WorldWideScience

Sample records for resistance kdr allele

  1. Overcoming super-knock down resistance (super-kdr) mediated resistance: multi-halogenated benzyl pyrethroids are more toxic to super-kdr than kdr house flies.

    Science.gov (United States)

    Sun, H; Tong, K P; Kasai, S; Scott, J G

    2016-04-01

    Target site insensitivity because of mutations in the voltage-sensitive sodium channel gene (Vssc) is a major mechanism of resistance to pyrethroid insecticides in the house fly, Musca domestica. There are three known Vssc alleles that confer resistance to pyrethroids in the house fly: knock down resistance (kdr; L1014F), super-kdr (M918T + L1014F) and kdr-his (L1014H), but there has been no side-by-side comparison of the resistance levels that they confer. We compared the levels of resistance conferred by the three Vssc alleles in congenic strains to 19 structurally diverse pyrethroids, and compared the full-length Vssc cDNA sequences from each strain. Generally, the levels of resistance conferred were kdr-his pyrethroids. We also examined the levels of resistance in heterozygotes. Resistance in each of the hybrids was generally inherited as an incompletely recessive trait, except for the kdr-his/kdr hybrids, which showed incompletely to completely dominant resistance (ie had resistance levels comparable to kdr homozygotes). The importance of these results to understanding the frequencies of these resistance alleles in natural populations, the evolution of insecticide resistance and resistance management strategies are discussed. © 2015 The Royal Entomological Society.

  2. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost.

    Directory of Open Access Journals (Sweden)

    Luiz Paulo Brito

    Full Text Available Pyrethroids are the most used insecticide class worldwide. They target the voltage gated sodium channel (NaV, inducing the knockdown effect. In Aedes aegypti, the main dengue vector, the AaNaV substitutions Val1016Ile and Phe1534Cys are the most important knockdown resistance (kdr mutations. We evaluated the fitness cost of these kdr mutations related to distinct aspects of development and reproduction, in the absence of any other major resistance mechanism. To accomplish this, we initially set up 68 crosses with mosquitoes from a natural population. Allele-specific PCR revealed that one couple, the one originating the CIT-32 strain, had both parents homozygous for both kdr mutations. However, this pyrethroid resistant strain also presented high levels of detoxifying enzymes, which synergistically account for resistance, as revealed by biological and biochemical assays. Therefore, we carried out backcrosses between CIT-32 and Rockefeller (an insecticide susceptible strain for eight generations in order to bring the kdr mutation into a susceptible genetic background. This new strain, named Rock-kdr, was highly resistant to pyrethroid and presented reduced alteration of detoxifying activity. Fitness of the Rock-kdr was then evaluated in comparison with Rockefeller. In this strain, larval development took longer, adults had an increased locomotor activity, fewer females laid eggs, and produced a lower number of eggs. Under an inter-strain competition scenario, the Rock-kdr larvae developed even slower. Moreover, when Rockefeller and Rock-kdr were reared together in population cage experiments during 15 generations in absence of insecticide, the mutant allele decreased in frequency. These results strongly suggest that the Ae. aegypti kdr mutations have a high fitness cost. Therefore, enhanced surveillance for resistance should be priority in localities where the kdr mutation is found before new adaptive alleles can be selected for diminishing the

  3. Multiple origins of kdr-type resistance in the house fly, Musca domestica.

    Directory of Open Access Journals (Sweden)

    Frank D Rinkevich

    Full Text Available Insecticide resistance is a model phenotype that can be used to investigate evolutionary processes underlying the spread of alleles across a global landscape, while offering valuable insights into solving the problems that resistant pests present to human health and agriculture. Pyrethroids are one of the most widely used classes of insecticides world-wide and they exert their toxic effects through interactions with the voltage-sensitive sodium channel (Vssc. Specific mutations in Vssc (kdr, kdr-his and super-kdr are known to cause resistance to pyrethroid insecticides in house flies. In order to determine the number of evolutionary origins of kdr, kdr-his and super-kdr, we sequenced a region of Vssc from house flies collected in the USA, Turkey and China. Our phylogenetic analysis of Vssc unequivocally supports the hypothesis of multiple independent origins of kdr, super-kdr and kdr-his on an unprecedented geographic scale. The implications of these evolutionary processes on pest management are discussed.

  4. A comparison of DNA sequencing and the hydrolysis probe analysis (TaqMan assay for knockdown resistance (kdr mutations in Anopheles gambiae from the Republic of the Congo

    Directory of Open Access Journals (Sweden)

    Coetzee Maureen

    2010-10-01

    Full Text Available Abstract Background Knockdown resistance (kdr caused by a single base pair mutation in the sodium channel gene is strongly associated with pyrethroid insecticide resistance in Anopheles gambiae in West-Central Africa. Recently, various molecular techniques have been developed to screen for the presence of the kdr mutations in vector populations with varying levels of accuracy. In this study, the results of the hydrolysis probe analysis for detecting the kdr mutations in An. gambiae s.s. from the Republic of the Congo were compared with DNA sequence analysis. Methods A total of 52 pyrethroid and DDT resistant An. gambiae from Pointe-Noire (Congo-Brazzaville were tested for detection of the two kdr mutations (kdr-e and kdr-w that are known to occur in this species. Results from the hydrolysis probe analysis were compared to DNA sequencing to verify the accuracy of the probe analysis for this vector population. Results Fifty-one specimens were found to be An. gambiae S-form and one was a M/S hybrid. DNA sequencing revealed that more than half of the specimens (55.8% carried both the kdr-e and kdr-w resistance mutations, seven specimens (13.5% were homozygous for the kdr-e mutation, and 14 specimens (26.9% were homozygous for the kdr-w mutation. A single individual was genotyped as heterozygous kdr-e mutation (1.9% only and another as heterozygous kdr-w mutation (1.9% only. Analysis using hydrolysis probe analysis, without adjustment of the allelic discrimination axes on the scatter plots, revealed six specimens (11.5% carrying both mutations, 30 specimens (57.8% as homozygous kdr-w, six specimens (11.5% homozygous for the kdr-e mutation, one specimen (1.9% heterozygous for the kdr-w mutation and one specimen (1.9% present in wild type form. Eight of the specimens (15.4% could not be identified using unadjusted hydrolysis probe analysis values. No heterozygous kdr-e mutations were scored when adjustment for the allelic discrimination axes was

  5. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia.

    Science.gov (United States)

    Ishak, Intan H; Jaal, Zairi; Ranson, Hilary; Wondji, Charles S

    2015-03-25

    Knowledge on the extent, distribution and mechanisms of insecticide resistance is essential for successful insecticide-based dengue control interventions. Here, we report an extensive resistance profiling of the dengue vectors Aedes aegypti and Aedes albopictus across Malaysia and establish the contribution of knockdown resistance mechanism revealing significant contrast between both species. Aedes mosquitoes were collected from four states in Malaysia in 2010 using ovitraps and tested against six major insecticides using WHO bioassays. Knockdown resistance (kdr) was investigated in both species. A moderate resistance to temephos was detected from samples collected in 2010 in Penang, Kuala Lumpur, Johor Bharu and Kota Bharu (1.5 Malaysia but neither of these mutations were found in Ae. albopictus. Additionally, signatures of selection were detected on the Voltage-gated sodium channel gene in Ae. aegypti but not in Ae. albopictus. The presence of the 1534C allele was significantly associated with pyrethroid resistance and an additive effect to pyrethroid resistance was observed in individuals containing both kdr alleles. Findings from this study will help to design and implement successful insecticide-based interventions against Ae. aegypti and Ae. albopictus to improve dengue control across Malaysia.

  6. A simplified high-throughput method for pyrethroid knock-down resistance (kdr detection in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Walker Edward D

    2005-03-01

    Full Text Available Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles

  7. Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti.

    Science.gov (United States)

    Kushwah, Raja Babu S; Dykes, Cherry L; Kapoor, Neera; Adak, Tridibes; Singh, Om P

    2015-01-01

    Control of Aedes aegypti, the mosquito vector of dengue, chikungunya and yellow fever, is a challenging task. Pyrethroid insecticides have emerged as a preferred choice for vector control but are threatened by the emergence of resistance. The present study reports a focus of pyrethroid resistance and presence of two kdr mutations--F1534C and a novel mutation T1520I, in Ae. aegypti from Delhi, India. Insecticide susceptibility status of adult-female Ae. aegypti against DDT (4%), deltamethrin (0.05%) and permethrin (0.75%) was determined using WHO's standard insecticide susceptibility kit, which revealed resistance to DDT, deltamethrin and permethrin with corrected mortalities of 35%, 72% and 76% respectively. Mosquitoes were screened for the presence of kdr mutations including those reported earlier (I1011V/M, V1016G/I, F1534C, D1794Y and S989P), which revealed the presence of F1534C and a novel mutation T1520I. Highly specific PCR-RFLP assays were developed for genotyping of these two mutations. Genotyping using allele specific PCR and new PCR-RFLP assays revealed a high frequency of F1534C (0.41-0.79) and low frequency of novel mutation T1520I (0.13). The latter was observed to be tightly linked with F1534C and possibly serve as a compensatory mutation. A positive association of F1534C mutation with DDT and deltamethrin resistance in Ae. aegypti was established. However, F1534C-kdr did not show significant protection against permethrin. The Aedes aegypti population of Delhi is resistant to DDT, deltamethrin and permethrin. Two kdr mutations, F1534C and a novel mutation T1520I, were identified in this population. This is the first report of kdr mutations being present in the Indian Ae. aegypti population. Highly specific PCR-RFLP assays were developed for discrimination of alleles at both kdr loci. A positive association of F1534C mutation with DDT and deltamethrin resistance was confirmed.

  8. Survey of resistance to permethrin and diazinon and the use of a multiplex polymerase chain reaction assay to detect resistance alleles in the horn fly, Haematobia irritans irritans (L.).

    Science.gov (United States)

    Li, Andrew Y; Guerrero, Felix D; Almazán Garcia, Consuelo; George, John E

    2003-11-01

    A field survey was conducted in 2001 to evaluate resistance to pyrethroid and organophosphate (OP) insecticides on horn flies, Hematobia irritans irritans (L.), from seven ranches in the state of Tamaulipas, Mexico, and from three locations in central Texas. Filter papers impregnated with either technical permethrin or diazinon were used to measure the levels of resistance to pyrethroids and OPs. A multiplex polymerase chain reaction (PCR) assay was used on individual horn flies from these field populations to detect the presence of the kdr and super-kdr alleles associated with pyrethroid resistance, and a mutated alphaE7 esterase allele associated with OP resistance. Relative to a susceptible laboratory (Kerrville) strain, horn flies from Mexico exhibited 5.1- to 28.3-fold resistance to permethrin at the LC50, and 23.8- to 136-fold resistance at the LC90. Horn flies from Texas ranches exhibited only two- to five-fold resistance. All field populations of the horn fly were highly susceptible to diazinon, and no mutant alphaE7 esterase alleles were detected. The super-kdr allele was found only in a single fly from a ranch in Mexico. Results of PCR assays showed that the kdr allele was present at various frequencies in field populations of horn flies. A gender-related bias in distribution of kdr genotypes was found in horn flies from Mexico, but not in horn flies from Texas. The overall kdr allelic frequencies in horn flies from Mexico were 23.2-37.8% higher in females than in males. Regression analysis revealed a significant correlation between kdr allelic frequencies and the levels of knockdown resistance to permethrin among the horn fly populations studied. The results validate the role of the PCR-based molecular assay as a diagnostic tool in monitoring resistance to pyrethroids and also provide useful information on population genetics of horn fly resistance to pyrethroids and OPs.

  9. Presence and impact of allelic variations of two alternative s-kdr mutations, M918T and M918L, in the voltage-gated sodium channel of the green peach aphid Myzus persicae.

    Science.gov (United States)

    Panini, Michela; Anaclerio, Matteo; Puggioni, Vincenzo; Stagnati, Lorenzo; Nauen, Ralf; Mazzoni, Emanuele

    2015-06-01

    Pyrethroids have been widely employed in order to control several agricultural pests, including Myzus persicae. Target-site resistance is the main mechanism that confers insensitivity to this class of compounds, and the most common amino acid substitutions are kdr (L1014F) and s-kdr (M918T), but recently another mutation in the s-kdr locus (M918L) has been described in French and Korean populations of M. persicae. Molecular analysis of several Italian populations of M. persicae by pyrosequencing revealed the presence of the new s-kdr mutation (M918L) in different forms. It was found in two different nucleotide polymorphisms (a/t or a/c substitution), in heterozygous or homozygous status, and also in combination with the classic kdr and s-kdr. Bioassays on populations carrying the M918L mutation show that it strongly affects pyrethroid efficacy, particularly of type II pyrethroids such as lambda-cyhalothrin, while it has no effect against DDT. This work provides more information about the new s-kdr M918L mutation in M. persicae, describing a more complicated situation arising from the possible combination with the classic L1014F and M918T. Our data open new questions concerning the origin of these new genotypes with different combinations of target-site mutations, and also their possible influence on control strategies. © 2014 Society of Chemical Industry.

  10. Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated foci: Implications for pyrethroid resistance management.

    Science.gov (United States)

    Sierra, Ivana; Capriotti, Natalia; Fronza, Georgina; Mougabure-Cueto, Gastón; Ons, Sheila

    2016-06-01

    Point mutations in the voltage-gated sodium channel, the primary target of pyrethroid insecticides, have been associated with the resistance in Triatoma infestans, an important vector of Chagas' disease. Hence, the sustainability of vector control programs requires the implementation of resistance management strategies. We determined the sensitivity of the molecular assays previously designed for early resistance detection to be used in pooled samples from a wide area of the endemic region, and validated them for their routine use in control campaigns for the monitoring of insecticide resistance in T. infestans. Consequently, we used these methods to examine the distribution of resistance-associated mutations in the sodium channel gene in populations of T. infestans from the Argentinean and Bolivian Gran Chaco. The PASA and REA assays tested proved sensitive enough to detect kdr SNPs in pooled samples, indicating these assays are suitable for routine screening in insecticide resistance surveillance. Two geographically differentiated foci were detected in T. infestans populations from the Argentinean and Bolivian Gran Chaco, with populations on the Bolivian-Argentinean border carrying L1014F mutation, and those from the Argentinean Chaco carrying L925I mutation. In all highly resistant populations analyzed, one of both kdr mutations was present, and toxicological assays determined that all pyrethroid resistant populations analyzed herein were sensitive to fenitrothion. The principal cause of pyrethroid resistance in T. infestans from the Gran Chaco ecoregion is kdr mutations in the sodium channel. Different levels of resistance occur in different populations carrying identical mutation, suggesting the existence of contributory mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection of knockdown resistance (kdr mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    Directory of Open Access Journals (Sweden)

    Ball Amanda

    2007-08-01

    Full Text Available Abstract Background Knockdown resistance (kdr is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1 TaqMan probes and 2 high resolution melt (HRM analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR, Heated Oligonucleotide Ligation Assay (HOLA, Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost, and safety (requirement for hazardous chemicals. Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions and the most specific (with the lowest number of incorrect scores. Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS

  12. Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides.

    Science.gov (United States)

    Kasai, S; Sun, H; Scott, J G

    2017-02-01

    Insecticide use exerts a tremendous selection force on house fly populations, but the frequencies of the initial resistance mutations may not reach high levels if they have a significant fitness cost in the absence of insecticides. However, with the continued use of the same (or similar) insecticides, it is expected that new mutations (conferring equal or greater resistance, but less of a fitness cost) will evolve. Pyrethroid insecticides target the insect voltage sensitive sodium channel (VSSC) and have been widely used for control of house flies at animal production facilities for more than three decades. There are three Vssc mutations known that cause resistance to pyrethroids in house flies: knockdown resistance (kdr, L1014F), kdr-his (L1014H) and super-kdr (M918T + L1014F). Whether or not there are any new mutations in house fly populations has not been examined for decades. We collected house flies from a dairy in Kansas (USA) and selected this population for three generations. We discovered multiple new Vssc alleles, including two that give very high levels of resistance to most pyrethroids. The importance of these findings to understanding the evolution of insecticide resistance, designing appropriate resistance monitoring and management schemes, and the future of pyrethroids for house fly control are discussed. © 2016 The Royal Entomological Society.

