WorldWideScience

Sample records for resistance metal resistance

  1. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  2. Metal Resistance and Its Association With Antibiotic Resistance.

    Science.gov (United States)

    Pal, Chandan; Asiani, Karishma; Arya, Sankalp; Rensing, Christopher; Stekel, Dov J; Larsson, D G Joakim; Hobman, Jon L

    2017-01-01

    Antibiotic resistance is recognised as a major global threat to public health by the World Health Organization. Currently, several hundred thousand deaths yearly can be attributed to infections with antibiotic-resistant bacteria. The major driver for the development of antibiotic resistance is considered to be the use, misuse and overuse of antibiotics in humans and animals. Nonantibiotic compounds, such as antibacterial biocides and metals, may also contribute to the promotion of antibiotic resistance through co-selection. This may occur when resistance genes to both antibiotics and metals/biocides are co-located together in the same cell (co-resistance), or a single resistance mechanism (e.g. an efflux pump) confers resistance to both antibiotics and biocides/metals (cross-resistance), leading to co-selection of bacterial strains, or mobile genetic elements that they carry. Here, we review antimicrobial metal resistance in the context of the antibiotic resistance problem, discuss co-selection, and highlight critical knowledge gaps in our understanding. © 2017 Elsevier Ltd. All rights reserved.

  3. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  4. Metallic resist for phase-change lithography

    Science.gov (United States)

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-06-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge2Sb2Te5 films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg58Cu29Y13 alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg58Cu29Y13 thin film is better and can be more easily controlled than that in Ge2Sb2Te5 during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg58Cu29Y13 thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg58Cu29Y13 is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics.

  5. Metal nano-film resistivity chemical sensor.

    Science.gov (United States)

    Podešva, Pavel; Foret, František

    2016-02-01

    In this work, we present a study on reusable thin metal film resistivity-based sensor for direct measurement of binding of thiol containing molecules in liquid samples. While in bulk conductors the DC current is not influenced by the surface events to a measureable degree in a thin metal layer the electrons close to the surface conduct a significant part of electricity and are influenced by the surface interactions. In this study, the thickness of the gold layer was kept below 100 nm resulting in easily measureable resistivity changes of the metal element upon a surface SH-groups binding. No further surface modifications were necessary. Thin film gold layers deposited on a glass substrate by vacuum sputtering were photolithographically structured into four sensing elements arranged in a Wheatstone bridge to compensate for resistance fluctuations due to the temperature changes. Concentrations as low 100 pM provided measureable signals. The surface after the measurement could be electrolytically regenerated for next measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  7. Corrosion resistant metallic glasses for biosensing applications

    Science.gov (United States)

    Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel

    2018-04-01

    We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  8. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7.

    Science.gov (United States)

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-09-29

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.

  9. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  10. Dissemination of metal resistance genes among animal methicillin-resistant coagulase-negative Staphylococci.

    Science.gov (United States)

    Argudín, M Angeles; Butaye, Patrick

    2016-04-01

    The use of metals as feed supplement has been recognized as a potential driver for co-selection of methicillin-resistant Staphylococcus aureus in pigs. However, the prevalence of these determinants in methicillin-resistant coagulase-negative staphylococci (MRCoNS) is largely unknown. In this study, a collection of 130 MRCoNS from pigs and veal calves were investigated for the presence of metal-resistance genes (czrC, copB, cadD, arsA) associated to SCCmec. Near half of the isolates carried metal resistance genes (czrC 5.4%, copB 38.5%, cadD 7.7%, arsA 26.2%) regardless of their SCCmec type. The increased use of metals in livestock animals, especially zinc in pigs in several European countries may co-select for methicillin-resistance in several staphylococcal species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus

    Science.gov (United States)

    Chudobova, Dagmar; Dostalova, Simona; Blazkova, Iva; Michalek, Petr; Ruttkay-Nedecky, Branislav; Sklenar, Matej; Nejdl, Lukas; Kudr, Jiri; Gumulec, Jaromir; Tmejova, Katerina; Konecna, Marie; Vaculovicova, Marketa; Hynek, David; Masarik, Michal; Kynicky, Jindrich; Kizek, Rene; Adam, Vojtech

    2014-01-01

    There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead) to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM) on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control) of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health. PMID:24651395

  12. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  13. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  14. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  15. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  16. Volatile resistance states in electrochemical metallization cells enabling non-destructive readout of complementary resistive switches

    International Nuclear Information System (INIS)

    Van den Hurk, Jan; Linn, Eike; Waser, Rainer; Zhang, Hehe; Valov, Ilia

    2014-01-01

    Redox-based resistive memory cells exhibit changes of OFF or intermediate resistance values over time and even ON states can be completely lost in certain cases. The stability of these resistance states and the time until resistance loss strongly depends on the materials system. On the basis of electrical measurements and chemical analysis we found a viable explanation for these volatile resistance states (VRSs) in Ag-GeS x -based electrochemical metallization memory cells and identified a technological application in the field of crossbar memories. Complementary resistive switches usually suffer from the necessity of a destructive read-out procedure increasing wear and reducing read-out speed. From our analysis we deduced a solution to use the VRS as an inherent selector mechanism without the need for additional selector devices. (paper)

  17. Heavy metal and associated antibiotic resistance of fecal coliforms ...

    African Journals Online (AJOL)

    The present study aimed at assessing the resistance pattern to multiple heavy metals by wastewater bacteria and associated antibiotic resistance. Methodology and results: Standard microbiological methods were used to isolate fecal streptococci, fecal coliforms, Vibrio and Salmonella species from raw animal wastewaters ...

  18. Heavy metal and associated antibiotic resistance of fecal coliforms ...

    African Journals Online (AJOL)

    SARAH

    2013-04-25

    Apr 25, 2013 ... contamination of the wastewaters and sludge with heavy metals possibly from animal feeds or drinking waters, leading to co-selection of both metal tolerant and antibiotic resistant microbial species. This requires intervention measures to curb the potential health hazard that heavy metal pollution pose in ...

  19. Antimicrobial, heavy metal resistance and plasmid profile of ...

    African Journals Online (AJOL)

    The antimicrobial, heavy metal resistance patterns and plasmid profiles of Coliforms (Enterobacteriacea) isolated from nosocomial infections and healthy human faeces were compared. Fifteen of the 25 isolates from nosocomial infections were identified as Escherichia coli, and remaining as Kelebsiella pneumoniae.

  20. The update of resist outgas testing for metal containing resists at EIDEC

    Science.gov (United States)

    Shiobara, Eishi; Mikami, Shinji

    2017-10-01

    The metal containing resist is one of the candidates for high sensitivity resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [2], [3]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing by HPEUV, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. The investigation and improvement for these issues are ongoing. The updates will be presented in the conference. This

  1. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented...

  2. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  3. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants

    OpenAIRE

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the...

  4. Seasonal changes in the heavy metal resistant bacterial population ...

    African Journals Online (AJOL)

    Seasonal changes and the contribution of industrial effluent discharges to the population of heavy metalresistant bacteria (HMRB) in the river water and sediment of the New Calabar River, were examined. On exposure of river water microflora to 2µg of heavy metals, the HMRB population ranged from 55 to 78% in the ...

  5. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo

    2018-02-01

    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of Antibiotic Resistance Patterns and Heavy Metals ...

    African Journals Online (AJOL)

    PROF HORSFALL

    mechanic activities, car battery manufacturing plants and the use of vehicles for transportation release high amounts of pollutants including heavy metals into the biosphere (Adewole and Uchegbu, 2010). Antimicrobial drug resistance in bacterial pathogens is of National and International concern (WHO, 2001). Although the ...

  7. Evaluation of antibiotic resistance patterns and heavy metals ...

    African Journals Online (AJOL)

    This work investigated the antibiotic resistance patterns and heavy metals such as Lead (Pb), Zinc (Zn), Cadmium (Cd) and iron (Fe) tolerance of selected bacteria isolated from contaminated soils and sediments around Warri area of Delta State. The heterotrophic bacterial counts for the sampled soils and sediments ranged ...

  8. Risk of antibiotic resistance from metal contaminated soils

    Science.gov (United States)

    Knapp, Charles

    2013-04-01

    It is known that contaminated soils can lead to increased incidence of illness and disease, but it may also prevent our ability to fight disease. Many antibiotic resistant genes (ARG) acquired by bacteria originate from the environment. It is important to understand factors that influence levels of ARG in the environment, which could affect us clinically and agriculturally. The presence of elevated metal content in soils often promotes antibiotic resistance in exposed microorganisms. Using qPCR, the abundances of ARG to compare levels with geochemical conditions in randomly selected soils from several countries. Many ARG positively correlated with soil metal content, especially copper, chromium, nickel, lead, and iron. Results suggest that geochemical metal conditions influence the potential for antibiotic resistance in soil, which might be used to estimate baseline gene presence on various landscape scales and may translate to epidemiological risk of antibiotic-resistance transmission from the environment. This suggests that we may have to reconsider tolerances of metal pollution in the environment.

  9. Superconductivity and electrical resistivity in alkali metal doped ...

    Indian Academy of Sciences (India)

    Unknown

    Fullerenes; alkali-C60 phonon; on-ball-C60 phonon; pressure effect; electrical resistivity. 1. Introduction. Buckminsterfullerenes are known to make compounds with alkali metals intensively studied mainly due to superconductivity and the variation of compounds (Hebard et al 1991; Holczer et al 1991; Tanigaki et al 1991).

  10. Heavy metal and disinfectant resistance genes among livestock-associated methicillin-resistant Staphylococcus aureus isolates

    DEFF Research Database (Denmark)

    Argudin, Maria Angeles; Lauzat, Birgit; Kraushaar, Britta

    2016-01-01

    substances with antimicrobial activity applied in animal feed, including metal-containing compounds might contribute to their selection. Some of these genes have been found in various novel SCCmec cassettes. The aim of this study was to assess the occurrence of metal-resistance genes among a LA-S. aureus...... collection [n = 554, including 542 MRSA and 12 methicillin-susceptible S. aureus (MSSA)] isolated from livestock and food thereof. Most LA-MRSA isolates (76%) carried at least one metal-resistance gene. Among the LA-MRSA CC398 isolates (n = 456), 4.8%, 0.2%, 24.3% and 71.5% were positive for arsA (arsenic......, 72% carried one metal-resistance gene, and the remaining harboured two or more in different combinations. Differences between LA-MRSA CC398 and non-CC398 were statistically significant for arsA and czrC. The czrC gene was almost exclusively found (98%) in the presence of SCCmec V in both CC398...

  11. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    Science.gov (United States)

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  12. Mechanisms of metal resistance and homeostasis in haloarchaea.

    Science.gov (United States)

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.

  13. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    Directory of Open Access Journals (Sweden)

    Pallavee Srivastava

    2013-01-01

    Full Text Available Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.

  14. Mechanisms of lichen resistance to metallic pollution

    Energy Technology Data Exchange (ETDEWEB)

    Sarret, C.; Manceau, A.; Eybert-Berard, L. [Univ. of Grenoble and CNRS (France). Environmental Geochemistry Group; Cuny, D.; Haluwyn, C. van [Lab. de Botanique et de Cryptogamie, Lille (France); Deruelle, S. [Institut d`Ecologie, Paris (France); Hazemann, J.L.; Menthonnex, J.J. [Univ. of Grenoble and CNRS (France). Environmental Geochemistry Group]|[CNRS, Grenoble (France). Lab. de Cristallographie; Soldo, Y. [CNRS, Grenoble (France). Lab. de Cristallographie

    1998-11-01

    Some lichens have a unique ability to grow in heavily contaminated areas due to the development of adaptative mechanisms allowing a high tolerance to metals. Here the authors report on the chemical forms of Pb and Zn in the metal hyperaccumulator Diploschistes muscorum and of Pb in the metal tolerant lichen Xanthoria parietina. The speciation of Zn and Pb has been investigated by powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy using the advanced third-generation synchrotron radiation source of the European synchrotron radiation facility (ESRF in Grenoble). This study reveals that in both lichens cells are protected from toxicity by complexation of heavy metals, but the strategies differ: in D. muscorum, Pb and Zn are accumulated through an enhanced synthesis of oxalate, which precipitates toxic elements as insoluble salts, whereas in X. parietina, Pb is complexed to carboxylic groups of the fungal cell walls. The authors conclude that hyperaccumulation of metals results from a reactive mechanism of organic acid production, whereas metallo-tolerance is achieved by a passive complexation to existing functional groups.

  15. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  17. Comparative genomics of regulation of heavy metal resistance in Eubacteria

    Directory of Open Access Journals (Sweden)

    Kalinina OV

    2006-06-01

    Full Text Available Abstract Background Heavy metal resistance (HMR in Eubacteria is regulated by a variety of systems including transcription factors from the MerR family (COG0789. The HMR systems are characterized by the complex signal structure (strong palindrome within a 19 or 20 bp promoter spacer, and usually consist of transporter and regulator genes. Some HMR regulons also include detoxification systems. The number of sequenced bacterial genomes is constantly increasing and even though HMR resistance regulons of the COG0789 type usually consist of few genes per genome, the computational analysis may contribute to the understanding of the cellular systems of metal detoxification. Results We studied the mercury (MerR, copper (CueR and HmrR, cadmium (CadR, lead (PbrR, and zinc (ZntR resistance systems and demonstrated that combining protein sequence analysis and analysis of DNA regulatory signals it was possible to distinguish metal-dependent members of COG0789, assign specificity towards particular metals to uncharacterized loci, and find new genes involved in the metal resistance, in particular, multicopper oxidase and copper chaperones, candidate cytochromes from the copper regulon, new cadmium transporters and, possibly, glutathione-S-transferases. Conclusion Our data indicate that the specificity of the COG0789 systems can be determined combining phylogenetic analysis and identification of DNA regulatory sites. Taking into account signal structure, we can adequately identify genes that are activated using the DNA bending-unbending mechanism. In the case of regulon members that do not reside in single loci, analysis of potential regulatory sites could be crucial for the correct annotation and prediction of the specificity.

  18. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance.

    Science.gov (United States)

    Rouch, D A; Lee, B T; Morby, A P

    1995-02-01

    Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.

  19. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  20. Spill-Resistant Alkali-Metal-Vapor Dispenser

    Science.gov (United States)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  1. Extracellular proteins: Novel key components of metal resistance in cyanobacteria?

    Directory of Open Access Journals (Sweden)

    Joaquin eGiner-Lamia

    2016-06-01

    Full Text Available Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias towards the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  2. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  3. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  4. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  5. Effect of ultraviolet illumination on metal oxide resistive memory

    KAUST Repository

    Duran Retamal, Jose Ramon

    2014-12-22

    We investigate the photoelectrical and resistive switching properties of Pt/ZnO/Pt capacitor operated in unipolar mode under ultraviolet (UV) illumination. The oxygen photodesorption under UV illumination explains the photoconduction observed in initial and high resistance states. Meanwhile, oxygen readsorption at surface-related defects justifies the different photoresponses dynamics in both states. Finally, UV illumination significantly reduces the variations of resistance in high resistance state, set voltage and reset voltage by 58%, 33%, and 25%, respectively, stabilizing Pt/ZnO/Pt capacitor. Our findings in improved switching uniformity via UV light give physical insight into designing resistive memory devices.

  6. Effects of Metals on Antibiotic Resistance and Conjugal Plasmid Transfer in Soil Bacterial Communities

    DEFF Research Database (Denmark)

    Song, Jianxiao

    Antibiotic resistance currently represents one of the biggest challenges for human health and in recent years the environmental dimension of antibiotic resistance has been increasingly recognized. The soil environment serves as an important reservoir of antibiotic resistance determinants....... In addition to direct selection of antibiotic resistance by antibiotics, metals may co-select for antibiotic resistance via different mechanisms causing environmental selection of antibiotic resistance in metal contaminated soils. Horizontal gene transfer of mobile genetic elements (MGEs) like plasmids...... is generally considered one of the most important co-selection mechanisms as multiple resistance genes can be located on the same MGE. This PhD thesis focused on the impact of metals (Cu and Zn) on the development of antibiotic resistance in bacterial communities in soils exposed to different degrees...

  7. Large resistivity modulation in mixed-phase metallic systems.

    Science.gov (United States)

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-07

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  8. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  9. Metal oxide-resistive memory using graphene-edge electrodes

    Science.gov (United States)

    Lee, Seunghyun; Sohn, Joon; Jiang, Zizhen; Chen, Hong-Yu; Philip Wong, H.-S.

    2015-09-01

    The emerging paradigm of `abundant-data' computing requires real-time analytics on enormous quantities of data collected by a mushrooming network of sensors. Todays computing technology, however, cannot scale to satisfy such big data applications with the required throughput and energy efficiency. The next technology frontier will be monolithically integrated chips with three-dimensionally interleaved memory and logic for unprecedented data bandwidth with reduced energy consumption. In this work, we exploit the atomically thin nature of the graphene edge to assemble a resistive memory (~3 Å thick) stacked in a vertical three-dimensional structure. We report some of the lowest power and energy consumption among the emerging non-volatile memories due to an extremely thin electrode with unique properties, low programming voltages, and low current. Circuit analysis of the three-dimensional architecture using experimentally measured device properties show higher storage potential for graphene devices compared that of metal based devices.

  10. Metal oxide-resistive memory using graphene-edge electrodes.

    Science.gov (United States)

    Lee, Seunghyun; Sohn, Joon; Jiang, Zizhen; Chen, Hong-Yu; Philip Wong, H-S

    2015-09-25

    The emerging paradigm of 'abundant-data' computing requires real-time analytics on enormous quantities of data collected by a mushrooming network of sensors. Todays computing technology, however, cannot scale to satisfy such big data applications with the required throughput and energy efficiency. The next technology frontier will be monolithically integrated chips with three-dimensionally interleaved memory and logic for unprecedented data bandwidth with reduced energy consumption. In this work, we exploit the atomically thin nature of the graphene edge to assemble a resistive memory (∼ 3 Å thick) stacked in a vertical three-dimensional structure. We report some of the lowest power and energy consumption among the emerging non-volatile memories due to an extremely thin electrode with unique properties, low programming voltages, and low current. Circuit analysis of the three-dimensional architecture using experimentally measured device properties show higher storage potential for graphene devices compared that of metal based devices.

  11. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal.

    Science.gov (United States)

    Fierros-Romero, Grisel; Gómez-Ramírez, Marlenne; Arenas-Isaac, Ginesa E; Pless, Reynaldo C; Rojas-Avelizapa, Norma G

    2016-06-01

    Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance.

  12. Plasmid-determined heavy metal resistances in Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.; Schottel, J.; Silver, S.

    1976-01-01

    Plasmid PI258 of S. aureus has separate genes determining resistance to cadmium and to mercury and the organomercurial phenylmercury acetate. Mercury(ial) resistance is due to the inducible synthesis of a mercury volatilization system. Hg/sup 2 +/ and mercury in phenylmercury acetate is enzymatically reduced to Hg/sup 0/, which is insoluble in water and highly volatile. PI258 differs from most enteric or pseudomonad plasmids which have been studied which determine resistance only to inorganic Hg/sup 2 +/. Cadmium resistance has been found only with staph plasmids. Cadmium resistance is constitutive and is associated with a lower accumulation of cadmium by the plasmid-bearing resistant cells. Cadmium accumulation by sensitive cells is energy-dependent and has those characteristics usually associated with a transmembrane active transport system. There is a specific interrelationship between cadmium accumulation and manganese accumulation and retention. Cd/sup 2 +/ competitively inhibits the uptake of Mn/sup 2 +/ and accelerates the loss of intracellular Mn/sup 2 +/ by the sensitive but has no effect on the resistant S. aureus. Under similar conditions there is no differential effect of Cd/sup 2 +/ on Mg/sup 2 +/, Zn/sup 2 +/, Co/sup 2 +/ or Rb/sup +/ accumulation or exchange between the sensitive and the resistant strains.

  13. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Directory of Open Access Journals (Sweden)

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  14. On the resistivity of metal-tellurium alloys for low concentrations of tellurium

    International Nuclear Information System (INIS)

    Gorecki, J.

    1982-04-01

    The resistivity and thermoelectric power of metal-tellurium liquid alloys have been discussed for the case of small tellurium concentration. Nearly free electron model of conduction band has been used. The rapid increase of resistivity in transition metal-tellurium alloys has been predicted. (author)

  15. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  16. The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

    Directory of Open Access Journals (Sweden)

    Garrett Wheaton

    2015-07-01

    Full Text Available Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5 inhabit unique environments fraught with challenges, including extremely high temperatures, low pH, as well as high levels of soluble metal species. In fact, certain members of this group thrive by metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of solubilized metals. Extremely thermoacidophilic archaea dominate bioleaching operations at elevated temperatures and have been considered for processing certain mineral types (e.g., chalcopyrite, some of which are recalcitrant to their mesophilic counterparts. A key issue to consider, in addition to temperature and pH, is the extent to which solid phase heavy metals are solubilized and the concomitant impact of these mobilized metals on the microorganism’s growth physiology. Here, extreme thermoacidophiles are examined from the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, microbe-solid interactions, and application of these archaea in biomining operations.

  17. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    Science.gov (United States)

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Directory of Open Access Journals (Sweden)

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  19. Characterization of large plasmids encoding resistance to toxic heavy metals in Salmonella abortus equi.

    Science.gov (United States)

    Ghosh, A; Singh, A; Ramteke, P W; Singh, V P

    2000-05-27

    Salmonella abortus equi vaccine strains were found to be resistant to high levels of toxic heavy metals--arsenic, chromium, cadmium, and mercury. The two strains 157 and 158 were resistant to ampicillin also. Curing of these strains resulted in loss of one or more resistance marker indicating plasmid borne resistance. Plasmid profile of strain 157 showed presence of three plasmids of 85, 54, and 0.1 Kb, whereas 158 strain showed presence of 85 Kb and 2 Kb plasmids. Plasmids were isolated from strain 157 and introduced into E. coli DH5alpha with a transformation efficiency of 2 x 10(3) transformants/microg DNA. Interestingly the transformants were resistant to antibiotics, heavy metals (As, Cr, Cd, Hg) and was also able to utilize citrate, a trait specific to Salmonella species. We report and establish for the first time the transferable large plasmids encoding resistance to various heavy metals, antibiotics and biochemical nature of S. abortus equi.

  20. Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces

    International Nuclear Information System (INIS)

    Acha, C

    2011-01-01

    Studies related to the dynamics of resistive switching (RS) in ceramic YBCO/metal interfaces were performed. The change in interface resistance during the application of square pulses and its current-voltage (I-V) characteristics were measured. The obtained non-linear current dependence of the differential resistance can be very well reproduced by modelling the electrical behaviour of the interface with simple circuit elements. The RS produces defined changes in the parameters of the circuit model that reveal the particular dynamics of the mechanism beneath the resistance change in complex oxide/metal interfaces.

  1. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  2. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses.

    Science.gov (United States)

    Safari Sinegani, Ali Akbar; Younessi, Nayereh

    2017-09-01

    The main objective of this study was to determine the relationship between the antibiotic and heavy metal tolerance of culturable bacteria isolated from mining waste, pasture, and agricultural soils containing different levels of heavy metals. The populations of total culturable bacteria, and heavy metal- and antibiotic-tolerant bacteria in the soils were enumerated on nutrient agar, nutrient agar amended with metals, and Mueller-Hinton agar amended with antibiotics, respectively. The multiple antibiotic resistance index, and patterns of antibiotic resistance and heavy metal-antibiotic co-resistance were determined for 237 isolates. Among all the samples, those of the tailings of mines with higher levels of heavy metals had the lowest number of bacteria, but a relatively higher abundance of heavy metal- and antibiotic-resistant bacteria. A high degree of resistance was observed for ampicillin and amoxicillin in the isolates from all soils. The agricultural soil isolates had a high prevalence of resistance towards vancomycin, tetracycline, and streptomycin. Among all the tested antibiotics, gentamicin was the most potent. The most frequent pattern of multiple antibiotic resistance in the isolates from agricultural soils was amoxicillin, ampicillin, streptomycin, vancomycin, tetracycline, and doxycycline. The percentage of isolates with multiple antibiotic resistance was considerably higher in the agricultural soils than in the mining waste soils. A high rate of co-resistance towards Hg and antibiotics was observed among the gram-negative isolates, and towards Zn, Ni, Hg, and the beta-lactam antibiotics among the gram-positive isolates. The higher percentage of isolates with multiple antibiotic resistance in the agricultural soils that in the mining waste soils may be related to (1) the level of soil heavy metals, (2) the population and diversity of soil bacteria, (3) the application of manures, and (4) other factors affecting gene transfer between bacteria

  3. Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants.

    Science.gov (United States)

    Ratani, Shakir S; Siletzky, Robin M; Dutta, Vikrant; Yildirim, Suleyman; Osborne, Jason A; Lin, Wen; Hitchins, Anthony D; Ward, Todd J; Kathariou, Sophia

    2012-10-01

    The persistence of Listeria monocytogenes in food processing plants and other ecosystems reflects its ability to adapt to numerous stresses. In this study, we investigated 138 isolates from foods and food processing plants for resistance to the quaternary ammonium disinfectant benzalkonium chloride (BC) and to heavy metals (cadmium and arsenic). We also determined the prevalence of distinct cadmium resistance determinants (cadA1, cadA2, and cadA3) among cadmium-resistant isolates. Most BC-resistant isolates were resistant to cadmium as well. Arsenic resistance was encountered primarily in serotype 4b and was an attribute of most isolates of the serotype 4b epidemic clonal group ECIa. Prevalence of the known cadmium resistance determinants was serotype associated: cadA1 was more common in isolates of serotypes 1/2a and 1/2b than 4b, while cadA2 was more common in those of serotype 4b. A subset (15/77 [19%]) of the cadmium-resistant isolates lacked the known cadmium resistance determinants. Most of these isolates were of serotype 4b and were also resistant to arsenic, suggesting novel determinants that may confer resistance to both cadmium and arsenic in these serotype 4b strains. The findings may reflect previously unrecognized components of the ecological history of different serotypes and clonal groups of L. monocytogenes, including exposures to heavy metals and disinfectants.

  4. Estimation of heavy metal-contaminated soils' mechanical characteristics using electrical resistivity.

    Science.gov (United States)

    Chu, Ya; Liu, Songyu; Wang, Fei; Cai, Guojun; Bian, Hanliang

    2017-05-01

    Under the process of urbanization in China, more and more attention has been paid to the reuse of heavy metal-contaminated sites. The shear characteristics of heavy metal-contaminated soils are investigated by electrical detection in this paper. Three metal ions (Zn 2+ , Cd 2+ , and Pb 2+ ) were used, the metal concentrations of which are 50, 166.67, 500, 1666.67, and 5000 mg/kg, respectively. Direct shear tests were used to investigate the influence of heavy metal ions on the shear characters of soil samples. It is found that with the addition of heavy metal ions, the shear strength, cohesion, and friction angle of contaminated soils are higher than the control samples. The higher concentration of heavy metal ions penetrated in soils, the higher these engineering characteristics of contaminated soils observed. In addition, an electrical resistivity detection machine is used to evaluate the shear characteristics of contaminated soils. The electrical resistivity test results show that there is a decreasing tendency of resistivity with the increase of heavy metal ion concentrations in soils. Compared with the electrical resistivity and the shear characteristics of metal-contaminated soils, it is found that, under fixed compactness and saturation, shear strength of metal-contaminated soils decreased with the increase of resistivity. A basic linear relationship between C/log(N + 10) and resistivity can be observed, and there is a basic linear relationship between φ/log(N + 10) and resistivity. Besides, a comparison of the measured and predicted shear characteristics shows a high accuracy, indicating that the resistivity can be used to evaluate the shear characteristics of heavy metal contaminated soils.

  5. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  6. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  7. Heavy-Metal and Antibiotic Resistance in the Bacterial Flora of Sediments of New York Bight

    Science.gov (United States)

    Timoney, J. F.; Port, Jennifer; Giles, Janis; Spanier, J.

    1978-01-01

    The New York Bight extends seaward some 80 to 100 miles (ca. 129 to 161 km) from the Long Island and New Jersey shorelines to the edge of the continental shelf. Over 14 × 106 m3 of sewage sludge, dredge spoils, acid wastes, and cellar dirt are discharged into this area each year. Large populations of Bacillus sp. resistant to 20 μg of mercury per ml were observed in Bight sediments contaminated by these wastes. Resistant Bacillus populations were much greater in sediments containing high concentrations of Hg and other heavy metals than in sediments from areas further offshore where dumping has never been practiced and where heavy-metal concentrations were found to be low. Ampicillin resistance due mainly to β-lactamase production was significantly (P sludge dump site than in similar Bacillus populations from control sediments. Bacillus strains with combined ampicillin and Hg resistances were almost six times as frequent at the sludge dump site as in control sediments. This observation suggests that genes for Hg resistance and β-lactamase production are simultaneously selected for in Bacillus and that heavy-metal contamination of an ecosystem can result in a selection pressure for antibiotic resistance in bacteria in that system. Also, Hg resistance was frequently linked with other heavy-metal resistances and, in a substantial proportion of Bacillus strains, involved reduction to volatile metallic Hg (Hg°). PMID:727779

  8. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production.

    Science.gov (United States)

    Yu, Zhongyi; Gunn, Lynda; Wall, Patrick; Fanning, Séamus

    2017-06-01

    Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of Asymmetrical Edge Disconnection on Equivalent Series Resistance of Metalized Polypropylene Capacitors

    OpenAIRE

    J. Sivakumar; S. Usa; M.A. Panneerselvam

    2014-01-01

    In order to investigate the effect of asymmetrical partial edge disconnection on the Equivalent Series Resistance (ESR) of Metalized polypropylene capacitors an experimental study has been made. Theoretical analysis made using PSPICE simulation package reveals that electrode resistance of individual turn rises from 10 to 30% depending on the location of the turn. This rise is not measureable at all the frequencies as ESR is frequency dependent and it includes resistance due to electrodes and ...

  11. Bias dependent specic contact resistance of phase change material to metal contacts

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha; Wolters, Robertus A.M.

    2010-01-01

    Knowledge of contact resistance of phase change materials (PCM) to metal electrodes is important for scaling, device modeling and optimization of phase change random access memory (PCRAM) cells. In this article, we report the systematic determination of the speci_c contact resistance (_c) with

  12. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  13. Metal resistance systems in cultivated bacteria: are they found in complex communities?

    Science.gov (United States)

    Gillan, David C

    2016-04-01

    Metal resistance systems found in complex bacterial communities by shotgun metagenomic approaches were reviewed. For that, 6 recent studies investigating 9 metal-contaminated environments (water or sediments) were selected. Of the 22 possible metal-resistance systems, only 14 were found in complex communities. These widespread and easily detected metal-resistance systems were mainly biogenic sulfide production (dsr genes), resistance mediated in the periplasm (CopK and multicopper oxidases such as PcoA/CopA), efflux proteins (HME-RND systems, P-type ATPases, and the cation diffusion facilitator CzcD) as well as proteins used to treat oxidative damages (e.g., SodA) and down-regulation of transporters. A total of 8 metal-resistance systems were not found in the complex communities investigated. These rare systems include metal resistance by phosphatases, ureases, metallophores, outer membrane vesicles, methylation genes and cytoplasmic metal accumulation systems. In this case rarity may also be explained by a lack of knowledge on the specific genes involved and/or analytical biases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ion implanting ferrous metals to improve corrosion resistance

    International Nuclear Information System (INIS)

    Dearnaley, G.; Goode, P.D.

    1981-01-01

    A process is described for the treatment of a surface of a ferrous article to improve its corrosion resistance, wherein the surface is subjected to ion bombardment at a temperature above one hundred degrees centigrade in an evacuated enclosure which contains a residual quantity of gaseous oxygen. (author)

  15. Fungicide, antibiotic, heavy metal resistance and salt tolerance of ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... All of the rhizobial isolates showed resistance to the antibiotic (µg ml-1); streptomycin sulphate ... Using fungicides for crop diseases control in legume fields has contributed to increasing yield ..... on growth of Rhizobium japonicum and symbiotically grown soybean in soil under laboratory conditions. Prot.

  16. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    Printed electronics, including transparent conductors, currently rely on expensive materials to generate high conductivity devices. Conductive inks for thick film applications utilizing inkjet, aerosol, and screen printing technologies are often comprised of expensive and rare silver particles. Thin film applications such as organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) predominantly employ indium tin oxide (ITO) as the transparent conductive layer which requires expensive and wasteful vapor deposition techniques. Thus an alternative to silver and ITO with similar performance in printed electronics warrants considerable attention. Copper nanomaterials, being orders of magnitude cheaper and more abundant than silver or indium, solution-coatable, and exhibiting a bulk conductivity only 6 % less than silver, have emerged as a promising candidate for incorporation in printed electronics. First, we examine the effect of nanomaterial shape on the conductivity of thick films. The inks used in such films often require annealing at elevated temperature in order to sinter the silver nanoparticles together and obtain low resistivities. We explore the change in morphology and resistivity that occurs upon heating thick films of silver nanowires (of two different lengths, Ag NWs), nanoparticles (Ag NPs), and microflakes (Ag MFs) deposited from water at temperatures between 70 and 400 °C. At the lowest temperatures, longer Ag NWs exhibited the lowest resistivity (1.8 x 10-5 O cm), suggesting that the resistivity of thick films of silver nanostructures is dominated by the contact resistance between particles. This result supported previous research showing that junction resistance between Ag NWs in thin film conductors also dominates optoelectronic performance. Since the goal is to replace silver with copper, we perform a similar analysis by using a pseudo-2D rod network modeling approach that has been modified to include lognormal distributions in length

  17. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Pinard Legry, G.; Pelras, M.; Turluer, G.

