to operational response-type MGMs that include at least four different sensors. These sensors can vary by type and by the monitored chemical. In real time, the sensors report the concentration of monitored gases in the atmosphere near the MGM. In April 2016 the System Assessment and Validation for Emergency Responders (SAVER) Program conducted an operationally-oriented assessment of MGMs. Five MGMs were assessed by emergency responders. The criteria and scenarios used in this assessment were derived from the results of a focus group of emergency responders with experience in using MGMs. The assessment addressed 16 evaluation criteria in four SAVER categories: Usability, Capability, Maintainability, and Deployability.

  19. Radiation survey meters used for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bjerke, H. (ed.) (Norwegian Radiation Protection Authority, NRPA (Norway)); Sigurdsson, T. (Icelandic Radiation Safety Authority, Geislavarnir Rikisins, GR (IS)); Meier Pedersen, K. (National Board of Health, Statens Institut for Straalebeskyttelse (SIS) (Denmark)); Grindborg, J.-E.; Persson, L. (Swedish Radiation Safety Authority, Straalsaekerhetsmyndigheten (SSM) (Sweden)); Siiskonen, T.; Hakanen, A.; Kosunen, A. (Radiation and Nuclear Safety Authority, Saeteilyturvakeskus (STUK) (Finland))

    2012-01-15

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  20. Radiation survey meters used for environmental monitoring

    International Nuclear Information System (INIS)

    Bjerke, H.; Sigurdsson, T.; Meier Pedersen, K.; Grindborg, J.-E.; Persson, L.; Siiskonen, T.; Hakanen, A.; Kosunen, A.

    2012-01-01

    The Nordic dosimetry group set up the GammaRate project to investigate how its expertise could be used to assure appropriate usage of survey meters in environmental monitoring. Considerable expertise in calibrating radiation instruments exists in the Nordic radiation protection authorities. The Swedish, Finnish, Danish and Norwegian authorities operate Secondary Standard Dosimetry Laboratories (SSDLs) that provide users with calibration traceable to internationally recognised primary standards. These authorities together with the Icelandic authorities have formally cooperated since 2002 in the field of radiation dosimetry. Dosimetry is the base for assesment of risk from ionising radiation and calibration of instruments is an imported part in dosimetry. The Nordic dosimetry group has been focused on cancer therapy. This work extends the cooperation to the dosimetry of radiation protection and environmental monitoring. This report contains the formal, theoretical and practical background for survey meter measurements. Nordic standards dosimetry laboratories have the capability to provide traceable calibration of instruments in various types of radiation. To verify and explore this further in radiation protection applications a set of survey instruments were sent between the five Nordic countries and each of the authority asked to provide a calibration coefficient for all instruments. The measurement results were within the stated uncertainties, except for some results from NRPA for the ionchamber based instrument. The comparison was shown to be a valuable tool to harmonize the calibration of radiation protection instruments in the Nordic countries. Dosimetry plays an important role in the emergency situations, and it is clear that better traceability and harmonised common guidelines will improve the emergency preparedness and health. (Author)

  1. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  2. Correlation models between environmental factors and bacterial resistance to antimony and copper.

    Directory of Open Access Journals (Sweden)

    Zunji Shi

    Full Text Available Antimony (Sb and copper (Cu are toxic heavy metals that are associated with a wide variety of minerals. Sb(III-oxidizing bacteria that convert the toxic Sb(III to the less toxic Sb(V are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III/Cu(II-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs for Sb(III (>10 mM,making them the most highly Sb(III-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III, including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III or Cu(II resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III=606.605+0.14533 x C(Sb+0.4128 x C(Cu and MIC((Cu(II=58.3844+0.02119 x C(S+0.00199 x CP [where the MIC(Sb(III and MIC(Cu(II represent the average bacterial MIC for the metal of each soil (μM, and the C(Sb, C(Cu, C(S and C(P represent concentrations for Sb, Cu, S and P (mg/kg in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.

  3. Proceedings of the 2006 smart metering conference and expo

    International Nuclear Information System (INIS)

    2006-01-01

    Ontario's smart metering program was launched as part of a general demand response management strategy to improve energy conservation in the province. Smart metering will help consumers to control their electricity bills through conservation and demand response, and will allow consumers to better manage their energy consumption and use it more effectively during cheaper, off-peak times of day. Smart metering systems measure how much electricity a customer uses on an hourly basis, and data is transferred daily to local electricity distributors. Toronto Hydro will have close to 200,000 smart meters installed by the end of 2006. By 2010, Toronto will be North America's largest urban centre to have made the full transition to smart metering technology across its entire base. This conference provided an update of Toronto Hydro's smart metering project, as well as details of their demand response program. Presentations were given by a variety of experts in information technology as well as electric power industry leaders North American demand and response metering strategies were reviewed, as well as various initiatives in advanced metering infrastructure (AMI). Security risks associated with smart metering environments were reviewed. An evaluation of the current regulatory environment was presented along with a discussion of smart metering standards and compatibility issues. New metering technologies were presented as well as various associated demand side management tools. Smart metering pilot programs and initiatives were discussed, and best practices in smart metering were evaluated. Twenty-nine presentations were given at the conference, 13 of which have been indexed separately for inclusion in this database. refs., tabs., figs