  13. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia.

    Science.gov (United States)

    Hamid, Penny Humaidah; Prastowo, Joko; Widyasari, Anis; Taubert, Anja; Hermosilla, Carlos

    2017-06-05

    Aedes aegypti is the main vector of several arthropod-borne viral infections in the tropics profoundly affecting humans, such as dengue fever (DF), West Nile (WN), chikungunya and more recently Zika. Eradication of Aedes still largely depends on insecticides, which is the most cost-effective strategy, and often inefficient due to resistance development in exposed Aedes populations. We here conducted a study of Ae. aegypti resistance towards several insecticides regularly used in the city of Denpasar, Bali, Indonesia. Aedes aegypti egg samples were collected with ovitraps and thereafter hatched in the insectary of the Gadjah Mada University. The F0 generation was used for all bioassay-related experiments and knockdown resistance (kdr) assays. Results clearly showed resistance development of Ae. aegypti against tested insecticides. Mortalities of Ae. aegypti were less than 90% with highest resistance observed against 0.75% permethrin. Mosquitoes from the southern parts of Denpasar presented high level of resistance pattern in comparison to those from the western and northern parts of Denpasar. Kdr analysis of voltage-gated sodium channel (Vgsc) gene showed significant association to S989P and V1016G mutations linked to resistance phenotypes against 0.75% permethrin. Conversely, Ae. aegypti F1534C gene mutation did not result in any significant correlation to resistance development. Periodically surveillance of insecticide resistances in Ae. aegypti mosquitoes will help local public health authorities to set better goals and allow proper evaluation of on-going mosquito control strategies. Initial detection of insecticide resistance will contribute to conduct proper actions in delaying mosquito resistance development such as insecticide rotation or combination of compounds in order to prolong chemical efficacy in combating Ae. aegypti vectors in Indonesia.

  14. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa.

    Science.gov (United States)

    Irving, Helen; Wondji, Charles S

    2017-08-09

    Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other

  15. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates.

    Directory of Open Access Journals (Sweden)

    Haoues Alout

    Full Text Available The widespread insecticide resistance raises concerns for vector control implementation and sustainability particularly for the control of the main vector of human malaria, Anopheles gambiae sensu stricto. However, the extent to which insecticide resistance mechanisms interfere with the development of the malignant malaria parasite in its vector and their impact on overall malaria transmission remains unknown. We explore the impact of insecticide resistance on the outcome of Plasmodium falciparum infection in its natural vector using three An. gambiae strains sharing a common genetic background, one susceptible to insecticides and two resistant, one homozygous for the ace-1(R mutation and one for the kdr mutation. Experimental infections of the three strains were conducted in parallel with field isolates of P. falciparum from Burkina Faso (West Africa by direct membrane feeding assays. Both insecticide resistant mutations influence the outcome of malaria infection by increasing the prevalence of infection. In contrast, the kdr resistant allele is associated with reduced parasite burden in infected individuals at the oocyst stage, when compared to the susceptible strain, while the ace-1 (R resistant allele showing no such association. Thus insecticide resistance, which is particularly problematic for malaria control efforts, impacts vector competence towards P. falciparum and probably parasite transmission through increased sporozoite prevalence in kdr resistant mosquitoes. These results are of great concern for the epidemiology of malaria considering the widespread pyrethroid resistance currently observed in Sub-Saharan Africa and the efforts deployed to control the disease.

  16. Insecticide resistance patterns in Uganda and the effect of indoor residual spraying with bendiocarb on kdr L1014S frequencies in Anopheles gambiae s.s.

    Science.gov (United States)

    Abeku, Tarekegn A; Helinski, Michelle E H; Kirby, Matthew J; Ssekitooleko, James; Bass, Chris; Kyomuhangi, Irene; Okia, Michael; Magumba, Godfrey; Meek, Sylvia R

    2017-04-20

    Resistance of malaria vectors to pyrethroid insecticides has been attributed to selection pressure from long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and the use of chemicals in agriculture. The use of different classes of insecticides in combination or by rotation has been recommended for resistance management. The aim of this study was to understand the role of IRS with a carbamate insecticide in management of pyrethroid resistance. Anopheles mosquitoes were collected from multiple sites in nine districts of Uganda (up to five sites per district). Three districts had been sprayed with bendiocarb. Phenotypic resistance was determined using standard susceptibility tests. Molecular assays were used to determine the frequency of resistance mutations. The kdr L1014S homozygote frequency in Anopheles gambiae s.s. was used as the outcome measure to test the effects of various factors using a logistic regression model. Bendiocarb coverage, annual rainfall, altitude, mosquito collection method, LLIN use, LLINs distributed in the previous 5 years, household use of agricultural pesticides, and malaria prevalence in children 2-9 years old were entered as explanatory variables. Tests with pyrethroid insecticides showed resistance and suspected resistance levels in all districts except Apac (a sprayed district). Bendiocarb resistance was not detected in sprayed sites, but was confirmed in one unsprayed site (Soroti). Anopheles gambiae s.s. collected from areas sprayed with bendiocarb had significantly less kdr homozygosity than those collected from unsprayed areas. Mosquitoes collected indoors as adults had significantly higher frequency of kdr homozygotes than mosquitoes collected as larvae, possibly indicating selective sampling of resistant adults, presumably due to exposure to insecticides inside houses that would disproportionately affect susceptible mosquitoes. The effect of LLIN use on kdr homozygosity was significantly modified by annual

  17. Association of the kdr and superkdr sodium channel mutations with resistance to pyrethroids in Louisiana populations of the horn fly, Haematobia irritans irritans (L.).

    Science.gov (United States)

    Foil, L D; Guerrero, F; Alison, M W; Kimball, M D

    2005-04-20

    Pyrethroid resistance in three horn fly populations in Louisiana was monitored by weekly fly counts, filter paper bioassays, and diagnostic PCR assays for the presence of pyrethroid resistance-associated mutations in the sodium channel gene coding region. The PCR assay for the knockdown resistance (kdr) and superkdr sodium channel mutations was used to determine the frequency of the target site insensitivity mechanism in the populations of horn flies, which possessed varying degrees of insecticide resistance. The bioassays and frequency of homozygous-resistant (RR) kdr genotypes were relative predictors of the fly control subsequently observed. Flies exposed to filter paper impregnated with a discriminating concentration of one of four different insecticides were collected when 50% mortality was estimated. Genotypes for the dead flies and the survivors were determined by the PCR assay. The results of the PCR assays indicated that the genotype at the kdr locus of the flies exposed to the two pyrethroids had an effect upon whether the flies were considered to be alive or dead at the time of collection. The kdr genotype of flies exposed to either diazinon or doramectin was unrelated to whether the flies were considered to be alive or dead, except for a single comparison of flies exposed to diazinon. When possible interactions of the kdr and superkdr mutations were compared, we found that there were no associations with the response to diazinon and doramectin. For one location, there were no survivors of the 75 flies with the SS-SS (superkdr-kdr) homozygous susceptible wild type genotype exposed to pyrethroids, while there were survivors in all of the other five genotypes. The SS-RR genotype flies were more susceptible to the pyrethroids than the SR-RR flies, but that was not the case for exposure to diazinon or doramectin. In the St. Joseph population, there were an adequate number of flies to demonstrate that the SS-SR genotype was more susceptible to pyrethroids

  18. Knockdown resistance, Rdl alleles, and the annual entomological Inoculation rate of wild mosquito populations from Lower Moshi, Northern Tanzania

    Directory of Open Access Journals (Sweden)

    Aneth M Mahande

    2012-01-01

    Full Text Available Aim: Understanding vector behavioral response due to ecological factors is important in the control of disease vectors. This study was conducted to determine the knockdown resistance (kdr alleles, dieldrin resistance alleles, and entomological inoculation rates (EIRs of malaria vectors in lower Moshi irrigation schemes for the mitigation of disease transmission. Materials and Methods: The study was longitudinal design conducted for 14 months. Mosquitoes were collected fortnightly by using a CDC miniature light trap in 20 houses. Mosquitoes were identified morphologically in the field, of which 10% of this population was identified to species level by using molecular techniques. Samples from this study population were taken for kdr and resistance to dieldrin (rdl genes detection. Results: A total of 6220 mosquitoes were collected by using a light trap, of which 86.0% (n=5350 were Anopheles gambiae sensu lato and 14.0% (n=870 were Culex quinquefasciatus. Ten percent of the An. gambiae s.l. (n=535 collected were taken for species identification, of which 99.8% (n=534 were identified as An. arabiensis while 0.2% (n=1 were An. gambiae sensu stricto. Of the selected mosquitoes, 3.5% (n=19 were sporozoite positive. None of the mosquitoes tested had the kdr gene. The rdl resistant allele was detected at a frequency of 0.48 throughout the year. EIR was determined to be 0.54 ib/trap/year. Conclusion: The findings of this study suggest that the homozygous and the heterozygous resistance present in rdl genes demonstrated the effect of pesticide residues on resistance selection pressure in mosquitoes. A better insecticide usage protocol needs to be developed for farmers to use in order to avoid excessive use of pesticides. Key words: An. arabiensis, EIR, Knockdown mutation, Moshi, rdl locus, Tanzania

  19. Nucleotide variation and identification of novel blast resistance alleles of Pib by allele mining strategy.

    Science.gov (United States)

    Ramkumar, G; Madhav, M S; Devi, S J S Rama; Prasad, M S; Babu, V Ravindra

    2015-04-01

    Pib is one of significant rice blast resistant genes, which provides resistance to wide range of isolates of rice blast pathogen, Magnaporthe oryzae. Identification and isolation of novel and beneficial alleles help in crop enhancement. Allele mining is one of the best strategies for dissecting the allelic variations at candidate gene and identification of novel alleles. Hence, in the present study, Pib was analyzed by allele mining strategy, and coding and non-coding (upstream and intron) regions were examined to identify novel Pib alleles. Allelic sequences comparison revealed that nucleotide polymorphisms at coding regions affected the amino acid sequences, while the polymorphism at upstream (non-coding) region affected the motifs arrangements. Pib alleles from resistant landraces, Sercher and Krengosa showed better resistance than Pib donor variety, might be due to acquired mutations, especially at LRR region. The evolutionary distance, Ka/Ks and phylogenetic analyzes also supported these results. Transcription factor binding motif analysis revealed that Pib (Sr) had a unique motif (DPBFCOREDCDC3), while five different motifs differentiated the resistance and susceptible Pib alleles. As the Pib is an inducible gene, the identified differential motifs helps to understand the Pib expression mechanism. The identified novel Pib resistant alleles, which showed high resistance to the rice blast, can be used directly in blast resistance breeding program as alternative Pib resistant sources.

  20. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    Directory of Open Access Journals (Sweden)

    Dash Aditya P

    2009-07-01

    Full Text Available Abstract Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR, an Amplification Refractory Mutation System (ARMS and Primer Introduced Restriction Analysis-PCR (PIRA-PCR were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method

  1. First report of L1014F-kdr mutation in Culex pipiens complex from Morocco.

    Science.gov (United States)

    Bkhache, Meriem; Tmimi, Fatim-Zohra; Charafeddine, Omar; Faraj, Chafika; Failloux, Anna-Bella; Sarih, M'hammed

    2016-12-16

    Mosquitoes of the Culex pipiens complex, competent vectors for West Nile virus (WNV) and Rift Valley fever virus (RVFV) are widely targeted by insecticide treatments. The intensive application of chemical insecticides led to the development of resistance in many insects including Culex pipiens mosquitoes. The absence of data on resistance mechanisms in Morocco allow us to assess the levels of lambda-cyhalothrin resistance and the frequency of the mutated gene L1014F kdr in different forms of Cx. pipiens complex from three regions of Morocco. Mosquito adults were reared from immature stages collected in three different regions in Morocco (Tangier, Casablanca and Marrakech). Standard WHO insecticide susceptibility tests were conducted on adults emerged from collected larvae. Specimens were identified as belonging to the Culex pipiens complex using a multiplex PCR assay with diagnostic primers designed from the flanking region of microsatellite CQ11. Identified mosquitoes were then tested for the presence of the L1014F kdr mutation using PCR assay. Our results showed that 21% of the tested population has a resistance to lambda-cyhalothrin. The molecular identification of survivors shows that 43% belonged to the Cx. pipiens pipiens and only 9.5% to the Cx. pipiens molestus form. On the other hand, 416 specimens were screened for the L1014F kdr mutation. L1014F mutation was detected in different forms of Cx. pipiens in different sites. The frequency of L1014F mutation was similar between the Cx. pipiens pipiens form and hybrid form, while it was lower in the Cx. pipiens molestus form. The presence of the L1014F kdr allele was significantly associated with resistance to lambda-cyhalothrin in Cx. pipiens pipiens (P < 0.0001) and hybrid form (P < 0.0001). Resistance to lambda-cyhalothrin of Cx. pipiens populations appears to be largely due to the L1014F kdr mutation. To our knowledge, the frequencies of L1014F kdr mutation are examined for the first time in

  2. Molecular monitoring of resistant dhfr and dhps allelic haplotypes in ...

    African Journals Online (AJOL)

    Objective: The present study assesses the frequency of resistant dhfr and dhps alleles in Morogoro-Mvomero district in south eastern Tanzania and contrast their rate of change during 17 years of SP second line use against five years of SP first line use. Methodology: Cross sectional surveys of asymptomatic infections were ...

  3. Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants.

    Science.gov (United States)

    Stirnweis, Daniel; Milani, Samira D; Brunner, Susanne; Herren, Gerhard; Buchmann, Gabriele; Peditto, David; Jordan, Tina; Keller, Beat

    2014-09-01

    The development of high-yielding varieties with broad-spectrum durable disease resistance is the ultimate goal of crop breeding. In plants, immune receptors of the nucleotide-binding-leucine-rich repeat (NB-LRR) class mediate race-specific resistance against pathogen attack. When employed in agriculture this type of resistance is often rapidly overcome by newly adapted pathogen races. The stacking of different resistance genes or alleles in F1 hybrids or in pyramided lines is a promising strategy for achieving more durable resistance. Here, we identify a molecular mechanism which can negatively interfere with the allele-pyramiding approach. We show that pairwise combinations of different alleles of the powdery mildew resistance gene Pm3 in F1 hybrids and stacked transgenic wheat lines can result in suppression of Pm3-based resistance. This effect is independent of the genetic background and solely dependent on the Pm3 alleles. Suppression occurs at the post-translational level, as levels of RNA and protein in the suppressed alleles are unaffected. Using a transient expression system in Nicotiana benthamiana, the LRR domain was identified as the domain conferring suppression. The results of this study suggest that the expression of closely related NB-LRR resistance genes or alleles in the same genotype can lead to dominant-negative interactions. These findings provide a molecular explanation for the frequently observed ineffectiveness of resistance genes introduced from the secondary gene pool into polyploid crop species and mark an important step in overcoming this limitation. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    ... number of mutant alleles (for the three loci together) carried by each individual varies from 0.475 (in Vizag Brahmins) to 0.959 (in Bohra Muslims). The estimated relative hazard values for the populations, computed from the three-locus genotype data, are comparable to those from Africa and Southeast Asia, where AIDS is ...

  5. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    OpenAIRE

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE) assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron–sulfur...

  6. Effects of mid-season avermectin treatments on pyrethroid resistance in horn fly (Diptera: Muscidae) populations at three locations in Louisiana.