    1988-01-01

    The main of this review is to reassess the corrosion resistance properties required from metallic materials to be used in the various developments of the Purex process applied for nuclear fuel reprocessing

  18. Litho resist rework influences on Cu metal layer patterning with TiN-hard mask

    Science.gov (United States)

    Dankelmann, Marcus; Czekalla, Markus; Estel, Heiko; Hahn, Jens; Hong, Bee Kim; Lamm, Mario; Neubert, Eric; Renner, Michael; Scheibel, Rainer; Stegemann, Maik; Schneider, Jens

    2014-03-01

    The use of TiN-Hard masks for Cu metal layer patterning has become a common technique for trench first metal hard mask (TFMH) back end of line (BEOL) integration schemas. Resist rework influences the chemical and physical behavior of the TiN hard mask and therefore the final result of the dual damascene etch process in terms of critical line dimension (CD) and trench taper determining the electrical metal sheet resistance. Within this paper, the effects of three different resist rework strip procedures on subsequent TiN hard mask and dual damascene etching, using O2, H2N2 and H2O plasma processes, are compared. Furthermore, the interaction of the rework process with the CD tuning capabilities in dual damascene etch are evaluated. Summarizing the data, a stable process flow for wafers with and without resist rework is shown, eliminating litho CD rework offsets, resulting in metal trench processing with tight geometrical and electrical distributions.

  19. Unicellular cyanobacteria synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Sageer, S.; Jasmin, C.; Vijayan, V.; Pavanan, P.; Athiyanathil, S.; Nair, S.

    The interactions between heterotrophic bacteria and primary producers have a profound impact on the functioning of marine ecosystem. We characterized the enzymatic and metal resistance properties of fourteen heterotrophic bacteria isolated from a...

  20. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    International Nuclear Information System (INIS)

    Fan, Y.; Ping, C.; Mei, L.S.

    2014-01-01

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  1. The Effect of Nodular Cast Iron Metal Matrix on the Wear Resistance

    OpenAIRE

    G. Gumienny

    2012-01-01

    The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive ...

  2. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  3. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  4. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia.

    Science.gov (United States)

    Knapp, Charles W; Callan, Anna C; Aitken, Beatrice; Shearn, Rylan; Koenders, Annette; Hinwood, Andrea

    2017-01-01

    Increasing drug-resistant infections have drawn research interest towards examining environmental bacteria and the discovery that many factors, including elevated metal conditions, contribute to proliferation of antibiotic resistance (AR). This study examined 90 garden soils from Western Australia to evaluate predictions of antibiotic resistance genes from total metal conditions by comparing the concentrations of 12 metals and 13 genes related to tetracycline, beta-lactam and sulphonamide resistance. Relationships existed between metals and genes, but trends varied. All metals, except Se and Co, were related to at least one AR gene in terms of absolute gene numbers, but only Al, Mn and Pb were associated with a higher percentage of soil bacteria exhibiting resistance, which is a possible indicator of population selection. Correlations improved when multiple factors were considered simultaneously in a multiple linear regression model, suggesting the possibility of additive effects occurring. Soil-metal concentrations must be considered when determining risks of AR in the environment and the proliferation of resistance.

  5. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  6. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    International Nuclear Information System (INIS)

    Chaudhari, V.A.; Solanki, C.S.

    2009-01-01

    Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of un optimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated

  7. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  8. Heat Resisting Metals for Gas Turbine Parts N-102

    Science.gov (United States)

    1943-04-12

    stook later supplied by • •’••"’." %••*•’. ’ ,./v. TABU 8. -29- D1TA PROM STHESS-BUPTTOJ TESTS AT 1800*F. Material Alloy limber Condition...properties of the three heat-resisting alloys Tirnlom 16-25-6, Gamma ColumMum, and S495 alloys. Bar stook of the latter two alloys Is available

  9. Diversity of heavy metal resistant bacteria from Kalimas Surabaya: A phylogenetic taxonomy approach

    Science.gov (United States)

    Zulaika, Enny; Utomo, Andry Prio; Prima, Adisya; Alami, Nur Hidayatul; Kuswytasari, Nengah Dwianita; Shovitri, Maya; Sembiring, Langkah

    2017-06-01

    Bacterial resistance to heavy metal is a genetic and physiological adaptation to the environment which contaminated by heavy metal. Kalimas is an important river in Surabaya that is contaminated by some heavy metals and probably as a habitat for heavy metal resistance bacteria. Bacterial resistance to heavy metals are different for each species, and their diversity can be studied by phylogenetic taxonomy approach. Isolates screening was done using nutrient agar which contained 1 mg/L HgCl2, CdCl2 and K2Cr2O7. Bacterial viability were observed by nutrient broth which contained 10 mg/L HgCl2, 30 mg/L CdCl2 and 50 mg/L K2Cr2O7. Isolates that resistant to heavy metal and viable after exposure to heavy metal were identified using 16S rRNA gene marker by Polymerase Chain Reaction (PCR). Phylogenetic tree reconstruction was done by the neighbor-joining algorithm. Genetic assignment showed isolates that resist and viable after exposure of Hg, Cd and Cr are Bacillus S1, SS19 and DA11. Based on BLAST analysis from NCBI gene bank, 16S rRNA sequences, those isolates were similar with the member of Bacillus cereus. Depend on 16S rRNA nucleotide alignment by the neighbor-joining algorithm, Bacillus S1, SS19 and DA11 were belong to Bacillus cereus sensu-lato group.

  10. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland)

    Science.gov (United States)

    Kulbat, Eliza; Sokołowska, Aleksandra

    2017-11-01

    The aim of this study is to investigate the distribution of selected heavy metals and metal-resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: water (raw and treated water) showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal-resistant bacteria were recorded in the sediments of the reservoir (60%-88%). The share of metal-resistant strains in the raw water was significantly lower (34%-61%). The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  11. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  12. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, Christina S., E-mail: Christina.Hoelzel@wzw.tum.de [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mueller, Christa [Institute for Agroecology, Organic Farming and Soil Protection, Bavarian State Research Center for Agriculture (LfL), Lange Point 12, 85354 Freising (Germany); Harms, Katrin S. [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany); Mikolajewski, Sabine [Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 4, 85354 Freising (Germany); Schaefer, Stefanie; Schwaiger, Karin; Bauer, Johann [Chair of Animal Hygiene, Technische Universitaet Muenchen, Weihenstephaner Berg 3, 85354 Freising (Germany)

    2012-02-15

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against {beta}-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against {beta}-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  13. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance

    International Nuclear Information System (INIS)

    Hölzel, Christina S.; Müller, Christa; Harms, Katrin S.; Mikolajewski, Sabine; Schäfer, Stefanie; Schwaiger, Karin; Bauer, Johann

    2012-01-01

    Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08–5.30 mg cadmium, 1.1–32.0 mg chrome, 22.4–3387.6 mg copper, <2.0–26.7 mg lead, <0.01–0.11 mg mercury, 3.1–97.3 mg nickel and 93.0–8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.

  14. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    Energy Technology Data Exchange (ETDEWEB)

    Tuckfield, C; J V Mcarthur (NOEMAIL), J

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10 metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  15. Multiple antibiotic resistances in metal tolerant E. coli from hospital waste water.

    Science.gov (United States)

    Alam, Manzar; Imran, Mohd

    2014-01-01

    Study of antibiotic resistance was done among the metal tolerant E. coli isolates from hospital wastewater at Lucknow city. Metal tolerance was determined in terms of visible growth on metal amended plates at their varying concentrations. MICs were also determined among all metal tolerant E. coli isolates. All the isolates showed their MIC in between 100-2000 µg/ml while maximum isolates demonstrated their MICs at 400, 800 and 1600 µg/ml against all the metal tested. 23.07% of the isolates showed their MIC at 2000 µg/ml against Ni(3+). Multiple antibiotic resistances were recorded among all the metal resistant E.coli isolates. A high level of resistance was observed against Methicillin (86.53%) followed by penicillin (73.07%), Cephradin (57.69%), Rifampicin (34.61%), Erythromycin (26.92%), Nalidixic acids (25%), Chloramphenicol (3.84%) and least to Gentamycine (1.92%). Streptomycin was recorded most effective against E.coli isolates among the entire antibiotic tested. Antimicrobial resistance observed among the bacteria from the aquatic system contaminated with hospital wastes may be threatful for the environment and public health both.

  16. Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria.

    Science.gov (United States)

    Nithya, Chari; Gnanalakshmi, Balasubramanian; Pandian, Shunmugiah Karutha

    2011-05-01

    The present study aimed at characterizing the heavy metal resistance and assessing the resistance pattern to multiple heavy metals (300 mmol L⁻¹) by Palk Bay sediment bacteria. From 46 isolates, 24 isolates showed resistance to more than eight heavy metals. Among the 24 isolates S8-06 (Bacillus arsenicus), S8-10 (Bacillus pumilus), S8-14 (B. arsenicus), S6-01 (Bacillus indicus), S6-04 (Bacillus clausii), SS-06 (Planococcus maritimus) and SS-08 (Staphylococcus pasteuri) exhibited high resistance against arsenic, mercury, cobalt, cadmium, lead and selenium. Plasmid curing confirmed that the heavy metal resistance in S8-10 is chromosomal borne. Upon treatment with the heavy metals, the strain S8-10 showed many morphological and physiological changes as shown by SEM, FTIR and AAS analysis. S8-10 removed 47% of cadmium and 96% of lead from the growth medium. The study suggests that sediment bacteria can be biological indicators of heavy metal contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Biosorption of Zinc (Zn) and lead (Pb) by metal resistant bacterial isolate from mining tail

    Energy Technology Data Exchange (ETDEWEB)

    Bautista Hernandez, D. A.; Carranza Alvarado, M.; Fernandez Linares, L.; Ramirez Landy, I.

    2009-07-01

    The use of microbial biomass in the removal of metals in solution, mainly of low concentrations (100 mg L{sup -}1), present advantages in relation to the physicochemical methods. The resistant microorganisms are potential bio sorbents. The objective of the present study was the isolation, starting from mining tail, of strains with capacity of metal bio sorption (Zn and Pb). (Author)

  18. Biosorption of Zinc (Zn) and lead (Pb) by metal resistant bacterial isolate from mining tail

    International Nuclear Information System (INIS)

    Bautista Hernandez, D. A.; Carranza Alvarado, M.; Fernandez Linares, L.; Ramirez Landy, I.

    2009-01-01

    The use of microbial biomass in the removal of metals in solution, mainly of low concentrations (100 mg L - 1), present advantages in relation to the physicochemical methods. The resistant microorganisms are potential bio sorbents. The objective of the present study was the isolation, starting from mining tail, of strains with capacity of metal bio sorption (Zn and Pb). (Author)

  19. Taking nature into lab: biomineralization by heavy metal resistant streptomycetes in soil

    Science.gov (United States)

    Schütze, E.; Weist, A.; Klose, M.; Wach, T.; Schumann, M.; Nietzsche, S.; Merten, D.; Baumert, J.; Majzlan, J.; Kothe, E.

    2013-02-01

    Biomineralization by heavy metal resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals on tryptic soy broth (TSB) media supplemented with AlCl2, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite was exclusively formed on minimal media spiked with MnCl2 by four heavy metal resistant strains, and on nutrient enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a~dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding may be transferred to formation of minerals in rock and sediment evolution, to ore deposit formation, and also might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  20. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  1. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    Science.gov (United States)

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  2. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals.

    Science.gov (United States)

    Gullberg, Erik; Albrecht, Lisa M; Karlsson, Christoffer; Sandegren, Linus; Andersson, Dan I

    2014-10-07

    How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Importance: Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to

  3. Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques

    Science.gov (United States)

    Metwaly, M.

    2007-12-01

    Low and non-metallic landmines are one of the most difficult subsurface targets to be detected using several geophysical techniques. Ground penetrating radar (GPR) performance at different field sites shows great success in detecting metallic landmines. However significant limitations are taking place in the case of low and non-metallic landmines. Electrical resistivity imaging (ERI) technique is tested to be an alternative or confirmation technique for detecting the metallic and non-metallic landmines in suspicious cleared areas. The electrical resistivity responses using forward modeling for metallic and non-metallic landmines buried in dry and wet environments utilizing the common electrode configurations have been achieved. Roughly all the utilized electrode arrays can establish the buried metallic and plastic mines correctly in dry and wet soil. The accuracy differs from one array to the other based on the relative resistivity contrast to the host soil and the subsurface distribution of current and potential lines as well as the amplitude of the noises in the data. The ERI technique proved to be fast and effective tool for detecting the non-metallic mines especially in the conductive environment whereas the performances of the other metal detector (MD) and GPR techniques show great limitation.

  4. Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

    Science.gov (United States)

    Jung, Jaejoon; Jeong, Haeyoung; Kim, Hyun Ju; Lee, Dong-Woo; Lee, Sang Jun

    2016-12-01

    Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films

    International Nuclear Information System (INIS)

    Barborini, E; Bertolini, G; Repetto, P; Leccardi, M; Vinati, S; Corbelli, G; Milani, P

    2010-01-01

    We have studied in situ the evolution of the electrical resistivity of Fe, Pd, Nb, W and Mo cluster-assembled films during their growth by supersonic cluster beam deposition. We observed resistivity of cluster-assembled films several orders of magnitude larger than the bulk, as well as an increase in resistivity by increasing the film thickness in contrast to what was observed for atom-assembled metallic films. This suggests that the nanoscale morphological features typical of ballistic films growth, such as the minimal cluster-cluster interconnection and the evolution of surface roughness with thickness, are responsible for the observed behaviour.

  6. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De; Ramaiah, N.; Vardanyan, L.

    -resistance (De Rore et al., 1994). Hg 2+ , Pb 2+ and Cd 2+ are of serious concern as they are non-biodegradable, highly toxic and are present in a variety of waste streams that contaminate the environment. These three metals are included on the US..., Sn, Cu, and Pb was found in a bacterium isolated on the basis of tributyltin resistance (Pain and Cooney, 1998). The present study focuses on 13 marine bacterial strains that are highly resistant to mercury (De et al., 2003) and investigates...

  7. Analysis on the phase transition behavior of Cu base bulk metallic glass by electrical resistivity measurement

    International Nuclear Information System (INIS)

    Ji, Young Su; Chung, Sung Jae; Ok, Myoung-Ryul; Hong, Kyung Tae; Suh, Jin-Yoo; Byeon, Jai Won; Yoon, Jin-Kook; Lee, Kyung Hwan; Lee, Kyung Sub

    2007-01-01

    The crystallization behavior of Cu 43 Zr 43 Al 7 Ag 7 (numbers indicate at.%) bulk metallic glass was investigated using the isothermal electrical resistivity measurements at 450 deg. C in the supercooled liquid region. The crystallization process is a single step phase transformation. To analyze the electrical resistivity reduction, microstructure evolutions were analyzed using differential scanning calorimetry, X-ray diffraction, transmission electron microscopy and small-angle X-ray scattering. The Avrami parameter of the electrical resistivity reduction step was 1.73, indicating that the crystallization process is a diffusion-controlled growth of intermetallic compounds with decreasing nucleation rate

  8. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  9. Laser-induced change of electrical resistivity of metals and its applications

    Science.gov (United States)

    Pawlak, Ryszard; Kostrubiec, Franciszek; Tomczyk, Mariusz; Walczak, Maria

    2005-01-01

    Applying of laser alloying for modification of electrical resistivity of metals with significant importance in electrical and electronic engineering and utilization of this method for producing passive elements of electric circuit have been presented. The alloyed metals were obtained by means of laser beams with different wave length and various mode of working (cw or pulse), by different methods for the supplying of alloying elements. It was possible to form alloyed layers of metals forming different types of metallurgical systems: with full (Cu-Au, Cu-Ni) or partial solubility (Mo-Ni, W-Ni, Cu-Al, Ag-Sn), insoluble (Mo-Au and Cu-Cr) and immiscible (Ag-Ni and Ni-Au) metals, with metallic as well as non-metallic additions (oxide). It has been shown as well that it is possible to achieve resistive elements modified in whole cross section, in a single technological process. The results of systematic investigations into the resistivity of alloyed metals in the temperature range of 77-450 K have been presented. The alloyed layers, obtained, were characterised by a range of resistivity from 2.8 x 10-8 Ωm (Cu-Cr) to 128 x 10-8 Ωm (W-Ni). The microstructure and composition of alloyed layers were examined by means of SEM-microscopy and EDX analyser. In selected cases it was shown how results of investigations could be utilized for modification of surface layer of contact materials or to optimize the resistance of laser welded joints. In addition the results of investigations of new developed microtechnology -- producing micro-areas with extremely high resistivity -- have been presented.

  10. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...... of AISI 316, hard chromium and hardened Ni-P shows that there is no universal correlation between surface hardness and wear-corrosion loss. The possible relation between questionable passivity of Ni-P coatings and their high wear-corrosion loss rate compared to hard chromium is discussed....

  11. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  12. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    Science.gov (United States)

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  13. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds

    Directory of Open Access Journals (Sweden)

    José L. Romero

    2017-08-01

    Full Text Available Multi-drug resistant bacteria (particularly those producing extended-spectrum β-lactamases have become a major health concern. The continued exposure to antibiotics, biocides, chemical preservatives, and metals in different settings such as the food chain or in the environment may result in development of multiple resistance or co-resistance. The aim of the present study was to determine multiple resistances (biocides, antibiotics, chemical preservatives, phenolic compounds, and metals in bacterial isolates from seafoods. A 75.86% of the 87 isolates studied were resistant to at least one antibiotic or one biocide, and 6.90% were multiply resistant to at least three biocides and at least three antibiotics. Significant (P < 0.05 moderate or strong positive correlations were detected between tolerances to biocides, between antibiotics, and between antibiotics with biocides and other antimicrobials. A sub-set of 30 isolates selected according to antimicrobial resistance profile and food type were identified by 16S rDNA sequencing and tested for copper and zinc tolerance. Then, the genetic determinants for biocide and metal tolerance and antibiotic resistance were investigated. The selected isolates were identified as Pseudomonas (63.33%, Acinetobacter (13.33%, Aeromonas (13.33%, Shewanella, Proteus and Listeria (one isolate each. Antibiotic resistance determinants detected included sul1 (43.33% of tested isolates, sul2 (6.66%, blaTEM (16.66%, blaCTX−M (16.66%, blaPSE (10.00%, blaIMP (3.33%, blaNDM−1 (3.33%, floR (16.66%, aadA1 (20.0%, and aac(6′-Ib (16.66%. The only biocide resistance determinant detected among the selected isolates was qacEΔ1 (10.00%. A 23.30 of the selected isolates were able to grow on media containing 32 mM copper sulfate, and 46.60% on 8 mM zinc chloride. The metal resistance genes pcoA/copA, pcoR, and chrB were detected in 36.66, 6.66, and 13.33% of selected isolates, respectively. Twelve isolates tested positive for

  14. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  15. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland

    Directory of Open Access Journals (Sweden)

    Kulbat Eliza

    2017-01-01

    Full Text Available The aim of this study is to investigate the distribution of selected heavy metals and metal–resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: < 1–4.1. Although the maximum value of Müller's geochemical index determined for copper indicates that the sediment is ‘strongly contaminated’, in general the analysed bottom sediments were classified as the I and II category according to Polish geochemical standards. From the microbiological side a significant part of heterotrophic bacteria isolated from the bottom sediment and surface water (raw and treated water showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal–resistant bacteria were recorded in the sediments of the reservoir (60%–88%. The share of metal–resistant strains in the raw water was significantly lower (34%–61%. The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  16. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  17. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  18. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    Science.gov (United States)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  19. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  20. Drug Resistance

    Science.gov (United States)

    ... infected with a drug-resistant strain of HIV. Drug-resistance testing results are used to decide which HIV medicines to include in a person’s first HIV regimen. After treatment is started, drug-resistance testing is repeated if ...

  1. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance.

    Science.gov (United States)

    Poole, Keith

    2017-10-01

    Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  3. Vacuum tight sodium resistant compound between ThO2 ceramic and metal

    International Nuclear Information System (INIS)

    Reetz, T.

    A method for evaluating the mechanical tensions for metal/ ceramic joinings was applied to the selection of metal components for a highly vacuum tight, sodium-resistant metal/ThO 2 ceramic solder joining. The metal component selected was the iron--nickel alloy Dilasil which is joined to the ceramic using a nickel-based solder. The wetting of the cearamic could be carried out using the titanium hydride technique or after the formation of a W-cerium layer on the surface of this ceramic. (U.S.)

  4. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I......Bacteria can avoid extinction during antimicrobial exposure by becoming resistant. They achieve this either via adaptive mutations or horizontally acquired resistance genes. If resistance emerges in clinical relevant species, it can lead to treatment failure and ultimately result in increasing...... morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...

  5. Custom Metal Occlusal Surface for Acrylic Resin Denture Teeth to Enhance Wear Resistance: A Case Report

    Directory of Open Access Journals (Sweden)

    Rizwan Ali Shivji

    2012-01-01

    Full Text Available Wear of the occlusal surface of the denture is a known fact which leads to subsequent changes in jaw relation, vertical dimension, loss of aesthetics, aged looks, and decrease in masticatory efficiency. Treatment modalities includes, change of denture set after a regular interval of 4-5 years, use of wear resistant denture teeth that includes wear resistant resin or porcelain teeth, teeth with cast metal occlusal surface, and altering occlusal contact areas of denture teeth by use of silver amalgam fillings. A case report of a patient who had increased tendency of occlusal wear was treated with custom made metal occlusal surface of denture teeth to enhance wear resistance and to improve the masticatory efficiency.

  6. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    Science.gov (United States)

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  7. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    ... or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion into nano- or micro-particles. Hence, the bacteria can be used as a single cell factoryfor production of silver nanomaterial.

  8. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Additionally, IR study provided information about the bacterial proteins involved in either reduction of Ag(I) into silver nanoparticle or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion ...

  9. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  10. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  11. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    2024 and AA7075) are investigated for the resistance spot welding of AA1050 aluminum sheets of three different thicknesses. Microstructural and mechanical analysis demonstrates that significant improvement in weld bead morphology and strength are obtained with the addition of metal powder...

  12. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal

  13. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  14. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  15. Development of materials resistant to metal dusting degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  16. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  17. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure.

    Science.gov (United States)

    Fierros-Romero, Grisel; Wrosek-Cabrera, José A; Gómez-Ramírez, Marlenne; Pless, Reynaldo C; Rivas-Castillo, A M; Rojas-Avelizapa, Norma G

    2017-07-01

    Microbacterium liquefaciens MNSH2-PHGII-2 is a nickel-vanadium-resistant bacterium isolated from mine tailings located in Guanajuato, Mexico. In PHGII liquid media, M. liquefaciens has the ability to remove 29.5 ppm of Ni and 168.3 ppm of V. The present study reports, for the first time in M. liquefaciens, the presence of the genes nccA (Ni-Co-Cd resistance), hant (high-affinity nickel transporter), smtA, a metal-binding protein gene, and VAN2 (V resistance), which showed an increased expression under exposure to 200 ppm of Ni and 200 ppm of V during the logarithmic growth phase of the microorganism in PHGII liquid media. Data about the expression profile of genes conferring metal resistance to M. liquefaciens can improve the knowledge of those mechanisms involved in the processes of Ni-V resistance and probably in Ni-V removal processes. Based on our data, we can suggest that M. liquefaciens has the potential to be used in the biological treatment of toxic wastes with high Ni and V content.

  18. Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

    Science.gov (United States)

    Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji

    2013-01-01

    Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551

  19. Camptothecin resistance

    DEFF Research Database (Denmark)

    Brangi, M; Litman, Thomas; Ciotti, M

    1999-01-01

    The mitoxantrone resistance (MXR) gene encodes a recently characterized ATP-binding cassette half-transporter that confers multidrug resistance. We studied resistance to the camptothecins in two sublines expressing high levels of MXR: S1-M1-80 cells derived from parental S1 colon cancer cells...... and MCF-7 AdVp3,000 isolated from parental MCF-7 breast cancer cells. Both cell lines were 400- to 1,000-fold more resistant to topotecan, 9-amino-20(S)-camptothecin, and the active metabolite of irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38), than their parental cell lines. The cell lines...... demonstrated much less resistance to camptothecin and to several camptothecin analogues. Reduced accumulation and energy-dependent efflux of topotecan was demonstrated by confocal microscopy. A significant reduction in cleavable complexes in the resistant cells could be observed after SN-38 treatment...

  20. Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes.

    Science.gov (United States)

    Choudhary, Sangeeta; Islam, Ekramul; Kazy, Sufia K; Sar, Pinaki

    2012-01-01

    Ten bacterial strains isolated from uranium mine wastes were characterized in terms of their uranium and other metal resistance and accumulation. 16S rRNA gene sequence analysis identified the strains as members of genera Bacillus, Serratia, and Arthrobacter. Strains were able to utilize various carbon sources, particularly aromatic hydrocarbons, grow at broad pH and temperature ranges and produce non specific acid phosphatase relevant for metal phosphate precipitation in contaminated environment. The isolates exhibited high uranium and other heavy metals (Ni, Co, Cu and Cd) resistance and accumulation capacities. Particularly, Arthrobacter sp. J001 and Bacillus sp. J003 were superior in terms of U resistance at low pH (pH 4.0) along with metals and actinides (U and Th) removal with maximum cell loading of 1088 μmol U, 1293 μmol Th, 425 μmol Cu, 305 μmol Cd, 377 μmol Zn, 250 μmol Ni g(-1) cell dry wt. Genes encoding P(1B)-type ATPases (Cu-CPx and Zn-CPx) and ABC transporters (nik) as catalytic tools for maintaining cellular metal homeostasis were detected within several Bacillus spp., with possible incidence of horizontal gene transfer for the later gene showing phylogenetic lineage to α Proteobacteria members. The study provides evidence on intrinsic abilities of indigenous bacteria from U-mine suitable for survival and cleaning up of contaminated mine sites.

  1. Post-fatigue fracture resistance of metal core crowns: press-on metal ceramic versus a conventional veneering system.

    Science.gov (United States)

    Solá-Ruiz, M Fernanda; Agustín-Panadero, Rubén; Campos-Estellés, Carlos; Labaig-Rueda, Carlos

    2015-04-01

    The aim of this in vitro study was to compare the mechanical failure behavior and to analyze fracture characteristics of metal ceramic crowns with two veneering systems - press-on metal (PoM) ceramic versus a conventional veneering system - subjected to static compressive loading. Forty-six crowns were constructed and divided into two groups according to porcelain veneer manufacture. Group A: 23 metal copings with porcelain IPS-InLine veneering (conventional metal ceramic). Group B: 23 metal copings with IPS-InLine PoM veneering porcelain. After 120,000 fatigue cycles, the crowns were axially loaded to the moment of fracture with a universal testing machine. The fractured specimens were examined under optical stereomicroscopy and scanning electron microscope. Fracture resistance values showed statistically significant differences (Student's t-test) regarding the type of ceramic veneering technique (p=0.001): Group A (conventional metal ceramics) obtained a mean fracture resistance of 1933.17 N, and Group B 1325.74N (Press-on metal ceramics). The most common type of fracture was adhesive failure (with metal exposure) (p=0.000). Veneer porcelain fractured on the occlusal surface following a radial pattern. Metal ceramic crowns made of IPS InLine or IPS InLine PoM ceramics with different laboratory techniques all achieved above-average values for clinical survival in the oral environment according to ISO 6872. Crowns made with IPS InLine by conventional technique resisted fracture an average of 45% more than IPS InLine PoM fabricated with the press-on technique. Key words:Mechanical failure, conventional feldspathic, pressable ceramic, chewing simulator, thermocycling, compressive testing, fracture types, scanning electron microscope.

  2. On interrelation of crack resistance characteristics of metal materials under static and dynamic loading conditions

    International Nuclear Information System (INIS)

    Abramyan, K.G.; Goloveshkin, Yu.V.; Tuzlukova, N.I.

    1984-01-01

    Home and foreign data on crack resistance characteristics of metal structural materials are generalized and analyzed. Dependence between various parameters of material strength and toughness on the one hand and racck resistance on the other hand is established on the basis of the energy concept of the failure mechanics. Effect of the strain rate on σsub(0.2) and Ksub(Ic) values is evaluated. Quanlitative and quantitative relations obtained permit conducting a complex estimation of materials behaviour during static and dynamic loading operations

  3. Thin metal films in resistivity-based chemical sensing

    Czech Academy of Sciences Publication Activity Database

    Podešva, Pavel; Foret, František

    2013-01-01

    Roč. 9, č. 4 (2013), s. 642-652 ISSN 1573-4110 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : voltohmmetric sensing * chemiresistor * thin metal film * gas sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.194, year: 2013

  4. Specific Contact Resistance Measurements of Metal Semiconductor-Junctions

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, M.J.H.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2006-01-01

    Our research comprises the manufacturing of test structures to characterize the metal-semiconductor junctions with a number of techniques and materials. An extensive subsequent physical and electrical testing of the junctions is carried out. We present our first results on specific

  5. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  6. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  7. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  8. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.

    Science.gov (United States)

    Giovanella, Patricia; Cabral, Lucélia; Costa, Alexandre Pereira; de Oliveira Camargo, Flávio Anastácio; Gianello, Clesio; Bento, Fátima Menezes

    2017-06-01

    Contamination of the environment by heavy metals has been increasing in recent years due to industrial activities. Thus research involving microorganisms capable of surviving in multi-contaminated environments is extremely important. The objectives of the present study were to evaluate the removal of mercury alone and in the presence of cadmium, nickel and lead by four mercury-resistant microorganisms; estimate the removal of Cd, Ni and Pb; understand the mechanisms involved (reduction, siderophores, biofilms, biosorption and bioaccumulation) in the metal resistance of the isolate Pseudomonas sp. B50D; and determine the capacity of Pseudomonas sp. B50D in removing Hg, Cd, Ni and Pb from an industrial effluent. It was shown that the four isolates evaluated were capable of removing from 62% to 95% of mercury from a culture medium with no addition of other metals. The isolate Pseudomonas sp. B50D showed the best performance in the removal of mercury when evaluated concomitantly with other metals. This isolate was capable of removing 75% of Hg in the presence of Cd and 91% in the presence of Ni and Pb. With respect to the other metals it removed 60%, 15% and 85% of Cd, Ni and Pb, respectively. In tests with effluent, the isolate Pseudomonas sp. B50D removed 85% of Hg but did not remove the other metals. This isolate presented reduction, biosorption, biofilm production and siderophore production as its metal resistance mechanisms. Pseudomonas sp. B50D was thus a candidate with potential for application in the bioremediation of effluents with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  10. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil

    OpenAIRE

    GOVARTHANAN, Muthusamy; MYTHILI, R.; SELVANKUMAR, Thangasamy; KAMALA-KANNAN, S.; CHOI, DuBok; CHANG, Young-Cheol

    2017-01-01

    Objective of the study was to isolate heavy metal resistant bacteria from chromium-contaminated subsurface soil and investigate biosurfactant production and heavy metal bioremediation. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolate was identified as Rahnella sp. RM. The biosurfactant production by heavy metal resistant Rahnella sp. RM was optimized using Box- Behnken design (BBD). The maximum emulsification activity was obtained 66% at 6% soybean meal in pH 7.0 and 33....

  11. A Heat-Resistant and Energetic Metal-Organic Framework Assembled by Chelating Ligand.

    Science.gov (United States)

    Wang, Qianyou; Wang, Shan; Feng, Xiao; Wu, Le; Zhang, Guoying; Zhou, Mingrui; Wang, Bo; Yang, Li

    2017-11-01

    Heat-resistant explosives with high performance and insensitivity to external stimulus or thermal are indispensable in both the military and civilian worlds especially when utilized under harsh conditions. We designed and synthesized a new heat-resistant three-dimensional chelating energetic metal-organic framework (CEMOF-1) by employing 4-amino-4H-1,2,4-triazole-3,5-diol (ATDO) as a ligand. Because of its chelating 3D structural feature, good oxygen balance (-29.58%), and high crystal density (2.234 g cm -3 ), CEMOF-1 demonstrates high decomposition temperature (445 °C), insensitivity to stimulation, and excellent detonation velocity (10.05 km s -1 ) and detonation pressure (49.36 GPa). The advantages of facile synthesis, thermal stability, and powerful explosive performance make CEMOF-1 as a promising candidate for heat-resistant explosives in future applications.

  12. Technology of Processing of Fluorol with Metallic Oxides and It's Resistance toward Active Fluid

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Hadhoud, M.K.; Mohamed, A.Z.; Sherif, S.A

    2004-01-01

    Fluorocarbon polymers are the best elastomers for a variety of applications. In this work we investigate the characteristics of fluorocarbon rubber for use in different applications, via preparation different formulations. We investigate the effect of added metallic oxides ( CaO, MgO, ZnO and PbO ) on the chemical and physical properties of prepared formulations. Chemical resistance tests were made for conc. H 2 SO 4 , conc. HCl, conc. HNO 3 , ASTM Oil No.2, ASTM Ref. Fuel C and conc. NaOH solution. Results showed that the prepared fluorocarbon rubber have high chemical resistance to various acids, alkalis, oils and fuels, also chemical resistance towards conc. HNO 3 is enhanced in the presence of lead oxide

  13. Prediction of Corrosion Resistance of Some Dental Metallic Materials with an Adaptive Regression Model

    Science.gov (United States)

    Chelariu, Romeu; Suditu, Gabriel Dan; Mareci, Daniel; Bolat, Georgiana; Cimpoesu, Nicanor; Leon, Florin; Curteanu, Silvia

    2015-04-01

    The aim of this study is to investigate the electrochemical behavior of some dental metallic materials in artificial saliva for different pH (5.6 and 3.4), NaF content (500 ppm, 1000 ppm, and 2000 ppm), and with albumin protein addition (0.6 wt.%) for pH 3.4. The corrosion resistance of the alloys was quantitatively evaluated by polarization resistance, estimated by electrochemical impedance spectroscopy method. An adaptive k-nearest-neighbor regression method was applied for evaluating the corrosion resistance of the alloys by simulation, depending on the operation conditions. The predictions provided by the model are useful for experimental practice, as they can replace or, at least, help to plan the experiments. The accurate results obtained prove that the developed model is reliable and efficient.