  4. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters

    International Nuclear Information System (INIS)

    Krishnamurti, Tamar; Schwartz, Daniel; Davis, Alexander; Fischhoff, Baruch; Bruine de Bruin, Wändi; Lave, Lester; Wang, Jack

    2012-01-01

    With the enactment of the 2009 American Recovery and Reinvestment Act, U.S. President Obama made a public commitment to a new approach to energy production and transmission in the United States. It features installing smart meters and related technologies in residential homes, as part of transforming the current electrical grid into a “smart grid.” Realizing this transformation requires consumers to accept these new technologies and take advantage of the opportunities that they create. We use methods from behavioral decision research to understand consumer beliefs about smart meters, including in-depth mental models interviews and a follow-up survey with a sample of potential smart meter customers of a major U.S. mid-Atlantic electricity utility. In both the surveys and the interviews, most respondents reported wanting smart meters. However, these preferences were often based on erroneous beliefs regarding their purpose and function. Respondents confused smart meters with in-home displays and other enabling technologies, while expecting to realize immediate savings. They also perceived risks, including less control over their electricity usage, violations of their privacy, and increased costs. We discuss the policy implications of our results. - Highlights: ► We outline normative risks and benefits of smart meters from scientific literature. ► We examine consumer perceptions of smart meters via interviews and surveys. ► Smart meter desire stems from consumer misconceptions about purpose and function. ► Appropriate communications may prevent consumer protests against the smart grid.

  5. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  6. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment.

    Science.gov (United States)

    Wang, Zhenzhi; Zhai, Dongxia; Zhang, Danying; Bai, Lingling; Yao, Ruipin; Yu, Jin; Cheng, Wen; Yu, Chaoqin

    2017-05-01

    Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepiandrosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

  7. Association between Twist and multidrug resistance gene-associated proteins in Taxol®-resistant MCF-7 cells and a 293 cell model of Twist overexpression.

    Science.gov (United States)

    Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao

    2018-01-01

    Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.

  8. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  9. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Science.gov (United States)

    Gantner, Melisa Edith; Di Ianni, Mauricio Emiliano; Ruiz, María Esperanza; Bruno-Blanch, Luis E.

    2013-01-01

    ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP) is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively. PMID:23984415

  10. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    Science.gov (United States)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  11. Evolutionary stability and resistance to cheating in an indirect reciprocity model based on reputation

    Science.gov (United States)

    Martinez-Vaquero, Luis A.; Cuesta, José A.

    2013-05-01

    Indirect reciprocity is one of the main mechanisms to explain the emergence and sustainment of altruism in societies. The standard approach to indirect reciprocity is reputation models. These are games in which players base their decisions on their opponent's reputation gained in past interactions with other players (moral assessment). The combination of actions and moral assessment leads to a large diversity of strategies; thus determining the stability of any of them against invasions by all the others is a difficult task. We use a variant of a previously introduced reputation-based model that let us systematically analyze all these invasions and determine which ones are successful. Accordingly, we are able to identify the third-order strategies (those which, apart from the action, judge considering both the reputation of the donor and that of the recipient) that are evolutionarily stable. Our results reveal that if a strategy resists the invasion of any other one sharing its same moral assessment, it can resist the invasion of any other strategy. However, if actions are not always witnessed, cheaters (i.e., individuals with a probability of defecting regardless of the opponent's reputation) have a chance to defeat the stable strategies for some choices of the probabilities of cheating and of being witnessed. Remarkably, by analyzing this issue with adaptive dynamics we find that whether an honest population resists the invasion of cheaters is determined by a Hamilton-like rule, with the probability that the cheat is discovered playing the role of the relatedness parameter.

  12. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  13. Analytical Model of Thermo-electrical Behaviour in Superconducting Resistive Core Cables

    CERN Document Server

    Calvi, M; Breschi, M; Coccoli, M; Granieri, P; Iriart, G; Lecci, F; Siemko, A

    2006-01-01

    High field superconducting Nb3Sn accelerators magnets above 14 T, for future High Energy Physics applications, call for improvements in the design of the protection system against resistive transitions. The longitudinal quench propagation velocity (vq) is one of the parameters defining the requirements of the protection. Up to now vq has been always considered as a physical parameter defined by the operating conditions (the bath temperature, cooling conditions, the magnetic field and the over all current density) and the type of superconductor and stabilizer used. It is possible to enhance the quench propagation velocity by segregating a percent of the stabilizer into the core, although keeping the total amount constant and tuning the contact resistance between the superconducting strands and the core. Analytical model and computer simulations are presented to explain the phenomenon. The consequences with respect to minimum quench energy are evidenced and the strategy to optimize the cable designed is discuss...