    Science.gov (United States)

    Oremus, G; Guerrero, F D; Alison, M W; Kimball, M M; Kim, J H; Foil, L D

    2006-10-10

    Between 1999 and 2002, the effect of mid-season doramectin treatments on the level of resistance in pyrethroid-resistant horn fly populations was examined at three separate Louisiana State University Agricultural Center research stations. The cattle were treated with pyrethroid ear tags in all years at all farms, and each farm received a mid-season doramectin treatment in 1 year. The number of weeks of control at Red River was 11 weeks higher in the year following the mid-season treatment of doramectin. At Macon Ridge, the number of weeks of control was 2 weeks higher in the year following the doramectin treatment. No change was observed at St. Joseph. The LC50s for fly populations tested at Macon Ridge and St. Joseph were found to increase for pyrethroids from the spring populations to the fall populations between 2000 and 2002. The LC50s for fly populations at Red River followed the same trends except in 2000, the year when the doramectin treatment was administered. Flies collected pre and post-treatment each year from St. Joseph and Red River were assayed for two alleles (kdr and skdr) associated with target site resistance to pyrethroids. Flies collected pretreatment at Macon Ridge in 1999 also were assayed for the kdr and skdr, and this population of flies had a frequency of 85.6% R-kdr alleles. At St. Joseph and Red River there was a general decline in the frequency of homozygous susceptible skdr (SS-skdr) and homozygous susceptible kdr (SS-kdr) individuals, as well as a general increase in homozygous resistant skdr (RR-skdr) and homozygous resistant kdr (RR-kdr) individuals, during the 4-year study. At both sites, the frequency of R-kdr alleles increased significantly in flies collected in the fall compared to flies collected in the spring with the exception of Red River in 2000, when dormacetin was applied. The frequency of the R-kdr alleles was significantly higher in flies collected in the fall compared to flies collected in the spring in the following

  7. Diversity and frequency of kdr mutations within Anopheles sinensis populations from Guangxi, China.

    Science.gov (United States)

    Yang, Chan; Feng, Xiangyang; Huang, Zushi; Li, Mei; Qiu, Xinghui

    2016-08-15

    Anopheles sinensis is a major vector of malaria in China and its control is under great threat as the development of insecticide resistance. Voltage-gated sodium channel (VGSC) is the target of several classes of insecticides. Genetic mutations of VGSC have been documented to confer knockdown resistance (kdr) to dichlorodiphenyltrichloroethane (DDT) and pyrethroids in mosquitoes. To control this vector efficiently, it is important to know the resistance-associated genetic mutations, their distribution frequencies and genealogical relations. Three hundreds and thirteen (313) adults of An. sinensis collected from nine locations across Guangxi Zhuang Autonomous Region were used. The partial sequence of the An. sinensis voltage gated sodium channel gene (AS-VGSC) containing codon 1014 was sequenced. PHASE2.1 was used to construct the haplotypes of each individual, and the accuracy of haplotypes was further confirmed by clone sequencing. The genealogical relations of kdr mutations in AS-VGSC was analysed using TCS 2.1 and Network 5.0. Sixteen AS-VGSC haplotypes including seven haplotypes carrying non-synonymous mutations at codon 1014, and fifty-five AS-VGSC genotypes were identified from 313 mosquitoes collected from nine geographical locations across Guangxi. The number of haplotypes in each of the nine populations ranged from 5 to 13. The frequency of haplotypes carrying kdr mutations ranged from 2.7 to 80.0 % within the nine populations, of which 1014C was unexpectedly high in the northeast of Guangxi. Genealogical analysis suggested multiple origins of kdr mutations in An. sinensis. Diverse haplotypes of AS-VGSC are distributed in Guangxi. The presence of haplotypes carrying mutations at codon 1014 indicates a risk of pyrethroid and DDT resistance. The kdr mutations show differential distribution geographically, with high frequencies occurred in the northeast of Guangxi. Genealogical analysis suggests multiple origins of kdr mutations in An. sinensis populations

  8. First Detection of the Kdr Mutation T929I in Head Lice (Phthiraptera: Pediculidae) in Schoolchildren of the Metropolitan Area of Nuevo Leon and Yucatan, Mexico.

    Science.gov (United States)

    Ponce-Garcia, Gustavo; Villanueva-Segura, Karina; Trujillo-Rodriguez, Gerardo; Rodriguez-Sanchez, Iram P; Lopez-Monroy, Beatriz; Flores, Adriana E

    2017-07-01

    The head louse Pediculus humanus capitis (De Geer) is a hematophagous ectoparasite that inhabits the human scalp. Infestations by this insect are commonly known as pediculosis, which is more common in younger groups. These infestations are asymptomatic; however, skin irritation from scratching occasionally may cause secondary bacterial infections. In recent years, the prevalence of pediculosis has increased in children; this increase has been attributed to louse resistance to the insecticides used as a control measure for infestation. The aim of the present study was to determine the presence and frequency of the knockdown resistance mutation (kdr) T929I in 468 head lice collected from 32 elementary schools in the metropolitan area of Nuevo Leon (24) and Yucatan (8), Mexico. This is the first report of a knockdown resistance (kdr) mechanism in head lice from Mexico. The T929I mutation was present in all of the sampled schools, with variability observed in its allelic and genotypic frequencies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  10. Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus

    Science.gov (United States)

    Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populatio...

  11. Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99.

    Science.gov (United States)

    Rouse, Matthew N; Nirmala, Jayaveeramuthu; Jin, Yue; Chao, Shiaoman; Fetch, Thomas G; Pretorius, Zacharias A; Hiebert, Colin W

    2014-08-01

    Wheat stem rust resistance gene SrWeb is an allele at the Sr9 locus that confers resistance to Ug99. Race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal fungus of stem rust, threatens global wheat production because of its broad virulence to current wheat cultivars. A recently identified Ug99 resistance gene from cultivar Webster, temporarily designated as SrWeb, mapped near the stem rust resistance gene locus Sr9. We determined that SrWeb is also present in Ug99 resistant cultivar Gabo 56 by comparative mapping and an allelism test. Analysis of resistance in a population segregating for both Sr9e and SrWeb demonstrated that SrWeb is an allele at the Sr9 locus, which subsequently was designated as Sr9h. Webster and Gabo 56 were susceptible to the Ug99-related race TTKSF+ from South Africa. Race TTKSF+ possesses unique virulence to uncharacterized Ug99 resistance in cultivar Matlabas. This result validated that resistance to Ug99 in Webster and Gabo 56 is conferred by the same gene: Sr9h. The emergence of pathogen virulence to several resistance genes that are effective to the original Ug99 race TTKSK, including Sr9h, suggests that resistance genes should be used in combinations in order to increase resistance durability.

  12. Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    João Pinto

    2007-11-01

    Full Text Available How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr to DDT and pyrethroid insecticides, have been described. In order to determine whether resistance alleles result from single or multiple mutation events, genotyping of the kdr locus and partial sequencing of the upstream intron-1 was performed on a total of 288 A. gambiae S-form collected from 28 localities in 15 countries. Knockdown resistance alleles were found to be widespread in West Africa with co-occurrence of both 1014S and 1014F in West-Central localities. Differences in intron-1 haplotype composition suggest that kdr alleles may have arisen from at least four independent mutation events. Neutrality tests provided evidence for a selective sweep acting on this genomic region, particularly in West Africa. The frequency and distribution of these kdr haplotypes varied geographically, being influenced by an interplay between different mutational occurrences, gene flow and local selection. This has important practical implications for the management and sustainability of malaria vector control programs.

  13. Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites.

    Science.gov (United States)

    Arias-Sánchez, Flor I; Hall, Alex R

    2016-05-01

    Antibiotic resistance has wide-ranging effects on bacterial phenotypes and evolution. However, the influence of antibiotic resistance on bacterial responses to parasitic viruses remains unclear, despite the ubiquity of such viruses in nature and current interest in therapeutic applications. We experimentally investigated this by exposing various Escherichia coli genotypes, including eight antibiotic-resistant genotypes and a mutator, to different viruses (lytic bacteriophages). Across 960 populations, we measured changes in population density and sensitivity to viruses, and tested whether variation among bacterial genotypes was explained by their relative growth in the absence of parasites, or mutation rate towards phage resistance measured by fluctuation tests for each phage. We found that antibiotic resistance had relatively weak effects on adaptation to phages, although some antibiotic-resistance alleles impeded the evolution of resistance to phages via growth costs. By contrast, a mutator allele, often found in antibiotic-resistant lineages in pathogenic populations, had a relatively large positive effect on phage-resistance evolution and population density under parasitism. This suggests costs of antibiotic resistance may modify the outcome of phage therapy against pathogenic populations previously exposed to antibiotics, but the effects of any co-occurring mutator alleles are likely to be stronger. © 2016 The Authors.

  14. The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization.

    Directory of Open Access Journals (Sweden)

    Young Seok Park

    Full Text Available We conducted a case-control study to investigate whether vascular endothelial growth factor (VEGF -2578, -1154, -634, and 936 and kinase insert domain containing receptor (KDR -604, 1192, and 1719 polymorphisms are associated with moyamoya disease. Korean patients with moyamoya disease (n = 107, mean age, 20.9±15.9 years; 66.4% female and 243 healthy control subjects (mean age, 23.0±16.1 years; 56.8% female were included. The subjects were divided into pediatric and adult groups. Among the 64 surgical patients, we evaluated collateral vessel formation after 2 years and divided patients into good (collateral grade A or poor (collateral grade B and C groups. The frequencies and distributions of four VEGF (-2578, -1154, -634, and 936 and KDR (-604, 1192, and 1719 polymorphisms were assessed from patients with moyamoya disease and compared to the control group. No differences were observed in VEGF -2578, -1154, -634, and 936 or KDR -604, 1192, and 1719 polymorphisms between the control group and moyamoya disease group. However, we found the -634CC genotype occurred less frequently in the pediatric moyamoya group (p = 0.040 whereas the KDR -604C/1192A/1719T haplotype increased the risk of pediatric moyamoya (p = 0.024. Patients with the CC genotype of VEGF -634 had better collateral vessel formation after surgery. Our results suggest that the VEGF -634G allele is associated with pediatric moyamoya disease and poor collateral vessel formation.

  15. Correlation between carboxylesterase alleles and insecticide resistance in Culex pipiens complex from China

    Directory of Open Access Journals (Sweden)

    Liu Yangyang

    2011-12-01

    Full Text Available Abstract Background In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant carboxylesterase alleles (Ester were recorded previously and sometimes co-existed in one field population, representing a complex situation for the evolution of Ester genes. Results In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to organophosphates, and low resistance to carbamates. Six types of Ester alleles, EsterB1, Ester2, Ester8, Ester9, EsterB10, and Ester11 were identified, and the overall pattern of their frequencies in geographic distribution was consistent with the report seven years prior to this study. Statistical correlation analysis indicated that Ester8 and Ester9 positively correlated with resistance to four insecticides, and EsterB10 to one insecticide. The occurrences of these three alleles were positively correlated, while the occurrence of EsterB1 was negatively correlated with Ester8, indicating an allelic competition. Conclusion Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly "one to many".

  16. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    Unknown

    2Department of Genetics, Owaisi Medical and Research Centre, Deccan College of Medical Sciences and ... data, are comparable to those from Africa and Southeast Asia, where AIDS is known to be widespread. ... HIV-1 resistance polymorphism; chemokine receptor; stromal-derived factor-1; Andhra Pradesh; AIDS.

  17. Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector.

    Directory of Open Access Journals (Sweden)

    Sulaiman S Ibrahim

    2015-10-01

    Full Text Available Scale up of Long Lasting Insecticide Nets (LLINs has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.

  18. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Bernardi, Daniel; Ribeiro, Rebeca da S; Nascimento, Antonio Rb do; Santos, Antonio C Dos; Omoto, Celso

    2016-12-01

    The frequency of resistance alleles is a major factor influencing the rate of resistance evolution. Here, we adapted the F 2 screen procedure for Spodoptera frugiperda (J. E. Smith) with a discriminating concentration assay, and extended associated statistical methods to estimate the frequency of resistance to Cry1F protein in S. frugiperda in Brazil when resistance was not rare. We show that F 2 screen is efficient even when the resistance frequency is 0.250. It was possible to screen 517 isoparental lines from 12 populations sampled in five states of Brazil during the first half of 2012. Western Bahia had the highest allele frequency of Cry1F resistance, 0.192, with a 95% confidence interval (CI) between 0.163 and 0.220. All other states had a similar and lower frequency varying from 0.042 in Paraná to 0.080 in Mato Grosso do Sul. The high frequency in western Bahia may be related to year-round availability of maize, the high population density of S. frugiperda, the lack of refuges and the high adoption rate of Cry1F maize. Cry1F resistance alleles were not rare and occurred at frequencies that have already compromised the useful life of TC1507 maize in western Bahia. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Identification of a mutation associated with permethrin resistance in the para-type sodium channel of the stable fly (Diptera: Muscidae).

    Science.gov (United States)

    Olafson, Pia U; Pitzer, Jimmy B; Kaufman, Phillip E

    2011-02-01

    The insect sodium channel is of particular interest for evaluating resistance to pyrethroids because it is the target molecule for this major class of neurotoxic insecticides. The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), sodium channel coding sequence representing domains IS6 through IVS6 was isolated, and the sequence encoding domain II was compared among individuals of a laboratory strain selected for resistance to permethrin and the unselected, parental generation. A point mutation resulting in a leucine-to-histidine amino acid change was identified (Leul014His), and its location corresponded with that observed for knockdown resistance (kdr) mutations in other insects. As a result, the allele was designated kdr-his. A molecular assay was developed to assess the frequency of this mutation in genomic DNA of individual stable flies from the laboratory selections, which provided further evidence that the kdr-his allele accounts for the observed level ofpermethrin resistance in the selected strain. The assay was then used to evaluate the frequency of the mutation from five field-collected populations originating from three horse farms near Ocala, FL; one horse farm near Gainesville, FL; and one dairy farm near Hague, FL. Frequency of the kdr-his allele ranged from 0.46 to 0.78, supporting further investigation of allele prevalence throughout the stable fly season and in response to field insecticide application.

  20. HLA-class II alleles in patients with drug-resistant pulmonary tuberculosis in Kazakhstan.

    Science.gov (United States)

    Kuranov, A B; Kozhamkulov, U A; Vavilov, M N; Belova, E S; Bismilda, V L; Alenova, A H; Ismailov, S S; Momynaliev, K T

    2014-02-01

    The human leukocyte antigen (HLA) system has a major role in the regulation of the immune response as it is involved in the defense against pathogens. Some studies have reported that HLA class II genes play a strong role in severe cases of pulmonary tuberculosis (PTB) in several populations. Thus the aim of the study was to compare the HLA-class II alleles of patients with drug resistant tuberculosis with those of healthy controls from the same ethnic group in Kazakhstan. The aim of the present study was to evaluate the correlation of HLA-class II alleles by patients with drug resistant tuberculosis and the healthy controls of the same ethnic group in Kazakhstan. The HLA-class II alleles of 76 patients with tuberculosis (TB) and 157 healthy volunteers were investigated using sequence-based typing (SBT)-method. HLA-DQA1*03:02 HLA-DRB1*08:01 and DRB1*08:03 occurred more frequently (P = 0.05) in patients with drug resistant tuberculosis than in controls. We observed a possible association between certain HLA alleles and TB that are specific for the Kazakh population. Further studies are needed to confirm our findings using a larger number of patients with drug resistant tuberculosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America.

    Science.gov (United States)

    Lol, Juan C; Castellanos, María E; Liebman, Kelly A; Lenhart, Audrey; Pennington, Pamela M; Padilla, Norma R

    2013-09-18

    Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene. The aim of this work was to characterize the homologous kdr region of the voltage-gated sodium channel gene in An. albimanus and to conduct a preliminary retrospective analysis of field samples collected in the 1990's, coinciding with a time of intense pyrethroid application related to agricultural and public health insect control in the region. Degenerate primers were designed to amplify the homologous kdr region in a pyrethroid-susceptible laboratory strain (Sanarate) of An. albimanus. Subsequently, a more specific primer pair was used to amplify and sequence the region that contains the 1014 codon associated with pyrethroid resistance in other Anopheles spp. (L1014F, L1014S or L1014C). Direct sequencing of the PCR products confirmed the presence of the susceptible kdr allele in the Sanarate strain (L1014) and the presence of homozygous-resistant kdr alleles in field-collected individuals from Mexico (L1014F), Nicaragua (L1014C) and Costa Rica (L1014C). For the first time, the kdr region in An. albimanus is described. Furthermore, molecular evidence suggests the presence of kdr-type resistance in field-collected An. albimanus in Mesoamerica in the 1990s. Further research is needed to conclusively determine an association between the genotypes and resistant phenotypes, and to what extent they may compromise current vector control efforts.