  14. Resistant Hypertension.

    Science.gov (United States)

    Doroszko, Adrian; Janus, Agnieszka; Szahidewicz-Krupska, Ewa; Mazur, Grzegorz; Derkacz, Arkadiusz

    2016-01-01

    Resistant hypertension is a severe medical condition which is estimated to appear in 9-18% of hypertensive patients. Due to higher cardiovascular risk, this disorder requires special diagnosis and treatment. The heterogeneous etiology, risk factors and comorbidities of resistant hypertension stand in need of sophisticated evaluation to confirm the diagnosis and select the best therapeutic options, which should consider lifestyle modifications as well as pharmacological and interventional treatment. After having excluded pseudohypertension, inappropriate blood pressure measurement and control as well as the white coat effect, suspicion of resistant hypertension requires an analysis of drugs which the hypertensive patient is treated with. According to one definition - ineffective treatment with 3 or more antihypertensive drugs including diuretics makes it possible to diagnose resistant hypertension. A multidrug therapy including angiotensin - converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, diuretics, long-acting calcium channel blockers and mineralocorticoid receptor antagonists has been demonstrated to be effective in resistant hypertension treatment. Nevertheless, optional, innovative therapies, e.g. a renal denervation or baroreflex activation, may create a novel pathway of blood pressure lowering procedures. The right diagnosis of this disease needs to eliminate the secondary causes of resistant hypertension e.g. obstructive sleep apnea, atherosclerosis and renal or hormonal disorders. This paper briefly summarizes the identification of the causes of resistant hypertension and therapeutic strategies, which may contribute to the proper diagnosis and an improvement of the long term management of resistant hypertension.

  15. Managing Resistance.

    Science.gov (United States)

    Maag, John W.

    2000-01-01

    This article presents some considerations and ideas for managing students' resistance. They are organized around four topics: the impact of context on behavior, the importance of being comprehensive and nonrestrictive in behavior, the adaptive function of resistant behavior, and the benefit of joining children in their frame of reference.…

  16. Identification of commercially available alloys for corrosion-resistant metallic reinforcement and test methods for evaluating corrosion-resistant reinforcement.

    Science.gov (United States)

    2008-01-01

    A literature review was conducted with the goal of identifying alternative low-cost corrosion-resistant steel reinforcement materials. The most promising alternate reinforcing materials seen to date that are less expensive than 300 series stainless s...

  17. Resistive switching in ZrO2 based metal-oxide-metal structures

    International Nuclear Information System (INIS)

    Kaerkkaenen, Irina

    2014-01-01

    /Ti/Pt cells while the thickness of the electrochemically active electrode (Ti) was varied from 0 nm to 40 nm. Cells with a thin EAE (<20 nm Ti) exhibited a UP-type RS behavior, while cells with thick EAE (>20 nm Ti) showed BP switching characteristics at a lower current compliance as the UP switching cells. A detailed structural analysis of the ozone grown ZrO 2 films revealed a polycrystalline structure of columnar shaped grains with a meta-stable cubic-tetragonal ZrO 2 phase. In the second part of the thesis an empirical model for the polarity dependence of the RS in the ALD ZrO 2 based devices as a function of the EAE thickness was suggested. The model assumed a columnar shaped microstructure and certain impurity content for the ZrO 2 films. In addition, the results of current-voltage behavior, temperature dependency of the resistance states and impedance spectroscopy (IS) measurements of different devices in different RS states were considered. Impedance spectroscopy measurements of UP and BP type switching devices with the same ZrO 2 films but with different EAE thicknesses were carried out for the states prior to electroforming (pristine), after RS into the ON-state and after RS into the OFF-state. The different devices in their pristine states exhibited nearly identical IS characteristics while the ON and OFF states of the UP and BP devices revealed pronounced differences. In the model, the UP switching in ZrO 2 based devices with thin EAE was described as a result of a noncomplete local reduction of the grain boundary cores, which might gave rise to a hard thermal breakdown and the formation of metallic like conduction paths. On the contrary, the suggested idea for BP switching of ZrO 2 based devices with thick EAE based on the formation of local semiconducting oxygen depleted ZrO 2-x filament-like regions along certain positions, probably preferably at grain boundary cores. The combination of the structural analysis with measurements of the temperature

  18. The upper mantle low resistivity layer's relationship with endogenous metallic ore and petroleum reservoir

    Science.gov (United States)

    Qing, Z.; Hui, F.; Piyuan, Y.; Li, L.; Fagen, P.; Yongzhen, Y.

    2013-12-01

    Based on the 1°x1° depth map of the low resistivity layers in upper mantle in China(1996), with the addition of magnetotelluric data from 1995 to 2010, we created the new map of the upper mantle low resistivity layers in China. The distribution of upper mantle low resistivity layers in China appears north-south zonation and west-east block, overall performance for the shallow in the east, deep in the west, shallow in the north and deep in the south. The depth of the upper mantle low resistivity layers can vary widely in China, the shallowest place which located in the northeast of Songliao basin is about 50 ~ 60 km; The deepest place is located in Changsha -Guilin area at where the deepest depth can be 230 km and the average depth can be 100 ~ 120 km. According to the distribution form of the the upper mantle low resistivity layers in China, 27 uplift zones have been divided. The extensional faults generated by the uplift of the upper mantle low resistivity layers is the main passageway of earth interior material and energy migrating to the upper crust, not only produce the hydrothermal deposit in petroliferous basin surrounding orogenic belt , but also brought oil and gas to the basins. Comparing the distribution of metallic ore with oil and gas fields in China, we have found that there are good correlations between the distribution of Mesozoic endogenous metallic ore deposit and the upper mantle low resistivity layers uplift and depression pattern in China, by about 70% of the metallic ore deposit are located in the the upper mantle low resistivity layers uplift areas, 20% of the metallic ore deposit are located in the gradient areas. In eastern China, most of the petroliferous basins are located in the upper mantle low resistivity layers areas, and most of the oil and gas field are above the uplift area or on the transitional zones of the edge; In Western China, most of the petroliferous basins are located in the mantle depression areas, the main oil and gas

  19. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  20. Biofilm-Forming Staphylococcus epidermidis Expressing Vancomycin Resistance Early after Adhesion to a Metal Surface

    Directory of Open Access Journals (Sweden)

    Toshiyuki Sakimura

    2015-01-01

    Full Text Available We investigated biofilm formation and time of vancomycin (VCM resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 104 CFU even at a high VCM concentration (1,024 μg/mL. It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4–8 hours after adhesion.

  1. Low resistive edge contacts to CVD-grown graphene using a CMOS compatible metal

    Energy Technology Data Exchange (ETDEWEB)

    Shaygan, Mehrdad; Otto, Martin; Sagade, Abhay A.; Neumaier, Daniel [Advanced Microelectronic Center Aachen, AMO GmbH, Aachen (Germany); Chavarin, Carlos A. [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany); Innovations for High Performance Microelectronics, IHP GmbH, Frankfurt (Oder) (Germany); Bacher, Gerd; Mertin, Wolfgang [Lehrstuhl Werkstoffe der Elektrotechnik, Duisburg-Essen Univ., Duisburg (Germany)

    2017-11-15

    The exploitation of the excellent intrinsic electronic properties of graphene for device applications is hampered by a large contact resistance between the metal and graphene. The formation of edge contacts rather than top contacts is one of the most promising solutions for realizing low ohmic contacts. In this paper the fabrication and characterization of edge contacts to large area CVD-grown monolayer graphene by means of optical lithography using CMOS compatible metals, i.e. Nickel and Aluminum is reported. Extraction of the contact resistance by Transfer Line Method (TLM) as well as the direct measurement using Kelvin Probe Force Microscopy demonstrates a very low width specific contact resistance down to 130 Ωμm. The contact resistance is found to be stable for annealing temperatures up to 150 C enabling further device processing. Using this contact scheme for edge contacts, a field effect transistor based on CVD graphene with a high transconductance of 0.63 mS/μm at 1 V bias voltage is fabricated. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g(-1)cell dry wt.) following incubation in 100 mg U L(-1), pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Co-occurrence of antibiotic and heavy metal resistance in Kızılırmak River isolates.

    Science.gov (United States)

    Icgen, Bulent; Yilmaz, Fadime

    2014-12-01

    Contamination of surface waters with antimicrobials has become an increasing public health concern because of the emergence of multi-resistant pathogens. For this reason, water samples collected from the Kızılırmak River-Kırıkkale, Turkey were analysed to learn more about the co-occurrence of heavy metal and antibiotic resistance in bacteria. Resistant profiles were determined by using 26 antibiotics and 17 heavy metals. Out of 290, 24 isolates with both heavy metal and antibiotic resistance were determined. Resistance to heavy metals including lead, tin, nickel, barium, aliminum, strontium, silver and lithium varied between 50 and 92 %. More than 50 % of the isolates showed resistance to cephalosporin, quinolone, sulfonamide and aminoglycoside type of antibiotics. The discharge of antimicrobials to water bodies may cause a combined effect of selection and co-selection towards resistant bacteria. Therefore, surface waters may be potential hot spots of the evolution of heavy metal- and antibiotic-resistant bacteria and require special scientific consideration.

  4. Breakdown resistance of refractory metals compared to copper

    CERN Document Server

    Taborelli, M; Kildemo, M

    2004-01-01

    The behaviour of Mo, W and Cu with respect to electrical breakdown in ultra high vacuum has been investigated by means of a capacitor discharge method. The maximum stable electric field without breakdown and the field enhancement factor, beta have been measured between electrodes of the same material in a sphere/plane geometry for anode and cathode, respectively. The maximum stable field increases as a function of the number of breakdown events for W and Mo. In contrast, no systematic increase is observed for Cu. The highest values obtained are typically 500 MV/m for W, 350 MV/m for Mo and only 180 MV/m for Cu. This conditioning, found for the refractory metals, corresponds to a simultaneous decrease of beta and is therefore related to the field emission properties of the surface and their modification upon sparking. Accordingly, high beta values and no applicable field increase occur for Cu even after repeated breakdown. The results are compared with RF breakdown experiments [1] performed on prototype 30 GHz...

  5. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  6. Negative Differential Resistance in ZnO Nanowires Bridging Two Metallic Electrodes

    Directory of Open Access Journals (Sweden)

    Lee Ching-Ting

    2010-01-01

    Full Text Available Abstract The electrical transport through nanoscale contacts of ZnO nanowires bridging the interdigitated Au electrodes shows the negative differential resistance (NDR effect. The NDR peaks strongly depend on the starting sweep voltage. The origin of NDR through nanoscale contacts between ZnO nanowires and metal electrodes is the electron charging and discharging of the parasitic capacitor due to the weak contact, rather than the conventional resonant tunneling mechanism.

  7. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  8. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.

    Science.gov (United States)

    Gasser, Jean-Georges

    2008-03-19

    We recall definitions of the electronic transport properties, direct coefficients like electrical and thermal transport conductivities and crossed thermoelectric coefficients like the Seebeck, Peltier and Thomson coefficients. We discuss the links between the different electronic transport coefficients and the experimental problems in measuring these properties in liquid metals. The electronic transport properties are interpreted in terms of the scattering of electrons by 'pseudo-atoms'. The absolute thermoelectric power (ATP), thermopower or Seebeck coefficient is known as the derivative of the electrical resistivity versus energy. The key is to understand the concept of resistivity versus energy. We show that the resistivity follows approximately a 1/E curve. The structure factor modulates this curve and, for a Fermi energy corresponding to noble and divalent metals, induces a positive thermopower when the free electron theory predicts a negative one. A second modulation is introduced by the pseudopotential squared form factor or equivalently by the squared t matrix of the scattering potential. This term sometimes introduces an anti-resonance (divalent metals) which lowers the resistivity, and sometimes a resonance having an important effect on the transition metals. Following the position of the Fermi energy, the thermopower can be positive or negative. For heavy semi-metals, the density of states splits into an s and a p band, themselves different from a free electron E(0.5) curve. The electrons available to be scattered enter the Ziman formula. Thus if the density of states is not a free electron one, a third modulation of the [Formula: see text] curve is needed, which also can change the sign of the thermopower. For alloys, different contributions weighted by the concentrations are needed to explain the concentration dependent resistivity or thermopower. The formalism is the same for amorphous metals. It is possible that this mechanism can be extended to high

  9. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys

    International Nuclear Information System (INIS)

    Gasser, Jean-Georges

    2008-01-01

    We recall definitions of the electronic transport properties, direct coefficients like electrical and thermal transport conductivities and crossed thermoelectric coefficients like the Seebeck, Peltier and Thomson coefficients. We discuss the links between the different electronic transport coefficients and the experimental problems in measuring these properties in liquid metals. The electronic transport properties are interpreted in terms of the scattering of electrons by 'pseudo-atoms'. The absolute thermoelectric power (ATP), thermopower or Seebeck coefficient is known as the derivative of the electrical resistivity versus energy. The key is to understand the concept of resistivity versus energy. We show that the resistivity follows approximately a 1/E curve. The structure factor modulates this curve and, for a Fermi energy corresponding to noble and divalent metals, induces a positive thermopower when the free electron theory predicts a negative one. A second modulation is introduced by the pseudopotential squared form factor or equivalently by the squared t matrix of the scattering potential. This term sometimes introduces an anti-resonance (divalent metals) which lowers the resistivity, and sometimes a resonance having an important effect on the transition metals. Following the position of the Fermi energy, the thermopower can be positive or negative. For heavy semi-metals, the density of states splits into an s and a p band, themselves different from a free electron E 0.5 curve. The electrons available to be scattered enter the Ziman formula. Thus if the density of states is not a free electron one, a third modulation of the ρ ≅ 1/E curve is needed, which also can change the sign of the thermopower. For alloys, different contributions weighted by the concentrations are needed to explain the concentration dependent resistivity or thermopower. The formalism is the same for amorphous metals. It is possible that this mechanism can be extended to high

  10. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  11. Occurrence of antibiotic and metal resistance in bacteria from organs of river fish

    International Nuclear Information System (INIS)

    Pathak, S.P.; Gopal, K.

    2005-01-01

    Bacterial populations in some organs, viz., liver, spleen, kidney, gill, and arborescent organ of the catfish Clarias batrachus were enumerated followed by determination of resistance for antibiotics and metals. The total viable counts in these organs, observed, were 2.24x10 4 , 2.08x10 4 , 1.44x10 4 , 1.23x10 4 , and 6.40x10 3 colony-forming units/mL, respectively. The random bacterial isolates from these fish organs showed resistance in decreasing order for colistin (98%), ampicillin (82%), gentamycin (34%), carbenicillin (28%), tetracyline (20%), streptomycin (12%), and ciprofloxacin (02%). Most of the isolates exhibited an increasing order of tolerance for the metals (μg/mL) copper (100), lead (200), manganese (400), cadmium (200), and chromium (50), with minimum inhibitory concentration (MIC) ranging from <50 to 1600 μg/mL. These observations indicate that the significant occurrence of bacterial population in organs of fish with high incidence of resistance for antibiotics and metals may pose risk to fish fauna and public health

  12. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    Science.gov (United States)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  13. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    Science.gov (United States)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  14. Resistance of full veneer metal crowns with different forms of axial grooves

    Science.gov (United States)

    Hidayat, A. S.; Masulili, C.; Indrasari, M.

    2017-08-01

    Dental crowns or bridges can occasionally come loose or separate from the tooth during chewing, particularly when they are situated on small, short, and conical teeth. The main cause of this separation is a lack of retention and resistance to the tooth. There are several methods available to increase the retention and resistance of the crown during both inlay and onlay preparation, including parallelism, groove preparation, crown build-up, and surface roughness. The aim of this study was to determine the differences in resistance of full veneer metal crowns with various forms of groove preparation. The study involved the compressive strength testing of a total of 24 specimens, namely six specimens without groove preparation, six specimens with box-shaped grooves, six specimens with V-shaped grooves, and six specimens with half round grooves. The mean values of the metal crowns that separated from the teeth during testing were 27.97 ± 1.08 kgF for the crowns with box-shaped grooves, 6.15 ± 0.22 kgF for those with V-shaped grooves, 1.77 ± 0.12 kgF for those with half round grooves, and 0.95 ± 0.13 kgF for those without grooves. This study found that the resistance is best in crowns with box-shaped grooves, followed by those with V-shaped grooves, half round grooves, and those without groove. When clinicians are working on short and conical molar teeth, it is therefore recommended that box-shaped grooves are used to increase the resistance of the crown.

  15. Calculation of Metallization Resistivity and Thickness for MedAustron Kickers

    CERN Document Server

    Barnes, M J; Stadlbauer, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the facility. The kicker magnets are outside machine vacuum: each kicker magnet has a ceramic beam chamber whose inner surface is metalized. The resistivity and thickness of the metallization are chosen such that the induced eddy currents, resulting from the pulsed kicker magnetic field, do not unduly affect the rise/fall times or homogeneity of the magnetic field. A comparison of an analytical calculation and measurement is reported for the effect of metallization of a ceramic chamber in an existing kicker system at CERN. Conclusions concerning the metallization of the ceramic chambers for the MedAustron kicker magnets are presented.

  16. Ionic strength and transition metals control PrPSc protease resistance and conversion-inducing activity.

    Science.gov (United States)

    Nishina, Koren; Jenks, Samantha; Supattapone, Surachai

    2004-09-24

    The essential component of infectious prions is a misfolded protein termed PrPSc, which is produced by conformational change of a normal host protein, PrPC. It is currently unknown whether PrPSc molecules exist in a unique conformation or whether they are able to undergo additional conformational changes. Under commonly used experimental conditions, PrPSc molecules are characteristically protease-resistant and capable of inducing the conversion of PrPC molecules into new PrPSc molecules. We describe the effects of ionic strength, copper, and zinc on the conformation-dependent protease resistance and conversion-inducing activity of PrPSc molecules in scrapie-infected hamster brains. In the absence of divalent cations, PrPSc molecules were > 20-fold more sensitive to proteinase K digestion in low ionic strength buffers than in high ionic strength buffers. Addition of micromolar concentrations of copper or zinc ions restored the protease resistance of PrPSc molecules under conditions of low ionic strength. These transition metals also controlled the conformation of purified truncated PrP-(27-30) molecules at low ionic strength, confirming that the N-terminal octapeptide repeat region of PrPSc is not required for binding to copper or zinc ions. The protease-sensitive and protease-resistant conformations of PrPSc were reversibly interchangeable, and only the protease-resistant conformation of PrPSc induced by high ionic strength was able to induce the formation of new protease-resistant PrP (PrPres) molecules in vitro. These findings show that PrPSc molecules are structurally interconvertible and that only a subset of PrPSc conformations are able to induce the conversion of other PrP molecules. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  17. Antimicrobial Resistance

    Science.gov (United States)

    ... life-threatening infections – to a last resort treatment (carbapenem antibiotics) has spread to all regions of the ... unit patients. In some countries, because of resistance, carbapenem antibiotics do not work in more than half ...

  18. Investigation of the resistance of several new metallic reinforcing bars to chloride-induced corrosion in concrete.

    Science.gov (United States)

    2003-01-01

    The Virginia Department of Transportation recently initiated a search for metallic reinforcing bars that are not only more durable and corrosion resistant than the epoxy-coated bars currently used, but also economical. In the last few years, several ...

  19. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  20. Novel Metal Cation Resistance Systems from Mutant Fitness Analysis of Denitrifying Pseudomonas stutzeri.

    Science.gov (United States)

    Vaccaro, Brian J; Lancaster, W Andrew; Thorgersen, Michael P; Zane, Grant M; Younkin, Adam D; Kazakov, Alexey E; Wetmore, Kelly M; Deutschbauer, Adam; Arkin, Adam P; Novichkov, Pavel S; Wall, Judy D; Adams, Michael W W

    2016-10-01

    Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2. The results not only considerably expand what is known about well-established metal ion exporters (CzcCBA, CzcD, and CusCBA) and their accessory proteins (CzcI and CusF), they also reveal that isolates with mutations in some predicted Cu(2+) resistance systems do not show decreased fitness relative to the wild type when exposed to Cu(2+) In addition, new genes are identified that have no known connection to Zn(2+) (corB, corC, Psest_3226, Psest_3322, and Psest_0618) or Cu(2+) resistance (Mrp antiporter subunit gene, Psest_2850, and Psest_0584) but are crucial for resistance to these metal cations. Growth of individual deletion mutants lacking corB, corC, Psest_3226, or Psest_3322 confirmed the observed Zn-dependent phenotypes. Notably, to our knowledge, this is the first time a bacterial homolog of TMEM165, a human gene responsible for a congenital glycosylation disorder, has been deleted and the resulting strain characterized. Finally, the fitness values indicate Cu(2+)- and Zn(2+)-based inhibition of nitrite reductase and interference with molybdenum cofactor biosynthesis for nitrate reductase. These results extend the current understanding of Cu(2+) and Zn(2+) efflux and resistance and their effects on denitrifying metabolism. In this study, genome-wide mutant fitness data in P. stutzeri RCH2 combined with regulon predictions identify several proteins of unknown function that are

  1. Metal-dusting resistance of uncoated and coated iron and nickel base materials against metal-dusting in heat treatment furnaces with carbonaceous atmospheres

    International Nuclear Information System (INIS)

    Kleingries, Mirko; Ackermann, Helen; Lucka, Klaus; Hoja, Timo; Mehner, Andeas; Zoch, Hans-Werner; Altena, Herwig

    2010-01-01

    Metal-Dusting is a well-known corrosion problem that occurs in carburizing atmospheres in industrial thermal processing plants. In literature almost no quantitative data on the metal dusting resistance of typical alloys employed in industrial furnaces are available. Therefore, a series of experiments with uncoated and sol gel ZrO 2 coated high temperature materials was conducted in order to quantify their metal dusting behaviour under conditions close to those in case hardening furnaces. The experimental results show a strong influence of the surface conditions on the alloys resistance and a noticeable enhancement of the resistance by sol gel coatings. (orig.)

  2. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  3. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-12-01

    Full Text Available Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. Then bacterial antibiotics sensitivity tests were carried out using the Agar disc diffusion method. Results: Generally, 100% of E. faecalis strains separated from human and livestock sources (i.e. sheep showed penicillin (P/ kanamycin (K/ nitrofurantoin (N/ loracarbef (L/ Ciprofloxacin (Cc/ ampicillin (AN/ nalidixic acid (NA/ sulfamethoxazole (S antibiotics resistance patterns. In addition, 55% of isolated E. faecium showed P/S/AN/NA antibiotics resistance patterns. Each strain showed a resistance to at least two aminoglycoside antibiotics. However, E. faecalis strains from human and the livestock sources showed 94% and 100% of resistance to nitrofurantoin, respectively. The effects of different metal concentrations was evaluated in both strains. The agar dilution method was applied in this stage. Hg at 0.05 mmol/L of minimum inhibitory concentration (MIC showed toxicity to both the human and livestock Enterococcus strains. Cadmium at 1 mmol/L and 0.5 mmol/L concentrations had the most toxicity to E. faecalis and E. faecium strains, respectively. Obviously, toxicity to bacteria is less than other metals. As a result, Zn/Ni/Cu/Co resistance pattern is suggested for both strains. Finally, antibiotics and heavy metals resistance patterns were monitored simultaneously. Conclusion: Almost all E. faecalis strains isolated from humans and livestock showed antibiotics and heavy metals resistance patterns of P/K/L/Cc/S/AN/NA/Zn/Cu/Co simultaneously. Moreover, 55% of E

  4. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    Science.gov (United States)

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  5. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  6. Analysis of the series resistance and interface state densities in metal semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Gueler, G [Department of Physics, Faculty of Education, University of Adiyaman, 02100 Adiyaman (Turkey); Guellue, Oe [Department of Physics, Faculty of Sciences and Arts, Atatuerk University, 25240 Erzurum (Turkey); Karatas, S [Department of Physics, Faculty of Sciences and Arts, University of Kahramanmaras Suetcue Imam, 46100 Kahramanmaras (Turkey); Bakkaloglu, Oe F, E-mail: skaratas@ksu.edu.t [Department of Engineering Physics, Faculty of Engineering Physics, University of Gaziantep, 27310 Gaziantep (Turkey)

    2009-03-01

    The electrical properties of Co/n-Si metal-semiconductor (MS) Schottky structure investigated at room temperature using current-voltage (I-V) characteristics. The characteristic parameters of the structure such as barrier height, ideality factor and series resistance have been determined from the I-V measurements. The values of barrier height obtained from Norde's function were compared with those from Cheung functions, and it was seen that there was a good agreement between barrier heights from both methods. The series resistance values calculated with Cheung's two methods were compared and seen that there was an agreement with each other. However, the values of series resistance obtained from Cheung functions and Norde's functions are not agreeing with each other. Because, Cheung functions are only applied to the non-linear region (high voltage region) of the forward bias I-V characteristics. Furthermore, the energy distribution of interface state density was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The results show that the presence of thin interfacial layer between the metal and semiconductor.

  7. Double layer resist process scheme for metal lift-off with application in inductive heating of microstructures

    DEFF Research Database (Denmark)

    Ouattara, Lassana; Knutzen, Michael; Keller, Stephan Urs

    2010-01-01

    We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end of the proce......We present a new method to define metal electrodes on top of high-aspect-ratio microstructures using standard photolithography equipment and a single chromium mask. A lift-off resist (LOR) layer is implemented in an SU-8 photolithography process to selectively remove metal at the end...

  8. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I.G. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)], E-mail: i_trindade@msn.com; Leitao, D. [IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Pogorelev, Y.; Sousa, J.B. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2009-08-15

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co{sub 85}Fe{sub 15} and Ni{sub 81}Fe{sub 19} thin layers grown on identical underlayers of Ta70 A/Ru13 A. The largest difference was observed in Ni{sub 81}Fe{sub 19} films grown on underlayers of amorphous Ta70 A. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  9. Electrical resistivities and solvation enthalpies for solutions of salts in liquid alkali metals

    International Nuclear Information System (INIS)

    Hubberstey, P.; Dadd, A.T.

    1982-01-01

    An empirical correlation is shown to exist between the resistivity coefficients drho/dc for solutes in liquid alkali metals and the corresponding solvation enthalpies Usub(solvn) of the neutral gaseous solute species. Qualitative arguments based on an electrostatic solvation model in which the negative solute atom is surrounded by a solvation sphere of positive solvent ion cores are used to show that both parameters are dependent on the charge density of the solute atom and hence on the extent of charge transfer from solvent to solute. Thus as the charge density of the solute increases, the solvation enthalpy increases regularly and the resistivity coefficients pass through a maximum to give the observed approximately parabolic drho/dc versus Usub(solvn) relationship. (Auth.)

  10. A theoretical model for metal-graphene contact resistance using a DFT-NEGF method.

    Science.gov (United States)

    Ji, Xiang; Zhang, Jinyu; Wang, Yan; Qian, He; Yu, Zhiping

    2013-11-07

    The contact resistance (R(c)) between graphene and metal electrodes is of crucial importance for achieving potentially high performances for graphene devices. However, previous analytical models based on Landauer's approach have failed to include the Fermi velocity difference between the graphene under the metal and the pure graphene channel. Hereby we report a theoretical model to estimate the R(c) using density-functional theory and non-equilibrium Green's function methods. Our model not only presents a clear physical picture of the metal-graphene contacts, but also generates R(c) values which are in good agreement with the experimental results: 210 Ω μm for double-sided Pd contacts compared with 403 Ω μm for single-sided Pd contact.

  11. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    Science.gov (United States)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  12. Resident resistance.

    Science.gov (United States)

    Price, J L; Cleary, B

    1999-01-01

    Clearly, faculty must work hard with residents to explore the nature of their resistance to a program's learning and growth opportunities. Initial steps to a deeper, more effective, and longer-lasting change process must be pursued. If resident resistance is mishandled or misunderstood, then learning and professional growth may be sidetracked and the purposes of residency training defeated. Listening to the whole person of the resident and avoiding the trap of getting caught up in merely responding to select resident behaviors that irritate us is critical. Every faculty member in the family practice residency program must recognize resistance as a form of defense that cannot immediately be torn down or taken away. Resident defenses have important purposes to play in stress reduction even if they are not always healthy. Residents, especially interns, use resistance to avoid a deeper and more truthful look at themselves as physicians. A family practice residency program that sees whole persons in their residents and that respects resident defenses will effectively manage the stress and disharmony inherent to the resistant resident.

  13. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  14. Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate.

    Science.gov (United States)

    Gaidhani, Sharvari Vijaykumar; Raskar, Aartee Vishnu; Poddar, Sharmishtha; Gosavi, Shriya; Sahu, Praveen Kishore; Pardesi, Karishma Rajendra; Bhide, Shobhana V; Chopade, Balu Ananada

    2014-11-01

    Available literature shows paucity of reports describing antibiotic and metal resistance profile of biofilm forming clinical isolates of Acinetobacter haemolyticus. The present study was undertaken to evaluate the antibiotic and metal resistance profile of Indian clinical isolate of A. haemolyticus MMC 8 isolated from human pus sample in planktonic and biofilm form. Antibiotic susceptibility and minimum inhibitory concentration were determined employing broth and agar dilution techniques. Biofilm formation was evaluated quantitatively by microtiter plate method and variation in complex architecture was determined by scanning electron microscopy. Minimum biofilm inhibiting concentration was checked by Calgary biofilm device. Planktonic A. haemolyticus MMC 8 was sensitive to 14 antibiotics, AgNO 3 and HgC1 2 resistant to streptomycin and intermediately resistant to netilmycin and kanamycin. MMC 8 exhibited temporal variation in amount and structure of biofilm. There was 32-4000 and 4-256 fold increase in antibiotic and metal salt concentration, respectively to inhibit biofilm over a period of 72 h as against susceptible planktonic counterparts. Total viable count in the range of 10(5)-10(6) cfu / ml was observed on plating minimum biofilm inhibiting concentration on Muller-Hinton Agar plate without antimicrobial agents. Biofilm forming cells were several folds more resistant to antibiotics and metal salts in comparison to planktonic cells. Presence of unaffected residual cell population indicated presence of persister cells. The results indicate that biofilm formation causes enhanced resistance against antibiotics and metal salts in otherwise susceptible planktonic A. haemolyticus MMC 8.

  15. Anticoagulant Resistance

    DEFF Research Database (Denmark)

    Heiberg, Ann-Charlotte

    Although sewer rat control is carried out in more than 80 % of all Danish municipalities, with usage of large amounts of anticoagulant rodenticides, knowledge on anticoagulant resistance among rats living in the sewers is limited. As rat problems in urban areas are believed to be related to sewer...... problems (70-90 % in UK and DK) unawareness of resistance amongst these populations of Brown rats may constitute a future control problem and knowledge on this issue has become crucial. Rats were captured in sewers from seven different locations in the suburban area of Copenhagen. Locations was chosen...... to represent different sewer rat management strategies i) no anticoagulants for approx. 20 years ii) no anticoagulants for the last 5 years and iii) continuous control for many years. Animals were tested for resistance to bromadiolone by Blood-Clotting Response test, as bromadiolone is the most frequently used...

  16. Reducing Resistance

    DEFF Research Database (Denmark)

    Lindell, Johanna

    care may influence decisions on antibiotic use. Based on video-and audio recordings of physician-patient consultations it is investigated how treatment recommendations are presented, can be changed, are forecast and explained, and finally, how they seemingly meet resistance and how this resistance......Antibiotic resistance is a growing public health problem both nationally and internationally, and efficient strategies are needed to reduce unnecessary use. This dissertation presents four research studies, which examine how communication between general practitioners and patients in Danish primary...... is responded to.The first study in the dissertation suggests that treatment recommendations on antibiotics are often done in a way that encourages patient acceptance. In extension of this, the second study of the dissertation examines a case, where acceptance of such a recommendation is changed into a shared...

  17. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    International Nuclear Information System (INIS)

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-01-01

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  18. Effects of Rare Earth Metal Addition on Wear Resistance of Chromium-Molybdenum Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasinska J.

    2017-09-01

    Full Text Available This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals (REM. The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75. Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher impact strength (from 33 to 99 kJ/cm2 and more than two times higher resistance to cracking (from 116 to 250 MPa. The following surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp: Maximum height of the peak Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

  19. Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena.

    Science.gov (United States)

    Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara; Jasso-Chávez, Ricardo; Saavedra, Emma; García-García, Jorge D

    2017-01-01

    Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.

  20. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane.

    Science.gov (United States)

    Mohamed, Rehab M; Abo-Amer, Aly E

    2012-02-01

    Contamination by heavy metals is one of the major environmental problems in many countries and these contaminants reach from various sources such as traffic cars and other activities. Soil and phylloplane samples were collected from eight traffic and two non-traffic sites in Sohag city, Egypt. Heavy metal contents of Cd²⁺, Zn²⁺ and Pb²⁺ of soil and phylloplane samples were determined and revealed high levels of Zn²⁺ and Pb²⁺ in traffic samples. A total of 112 bacterial and 62 fungal isolates were obtained from soil and phylloplane. Bacterial isolates were characterized on the basis of morphological, physicochemical and biochemical characteristics; and 16S rRNA gene sequences. Fungal isolates were identified according to morphological characterization. Minimal inhibitory concentrations (MICs) of Cd²⁺, Zn²⁺ and Pb²⁺ for each isolate were detected. All bacterial and fungal isolates demonstrated resistance to lead with MICs >0.528 mM and >0.211, respectively. Moreover, the maximum MICs of cadmium and zinc for bacteria were 0.821 mM and 1.471 mM, respectively, where as, MICs for fungi were 0.328 mM and 0.588 mM, respectively. The most resistant bacterial and fungal isolates were Pseudomonas aeruginosa RA65 and Penicillium corylophyllum, respectively. Therefore, P. aeruginosa RA65 was selected for further investigations. Growth curve study showed that 0.264 mM lead had no efficiently effect on the growth of P. aeruginosa RA65. Plasmid isolation evidenced by transformation studies indicated that P. aeruginosa RA65 harbored a single plasmid (~9.5 kb) which mediated heavy meal resistance. Consequently, these microbial isolates could be potentially used in bioremediation of heavy metal-contaminated environment.