  14. pyres: a Python wrapper for electrical resistivity modeling with R2

    Science.gov (United States)

    Befus, Kevin M.

    2018-04-01

    A Python package, pyres, was written to handle common as well as specialized input and output tasks for the R2 electrical resistivity (ER) modeling program. Input steps including handling field data, creating quadrilateral or triangular meshes, and data filtering allow repeatable and flexible ER modeling within a programming environment. pyres includes non-trivial routines and functions for locating and constraining specific known or separately-parameterized regions in both quadrilateral and triangular meshes. Three basic examples of how to run forward and inverse models with pyres are provided. The importance of testing mesh convergence and model sensitivity are also addressed with higher-level examples that show how pyres can facilitate future research-grade ER analyses.

  15. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  16. Use of an individual-based simulation model to explore and evaluate potential insecticide resistance management strategies.

    Science.gov (United States)

    Slater, Russell; Stratonovitch, Pierre; Elias, Jan; Semenov, Mikhail A; Denholm, Ian

    2017-07-01

    Tools with the potential to predict risks of insecticide resistance and aid the evaluation and design of resistance management tactics are of value to all sectors of the pest management community. Here we describe use of a versatile individual-based model of resistance evolution to simulate how strategies employing single and multiple insecticides influence resistance development in the pollen beetle, Meligethes aeneus. Under repeated exposure to a single insecticide, resistance evolved faster to a pyrethroid (lambda-cyhalothrin) than to a pyridine azomethane (pymetrozine), due to difference in initial efficacy. A mixture of these compounds delayed resistance compared to use of single products. The effectiveness of rotations depended on the sequence in which compounds were applied in response to pest density thresholds. Effectiveness of a mixture strategy declined with reductions in grower compliance. At least 50% compliance was needed to cause some delay in resistance development. No single strategy meets all requirements for managing resistance. It is important to evaluate factors that prevail under particular pest management scenarios. The model used here provides operators with a valuable means for evaluating and extending sound resistance management advice, as well as understanding needs and opportunities offered by new control techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C-W.; Biggar, K.K.; Storey, K.B. [Carleton University, Department of Biology, Institute of Biochemistry, Ottawa, ON (Canada)

    2013-01-28

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

  18. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    International Nuclear Information System (INIS)

    Wu, C-W.; Biggar, K.K.; Storey, K.B.

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans

  19. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    Science.gov (United States)

    Wu, C-W.; Biggar, K.K.; Storey, K.B.

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans. PMID:23314346

  20. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  1. De Minimis Thresholds for Federal Building Metering Appropriateness

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  2. Advanced Metering Installations – A Perspective from Federal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Earni, Shankar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-02

    This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized. This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.

  3. Method and apparatus for reading meters from a video image

    Science.gov (United States)

    Lewis, Trevor J.; Ferguson, Jeffrey J.

    1997-01-01

    A method and system to enable acquisition of data about an environment from one or more meters using video images. One or more meters are imaged by a video camera and the video signal is digitized. Then, each region of the digital image which corresponds to the indicator of the meter is calibrated and the video signal is analyzed to determine the value indicated by each meter indicator. Finally, from the value indicated by each meter indicator in the calibrated region, a meter reading is generated. The method and system offer the advantages of automatic data collection in a relatively non-intrusive manner without making any complicated or expensive electronic connections, and without requiring intensive manpower.

  4. An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Huang Tim

    2010-11-01

    Full Text Available Abstract Background The nuclear transcription factor estrogen receptor alpha (ER-alpha is the target of several antiestrogen therapeutic agents for breast cancer. However, many ER-alpha positive patients do not respond to these treatments from the beginning, or stop responding after being treated for a period of time. Because of the association of gene transcription alteration and drug resistance and the emerging evidence on the role of DNA methylation on transcription regulation, understanding of these relationships can facilitate development of approaches to re-sensitize breast cancer cells to treatment by restoring DNA methylation patterns. Methods We constructed a hierarchical empirical Bayes model to investigate the simultaneous change of gene expression and promoter DNA methylation profiles among wild type (WT and OHT/ICI resistant MCF7 breast cancer cell lines. Results We found that compared with the WT cell lines, almost all of the genes in OHT or ICI resistant cell lines either do not show methylation change or hypomethylated. Moreover, the correlations between gene expression and methylation are quite heterogeneous across genes, suggesting the involvement of other factors in regulating transcription. Analysis of our results in combination with H3K4me2 data on OHT resistant cell lines suggests a clear interplay between DNA methylation and H3K4me2 in the regulation of gene expression. For hypomethylated genes with alteration of gene expression, most (~80% are up-regulated, consistent with current view on the relationship between promoter methylation and gene expression. Conclusions We developed an empirical Bayes model to study the association between DNA methylation in the promoter region and gene expression. Our approach generates both global (across all genes and local (individual gene views of the interplay. It provides important insight on future effort to develop therapeutic agent to re-sensitize breast cancer cells to treatment.