  2. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region

    Directory of Open Access Journals (Sweden)

    Keokenchanh Kalouna

    2010-07-01

    Full Text Available Abstract Background In the Mekong region (Vietnam, Cambodia and Laos, a large investigation was conducted to assess the susceptibility of Anopheles species against DDT and pyrethroids. In this study, the resistance status of the potential malaria vectors An. vagus, An. sinensis, An. paraliae and An. peditaeniatus was assessed. Methods Bioassays were performed on field collected unfed female mosquitoes using the standard WHO susceptibility tests. In addition, the DIIS6 region of the para-type sodium channel gene was amplified and sequenced and four allele-specific PCR assays were developed to assess the kdr frequencies. Results In Southern Vietnam all species were DDT and pyrethroid resistant, which might suggest the presence of a kdr resistance mechanism. Sequence-analysis of the DIIS6 region of the para-type sodium channel gene revealed the presence of a L1014S kdr mutation in An. vagus, An. sinensis and An. paraliae. In An. peditaeniatus, a low frequency L1014S kdr mutation was found in combination with a high frequency L1014F kdr mutation. For pyrethroids and DDT, no genotypic differentiation was found between survivors and non-survivors for any of these species. In the two widespread species, An. vagus and An. sinensis, kdr was found only in southern Vietnam and in Cambodia near the Vietnamese border. Conclusions Different levels of resistance were measured in Laos, Cambodia and Vietnam. The kdr mutation in different Anopheles species seems to occur in the same geographical area. These species breed in open agricultural lands where malaria endemicity is low or absent and vector control programs less intensive. It is therefore likely that the selection pressure occurred on the larval stages by insecticides used for agricultural purposes.

  3. Towards allele mining of bacterial wilt disease resistance gene in tomato

    International Nuclear Information System (INIS)

    Galvez, H.F.; Narciso, J.O.; Opina, N.L.; Canama, A.O.; Colle, M.G.; Latiza, M.A.; Caspillo, C.L.; Bituin, J.L.; Frankie, R.B.; Hautea, D.M.

    2005-01-01

    Tomato (Lycopersicon esculentum Mill.) is the most important vegetable commodity of the Philippines. Bacterial wilt caused by Ralstonia solanacearum is one serious constraint in tomato production particularly during off-season planting. A major locus derived from H7996 that confers resistance to bacterial wilt has been mapped in the tomato genome. To validate the biological function of the resistance locus and generate multiple allele -mimics-, targeted mutation was induced in tomato using gamma ray and ethyl methane sulfonate (EMS) mutagens. Suitable mutagen treatment was established by evaluating a wide range of mutagen doses/concentrations for a) percent seed germination, b) reduction in plant height, and c) loss of resistance. Six hundred Gy and 1.0% EMS were identified to generate large M1 families of H7996. From 10,000 initial seeds treated with either gamma ray or EMS, a total of 3,663 M1 plants were generated. M2 seeds were harvested from all surviving M1 plants. Several DNA markers have been resourced and are being developed specific to the bacterial wilt resistant gene. In the large M2 population, of H7996, both the phenotypic manifestation of bacterial wilt susceptibility and nucleotide changes in the resistance locus will be evaluated. Large M3 families for the different allele series of the bacterial wilt resistance gene will be established for future high throughput TILLING (Targeting Induced Local Lesions in Genomes) analysis in the gene region

  4. Incidence, Spread and Mechanisms of Pyrethroid Resistance in European Populations of the Cabbage Stem Flea Beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Cabbage stem flea beetle (CSFB, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae is a major early season pest of oilseed rape throughout Europe. Pyrethroids have been used for controlling this pest by foliar application, but in recent years control failures have occurred, particularly in Germany due to the evolution of knock-down resistance (kdr. The purpose of this study was to investigate the incidence and spread of pyrethroid resistance in CSFB collected in Germany, Denmark and the United Kingdom during 2014. The level of pyrethroid resistance was measured in adult vial tests and linked to the presence of kdr genotypes.Although kdr (L1014F genotypes are present in all three countries, marked differences in pyrethroid efficacy were found in adult vial tests. Whereas Danish CSFB samples were in general susceptible to recommended label rates, those collected in the UK mostly resist such rates to some extent. Moderately resistant and susceptible samples were found in Germany. Interestingly, some of the resistant samples from the UK did not carry the kdr allele, which is in contrast to German CSFB. Pre-treatment with PBO, prior to exposure to λ-cyhalothrin suggested involvement of metabolic resistance in UK samples.Danish samples were mostly susceptible with very low resistance ratios, while most other samples showed reduced sensitivity in varying degrees. Likewise, there was a clear difference in the presence of the kdr mutation between the three countries. In the UK, the presence of kdr genotypes did not always correlate well with resistant phenotypes. This appears to be primarily conferred by a yet undisclosed, metabolic-based mechanism. Nevertheless our survey disclosed an alarming trend concerning the incidence and spread of CSFB resistance to pyrethroids, which is likely to have negative impacts on oilseed production in affected regions due to the lack of alternative modes of action for resistance management purposes.

  5. Promoter variants of Xa23 alleles affect bacterial blight resistance and evolutionary pattern.

    Science.gov (United States)

    Cui, Hua; Wang, Chunlian; Qin, Tengfei; Xu, Feifei; Tang, Yongchao; Gao, Ying; Zhao, Kaijun

    2017-01-01

    Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most important bacterial disease in rice (Oryza sativa L.). Our previous studies have revealed that the bacterial blight resistance gene Xa23 from wild rice O. rufipogon Griff. confers the broadest-spectrum resistance against all the naturally occurring Xoo races. As a novel executor R gene, Xa23 is transcriptionally activated by the bacterial avirulence (Avr) protein AvrXa23 via binding to a 28-bp DNA element (EBEAvrXa23) in the promoter region. So far, the evolutionary mechanism of Xa23 remains to be illustrated. Here, a rice germplasm collection of 97 accessions, including 29 rice cultivars (indica and japonica) and 68 wild relatives, was used to analyze the evolution, phylogeographic relationship and association of Xa23 alleles with bacterial blight resistance. All the ~ 473 bp DNA fragments consisting of promoter and coding regions of Xa23 alleles in the germplasm accessions were PCR-amplified and sequenced, and nine single nucleotide polymorphisms (SNPs) were detected in the promoter regions (~131 bp sequence upstream from the start codon ATG) of Xa23/xa23 alleles while only two SNPs were found in the coding regions. The SNPs in the promoter regions formed 5 haplotypes (Pro-A, B, C, D, E) which showed no significant difference in geographic distribution among these 97 rice accessions. However, haplotype association analysis indicated that Pro-A is the most favored haplotype for bacterial blight resistance. Moreover, SNP changes among the 5 haplotypes mostly located in the EBE/ebe regions (EBEAvrXa23 and corresponding ebes located in promoters of xa23 alleles), confirming that the EBE region is the key factor to confer bacterial blight resistance by altering gene expression. Polymorphism analysis and neutral test implied that Xa23 had undergone a bottleneck effect, and selection process of Xa23 was not detected in cultivated rice. In addition, the Xa23 coding region was found highly

  6. A novel Phakopsora pachyrhizi resistance allele (Rpp) contributed by PI 567068A.

    Science.gov (United States)

    King, Zachary R; Harris, Donna K; Pedley, Kerry F; Song, Qijian; Wang, Dechun; Wen, Zixiang; Buck, James W; Li, Zenglu; Boerma, H Roger

    2016-03-01

    The Rpp6 locus of PI 567102B was mapped from 5,953,237 to 5,998,461 bp (chromosome 18); and a novel allele at the Rpp6 locus or tightly linked gene Rpp[PI567068A] of PI 567068A was mapped from 5,998,461 to 6,160,481 bp. Soybean rust (SBR), caused by the obligate, fungal pathogen Phakopsora pachyrhizi is an economic threat to soybean production, especially in the Americas. Host plant resistance is an important management strategy for SBR. The most recently described resistance to P. pachyrhizi (Rpp) gene is Rpp6 contributed by PI 567102B. Rpp6 was previously mapped to an interval of over four million base pairs on chromosome 18. PI 567068A was recently demonstrated to possess a resistance gene near the Rpp6 locus, yet PI 567068A gave a differential isolate reaction to several international isolates of P. pachyrhizi. The goals of this research were to fine map the Rpp6 locus of PI 567102B and PI 567068A and determine whether or not PI 567068A harbors a novel Rpp6 allele or another allele at a tightly linked resistance locus. Linkage mapping in this study mapped Rpp6 from 5,953,237 to 5,998,461 bp (LOD score of 58.3) and the resistance from PI 567068A from 5,998,461 to 6,160,481 bp (LOD score of 4.4) (Wm82.a1 genome sequence). QTL peaks were 139,033 bp apart from one another as determined by the most significant SNPs in QTL mapping. The results of haplotype analysis demonstrated that PI 567102B and PI 567068A share the same haplotype in the resistance locus containing both Rpp alleles, which was designated as the Rpp6/Rpp[PI567068A] haplotype. The Rpp6/Rpp[PI567068A] haplotype identified in this study can be used as a tool to rapidly screen other genotypes that possess a Rpp gene(s) and detect resistance at the Rpp6 locus in diverse germplasm.

  7. Detection of allelic variability at wheat loci associated with resistance to Fusarium ssp. using molecular markers - microsatellites

    Directory of Open Access Journals (Sweden)

    Kačavenda Dragana

    2006-01-01

    Full Text Available Fusarium head blight (FHB, caused primarily by Fusarium graminearum, is one of the most important fungal diseases of wheat. It may cause severe yield and quality losses in humid and warm conditions. However, the most important concern is the mycotoxin contamination of grain. Breeding of cultivars resistant to FHB is the best way to control the disease. In order to examine possibilities for application molecular markers - microsatellites in selecting for resistance to FHB, allelic variability at wheat loci associated with resistance to Fusarium ssp. was saidied using two microsatellite markers: GWM533 (chromosome 3B and GWM156 (chromosome 5A. Detection of the allelic polymorphism was conducted compared to the cultivars Sumai 3, Frontana and Amigo which are widely used as FHB resistance sources. In 23 French genotypes and 25 genotypes developed at the Institute of Field and Vegetable Crops in Novi Sad, 5 alleles (GWM533 and 6 alleles (GWM156 were detected. In 15 genotypes at loci GWM533 and 10 genotypes at loci GWM156 same allele was detected as in some of standard cultivars. Obtained results should be evaluated at field experiments in order to confirm corelation between presence of specific allele and resistance to fusarium head blight and in order to examine importance of alleles that are not detected in standard cultivars.

  8. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib.

    Science.gov (United States)

    Vasudevan, Kumar; Vera Cruz, Casiana M; Gruissem, Wilhelm; Bhullar, Navreet K

    2016-01-01

    Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level.

  9. Alarmingly High Segregation Frequencies of Quinolone Resistance Alleles within Human and Animal Microbiomes Are Not Explained by Direct Clinical Antibiotic Exposure

    Science.gov (United States)

    Field, Wesley; Hershberg, Ruth

    2015-01-01

    Antibiotic resistance poses a major threat to human health. It is therefore important to characterize the frequency of resistance within natural bacterial environments. Many studies have focused on characterizing the frequencies with which horizontally acquired resistance genes segregate within natural bacterial populations. Yet, very little is currently understood regarding the frequency of segregation of resistance alleles occurring within the housekeeping targets of antibiotics. We surveyed a large number of metagenomic datasets extracted from a large variety of host-associated and non host-associated environments for such alleles conferring resistance to three groups of broad spectrum antibiotics: streptomycin, rifamycins, and quinolones. We find notable segregation frequencies of resistance alleles occurring within the target genes of each of the three antibiotics, with quinolone resistance alleles being the most frequent and rifamycin resistance alleles being the least frequent. Resistance allele frequencies varied greatly between different phyla and as a function of environment. The frequency of quinolone resistance alleles was especially high within host-associated environments, where it averaged an alarming ∼40%. Within host-associated environments, resistance to quinolones was most often conferred by a specific resistance allele. High frequencies of quinolone resistance alleles were also found within hosts that were not directly treated with antibiotics. Therefore, the high segregation frequency of quinolone resistance alleles occurring within the housekeeping targets of antibiotics in host-associated environments does not seem to be the sole result of clinical antibiotic usage. PMID:26019163

  10. Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Weill Mylène

    2008-04-01

    Full Text Available Abstract Background The evolutionary dynamics of xenobiotic resistance depends on how resistance mutations influence the fitness of their bearers, both in the presence and absence of xenobiotic selection pressure. In cases of multiple resistance, these dynamics will also depend on how individual resistance mutations interact with one another, and on the xenobiotics applied against them. We compared Culex quinquefasciatus mosquitoes harbouring two resistance alleles ace-1R and KdrR (conferring resistance to carbamate and pyrethroid insecticides, respectively to mosquitoes bearing only one of the alleles, or neither allele. Comparisons were made in environments where both, only one, or neither type of insecticide was present. Results Each resistance allele was associated with fitness costs (survival to adulthood in an insecticide-free environment, with the costs of ace-1R being greater than for KdrR. However, there was a notable interaction in that the costs of harbouring both alleles were significantly less than for harbouring ace-1R alone. The two insecticides combined in an additive, synergistic and antagonistic manner depending on a mosquito's resistance status, but were not predictable based on the presence/absence of either, or both mutations. Conclusion Insecticide resistance mutations interacted to positively or negatively influence a mosquito's fitness, both in the presence or absence of insecticides. In particular, the presence of the KdrR mutation compensated for the costs of the ace-1R mutation in an insecticide-free environment, suggesting the strength of selection in untreated areas would be less against mosquitoes resistant to both insecticides than for those resistant to carbamates alone. Additional interactions suggest the dynamics of resistance will be difficult to predict in populations where multiple resistance mutations are present or that are subject to treatment by different xenobiotics.

  11. Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles.

    Science.gov (United States)

    Garcia, Alexandre; Calvo, Eberson Sanches; de Souza Kiihl, Romeu Afonso; Harada, Arlindo; Hiromoto, Dario Minoru; Vieira, Luiz Gonzaga Esteves

    2008-08-01

    Soybean production in South and North America has recently been threatened by the widespread dissemination of soybean rust (SBR) caused by the fungus Phakopsora pachyrhizi. Currently, chemical spray containing fungicides is the only effective method to control the disease. This strategy increases production costs and exposes the environment to higher levels of fungicides. As a first step towards the development of SBR resistant cultivars, we studied the genetic basis of SBR resistance in five F2 populations derived from crossing the Brazilian-adapted susceptible cultivar CD 208 to each of five different plant introductions (PI 200487, PI 200526, PI 230970, PI 459025, PI 471904) carrying SBR-resistant genes (Rpp). Molecular mapping of SBR-resistance genes was performed in three of these PIs (PI 459025, PI 200526, PI 471904), and also in two other PIs (PI 200456 and 224270). The strategy mapped two genes present in PI 230970 and PI 459025, the original sources of Rpp2 and Rpp4, to linkage groups (LG) J and G, respectively. A new SBR resistance locus, rpp5 was mapped in the LG-N. Together, the genetic and molecular analysis suggested multiple alleles or closely linked genes that govern SBR resistance in soybean.

  12. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea.

    Science.gov (United States)

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea . Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene ( BenA ), H272 and 272Y of the Succinate dehydrogenase iron-sulfur subunit gene ( SdhB) , I365 and 365S of the putative osmosensor histidine kinase gene ( BcOS1 ), and F412 and 412S of the 3-ketoreductase gene ( erg27 ). This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA- E198, BenA- 198A, SdhB- H272, SdhB- 272Y, BcOS1- I365, BcOS1- 365S, erg27 -F412, and erg27 -412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA- E198A, BcOS1- I365S, and erg27 -F412S, and was 4.5% for SdhB- H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA , SdhB , BcOS1 , and erg27 .