  1. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  2. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential.

    Science.gov (United States)

    Pal, Chandan; Bengtsson-Palme, Johan; Kristiansson, Erik; Larsson, D G Joakim

    2015-11-17

    Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (resistance genes. This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co

  3. Calculations of resistivity and superconducting T/sub c/ in transition metals

    International Nuclear Information System (INIS)

    Allen, P.B.; Beaulac, T.P.; Khan, F.S.; Butler, W.H.; Pinski, F.J.; Swihart, J.C.

    1985-01-01

    A survey is given of various electron-phonon effects which have been calculated for the metals Nb, Mo, Ta, Pd, and Cu. These effects include the mass enhancement λ, superconducting T/sub c/, electrical and thermal resistivity, Hall coefficient, magnetoresistance, and the successfully tested predictions of linewidths γ 0 of phonons. The calculations use local density approximations (LDA) energy bands, experimental phonons, and the rigid muffin tin (RMT) approximation. Mesh size noise is less than 1% and the Bloch-Boltzmann integral equation has been solved to unprecedented accuracy

  4. Single-band negative differential resistance in metallic armchair MoS2 nanoribbons

    International Nuclear Information System (INIS)

    Chen, Cheng; Wang, Xue-Feng; Li, Yao-Sheng; Cheng, Xue-Mei; Yao, A-Long

    2017-01-01

    Semiconductor armchair MoS 2 nanoribbons can be converted into conductors by edge functionalization of H atoms or OH groups. Those metallic nanoribbons exhibit I – V characteristics of a single half-filled band with strong negative differential resistance (NDR) under a voltage bias less than 1 V. This originates from the spatial separation between electrons in the conduction and valence bands. The NDR becomes spin dependent if the H atoms or OH groups are not uniformly adsorbed on the edge. Furthermore, the spin polarization can be greatly enhanced in heterojunctions of H- and OH-passivated nanoribbons. (paper)

  5. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...

  6. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  7. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  8. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics

    Science.gov (United States)

    Goswami, Sreetosh; Matula, Adam J.; Rath, Santi P.; Hedström, Svante; Saha, Surajit; Annamalai, Meenakshi; Sengupta, Debabrata; Patra, Abhijeet; Ghosh, Siddhartha; Jani, Hariom; Sarkar, Soumya; Motapothula, Mallikarjuna Rao; Nijhuis, Christian A.; Martin, Jens; Goswami, Sreebrata; Batista, Victor S.; Venkatesan, T.

    2017-12-01

    Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (~350 devices), fast switching (106 s) and scalability (down to ~60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

  9. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    Science.gov (United States)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  10. Testing hypotheses on the resistance to metals by Daphnia longispina: differential acclimation, endpoints association, and fitness costs.

    Science.gov (United States)

    Saro, Liliana; Lopes, Isabel; Martins, Nelson; Ribeiro, Rui

    2012-04-01

    Pollution by metals may lead to an increased tolerance in the exposed population through adaptive microevolution, with resistant genotypes becoming more abundant than in reference sites. This work investigated the outcomes associated with selection for resistance by testing three hypotheses to assess the following: Do resistant versus sensitive clonal lineages of Daphnia longispina differentially acclimate to metals during a long-term sublethal exposure, is there a significant correlation between lethal and sublethal responses, and does resistance to metals entail costs to fitness under uncontaminated conditions? No evidence of acclimation was observed. The median effective dilutions of acid mine drainage for reproduction were similar for successive broods within clones during long-term exposures. Lethal and sublethal responses were not correlated, indicating that mechanisms regulating the two types of response were more than likely different. Finally, fitness costs associated with the resistance to lethal levels of metals were not detected, but resistance to sublethal levels of Cu was found to be correlated with a lower intrinsic growth rate under control conditions. Copyright © 2012 SETAC.

  11. Copper/polymer damascene interconnects: Elimination of high-resistivity metallic liners

    Science.gov (United States)

    Neirynck, Jan Michel

    1998-12-01

    Recent announcements by most major semiconductor companies have revealed both the near-future replacement of aluminum (Al) by copper (Cu) in interconnect technology as well as studies on replacing traditionally used interlayer dielectrics (ILD) with organic materials of lower dielectric constant. This work explores improving scalability by eliminating high-resistivity metallic liners and high-dielectric constant films from the Cu/polymer Damascene interconnect system. Polymer chemical mechanical planarization (CMP) in Cu slurries shows that polymer hardness is important because the polymer is no longer protected by a hard film used as a polish stop, etch mask and diffusion barrier. BCB shows much higher resistance to removal in Cu CMP slurries with scratching dramatically lower than with PA-n. The addition of a small amount of a surfactant (Triton-X) improves the BCB removal rate to 40 nm/min while further reducing scratching. Differences between BCB and PA-n polishing in such slurries are explained based on a phenomenological model. Adhesion of blanket Cu films on BCB was improved by using a thin layer of co-sputtered carbon doped Cu (Cu-C). The Cu-C resistivity ranges from 3.0 to 3.5 muOmega-cm and is dependent on polymer substrate and deposition conditions, which is related to the C distribution by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The etch mask removal during processing modifies the BCB surface mechanically and chemically, improving Cu adhesion so that CMP is feasible. The effects of plasma etching on BCB are investigated and related to observed improved Cu adhesion. Electrical characterization of Cu/BCB interfaces shows Cu diffusion does not occur (a) at temperatures of up to 200sp°C with electric fields of 1 MV/cm after 30 minutes and (b) upon annealing at 300sp°C for up to 90 minutes, although an initial polymer adjustment took place during the first thermal cycle. Leakage current spiking was suppressed with the Cu-C layer

  12. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    Science.gov (United States)

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-01-22

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  13. The Use of Electrical Resistivity Method to Mapping The Migration of Heavy Metals by Electrokinetic

    Science.gov (United States)

    Azhar, A. T. S.; Ayuni, S. A.; Ezree, A. M.; Nizam, Z. M.; Aziman, M.; Hazreek, Z. A. M.; Norshuhaila, M. S.; Zaidi, E.

    2017-08-01

    The presence of heavy metals contamination in soil environment highly needs innovative remediation. Basically, this contamination was resulted from ex-mining sites, motor workshop, petrol station, landfill and industrial sites. Therefore, soil treatment is very important due to metal ions are characterized as non-biodegradable material that may be harmful to ecological system, food chain, human health and groundwater sources. There are various techniques that have been proposed to eliminate the heavy metal contamination from the soil such as bioremediation, phytoremediation, electrokinetic remediation, solidification and stabilization. The selection of treatment needs to fulfill some criteria such as cost-effective, easy to apply, green approach and high remediation efficiency. Electrokinetic remediation technique (EKR) offers those solutions in certain area where other methods are impractical. While, electrical resistivity method offers an alternative geophysical technique for soil subsurface profiling to mapping the heavy metals migration by the influece of electrical gradient. Consequently, this paper presents an overview of the use of EKR to treat contaminated soil by using ERM method to verify their effectiveness to remove heavy metals.

  14. Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Lentijo-Mozo, Sergio; Tan, Reasmey P.; Garcia-Marcelot, Cécile; Altantzis, Thomas; Fazzini, Pier-Francesco; Hungria, Teresa; Cormary, Benoit; Gallagher, James R.; Miller, Jeffrey T.; Martinez, Herve; Schrittwieser, Stefan; Schotter, Joerg; Respaud, Marc; Bals, Sara; Tendeloo, Gustaaf Van; Gatel, Christophe; Soulantica, Katerina

    2015-03-24

    Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering,them air- and water-resistant, while conserving the monocrystallity, metallicity and the Magnetic properties of the Co core. Thus, the as-synthesized tore shell ferromagnetic nanorods combine high;Magnetization and strong uniaxial Magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes Of high magnetization and anisotropic shape.

  15. Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Lentijo-Mozo, Sergio [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Tan, Reasmey P. [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Garcia-Marcelot, Cécile [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS), 29 rue Jeanne Marvig, B.P. 94347, 31055 Toulouse, France; Altantzis, Thomas [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Fazzini, Pier-Francesco [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Hungria, Teresa [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Cormary, Benoit [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Gallagher, James R. [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439, United States; Miller, Jeffrey T. [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439, United States; Martinez, Herve [IPREM-ECP CNRS UMR 5254, Université de Pau, Hélioparc Pau Pyrénées, 2 av. Pierre Angot, 64053 Pau Cedex 9, France; Schrittwieser, Stefan [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna, Donau City Strasse 1, 1220 Vienna, Austria; Schotter, Joerg [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna, Donau City Strasse 1, 1220 Vienna, Austria; Respaud, Marc [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France; Bals, Sara [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Tendeloo, Gustaaf Van [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Gatel, Christophe [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS), 29 rue Jeanne Marvig, B.P. 94347, 31055 Toulouse, France; Soulantica, Katerina [Laboratoire de Physique et Chimie des Nano-objets (LPCNO), Université de Toulouse, INSA, UPS, CNRS, 135 avenue de Rangueil, 31077 Toulouse, France

    2015-02-25

    Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized core–shell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.

  16. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  17. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    Science.gov (United States)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  18. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  19. Direct fabrication of rigid microstructures on a metallic roller using a dry film resist

    International Nuclear Information System (INIS)

    Jiang, Liang-Ting; Huang, Tzu-Chien; Chang, Chih-Yuan; Ciou, Jian-Ren; Yang, Sen-Yeu; Huang, Po-Hsun

    2008-01-01

    This paper presents a novel method to fabricate a metallic roller mold with microstructures on its surface using a dry film resist (DFR). The DFR is laminated uniformly onto the curvy surface of a copper roller. After that, the micro-scale photoresist on the surface of the roller can be patterned by non-planar lithography using a flexible film photomask, followed by ferric chloride wet etching to obtain the desired microstructures. This method overcomes the uniformity issue of photoresist coating on rollers, and solves the molds sliding problem during the embossing process because the microstructures are fabricated directly on the roller surface. Furthermore, the rigid metallic roller mold has excellent strength durability and temperature endurance, which can be used in roller hot embossing with a high embossing pressure. The fabricated microstructure roller mold is used as a mold in the hybrid extrusion roller embossing process and successfully fabricates uniform micro-scale prominent line arrays on PC films. This result proves that the roller fabricated by this method can be successfully used in roller embossing for microstructure mass production. The excellent flatness of dry film resist laminating is the key in this fabrication process. The flexible film photomask can be easily designed using CAD software; this roller fabrication method enhances the design flexibility and reduces the cost and time

  20. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    Science.gov (United States)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  1. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  2. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Science.gov (United States)

    Emran, Khadijah M; Al-Harbi, Albandaree K

    2018-01-01

    The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  3. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil

    DEFF Research Database (Denmark)

    Song, Jianxiao; Rensing, Christopher; Holm, Peter Engelund

    2017-01-01

    Environmental selection of antibiotic resistance may be caused by either antibiotic residues or coselecting agents. Using a strictly controlled experimental design, we compared the ability of metals (Cu or Zn) and tetracycline to (co)select for tetracycline resistance in bacterial communities. Soil...... microcosms were established by amending agricultural soil with known levels of Cu, Zn, or tetracycline known to represent commonly used metals and antibiotics for pig farming. Soil bacterial growth dynamics and bacterial community-level tetracycline resistance were determined using the [(3)H......]leucine incorporation technique, whereas soil Cu, Zn, and tetracycline exposure were quantified by a panel of whole-cell bacterial bioreporters. Tetracycline resistance increased significantly in soils containing environmentally relevant levels of Cu (≥365 mg kg(-1)) and Zn (≥264 mg kg(-1)) but not in soil spiked...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  5. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I. G.; Sousa, J. B. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal); Department of Physics, FCUP, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Leitao, D. [IFIMUP and IN, Rua do campo Alegre, 687, 4169-007 Porto (Portugal)

    2009-07-15

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  6. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Hansen, Malene Plejdrup; Hoffmann, Tammy C; McCullough, Amanda R

    2015-01-01

    Numerous opportunities are available in primary care for alleviating the crisis of increasing antibiotic resistance. Preventing patients from developing an acute respiratory infection (ARI) will obviate any need for antibiotic use downstream. Hygiene measures such as physical barriers and hand...... will greatly improve the use of antibiotics for ARIs. However, used in concert, combinations are likely to enable clinicians and health care systems to implement the strategies that will reduce antimicrobial resistance in the future....... antibiotic prescribing are a major factor in the prescribing for ARIs. Professional interventions with educational components are effective, although they have modest effects, and are expensive. GPs' perceptions - that mistakenly assume as a default that patients want antibiotics for their ARIs - are often...

  7. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...... is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care, where viruses cause most infections. About 90% of all antibiotic prescriptions are issued by general...

  8. Resisting dehumanization

    DEFF Research Database (Denmark)

    Lassen, Inger Marie

    2018-01-01

    Recent years have seen an increase in the influx of asylum-seekers in Scandinavia, and in Denmark this has led to ever-tighter immigration control. This article discusses emerging practices of refugee solidarity and resistance to hegemonic migration policy in Danish civil society in the wake of w...... 2015) and appraisal analysis of the incident in focus. Keywords: immigration, discursive discrimination, populism, solidarity, governmentality, topoi, appraisal...

  9. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation.

    Science.gov (United States)

    Yu, Ning; Nakajima, Masahiro; Shi, Qing; Yang, Zhan; Wang, Huaping; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    A high contact resistance restricts the application of carbon nanotubes (CNTs) in fabrication of field-effect transistors (FETs). Thus, it is important to decrease the contact resistance and investigate the critical influence factors such as the contact length and contact force. This study uses nanomanipulation to characterize both the resistance and the force at a CNT/Au side-contact interface inside a scanning electron microscopy (SEM). Two-terminal CNT manipulation methods, and models for calculating the resistance and force at contact area, are proposed to guide the measurement experiments of a total resistance and a cantilever's elastic deformation. The experimental results suggest that the contact resistance of CNT/Au interface is large (189.5 kΩ) when the van der Waals force (282.1 nN) dominates the contact force at the interface. Electron-beam-induced deposition (EBID) is then carried out to decrease the contact resistance. After depositing seven EBID points, the resistance is decreased to 7.5 kΩ, and the force increases to 1339.8 nN at least. The resistance and force at the contact area where CNT was fixed exhibit a negative exponential correlation before and after EBID. The good agreement of this correlation with previous reports validates the proposed robotic system and methods for characterizing the contact resistance and force.

  11. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface

    Science.gov (United States)

    Wang, Michael; Sakamoto, Jeff

    2018-02-01

    Solid electrolytes could enable stable cycling of metallic Li anodes, which can offer drastic increases to the capacity of Li-ion batteries. However, little is known about the mechanics of the Li-solid electrolyte interface. This study combines electrochemical and mechanical characterization to correlate interface kinetics with adhesive strength. Cubic garnet with the Li6·25Al0·25La3Zr2O12 (LLZO) formulation was selected as a model solid electrolyte based on its high conductivity and stability against Li metal. Symmetric Li-LLZO cells were tested using electrochemical impedance spectroscopy to determine the interfacial resistance, Rint, and the adhesive strength of the Li-LLZO interface, σadh, was measured using a unique tensile test in an inert atmosphere. It was determined that the Rint is directly correlated to the adhesive strength of Li on LLZO. At the highest Rint in this study, 330 k·cm2 the σadh was 1.1 kPa and at the lowest Rint in this study, 7 ·cm2, σadh was 8 MPa. Furthermore, by optimizing the surface chemistry the wettability of LLZO was enhanced resulting in σadh exceeding the ultimate tensile strength of Li metal. The relationship demonstrated provides a deeper understanding of the mechanical properties of the Li-electrolyte interface, which will play an important role in the design of batteries employing metallic Li anodes.

  12. Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy.

    Science.gov (United States)

    Dominiczak, Maguy; Otubo, Larissa; Alamarguy, David; Houzé, Frédéric; Volz, Sebastian; Noël, Sophie; Bai, Jinbo

    2011-04-14

    Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.

  13. Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Alamarguy David

    2011-01-01

    Full Text Available Abstract Using an atomic force microscope (AFM at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated, individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as R tip-CNT, R CNT-substrate and R tip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism.

  14. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Fearn, Sarah; Chater, Richard; McPhail, David; Kenyon, Anthony J.

    2015-03-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G0, is a natural boundary between the high and low resistance states of our devices.

  15. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    International Nuclear Information System (INIS)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J.; Fearn, Sarah; Chater, Richard; McPhail, David

    2015-01-01

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G 0 , is a natural boundary between the high and low resistance states of our devices

  16. The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    Directory of Open Access Journals (Sweden)

    Florent Ravaux

    2017-06-01

    Full Text Available To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM structures of molybdenum (Mo were fabricated on indium phosphide (InP substrate on the top of an indium gallium arsenide (InGaAs layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS showed that the amount of oxides (InxOy, GaxOy or AsxOy was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process.

  17. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Mitali, E-mail: mitali.physics@gmail.com; Singh, Surendra, E-mail: surendra@barc.gov.in; Bhattacharya, Debarati; Basu, Saibal, E-mail: sbasu@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Ajay; Prajapat, C. L. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tokas, R.B. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-07-15

    Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50%) on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  18. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    Directory of Open Access Journals (Sweden)

    Mitali Swain

    2015-07-01

    Full Text Available Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50% on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  19. Structural changes and conductance thresholds in metal-free intrinsic SiO{sub x} resistive random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Mehonic, Adnan, E-mail: a.mehonic@ee.ucl.ac.uk, E-mail: t.kenyon@ucl.ac.uk; Buckwell, Mark; Montesi, Luca; Garnett, Leon; Hudziak, Stephen; Kenyon, Anthony J., E-mail: a.mehonic@ee.ucl.ac.uk, E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Fearn, Sarah; Chater, Richard; McPhail, David [Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-03-28

    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G{sub 0}, is a natural boundary between the high and low resistance states of our devices.

  20. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  1. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  2. Fatigue resistance and failure mode of adhesively restored custom metal-composite resin premolar implant abutments.

    Science.gov (United States)

    Boff, Luís Leonildo; Oderich, Elisa; Cardoso, Antônio Carlos; Magne, Pascal

    2014-01-01

    To evaluate the fatigue resistance and failure mode of composite resin and porcelain onlays and crowns bonded to premolar custom metal-composite resin premolar implant abutments. Sixty composite resin mesostructures were fabricated with computer assistance with two preparation designs (crown vs onlay) and bonded to a metal implant abutment. Following insertion into an implant with a tapered abutment interface (Titamax CM), each metal-composite resin abutment was restored with either composite resin (Paradigm MZ100) or ceramic (Paradigm C) (n = 15) and attached with adhesive resin (Optibond FL) and a preheated light-curing composite resin (Filtek Z100). Cyclic isometric chewing (5 Hz) was then simulated, starting with 5,000 cycles at a load of 50 N, followed by stages of 200, 400, 600, 800, 1,000, 1,200, and 1,400 N (25,000 cycles each). Samples were loaded until fracture or to a maximum of 180,000 cycles. The four groups were compared using life table survival analysis (log-rank test). Previously published data using zirconia abutments of the same design were included for comparison. Paradigm C and MZ100 specimens fractured at average loads of 1,133 N and 1,266 N, respectively. Survival rates ranged from 20% to 33.3% (ceramic crowns and onlays) to 60% (composite resin crowns and onlays) and were significantly different (pooled data for restorative material). There were no restoration failures, but there were adhesive failures at the connection between the abutment and the mesostructure. The survival of the metal-composite resin premolar abutments was inferior to that of identical zirconia abutments from a previous study (pooled data for abutment material). Composite resin onlays/crowns bonded to metal-composite resin premolar implant abutments presented higher survival rates than comparable ceramic onlays/crowns. Zirconia abutments outperformed the metal-composite resin premolar abutments.

  3. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances.

    Science.gov (United States)

    Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas

    2017-02-01

    Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Copper resistance determinants in bacteria.

    Science.gov (United States)

    Brown, N L; Rouch, D A; Lee, B T

    1992-01-01

    Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.

  5. Resistance to Sliding in Clear and Metallic Damon 3 and Conventional Edgewise Brackets: an In vitro Study

    Science.gov (United States)

    Karim Soltani, Mohammad; Golfeshan, Farzaneh; Alizadeh, Yoones; Mehrzad, Jabraiel

    2015-01-01

    Statement of the Problem Frictional forces are considered as important counterforce to orthodontic tooth movement. It is claimed that self-ligating brackets reduce the frictional forces. Purpose The aim of this study was to compare the resistance to sliding in metallic and clear Damon brackets with the conventional brackets in a wet condition. Materials and Method The samples included 4 types of brackets; metallic and clear Damon brackets and metallic and clear conventional brackets (10 brackets in each group). In this study, stainless steel wires sized 0.019×0.025 were employed and the operator’s saliva was used to simulate the conditions of oral cavity. The tidy-modified design was used for simulation of sliding movement. The resistance to sliding and static frictional forces was measured by employing Testometric machine and load cell. Results The mean (±SD) of resistance to sliding was 194.88 (±26.65) and 226.62 (±39.9) g in the esthetic and metallic Damon brackets, while these values were 187.81(±27.84) and 191.17(±66.68) g for the clear and metallic conventional brackets, respectively. Static frictional forces were 206.4(±42.45) and 210.38(±15.89) g in the esthetic and metallic Damon brackets and 220.63(±49.29) and 215.13(±62.38) g in the clear and metallic conventional brackets. According to two-way ANOVA, no significant difference was observed between the two bracket materials (clear and metal) and the two types of bracket (self-ligating versus conventional) regarding resistance to sliding (p= 0.17 and p= 0.23, respectively) and static frictional forces (p= 0.55 and p= 0.96, respectively). Conclusion Neither the type of bracket materials nor their type of ligation made difference in resistance to sliding and static friction. PMID:26106630

  6. Antibiotics and Resistance: Glossary

    Science.gov (United States)

    ... Work Contact Us ABOUT THE ISSUE What is Antibiotic Resistance? General Background Science of Resistance Glossary References ... for Adaptation Genetics and Drug Resistance Reservoirs of Antibiotic Resistance Project (ROAR) INTERNATIONAL CHAPTERS APUA Chapter Network ...

  7. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  8. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  9. Insulin Resistance and Prediabetes

    Science.gov (United States)

    ... in the normal range. What happens with insulin resistance? In insulin resistance, muscle, fat, and liver cells do not ... they do not usually test specifically for insulin resistance. Insulin resistance can be assessed by measuring the level ...

  10. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation

    OpenAIRE

    Yu, Ning; Nakajima, Masahiro; Shi, Qing; Yang, Zhan; Wang, Huaping; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-01-01

    A high contact resistance restricts the application of carbon nanotubes (CNTs) in fabrication of field-effect transistors (FETs). Thus, it is important to decrease the contact resistance and investigate the critical influence factors such as the contact length and contact force. This study uses nanomanipulation to characterize both the resistance and the force at a CNT/Au side-contact interface inside a scanning electron microscopy (SEM). Two-terminal CNT manipulation methods, and models for ...

  11. Properties, microstructure and resistance to metal corrosion from pure runoff of supermartensitic stainless steel

    International Nuclear Information System (INIS)

    Zappa, S; Burgueno, A; Svoboda, H. G; Ramini de Rissone, M; Surian, E. S

    2008-01-01

    Supermartensitic stainless steels (AISM) are characterized by their very low carbon content, providing good tenacity and weldability. They also contain Ni as a stabilizing agent of the austenite and Mo to improve corrosion resistance. The weldability of these materials is fundamentally important for their applications, mainly in the gas and oil industries. The presence of CO 2 , H 2 S, water with a high solids content and condensed water in the production of hydrocarbons together with the large amounts of Cl in these aqueous phases make localized corrosion one of the mechanisms for the degradation of these steels while in service. The protective gases used in the semiautomatic welding process with heavy or tubular wires (GMAW, FCAW) affect the chemical composition of the deposits, particularly the contents of C, O and N, generating variations in their properties. The mechanical properties of these steels are usually optimized after a post-welding heat treatment (PWHT), which may also significantly affect the corrosion resistance of the welding deposits. This work studied the influence of the welding procedure (protective gas and PWHT) on corrosion resistance from pitting of the unalloyed AISM metal. Two test pieces of unalloyed metal were welded according to ANSI/AWS A5.22-95 with a GMAW process using a 1.2 mm diameter tubular wire with metal filling that deposits a supermartensitic stainless steel. The effect of the gas protection was evaluated, welding one of the test pieces with Ar- 5%He and the other with Ar-18%CO 2 . The effect of the PWHT was analyzed, for which samples were extracted from each welded test piece, which were thermally treated at 650 o C for 15 minutes, producing as-welded (AW) samples and with PWHT. The chemical composition for both welding conditions was determined. Microstructural characterization was carried out for the four conditions , using optic and scanning electron microscopy and X-ray diffraction, and the Vickers microhardness was

  12. The role of mechanical properties in cavitation erosion resistance. [parameters affecting metal fatigue under cavitation flow conditions

    Science.gov (United States)

    Gould, G. C.

    1974-01-01

    Methods for determining the correlations of erosion resistance and mechanical properties of materials are discussed. The most common method of testing cavitation erosion resistance of materials is the vibratory cavitation probe. The instrument and its operation are described. The use of the whirling arm device is considered as a second method. Metallographic investigations of the earliest stages of cavitation erosion damage of metallic materials was conducted. The materials show plastic deformation occurring during the incubation period and increasing until cracks form and metal fragments are lost. The parameters of the work done to cause material fractures are identified. The reactions obtained with specific materials are reported.

  13. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    International Nuclear Information System (INIS)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  14. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  15. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    International Nuclear Information System (INIS)

    Matyar, Fatih; Kaya, Aysenur; Dincer, Sadik

    2008-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 μg/ml to > 3200 μg/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public

  16. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing

    Science.gov (United States)

    Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang

    2017-08-01

    Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.

  17. On a solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.

    2009-01-09

    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combinations of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage and previous attempts to solve this problem have been largely disappointing. Here we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semi-solid processing is used to optimize the volume fraction, morphology, and size of second phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of {approx} 2 {micro}m, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude making these 'designed' composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems.

  18. Cadmium biosorption properties of the metal-resistant ochrobactrum cytisi Azn6.2

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Llorente, Ignacio D.; Gamane, Djamila; Lafuente, Alejandro; Dary, Mohammed; El Hamdaoui, Abdelaziz; Delgadillo, Julian; Doukkali, Bouchra; Caviedes, Miguel A.; Pajuelo, Eloisa [Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla (Spain)

    2010-02-15

    The aim of this work was to establish the conditions for using Ochrobactrum cytisi Azn6.2 as a metal biosorbent. Azn6.2 is a novel strain from the legume symbiont O. cytisi that has been isolated from nodules of Medicago polymorpha plants grown on heavy metal-polluted soils. Compared with the strain ESC1, Azn6.2 showed some biochemical differences, as well as antibiotic susceptibility, Azn6.2 was multi-resistant to heavy metals, such as Cu, Cd and Zn, and bacterial pellets were able to biosorb high amounts of Cd and Zn. As shown by scanning electron microscopy coupled to energy dispersive X-ray, most of Cd was attached to the cell surface. Optimal conditions for Cd biosorption were established, being 1 mM Cd ions in solution and 2 h of contact with the biosorbent at room temperature. At these conditions, maximal Cd loading capacity reached 32-34 mg/g. Cd desorption from bacterial pellets was achieved after washing with EDTA or, at higher efficiency, at pH 1.0. These results indicated that biosorption/desorption on O. cytisi Azn6.2 biomass should be a cost-effective method for Cd recovery from contaminated solutions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  20. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  1. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-09

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  2. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    Energy Technology Data Exchange (ETDEWEB)

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

  3. Experimental Investigation of Frictional Resistances in the Drawbead Region of the Sheet Metal Forming Processes

    Science.gov (United States)

    Trzepiecinski, T.; Fejkiel, R.; Lemu, H. G.

    2017-11-01

    Drawbeads are used in sheet metal forming to restrain the sheet from flowing freely into die cavity, especially in the case of forming unsymmetrical drawpieces. This process is necessary to produce an optimal stamped part without wrinkles and cracks. In this paper, a special tribological simulator is used to evaluate the frictional resistances during flowing the sheet through the circular shape bead. The tests were conducted on DC04 carbon steel sheets with a sheet thickness of 0.8 mm. Experiments were carried out at different process parameters: friction conditions, specimen widths, heights and surface roughness of drawbead. The results obtained in the drawbead friction test show that the value of friction coefficient depends on the width of the sample. The character of sheet deformation during bending and reverse bending on the sheet thickness over the drawbead changes the surface topography and real contact area of sheet and tool.

  4. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  5. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  6. Low Resistance Ohmic Contacts to Bi[sub 2]Te[sub 3] Using Ni and Co Metallization

    KAUST Repository

    Gupta, Rahul P.

    2010-04-27

    A detailed study of the impact of surface preparation and postdeposition annealing on contact resistivity for sputtered Ni and Co contacts to thin-film Bi2 Te3 is presented. The specific contact resistivity is obtained using the transfer length method. It is observed that in situ sputter cleaning using Ar bombardment before metal deposition gives a surface free of oxides and other contaminants. This surface treatment reduces the contact resistivity by more than 10 times for both Ni and Co contacts. Postdeposition annealing at 100°C on samples that were sputter-cleaned further reduces the contact resistivity to < 10-7 cm2 for both Ni and Co contacts to Bi2 Te3. Co as a suitable contact metal to Bi2 Te3 is reported. Co provided similar contact resistance values as Ni, but had better adhesion and less diffusion into the thermoelectric material, making it a suitable candidate for contact metallization to Bi2 Te3 based devices. © 2010 The Electrochemical Society.

  7. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  8. Resistant hypertension.

    Science.gov (United States)

    Armario, P; Oliveras, A; de la Sierra, A

    2013-11-01

    A 53 year old woman with hypercholesterolemia treated with statins, with no history of cardiovascular disease, was referred to the Hypertension and Vascular Risk Unit for management of hypertension resistant to 4 antihypertensive agents at full doses. The patient had obesity, with a body mass index of 36.3kg/m(2) and office blood pressure 162/102mm Hg. Physical examination showed no data of interest. glucose 120mg/dl, glycated Hb: 6.4%, albuminuria 68mg/g, kidney function and study of the renin angiotensin system and other biochemical parameters were normal. Echocardiography: left ventricular mass, 131g/m(2) (normal, <110g/m(2)). True resistant hypertension was confirmed by ambulatory monitoring of blood pressure during 24h (153/89mm Hg). Spironolactone treatment (25mg/day) was added and was well tolerated, with no change in renal function and kaliemia within normal (4.1mmol/l) following the treatment. After 8 weeks, blood pressure was well controlled: office blood pressure 132/86mm Hg and 24h-ambulatory blood pressure: 128/79mm Hg. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  9. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment.

    Science.gov (United States)

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; He, Miao; Li, Dan; Chen, Jianmin

    2018-06-01

    Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metal mask free dry-etching process for integrated optical devices applying highly photostabilized resist.

    NARCIS (Netherlands)

    Sengo, G.; Sengo, G.; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; Driessen, A.; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vazquez, J.

    2006-01-01

    Photostabilization is a widely used post lithographic resist treatment process, which allows to harden the resist profile in order to maintain critical dimensions and to increase selectivity in subsequent process steps such as reactive ion etching. In this paper we present the optimization of deep

  11. Fracture resistance of different metal substructure designs for implant-supported porcelain-fused-to-metal (PFM crowns

    Directory of Open Access Journals (Sweden)

    Chau-Hsiang Wang

    2013-09-01

    Conclusion: These results confirm that the conventional design had the best fracture resistance, and an excessively thick porcelain layer can cause crown fracture. However, there was no obvious proof that the wrinkled design had better fracture resistance than the conventional design. Therefore, the theory that PFM can provide better support requires further corroboration.

  12. Study of Metal Resistance Potential of the Cd, Cr Tolerant Alligator Weed

    Directory of Open Access Journals (Sweden)

    Suparna Pal

    2014-03-01

    Full Text Available Background – Environmental deterioration due to heavy metal pollution is a major global concern for its immense importance in the ecosystem. Indiscriminate use of heavy metals for rapid urbanization and industrial exploration is a pressing threat to human health. Among this Cd and Cr contamination is most dangerous as these metals directly enter into the food chain due to their higher solubility and mobility. Identification of a metal tolerant native plant species would be helpful to decontaminate Cd and Cr polluted land. In our previous study, field investigations were conducted to evaluate the tolerance potential of Alligator weed to Cd and Cr.Alligator weed [Alternanthera philoxeroides (Mart. Griseb ],is the most widely distributed perennial stoloniferous herb in these contaminated areas in and around Kolkata. Purpose of the study – To establish metal tolerant capacity of the species , different biochemical parameters assessing its metal accumulation capacity and reflecting its detoxification mechanism were studied. For these purpose, the same plant collected from the highest metal contaminated area was grown under laboratory condition with external application of various concentration of Cd and Cr individually and synergistically (0.5, 0.8, 1.0, 1.2, 1.5, 1.8 mM. To estimate the hazardous effects of Cd and Cr on this weed, membrane damage was quantified in form of lipid peroxidation i.e MDA production. The metal uptake and accumulation potential was estimated by measuring the Cd and Cr concentration in root and shoot. Some soil parameters such as Orgnaic Carbon, Cation exchange capacity were also studied to explain the bio availability of metals. Various biochemical parameters such as free proline content, non protein- thiol content and zymogram analysis of antioxidative isozymes (such as, Guiacol peroxidase, superoxide dismutase, glutathione reductase and ascorbate peroxidase were studied to assess its metal resistant capacity. Result

  13. Three-Dimensional Resistive Metamaterial Absorber Loaded with Metallic Resonators for the Enhancement of Lower-Frequency Absorption

    Directory of Open Access Journals (Sweden)

    Yang Shen

    2018-01-01

    Full Text Available Resistive patch array incorporating with metallic backplane provided an effective way to achieve broadband metamaterial absorbers (MAs in microwave frequency, and the outstanding construction contributed more flexible and diversified broadband absorption. In this paper, we attempted to load metallic resonators (MRs to three-dimensional resistive MA to further enhance the lower-frequency absorption performance. Simulation showed that the partial absorption peak was separated to the lower frequency, while the rest of broadband absorption was unaffected. Meanwhile, after combining multi-unit of the proposed MAs, the stair-stepping broadband absorption was also achieved. Finally, three samples were fabricated. The agreements between simulations and experimental results demonstrated that resistive MA loaded with MRs provided an effective way for further enhancement of lower-frequency absorption with almost no change of the absorbing structure and lightweight characteristic. Thus, it was worthy to expect a wide range of applications to emerge inspired from the proposed attempt.