  5. An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer.

    Science.gov (United States)

    Jeong, Jaesik; Li, Lang; Liu, Yunlong; Nephew, Kenneth P; Huang, Tim Hui-Ming; Shen, Changyu

    2010-11-25

    The nuclear transcription factor estrogen receptor alpha (ER-alpha) is the target of several antiestrogen therapeutic agents for breast cancer. However, many ER-alpha positive patients do not respond to these treatments from the beginning, or stop responding after being treated for a period of time. Because of the association of gene transcription alteration and drug resistance and the emerging evidence on the role of DNA methylation on transcription regulation, understanding of these relationships can facilitate development of approaches to re-sensitize breast cancer cells to treatment by restoring DNA methylation patterns. We constructed a hierarchical empirical Bayes model to investigate the simultaneous change of gene expression and promoter DNA methylation profiles among wild type (WT) and OHT/ICI resistant MCF7 breast cancer cell lines. We found that compared with the WT cell lines, almost all of the genes in OHT or ICI resistant cell lines either do not show methylation change or hypomethylated. Moreover, the correlations between gene expression and methylation are quite heterogeneous across genes, suggesting the involvement of other factors in regulating transcription. Analysis of our results in combination with H3K4me2 data on OHT resistant cell lines suggests a clear interplay between DNA methylation and H3K4me2 in the regulation of gene expression. For hypomethylated genes with alteration of gene expression, most (~80%) are up-regulated, consistent with current view on the relationship between promoter methylation and gene expression. We developed an empirical Bayes model to study the association between DNA methylation in the promoter region and gene expression. Our approach generates both global (across all genes) and local (individual gene) views of the interplay. It provides important insight on future effort to develop therapeutic agent to re-sensitize breast cancer cells to treatment.

  6. FUSION OF VENTURI AND ULTRASONIC FLOW METER FOR ENHANCED FLOW METER CHARACTERISTICS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    K.V. Santhosh

    2015-04-01

    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  7. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound.

    Science.gov (United States)

    Xi, Jinxiang; Si, Xiuhua; Kim, JongWon; Su, Guoguang; Dong, Haibo

    2014-07-01

    The objective of this study was to systematically assess the effects of pharyngeal anatomical details on breathing resistance and acoustic characteristics by means of computational modeling. A physiologically realistic nose-throat airway was reconstructed from medical images. Individual airway anatomy such as the uvula, pharynx, and larynx was then isolated for examination by gradually simplifying this image-based model geometry. Large eddy simulations with the FW-H acoustics model were used to simulate airflows and acoustic sound generation with constant flow inhalations in rigid-walled airway geometries. Results showed that pharyngeal anatomical details exerted a significant impact on breathing resistance and energy distribution of acoustic sound. The uvula constriction induced considerably increased levels of pressure drop and acoustic power in the pharynx, which could start and worsen snoring symptoms. Each source anatomy was observed to generate a unique spectrum with signature peak frequencies and energy distribution. Moreover, severe pharyngeal airway narrowing led to an upward shift of sound energy in the high-frequency range. Results indicated that computational aeroacoustic modeling appeared to be a practical tool to study breathing-related disorders. Specifically, high-frequency acoustic signals might disclose additional clues to the mechanism of apneic snoring and should be included in future acoustic studies.

  8. Application of equivalent resistance to simplification of Sutong Bridge piers in tidal river section modeling

    Directory of Open Access Journals (Sweden)

    Lei Tang

    2012-09-01

    Full Text Available This paper describes some details and procedural steps in the equivalent resistance (E-R method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.

  9. A new model for estimating total body water from bioelectrical resistance

    Science.gov (United States)

    Siconolfi, S. F.; Kear, K. T.

    1992-01-01

    Estimation of total body water (T) from bioelectrical resistance (R) is commonly done by stepwise regression models with height squared over R, H(exp 2)/R, age, sex, and weight (W). Polynomials of H(exp 2)/R have not been included in these models. We examined the validity of a model with third order polynomials and W. Methods: T was measured with oxygen-18 labled water in 27 subjects. R at 50 kHz was obtained from electrodes placed on the hand and foot while subjects were in the supine position. A stepwise regression equation was developed with 13 subjects (age 31.5 plus or minus 6.2 years, T 38.2 plus or minus 6.6 L, W 65.2 plus or minus 12.0 kg). Correlations, standard error of estimates and mean differences were computed between T and estimated T's from the new (N) model and other models. Evaluations were completed with the remaining 14 subjects (age 32.4 plus or minus 6.3 years, T 40.3 plus or minus 8 L, W 70.2 plus or minus 12.3 kg) and two of its subgroups (high and low) Results: A regression equation was developed from the model. The only significant mean difference was between T and one of the earlier models. Conclusion: Third order polynomials in regression models may increase the accuracy of estimating total body water. Evaluating the model with a larger population is needed.