  13. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-09-01

    Full Text Available A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA, H272 and 272Y of the Succinate dehydrogenase iron–sulfur subunit gene (SdhB, I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1, and F412 and 412S of the 3-ketoreductase gene (erg27. This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA-E198, BenA-198A, SdhB-H272, SdhB-272Y, BcOS1-I365, BcOS1-365S, erg27-F412, and erg27-412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA-E198A, BcOS1-I365S, and erg27-F412S, and was 4.5% for SdhB-H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA, SdhB, BcOS1, and erg27.

  14. Progressive Development of PTH Resistance in Patients With Inactivating Mutations on the Maternal Allele of GNAS.

    Science.gov (United States)

    Usardi, Alessia; Mamoune, Asmaa; Nattes, Elodie; Carel, Jean-Claude; Rothenbuhler, Anya; Linglart, Agnès

    2017-06-01

    Parathormone (PTH) resistance is characterized by hypocalcaemia, hyperphosphatemia, and elevated PTH in the absence of vitamin D deficiency. Pseudohypoparathyroidism type 1A [PHP1A, or inactivating parathormone (PTH)/PTHrp signaling disorder 2, according to the new classification (iPPSD2)], is caused by mutations in the maternal GNAS allele. To assess PTH resistance over time in 20 patients affected by iPPSD2 (PHP1A), diagnosed because of family history, ectopic ossification, or short stature, and carrying a GNAS mutation. We gathered retrospective data for calcium, phosphate, thyrotropin (TSH), and PTH levels at regular intervals. PTH infusion testing (teriparatide) was performed in 1 patient. Patients were diagnosed at a mean age of 3.9 years and had a mean follow-up of 2 years. TSH resistance was already present at diagnosis in all patients (TSH, 13.3 ± 9.0 mIU/L). Over time, PTH levels increased (179 to 306 pg/mL; P PTH infusion, similar to that of controls, at 7 months of age, but an impaired response at 4 years of age. In patients with iPPSD2 (PHP1A), PTH resistance and hypocalcemia develop over time. These findings highlight the importance of screening for maternal GNAS mutations in the presence of ectopic ossifications or family history, even in the absence of PTH resistance and hypocalcemia. The follow-up of these patients should include regular assessments of calcium, phosphate, and PTH levels. Copyright © 2017 Endocrine Society

  15. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Kerah-Hinzoumbé Clément

    2009-09-01

    Full Text Available Abstract Background Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance

  16. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline.

    Science.gov (United States)

    Lahiri, Sushmita D; Alm, Richard A

    2016-01-01

    Infections caused by MRSA continue to cause significant morbidity worldwide. Ceftaroline (the active metabolite of the prodrug ceftaroline fosamil) is a cephalosporin that possesses activity against MRSA due to its having high affinity for PBP2a while maintaining activity against the other essential PBPs. PBP2a sequence variations, including some outside of the transpeptidase binding pocket, impact ceftaroline susceptibility. This study evaluated the potential of ceftaroline to select for resistant Staphylococcus aureus clones in isolates containing a variety of PBP2a alleles and with a range of ceftaroline MIC values from different MLST lineages. Direct resistance selection experiments were performed by plating 20 S. aureus isolates (18 MRSA and 2 MSSA) on agar plates containing increasing concentrations of ceftaroline. Colonies that emerged were tested by standard broth microdilution for changes in ceftaroline susceptibility and genetically characterized. The frequency of spontaneous resistance to ceftaroline was low for all isolates and, although resistant variants were not obtained on plates containing ≥4-fold the MIC of ceftaroline, six MRSA isolates had a small number of colonies emerge on plates containing 2-fold the MIC of ceftaroline and had a 2- to 8-fold elevation of the ceftaroline MIC, while also impacting the MIC of methicillin compared with the parental isolate. Additional PBP2a mutations located in the ceftaroline-binding pocket, Y446N or A601S, were observed in several of the resistant isolates. These studies demonstrate that there is a low risk of generating ceftaroline-resistant MRSA isolates, which appears independent of any pre-existing variation in the PBP2a protein sequence or initial ceftaroline MIC. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Hitchhiking and Selective Sweeps of Plasmodium falciparum Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central Africa▿ †

    Science.gov (United States)

    McCollum, Andrea M.; Basco, Leonardo K.; Tahar, Rachida; Udhayakumar, Venkatachalam; Escalante, Ananias A.

    2008-01-01

    Sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum is encoded by a number of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes. Here, we have characterized point mutations in dhfr and dhps and microsatellite loci around dhfr on chromosome 4 and dhps on chromosome 8 as well as neutral markers on chromosomes 2 and 3 in 332 samples from Yaoundé, Cameroon. The triple mutant dhfr haplotype that originated in Southeast Asia is the most predominant in this sample set, but we also find additional independent haplotypes at low frequency and an incipient process of genetic differentiation among alleles of Southeast Asian origin. As reported for other African populations, we find evidence of a selective sweep for resistant dhfr mutants in this Cameroonian population due to drug selection. Although we find evidence for a selective sweep in dhps mutants associated with SP resistance, the dynamics of dhps mutants appear different than those observed for dhfr mutants. Overall, our results yield support for the use of microsatellite markers to track resistant parasites; however, the detection of resistant dhfr alleles in low frequency, the evidence of divergence among dhfr alleles that share a common evolutionary origin, and the distinct dynamics of resistant dhps alleles emphasize the importance of comprehensive, population-based investigations to evaluate the effects of drug selection on parasite populations. PMID:18765692

  18. Survey of Plasmodium falciparum multidrug resistance-1 and chloroquine resistance transporter alleles in Haiti.

    Science.gov (United States)

    Elbadry, Maha A; Existe, Alexandre; Victor, Yves S; Memnon, Gladys; Fukuda, Mark; Dame, John B; Yowell, Charles A; Okech, Bernard A

    2013-11-19

    In Haiti where chloroquine (CQ) is widely used for malaria treatment, reports of resistance are scarce. However, recent identification of CQ resistance genotypes in one site is suggestive of an emerging problem. Additional studies are needed to evaluate genetic mutations associated with CQ resistance, especially in the Plasmodium falciparum multi-drug resistance-1 gene (pfmdr1) while expanding the already available information on P. falciparum CQ transporter gene (pfcrt) in Haiti. Blood samples were collected on Whatman filter cards (FTA) from eight clinics spread across Haiti. Following the confirmation of P. falciparum in the samples, PCR protocols were used to amplify regions of pfmdr1and pfcrt codons of interest, (86, 184, 1034, 1042, and 1246) and (72-76), respectively. Sequencing and site-specific restriction enzyme digestions were used to analyse these DNA fragments for the presence of single nucleotide polymorphisms (SNPs) known to confer resistance to anti-malarial drugs. P. falciparum infection was confirmed in160 samples by amplifying a segment of the P. falciparum 18S small subunit ribosomal RNA gene (pfssurrna). The sequence of pfmdr1 in 54 of these samples was determined between codons 86,184 codons 1034, 1042 and 1246. No sequence differences from that of the NF54 clone 3D7 were found among the 54 samples except at codon 184, where a non-silent mutation was found in all samples predicted to alter the amino acid sequence replacing tyrosine with phenylalanine (Y184F). This altered sequence was also confirmed by restriction enzyme digestion. The sequence of pfmdr1 at codons 86, 184, 1034 and 1042 encoded the NFSN haplotype. The sequence of pfcrt codons 72-76 from 79 samples was determined and found to encode CVMNK, consistent with a CQ sensitive genotype. The presence of the Y184F mutation in pfmdr1 of P. falciparum parasites in Haiti may have implications for resistance to antimalarial drugs. The absence of mutation in pfcrt at codon 76 among 79

  19. Frequency of Cry1F Non-Recessive Resistance Alleles in North Carolina Field Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Guoping Li

    Full Text Available Fall armyworm, Spodoptera frugiperda (J.E. Smith (Lepidoptera: Noctuidae, is a target species of transgenic corn (Zea mays L. that expresses single and pyramided Bacillus thuringiensis (Bt toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring.

  20. Frequency of Cry1F Non-Recessive Resistance Alleles in North Carolina Field Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Li, Guoping; Reisig, Dominic; Miao, Jin; Gould, Fred; Huang, Fangneng; Feng, Hongqiang

    2016-01-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) that expresses single and pyramided Bacillus thuringiensis (Bt) toxin. In 2014, S. frugiperda were collected from a light trap in North Carolina, and a total of 212 F1/F2 isofemale lines of S. frugiperda were screened for resistance to Bt and non-Bt corn. All of the 212 isolines were susceptible to corn tissue expressing Cry1A.105 + Cry2Ab, Cry1F + Cry1A.105 + Cry2Ab, and Cry1F + Cry1Ab + Vip3Aa20. Growth rate bioassays were performed to isolate non-recessive Bt resistance alleles. Seven individuals out of the 212 isofemale lines carried major non-recessive alleles conferring resistance to Cry1F. A pooled colony was created from the seven individuals. This colony was 151.21 times more resistant to Cry1F than a known-susceptible population and was also resistant to Cry1A.105, but was not resistant to Cry2Ab and Vip3Aa20. The results demonstrate that field populations of S. frugiperda collected from North Carolina are generally susceptible to Cry1F, but that some individuals carry resistant alleles. The data generated in this study can be used as baseline data for resistance monitoring. PMID:27119741

  1. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Nebenzahl-Guimaraes, Hanna; Jacobson, Karen R; Farhat, Maha R; Murray, Megan B

    2014-02-01

    Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype. We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype. We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class. This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance.

  2. Multiple-Insecticide Resistance and Classic Gene Mutations to Japanese Encephalitis Vector Culex tritaeniorhynchus from China.

    Science.gov (United States)

    Wu, Zhi-Ming; Chu, Hong-Liang; Wang, Gang; Zhu, Xiao-Juan; Guo, Xiao-Xia; Zhang, Ying-Mei; Xing, Dan; Yan, Ting; Zhao, Ming-Hui; Dong, Yan-De; Li, Chun-Xiao; Zhao, Tong-Yan

    2016-06-01

    Widespread resistance of insect pests to insecticides has been widely reported in China and there is consequently an urgent need to adjust pest management strategies appropriately. This requires detailed information on the extent and causes of resistance. The aim of the present study was to investigate levels of resistance to 5 insecticides among 12 strains of Culex tritaeniorhynchus, a major vector of Japanese encephalitis in China. Resistance to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur were measured using larval bioassays. The allelic frequency of knockdown resistance (kdr) and acetylcholinesterase (AChE) mutations were determined in all strains. Larval bioassay results indicated that the field strains collected from different sites were resistant to deltamethrin, beta-cypermethrin, permethrin, dichlorvos, and propoxur, with resistance ratio values ranging from 1.70- to 71.98-fold, 7.83- to 43.07-fold, 3.54- to 40.03-fold, 291.85- to 530.89-fold, and 51.32- to 108.83-fold, respectively. A polymerase chain reaction amplification of specific alleles method for individual was developed to detect genotypes of the AChE gene mutation F455W in Cx. tritaeniorhynchus. The frequency of the AChE gene mutation F455W was 100.00% in all strains, making this mutation of no value as a marker of resistance to organophosphorous and carbamate pesticides in Cx. tritaeniorhynchus in China. The kdr allele was present in all strains at frequencies of 10.00-29.55%. Regression analysis indicated a significant correlation between kdr allele frequencies and levels of resistance to deltamethrin, beta-cypermethrin, and permethrin. These results highlight the need to monitor and map insecticide resistance in Cx. tritaeniorhynchus and to adjust pesticide use to minimize the development of resistance in these mosquitoes.

  3. Pedigree-Based Analysis in a Multiparental Population of Octoploid Strawberry Reveals QTL Alleles Conferring Resistance to Phytophthora cactorum

    Science.gov (United States)

    Mangandi, Jozer; Verma, Sujeet; Osorio, Luis; Peres, Natalia A.; van de Weg, Eric; Whitaker, Vance M.

    2017-01-01

    Understanding the genetic architecture of traits in breeding programs can be critical for making genetic progress. Important factors include the number of loci controlling a trait, allele frequencies at those loci, and allele effects in breeding germplasm. To this end, multiparental populations offer many advantages for quantitative trait locus (QTL) analyses compared to biparental populations. These include increased power for QTL detection, the ability to sample a larger number of segregating loci and alleles, and estimation of allele effects across diverse genetic backgrounds. Here, we investigate the genetic architecture of resistance to crown rot disease caused by Phytophthora cactorum in strawberry (Fragaria × ananassa), using connected full-sib families from a breeding population. Clonal replicates of > 1100 seedlings from 139 full-sib families arising from 61 parents were control-inoculated during two consecutive seasons. Subgenome-specific single nucleotide polymorphism (SNP) loci were mapped in allo-octoploid strawberry (2n = 8 × = 56), and FlexQTL software was utilized to perform a Bayesian, pedigree-based QTL analysis. A major locus on linkage group (LG) 7D, which we name FaRPc2, accounts for most of the genetic variation for resistance. Four predominant SNP haplotypes were detected in the FaRPc2 region, two of which are strongly associated with two different levels of resistance, suggesting the presence of multiple resistance alleles. The phenotypic effects of FaRPc2 alleles across trials and across numerous genetic backgrounds make this locus a highly desirable target for genetic improvement of resistance in cultivated strawberry. PMID:28592652

  4. Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1

    Directory of Open Access Journals (Sweden)

    Pengtao eMa

    2016-04-01

    Full Text Available Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, ten SNP-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal and Xbwm25 (proximal at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.

  5. Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato

    Directory of Open Access Journals (Sweden)

    Zhao Baimei

    2015-07-01

    Full Text Available Three crosses, Hawaii7981 × PI128216, Hawaii7981 × LA1589, and PI128216 × LA1589, were made to develop F2 populations for testing allelism among three genes Xv3, Rx4, and RxLA1589 conferring resistance to bacterial spot caused by Xanthomonas perforans race T3 in tomato. Each population consisted of 535–1 655 individuals. An infiltration method was used to inoculate the leaves of the parental and F2 plants as well as the susceptible control OH88119 for detecting hypersensitive resistance (HR. The results showed that all the tomato plants except OH88119 had HR to race T3, indicating that Xv3, Rx4, and RxLA1589 were allelic genes. Genomic DNA fragments of the Rx4 alleles from Hawaii7981, PI128216, and LA1589 were amplified using gene-specific primers and sequenced. No sequence variation was observed in the coding region of Rx4 in the three resistant lines. Based on the published map positions of these loci as well as the allelic tests and sequence data obtained in this study, we speculated that Xv3, Rx4, and RxLA1589 were the same gene. The results will provide useful information for understanding the mechanism of resistance to race T3 and developing resistant tomato varieties.

  6. Allelic polymorphism of Ovar-DRB1 exon2 gene and parasite resistance in two dairy sheep breeds

    Directory of Open Access Journals (Sweden)

    Stavros Spetsarias

    2016-02-01

    Full Text Available The Ovar-DRB1 gene locus is one of the most polymorphic genes of the Major Histocompatibility Complex (Ovar-MHC and holds a functional role to antigen presentation. The aim of this study was: a to describe the Ovar-DRB1 locus variability in two dairy Greek sheep breeds and b to investigate associations between this variability with resistance to gastrointestinal parasitosis. Blood and faecal samples were collected from 231 and 201 animals of Arta and Kalarrytiko breeds, respectively. The identification of alleles was performed using the sequence–base method. Faecal egg counting (FEC of the gastrointestinal parasites and measures of blood plasma pepsinogen levels were performed in order to evaluate parasitological parameters. From this study in the overall examined animals, thirty-nine Ovar-DRB1 alleles were identified, among them, ten new alleles, reported for the first time in the literature. In Arta breed a total of twenty-four alleles were found. Among the detected alleles, ten were breed specific and five were new. Regarding the Kalarrytiko breed, twenty-nine alleles were found, fifteen of them were unique and nine were new. The studied breeds differed in their allelic profile, with only 12 common from the total of 134 different recorded genotypes. A higher number of animals with high parasitic load and high plasma pepsinogen values were found in Kalarrytiko. Associations between Ovar-DRB1 alleles with FEC values were found with certain heterozygous genotypes to present significantly reduced FEC values. The large number of detected alleles with low frequencies and the fact that the majority of animals were heterozygous, make hard to find strong associations

  7. Genetic mapping, marker assisted selection and allelic relationships for the Pu 6 gene conferring rust resistance in sunflower.