  14. Finishes for Metals. Paintability of Galvanized Steel, Corrosion Resistance of Metallized Coatings.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    Two papers are presented. The first, "Report of the AISI Research Project on the Paintability of Galvanized Steel," was a project aimed at determining optimum procedures for painting bright-spangled galvanized sheet steel products using three classes of trade sales paints--metallic zinc-dust, portland cement-in-oil, and water base emulsion paints.…

  15. Diverse genomic location and sequence content of a Listeria monocytogenes chromosomal island harboring heavy metal resistance and other genes

    Science.gov (United States)

    Listeria monocytogenes remains a major foodborne pathogen with three serotype 4b clonal groups (ECI, ECII, ECIa) repeatedly implicated in human listeriosis. For reasons that are unknown, many of these strains are also resistant to heavy metals, i.e. cadmium and arsenic. The acquisition and fitness i...

  16. Wafer-scale fabrication of scanning thermal probes with integrated metal nanowire resistive elements for sensing and heating

    NARCIS (Netherlands)

    Hatakeyama, Kodai; Sarajlic, Edin; Siekman, Martin Herman; Jalabert, L.; Fujita, H.; Tas, Niels Roelof; Abelmann, Leon

    2014-01-01

    Scanning Thermal Microscopy (SThM) and micro-thermal analysis allow the study of thermal phenomena at micro- and nanoscale. We present a novel scanning resistive probe aimed for thermal imaging and localized thermal analysis. The probe features an AFM cantilever with a sharp pyramidal tip. Metal

  17. The effect of metal ions commonly present in food on gene expression of sporulating Bacillus subtilis cells in relation to spore wet heat resistance.

    NARCIS (Netherlands)

    Oomes, S.J.C.M.; Brul, S.

    2004-01-01

    Bacillus subtilis is a food spoilage spore-forming bacterium. The spores can be very heat-resistant and may cause problems in the production of foods. Varying the metal concentration in the sporulation media is known to influence the heat resistance of the spores. The effect of changing the metal

  18. Resisting dehumanization

    DEFF Research Database (Denmark)

    Lassen, Inger Marie

    2018-01-01

    Recent years have seen an increase in the influx of asylum-seekers in Scandinavia, and in Denmark this has led to ever-tighter immigration control. This article discusses emerging practices of refugee solidarity and resistance to hegemonic migration policy in Danish civil society in the wake...... of an incident from September 2015, when a member of a Danish City Council offered private shelter to immigrants who were on their way to Norway. The incident led to legal proceedings in August 2016 for what the defendant referred to as ‘the offense of helping fellow human beings in need’. The study is informed...... 2015) and appraisal analysis of the incident in focus. Keywords: immigration, discursive discrimination, populism, solidarity, governmentality, topoi, appraisal...

  19. Z-Pinch Wire-Electrode Contact Resistance Studies Using Weighted and Soft Metal Gasket Contacts*

    Science.gov (United States)

    Gomez, M. R.; Zier, J. C.; Thurtell, A. F.; French, D. M.; Gilgenbach, R. M.; Tang, W.; Lau, Y. Y.

    2008-11-01

    The contact made between z-pinch wires and electrodes has a significant effect on both the energy deposited in the wires and the uniformity of the expansion profile of the wires. We have shown that using soft metal gaskets can improve wire-electrode contact significantly over typical weighted contacts. Images of wire expansion profile and wire plasma emission will be presented for single and double wire shots on a 16 kA, 100 kV 4-stage Marx bank with 150 ns risetime. Bench resistance measurements for aluminum, stainless steel, and tungsten wires with diameters ranging from 7.5 um to 30 um will be presented. These measurements utilized both soft metal gasket contacts (gaskets include: indium, silver, aluminum, tin, and lead) and double-ended wire weight contacts (weights ranged from 0.4 g to 1.9 g). *This research was supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the University of Michigan. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship sponsored by Sandia National Labs.

  20. Corrosion resistance of different metallic coatings on press-hardened steels for automotive

    Energy Technology Data Exchange (ETDEWEB)

    Dosdat, L.; Petitjean, J.; Vietoris, T. (ArcelorMittal Maizieres Automotive Products Research Centre, F-57283 Maizieres-les-Metz); Clauzeau, O. [Bohr Technologies (France)

    2011-06-15

    The corrosion resistance of laboratory press-hardened components in aluminized, galvanized or galvannealed boron steels was evaluated through VDA 621-415 cyclic test for the automotive industry. 22MnB5 uncoated steel for hot stamping and standard galvanized steel for cold forming were also included as references. Corrosion resistance after painting (cosmetic corrosion) was quantified by measuring the delamination of electro-deposited paint from scribed panels. The rusting on their edges was used for determining the cut-edge corrosion resistance. The corrosion resistance on unpainted deformed panels (perforating corrosion) was quantified by mass losses and pit depth measurements. Zinc-coated boron steels were found to be more resistant to cosmetic corrosion than the other materials, and slightly more resistant to cut-edge corrosion than the aluminized one. Red rust apparition could not be avoided due to the high iron content in all these hot-stamped coatings. The three coated boron steels showed similar performances in terms of resistance to perforation. Aluminized boron steel presents the advantage of being less sensitive to hot-stamping process deviation. Its robustness has been proved for many years on cars. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  2. The Effects of Texture on the Resistivity of Thin Metallic Face-Centered Cubic Films

    Science.gov (United States)

    Soss, Steven Robert

    This thesis is concerned with the identification of the role of texture to the resistivity in thin silver, copper, and aluminum films. The results of this work can, in principle, be applied to any cubic structure, electronic conduction metal film with suitable changes to the calculations. We utilize the theory of Mayadas and Shatzke, and extended by Tellier, et. al., for electron transport properties at the grain boundaries. In particular, the theory is used to determine the probability of specular transmittance of an electron through the grain boundary. In addition, a Monte-Carlo simulation was developed which, given the measured texture distribution in the film, can determine the effective dislocation density at the grain boundary. It is found that the density of dislocations at the grain boundary can be identified as the underlying cause for the resistivity changes with texture. The films are deposited using the partially ionized beam (PIB) deposition system. The PIB technique utilizes a small percentage of ions derived from the evaporant flux to bombard the growth front during deposition. This deposition technique is unique in the fact that the texture distribution in the film can be dramatically changed while keeping the grain size relatively constant and while avoiding the incorporation of foreign species as impurities in the film. The films were deposited on glass microslides. Resistivity was measured using a standard four-point probe technique, grain size measurements were performed using X-ray and atomic force microscopy, and the film thickness was determined using a Tencor Alpha Step profilometer. The texture distribution in the film was measured by the X-ray Pole Figure technique, which found all the films to possess a fiber texture. Using the dislocation core model, an expression for the potential seen by an electron at the boundary can be written. The solution to the wave equation gives rise to a probability for the electron to be specularly

  3. Effects of Rare Earth Metal addition on the cavitation erosion-corrosion resistance of super duplex stainless steels

    Science.gov (United States)

    Shim, Sung-Ik; Park, Yong-Soo; Kim, Soon-Tae; Song, Chi-Bok

    2002-05-01

    Austenitic stainless steels such as AISI 316L have been used in equipment in which fluid flows at high speeds which can induce cavitation erosion on metallic surfaces due to the collapse of cavities, where the collapse is caused by the sudden change of local pressure within the liquid. Usually AISI 316L is susceptible to cavitation erosion. This research focuses on developing a better material to replace the AISI 316L used in equipment with high speed fluid flow, such as impellers. The effects of Rare Earth Metal (REM) additions on the cavitation erosion-corrosion resistance of duplex stainless steels were studied using metallographic examination, the potentiodynamic anodic polarization test, the tensile test, the X-ray diffraction test and the ultrasonic cavitation erosion test. The experimental alloys were found to have superior mechanical properties due to interstitial solid solution strengthening, by adding high nitrogen (0.4%), as well as by the refinement of phases and grains induced by fine REM oxides and oxy-sulfides. Corrosion resistance decreases in a gentle gradient as the REM content increases. However, REM containing alloys show superior corrosion resistance compared with that of other commercial alloys (SAF 2507, AISI 316L). Owing to their excellent mechanical properties and corrosion resistance, the alloys containing REM have high cavitation erosion-corrosion resistance.

  4. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    International Nuclear Information System (INIS)

    Anil V. Virkar

    2006-01-01

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about ∼0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum ∼0.025 (Omega)cm 2 area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO 3 with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating ∼1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life

  5. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance

    Science.gov (United States)

    Aldred, Katie J.; McPherson, Sylvia A.; Turnbough, Charles L.; Kerns, Robert J.; Osheroff, Neil

    2013-01-01

    Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlAE85K, GrlAS81F/E85K, GrlAE85A, GrlAS81F/E85A and GrlAS81F Bacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg2+ concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein–quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance. PMID:23460203

  6. Fracture resistance of metal- and galvano-ceramic crowns cemented with different luting cements: in vitro comparative study.

    Science.gov (United States)

    Ghazy, Mohamed H; Madina, Manal M Abo

    2006-01-01

    This study aimed to compare the fracture resistance of galvano-ceramic crowns with metal-ceramic crowns cemented to natural premolar teeth with different luting cements. Sixty intact maxillary premolars were prepared to receive full-coverage crown restorations and were divided into 2 equal groups (n = 30): galvano-ceramic crowns and metal-ceramic crowns. Each group was further subdivided into 3 equal subgroups (n = 10) according to the luting cement used: zinc-phosphate, glass-ionomer, or adhesive-resin cement. The specimens were then compressively loaded until failure in a universal testing machine. The metal-ceramic crowns exhibited higher resistance to fracture compared to galvano-ceramic crowns, but both exceeded the normal documented values of occlusal masticatory forces.

  7. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  8. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-01-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10 17  m −2 . We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching

  9. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  10. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    Science.gov (United States)

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p metal-removal and the presence of certain metal-resistant genes indicated that the selected microbial isolates used both passive (biosorptive) and active (bioaccumulation) mechanisms to remove heavy metals from industrial wastewater. This study

  11. Antibiotics and heavy metals resistance and other biological characters in enterococci isolated from surface water of Monte Cotugno Lake (Italy).

    Science.gov (United States)

    De Niederhäusern, Simona; Bondi, Moreno; Anacarso, Immacolata; Iseppi, Ramona; Sabia, Carla; Bitonte, Fabiano; Messi, Patrizia

    2013-01-01

    Considering the limited knowledge about the biological characters in enterococci isolated from surface waters, we investigated antibiotic and heavy-metal resistance, bacteriocin production, and some important virulence traits of 165 enterococci collected in water samples from Monte Cotugno Lake, the largest artificial basin built with earth in Europe. The species distribution of isolates was as follows: Enterococcus faecium (80%), Enterococcus faecalis (12.7%), Enterococcus casseliflavus (3%), Enterococcus mundtii (1.8%), Enterococcus hirae (1.8%), Enterococcus durans (0.6%). All enterococci showed heavy metal resistance toward Cu, Ni, Pb and Zn, were susceptible to Ag and Hg, and at the same time exhibited in large percentage (83.7%) resistance to one or more of the antibiotics tested. Relatively to virulence factor genes, 50.9% enterococci were positive for gelatinase (gelE), 10.9% for aggregation substance (agg), 12.7% and 66.6% for the cell wall adhesins (efaAfs and efaAfm), respectively. No amplicons were detected after PCR for cytolysin production (cylA, cylB and cylM) and enterococcal surface protein (esp) genes. Bacteriocin production was found in most of the isolates. Given that the waters of the Monte Cotugno Lake are used for different purposes, among which farming and recreational activities, they can contribute to spread enterococci endowed with virulence factors, and antibiotics and heavy metals resistance to humans.

  12. Evaluation of an EMITEC resistively heated metal monolith catalytic converter on two M100 neat methanol-fueled vehicles

    Science.gov (United States)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1992-12-01

    The report describes the evaluation of a resistively heated catalyst system on two different methanol fueled vehicles. The EMITEC catalyst consisted of a compact resistively heated metal monolith in front of a larger conventional main converter. The EMITEC catalyst was evaluated on two neat methanol-fueled vehicles, a 1981 Volkswagen Rabbit and a 1988 Toyota Corolla. Emission testing was conducted over the Federal Test Procedure (FTP) CVS-75 test cycle. The emissions of primary interest were cold start methanol (unburned fuel), carbon monoxide, and formaldehyde.

  13. Simultaneous atomic force microscopy measurement of topography and contact resistance of metal films and carbon nanotubes

    International Nuclear Information System (INIS)

    Stadermann, M.; Grube, H.; Boland, J.J.; Papadakis, S.J.; Falvo, M.R.; Superfine, R.; Washburn, S.

    2003-01-01

    We present a quartz tuning-fork-based atomic force microscopy (AFM) setup that is capable of mapping the surface contact resistance while scanning topography. The tuning-fork setup allows us to use etched Pt/Ir tips, which have higher durability and better conductivity than probes used in earlier AFM conductance measurements. The performance of the method is demonstrated with contact resistance measurements of gold lines on silicon dioxide and carbon nanotubes on graphite

  14. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  15. HIV Resistance Testing

    Science.gov (United States)

    ... 14, 2016 Select a Language: Fact Sheet 126 HIV Resistance Testing WHAT IS RESISTANCE? HOW DOES RESISTANCE ... ARVs. If you miss doses of your medications, HIV will multiply more easily. More mutations will occur. ...

  16. Combating Antibiotic Resistance

    Science.gov (United States)

    ... in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: Get Smart: Know When Antibiotics Work More in Consumer Updates ...

  17. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it ... Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (video) Animation of Antimicrobial ...

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Antimicrobial Resistance More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of Antimicrobials Page Last Updated: ...

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  20. Induced resistance: an enhancement of basal resistance?

    NARCIS (Netherlands)

    Vos, M. de; Robben, C.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    Upon primary pathogen attack, plants activate resistance mechanisms at the site of infection. Besides this so-called basal resistance, plants have also the ability to enhance their defensive capacity against future pathogen attack. There are at least two types of biologically induced resistance.

  1. The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4

    Directory of Open Access Journals (Sweden)

    Pulin Liu

    2015-07-01

    Full Text Available The role of different czcRS genes in metal resistance and the cross-link between czcRS and czcCBA in Pseudomonas putida X4 were studied to advance understanding of the mechanisms by which P. putida copes with metal stress. Similar to P. putida KT2440, two complete czcRS1 and czcRS2 two-component systems, as well as a czcR3 without the corresponding sensing component were amplified in P. putida X4. The histidine kinase genes czcS1 and czcS2 were inactivated and fused to lacZ by homologous recombination. The lacZ fusion assay revealed that Cd2+ and Zn2+ caused a decrease in the transcription of czcRS1, whereas Cd2+ treatment enhanced the transcription of czcRS2. The mutation of different czcRSs showed that all czcRSs are necessary to facilitate full metal resistance in P. putida X4. A putative gene just downstream of czcR3 is related to metal ion resistance, and its transcription was activated by Zn2+. Data from quantitative real-time polymerase chain reaction (qRT-PCR strongly suggested that czcRSs regulate the expression of czcCBA, and a cross-link exists between different czcRSs.

  2. The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4.

    Science.gov (United States)

    Liu, Pulin; Chen, Xi; Huang, Qiaoyun; Chen, Wenli

    2015-07-27

    The role of different czcRS genes in metal resistance and the cross-link between czcRS and czcCBA in Pseudomonas putida X4 were studied to advance understanding of the mechanisms by which P. putida copes with metal stress. Similar to P. putida KT2440, two complete czcRS1 and czcRS2 two-component systems, as well as a czcR3 without the corresponding sensing component were amplified in P. putida X4. The histidine kinase genes czcS1 and czcS2 were inactivated and fused to lacZ by homologous recombination. The lacZ fusion assay revealed that Cd2+ and Zn2+ caused a decrease in the transcription of czcRS1, whereas Cd2+ treatment enhanced the transcription of czcRS2. The mutation of different czcRSs showed that all czcRSs are necessary to facilitate full metal resistance in P. putida X4. A putative gene just downstream of czcR3 is related to metal ion resistance, and its transcription was activated by Zn2+. Data from quantitative real-time polymerase chain reaction (qRT-PCR) strongly suggested that czcRSs regulate the expression of czcCBA, and a cross-link exists between different czcRSs.

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  5. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals.

    Science.gov (United States)

    He, Xiaolin; Xu, Yanbin; Chen, Jinliang; Ling, Jiayin; Li, Yafei; Huang, Lu; Zhou, Xiao; Zheng, Li; Xie, Guangyan

    2017-11-01

    Abuse of antibiotics and heavy metals in aquaculture has been widely concerned and might aggravate the spread of resistance genes in environment. To investigate the occurrence and proliferation of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs), three commonly used antibiotics (tetracycline, sulfanilamide, cefotaxime) and two heavy metals (Zn and Cu) were designed to add individually or jointly in nine fish tanks including five individual exposure tanks of tetracycline (tet), sulfanilamide (sul), cefotaxime (cef), Cu, Zn and four combination exposure tanks of tetracycline + sulfanilamide (tet + sul), tetracycline + sulfanilamide + cefotaxime (tet + sul + cef), tetracycline + sulfanilamide + Cu (tet + sul + Cu), tetracycline + sulfanilamide + Zn (tet + sul + Zn) as well as the control during the experiment period of 180 days. Nineteen ARGs (tetA, tetB, tetC, tetD, tetE, tetG, tetM, tetO, tetQ, tetS, tetW, tetX, tetY, sul1, sul2, sul3, bla DHA , bla MOX , bla FOX ), two HMRGs (copA, czcA) and the class 1 integron gene (intI 1) in fish tanks water were investigated. The results showed that the residual rate of antibiotics and heavy metals ranged from 0.03% to 2.46% and 9.25%-52.97%, respectively, positively related to their original concentration and types. Tetracycline resistance genes were more sensitive to antibiotics and easier to be induced and developed than sulfanilamide resistance genes and AmpC β-lactamase resistance genes. The total relative abundances of ARGs in combined stresses exposure tanks (tet + sul, tet + sul + cef, tet + sul + Cu, tet + sul + Zn) were about 1.01-1.55 times more than the sum of their individual ones. The co-selective effects of cefotaxime on the abundance and diversity of tetracycline resistance genes were stronger than Zn and Cu. Besides, multivariate correlation analysis revealed that tetO, tetQ, tetW and sul3 were in significant correlation with the

  6. Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography

    KAUST Repository

    Semple, James

    2017-01-02

    Electronic memory cells are of critical importance in modern-day computing devices, including emerging technology sectors such as large-area printed electronics. One technology that has being receiving significant interest in recent years is resistive switching primarily due to its low dimensionality and nonvolatility. Here, we describe the development of resistive switching memory device arrays based on empty aluminum nanogap electrodes. By employing adhesion lithography, a low-temperature and large-area compatible nanogap fabrication technique, dense arrays of memory devices are demonstrated on both rigid and flexible plastic substrates. As-prepared devices exhibit nonvolatile memory operation with stable endurance, resistance ratios >10⁴ and retention times of several months. An intermittent analysis of the electrode microstructure reveals that controlled resistive switching is due to migration of metal from the electrodes into the nanogap under the application of an external electric field. This alternative form of resistive random access memory is promising for use in emerging sectors such as large-area electronics as well as in electronics for harsh environments, e.g., space, high/low temperature, magnetic influences, radiation, vibration, and pressure.

  7. Study of pandrug and heavy metal resistance among E. coli from anthropogenically influenced Delhi stretch of river Yamuna.

    Science.gov (United States)

    Azam, Mudsser; Jan, Arif Tasleem; Kumar, Ashutosh; Siddiqui, Kehkashan; Mondal, Aftab Hossain; Haq, Qazi Mohd Rizwanul

    2018-02-12

    Escalating burden of antibiotic resistance that has reached new heights present a grave concern to mankind. As the problem is no longer confined to clinics, we hereby report identification of a pandrug resistant Escherichia coli isolate from heavily polluted Delhi stretch of river Yamuna, India. E. coli MRC11 was found sensitive only to tobramycin against 21 antibiotics tested, with minimum inhibitory concentration values >256μg/mL for amoxicillin, carbenicillin, aztreonam, ceftazidime and cefotaxime. Addition of certain heavy metals at higher concentrations were ineffective in increasing susceptibility of E. coli MRC11 to antibiotics. Withstanding sub-optimal concentration of cefotaxime (10μg/mL) and mercuric chloride (2μg/mL), and also resistance to their combinatorial use, indicates better adaptability in heavily polluted environment through clustering and expression of resistance genes. Interestingly, E. coli MRC11 harbours two different variants of blaTEM (blaTEM-116 and blaTEM-1 with and without extended-spectrum activity, respectively), in addition to mer operon (merB, merP and merT) genes. Studies employing conjugation, confirmed localization of blaTEM-116, merP and merT genes on the conjugative plasmid. Understanding potentialities of such isolates will help in determining risk factors attributing pandrug resistance and strengthening strategic development of new and effective antimicrobial agents. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. The resistance changes of carbon and metal oxide film resistors by irradiation of 60Co γ rays

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Fujino, Takahiro; Furuta, Junichiro; Yoshida, Toshio

    1979-01-01

    The resistance changes of glass-sealed deposited-carbon-film and carbon-coated-film resitors and metal oxide glazed resistors made in USA were studied by gamma-ray irradiation. (1) The resistances of deposited-carbon-film resistors of 50, 100 and 200 megohm did not change by irradiation of gamma rays up to 1.9 x 10 9 R. (2) The carbon-coated-film resistors of 100, 1000, 10000 and 100000 megohm had negative resistance changes by irradiation of gamma rays up to 9.9 x 10 8 R. (3) The resistances of metal oxide glazed resistors of 100, 1000 and 10000 megohm did not change by irradiation of gamma rays up to 8.8 x 10 8 R. When radiation monitoring instruments with hi-meg resistors are used in a gamma field with high intensity, the resistors must not be exposed to gamma rays with high doses, or the resistors which do not change by gamma-ray irradiation must be selected. (author)

  9. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach.

    Science.gov (United States)

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Chen, Hong

    2018-03-07

    The prevalence and persistence of antibiotic resistance genes in wastewater treatment plants (WWTPs) is of growing interest, and residual sludge is among the main sources for the release of antibiotic resistance genes (ARGs). Moreover, heavy metals concentrated in dense microbial communities of sludge could potentially favor co-selection of ARGs and metal resistance genes (MRGs). Residual sludge treatment is needed to limit the spread of resistance from WWTPs into the environment. This study aimed to explore the fate of ARGs and MRGs during thermophilic two-phase (acidogenic/methanogenic phase) anaerobic digestion by metagenomic analysis. The occurrence and abundance of mobile genetic elements were also determined based on the SEED database. Among the 27 major ARG subtypes detected in feed sludge, large reductions (> 50%) in 6 ARG subtypes were achieved by acidogenic phase (AP), while 63.0% of the ARG subtypes proliferated in the following methanogenic phase (MP). In contrast, a 2.8-fold increase in total MRG abundance was found in AP, while the total abundance during MP decreased to the same order of magnitude as in feed sludge. The distinct dynamics of ARGs and MRGs during the two-phase anaerobic digestion are noteworthy, and more specific treatments are required to limit their proliferation in the environment.

  10. Structural instability and phase co-existence driven non-Gaussian resistance fluctuations in metal nanowires at low temperatures

    Science.gov (United States)

    Bid, Aveek; Raychaudhuri, A. K.

    2016-11-01

    We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ˜30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of 1/f behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy {E}{{a}}˜ 35 meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.

  11. Corrosion resistance and microstructure characterization of rare-earth-transition metal-aluminum-magnesium alloys

    International Nuclear Information System (INIS)

    Banczek, E.P.; Zarpelon, L.M.C.; Faria, R.N.; Costa, I.

    2009-01-01

    This paper reports the results of investigation carried out to evaluate the corrosion resistance and microstructure of some cast alloys represented by the general formula: La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0, 0.1, 0.3, 0.5, and 0.7). Scanning electron microscopy (SEM) and electrochemical methods, specifically, polarization curves and electrochemical impedance spectroscopy (EIS), have been employed in this study. The effects of Pr substitution on the composition of the various phases in the alloys and their corrosion resistance have been studied. The electrochemical results showed that the alloy without Pr and the one with total La substitution showed the highest corrosion resistance among the studied alloys. The corrosion resistance of the alloys decreased when Pr was present in the lowest concentrations (0.1 and 0.3), but for higher Pr concentrations (0.5 and 0.7), the corrosion resistance increased. Corrosion occurred preferentially in a Mg-rich phase.

  12. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint

    Directory of Open Access Journals (Sweden)

    Lolo Wal Marzan

    2017-03-01

    Full Text Available Toxic, mutagenic and carcinogenic heavy metals from tannery industries cause the pollution of agricultural environment and natural water sources. This study aims to isolate, investigate and identify naturally occurring bacteria capable of reducing and detoxifying heavy metals (Chromium, Cadmium and Lead from tannery effluent. Three isolates were identified up to genus level based on their morphological, cultural, physiological and biochemical characteristics as Gemella sp., Micrococcus sp. and Hafnia sp. Among them Gemella sp. and Micrococcus sp. showed resistance to Lead (Pb, chromium (Cr and cadmium (Cd, where Hafnia sp. showed sensitivity to cadmium (Cd. All isolates showed different MICs against the above heavy metals at different levels. Degrading potentiality was assessed using Atomic Absorption Spectrophotometer where Gemella sp. and Micrococcus sp. showed 55.16 ± 0.06% and 36.55 ± 0.01% reduction of Pb respectively. On the other hand, moderate degradation of Cd was shown by Gemella sp. (50.99 ± 0.01% and Micrococcus sp. (38.64 ± 0.06%. Heavy metals degradation capacity of Gemella sp. and Micrococcus sp. might be plasmid mediated, which might be used for plasmid transformation to transfer heavy metal accumulation capability. Therefore, identification of three bacteria for their heavy metal resistance and biodegradation capacity might be a base study to develop the production of potential local bioremediation agents in toxic tannery effluent treatment technology.

  13. Nanoscale metal-InGaAs contacts with ultra-low specific contact resistivity: Improved interfacial quality and extraction methodology

    Science.gov (United States)

    Masudy-Panah, Saeid; Wu, Ying; Lei, Dian; Kumar, Annie; Yeo, Yee-Chia; Gong, Xiao

    2018-01-01

    To enable heterogeneous integration of InGaAs based transistors with Si complementary metal-oxide-semiconductor (CMOS) devices, metal contacts to n+-InGaAs need to have high thermal stability for CMOS process compatibility and ultra-low contact resistance to achieve good device performance. In this work, n+-InGaAs contacts with ultra-low contact resistivity ρc based on refractory metals such as molybdenum (Mo) were realized. Use of refractory metal contacts achieves good thermal stability. An improved process that eliminates oxide between the metal and n+-InGaAs by using an in situ Ar+-plasma treatment prior to metal deposition achieves ultra-low ρc. Furthermore, a nano-scale transmission line method (nano-TLM) structure with significantly reduced parasitic leakage was designed and fabricated to improve the ρc extraction accuracy. The improved test structure introduces a SiO2 isolation layer between Mo and InGaAs outside the active or mesa region to eliminate a parallel leakage path that is present in other nano-TLM structures reported in the literature.

  14. Electrical resistivities of rocks from Chalk River

    International Nuclear Information System (INIS)

    Katsube, T.J.; Hume, J.P.

    1989-01-01

    Bulk rock resistivity and bulk surface resistivity measurements have been obtained for 40 gneissic rock samples from Chalk River, Ontario. Though bulk rock resistivity is a function of pore structure, pore-fluid resistivity and pore-surface resistivity, the amount of data documented for pore-surface resistivity is small compared to that for pore structure and pore-fluid resistivity. This study indicates that pore-surface resistivity has a significant effect on bulk rock resistivity. It is important that this fact be considered when interpreting resistivity data obtained by geophysical methods. In addition, a group of mafic gneiss samples had pore-surface resistivity values that were much lower than those reported for clays, glass beads or petroleum reservoir rocks. This is thought to be due to metallic minerals lining the pore walls. Other rock samples collected from the same area showed pore-surface resistivity value similar to those reported in the literature

  15. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application

    Science.gov (United States)

    Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming

    2018-02-01

    Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current–voltage (I–V) measurements.

  16. Fracture Resistance of Non-Metallic Molar Crowns Manufactured with CEREC 3D

    Science.gov (United States)

    Madani, Dalia A.

    Objectives. To compare fracture strength and fatigue resistance of ceramic (ProCAD, Ivoclar-Vivadent) (C) and resin composite (Paradigm MZ100, 3M/ ESPE) (R) crowns made with CEREC-3D. Methods. A prepared ivorine molar tooth was duplicated to produce 40 identical prepared specimens made of epoxy resin (Viade). Twenty (C) crowns and 20 (R) were cemented to their dies using resin cement. Ten of each group were subjected to compressive loading to fracture. The remaining 10 of each group were subjected to mechanical cyclic loading for 500,000 cycles. The survivors were subjected to compressive loading to fracture. Results. No significant difference in mean fracture load was found between the two materials. However, only 30% of the (C) crowns vs. 100% of the (R) crowns survived the cyclic loading test. Conclusions. (R) crowns demonstrated higher fatigue Resistance than (C) crowns in-vitro and might better resist cracking in-vivo.

  17. COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL. MILESTONE No.145 ''CONTAINING PLASMA INSTABILITIES WITH METAL WALLS''

    International Nuclear Information System (INIS)

    STRAIT, E.J.; CHU, M.S.; GAROFALO, A.M.; LAHAYE, R.J.; OKABAYASHI, M.; REIMERDES, H.; SCOVILLE, J.T.; TURNBULL, A.D.

    2002-01-01

    OAK A271 COMPARISON OF SENSORS FOR RESISTIVE WALL MODE FEEDBACK CONTROL MILESTONE No.145 CONTAINING PLASMA INSTABILITIES WITH METAL WALLS. The most serious instabilities in the tokamak are those described by ideal magneto-hydrodynamic theory. These modes limit the stable operating space of the tokamak. The ideal MHD calculations predict the stable operating space of the tokamak may be approximately doubled when a perfectly conducting metal wall is placed near the plasma boundary, compared to the case with no wall (free boundary). The unstable mode distortions of the plasma column cannot bulge out through a perfectly conducting wall. However, real walls have finite conductivity and when plasmas are operated in the regime between the free boundary stability limit and the perfectly conducting wall limit, the unstable mode encountered in that case the resistive wall mode, can leak out through the metal wall, allowing the mode to keep slowly growing. The slow growth affords the possibility of feedback stabilizing this mode with external coils. DIII-D is making good progress in such feedback stabilization research and in 2002 will use an improved set of mode sensors inside the vacuum vessel and closer to the plasma surface which are expected theoretically to improve the ability to stabilize the resistive wall mode

  18. Determination of Transient Thermal Interface Resistance Between Two Bonded Metal Bodies using the Laser-Flash Method

    Science.gov (United States)

    Milošević, N. D.

    2008-12-01

    The paper presents the data reduction analysis for measurements of the transient thermal interface resistance between two bonded metal bodies using the laser-flash method. By using two different mathematical models, i.e., a two-layered and a three-layered model, whose complete analytical solutions for realistic conditions are provided, different results for final values and their uncertainties can be obtained. The analysis has been applied to experimental data measured from samples prepared with three different bonding materials, cyanoacrylate, metal epoxy resin, and silicone rubber.

  19. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-07-01

    Full Text Available Título en ingles: Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Título corto: Antibiotic and metal resistance in bacteria from deep subsurface Título en español: Resistencia a antibioticos y metals pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela Resumen:  Se investigó el efecto de la contaminación con mercurio (Hg en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela. Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos en aislados resistentes. Se encontró una elevada frecuencia de bacterias indígenas resistentes al Hg y otros metales pesados. De 76 aislados Hg-resistentes probados 73.7 % fueron adicionalmente resistentes a ampicilina; 86.8 % a cloranfenicol; 67.1 % a tetraciclina; 56.6 % a estreptomicina y 51.3 % a kanamicina. Además, se encontró que 40.74 % (-328 m y 26.53 % (-388 m de las bacterias Hg-resistentes fueron simultáneamente resistentes tanto a cuatro como a cinco de estos antibióticos. Se detectó la presencia de plásmidos de alto y bajo peso molecular y, a pesar de que los aislados mostraban resistencia a compuestos mercuriales, la presencia del gen merA fue detectada solo en 71.05 % de los cepas. Estos resultados sugieren que la exposición a Hg podría ser una presión selectiva en la proliferación de bacterias resistentes a antibióticos y promover el mantenimiento y propagación de estos genes de resistencia. Sin embargo, la existencia de tales resistencias a estas profundidades podría también apoyar la idea de que la resistencia a antibióticos en estas bacterias es

  20. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    Energy Technology Data Exchange (ETDEWEB)

    Santos Utmazian, Maria Noel dos [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wieshammer, Gerlinde [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Vega, Rosa [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wenzel, Walter W. [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria)]. E-mail: walter.wenzel@boku.ac.at

    2007-07-15

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of ({mu}M) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg{sup -1} d.m.) and a Salix smithiana clone (3180 mg Zn kg{sup -1} d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg{sup -1} d.w.) 315 Cd and 3180 Zn in leaves.