  10. Deducing Energy Consumer Behavior from Smart Meter Data

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Heick, Rune; Jacobsen, Rune Hylsberg

    2017-01-01

    The ongoing upgrade of electricity meters to smart ones has opened a new market of intelligent services to analyze the recorded meter data. This paper introduces an open architecture and a unified framework for deducing user behavior from its smart main electricity meter data and presenting...... the recognized home appliances. The framework uses open standard interfaces for exchanging data. The framework has been validated through comprehensive experiments that are related to an European Smart Grid project....

  11. The diverse effects of intraspecific competition on the selective advantage to resistance: A model and its predictions

    NARCIS (Netherlands)

    Weis, A.E.; Hochberg, M.E.

    2000-01-01

    We constructed a model to investigate conditions under which intraspecific competition amplifies or diminishes the selective advantage to resistance. The growth trajectories of competing individual plants were depicted by logistic difference equations that incorporated basic costs (lowered growth

  12. Finite Element Modeling with Embed Rebar Elements and Steady State Rolling Analysis for Rolling Resistance Test of Pneumatic Tire

    Directory of Open Access Journals (Sweden)

    Suvanjumrat Chakrit

    2017-01-01

    Full Text Available Finite element model of tire rolling resistance test on the drum was developed using 3D steady state rolling analysis coupling with pre-inflation of 2D axisymmetric tire analysis. The complex components of the radial tires composing tread, sidewall, ply layers, steel belts, and lead wires were modeled using rebar elements which were embed into the rubber element using the tying equation. The Mooney-Rivlin hyperelastic constitutive model was employed to describe the large deformation behavior of tread and sidewall, while other components such as plies, steel belts and bead wires were assigned the linear isotropic material. The tire rolling resistance system was modeled by inflation of slick tire and compression on the drum for the footprint analysis regarding the rolling resistance test. The tire’s steady state characteristics such as footprint contact pressure, rolling resistance force, and time response characteristic of tires were predicted instead the experiment of the prototype.

  13. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  14. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  15. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis.

    Science.gov (United States)

    Kendall, Emily A; Fofana, Mariam O; Dowdy, David W

    2015-12-01

    Multidrug-resistant (MDR) tuberculosis can be acquired through de-novo mutation during tuberculosis treatment or through transmission from other individuals with active MDR tuberculosis. Understanding the balance between these two mechanisms is essential when allocating resources for MDR tuberculosis. We aimed to create a dynamic transmission model of an MDR tuberculosis epidemic to estimate the contributions of treatment-related acquisition and person-to-person transmission of resistance to incident MDR tuberculosis cases. In this modelling analysis, we constructed a dynamic transmission model of an MDR tuberculosis epidemic, allowing for both treatment-related acquisition and person-to-person transmission of resistance. We used national tuberculosis notification data to inform Bayesian estimates of the proportion of each country's 2013 MDR tuberculosis incidence that resulted from MDR transmission rather than treatment-related MDR acquisition. Global estimates of 3·5% MDR tuberculosis prevalence among new tuberculosis notifications and 20·5% among re-treatment notifications translate into an estimate that resistance transmission rather than acquisition accounts for a median 95·9% (95% uncertainty range [UR] 68·0-99·6) of all incident MDR tuberculosis, and 61·3% (16·5-95·2) of incident MDR tuberculosis in previously treated individuals. The estimated proportion of MDR tuberculosis resulting from transmission varied substantially with different countries' notification data-ranging from 48% (95% UR 30-75) in Bangladesh to 99% (91-100) in Uzbekistan. Estimates were most sensitive to estimates of the transmissibility of MDR strains, the probability of acquiring MDR during tuberculosis treatment, and the responsiveness of MDR tuberculosis to first-line treatment. Notifications of MDR prevalence from most high-burden settings are consistent with most incident MDR tuberculosis resulting from transmission rather than new treatment-related acquisition of resistance

  16. Calibration of ionization chamber and GM counter survey meters, (1)

    International Nuclear Information System (INIS)

    Bingo, Kazuyoshi; Kajimoto, Yoichi; Suga, Shin-ichi

    1978-01-01

    Three types of ionization chamber survey meters and a type of GM counter survey meter were calibrated for measuring the β-ray absorbed dose rate in a working area. To estimate the β-ray absorbed dose rate, a survey meter was used without and with a filter. A reading of survey meter's indicator measured with the filter was subtracted from a reading measured without the filter, and then the absorbed dose rate was obtained by multiplying this remainder by a conversion coefficient. The conversion coefficients were roughly constant with distance more than 8 cm (ionization chamber survey meters) and with distance more than 5 cm (GM counter survey meter). The conversion coefficient was dependent on β-ray energies. In order to measure the absorbed dose rate of tissue whose epidermal thickness is 40 mg/cm 2 , the constant value, 4 (mrad/h)/(mR/h), was chosen independently of β-ray energies as the conversion coefficient of three types of ionization chamber survey meters. The conversion coefficient of the GM counter survey meter was more energy dependent than that of every type of ionization chamber survey meter. (author)

  17. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can...... be challenging to get large data sets due to privacy and/or data protection regulations. This paper presents a scalable smart meter data generator using Spark that can generate realistic data sets. The proposed data generator is based on a supervised machine learning method that can generate data of any size...