    Science.gov (United States)

    Bulos, Mariano; Vergani, Pablo Nicolas; Altieri, Emiliano

    2014-09-01

    Rust resistance in the sunflower line P386 is controlled by Pu 6 , a gene which was reported to segregate independently from other rust resistant genes, such as R 4 . The objectives of this work were to map Pu 6 , to provide and validate molecular tools for its identification, and to determine the linkage relationship of Pu 6 and R 4 . Genetic mapping of Pu 6 with six markers covered 24.8 cM of genetic distance on the lower end of linkage Group 13 of the sunflower consensus map. The marker most closely linked to Pu 6 was ORS316 at 2.5 cM in the distal position. ORS316 presented five alleles when was assayed with a representative set of resistant and susceptible lines. Allelism test between Pu 6 and R 4 indicated that both genes are linked at a genetic distance of 6.25 cM. This is the first confirmation based on an allelism test that at least two members of the R adv /R 4 /R 11 / R 13a /R 13b /Pu 6 cluster of genes are at different loci. A fine elucidation of the architecture of this complex locus will allow designing and constructing completely new genomic regions combining genes from different resistant sources and the elimination of the linkage drag around each resistant gene.

  8. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces.

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  9. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L. Landraces.

    Directory of Open Access Journals (Sweden)

    Suli Sun

    Full Text Available Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L. landraces resistant to E. pisi, and to characterize the resistance gene(s at the er1 locus in the resistant landraces, and to develop functional marker(s specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%, 4 (1.24% and 17 (5.28% landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  10. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene.

    Science.gov (United States)

    Endersby, N M; Viduka, K; Baxter, S W; Saw, J; Heckel, D G; McKechnie, S W

    2011-08-01

    Populations of Plutella xylostella, extending over 3800 km in southern Australia, show no genetic structure as assessed by microsatellite markers; yet outbreaks of pyrethroid resistance occur sporadically in cropping areas. Since mutations in the para voltage-gated sodium channel gene have been implicated in pyrethroid resistance, we looked for DNA sequence variation at this target among Australian moths. We found two resistance mutations previously reported for this species (L1014F and T929I), as well as a novel substitution (F1020S). Of the eight possible haplotypes formed by combinations of these three biallelic polymorphisms, only four were found in Australian populations: the wild-type allele (w), the kdr mutation allele (kdr) with only L1014F, the super-kdr-like combination of L1014F and T929I (skdrl), and the crashdown allele with only F1020S (cdr). Comparison of genotype frequencies among survivors of permethrin assays with those from untreated controls identified three resistant genotypes: skdrl homozygotes, cdr homozygotes and the corresponding heterozygote, cdr/skrdl - the heterozygote being at least as resistant as either homozygote. Spatial heterogeneity of allele frequencies was conspicuous, both across the continent and among local collections, consistent with reported spatial heterogeneity of pyrethroid resistance. Further, high resistance samples were sometimes associated with high frequency of cdr, sometimes high frequency of skdrl, or sometimes with a high combined cdr+skdrl frequency. The skdrl and cdr alleles explain a high proportion of the Australia-wide resistance variation. These data add to evidence that nerve insensitivity by mutations in the para-sodium channel gene is a common pyrethroid resistance mechanism in P. xylostella.

  11. Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R gene.

    Science.gov (United States)

    Arora, D; Gross, T; Brueggeman, R

    2013-11-01

    A highly virulent form of the wheat stem rust pathogen Puccinia graminis f. sp. tritici race TTKSK is virulent on both wheat and barley, presenting a major threat to world food security. The recessive and temperature-sensitive rpg4 gene is the only effective source of resistance identified in barley (Hordeum vulgare) against P. graminis f. sp. tritici race TTKSK. Efforts to position clone rpg4 localized resistance to a small interval on barley chromosome 5HL, tightly linked to the rye stem rust (P. graminis f. sp. secalis) resistance (R) gene Rpg5. High-resolution genetic analysis and post-transcriptional gene silencing of the genes at the rpg4/Rpg5 locus determined that three tightly linked genes (Rpg5, HvRga1, and HvAdf3) are required together for rpg4-mediated wheat stem rust resistance. Alleles of the three genes were analyzed from a diverse set of 14 domesticated barley lines (H. vulgare) and 8 wild barley accessions (H. vulgare subsp. spontaneum) to characterize diversity that may determine incompatibility (resistance). The analysis determined that HvAdf3 and HvRga1 code for predicted functional proteins that do not appear to contain polymorphisms determining the compatible (susceptible) interactions with the wheat stem rust pathogen and were expressed at the transcriptional level from both resistant and susceptible barley lines. The HvAdf3 alleles shared 100% amino acid identity among all 22 genotypes examined. The P. graminis f. sp. tritici race QCCJ-susceptible barley lines with HvRga1 alleles containing the limited amino acid substitutions unique to the susceptible varieties also contained predicted nonfunctional rpg5 alleles. Thus, susceptibility in these lines is likely due to the nonfunctional RPG5 proteins. The Rpg5 allele analysis determined that 9 of the 13 P. graminis f. sp. tritici race QCCJ-susceptible barley lines contain alleles that either code for predicted truncated proteins as the result of a single nucleotide substitution, resulting in a

  12. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, M.; Møller, I.S.; Tulinius, G.

    2007-01-01

    was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116......Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps...... to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV...

  13. Association of kinase insert domain-containing receptor (KDR gene polymorphism/ haplotypes with recurrent spontaneous abortion and genetic structure

    Directory of Open Access Journals (Sweden)

    Shiva Shahsavari

    2015-12-01

    Full Text Available Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA. Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H, and rs2305948 (V297I as well as one tag SNP in the intron region (rs6838752 were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377 was highly linked to tag SNP (rs6838752 (D´ value=0. 214; χ2 = 16.44, p<0. 001. K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.

  14. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2008-04-01

    Full Text Available Abstract Background Knock-down resistance (kdr to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucine-phenylalanine (L1014F, or a leucine-serine (L1014S substitution. In An. gambiae S-form populations, the former mutation appears to be widespread in west Africa and has been recently reported from Uganda, while the latter, originally recorded in Kenya, has been recently found in Gabon, Cameroon and Equatorial Guinea. In M-form populations surveyed to date, only the L1014F mutation has been found, although less widespread and at lower frequencies than in sympatric S-form populations. Methods Anopheles gambiae M- and S-form specimens from 19 sites from 11 west and west-central African countries were identified to molecular form and genotyped at the kdr locus either by Hot Oligonucleotide Ligation Assay (HOLA or allele-specific PCR (AS-PCR. Results The kdr genotype was determined for about 1,000 An. gambiae specimens. The L1014F allele was found at frequencies ranging from 6% to 100% in all S-form samples (N = 628, with the exception of two samples from Angola, where it was absent, and coexisted with the L1014S allele in samples from Cameroon, Gabon and north-western Angola. The L1014F allele was present in M-form samples (N = 354 from Benin, Nigeria, and Cameroon, where both M- and S-forms were sympatric. Conclusion The results represent the most comprehensive effort to analyse the overall distribution of the L1014F and L1014S mutations in An. gambiae molecular forms, and will serve as baseline data for resistance monitoring. The overall picture shows that the emergence and spread of kdr alleles in An. gambiae is a dynamic process and that there is marked intra- and inter-form heterogeneity in resistance allele frequencies. Further studies are needed to

  15. Use of an allele-specific polymerase chain reaction assay to genotype pyrethroid resistant strains of Boophilus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Guerrero, F D; Davey, R B; Miller, R J

    2001-01-01

    A polymerase chain reaction-based assay was developed to detect the presence of a pyrethroid resistance-associated amino acid substitution in Boophilus microplus (Canestrini). The assay uses a simple method for the extraction of genomic DNA from individual larvae and genotypes individuals for the presence of a Phe-->Ile amino acid substitution in the S6 transmembrane segment of domain III of the para-like sodium channel, clearly distinguishing heterozygotes from homozygotes. High frequencies for this amino acid substitution were found in the Corrales and San Felipe strains, which have target site insensitivity mechanisms for pyrethroid resistance. The Caporal resistant strain contained lower yet substantial numbers of amino acid-substituted alleles. Low amino acid substitution frequencies were found in the susceptible reference Gonzales strain and the Coatzacoalcos strain, which has metabolic esterase-mediated pyrethroid resistance. The amino acid substitution was not found in six other strains that were susceptible to pyrethroids.

  16. Low frequency of the scrapile resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed

    NARCIS (Netherlands)

    Acutis, P.L.; Sbaiz, L.; Verburg, F.J.; Riina, M.V.; Ru, G.; Moda, G.; Caramelli, M.; Bossers, A.

    2004-01-01

    Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele

  17. Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates

    Directory of Open Access Journals (Sweden)

    Jayaveeramuthu Nirmala

    2017-10-01

    Full Text Available Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf. Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24. However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13. The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b.

  18. Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates.

    Science.gov (United States)

    Nirmala, Jayaveeramuthu; Saini, Jyoti; Newcomb, Maria; Olivera, Pablo; Gale, Sam; Klindworth, Daryl; Elias, Elias; Talbert, Luther; Chao, Shiaoman; Faris, Justin; Xu, Steven; Jin, Yue; Rouse, Matthew N

    2017-10-05

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13 , additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24 However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1 , to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558 , cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13 The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b . Copyright © 2017 Nirmala et al.

  19. Prevalent HLA Class II Alleles in Mexico City Appear to Confer Resistance to the Development of Amebic Liver Abscess.

    Science.gov (United States)

    Hernández, Eric G; Granados, Julio; Partida-Rodríguez, Oswaldo; Valenzuela, Olivia; Rascón, Edgar; Magaña, Ulises; Escamilla-Tilch, Mónica; López-Reyes, Alberto; Nieves-Ramírez, Miriam; González, Enrique; Morán, Patricia; Rojas, Liliana; Valadez, Alicia; Luna, Alexandra; Estrada, Francisco J; Maldonado, Carmen; Ximénez, Cecilia

    2015-01-01

    Amebiasis is an endemic disease and a public health problem throughout Mexico, although the incidence rates of amebic liver abscess (ALA) vary among the geographic regions of the country. Notably, incidence rates are high in the northwestern states (especially Sonora with a rate of 12.57/100,000 inhabitants) compared with the central region (Mexico City with a rate of 0.69/100,000 inhabitants). These data may be related to host genetic factors that are partially responsible for resistance or susceptibility. Therefore, we studied the association of the HLA-DRB1 and HLA-DQB1 alleles with resistance or susceptibility to ALA in two Mexican populations, one each from Mexico City and Sonora. Ninety ALA patients were clinically diagnosed by serology and sonography. Genomic DNA was extracted from peripheral blood mononuclear cells. To establish the genetic identity of both populations, 15 short tandem repeats (STRs) were analyzed with multiplexed PCR, and the allelic frequencies of HLA were studied by PCR-SSO using LUMINEX technology. The allele frequencies obtained were compared to an ethnically matched healthy control group (146 individuals). We observed that both affected populations differed genetically from the control group. We also found interesting trends in the population from Mexico City. HLA-DQB1*02 allele frequencies were higher in ALA patients compared to the control group (0.127 vs 0.047; p= 0.01; pc= NS; OR= 2.9, 95% CI= 1.09-8.3). The less frequent alleles in ALA patients were HLA-DRB1*08 (0.118 vs 0.238 in controls; p= 0.01; pc= NS; OR= 0.42, 95% CI= 0.19-0.87) and HLA-DQB1*04 (0.109 vs 0.214; p= 0.02; pc= NS; OR= 0.40, 95% CI= 0.20-0.94). The haplotype HLA-DRB1*08/-DQB1*04 also demonstrated a protective trend against the development of this disease (0.081 vs. 0.178; p=0.02; pc=NS; OR= 0.40, 95% CI= 0.16-0.93). These trends suggest that the prevalent alleles in the population of Mexico City may be associated with protection against the development of ALA.

  20. Allelic relationships of anthracnose (Colletotrichum lindemuthianum resistance in the common bean (Phaseolus vulgaris L. cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11

    Directory of Open Access Journals (Sweden)

    Maria Celeste Gonçalves-Vidigal

    2007-01-01

    Full Text Available The genetic resistance of Phaseolus vulgaris L. cultivar Michelite to races 8 and 64 of Colletotrichum lindemuthianum, causal agent of bean anthracnose, was characterized. Crosses were made between Michelite and Mexico 222 cultivars and the F2 population was inoculated with race 64 in order to study the inheritance of resistance to anthracnose in Michelite. The segregation of F2 population fitted in a ratio of 3R:1S, showing the presence of a dominant gene in Michelite gene conditioning resistance to race 64. Allelism tests were conducted with F2 populations derived from crosses between Michelite and AB 136, AND 277, BAT 93, Cornell 49-242, G 2333, Kaboon, Mexico 222, Michigan Dark Red Kidney (MRDK, Ouro Negro, Perry Marrow, PI 207262, TO, TU, and Widusa. All the cultivars (except Mexico 222 were resistant to race 64. While F2 derived from the Michelite x Mexico 222 was inoculated with race 8. Additionally, allelism tests indicated that the gene present in Michelite is independent from Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-7, Co-9 and Co-10 genes. The monogenic inheritance observed in Michelite and the independence of this gene from those previously characterized allow the authors to propose that the anthracnose resistant gene in Michelite should be named Co-11.

  1. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti.

    Science.gov (United States)

    Saingamsook, Jassada; Saeung, Atiporn; Yanola, Jintana; Lumjuan, Nongkran; Walton, Catherine; Somboon, Pradya

    2017-10-10

    Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.

  2. Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance.

    Science.gov (United States)

    Chen, Lin; Guo, Xianpu; Xie, Conghua; He, Li; Cai, Xingkui; Tian, Lingli; Song, Botao; Liu, Jun

    2013-07-01

    The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.

  3. A new soybean rust resistance allele from PI 423972 at the Rpp4 locus

    Science.gov (United States)

    Phakopsora pachyrhizi is a fungal pathogen and the cause of Asian soybean rust (SBR). P. pachyrhizi invaded the continental United States in 2004 and has since been a threat to the soybean industry. There are six described loci that harbor resistance to P. pachyrhizi (Rpp) genes. The resistance of P...

  4. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin.

    Directory of Open Access Journals (Sweden)

    Rod J Mahon

    Full Text Available Crops engineered to produce insecticidal crystal (Cry proteins from the soil bacterium Bacillus thuringiensis (Bt have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips, also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019-0.038 in H. armigera and 0.008 (n = 248 lines, 0.004-0.015 in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016 and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn.

  5. mef(A), mef(E) and a new mef allele in macrolide-resistant Streptococcus spp. isolates from Norway.

    Science.gov (United States)

    Sangvik, Maria; Littauer, Pia; Simonsen, Gunnar Skov; Sundsfjord, Arnfinn; Dahl, Kristin Hegstad

    2005-11-01

    To type mef genes in a nationwide collection of clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes as well as pharyngeal carrier strains of viridans streptococci in Norway. Erythromycin-resistant mef-positive multilocus sequence-typed (MLST) clinical isolates of S. pneumoniae (n = 36) and S. pyogenes (n = 12) from the National Surveillance Program for Antimicrobial Resistance (NORM) as well as viridans streptococci (n = 20) from healthy adults were included. PCR-amplified mef genes were initially discriminated by BamHI digestion. Selected mef genes from representatives of different sequence types (STs) of S. pneumoniae (n = 11) and S. pyogenes (n = 4), and viridans group streptococcal species (n = 8) were typed by sequencing and their strains examined for co-resistances. Hydropathy plots of different mef-encoded proteins were performed. A predominance of mef(A) was detected in S. pneumoniae (23/36) and S. pyogenes (9/12) due to the clonal spread of ST9 and ST39, respectively. mef(E) was the most widely distributed mef determinant occurring in nine different STs of S. pneumoniae and in four different viridans species. A new mef allele was identified in two STs of S. pyogenes. mef(E) is the most widely distributed mef determinant in Norwegian clinical strains of S. pneumoniae and pharyngeal carrier strains of various viridans streptococci. However, mef(A) is more prevalent in S. pneumoniae and S. pyogenes due to clonal spread. A new mef allele was found in two different STs of S. pyogenes.