  1. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    International Nuclear Information System (INIS)

    Santos Utmazian, Maria Noel dos; Wieshammer, Gerlinde; Vega, Rosa; Wenzel, Walter W.

    2007-01-01

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of (μM) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg -1 d.m.) and a Salix smithiana clone (3180 mg Zn kg -1 d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg -1 d.w.) 315 Cd and 3180 Zn in leaves

  2. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    Science.gov (United States)

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate.

  3. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  4. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria.

    Science.gov (United States)

    Staehlin, Benjamin M; Gibbons, John G; Rokas, Antonis; O'Halloran, Thomas V; Slot, Jason C

    2016-02-17

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    International Nuclear Information System (INIS)

    Slaveykova, Vera I.; Pinheiro, José Paulo; Floriani, Magali; Garcia, Miguel

    2013-01-01

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium

  6. Interactions of core–shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: Consequences for Cu and Pb removal

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@unige.ch [Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environment Science, Faculty of Sciences, University of Geneva, 10, route de Suisse, 1290 Versoix (Switzerland); Pinheiro, José Paulo [IBB/CBME, Department of Chemistry and Biochemistry, University of the Algarve, Gambelas Campus, 8005-139 Faro (Portugal); Floriani, Magali [IRSN/DEI/SECRE/LRE CEA Cadarache, 13115 Saint-Paul-Lez-Durance (France); Garcia, Miguel [School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Station 15, CH-1015 Lausanne (Switzerland)

    2013-10-15

    Highlights: • QDs associate with C. metallidurans in time and concentration dependent manner. • 12.9 nm size QDs adhere to the bacterial surface and enter the periplasmic space. • QDs bound significantly Cu and Pb. • QDs increase Cu and Pb content in C. metallidurans during short term exposure. -- Abstract: In the present study we address the interactions of carboxyl-CdSe/ZnS core/shell quantum dots (QDs), as a model of water dispersible engineered nanoparticles, and metal resistant bacteria Cupriavidus metallidurans, largely used in metal decontamination. The results demonstrate that QDs with average hydrodynamic size of 12.9 nm adhere to C. metallidurans. The percentage of bacterial cells displaying QD-fluorescence increased proportionally with contact time and QD concentration in bacterial medium demonstrating the association of QDs with the metal resistant bacteria. No evidence of QD internalization into bacterial cytoplasm was found by transmission electron microscopy with energy dispersive X-ray spectrometry, however QD clusters of sizes between 20 and 50 nm were observed on the bacterial surface and in the bacterial periplasmic compartment; observations consistent with the losses of membrane integrity induced by QDs. The presence of 20 nM QDs induced about 2-fold increase in Cu and Pb uptake fluxes by C. metallidurans exposed to 500 nM Pb or Cu, respectively. Overall, the results of this work suggest that when present in mixture with Cu and Pb, low levels of QDs originating from possible incidental release or QD disposal could increase metal accumulation in metal resistant bacterium.

  7. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    Directory of Open Access Journals (Sweden)

    Kamika Ilunga

    2013-02-01

    Full Text Available Abstract Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively compared to other test isolates. This was also revealed with significant COD increases (p Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49% followed by Bacillus licheniformis (Al-23% and Zn-53% and Peranema sp. (Cd-42%. None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes. Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p Peranema sp. as a potential candidate for the bioremediation of heavy-metals in wastewater treatment, in addition to Pseudomonas

  8. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    International Nuclear Information System (INIS)

    Havstad, M.A.; Qiu, T.

    1995-04-01

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 μm. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given

  9. Investigation on lateral resistance of joints made with drywall and sheet metal screws in bagasse particleboard and comparison with that of commercial MDF

    OpenAIRE

    Eshaghi,Saeed; Faezipour,Mahdi; Taghiyari,Hamid Reza

    2013-01-01

    In this research, effects of screw diameter, screw type, panel type, and end distance on lateral resistance of the joints made with drywall and sheet metal screws were studied in bagasse particleboard and the results were compared to those obtained from commercial medium density fiberboard (MDF). The accuracy of EYM in prediction of lateral resistance was then investigated. The drywall screws comprised of size 8 with coarse thread and size 10 with fine thread; the sheet metal screws comprised...

  10. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography.

    Science.gov (United States)

    Hu, Xin; Huang, Shisong; Gu, Ronghua; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2014-10-01

    In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  12. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis.

    Science.gov (United States)

    Luo, Gang; Li, Bing; Li, Li-Guan; Zhang, Tong; Angelidaki, Irini

    2017-04-04

    Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10 -3 to 1.08 × 10 -1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.

  13. Dynamic phase coexistence and non-Gaussian resistance fluctuations in VO2 near the metal-insulator transition

    Science.gov (United States)

    Samanta, Sudeshna; Raychaudhuri, A. K.; Zhong, Xing; Gupta, A.

    2015-11-01

    We have carried out an extensive investigation on the resistance fluctuations (noise) in an epitaxial thin film of VO2 encompassing the metal-insulator transition (MIT) region to investigate the dynamic phase coexistence of metal and insulating phases. Both flicker noise as well as the Nyquist noise (thermal noise) were measured. The experiments showed that flicker noise, which has a 1 /f spectral power dependence, evolves with temperature in the transition region following the evolution of the phase fractions and is governed by activated kinetics. Importantly, closer to the insulating end of the transition, when the metallic phase fraction is low, the magnitude of the noise shows an anomaly and a strong non-Gaussian component of noise develops. In this region, the local electron temperature (as measured through the Nyquist noise thermometry) shows a deviation from the equilibrium bath temperature. It is proposed that this behavior arises due to current crowding where a substantial amount of the current is carried through well separated small metallic islands leading to a dynamic correlated current path redistribution and an enhanced effective local current density. This leads to a non-Gaussian component to the resistance fluctuation and an associated local deviation of the electron temperature from the bath. Our experiment establishes that phase coexistence leads to a strong inhomogeneity in the region of MIT that makes the current transport strongly inhomogeneous and correlated.

  14. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  15. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  16. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.

    Science.gov (United States)

    Wang, Jianli; Wu, Zhizheng; Mao, Chengkun; Zhao, Yunfeng; Yang, Juekuan; Chen, Yunfei

    2018-03-20

    The electrical and thermal properties of metallic nanostructures have attracted considerable fundamental and technological interests. Recent studies confirmed a dramatic decrease in the electrical and thermal conductivities when the dimension is comparable or even smaller than the electron mean free path. However, the verification of the Wiedemann-Franz law in these nanostructures remains hotly debated. The Lorenz number obtained from the two-probe measurement is found to be much larger than that from the four-probe measurement. Here, we reported the electrical and thermal properties of the individual silver nanowires measured by the two-probe and four-probe configurations. The measured electrical contact resistance is found to be nearly temperature-independent, indicating a ballistic-dominant electronic transport at the contacts. When the effect of thermal contact resistance is diminished, the Lorenz number measured by the four-probe configuration is comparable to the Sommerfeld value, verifying that the Wiedemann-Franz law holds in the monocrystalline-like silver nanowire. Comparatively, the derived electrical conductivity becomes smaller and the thermal conductivity becomes larger in the two-probe measurement, confirming that the electrical contact resistance will introduce a large error. The present study experimentally demonstrates a reasonable explanation to the discouragingly broad span in the Lorenz number obtained from different metallic nanostructures.

  17. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    International Nuclear Information System (INIS)

    Wei Gehong; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming

    2009-01-01

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196

  18. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gehong [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)], E-mail: weigehong@yahoo.com.cn; Fan Lianmei; Zhu Wenfei; Fu Yunyun; Yu Jianfu; Tang Ming [College of Life Science, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling Shaanxi 712100 (China)

    2009-02-15

    A total of 108 strains of bacteria were isolated from root nodules of wild legumes growing in gold mine tailings in northwest of China and were tested for heavy metal resistance. The results showed that the bacterial strain CCNWRS33-2 isolated from Lespedeza cuneata was highly resistant to copper, cadmium, lead and zinc. The strain had a relatively high mean specific growth rate under each heavy metal stress test and exhibited a high degree of bioaccumulation ability. The partial sequence of the copper resistance gene copA was amplified from the strain and a sequence comparison with our Cu-resistant PCR fragment showed a high homology with Cu-resistant genes from other bacteria. Phylogenetic analysis based on the 16S rRNA gene sequence showed that CCNWRS33-2 belongs to the Rhizobium-Agrobacterium branch and it had 98.9% similarity to Agrobactrium tumefaciens LMG196.

  19. Methicillin-resistant staphylococci.

    Science.gov (United States)

    Chambers, H F

    1988-01-01

    Strains of staphylococci resistant to methicillin were identified immediately after introduction of this drug. Methicillin-resistant strains have unusual properties, the most notable of which is extreme variability in expression of the resistance trait. The conditions associated with this heterogeneous expression of resistance are described. Methicillin resistance is associated with production of a unique penicillin-binding protein (PBP), 2a, which is bound and inactivated only at high concentrations of beta-lactam antibiotics. PBP2a appears to be encoded by the mec determinant, which also is unique to methicillin-resistant strains. The relationships between PBP2a and expression of resistance and implications for the mechanism of resistance are discussed. The heterogeneous expression of methicillin resistance by staphylococci poses problems in the detection of resistant strains. Experience with several susceptibility test methods is reviewed and guidelines for performance of these tests are given. Treatment of infections caused by methicillin-resistant staphylococci is discussed. Vancomycin is the treatment of choice. Alternatives have been few because methicillin-resistant strains often are resistant to multiple antibiotics in addition to beta-lactam antibiotics. New agents which are active against methicillin-resistant staphylococci are becoming available, and their potential role in treatment is discussed. Images PMID:3069195

  20. Tellurite resistance and reduction by a Paenibacillus sp. isolated from heavy metal-contaminated sediment.

    Science.gov (United States)

    Chien, Chih-Ching; Han, Chu-Ting

    2009-08-01

    A gram-positive bacterium (designated as strain TeW) that is highly resistant to tellurite was isolated from sediment. The bacterium can grow in the presence of up to 2,000 micromol/L of potassium tellurite (K2TeO3). Reduction of K2TeO3 to tellurium was indicated by the blackening of the growth medium. No lag in growth was observed when cells unexposed to tellurite were transferred to the growth medium containing K2TeO3, indicating that resistance to tellurite was not inducible. Up to 50 and 90% of the metalloid oxyanion tellurite (TeO(3)(2-)) was removed from the medium by strain TeW during growth in nonstatic (shaking) and static (without shaking) conditions, respectively. The bacterium was identified as a Paenibacillus sp. according to its morphology, physiology, and 16S rDNA sequence homology.

  1. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    Science.gov (United States)

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  2. Corrosion resistance enhancement of WC-Co hard metal in NaOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Sun Mog; Park, Jae Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    SiC is a useful non-oxide ceramic material having unique physicochemical and mechanical properties such as high strength, excellent wear, and oxidation and corrosion resistance. These properties originate from the very strong covalent bond between silicon and carbon and its tetrahedral coordination. However, adhesion between the materials is a serious obstacle to the application of a SiC coating to WC-Co. Several techniques are used to improve the adhesion, such as sputtering, ion beam mixing (IBM), dynamic ion mixing and ion beam assisted deposition. Among those, IBM is a powerful tool. This paper demonstrates that SiC can be successfully coated on WC-Co through the IBM technique. The corrosion resistance of WC-Co in alkali solutions is greatly enhanced by the ion mixed SiC coating, as proven by potentiodynamic electrochemical experiments

  3. A reliable extraction method for source and drain series resistances in silicon nanowire metal-oxide-semiconductor field-effect-transistors (MOSFETs) based on radio-frequency analysis.

    Science.gov (United States)

    Hwa, Jae Hwa; Yoon, Young Jun; Lee, Hwan Gi; Yoo, Gwan Min; Cho, Eou-Sik; Cho, Seongjae; Lee, Jung-Hee; Kang, In Man

    2014-11-01

    This paper presents a new extraction method for source and drain (S/D) series resistances of silicon nanowire (SNW) metal-oxide-semiconductor field-effect transistors (MOSFETs) based on small-signal radio-frequency (RF) analysis. The proposed method can be applied to the extraction of S/D series resistances for SNW MOSFETs with finite off-state channel resistance as well as gate bias-dependent on-state resistive components realized by 3-dimensional (3-D) device simulation. The series resistances as a function of frequency and gate voltage are presented and compared with the results obtained by an existing method with infinite off-state channel resistance model. The accuracy of the newly proposed parameter extraction method has been successfully verified by Z22- and Y-parameters up to 100 GHz operation frequency.

  4. Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO3

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, Guenevere E. D. K.; Zhong, Zhicheng

    2016-01-01

    The two-dimensional metal forming at the interface between an oxide insulatorand SrTiO3 provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide...... heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO3 heterointerface based on the modulation-doped amorphous-LaAlO3/SrTiO3 heterostructure, which exhibits both highelectron mobility exceeding 10, 000 cm2/V s and low carrier density on the order of ~1012 cm-2....... Along with unambiguous Shubnikov-de Haasoscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional subbands. This provides new insight into the electronic structure of conducting oxide...

  5. The change of corrosion resistance of metals after bombardment by inert gas ions

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.; Panarin, V.E.; Kosyachkov, A.A.

    2002-01-01

    Work functions of electrons and secondary ions of iron and oxygen from the surface of pure iron specimens pre-irradiated by argon ions were studied experimentally. One made use of the determined dependences in the experiments to passivate surface of low-carbon steel using the BULAT type commercial facilities. The designed extra device for those facilities ensured the required irradiation doses (equal to 10 17 atom x cm -2 ) resulting in improvement of steel corrosion resistance by several times [ru

  6. Impacts of post-metallization annealing on the memory performance of Ti/HfO2-based resistive memory

    International Nuclear Information System (INIS)

    Chen, Pang-Shiu; Chen, Yu-Sheng; Lee, Heng-Yuan

    2013-01-01

    Impacts of post-metallization annealing (PMA) on bipolar resistance switching of Ti/HfO x stacked films were investigated. A Ti capping film as a scavenging layer with assistance of PMA is used to tune the dielectric strength of the 10-nm-thick HfO x layer. The polycrystalline microstructure of 10-nm-thick HfO x seems immune to the temperature of PMA in this work. The initial resistance and forming voltage in the Ti/HfO x devices mitigate as the increment of the annealing temperature. With enough annealing temperature (>450 °C), the device shows a good on/off ratio, high temperature operation ability and robust endurance (>10 6 cycles). Through the reaction between Ti and HfO x at 500 °C, the abundant oxygen ions are depleted from the insulator and the left charge-defects building conductive percolative paths in the dielectric layer. The operation-polarity independence of the form-free HfO x device in initial state is demonstrated. The forming-free memory with initial low resistance of 800 Ω at 0.1 V can be operated with stable bipolar resistance switching via initially positive or negative voltage sweep. The formless device with 10 nm thick HfO x also exhibits excellent nonvolatile memory performances, including enough on/off ratio, improved HRS uniformity and good high temperature retention (3 × 10 4 s at 200 °C). The results of this work suggest that the PMA temperature will affect the memory window and cycling reliability of the Ti/HfO x -based resistive memory. Optimum temperature (450 °C) will improve the memory performance of the Ti/HfO x stacked layer. (paper)

  7. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Hirokazu, E-mail: hirokazu.ezawa@toshiba.co.jp [Toshiba Corporation, Semiconductor and Storage Products Company (Japan); The Graduate School of Information, Production and Systems, Waseda University (Japan); Miyata, Masahiro [Toshiba Corporation, Semiconductor and Storage Products Company (Japan); Tatsumi, Kohei [The Graduate School of Information, Production and Systems, Waseda University (Japan)

    2014-02-25

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices.

  8. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    International Nuclear Information System (INIS)

    Ezawa, Hirokazu; Miyata, Masahiro; Tatsumi, Kohei

    2014-01-01

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices

  9. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  10. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra-A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper.

    Science.gov (United States)

    Diwan, Vishal; Purohit, Manju; Chandran, Salesh; Parashar, Vivek; Shah, Harshada; Mahadik, Vijay K; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J

    2017-05-29

    Antibiotic resistance (ABR) is one of the major health emergencies for global society. Little is known about the ABR of environmental bacteria and therefore it is important to understand ABR reservoirs in the environment and their potential impact on health. Quantitative and qualitative data will be collected during a 3-year follow-up study of a river associated with religious mass-bathing in Central India. Surface-water and sediment samples will be collected from seven locations at regular intervals for 3 years during religious mass-bathing and in absence of it to monitor water-quality, antibiotic residues, resistant bacteria, antibiotic resistance genes and metals. Approval has been obtained from the Ethics Committee of R.D. Gardi Medical College, Ujjain, India (No. 2013/07/17-311). The results will address the issue of antibiotic residues and antibiotic resistance with a focus on a river environment in India within a typical socio-behavioural context of religious mass-bathing. It will enhance our understanding about the relationship between antibiotic residue levels, water-quality, heavy metals and antibiotic resistance patterns in Escherichia coli isolated from river-water and sediment, and seasonal differences that are associated with religious mass-bathing. We will also document, identify and clarify the genetic differences/similarities relating to phenotypic antibiotic resistance in bacteria in rivers during religious mass-bathing or during periods when there is no mass-bathing.

  11. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper

    Science.gov (United States)

    Diwan, Vishal; Purohit, Manju; Chandran, Salesh; Parashar, Vivek; Shah, Harshada; Mahadik, Vijay K.; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J.

    2017-01-01

    Background: Antibiotic resistance (ABR) is one of the major health emergencies for global society. Little is known about the ABR of environmental bacteria and therefore it is important to understand ABR reservoirs in the environment and their potential impact on health. Method/Design: Quantitative and qualitative data will be collected during a 3-year follow-up study of a river associated with religious mass-bathing in Central India. Surface-water and sediment samples will be collected from seven locations at regular intervals for 3 years during religious mass-bathing and in absence of it to monitor water-quality, antibiotic residues, resistant bacteria, antibiotic resistance genes and metals. Approval has been obtained from the Ethics Committee of R.D. Gardi Medical College, Ujjain, India (No. 2013/07/17-311). Results: The results will address the issue of antibiotic residues and antibiotic resistance with a focus on a river environment in India within a typical socio-behavioural context of religious mass-bathing. It will enhance our understanding about the relationship between antibiotic residue levels, water-quality, heavy metals and antibiotic resistance patterns in Escherichia coli isolated from river-water and sediment, and seasonal differences that are associated with religious mass-bathing. We will also document, identify and clarify the genetic differences/similarities relating to phenotypic antibiotic resistance in bacteria in rivers during religious mass-bathing or during periods when there is no mass-bathing. PMID:28555050

  12. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper

    Directory of Open Access Journals (Sweden)

    Vishal Diwan

    2017-05-01

    Full Text Available Background: Antibiotic resistance (ABR is one of the major health emergencies for global society. Little is known about the ABR of environmental bacteria and therefore it is important to understand ABR reservoirs in the environment and their potential impact on health. Method/Design: Quantitative and qualitative data will be collected during a 3-year follow-up study of a river associated with religious mass-bathing in Central India. Surface-water and sediment samples will be collected from seven locations at regular intervals for 3 years during religious mass-bathing and in absence of it to monitor water-quality, antibiotic residues, resistant bacteria, antibiotic resistance genes and metals. Approval has been obtained from the Ethics Committee of R.D. Gardi Medical College, Ujjain, India (No. 2013/07/17-311. Results: The results will address the issue of antibiotic residues and antibiotic resistance with a focus on a river environment in India within a typical socio-behavioural context of religious mass-bathing. It will enhance our understanding about the relationship between antibiotic residue levels, water-quality, heavy metals and antibiotic resistance patterns in Escherichia coli isolated from river-water and sediment, and seasonal differences that are associated with religious mass-bathing. We will also document, identify and clarify the genetic differences/similarities relating to phenotypic antibiotic resistance in bacteria in rivers during religious mass-bathing or during periods when there is no mass-bathing.

  13. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation.

    Directory of Open Access Journals (Sweden)

    Luis A Rojas

    Full Text Available BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+. The minimum inhibitory concentrations (mM for strain MSR33 were: Hg(2+, 0.12 and CH(3Hg(+, 0.08. The addition of Hg(2+ (0.04 mM at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+ (0.10 and 0.15 mM was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel

  14. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2009-05-01

    Heavy metal sequestration by a multimetal resistant Pseudomonas strain isolated from a uranium mine was characterized for its potential application in metal bioremediation. 16S rRNA gene analysis revealed phylogenetic relatedness of this isolate to Pseudomonas fluorescens. Metal uptake by this bacterium was monophasic, fast saturating, concentration and pH dependent with maximum loading of 1048 nmol Ni(2+) followed by 845 nmol Co(2+), 828 nmol Cu(2+) and 700 nmol Cd(2+)mg(-1) dry wt. Preferential metal deposition in cell envelope was confirmed by TEM and cell fractionation. FTIR spectroscopy and EDX analysis revealed a major role of carboxyl and phosphoryl groups along with a possible ion exchange mechanism in cation binding. Binary system demonstrated selective metal binding affinity in the order of Cu(2+)>Ni(2+)>Co(2+)>Cd(2+). A comparison with similar metal uptake reports considering live bacteria strongly indicated the superiority of this strain in metal sequestration, which could be useful for developing efficient metal removal system.

  15. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    Science.gov (United States)

    Aji, D. P. B.; Johari, G. P.

    2014-12-01

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (-dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  16. Spin-disorder resistivity of heavy rare-earth metals from Gd to Tm: An ab-initio study

    Science.gov (United States)

    Glasbrenner, James; Belashchenko, Kirill

    2010-03-01

    Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin disorder scattering. In the paramagnetic state, this spin-disorder resistivity (SDR) decreases through the Gd-Tm series. Models based on the assumption of fully localized 4f states treated as S or J multiplets predict that SDR is proportional to S^2 (S is the 4f shell spin) times a quantum correction (S+1)/S or (J+1)/J. The interpretation of this correction using experimental results is ambiguous. Since the 4f bandwidth is not small compared to the multiplet splitting, it is not clear whether the 4f shells in rare-earth metals behave as if they were fully localized and have a good quantum number S or J. To address this issue, in this work we calculate the paramagnetic SDR of the rare-earth metal Gd-Tm series using a non-collinear implementation of the tight-binding linear muffin-tin orbital method. The conductance is found using the Landauer-B"uttiker approach applied to the active region of a varying size, averaging the conductance over random spin-disorder configurations and fitting its size dependence to Ohm's law. The results are compared with experiment and discussed. The sensitivity to basis set and the treatment of the 4f electrons, as well as the role of exchange enhancement in the conduction band is considered. The issue of the quantum correction is examined in light of the new results.

  17. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Resistance to Powdery Mildews

    DEFF Research Database (Denmark)

    Siwoszek, Agnieszka Izabela

    in majority of them. Resistance to barley powdery mildew in the field is controlled by use of resistant varieties in a combination with fungicides. Early disease management is crucial for effective control. Yet, the pathogen commonly develops fungicide resistance due to simple point mutations. Several studies...... investigated reduced fitness of plants as a cost of resistance to pathogens. In case of barley powdery mildew, most common resistance (mlo) is linked to a higher susceptibility to other pathogens and spontaneous necrosis that leads to yield reduction. Thus, there is a clear need for alternative methods of crop...... protection. In the present study, I provide an overview of the current knowledge about plant pathogens and plant disease resistance. I use Arabidopsis as a model to investigate the mechanism of non-host resistance, presumed to be the most durable and broad-spectrum form of resistance. I attempt to determine...

  19. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... Drugs Resources for You Information for Consumers (Drugs) Buying & Using Medicine Safely Antibiotics and Antibiotic Resistance Antibiotics ... Antibiotic Resistance and Protect Public Health The White House Blog FDA’s Take on the Executive Order and ...

  20. Antibiotic-Resistant Gonorrhea

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Recommend on Facebook Tweet Share Compartir ... Threat Gonorrhea has progressively developed resistance to the antibiotic drugs prescribed to treat it. Following the spread ...

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  2. Electrical Methods: Resistivity Methods

    Science.gov (United States)

    Surface electrical resistivity surveying is based on the principle that the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivities and distribution of the surrounding soils and rocks.

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation ... FEAR Act Site Map Nondiscrimination Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Medicine (CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. ... concept more understandable to non-scientists by showing how bacterial antimicrobial resistance can develop and spread. All ...

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share ...

  6. MDRO - Multidrug-Resistant Organisms

    Science.gov (United States)

    ... Staphylococcus aureus VRE - Vancomycin-resistant enterococci ESBLs - Extended-spectrum beta-lactamases (which are resistant to cephalosporins and monobactams) PRSP - Penicillin-resistant Streptococcus pneumoniae Multi- ...

  7. Resisting Organizational Change

    OpenAIRE

    Andersson, Gunnar

    2015-01-01

    We are continuously reminded of how change induces controversy and resistance, regardless of support. We repeatedly experience resistance in difficulties of implementation, little progress, and poor results, rather than increased productivity as anticipated. In a detailed account of how change plays out, a mosaic of what resistance looks like emerges. The picture is both familiar and absolutely concrete, and challenges the structural assumptions and dichotomies on support and resistance in an...

  8. Resistive Threshold Logic

    OpenAIRE

    James, A. P.; Francis, L. R. V. J.; Kumar, D.

    2013-01-01

    We report a resistance based threshold logic family useful for mimicking brain like large variable logic functions in VLSI. A universal Boolean logic cell based on an analog resistive divider and threshold logic circuit is presented. The resistive divider is implemented using memristors and provides output voltage as a summation of weighted product of input voltages. The output of resistive divider is converted into a binary value by a threshold operation implemented by CMOS inverter and/or O...

  9. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    Science.gov (United States)

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from environmental

  12. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from

  13. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  14. I. Low frequency noise in metal films at the superconducting transition. II. Resistance of superconductor - normal metal- superconductor sandwiches and the quasiparticle relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, T.Y.

    1977-07-01

    Measurements of the noise power spectra of tin and lead films at the superconducting transition in the frequency range of 0.1 Hz to 5k Hz are reported. Two types of samples were made. Type A were evaporated directly onto glass substrate, while Type B were evaporated onto glass or sapphire substrate with a 50A aluminum underlay. The results were consistent with a thermal diffusion model which attributes the noise to the intrinsic temperature fluctuation in the metal film driven with a random energy flux source. In both types of metal films, the noise power was found to be proportional to (V-bar)/sup 2/ ..beta../sup 2//..cap omega.., where V-bar was the mean voltage across the sample, ..beta.. was the temperature coefficient of resistance and ..cap omega.. was the volume of the sample. Correlation of noises in two regions of the metal film a distance d apart was detected at frequencies less than or = D/..pi..d/sup 2/. A possible explanation of the noises using quantitative boundary conditions and implications of this work for device applications are discussed. Theoretical and experimental investigation are reported on the resistance of superconductor-normal metal-superconductor sandwiches near T/sub c/. The increase in SNS resistance is attributed to the penetration of normal electric current in the superconductor. It is proved from first principles that an electric field can exist inside the superconductor when quasiparticles are not equally populated on the two branches of the excitation spectrum, and such is the case in a current biased SNS junction. The electric field inside S decays according to a diffusion law. The diffusion length is determined by the quasiparticle ''branch-crossing'' relaxation time. The branch-crossing relaxation times were measured. Impurity-doping of tin was found to decrease this relaxation time.

  15. Resistivity damage rates in fusion-neutron-irradiated metals at 4.2 K

    International Nuclear Information System (INIS)

    Guinan, M.W.; Kinney, J.H.

    1981-01-01

    Changes in electrical resistivity at liquid helium temperature have been used to monitor the production of damage in dilute alloys of vanadium, niobium and molybdenum, and pure tungsten, aluminum and copper irradiated with high energy neutrons. The neutrons were produced at the Livermore rotating-target neutron sources (RTNS-I and RTNS-II). Further experiments on V, Nb and Mo were carried out with 30 MeV d-Be neutrons and slightly degraded fission-spectra neutrons. The results for all six materials are compared to those obtained in a pure fission spectrum. The relative damage production rates are in agreement with predictions based on damage energy calculations

  16. Occurrence of heavy metals and antibiotic resistance in bacteria from internal organs of american bullfrog (Rana catesbeiana raised in Malaysia

    Directory of Open Access Journals (Sweden)

    SW Lee

    2009-01-01

    Full Text Available A total of 40 bacteria have been successfully isolated from internal organs of the American bullfrog (Rana catesbeiana raised in Malaysia, namely, eight isolates of Aeromonas spp., 21 of Edwardsiella spp., six of Flavobacterium spp. and five of Vibrio spp. In terms of antibiotic susceptibility testing, each isolate was tested against 21 antibiotics, resulting in 482 (57.3% cases of sensitivity and 61 (7.3% cases of partial sensitivity. Meanwhile, 297 (35.4% bacterial isolates were registered as resistant. The multiple antibiotic resistance (MAR index of each bacterial species indicated that bacteria from raised bullfrogs have been exposed to tested antibiotics with results ranging from 0.27 to 0.39. Additionally, high percentages of heavy metal resistance among these isolates were observed, with values ranging from 85.0 to 100.0%. The current results provided us information on bacterial levels of locally farmed bullfrogs exposed to copper, cadmium, chromium as well as 21 types of antibiotics.

  17. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; D'Urso, Silvia; Bertoni, Roberto; Gillan, David C; Wattiez, Ruddy; Corno, Gianluca

    2016-05-01

    The impact of human activities on the spread and on the persistence of antibiotic resistances in the environment is still far from being understood. The natural background of resistances is influenced by human activities, and the wastewater treatment plants (WWTPs) are among the main sources of the release of antibiotic resistance into the environment. The various treatments of WWTPs provide a number of different environmental conditions potentially favoring the selection of antibiotic resistance genes (ARGs) and thereby their well-documented spread in the environment. Although the distribution of different ARGs in WWTPs has been deeply investigated, very little is known on the ecology and on the molecular mechanisms underlying the selection of specific ARGs. This study investigates the fate of diverse ARGs, heavy metal resistance genes (HMRGs) and of a mobile element (the class I integron) in three WWTPs. Abundances of the different genetic markers were correlated to each other and their relation to biotic and abiotic factors (total organic carbon, total nitrogen, prokaryotic cell abundance and its relative distribution in single cells and aggregates) influencing the microbial communities in the different treatment phases in three WWTPs, were investigated. Water samples were analyzed for the abundance of six ARGs (tetA, sulII, blaTEM, blaCTXM,ermB, and qnrS), two HMRGs (czcA and arsB), and of the class I integron (int1). The measured variables clustered in two well-defined groups, the first including tetA, ermB, qnrS and the different biotic and abiotic factors, and a second group around the genes sulII, czcA, arsB and int1. Moreover, the dynamics of sulII, HMRGs, and int1 correlated strongly. Our results suggest a potentially crucial role of HMRGs in the spread, mediated by mobile elements, of some ARGs, i.e. sulII. The possibility of a relation between heavy metal contamination and the spread of ARGs in WWTPs calls for further research to clarify the mechanisms

  18. Minimization of contact resistance between metal and polymer by surface doping

    International Nuclear Information System (INIS)

    Mukherjee, A K; Thakur, A K; Takashima, W; Kaneto, K

    2007-01-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude

  19. Standard test methods for performance characteristics of metallic bonded resistance strain gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 The purpose of this standard is to provide uniform test methods for the determination of strain gauge performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E 251 describes methods and procedures for determining five strain gauge parameters: Section Part I—General Requirements 7 Part II—Resistance at a Reference Temperature 8 Part III—Gauge Factor at a Reference Temperature 9 Part IV—Temperature Coefficient of Gauge Factor\t10 Part V—Transverse Sensitivity\t11 Part VI—Thermal Output\t12 1.3 Strain gauges are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gauge resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are...

  20. Minimization of contact resistance between metal and polymer by surface doping

    Science.gov (United States)

    Mukherjee, A. K.; Thakur, A. K.; Takashima, W.; Kaneto, K.

    2007-03-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude.

  1. Analysis of Nugget Formation During Resistance Spot Welding on Dissimilar Metal Sheets of Aluminum and Magnesium Alloys

    Science.gov (United States)

    Luo, Yi; Li, Jinglong

    2014-10-01

    The nugget formation of resistance spot welding (RSW) on dissimilar material sheets of aluminum and magnesium alloys was studied, and the element distribution, microstructure, and microhardness distribution near the joint interface were analyzed. It was found that the staggered high regions at the contact interface of aluminum and magnesium alloy sheets, where the dissimilar metal melted together, tended to be the preferred nucleation regions of nugget. The main technical problem of RSW on dissimilar metal sheets of aluminum and magnesium alloys was the brittle-hard Al12Mg17 intermetallic compounds distributed in the nugget, with hardness much higher than either side of the base materials. Microcracks tended to generate at the interface of the nugget and base materials, which affected weld quality and strength.

  2. Low-resistant and high transmittance films based on one dimensional metal-dielectric photonic band gap material

    Science.gov (United States)

    Zhao, Ya-li; Li, Xu-feng; Ma, Jiang-jiang; Ma, Fu-Hua; Chen, Zhi-Hui; Wei, Xue-hong

    2017-12-01

    The paper shows the determination of the transmission of one dimensional metal-dielectric photonic band gap materials (1D-MD PBG) theoretically and experimentally. It has been found that the location and bandwidth of transmission can be tailored by initiatively adopting a suitable structure. We proposed a special 1D-MD PBG obtained by magnetron sputtering, in which each layer of metal film is not continuous. These structures have a number of advantages such as high transmittance (55% or better), broad bandwidth (the full width at half of maximum ranges from 400 nm to 780 nm) and high electrical conductivity (the sheet resistance can be lower than 0.98 Ω/square). Meanwhile, it has been also theoretically and experimental indicated that both the light transmittance and electrical conductivity could be improved effectively by using the (pqp)N structure.