  18. Collaborative Outbound Taxi Metering for Environmental Benefits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the concept of Collaborative Outbound Taxi Metering (COTM), which provides environmental benefits without sacrificing throughput. In current...

  19. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys

    Science.gov (United States)

    Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew

    2017-11-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  20. A physics-based model of gate-tunable metal–graphene contact resistance benchmarked against experimental data

    International Nuclear Information System (INIS)

    Chaves, Ferney A; Jiménez, David; Sagade, Abhay A; Neumaier, Daniel; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri

    2015-01-01

    Metal–graphene contact resistance is a technological bottleneck in the realization of viable graphene-based electronics. We report a model that is useful for finding the gate-tunable components of this resistance, determined by the tunneling of carriers between the 3D metal and 2D graphene underneath, followed by Klein tunneling to the graphene in the channel. This model quantifies the intrinsic factors that control that resistance, including the effect of unintended chemical doping. Our results agree with experimental results for several metals. (paper)

  1. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  2. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  3. Recent patents in pressurised metered dose inhalers.

    Science.gov (United States)

    Ehtezazi, Touraj

    2012-04-01

    In this paper recent patents in pressurised metered dose inhalers have been reviewed. The patents are related to novel valves, dose-counters, formulations, add-on devices, reduction of propellant leakage and inkjet technology. Recently patented dose-counters provide mechanisms that are less susceptible to inaccuracy, and are battery-less electronic dose-counters with the help of miniature electromechanical generators. Regarding the formulation aspect, recent patents provide methods for combinational pMDIs and more stable products. Advantages of recently patented valves are being spring-free and less subject to loss of prime. Recent developments in micromachining have allowed patents that incorporate inkjet technology to develop inhalers that are similar to pMDIs, but produce uniform aerosol droplets. Coating canisters with suitable polymers has reduced need for excipients. Recently patented add-on devices reduce aerosol deposition in the spacer by creating turbulence on the walls of the chamber. Blockage of nozzles in actuators is prevented by providing tapered nozzle channels. In conclusion, these patents show better understanding of pMDIs and provide methods to achieve products with much improved reliability, aerosol performance and stability.

  4. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  5. Proportional odds model applied to mapping of disease resistance genes in plants

    Directory of Open Access Journals (Sweden)

    Maria Helena Spyrides-Cunha

    2000-03-01

    Full Text Available Molecular markers have been used extensively to map quantitative trait loci (QTL controlling disease resistance in plants. Mapping is usually done by establishing a statistical association between molecular marker genotypes and quantitative variations in disease resistance. However, most statistical approaches require a continuous distribution of the response variable, a requirement not always met since evaluation of disease resistance is often done using visual ratings based on an ordinal scale of disease severity. This paper discusses the application of the proportional odds model to the mapping of disease resistance genes in plants amenable to expression as ordinal data. The model was used to map two resistance QTL of maize to Puccinia sorghi. The microsatellite markers bngl166 and bngl669, located on chromosomes 2 and 8, respectively, were used to genotype F2 individuals from a segregating population. Genotypes at each marker locus were then compared by assessing disease severity in F3 plants derived from the selfing of each genotyped F2 plant based on an ordinal scale severity. The residual deviance and the chi-square score statistic indicated a good fit of the model to the data and the odds had a constant proportionality at each threshold. Single-marker analyses detected significant differences among marker genotypes at both marker loci, indicating that these markers were linked to disease resistance QTL. The inclusion of the interaction term after single-marker analysis provided strong evidence of an epistatic interaction between the two QTL. These results indicate that the proportional odds model can be used as an alternative to traditional methods in cases where the response variable consists of an ordinal scale, thus eliminating the problems of heterocedasticity, non-linearity, and the non-normality of residuals often associated with this type of data.Marcadores moleculares têm sido extensivamente usados para o mapeamento de loci de

  6. A theoretical model for metal-graphene contact resistance using a DFT-NEGF method.

    Science.gov (United States)

    Ji, Xiang; Zhang, Jinyu; Wang, Yan; Qian, He; Yu, Zhiping

    2013-11-07

    The contact resistance (R(c)) between graphene and metal electrodes is of crucial importance for achieving potentially high performances for graphene devices. However, previous analytical models based on Landauer's approach have failed to include the Fermi velocity difference between the graphene under the metal and the pure graphene channel. Hereby we report a theoretical model to estimate the R(c) using density-functional theory and non-equilibrium Green's function methods. Our model not only presents a clear physical picture of the metal-graphene contacts, but also generates R(c) values which are in good agreement with the experimental results: 210 Ω μm for double-sided Pd contacts compared with 403 Ω μm for single-sided Pd contact.

  7. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model......, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization...... including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia...

  8. HCC development is associated to peripheral insulin resistance in a mouse model of NASH.

    Directory of Open Access Journals (Sweden)

    Samuele De Minicis

    Full Text Available NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC, even in the absence of cirrhosis, that makes NAFLD of such clinical importance.we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC.mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA or its control (CSAA diet and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis.CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2 and Osteopontin (SPP-1 were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors.the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.