  6. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  7. Microsatellite polymorphism within pfcrt provides evidence of continuing evolution of chloroquine-resistant alleles in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Sharma Yagya D

    2007-03-01

    Full Text Available Abstract Background Polymorphism in the pfcrt gene underlies Plasmodium falciparum chloroquine resistance (CQR, as sensitive strains consistently carry lysine (K, while CQR strains carry threonine (T at the codon 76. Previous studies have shown that microsatellite (MS haplotype variation can be used to study the evolution of CQR polymorphism and to characterize intra- and inter-population dispersal of CQR in Papua New Guinea (PNG. Methods Here, following identification of new polymorphic MS in introns 2 and 3 within the pfcrt gene (msint2 and msint3, respectively, locus-by-locus and haplotype heterozygosity (H analyses were performed to determine the distribution of this intronic polymorphism among pfcrt chloroquine-sensitive and CQR alleles. Results For MS flanking the pfcrt CQR allele, H ranged from 0.07 (B5M77, -18 kb to 0.094 (9B12, +2 kb suggesting that CQ selection pressure was responsible for strong homogenisation of this gene locus. In a survey of 206 pfcrt-SVMNT allele-containing field samples from malaria-endemic regions of PNG, H for msint2 was 0.201. This observation suggests that pfcrt msint2 exhibits a higher level of diversity than what is expected from the analyses of pfcrt flanking MS. Further analyses showed that one of the three haplotypes present in the early 1980's samples has become the predominant haplotype (frequency = 0.901 in CQR parasite populations collected after 1995 from three PNG sites, when CQR had spread throughout malaria-endemic regions of PNG. Apparent localized diversification of pfcrt haplotypes at each site was also observed among samples collected after 1995, where minor CQR-associated haplotypes were found to be unique to each site. Conclusion In this study, a higher level of diversity at MS loci within the pfcrt gene was observed when compared with the level of diversity at pfcrt flanking MS. While pfcrt (K76T and its immediate flanking region indicate homogenisation in PNG CQR parasite populations

  8. Allelic variation for broad-spectrum resistance and susceptibility to bacterial pathogens identified in a rice MAGIC population.

    Science.gov (United States)

    Bossa-Castro, Ana M; Tekete, Cheick; Raghavan, Chitra; Delorean, Emily E; Dereeper, Alexis; Dagno, Karim; Koita, Ousmane; Mosquera, Gloria; Leung, Hei; Verdier, Valérie; Leach, Jan E

    2018-02-06

    Quantitative trait loci (QTL) that confer broad-spectrum resistance (BSR), or resistance that is effective against multiple and diverse plant pathogens, have been elusive targets of crop breeding programmes. Multiparent advanced generation intercross (MAGIC) populations, with their diverse genetic composition and high levels of recombination, are potential resources for the identification of QTL for BSR. In this study, a rice MAGIC population was used to map QTL conferring BSR to two major rice diseases, bacterial leaf streak (BLS) and bacterial blight (BB), caused by Xanthomonas oryzae pathovars (pv.) oryzicola (Xoc) and oryzae (Xoo), respectively. Controlling these diseases is particularly important in sub-Saharan Africa, where no sources of BSR are currently available in deployed varieties. The MAGIC founders and lines were genotyped by sequencing and phenotyped in the greenhouse and field by inoculation with multiple strains of Xoc and Xoo. A combination of genomewide association studies (GWAS) and interval mapping analyses revealed 11 BSR QTL, effective against both diseases, and three pathovar-specific QTL. The most promising BSR QTL (qXO-2-1, qXO-4-1 and qXO-11-2) conferred resistance to more than nine Xoc and Xoo strains. GWAS detected 369 significant SNP markers with distinguishable phenotypic effects, allowing the identification of alleles conferring disease resistance and susceptibility. The BSR and susceptibility QTL will improve our understanding of the mechanisms of both resistance and susceptibility in the long term and will be immediately useful resources for rice breeding programmes. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. A genetic marker allele conferring resistance to Ascaris suum in pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Thamsborg, Stig M.; Jørgensen, Claus B.

    2013-01-01

    Mapping of quantitative trait loci (QTLs) has helped dissecting the genetics underlying the variation in resistance to helminth infections. In pigs, two single nucleotide polymorphisms (SNP TXNIP and SNP ARNT), both on chromosome 4, have been reported to be associated with Ascaris suum worm burden...

  10. KDR gene silencing inhibits proliferation of A549 cells and enhances their sensitivity to docetaxel.

    Science.gov (United States)

    Wei, R; Zang, J-P

    2015-11-23

    We investigated the effects of kinase-domain insert containing receptor (KDR) gene silencing on the proliferation of A549 cells and their sensitivity to docetaxel. After designing and synthesizing the KDR siRNA sequence, the sequence was transfected into A549 cells using Lipofectamine 2000. The expression of KDR mRNA and protein after KDR gene silencing was detected by reverse transcription-polymerase chain reaction and western blotting; A549 cell cycle was detected by flow cytometry. An MTT assay and colony formation was performed to determine the sensitivity of A549 cells to docetaxel after KDR gene silencing. After 48-h KDR gene silencing, KDR gene and protein expression significantly decreased (P A549 cell cycle was significantly arrested in G0/G1 phase, and the number of cells in S phase was reduced; the difference was statistically significant (P A549 cells to docetaxel showed a significant enhancement (P A549 cells, inhibit the proliferation of A549 cells, and enhance their sensitivity to docetaxel.

  11. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Science.gov (United States)

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection

    Directory of Open Access Journals (Sweden)

    Hassan Musa

    2011-03-01

    Full Text Available Abstract Suffolk sheep carrying the DRB1*1101 (previously referred to as-DRB1*0203 or G2 allele have been reported to show increased resistance to natural Teladorsagia circumcincta infection compared to non-carriers. The objective of this study was to compare the biochemical and physiological responses of DRB1*1101 carrier and non-carrier twin lambs to an experimental infection with 3 × 104 L3 Teladorsagia circumcincta. The variables studied included worm burden, faecal egg count, abomasal mast cells, IgA, IgE, IgG1 plus IgG2 and haematological parameters at 0, 3, 7, 21 and 35 days post infection (dpi, and duodenal smooth muscle contractility at 0 and 35 dpi. DRB1*1101 carrier lambs had significantly lower worm burden, higher mast cell and plasma platelet counts than the DRB1*1101 non-carriers (P DRB1*1101 non-carrier lambs had a significantly higher plasma lymphocyte count, and produced greater duodenal contractile force relative to the carrier lambs (P DRB1*1101 is acquired rather than innate, depends on worm expulsion rather than fecundity and is dependent on mucosal mast cell proliferation, platelet activation, and IgA and IgE antibody responses.

  13. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 co-segregates with homozygotic presence of a mutated eIF4E allele

    DEFF Research Database (Denmark)

    Naderpour, M; Lund, O Søgaard; Larsen, R

    2008-01-01

    In common bean, Phaseolus vulgaris, four recessive genes, bc-1, bc-2, bc-3 and bc-u control resistance to potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV). To identify candidates for the bc-genes, we cloned and sequenced homologues of genes encoding cap...... in a segregating F2 population of P. vulgaris, BCMV resistance was found to co-segregate with homozygotic presence of the mutant eIF4E allele. , BCMV resistance was found to co-segregate with homozygotic presence of the mutant allele. Silent mutations were found in eIF(iso)4E, but without correspondence to P....... vulgaris response to BCMV and BCMNV. No differences were found in cDNA of nCBP....

  14. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.

    Science.gov (United States)

    Jiao, Yuntong; Xu, Weirong; Duan, Dong; Wang, Yuejin; Nick, Peter

    2016-10-01

    Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model

    Science.gov (United States)

    Fields, Peter D.; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-01-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis

  16. Combination of restriction endonuclease digestion with the ΔΔCt method in real-time PCR to monitor etoxazole resistance allele frequency in the two-spotted spider mite.

    Science.gov (United States)

    Osakabe, Masahiro; Imamura, Tsuyoshi; Nakano, Ryohei; Kamikawa, Satoshi; Tadatsu, Misono; Kunimoto, Yoshinori; Doi, Makoto

    2017-06-01

    Monitoring resistance allele frequency at the early stage of resistance development is important for the successful acaricide resistance management. Etoxazole is a mite growth inhibitor to which resistance is conferred by an amino acid substitution in the chitin synthase 1 (CHS1; I1017F) in T. urticae. If the susceptible allele can be specifically digested by restriction endonuclease, the ΔΔCt method using real-time PCR for genomic DNA (RED-ΔΔCt method) may be available for monitoring the resistance allele frequency. We tested whether the etoxazole resistance allele frequency in a pooled sample was accurately measured by the RED-ΔΔCt method and validated whether the resistance variant frequency was correlated with etoxazole resistance phenotype in a bioassay. Finally, we performed a pilot test using field populations. Strong linearity of the measures by the RED-ΔΔCt method with practical resistance allele frequencies; resistance allele frequency in the range between 0.5% to at least 0.75% was strictly represented. The strong linear relationship between hatchability of haploid male eggs after the etoxazole treatments (phenotype) and resistance allele frequencies in their mothers provided direct evidence that I1017F is a primary resistance factor to etoxazole in the strains used for experiments. The pilot test revealed a significant correlation between egg hatchability (including both diploid female eggs and haploid male eggs) and estimators in field populations. Consequently, we concluded that the RED-ΔΔCt method is a powerful tool for monitoring a resistance allele in a pooled sample. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017.

    Science.gov (United States)

    Antonio-Nkondjio, Christophe; Sonhafouo-Chiana, N; Ngadjeu, C S; Doumbe-Belisse, P; Talipouo, A; Djamouko-Djonkam, L; Kopya, E; Bamou, R; Awono-Ambene, P; Wondji, Charles S

    2017-10-10

    Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria

  18. Simultaneous detection of major drug resistance mutations in the protease and reverse transcriptase genes for HIV-1 subtype C by use of a multiplex allele-specific assay.

    Science.gov (United States)

    Zhang, Guoqing; Cai, Fangping; Zhou, Zhiyong; DeVos, Joshua; Wagar, Nick; Diallo, Karidia; Zulu, Isaac; Wadonda-Kabondo, Nellie; Stringer, Jeffrey S A; Weidle, Paul J; Ndongmo, Clement B; Sikazwe, Izukanji; Sarr, Abdoulaye; Kagoli, Matthew; Nkengasong, John; Gao, Feng; Yang, Chunfu

    2013-11-01

    High-throughput, sensitive, and cost-effective HIV drug resistance (HIVDR) detection assays are needed for large-scale monitoring of the emergence and transmission of HIVDR in resource-limited settings. Using suspension array technology, we have developed a multiplex allele-specific (MAS) assay that can simultaneously detect major HIVDR mutations at 20 loci. Forty-five allele-specific primers tagged with unique 24-base oligonucleotides at the 5' end were designed to detect wild-type and mutant alleles at the 20 loci of HIV-1 subtype C. The MAS assay was first established and optimized with three plasmid templates (C-wt, C-mut1, and C-mut2) and then evaluated using 148 plasma specimens from HIV-1 subtype C-infected individuals. All the wild-type and mutant alleles were unequivocally distinguished with plasmid templates, and the limits of detection were 1.56% for K219Q and K219E, 3.13% for L76V, 6.25% for K65R, K70R, L74V, L100I, K103N, K103R, Q151M, Y181C, and I47V, and 12.5% for M41L, K101P, K101E, V106A, V106M, Y115F, M184V, Y188L, G190A, V32I, I47A, I84V, and L90M. Analyses of 148 plasma specimens revealed that the MAS assay gave 100% concordance with conventional sequencing at eight loci and >95% (range, 95.21% to 99.32%) concordance at the remaining 12 loci. The differences observed were caused mainly by 24 additional low-abundance alleles detected by the MAS assay. Ultradeep sequencing analysis confirmed 15 of the 16 low-abundance alleles. This multiplex, sensitive, and straightforward result-reporting assay represents a new efficient genotyping tool for HIVDR surveillance and monitoring.

  19. Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18.

    Science.gov (United States)

    Ballvora, Agim; Flath, Kerstin; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2011-12-01

    localization of the Sen loci. Thirty-three SNP markers linked to the Sen loci permitted the dissection of Sen alleles that increased or decreased resistance to wart. The alleles were inherited from both the resistant and susceptible parents.

  20. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  1. Optimization and validation of molecular diagnosis of pyrethroid pesticide resistance in Brazilian populations of horn flies

    Science.gov (United States)

    Pyrethroid resistance is a serious problem to cattle producers in Brazil. There are specific resistance-associated mutations, known as kdr and super-kdr, in the region of DNA that codes for the target of pyrethroids, the sodium channel protein. The presence of these mutations in the sodium channel c...

  2. Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus.

    Science.gov (United States)

    Hernandez, R; Guerrero, F D; George, J E; Wagner, G G

    2002-09-01

    We utilized RNA Northern blot analysis and ribonuclease protection assays (RPA) to study the mRNA expression level of a putative carboxylesterase-encoding gene from several strains of Boophilus microplus (Canestrini). Both the Northern analysis and RPAs indicated that an esterase transcript was more abundant in the pyrethroid resistant strain, Coatzacoalcos (Cz), compared to a susceptible control strain and a resistant strain whose pyrethroid resistance is mediated through a target site insensitivity mechanism. A PCR-based assay was designed to identify the presence of a previously reported point mutation in this B. microplus esterase gene. The reported G-->A substitution at nucleotide 1120 creates an EcoR I site in the mutant allele which can be detected by EcoR I digestion of the amplification products. The PCR assays showed that the frequency of the mutant allele was highest in the Cz-resistant strain, which has been shown to have an esterase-mediated resistance mechanism. The PCR assay can be performed either on individual tick larvae or hemolymph from adults.

  3. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-12-01

    Full Text Available Barley (Hordeum vulgare L. Mla alleles encode coiled-coil (CC, nucleotide binding, leucine-rich repeat (NB-LRR receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh. How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley.

  4. Insecticide resistance status of Anopheles gambiae s.s population from M'Bé: a WHOPES-labelled experimental hut station, 10 years after the political crisis in Côte d'Ivoire.

    Science.gov (United States)

    Koffi, Alphonsine A; Ahoua Alou, Ludovic P; Adja, Maurice A; Chandre, Fabrice; Pennetier, Cédric

    2013-05-04

    An experimental hut station built at M'Bé in 1998 was used for many years for the evaluation of insecticidal product for public health until the civil war broke out in 2002. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices and the West African Rice Development Association (WARDA, actually AfricaRice) in a large rice growing area. Ten years after the crisis, bioassays, molecular and biochemical analyses were conducted to update the resistance status and study the evolution of resistance mechanisms of Anopheles gambiae s.s population. Anopheles gambiae s.s larvae from M'Bé were collected in breeding sites and reared until emergence. Resistance status of this population to conventional insecticides was assessed using WHO bioassay test kits for adult mosquitoes, with 10 insecticides belonging to pyrethroids, pseudo-pyrethroid, organochlorides, carbamates and organophosphates with and without the inhibitor piperonyl butoxyde (PBO). Molecular and biochemical assays were carried out to identify the L1014F kdr, L1014S kdr and ace-1(R) alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO) level, non-specific esterases (NSE) and glutathione S-transferases (GST) activities. Anopheles gambiae s.s from M'Bé exerted high resistance levels to organochlorides, pyrethroids, and carbamates. Mortalities ranged from 3% to 21% for organochlorides, from 50% to 75% for pyrethroids, 34% for etofenprox, the pseudo-pyrethroid, and from 7% to 80% for carbamates. Tolerance to organophosphates was observed with mortalities ranging from 95% to 98%. Bioassays run with a pre-exposition of mosquitoes to PBO induced very high levels of mortalities compared to the bioassays without PBO, suggesting that the resistance to pyrethroid and carbamate relied largely on detoxifying enzymes' activities. The L1014F kdr allelic frequency was 0.33 in 2012 compared to 0.05 before the crisis in 2002. Neither

  5. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México.