  3. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  4. Resistance in Everyday Life

    DEFF Research Database (Denmark)

    and, when it is, resistance is most often considered counter-productive. Simple evaluations of resistance as positive or negative are avoided in this volume; instead it is conceptualised as a vital process for human development and well-being. While resistance is usually treated as an extraordinary...... occurrence, the focus here is on everyday resistance as an intentional process where new meaning constructions emerge in thinking, feeling, acting or simply living with others. Resistance is thus conceived as a meaning-making activity that operates at the intersection of personal and collective systems...

  5. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...

  6. Frictional resistances of metal-lined ceramic brackets versus conventional stainless steel brackets and development of 3-D friction maps.

    Science.gov (United States)

    Kusy, R P; Whitley, J Q

    2001-10-01

    The frictional resistances of 2 metal-lined ceramic brackets (Luxi and Clarity) were compared with 2 conventional stainless steel brackets (Mini-Taurus and Mini-Twin) in vitro. In method 1, we varied the second-order angulation from 0 degrees to 12 degrees while maintaining the normal or ligature force constant at 0.3 kg; in method 2, we varied the ligature force from 0.1 kg to 0.9 kg while maintaining the angulation at theta = 0 degrees or theta = 11 degrees. The hardware simulated a 3-bracket system in which the interbracket distances were always 18 mm. All couples were evaluated at 34 degrees C using the same size stainless steel archwire (19 x 26 mil) and ligature wire (10 mil). In the passive region, the static and kinetic frictional forces and coefficients of friction were key parameters; in the active region, the static and kinetic binding forces and coefficients of binding were critical parameters. From outcomes of methods 1 and 2, the 4 aforementioned parameters, and a knowledge of the critical contact angle for binding, 3-dimensional friction maps were constructed in the dry and wet states from which the frictional resistances could be determined at any ligature force or second-order angulation. Those 3-dimensional maps show that metal-lined ceramic brackets can function comparably to conventional stainless steel brackets and that 18-kt gold inserts appear superior to stainless steel inserts. As the morphologies of metal inserts are improved, these metal-lined ceramic brackets will provide not only good esthetics among ceramic brackets but also minimal friction among conventionally ligated brackets.

  7. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  8. ANAEROBIC RESISTANCE TO HIGH LEVELS OF CADMIUM AND OTHER TOXIC METALS IN A FACULTATIVE ANAEROBE ISOLATED FROM PRISTINE SALT MARSH SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SHARMA,P.K.; VAIRAVAMURTHY,A.; KIELECZAWA,J.

    1999-06-20

    The authors have isolated many Cd (II) resistant bacterial strains from relatively pristine sediments collected from salt marshes in Shelter Island, New York. Detailed studies are being performed on one isolate, strain Cd-1. Strain Cd-1 is metabolically diverse, halotolerant, Gram-negative, facultative anaerobe. It can resist high amounts of Cd (II), Cr (VI), As (V), Se (IV), Co (II), Pb (II), or Zn (II) under defined anaerobic conditions. With pyruvate as the energy source, Cd-1 can grow well at examined Cd (II) concentrations ranging up to 15 mM. It can resist Cd (II) with or without marine level NaCl concentration, under acidic or neutral conditions. It can resist Cd (II) under aerobic conditions as well. These features are novel for a heavy metal resistant bacterium.

  9. Reverse transcriptase-real time PCR analysis of heavy metal stress response in a uranium resistant Pseudomonas aeruginosa strain isolated from Jaduguda uranium mine

    International Nuclear Information System (INIS)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-01-01

    A multimetal resistant Pseudomonas strain isolated from a uranium mine waste site of Jaduguda, India, was characterized for its potential application in bioremediation. Nearly complete 16 Sr RNA gene sequence and fatty acid methyl ester analyses confirmed the identity of this bacterium as Pseudomonas aeruginosa. This bacterium exhibited high U-resistance i.e. up to an exposure of 6 h in 100 mg UL -1 solution (pH 4.0) and accumulation (maximum of 275 mg Ug -1 cell dry wt.) properties. Microcosm studies further proved the ability of the strain to remove soluble uranium (99%) from U-mine effluent and sequester it as U oxide and phosphate minerals while maintaining its viability. Considering the survival of this strain in U-mine site co-contaminated with other heavy metals, genetic basis of metal resistance was investigated. The bacterium was resistant to 3, 2 or 6 mM of Cu, Cd, or Zn, respectively. Polymerase chain reaction based detection followed by sequence identity and phylogenetic analysis revealed presence of specific metal resistance genes copA (copper resistance determinant) and czcA (RND type heavy metal efflux) in this isolate. Real-time PCR expression studies of these genes indicated significantly increased expression of both the genes in response to Cu, Cd, or Zn. Maximum up regulation of copA and czcA genes was observed following exposure (30 mm) to 25 μm of Cu or 10 μm Cd respectively. High levels of mRNA transcripts of copA and czcA genes in response to specific metals suggest that these resistance systems have important role in conferring metal resistance to the bacterium. Response of sodA an antioxidant Mn-cofactored superoxide dismutase gene to metal stress revealed that induction of this stress gene was not evident at lower concentration(s) of metals, the concentration(s) that cause maximum up- regulation of metal resistance genes. Higher test metal concentration or extended period of exposure, however, resulted in expression of sodA gene. The

  10. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  11. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  12. Mechanistic Analysis of Oxygen Vacancy-Driven Conductive Filament Formation in Resistive Random Access Memory Metal/NiO/Metal Structures.

    Science.gov (United States)

    Yildirim, Handan; Pachter, Ruth

    2018-03-13

    Electrically switchable resistive random access memories have drawn much interest as nonvolatile memory device candidates based on metal-insulator-metal (MIM) structure concepts. However, atomic level mechanisms that lead to conductive filament (CF) formation in MIM structures are often lacking, such as for the system with NiO as the oxide layer, which was found promising for resistive random access memory (RRAM) device applications. In this work, using density functional theory with a Hubbard-type on-site Coulomb correction, which we carefully benchmarked, we analyzed the intrinsic propensity toward CF formation in NiO upon introduction of oxygen vacancies, including interfacial effects of Ag or Pt electrodes. First, for stoichiometric MIM structural models, contributions from metal-induced gap states to the electronic density of states (DOS) were identified, accommodating oxygen vacancy states and showing that the interface region is reduced more easily than the bulklike region, for example, for the Ag/NiO/Ag structure. Moreover, a tendency toward oxygen vacancy clustering was demonstrated, important for CF formation. Indeed, by introducing ordered oxygen vacancies into the oxide layer for both MIM models, several extended defect states within the forbidden gap have resulted, which lead to defect-assisted transport. These were shown to be influenced by the spatial distribution and number of oxygen vacancies in the filament, where the degree of reduction of Ni atoms changes based on the immediate surroundings. Projected electronic DOS for individual Ni atoms in regions near and away from oxygen vacancies indicated that those Ni close to oxygen vacancies contribute most to the conductivity. Interestingly, based on charge analyses, these atoms are revealed to undergo significant reduction, generating a locally conductive region in the oxide layer that consists of metallic/near-metallic Ni (Ni 0 ), formed through local reduction.

  13. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance.

    Science.gov (United States)

    Bauer, B E; Wolfger, H; Kuchler, K

    1999-12-06

    Saccharomyces cerevisiae was the first eukaryotic organism whose complete genome sequence has been determined, uncovering the existence of numerous genes encoding proteins of the ATP-binding cassette (ABC) family. Fungal ABC proteins are implicated in a variety of cellular functions, ranging from clinical drug resistance development, pheromone secretion, mitochondrial function, peroxisome biogenesis, translation elongation, stress response to cellular detoxification. Moreover, some yeast ABC proteins are orthologues of human disease genes, which makes yeast an excellent model system to study the molecular mechanisms of ABC protein-mediated disease. This review provides a comprehensive discussion and update on the function and transcriptional regulation of all known ABC genes from yeasts, including those discovered in fungal pathogens.

  14. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  15. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  16. Induction of a multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure

    Energy Technology Data Exchange (ETDEWEB)

    Achard, M.; Baudrimont, M.; Boudou, A.; Bourdineaud, J.P

    2004-05-12

    Multixenobiotic resistance mechanisms (MXR) related to the mammalian P-glycoprotein multidrug transporter protein (P-gp) are known to occur in several marine invertebrates. In the present work, we report on the induction of an MXR protein by various heavy metals in the gills of the freshwater clam Corbicula fluminea. The evaluation of the MXR protein level was assessed by Western blot using a specific monoclonal antibody raised against the human P-gp (C219). A field transplantation experiment, where clams were caged in a gradient relative to an industrial site, demonstrated a positive relationship between MXR levels and (a) metal pollution (Cd and Zn) in the environment and (b) metal bioaccumulation in the gills. To establish this correlative relationship, clams were exposed to different levels of cadmium (15-60 {mu}g l{sup -1}) for up to 15 days in a controlled laboratory experiment. MXR protein levels increased in time for all treatments (including the control). However, the highest levels of MXR protein titer were expressed in clams that had been exposed to the lowest dose of cadmium. The causes for this observed inverse relationship between the exposure dose and the MXR induction is discussed. MXR protein titer was also shown to be induced by other heavy metals (zinc, inorganic mercury, and copper)

  17. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading

    Science.gov (United States)

    Srouji, A. K.; Zheng, L. J.; Dross, R.; Aaron, D.; Mench, M. M.

    2017-10-01

    Limiting current measurements are used to evaluate oxygen transport resistance in the catalyst layer of a polymer electrolyte fuel cell (PEFC). The pressure independent oxygen transport resistance in the electrode is quantified for two cell architectures and two cathode Pt loadings (0.4 and 0.07 mgPt.cm-2). The compounded effect of the flow field and Pt loading is used to shed light on the nature of the observed transport resistance, especially its response to fundamentally different flow fields, which is shown to directly or indirectly scale with Pt loading in the open literature. By varying gas pressure and using low oxygen concentrations, the total oxygen transport resistance is divided into intermolecular gas diffusion (a pressure-dependent component) and a pressure independent component, which can be attributed to Knudsen diffusion or dissolution film resistance. The pressure-independent oxygen transport resistance in the catalyst layer varies between 13.3 and 34.4 s/m. It is shown that the pressure independent oxygen transport resistance increases with reduced Pt loading, but that effect is greatly exacerbated by using conventional channel/lands. The results indicate that open metallic element architecture improves the oxygen transport resistance in ultra-low Pt loading electrodes, likely due to enhanced water management at the catalyst layer.

  18. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces

    Science.gov (United States)

    Munoz, Raul C.; Arenas, Claudio

    2017-03-01

    We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in

  19. Comparison of frictional resistance between conventional stainless steel, metal insert ceramic, self ligating stainless steel and self ligating ceramic with stainless steel wire : invitro study

    Directory of Open Access Journals (Sweden)

    Sivaram Subbiah

    2010-01-01

    Full Text Available Friction is an integral part of fixed orthodontic treatment. Several innovations have been made to reduce friction and thereby get predictable and faster tooth movements. Self ligating brackets are one such innovation which is said to offer the possibility of a significant reduction in average treatment times and also in anchorage requirements. Ceramic Self ligating brackets introduce recently have the added advantage of aesthetics. This study was conducted to compare the frictional resistance of conventional stainless steel, metal insert ceramic, Self ligating stainless steel and Self ligating ceramic brackets against a common stainless steel wire. Fifteen premolar in each group (0.022 Roth prescription were tested against 0.019x0.025 stainless steel wire using Lloyd universal testing machine. The conventional stainless steel brackets showed a frictional resistance of 66.47±7.86g metal insert ceramic brackets showed a frictional resistance of 77.52± 8.59g . the Self ligating stainless steel brackets had a frictional resistance of 40.21±7.76g Self ligating ceramic brackets had a frictional resistance of 72.67±5.76 g Self ligating ceramic brackets do have slightly lesser friction than metal insert ceramic brackets but significantly more than metal brackets .

  20. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  1. Treatment-Resistant Schizophrenia

    DEFF Research Database (Denmark)

    Howes, Oliver D; McCutcheon, Rob; Agid, Ofer

    2017-01-01

    OBJECTIVE: Research and clinical translation in schizophrenia is limited by inconsistent definitions of treatment resistance and response. To address this issue, the authors evaluated current approaches and then developed consensus criteria and guidelines. METHOD: A systematic review of randomized...... antipsychotic clinical trials in treatment-resistant schizophrenia was performed, and definitions of treatment resistance were extracted. Subsequently, consensus operationalized criteria were developed through 1) a multiphase, mixed methods approach, 2) identification of key criteria via an online survey, and 3...... responsive from treatment-resistant patients. CONCLUSIONS: There is considerable variation in current approaches to defining treatment resistance in schizophrenia. The authors present consensus guidelines that operationalize criteria for determining and reporting treatment resistance, adequate treatment...

  2. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles

    Science.gov (United States)

    Koshikawa, Hiroyuki; Matsuda, Shoichi; Kamiya, Kazuhide; Miyayama, Masaru; Kubo, Yoshimi; Uosaki, Kohei; Hashimoto, Kazuhito; Nakanishi, Shuji

    2018-02-01

    Dynamic changes in the charge-transfer resistance at a Li/Li7La3Zr2O12 (LLZ) interface during lithium (Li) dissolution/deposition cycles are investigated with an alternative current (AC) impedance technique in a three-electrode system. The resistance respectively increases and decreases during electrodissolution and electrodeposition of Li. The resistance does not return to the initial value after one cycle of Li dissolution and deposition, which indicates that the change in resistance during dissolution is larger than that during deposition. Furthermore, the resistance is almost constant when Li deposition proceeds without prior Li dissolution. The respective increase and decrease in the interfacial resistance during Li dissolution and deposition is most likely due to the formation and disappearance of voids at the Li/LLZ interface, and the voids formation during Li dissolution is suggested to be a critical factor that influences the interfacial resistance.

  3. The effects of bending on the resistance of elastically stretchable metal conductors, and a comparison with stretching

    Science.gov (United States)

    Graudejus, O.; Li, T.; Cheng, J.; Keiper, N.; Ponce Wong, R. D.; Pak, A. B.; Abbas, J.

    2017-05-01

    Microcracked gold films on elastomeric substrates can function as stretchable and deformable interconnects and sensors. In response to stretch or deformation, the design would seek to minimize the change in resistance for stretchable or deformable interconnects; if used as resistive sensors, a large change in resistance would be desired. This research examines the change in resistance upon bending of a microcracked conductor and compares the results with stretching such a conductor. The resistance depends on the strain in the film, which, for bending, is a function of the bending radius and the location of the film within the structure with respect to the neutral plane. The resistance decreases when the gold conductor is under compression and increases when it is under tension. The decrease in resistance under compression is small compared to the increase in resistance under tension, marginally depending on the bending radius. In contrast, the resistance under tension significantly increases with decreasing bending radius. The mechanics model presented here offers a mechanistic understanding of these observations. These results provide guidance for the design of interconnects for flexible and stretchable electronics and for flexible sensors to monitor the magnitude and direction of bending or stretching.

  4. Metal and antibiotic resistance exhibiting bacilli capable of degrading diphenylamin, phenolphthaline and titriplex

    International Nuclear Information System (INIS)

    Maqbool, A.; Sabri, A.N.; Hussain, S.

    2006-01-01

    Nineteen gram variable strains (SA I, SA/sub 2/, SA/sub 3/, SA/sub 4/, SB/sub 1/SB/sub 2/, SB/sub 3/, SB/sub 4/, SB/sub 5/ SB/sub 6/, SB/sub 7/, E, C, G, I, J, K, O) and one gram positive bacterial strain (SB/sub 8/) were isolated from oil waste of petrol pump of PSO (Wahdat Rood) near Punjab University, new Campus, Lahore. All strains had common characters with bacillaceae. Biodegradability to hydrocarbons was demonstrated by using selective plate technique. Non of the isolate was found to utilize benzene, xylene, toluene as carbon source, while strain G, K and M could metabolize diphenylamine upto concentration 75 micro g ml/sup 1/. SB/sub 1/, SB/sub 2/ SB/sub 8/, could metabolize phenolphthalein upto 500 micro g ml/sup 1/ SA/sub 4/, SB/sub 6/, SB/sub 7/ could metabolize titriplex upto 500 micro g ml/sup -1. All isolates confer resistance to salt of Ni/sup +2/. Co/sub +2/ Zn/sup +2/ (except SA3, SB/sub 5/, G, O, M). Cr/sup +3/ (except Sb/sub 2/, O), Mn/sup +2/ (except I, O, M), Cu/sup +2/ (except G, I, O), Pb/sup +2/ (except SA/sub 2/, SA/sub 3/, SA/sub 4/ SB/sub 4/, SB/sub 5/,). The only strain C could tolerate salt of Cd/sup +2/ in the medium. Bacterial strains SA/sup 1/ SA/sub 3/ SB/sub 4/, SB/sub 5/, SB/sub 6/, SB/sub 7/, G and I confer resistance to erythromycin, SB/sub 8/, K, M to ampicilline, SA/sub 1/, SA/sub 4/, SB/sub 4/,SB/sub 5/, SB/sub 6/, SB/sub 7/, C, G, J, O to tetracycline SB/sub 6/, SB/sub 7/, E, C, G, I, J, K, to peniciline, G and M to streptomycin SA/sub 1/, SA/sub 4/, SB/sub 2/, SB/sub 4/, SB/sub 6/, SB/sub 7/, E, K to cefaradoxil, SB/sup 1/, I, J and O to cyrofioxacin. All isolates (except SA/sub 3/, E,C,G,O,M) harbor plasmids. Only SB/sub 1/, SB/sub 3/, SB/sub 4/, showed positive result for conjugation. (author)

  5. Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge.

    Science.gov (United States)

    Aldred, Katie J; Breland, Erin J; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2014-12-01

    The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Shüné V Oliver

    Full Text Available Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible and SENN DDT (insecticide resistant, were reared in maximum acceptable toxicity concentrations, (MATC-the highest legally accepted concentration of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing

  7. Effects of Screening on the Thermal Resistivity And Compressibility ...

    African Journals Online (AJOL)

    Models for computing thermal resistivity, compressibility ratio, and screening parameter of metals was developed and used to study the effects of screening on the thermal resistivity and compressibility ratio of metals. The results obtained revealed that the thermal resistivity of metals increases with an increase in the electron ...

  8. Antipastorialism : Resistant Georgic Mode

    National Research Council Canada - National Science Library

    Zimmerman, Donald

    2000-01-01

    .... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...

  9. Resistance/reactance level.

    Science.gov (United States)

    Beutler, Larry E; Harwood, T Mark; Michelson, Aaron; Song, Xiaoxia; Holman, John

    2011-02-01

    Psychotherapists from all professions and perspectives periodically struggle to effectively manage a patient's resistance to change. This article provides definitions and examples of patient-treatment matching applied to patient resistance or reactance. We report the results from an original meta-analysis of 12 select studies (N = 1,102) on matching therapist directiveness to patient reactance. Our findings support the hypothesis that patients exhibiting low levels of trait-like resistance respond better to directive types of treatment, while patients with high levels of resistance respond best to nondirective treatments (d = .82). Limitations of the research reviewed are noted, and practice recommendations are advanced. © 2010 Wiley Periodicals, Inc.

  10. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  11. Investigations of the hydrophobic and scratch resistance behavior of polystyrene films deposited on bell metal using RF-PACVD process

    Science.gov (United States)

    Choudhury, A. J.; Barve, S. A.; Chutia, Joyanti; Pal, A. R.; Chowdhury, D.; Kishore, R.; Jagannath; Mithal, N.; Pandey, M.; Patil, D. S.

    2011-02-01

    Polystyrene films are deposited on bell metal substrates using radiofrequency plasma assisted chemical vapor deposition (RF-PACVD) process. The deposition of polystyrene film is carried out at working pressure of 1.6 × 10-1 mbar and in the RF power range of 20-110 W. The hydrophobic and mechanical behaviors of the polystyrene films are studied as a function of RF power. The chemical compositions and surface chemistry of the polystyrene films are investigated using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It is revealed that enhanced cross-linked chemical structure and higher loss of oxygen by peroxy polystyryl radical with increasing RF power results in the formation of polystyrene films with more hydrophobic and scratch resistance behavior. However, extensive destruction of cross-linked chemical structure due to high energetic ion bombardment tends to decrease the hydrophobic and scratch resistance behavior of the polystyrene film deposited at RF power of 110 W. Atomic force microscopy (AFM) images show quite uniform and crack free surfaces of the polystyrene films having rms roughness in the range of 0.35-0.87 nm. Attempts are made to correlate the characterization results with the parameters that are used for thin film depositions.

  12. Resistance noise spectroscopy across the thermally and electrically driven metal-insulator transitions in VO2 nanobeams

    Science.gov (United States)

    Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.

  13. A Very Low Dark Current Temperature-Resistant, Wide Dynamic Range, Complementary Metal Oxide Semiconductor Image Sensor

    Science.gov (United States)

    Mizobuchi, Koichi; Adachi, Satoru; Tejada, Jose; Oshikubo, Hiromichi; Akahane, Nana; Sugawa, Shigetoshi

    2008-07-01

    A very low dark current (VLDC) temperature-resistant approach which best suits a wide dynamic range (WDR) complementary metal oxide semiconductor (CMOS) image sensor with a lateral over-flow integration capacitor (LOFIC) has been developed. By implementing a low electric field photodiode without a trade-off of full well-capacity, reduced plasma damage, re-crystallization, and termination of silicon-silicon dioxide interface states in the front end of line and back end of line (FEOL and BEOL) in a 0.18 µm, two polycrystalline silicon, three metal (2P3M) process, the dark current is reduced to 11 e-/s/pixel (0.35 e-/s/µm2: pixel area normalized) at 60 °C, which is the lowest value ever reported. For further robustness at low and high temperatures, 1/3-in., 5.6-µm pitch, 800×600 pixel sensor chips with low noise readout circuits designed for a signal and noise hold circuit and a programmable gain amplifier (PGA) have also been deposited with an inorganic cap layer on a micro-lens and covered with a metal hermetically sealed package assembly. Image sensing performance results in 2.4 e-rms temporal noise and 100 dB dynamic range (DR) with 237 ke- full well-capacity. The operating temperature range is extended from -40 to 85 °C while retaining good image quality.

  14. Electrical resistivity of ceramic-metal composite materials in the percolation region: application in crucibles for induction furnaces

    International Nuclear Information System (INIS)

    Sene, Frank Ferrer

    1997-01-01

    Ceramic composite materials were produced by mixing powders of Partially Stabilized (PSZ) with titanium, niobium or nickel, and cristobalite with titanium. Pellets were produced by uniaxially pressing the material followed by cold isostatic pressing and finally sintering at 1600 deg C for 1,5 hours in argon. The metal content was varied in the range of 0-40 volume percent (v/o). Electrical resistivity measurements were performed in the temperature range of 25 - 700 deg C. Samples containing metallic inclusions above 25 v/o show the predominance of electronic type conducting. For samples with metallic inclusion below 25 v/o, a typically ionic conduction behavior has been observed. PSZ-Ti and PSZ-Ni samples containing 25 v/o of metallic inclusions show an insulator - conductor transition in a given temperature range. Cristobalite samples containing 30 v/o of titanium show a conductor - insulator transition also in a specific temperature range. Tests performed in an induction furnace showed that samples containing metallic inclusions above 25 v/o had self-heated when exposed to electro magnetic fields in the range of radio frequency (r.f.) Crucibles of PSZ-Ti were made by slip casting followed by sintering at 1600 deg C for 1.5 hours in argon. These crucibles were exposed to electromagnetic fields in the r.f. range and the maximum temperature reached was 1350 deg C. Microstructure characterization was performed on those materials by X-ray diffraction, EDS, optical and scanning electron microscopy. (author)

  15. Some aspects of radiation resistance of wide-gap metal oxides

    International Nuclear Information System (INIS)

    Lushchik, Aleksandr; Feldbach, Eduard; Galajev, Semjon; Kaerner, Tiit; Liblik, Peeter; Lushchik, Cheslav; Maaroos, Aarne; Nagirnyi, Vitali; Vasil'chenko, Evgeni

    2007-01-01

    Wide-gap oxides drastically differ in radiation resistance against nonimpact mechanisms of defect creation depending on the ratio between the values of the energy gap E g and the formation energy of a pair of Frenkel defects (FD) E FD . Materials with E g >E FD are radiation-sensitive even at a low excitation density, while the efficiency of FD creation in the materials with E g FD is noticeable only under a high excitation density or in the presence of impurity centers serving as the promoters of radiation damage due to the nonimpact mechanisms. Novel experimental results on the FD creation in the bulk of MgO single crystals (E g FD ) irradiated by swift uranium ions at 300 K and 5 keV electrons at 6 K are presented. The prospects of luminescent protection against radiation damage as well as of the decrease of the luminescence efficiency due to the suppression of nonradiative recombination of electrons and holes (both relaxed and nonrelaxed) by doping the material with a sufficient amount of luminescent impurity ions are considered on the example of spectral transformers for plasma display panels

  16. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  17. Integration of metal-resistant determinants from the plasmid of an Acidocella strain into the chromosome of Escherichia coli DH5alpha.

    Science.gov (United States)

    Ghosh, Sajalendu; Mahapatra, Nitish R; Nandi, Suvobroto; Banerjee, Pataki C

    2005-01-01

    Acidophilic bacteria of mine origin are ideal systems for studying microbial metal resistance because of their ability to grow in the presence of high concentrations of metal salts. We have previously shown that the metal-resistant transformants obtained after transformation of Escherichia coli DH5alpha with plasmid DNA preparation from Acidocella sp. strain GS19h did not contain any plasmid suggesting chromosomal integration of the plasmid(s) (Appl Environ Microbiol 1997; 63: 4523-4527). The present study provides evidence in support of this suggestion. The pulsed field gel electrophoresis (PFGE) pattern of genomic DNA of the plasmidless metal-resistant transformants differed markedly from that of the untransformed DH5alpha strain. Moreover, when the recombinant plasmids constructed by cloning plasmid DNA fragments of the Acidocella strain GS19h in the vector pBluescript II KS+ were used to transform E. coli DH5alpha strain, no plasmid DNA was detected in some of the zinc- and ampicillin-resistant (ZnrAmpr) clones. The PFGE pattern of genomic DNA of such a transformed clone also differed markedly from that of the parent strain, suggesting chromosomal integration of the recombinant plasmid(s) containing both ampicillin- and zinc-resistance determinants. This observation was further supported by hybridization of chromosomal DNA of the plasmidless ZnrAmpr E. coli DH5alpha clone with the probes made from the plasmid DNA of strain GS19h and the vector DNA. Thus, this study corroborates our previous finding and documents the phenomenon of integration of metal-resistant determinants from the Acidocella GS19h plasmid(s) into the chromosome of E. coli DH5alpha.

  18. Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells

    Science.gov (United States)

    Joy, R.W.; Smith, D.F.

    1982-09-20

    A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  19. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  20. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  1. How Many Equivalent Resistances?

    Indian Academy of Sciences (India)

    It is straightforward to construct the set of equiv- alent resistance for circuits constructed from a bunch of four or five equal resistors. But as the bunch size increases it becomes difficult to find the order of the set of equivalent resistances. Even the computer programs runs out of mem- ory. Here we present an analytical result ...

  2. Drug-resistant tuberculosis

    African Journals Online (AJOL)

    The epidemic of drug-resistant tuberculosis. (DR-TB) is a public health emergency that threatens to destabilise global TB control. Although TB incidence and mortality are decreasing in several parts of the world, the overall prevalence of multidrug-resistant tuberculosis (MDR-TB) is increasing in many high-burden countries, ...

  3. Containing Unusual Resistance

    Science.gov (United States)

    ... the health department to stop spread of unusual resistance. Review and support infection control in the facility. Clinical labs: Know what isolates to send for testing. Establish protocols that immediately ... of unusual resistance. Validate new tests to identify the latest threats. ...

  4. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  5. Antibiotic resistance in animals.

    Science.gov (United States)

    Barton, Mary D; Pratt, Rachael; Hart, Wendy S

    2003-01-01

    There is currently no systematic surveillance or monitoring of antibiotic resistance in Australian animals. Registration of antibiotics for use in animals is tightly controlled and has been very conservative. Fluoroquinolones have not been registered for use in food producing animals and other products have been removed from the market because of human health concerns. In the late 1970s, the Animal Health Committee coordinated a survey of resistance in Salmonella and Escherichia coli isolates from cattle, pigs and poultry and in bovine Staphylococcus aureus. Some additional information is available from published case reports. In samples collected prior to the withdrawal of avoparcin from the market, no vancomycin resistant Enterococcus faecium or Enterococcus faecalis were detected in samples collected from pigs, whereas some vanA enterococci, including E. faecium and E. faecalis, were found in chickens. No vanB enterococci were detected in either species. Virginiamycin resistance was common in both pig and poultry isolates. Multiple resistance was common in E. coli and salmonellae isolates. No fluoroquinolone resistance was found in salmonellae, E. coli or Campylobacter. Beta-lactamase production is common in isolates from bovine mastitis, but no methicillin resistance has been detected. However, methicillin resistance has been reported in canine isolates of Staphylococcus intermedius and extended spectrum beta-lactamase producing E. coli has been found in dogs.

  6. Resistance to change

    NARCIS (Netherlands)

    Dow, J.; Perotti, E.

    2009-01-01

    Established firms often fail to maintain leadership following disruptive market shifts. We argue that such firms are more prone to internal resistance. A radical adjustment of assets affects the distribution of employee rents, creating winners and losers. Losers resist large changes when strong

  7. Resistance to change

    NARCIS (Netherlands)

    Dow, J.; Perotti, E.

    2013-01-01

    Established firms often fail to maintain leadership following disrup tive market shifts. We argue that such firms are more prone to internal resistance. A radical adjustment of assets affects the distribution of employee rents, creating winners and losers. Losers resist large changes when strong

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... ol Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share ...

  9. Resistance to Linezolid

    DEFF Research Database (Denmark)

    Vester, Birte; Ntokou, Eleni

    2017-01-01

    Linezolid is an antimicrobial agent that binds to the bacterial ribosome and thereby inhibits protein synthesis. Soon after its release as a clinical drug, it became clear that bacteria could become resistant to linezolid. The resistance mechanisms are mainly causing alteration of the drug target...

  10. Resistent tuberkulose i Danmark

    DEFF Research Database (Denmark)

    Thomsen, V O; Johansen, I S; Bauer, J O

    2001-01-01

    INTRODUCTION: Increased rates of multidrug-resistant (MDR) tuberculosis (TB) has been reported from countries close to Denmark. We evaluated the incidence of drug resistance in Denmark in order to determine the magnitude of the problem. MATERIALS AND METHODS: Susceptibility testing was performed ...

  11. Engineered plant virus resistance.

    Science.gov (United States)

    Galvez, Leny C; Banerjee, Joydeep; Pinar, Hasan; Mitra, Amitava

    2014-11-01

    Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration ... Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet ...

  13. Resistance and conformity

    NARCIS (Netherlands)

    Sumter, S.R.; Bokhorst, C.L.; Westenberg, P.M.; Levesque, R.J.R.

    2011-01-01

    Resistance to peer influence, or the ability to resist making choices or adopting views under the implicit or explicit influence of your peers, is expected to undergo changes during adolescence. Two developmental trajectories have emerged from the field. On the one hand, adolescents show a temporary

  14. Resistance and Conformity

    NARCIS (Netherlands)

    Sumter, S.R.; Bokhorst, C.L.; Westenberg, P.M.; Levesque, R.J.R.

    2016-01-01

    Resistance to peer influence, or the ability to resist making choices or adopting views under the implicit or explicit influence of your peers, is expected to undergo changes during adolescence. Two opposing developmental trajectories have emerged from the field. On the one hand, adolescents show a

  15. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... topics menu Skip to common links HHS U.S. Department of Health and Human Services U.S. Food and ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  16. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    Langeveld, Mirjam; Aerts, Johannes M. F. G.

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple

  17. Resistance, Reactance, and Consultation.

    Science.gov (United States)

    Hughes, Jan N.; Falk, Robert S.

    1981-01-01

    Presents a review of techniques for dealing with consultee resistance. Suggests the social psychological theory of reactance is a useful conceptual framework for considering resistance in consultation. Discusses examples of its application, variables that predict the likely effectiveness of a reactance utilization intervention, and ethical issues.…

  18. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  19. Mechanisms of Drug Resistance: Daptomycin Resistance

    Science.gov (United States)

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  20. Atomic crystals resistive switching memory

    International Nuclear Information System (INIS)

    Liu Chunsen; Zhang David Wei; Zhou Peng

    2017-01-01

    Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F 2 cell size, switching in sub-nanosecond, cycling endurances of over 10 12 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory. (topical reviews)

  1. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    Science.gov (United States)

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (Pdenture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  2. [Hypertension and insulin resistance].

    Science.gov (United States)

    Voiculescu, A; Kutkuhn, B; Rösen, P; Grabensee, B

    1997-10-17

    Non insulin dependent diabetes mellitus (NIDDM) and obesity are defined as classical insulin resistant states. Essential hypertension is now also considered to be an insulin resistant state, even in absence of NIDDM or obesity, as shown in epidemiological, clinical and experimental studies. Neither the underlying mechanism nor a direct causality between the two phenomena has been detected as yet, but different hypotheses have been postulated where, on the one hand, insulin resistance and hypertension are considered to be causally related and, on the other hand, they are considered to be parallel phenomena due to genetic and acquired factors. The clarification of the connection between hypertension and insulin resistance seems to be of great clinical importance, since they are both independent risk factors for cardiovascular disease and mortality from cardiovascular complications. This paper gives an overview of the results of recent research on the possible underlying pathogenetic mechanisms linking hypertension and insulin resistance.