  9. HCC development is associated to peripheral insulin resistance in a mouse model of NASH.

    Science.gov (United States)

    De Minicis, Samuele; Agostinelli, Laura; Rychlicki, Chiara; Sorice, Gian Pio; Saccomanno, Stefania; Candelaresi, Cinzia; Giaccari, Andrea; Trozzi, Luciano; Pierantonelli, Irene; Mingarelli, Eleonora; Marzioni, Marco; Muscogiuri, Giovanna; Gaggini, Melania; Benedetti, Antonio; Gastaldelli, Amalia; Guido, Maria; Svegliati-Baroni, Gianluca

    2014-01-01

    NAFLD is the most common liver disease worldwide but it is the potential evolution to NASH and eventually to hepatocellular carcinoma (HCC), even in the absence of cirrhosis, that makes NAFLD of such clinical importance. we aimed to create a mouse model reproducing the pathological spectrum of NAFLD and to investigate the role of possible co-factors in promoting HCC. mice were treated with a choline-deficient L-amino-acid-defined-diet (CDAA) or its control (CSAA diet) and subjected to a low-dose i.p. injection of CCl4 or vehicle. Insulin resistance was measured by the euglycemic-hyperinsulinemic clamp method. Steatosis, fibrosis and HCC were evaluated by histological and molecular analysis. CDAA-treated mice showed peripheral insulin resistance at 1 month. At 1-3 months, extensive steatosis and fibrosis were observed in CDAA and CDAA+CCl4 groups. At 6 months, equal increase in steatosis and fibrosis was observed between the two groups, together with the appearance of tumor. At 9 months of treatment, the 100% of CDAA+CCl4 treated mice revealed tumor versus 40% of CDAA mice. Insulin-like Growth Factor-2 (IGF-2) and Osteopontin (SPP-1) were increased in CDAA mice versus CSAA. Furthermore, Immunostaining for p-AKT, p-c-Myc and Glypican-3 revealed increased positivity in the tumors. the CDAA model promotes the development of HCC from NAFLD-NASH in the presence of insulin resistance but in the absence of cirrhosis. Since this condition is increasingly recognized in humans, our study provides a model that may help understanding mechanisms of carcinogenesis in NAFLD.

  10. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  11. Geophysical modeling in gold deposit through DC Resistivity and Induced Polarization methods

    Directory of Open Access Journals (Sweden)

    César Augusto Moreira

    Full Text Available Abstract Ore mining fundamentally depends on the definition of its tenor and volume, something extremely complex in disseminated mineralization, as in the case of certain types of deposits of gold and sulfites. This article proposes the use of electrical tomography for definition of a geophysical signature in terms of electrical resistivity and chargeability, in an outcrop of mineralized quartz lode at the end of an inactive gold mine. One of the targets was to analyze the continuity of the mineralized body, the occurrence of new outcrops and the applicability of the method as an auxiliary tool in mineral extraction. Three parallel lines of electrical tomography in a dipole-dipole arrangement, being orthogonal to the orientation of the gold lode, were installed in an area outside the mine. The results allowed the geophysical characterization of the mineralized zone by high resistivity (above 1000Ω.m and high chargeability (above 30mV/V. The results of the 2D inversion models were interpolated in 3D visualization models, which allowed definition of the contour surfaces for the physical parameters measured, and the morphological pattern modeling of the mineralization. The data reveal the existence of a new lode in subsurface, localized 30m to the south of the lode outcrop. The versatility of the acquisition and data processing indicate the application potential of electrical tomography as a criterion for sampling and tenor definition in ore extraction activities, since it is objective and low cost.

  12. Variability in faecal egg counts – a statistical model to achieve reliable determination of anthelmintic resistance in livestock

    DEFF Research Database (Denmark)

    Nielsen, Martin Krarup; Vidyashankar, Anand N.; Hanlon, Bret

    statistical model was therefore developed for analysis of FECRT data from multiple farms. Horse age, gender, zip code and pre-treatment egg count were incorporated into the model. Horses and farms were kept as random effects. Resistance classifications were based on model-based 95% lower confidence limit (LCL...

  13. An iterative method for accelerated degradation testing data of smart electricity meter

    Science.gov (United States)

    Wang, Xiaoming; Xie, Jinzhe

    2017-01-01

    In order to evaluate the performance of smart electricity meter (SEM), we must spend a lot of time censoring its status. For example, if we assess to the meter stability of the SEM which needs several years at least according to the standards. So accelerated degradation testing (ADT) is a useful method to assess the performance of the SEM. As we known, the Wiener process is a prevalent method to interpret the performance degradation. This paper proposes an iterative method for ADT data of SEM. The simulation study verifies the application and superiority of the proposed model than other ADT methods.

  14. Optimal Meter Placement for Distribution Network State Estimation: A Circuit Representation Based MILP Approach

    DEFF Research Database (Denmark)

    Chen, Xiaoshuang; Lin, Jin; Wan, Can

    2016-01-01

    State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms...

  15. [Assessment on the ecological suitability in Zhuhai City, Guangdong, China, based on minimum cumulative resistance model].

    Science.gov (United States)

    Li, Jian-fei; Li, Lin; Guo, Luo; Du, Shi-hong

    2016-01-01

    Urban landscape has the characteristics of spatial heterogeneity. Because the expansion process of urban constructive or ecological land has different resistance values, the land unit stimulates and promotes the expansion of ecological land with different intensity. To compare the effect of promoting and hindering functions in the same land unit, we firstly compared the minimum cumulative resistance value of promoting and hindering functions, and then looked for the balance of two landscape processes under the same standard. According to the ecology principle of minimum limit factor, taking the minimum cumulative resistance analysis method under two expansion processes as the evaluation method of urban land ecological suitability, this research took Zhuhai City as the study area to estimate urban ecological suitability by relative evaluation method with remote sensing image, field survey, and statistics data. With the support of ArcGIS, five types of indicators on landscape types, ecological value, soil erosion sensitivity, sensitivity of geological disasters, and ecological function were selected as input parameters in the minimum cumulative resistance model to compute urban ecological suitability. The results showed that the ecological suitability of the whole Zhuhai City was divided into five levels: constructive expansion prohibited zone (10.1%), constructive expansion restricted zone (32.9%), key construction zone (36.3%), priority development zone (2.3%), and basic cropland (18.4%). Ecological suitability of the central area of Zhuhai City was divided into four levels: constructive expansion prohibited zone (11.6%), constructive expansion restricted zone (25.6%), key construction zone (52.4%), priority development zone (10.4%). Finally, we put forward the sustainable development framework of Zhuhai City according to the research conclusion. On one hand, the government should strictly control the development of the urban center area. On the other hand, the

  16. Is Advanced Real-Time Energy Metering Sufficient to Persuade People to Save Energy?

    Directory of Open Access Journals (Sweden)

    Leite H.

    2012-10-01

    Full Text Available In order to promote a low-carbon economy, EU citizens may soon be able to check their electricity consumption from smart meter. It is hoped that smart meter can, by providing real-time consumption and pricing information to residential users, help reducing demand for electricity. It is argued in this paper that, according the Elaborative Likelihood Model (ELM, these methods are most likely to be effective when consumers perceive the issue of energy conservation relevant to their lives. Nevertheless, some fundamental characteristics of these methods result in limited amount of perceived personal relevance; for instance, energy expenditure expense may be relatively small comparing to other household expenditure like mortgage and consumption information does not enhance interpersonal trust. In this paper, it is suggested that smart meter can apply the “nudge” approaches which respond to ELM as the use of simple rules to make decision, which include the change of feedback delivery and device design.

  17. RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis

    Directory of Open Access Journals (Sweden)

    Stephen Makonin

    2018-02-01

    Full Text Available Datasets are important for researchers to build models and test how well their machine learning algorithms perform. This paper presents the Rainforest Automation Energy (RAE dataset to help smart grid researchers test their algorithms that make use of smart meter data. This initial release of RAE contains 1 Hz data (mains and sub-meters from two residential houses. In addition to power data, environmental and sensor data from the house’s thermostat is included. Sub-meter data from one of the houses includes heat pump and rental suite captures, which is of interest to power utilities. We also show an energy breakdown of each house and show (by example how RAE can be used to test non-intrusive load monitoring (NILM algorithms.

  18. Is Advanced Real-Time Energy Metering Sufficient to Persuade People to Save Energy?

    Science.gov (United States)

    Ting, L.; Leite, H.; Ponce de Leão, T.

    2012-10-01

    In order to promote a low-carbon economy, EU citizens may soon be able to check their electricity consumption from smart meter. It is hoped that smart meter can, by providing real-time consumption and pricing information to residential users, help reducing demand for electricity. It is argued in this paper that, according the Elaborative Likelihood Model (ELM), these methods are most likely to be effective when consumers perceive the issue of energy conservation relevant to their lives. Nevertheless, some fundamental characteristics of these methods result in limited amount of perceived personal relevance; for instance, energy expenditure expense may be relatively small comparing to other household expenditure like mortgage and consumption information does not enhance interpersonal trust. In this paper, it is suggested that smart meter can apply the "nudge" approaches which respond to ELM as the use of simple rules to make decision, which include the change of feedback delivery and device design.

  19. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  20. Estimation of Received Signal Strength Distribution for Smart Meters with Biased Measurement Data Set

    DEFF Research Database (Denmark)

    Kielgast, Mathias Rønholt; Rasmussen, Anders Charly; Laursen, Mathias Hjorth

    2017-01-01

    This letter presents an experimental study and a novel modelling approach of the wireless channel of smart utility meters placed in basements or sculleries. The experimental data consist of signal strength measurements of consumption report packets. Since such packets are only registered...