  3. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palto Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  4. HIV resistance testing and detected drug resistance in Europe

    NARCIS (Netherlands)

    Schultze, Anna; Phillips, Andrew N.; Paredes, Roger; Battegay, Manuel; Rockstroh, Jürgen K.; Machala, Ladislav; Tomazic, Janez; Girard, Pierre M.; Januskevica, Inga; Gronborg-Laut, Kamilla; Lundgren, Jens D.; Cozzi-Lepri, Alessandro; Losso, M.; Kundro, M.; Vetter, N.; Zangerle, R.; Karpov, I.; Vassilenko, A.; Mitsura, V. M.; Paduto, D.; Clumeck, N.; de Wit, S.; Delforge, M.; Florence, E.; Vandekerckhove, L.; Hadziosmanovic, V.; Kostov, K.; Begovac, J.; Machala, L.; Jilich, D.; Sedlacek, D.; Nielsen, J.; Kronborg, G.; Benfield, T.; Larsen, M.; Gerstoft, J.; Katzenstein, T.; Pedersen, C.; Møller, N. F.; Ostergaard, L.; Dragsted, U. B.; Nielsen, L. N.; Zilmer, K.; Smidt, Jelena; Ristola, M.; Katlama, C.; Pradier, C.; Dabis, F.; Neau, D.; Duvivier, C.; Rockstroh, J.; Schmidt, R.; van Lunzen, J.; Degen, O.; Stefan, C.; Bogner, J.; Fatkenheuer, G.; Chkhartishvili, N.; Kosmidis, J.; Gargalianos, P.; Xylomenos, G.; Perdios, J.; Sambatakou, H.; Banhegyi, D.; Gottfredsson, M.; Mulcahy, F.; Yust, I.; Turner, D.; Burke, M.; Shahar, E.; Hassoun, G.; Elinav, H.; Haouzi, M.; Sthoeger, Z. M.; d'Arminio, A.; Esposito, R.; Mazeu, I.; Mussini, C.; Pristera, R.; Mazzotta, F.; Gabbuti, A.; Vullo, V.; Lichtner, M.; Zaccarelli, M.; Reiss, P.; Ormaasen, V.; Maeland, A.; Bruun, J.; Knysz, B.; Gasiorowski, J.; Inglot, M.; Horban, A.; Bakowska, E.; Grzeszczuk, A.; Flisiak, R.; Parczewski, M.; Pynka, M.; Maciejewska, K.; Beniowski, M.; Mularska, E.; Smiatacz, T.; Jablonowska, E.; Malolepsza, E.; Wojcik, K.; Mozer-Lisewska, I.; Doroana, M.; Caldeira, L.; Mansinho, K.; Maltez, F.; Radoi, R.; Oprea, C.; Babes, Victor; Rakhmanova, A.; Trofimora, T.; Khromova, I.; Kuzovatova, E.; Jevtovic, D.; Shunnar, A.; Stanekova, D.; Tomazic, J.; Moreno, S.; Rodriguez, J. M.; Clotet, B.; Jou, A.; Paredes, R.; Tural, C.; Puig, J.; Bravo, I.; Gatell, J. M.; Miro, J. M.; Domingo, P.; Gutierrez, M.; Mateo, G.; Sambeat, M. A.; Laporte, J. M.; Blaxhult, A.; Flamholc, L.; Thalme, A.; Sonnerborg, A.; Ledergerber, B.; Weber, R.; Cavassini, M.; Calmy, A.; Furrer, H.; Battegay, M.; Elzi, L.; Schmid, P.; Kravchenko, E.; Chentsova, N.; Frolov, V.; Kutsyna, G.; Baskakov, I.; Kuznetsova, A.; Kyselyova, G.; Gazzard, B.; Johnson, A. M.; Simons, E.; Edwards, S.; Phillips, A.; Johnson, M. A.; Mocroft, A.; Orkin, C.; Weber, J.; Scullard, G.; Fisher, M.; Leen, C.; Gatell, J.; Monforte, A. d'Arminio; Lundgren, J.; DeWit, S.; Kirk, O.; Grarup, J.; Cozzi-Lepri, A.; Thiebaut, R.; Burger, D.; Peters, L.; Podlekareva, D.; Nielsen, J. E.; Matthews, C.; Fischer, A. H.; Bojesen, A.; Raben, D.; Kristensen, D.; Laut, K. Grønborg; Larsen, J. F.; Grint, D.; Shepherd, L.; Schultze, A.

    2015-01-01

    Objectives: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. Design: Multinational cohort

  5. Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp. coinfected with motile aeromonas septicemia and edwardsiellosis

    Directory of Open Access Journals (Sweden)

    S. W. Lee

    2017-07-01

    Full Text Available Aim: The aim of this study is to identify antibiogram and heavy metal resistance pattern of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp. coinfected with motile aeromonas septicemia and edwardsiellosis in four commercial fish farms. Materials and Methods: A. hydrophila and E. tarda were isolated using glutamate starch phenol red and xylose lysine deoxycholate (Merck, Germany as a selective medium, respectively. All the suspected bacterial colonies were identified using conventional biochemical tests and commercial identification kit (BBL Crystal, USA. Susceptibility testing of present bacterial isolates to 16 types of antibiotics (nalidixic acid, oxolinic acid, compound sulfonamides, doxycycline, tetracycline, novobiocin, chloramphenicol, kanamycin, sulfamethoxazole, flumequine, erythromycin, ampicillin, spiramycin, oxytetracycline, amoxicillin, and fosfomycin and four types of heavy metals (mercury, chromium, copper, and zinc were carried out using disk diffusion and two-fold agar dilution method, respectively. Results: Three hundred isolates of A. hydrophila and E. tarda were successfully identified by biochemical tests. Antibiotic susceptibility testing results showed that 42.2% of the bacterial isolates were sensitive to compound sulfonamides, sulfamethoxazole, flumequine, oxytetracycline, doxycycline, and oxolinic acid. On the other hand, 41.6% of these isolates were resistant to novobiocin, ampicillin, spiramycin, and chloramphenicol, which resulted for multiple antibiotic resistance index values 0.416. Among tested heavy metals, bacterial isolates exhibited resistant pattern of Zn2+ > Cr6+ > Cu2+ > Hg2+. Conclusion: Results from this study indicated that A. hydrophila and E. tarda isolated from coinfected farmed red hybrid tilapia were multi-resistant to antibiotics and heavy metals. These resistant profiles could be useful information to fish farmers to avoid unnecessary use of

  6. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp nov., Ralstonia metallidurans sp nov and Ralstonia basilensis Steinle et al. 1998 emend.

    NARCIS (Netherlands)

    Goris, J; de Vos, P; Coenye, T; Hoste, B; Janssens, D; Brim, H; Diels, L; Mergeay, M; Kersters, K; Vandamme, P

    Thirty-one heavy-metal-resistant bacteria isolated from industrial biotopes were subjected to polyphasic characterization, including 16S rDNA sequence analysis, DNA-DNA hybridizations, biochemical tests, whole-cell protein and fatty-acid analyses. All strains were shown to belong to the Ralstonia

  7. Half-metallicity, magnetism and electrical resistivity of Sn.sub.1-x./sub.Mn.sub.x./sub.Te alloys in rock salt and zinc blende structures

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Bose, S. K.; Kudrnovský, Josef

    2015-01-01

    Roč. 375, Feb (2015), s. 15-25 ISSN 0304-8853 R&D Projects: GA ČR GAP204/12/0692 Institutional support: RVO:68378271 Keywords : half-metals * spintronics * exchange interaction * Curie temperature * resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  8. Experimental and Numerical Investigation of Metal Type and Thickness Effects on the Impact Resistance of Fiber Metal Laminates

    NARCIS (Netherlands)

    Sadighi, M.; Pärnänen, T.; Alderliesten, R.C.; Sayeaftabi, M.; Benedictus, R.

    2012-01-01

    The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer

  9. [Resistance mechanisms and cross-resistance of phoxim-resistant Frankliniella occidentalis Pergande population].

    Science.gov (United States)

    Wang, Sheng-Yin; Zhou, Xian-Hong; Zhang, An-Sheng; Li, Li-Li; Men, Xing-Yuan; Zhang, Si-Cong; Liu, Yong-Jie; Yu, Yi

    2012-07-01

    To understand the resistance risks of Frankliniella occidentalis Pergande against phoxim, this paper studied the resistance mechanisms of phoxim-resistant F. occidentalis population against phoxim and the cross-resistance of the population against other insecticides. The phoxim-resistant population had medium level cross-resistance to chlorpyrifos, lambda-cyhalothrin, and methomyl, low level cross-resistance to chlorfenapyr, imidacloprid, emamectin-benzoate, and spinosad, but no cross-resistance to acetamiprid and abamectin. The synergists piperonyl butoxide (PBO), s, s, s-tributyl phosphorotrithioate (DEF), and triphenyl phosphate (TPP) had significant synergism (P occidentalis could play an important role in the resistance of the plant against phoxim.

  10. AC resistance measuring instrument

    Science.gov (United States)

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  11. Linezolid Resistance in Staphylococci

    Directory of Open Access Journals (Sweden)

    Stefania Stefani

    2010-06-01

    Full Text Available Linezolid, the first oxazolidinone to be used clinically, is effective in the treatment of infections caused by various Gram-positive pathogens, including multidrug resistant enterococci and methicillin-resistant Staphylococus aureus. It has been used successfully for the treatment of patients with endocarditis and bacteraemia, osteomyelitis, joint infections and tuberculosis and it is often used for treatment of complicated infections when other therapies have failed. Linezolid resistance in Gram-positive cocci has been encountered clinically as well as in vitro, but it is still a rare phenomenon. The resistance to this antibiotic has been, until now, entirely associated with distinct nucleotide substitutions in domain V of the 23S rRNA genes. The number of mutated rRNA genes depends on the dose and duration of linezolid exposure and has been shown to influence the level of linezolid resistance. Mutations in associated ribosomal proteins also affect linezolid activity. A new phenicol and clindamycin resistance phenotype has recently been found to be caused by an RNA methyltransferase designated Cfr. This gene confers resistance to lincosamides, oxazolidinones, streptogramin A, phenicols and pleuromutilins, decrease the susceptibility of S. aureus to tylosin, to josamycin and spiramycin and thus differs from erm rRNA methylase genes. Research into new oxazolidinones with improved characteristics is ongoing. Data reported in patent applications demonstrated that some oxazolidinone derivatives, also with improved characteristics with respect to linezolid, are presently under study: at least three of them are in an advanced phase of development.

  12. Insulin and Insulin Resistance

    Science.gov (United States)

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  13. Equivalent network for resistance and temperature coefficient of resistance versus temperature and composition of thick resistive films

    International Nuclear Information System (INIS)

    Kusy, A.

    1987-01-01

    Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated

  14. Genetics Home Reference: clopidogrel resistance

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Clopidogrel resistance Clopidogrel resistance Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Clopidogrel resistance is a condition in which the drug clopidogrel ...

  15. Genetics Home Reference: warfarin resistance

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Warfarin resistance Warfarin resistance Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Warfarin resistance is a condition in which individuals have a ...

  16. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet Share Compartir Antibiotic-Resistant Gonorrhea: An Overview Antibiotic resistance is the ...

  17. Radiation Resistant, Reconfigurable, Shape Memory Metal Rubber Space Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has demonstrated that Shape Memory Metal RubberTM (SM-MR) adaptive skins exhibit reconfigurable and durable RF properties. It is hypothesized that such...

  18. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  19. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  20. The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors

    International Nuclear Information System (INIS)

    Lee, Sunghwan; Park, Hongsik; Paine, David C.

    2012-01-01

    The effect of contact resistance on the measurement of the field effect mobility of compositionally homogeneous channel indium zinc oxide (IZO)/IZO metallization thin film transistors (TFTs) is reported. The TFTs studied in this work operate in depletion mode as n-channel field effect devices with a field effect mobility calculated in the linear regime (μ FE ) of 20 ± 1.9 cm 2 /Vs and similar of 18 ± 1.3 cm 2 /Vs when calculated in the saturation regime (μ FE sat ). These values, however, significantly underestimate the channel mobility since a large part of the applied drain voltage is dropped across the source/drain contact interface. The transmission line method was employed to characterize the contact resistance and it was found that the conducting-IZO/semiconducting-IZO channel contact is highly resistive (specific contact resistance, ρ C > 100 Ωcm 2 ) and, further, this contact resistance is modulated with applied gate voltage. Accounting for the contact resistance (which is large and modulated by gate voltage), the corrected μ FE is shown to be 39 ± 2.6 cm 2 /Vs which is consistent with Hall mobility measurements of high carrier density IZO.

  1. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  2. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  3. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  4. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    Science.gov (United States)

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  5. Identification of Enterococcus faecalis bacteria resistant to heavy metals and antibiotics in surface waters of the Mololoa River in Tepic, Nayarit, Mexico.

    Science.gov (United States)

    Mondragón, Verónica Alejandra; Llamas-Pérez, Dámaris F; González-Guzmán, Gladis E; Márquez-González, Antonio R; Padilla-Noriega, Roberto; Durán-Avelar, Ma de Jesús; Franco, Bernardo

    2011-12-01

    Heavy metal and antibiotic resistance have been shown to have a strong correlation in nature, and their inter-relation is an important subject of study. We report an analysis of surface waters of the Mololoa River in the municipality of Tepic, state of Nayarit, Mexico. This river has two distinctive sources of contamination: sewage waters and trash confinements. Our findings demonstrate a correlation between the river flow pattern and resistance to heavy metals or to heavy metals and antibiotics in isolated bacteria of the genus Enterococcus, specifically Enterococcus faecalis. The Mololoa River provides a model to study the relationship between water flow and generation of biodiversity, and more importantly, it constitutes a model for studying genetic diversity of bacteria affecting human health.

  6. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Abstract. Green synthesis approaches for nanoparticle synthesis are considered as nontoxic, eco-friendly and cost-effective approaches than other physical and chemical approaches. Here, we report green synthesis of silver nanoparticle using the bacteria from the habitat of relatively metal-rich coal mine dust. The bacteria ...

  7. Factors influencing creep resistance in discontinuously reinforced magnesium metal matrix composites

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Kvapilová, Marie; Svoboda, Milan

    2015-01-01

    Roč. 53, č. 4 (2015), s. 221-229 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : magnesium alloys * composites * creep properties testing * structure * fibres * interfaces Subject RIV: JG - Metal lurgy Impact factor: 0.365, year: 2015

  8. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  9. Effects of heavy metals on microbial diversity and bacterial resistance in marine sediments

    NARCIS (Netherlands)

    Toes, A.C.M.

    2008-01-01

    In North-Western Europe alone more than 200 million cubic meters of contaminated sludge is dredged on an annual basis. Deposition of dredged harbour sediments in relatively undisturbed ecosystems is often considered a viable option, under the assumption that metals are not released into the

  10. [Insulin resistance in children].

    Science.gov (United States)

    Stąpor, Natalia; Beń-Skowronek, Iwona

    2015-01-01

    Insulin resistance is the state of reduced tissue sensitivity to insulin. The frequency of this occurrence is increasing dramatically in developed countries. Both, environmental and genetic factors are involved in the pathogenesis of insulin resistance. Sedentary lifestyle and the excessive calorie intake cause the substantial increase of the fat issue, leading to overweight and obesity. Insulin resistance occurs physiologically during puberty, but it is also a pathological condition predisposing children to develop abnormal glucose tolerance, diabetes, hypertension and polycystic ovary syndrome among girls. More frequent occurrence of metabolic syndrome can be observed among children born small for gestational age (SGA). The article presents the current views on risk factors, etiology, diagnosis and consequences insulin resistance and disorders of glucose tolerance. © Polish Society for Pediatric Endocrinology and Diabetology.

  11. Treatment-Resistant Depression

    Science.gov (United States)

    ... It's designed for treatment-resistant conditions. Interpersonal psychotherapy. Interpersonal psychotherapy focuses on resolving relationship issues that may contribute to your depression. Family or marital therapy. This type of therapy involves family members or ...

  12. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Center for Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance (video) Animation ... Information Safety Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials ...

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  14. Piggyback resistive Micromegas

    CERN Document Server

    Attié, D; Durand, D; Desforge, D; Ferrer-Ribas, E; Galán, J; Giomataris, Y; Gongadze, A; Iguaz, F J; Jeanneau, F; de Oliveira, R; Papaevangelou, T; Peyaud, A; Teixeira, A

    2013-01-01

    Piggyback Micromegas consists in a novel readout architecture where the anode element is made of a resistive layer on a ceramic substrate. The resistive layer is deposited on the thin ceramic substrate by an industrial process which provides large dynamic range of resistivity (10$^6$ to 10$^{10}$\\,M$\\Omega$/square). The particularity of this new structure is that the active part is entirely dissociated from the read-out element. This gives a large flexibility on the design of the anode structure and the readout scheme. Without significant loss, signals are transmitted by capacitive coupling to the read-out pads. The detector provides high gas gain, good energy resolution and the resistive layer assures spark protection for the electronics. This assembly could be combined with modern pixel array electronic ASICs. First tests with different Piggyback detectors and configurations will be presented. This structure is adequate for cost effective fabrication and low outgassing detectors. It was designed to perform ...

  15. Regicide and Resistance

    DEFF Research Database (Denmark)

    Flohr, Mikkel

    2016-01-01

    This article examines the role of resistance in Michel Foucault’s political thought. The article recovers this otherwise obscured aspect of Foucault’s thought through a systematic analysis of his theoretical regicide and consequent reconceptualization of power, agency and resistance. It is argued...... that Foucault developed a highly original account of resistance, which was, and should continue to be considered, central to his thought and its critical potential. It is shown how Foucault’s concept of resistance overcomes the limitation of voluntarism and determinism, which continue to mare contemporary...... political theory, providing a passage from the critique of contemporary configurations of power to the irrepressible possibility that they may be contested and changed....

  16. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Resistance Monitoring System About NARMS 2015 NARMS Integrated Report Data Meetings and Publications Resources Judicious Use of ... back to top Popular Content Home Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases ...

  17. Tetracycline Antibiotics and Resistance.

    Science.gov (United States)

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... to make the concept of antimicrobial resistance more real and understandable to veterinarians, livestock producers, lawmakers, consumer ... FEAR Act Site Map Nondiscrimination Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver ...

  19. Skid Resistance Research

    Science.gov (United States)

    1977-01-01

    Skidding causes many traffic accidents. Streets and highways with skid-resisting surfaces reduce the incidence of such accidents. In fact, resurfacing roads to improve skid resistance is now required by federal law. Skid resistance is measured by road testing with specially equipped skid trailers. A project underway at NASA-Langley may considerably reduce the cost of skid trailers, thus making them more widely available to highway departments. For testing the skid resistance of aircraft runways, Langley engineers developed a relatively inexpensive test vehicle and a "pulsed braking" technique that is now being applied experimentally to road testing. The vehicle is a standard automobile modified to incorporate instrumentation, special test tires and valves, and a trailing fifth wheel for monitoring distance and velocity. The instrumentation includes a low-cost meter, a set of accelerometers that sense motion changes, and a chart recorder.

  20. Retroviral superinfection resistance

    NARCIS (Netherlands)

    Nethe, Micha; Berkhout, Ben; van der Kuyl, Antoinette C.

    2005-01-01

    The retroviral phenomenon of superinfection resistance (SIR) defines an interference mechanism that is established after primary infection, preventing the infected cell from being superinfected by a similar type of virus. This review describes our present understanding of the underlying mechanisms

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... complex. This video was designed to make the concept of antimicrobial resistance more real and understandable to ... audiences. We hope this animation will make the concept more understandable to non-scientists by showing how ...

  2. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... causes of resistance. Learn more about research and investigations currently underway . Clinical Research Clinical research projects related ... Interest for NIAID’s Small Business Program Division of AIDS High-Priority Areas of Interest Division of Allergy, ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts ... Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance Federal, State & Local Officials Consumers Health ...

  4. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... issue of antimicrobial resistance is that the subject material appears abstract and is complex. This video was ... can develop and spread. All FDA CVM produced material may be copied, reproduced, and distributed as long ...

  5. TRASH, a novel metal binding domain predicted to be involved in heavy metal sensing, trafficking and resistance

    NARCIS (Netherlands)

    Ettema, T.J.G.; Huynen, M.; Vos, de W.M.; Oost, van der J.

    2003-01-01

    We describe a previously undetected domain – TRASH – containing a well-conserved cysteine motif that we anticipate to be involved in metal coordination. TRASH is encoded by multiple prokaryotic genomes and is present in transcriptional regulators, cation-transporting ATPases and hydrogenases, and is

  6. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments

    DEFF Research Database (Denmark)

    Toes, Ann-Charlotte M; Finke, Niko; Kuenen, J Gijs

    2008-01-01

    Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy sedi...

  7. Effects of Deposition of Heavy-Metal-Polluted Harbor Mud on Microbial Diversity and Metal Resistance in Sandy Marine Sediments

    NARCIS (Netherlands)

    Toes, A.C.M.; Finke, N.; Kuenen, J.G.; Muyzer, G.

    2008-01-01

    Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy

  8. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis.

    OpenAIRE

    Meier, A; Sander, P; Schaper, K J; Scholz, M; Böttger, E C

    1996-01-01

    Quantitative susceptibility testing of clinical isolates of streptomycin-resistant Mycobacterium tuberculosis demonstrated that there is a close correlation between the molecular resistance mechanism and the in vitro activity of streptomycin: mutations in rpsL were mainly associated with high-level resistance, mutations in rrs were associated with an intermediate level of resistance, and streptomycin-resistant isolates with wild-type rpsL and rrs exhibited a low-level resistance phenotype. In...

  9. Resistance Versus Aerobic Exercise

    Science.gov (United States)

    Yardley, Jane E.; Kenny, Glen P.; Perkins, Bruce A.; Riddell, Michael C.; Balaa, Nadia; Malcolm, Janine; Boulay, Pierre; Khandwala, Farah; Sigal, Ronald J.

    2013-01-01

    OBJECTIVE In type 1 diabetes, small studies have found that resistance exercise (weight lifting) reduces HbA1c. In the current study, we examined the acute impacts of resistance exercise on glycemia during exercise and in the subsequent 24 h compared with aerobic exercise and no exercise. RESEARCH DESIGN AND METHODS Twelve physically active individuals with type 1 diabetes (HbA1c 7.1 ± 1.0%) performed 45 min of resistance exercise (three sets of seven exercises at eight repetitions maximum), 45 min of aerobic exercise (running at 60% of Vo2max), or no exercise on separate days. Plasma glucose was measured during and for 60 min after exercise. Interstitial glucose was measured by continuous glucose monitoring 24 h before, during, and 24 h after exercise. RESULTS Treatment-by-time interactions (P exercise. Plasma glucose decreased from 8.4 ± 2.7 to 6.8 ± 2.3 mmol/L (P = 0.008) during resistance exercise and from 9.2 ± 3.4 to 5.8 ± 2.0 mmol/L (P = 0.001) during aerobic exercise. No significant changes were seen during the no-exercise control session. During recovery, glucose levels did not change significantly after resistance exercise but increased by 2.2 ± 0.6 mmol/L (P = 0.023) after aerobic exercise. Mean interstitial glucose from 4.5 to 6.0 h postexercise was significantly lower after resistance exercise versus aerobic exercise. CONCLUSIONS Resistance exercise causes less initial decline in blood glucose during the activity but is associated with more prolonged reductions in postexercise glycemia than aerobic exercise. This might account for HbA1c reductions found in studies of resistance exercise but not aerobic exercise in type 1 diabetes. PMID:23172972

  10. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  11. Stab resistant body armour

    OpenAIRE

    Horsfall, I

    2000-01-01

    There is now a widely accepted need for stab resistant body armour for the police in the UK. However, very little research has been done on knife resistant systems and the penetration mechanics of sharp projectiles are poorly understood. This thesis explores the general background to knife attack and defence with a particular emphasis on the penetration mechanics of edged weapons. The energy and velocity that can be achieved in stabbing actions has been determined for a numb...

  12. [Resistance profile of rilpivirine].

    Science.gov (United States)

    Imaz, Arkaitz; García, Federico; di Yacovo, Silvana; Llibre, Josep M

    2013-06-01

    Rilpivirine (RPV) is a new second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) approved for use in combination with two nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) as initial therapy in treatment-naïve HIV-1-infected patients with a baseline viral load ≤100,000 copies/mL. RPV is a diarylpyrimidine derivative with potent in vitro activity against multiple HIV-1 variants with resistance mutations to first-generation NNRTI such as K103N. In vitro studies and phase III clinical trials have allowed the identification of 16 mutations associated with resistance to RPV K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, H221Y, F227C and M230I/L. The risk of virologic failure in patients receiving RPV plus 2 NRTI with plasma viral load ≤ 100,000 copies/mL is low, but a high percentage of patients failing RPV develop resistance mutations to both RPV and NRTI. The most common resistance mutation that emerges in this setting is E138K. This mutation is usually associated with M184I due to a double compensatory effect of this combination, which confers resistance to RPV, as well as to lamivudine and emtricitabine. The emergence of RPV resistance confers cross-resistance to all NNRTI and, importantly, high percentages of cross-resistance to etravirine. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  13. Sand resistance of sunscreens.

    Science.gov (United States)

    Caswell, Michael; Wood, Caryl; Martinez, Alexa

    2012-01-01

    Like water resistance in sunscreens, sand resistance in sunscreens is the ability of the sunscreen to retain its effectiveness while undergoing sand treatment. The influence of the type of sand on the sand resistance of sunscreens has not been described. The sand resistance of a control standard sunscreen, P2, and data on three grades of Quickrete commercial grade sand, #1961, #1962, and #1152, are described. These sands represent a fine sand, a medium sand, and an all-purpose sand. Using the methodology described in the 2007 proposed amendment of the Final Monograph (1) with one exception, we obtained an SPF of 16.5 (1.6) for the control standard, compared to the expected SPF of 16.3 (3.4). After a five-minute treatment of sand #1961, #1962, or #1151, the SPF of the control standard was 18.3 (1.6), 18.4 (2.0), and 17.5 (2.2), respectively. Thus, all three sands exhibited a similar sand-resistance response. Thus, there was no significant difference in the average SPF with and without sand. The medium grade sand, Quickrete commercial grade #1962, was preferred for sand-resistance testing because the fine sand was difficult to remove from the subject's backs and the coarse sand was unpleasant to the subjects.

  14. Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature

    Directory of Open Access Journals (Sweden)

    Chia-Chi Yu

    2016-11-01

    Full Text Available We report the first example of room-temperature rubber-like deformation in thin-film metallic glasses (TFMGs, 260-nm-thick Zr60Cu24Al11Ni5 layers, under ultra-high shear strain. The TFMGs were deposited, with no external heating, on Zr-based bulk metallic glass (BMG and Si(001 substrates by rf magnetron sputtering in a 3 mTorr Ar plasma. Cross-sectional transmission electron microscopy (XTEM analyses and nanoindentation results reveal that the TFMGs undergo an incredibly large shear strain, estimated to be ∼4000%, during fatigue tests, and thickness reductions of up to 61.5%, with no shear-banding or cracking, during extreme nanoindentation experiments extending through the film and into the substrate. TFMG/BMG samples also exhibit film/substrate diffusion bonding during deformation as shown by high-resolution XTEM.

  15. The influence of veneering porcelain thickness of all-ceramic and metal ceramic crowns on failure resistance after cyclic loading.

    Science.gov (United States)

    Shirakura, Akihiko; Lee, Heeje; Geminiani, Alessandro; Ercoli, Carlo; Feng, Changyong

    2009-02-01

    In some clinical situations, the length of either a prepared tooth or an implant abutment is shorter than ideal, and the thickness of a porcelain crown must be increased. Thickness of the coping and the veneering porcelain should be considered to prevent mechanical failure of the crown. The purpose of this study was to investigate the influence of veneering porcelain thickness for all-ceramic and metal ceramic crowns on failure resistance after cyclic loading. All-ceramic and metal ceramic crowns (n=20) were fabricated on an implant abutment (RN Solid Abutment) for the study. Two different framework designs with 2 different incisal thicknesses of veneering porcelain (2 mm and 4 mm) were used for each all-ceramic and metal ceramic crown system, resulting in 4 experimental groups (n=10) with identically shaped crowns. The all-ceramic crown consisted of alumina (Procera AllCeram) frameworks and veneering porcelain (Cerabien), while metal ceramic crowns were made of high noble metal (Leo) frameworks and veneering porcelain (IPS Classic). All crowns were cemented on the corresponding abutments using a resin cement (Panavia 21). They were subjected to 1000 cycles of thermal cycling (5 degrees C and 55 degrees C; 5-second dwell time). The crowns were tested with a custom-designed cyclic loading apparatus which delivered simultaneous unidirectional cyclic loading at 135 degrees, vertically, at an rpm of 250, with a load of 49 N. Each specimen was loaded for 1.2 x 106 cycles or until it failed. The specimens were thoroughly evaluated for cracks and/or bulk fracture with an optical stereomicroscope (x10) and assigned a score of success, survival, or failure. The specimens without bulk fracture after cyclic loading were loaded along the long axis of the tooth, on the incisal edge, in a universal testing machine at a crosshead speed of 1.5 mm/min, until fracture. Fisher's exact test was used to compare the success and survival rate between the 2 different materials (alpha=.05

  16. TRANSGENIC PLANTS OF RAPE (BRASSICA NAPUS L. WITH GENE OSMYB4 HAVE INCREASED RESISTANCE TO SALTS OF HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Raldugina G.N.

    2012-08-01

    Full Text Available This work aims to study the response of the transgenic spring rape plants (Brassica napus L. var. ‘Westar’ with the rice transfactor-encoding gene Osmyb4 to treatment with salts of heavy metals (HM CuSO4 or ZnSO4 and accumulation in the leaves of biomass, metals, photosynthetic pigments, lipid peroxidation, and antioxidant compounds: total phenols, anthocyanins, and antioxidant enzyme activity superoxide dismutase (SOD and guaiacol peroxidase (POX were determined. Vegetatively propagated transgenic plants and wild-type plants were grown on Hoagland-Snyder medium at 24°C, then at the 5-6th leaves-stage, CuSO4 (in concentration 25-150 mM or ZnSO4 (500 - 5000 mM were added to the growth medium, and plants were exposed to the salts for 15 days. Under the action of small concentrations of salts, the results obtained for the transgenic and untransformed plants did not differ, but at high concentrations strong differences between transgenic and untransformed plants were observed. In transgenic plants, accumulation of biomass was greater. Carotene and xanthophyll were destroyed in transgenic plants less than in the untransformed plants. They have accumulated in their leaves more metal, especially Zn, reaching almost to the accumulation of 7 mg per g of dry biomass, bringing these plants to the hyperaccumulation of Zn. In the tissues of transgenic plants exposed to high concentrations of salts, the content of total phenols, anthocyanins, and low molecular weight compounds, that are responsible for protection against ROS, increased significantly. All these results indicate a greater stability of the transgenic plants to the action of heavy metals, as evidenced also by less activity of lipid peroxidases in their tissue: at high salt concentrations, malondialdehyde (MDA accumulated significantly less in transgenic plants than in non-transformed plant tissues. The greater stability of transgenic plants to stressful effect of HM is also evidenced by the

  17. Metal-semiconductor transition and negative magneto-resistance in degenerate ultrathin tin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Shikha; Kashyap, Subhash C.; Pandya, Dinesh K., E-mail: dkpandya@physics.iitd.ac.in

    2015-10-15

    A study of electron- and magneto-transport behavior of ultrathin SnO{sub 2} films of thickness ≤40 nm with high conductivity of 537 Ω{sup −1} cm{sup −1} deposited on glass substrate by using DC reactive sputtering has been carried out at low temperature. Hall effect measurements revealed these SnO{sub 2} films to be degenerate down to 40 K. The films with thickness >5 nm are found to undergo a metal-semiconductor transition below 140 K, and show a negative MR of ∼1.5% at a magnetic field of 0.9 T below 40 K. Both these phenomena have been ascribed to the presence of weak localization of electrons at low temperature. Electron transport behavior has been explained using quantum correction to conductivity. Estimated inelastic scattering lengths were found to be longer than the film thickness which supports two-dimensional nature of electron- and magneto-transport in these ultrathin films. - Highlights: • Ultrathin SnO{sub 2} films show a high conductivity of the order of 10{sup 2} S. • Metal to semiconductor (MS) transition occurs in all the ultrathin SnO{sub 2} films of thickness > 5 nm. • All the samples show degenerate semiconductor behavior. • A negative MR is observed below 40 K in these ultrathin films. • MS transition and negative MR have been explained using weak localization effect.

  18. Bacterial resistances to mercury and copper.

    Science.gov (United States)

    Brown, N L; Camakaris, J; Lee, B T; Williams, T; Morby, A P; Parkhill, J; Rouch, D A

    1991-06-01

    Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.

  19. Resistance in psychotherapy with adolescents.

    Science.gov (United States)

    Graafsma, T; Anbeek, M

    1984-03-01

    Resistances are of considerable significance in psychoterapy with adolescents. In this article, that significance is investigated further, because the way in which resistances are valued is very important in treatment. The forms in which it appears and, the source and intention of resistances are discussed. It is proposed that the investigation of resistances should not be aimed primarily at their removal.

  20. Drug resistance in cancer cells

    National Research Council Canada - National Science Library

    Mehta, Kapil, Dr; Siddik, Zahid H

    2009-01-01

    ... from disappointment with the drug resistance reversal strategies that were carried out in the 1990s using pump inhibitors to block drug resistance mediated by P-glycoprotein, product of the MDR-1 gene. However, if one takes the larger definition - multidrug resistance as simultaneous resistance to multiple structurally unrelated anticancer therapies - its...