    Directory of Open Access Journals (Sweden)

    Gustavo Ponce García

    Full Text Available BACKGROUND: Aedes aegypti, the 'yellow fever mosquito', is the primary vector to humans of dengue and yellow fever flaviviruses (DENV, YFV, and is a known vector of the chikungunya alphavirus (CV. Because vaccines are not yet available for DENV or CV or are inadequately distributed in developing countries (YFV, management of Ae. aegypti remains the primary option to prevent and control outbreaks of the diseases caused by these arboviruses. Permethrin is one of the most widely used active ingredients in insecticides for suppression of adult Ae. aegypti. In 2007, we documented a replacement mutation in codon 1,016 of the voltage-gated sodium channel gene (para of Ae. aegypti that encodes an isoleucine rather than a valine and confers resistance to permethrin. Ile1,016 segregates as a recessive allele conferring knockdown resistance to homozygous mosquitoes at 5-10 microg of permethrin in bottle bioassays. METHODS AND FINDINGS: A total of 81 field collections containing 3,951 Ae. aegypti were made throughout México from 1996 to 2009. These mosquitoes were analyzed for the frequency of the Ile1,016 mutation using a melting-curve PCR assay. Dramatic increases in frequencies of Ile1,016 were recorded from the late 1990's to 2006-2009 in several states including Nuevo León in the north, Veracruz on the central Atlantic coast, and Yucatán, Quintana Roo and Chiapas in the south. From 1996 to 2000, the overall frequency of Ile1,016 was 0.04% (95% confidence interval (CI95 = 0.12%; n = 1,359 mosquitoes examined. The earliest detection of Ile1,016 was in Nuevo Laredo on the U.S. border in 1997. By 2003-2004 the overall frequency of Ile1,016 had increased approximately 100-fold to 2.7% (+ or - 0.80% CI95; n = 808. When checked again in 2006, the frequency had increased slightly to 3.9% (+ or - 1.15% CI95; n = 473. This was followed in 2007-2009 by a sudden jump in Ile1,016 frequency to 33.2% (+ or - 1.99% CI95; n = 1,074 mosquitoes. There was spatial

  6. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    Oduola Adedayo O

    2012-06-01

    Full Text Available Abstract Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05 but was significantly higher (P A. gambiae s.s (M form. The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of

  7. APOL1 Risk Alleles Are Associated With More Severe Arteriosclerosis in Renal Resistance Vessels With Aging and Hypertension

    Directory of Open Access Journals (Sweden)

    Michael D. Hughson

    2016-05-01

    Discussion: With the limitation of the small number of subjects contributing to the positive results, the findings imply that APOL1 risk alleles recessively augment small-vessel arteriosclerosis in conjunction with age and hypertension. Focal segmental glomerulosclerosis was not a significant finding, indicating that in the early stages of arterionephrosclerosis, the primary pathologic influence of APOL1 genotype is vascular rather than glomerular.

  8. Inhibition of c-Kit, VEGFR-2 (KDR), and ABCG2 by analogues of OSI-930.

    Science.gov (United States)

    Patel, Jay P; Kuang, Ye-Hong; Chen, Zhe-Sheng; Korlipara, Vijaya L

    2011-11-01

    The quinoline domain of OSI-930, a dual inhibitor of receptor tyrosine kinases (RTKs) c-Kit and KDR, was modified in an effort to further understand the SAR of OSI-930, and the binding site characteristics of c-Kit and KDR. A series of 16 compounds with heteroatom substituted pyridyl and phenyl ring systems was synthesized and evaluated against a panel of kinases including c-Kit and KDR. Aminopyridyl derivative 6 was found to be the most active member of the series with 91% and 57% inhibition of c-Kit at 10μM and 1μM, respectively and 88% and 50% inhibition of KDR at 10μM and 1μM, respectively. The target compounds were also tested for their ability to inhibit efflux of mitoxantrone through inhibition of ATP dependent ABCG2 pump. Nitropyridyl derivative 5 and o-nitrophenyl derivative 7 exhibited complete inhibition of the ABCG2 pump with IC(50) values of 13.67μM and 16.67μM, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A review of plant protection against the olive fly (Bactrocera oleae (Rossi, 1790 Gmelin and molecular methods to monitor the insecticide resistance alleles

    Directory of Open Access Journals (Sweden)

    Matjaž Hladnik

    2017-01-01

    Full Text Available Olive fly (Bactrocera oleae (Rossi, 1790 Gmelin is one of the most important olive pests worldwide. Most plant protection measures are based on insecticides, especially organophosphates, pyrethroids, and recently a spinosad. Insecticides are used as cover sprays or in more environmentally friendly methods in which insecticides are used in combination with attractants and pheromones as bait sprays or for mass trapping. However, due to negative impacts of insecticides to environment, new plant protection methods are constantly developing with the aim to lower the consumption of insecticides or even to eliminate them by biological control with entomopathogenic organisms, sterile insect technique (SIT, or transgenic method RIDL (release of insects carrying a dominant lethal. However, these methods need to be improved in order to guarantee adequate protection. Alternative methods than those traditionally used are required due to long term usage causing the development of resistance to the insecticides, ultimately lowering their effectiveness. Molecular methods for monitoring the frequencies of resistant alleles and the current status of resistance alleles in olive growing countries are reviewed here.

  10. An AFLP marker linked to the leaf rust resistance gene LrBi16 and test of allelism with Lr14a on chromosome arm 7BL

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2015-04-01

    Full Text Available Leaf rust (LR, caused by Puccinia triticina, is one of the most widespread diseases of common wheat (Triticum aestivum L. worldwide. The LR resistance gene LrBi16 has been mapped on chromosome arm 7BL in Chinese wheat cultivar Bimai 16 and was closely linked to SSR loci Xcfa2257 and Xgwm344 with genetic distances of 2.8 cM and 2.9 cM, respectively. In the present study, a total of 304 AFLP primer pairs were used to screen Bimai 16 and Thatcher and resistant and susceptible DNA bulks. The polymorphic AFLP marker P-ATT/M-CGC173 bp was used to genotype F2 and F3 populations to identify markers more closely linked to LrBi16. Marker P-ATT/M-CGC173 bp was tightly linked to LrBi16 with a genetic distance of 0.5 cM. As LrBi16 was mapped near the Lr14a locus, 809 F2 plants from the Bimai 16/RL6013 (Lr14a cross were inoculated with the Pt pathotype FHNQ to test the allelism of Lr14a and LrBi16. All of the F2 plants were resistant to FHNQ (IT between; and 2, suggesting that Lr14a and LrBi16 are allelic.

  11. Status of pyrethroid resistance in Anopheles gambiae s. s. M form prior to the scaling up of Long Lasting Insecticidal Nets (LLINs in Adzopé, Eastern Côte d’Ivoire

    Directory of Open Access Journals (Sweden)

    Ahoua Alou Ludovic P

    2012-12-01

    Full Text Available Abstract Background The growing development of pyrethroid resistance constitutes a serious threat to malaria control programmes and if measures are not taken in time, resistance may compromise control efforts in the foreseeable future. Prior to Long Lasting Insecticidal Nets (LLINs distribution in Eastern Cote d’Ivoire, we conducted bioassays to inform the National Malaria Control Programme of the resistance status of the main malaria vector, Anopheles gambiae s. s. and the need for close surveillance of resistance. Methods Larvae of An. gambiae s. s. were collected in two areas of Adzopé (Port-Bouët and Tsassodji and reared to adults. WHO susceptibility tests with impregnated filter papers were carried out to detect resistance to three pyrethroids commonly used to develop LLINs: permethrin 1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Molecular assays were conducted to detect M and S forms and the L1014F kdr allele in individual mosquitoes. Results Resistance, at various degrees was detected in both areas of Adzopé. Overall, populations of An. gambiae at both sites surveyed showed equivalent frequency of the L1014F kdr allele (0.67 but for all tested pyrethroids, there were significantly higher survival rates for mosquitoes from Tsassodji (32–58% than those from Port-Bouët (3–32% (p kdr alone. During the survey period (May–June in this forested area of Côte d’Ivoire, An. gambiae s. s. found were exclusively of the M form and were apparently selected for pyrethroid resistance through agricultural and household usage of insecticides. Conclusion Prior to LLINs scaling up in Eastern Côte d’Ivoire, resistance was largely present at various levels in An. gambiae. Underlying mechanisms included the high frequency of the L1014F kdr mutation and other unidentified components, probably metabolic detoxifiers. Their impact on the efficacy of the planned strategy (LLINs in the area should be investigated alongside careful

  12. Seasonal dynamics of insecticide resistance, multiple resistance, and morphometric variation in field populations of Culex pipiens.

    Science.gov (United States)

    Taskin, Belgin Gocmen; Dogaroglu, Taylan; Kilic, Sercan; Dogac, Ersin; Taskin, Vatan

    2016-05-01

    Resistance to insecticides that impairs nervous transmission has been widely investigated in mosquito populations as insecticides are crucial to effective insect control. The development of insecticide resistance is also of special interest to evolutionary biologists since it represents the opportunity to observe the genetic consequences of a well-characterized alteration in the environment. Although the frequencies of resistance alleles in Culex pipiens populations against different groups of insecticides have been reported, no detailed information is available on the relative change in these allele frequencies over time. In this study, we collected mosquitoes of the Cx. pipiens complex from six locations in three seasons in the Aegean region of Turkey and examined the i) seasonal variations in resistance to four different chemical classes of insecticides, ii) seasonal fluctuations in frequencies of resistance-associated target-site mutations of the three genes (ace-1, kdr, and Rdl), and iii) potential seasonal variations in wing morphometric characters that may be modified in resistant mosquitoes. Our bioassay results indicated the presence of different levels of resistance to all tested insecticides for all three seasons in all locations. The results of the PCR-based molecular analysis revealed low frequencies of mutations in ace-1 and Rdl that are associated with resistance to malathion, bendiocarb, and dieldrin and no obvious seasonal changes. In contrast, we detected high frequencies and striking seasonal changes for two kdr mutations associated with resistance to DDT and pyrethroids. In addition, the evaluation of the field populations from all seasons in terms of the combinations of polymorphisms at four resistance-associated mutations did not reveal the presence of insects that are resistant to all pesticides. Results from the morphological analysis displayed a similar pattern for both wings and did not show a clear separation among the samples from the

  13. Effects of kinase insert domain receptor (KDR) gene silencing on the sensitivity of A549 cells to erlotinib.

    Science.gov (United States)

    Zhu, W L; Liu, Y H

    2015-11-25

    We investigated the effects of kinase insert domain receptor (KDR) gene silencing on the proliferation of A549 cells and their sensitivity to erlotinib. A KDR small interfering RNA (siRNA) sequence was designed and synthesized; then, it was transfected into A549 cells using Lipofectamine(TM) 2000. KDR mRNA and protein expression after KDR gene silencing was detected by reverse transcription polymerase chain reaction and western blotting; the A549 cell cycle was detected by flow cytometry. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay were performed to determine the sensitivity of A549 cells to erlotinib after KDR gene silencing. After 48h of KDR gene silencing, there was a significant decrease in KDR gene and protein expression (P A549 cell cycle was arrested at the G0/G1 phase, and the number of cells in the S phase decreased; the difference was statistically significant (P A549 cells to erlotinib was significantly enhanced (P A549 cells, inhibit the proliferation of A549 cells, and enhance their sensitivity to erlotinib.

  14. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  15. Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp. tritici on wheat Pm3 resistance alleles.

    Science.gov (United States)

    Parlange, Francis; Roffler, Stefan; Menardo, Fabrizio; Ben-David, Roi; Bourras, Salim; McNally, Kaitlin E; Oberhaensli, Simone; Stirnweis, Daniel; Buchmann, Gabriele; Wicker, Thomas; Keller, Beat

    2015-09-01

    Wheat powdery mildew is caused by the obligate biotrophic fungus Blumeria graminis f. sp. tritici. The allelic series of the wheat Pm3 gene conferring race-specific resistance against powdery mildew has been well characterized functionally, and recently the corresponding avirulence gene AvrPm3a/f triggering the specific recognition by Pm3a and Pm3f alleles was cloned. Here, we describe the genetic and molecular analysis of two additional Blumeria loci involved in the resistance mediated by the Pm3c and Pm3f alleles. We genetically identified the two loci and mapped at high resolution one locus involved in the avirulence towards both Pm3c and Pm3f. The single candidate gene Bcg1 was identified in a physical target interval of 26kb defined by flanking genetic markers. Bcg1 encodes a small secreted protein sharing structural homology with ribonucleases and belongs to a family of clustered putative effector genes under diversifying selection. We found a very good, but not complete, correlation of Bcg1 haplotypes with the phenotypes of natural isolates. Two mutants were generated that were affected in their phenotypes towards Pm3a and Pm3f but did not show any sequence polymorphism in Bcg1. Our results suggest that avirulence to Pm3 in Blumeria is determined by a complex network of genes, in which Bcg1 might have a central role as a modifier of the Pm3/AvrPm3 interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc-3 is associated with the homozygotic presence of a mutated eIF4E allele

    DEFF Research Database (Denmark)

    Naderpour, Masoud; Lund, Ole Søgaard; Larsen, Richard

    2010-01-01

    Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris, four recessive genes, bc-1, bc-2, bc......-3 and bc-u, have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus. In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E...... resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3. F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant...

  17. Permethrin resistance variation and susceptible reference line isolation in a field population of the mosquito, Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Yang, Ting; Liu, Nannan

    2014-10-01

    This study examines the genetic variations and mechanisms involved in the development of permethrin resistance in individual mosquitoes from a field population of Culex quinquefasciatus, HAmCq(G0) , and characterizes susceptible reference lines of mosquitoes with a similar genetic background to the field HAmCq(G0) strain. Six upregulated cytochrome P450 genes, CYP9M10, CYP9J34, CYP6P14, CYP9J40, CYP6AA7, and CYP4C52v1, previously identified as being upregulated in the larvae of resistant HAmCq(G8) mosquitoes were examined in the larvae of 3 strains (susceptible S-Lab, parental HAmCq(G0) and permethrin-selected highly resistant HAmCq(G8) ) and 8 HAmCq(G0) single-egg raft colonies, covering a range of levels of susceptibility/resistance to permethrin and exhibiting different variations in the expression of A and/or T alleles at the L-to-F kdr locus of the sodium channel. The 2 lines with the lowest tolerance to permethrin and bearing solely the susceptible A allele at the L-to-F kdr locus of the sodium channels, from colonies Cx_SERC5 and Cx_SERC8, showed lower or similar levels of all 6 of the P450 genes tested compared with the S-Lab strain, suggesting that these 2 lines could be used as the reference mosquitoes in future studies characterizing insecticide resistance in HAmCq mosquitoes. This study also provides a detailed investigation of the mechanisms involved in insecticide resistance in individuals within a population: individuals with elevated levels of resistance to permethrin all displayed one or more potential resistance mechanisms-either elevated levels of P450 gene expression, or L-to-F mutations in the sodium channel, or both. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  18. Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen.

    Science.gov (United States)

    Bamaga, Omar A A; Mahdy, Mohammed A K; Lim, Yvonne A L

    2015-12-22

    Malaria in Yemen is mainly caused by Plasmodium falciparum and 25% of the population is at high risk. Sulfadoxine-pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether-lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen. Genomic DNA was extracted from dried blood spots of 137 P. falciparum isolates collected from a community-based study. DNA was amplified using nested polymerase chain reaction (PCR) and subsequently sequenced for Pfdhfr and Pfdhps genes. Sequences were analysed for mutations in Pfdhfr gene codons 51, 59, 108, and 164 and in Pfdhps gene codons 436, 437, and 540. A total of 128 and 114 P. falciparum isolates were successfully sequenced for Pfdhfr and Pfdhps genes, respectively. Each Pfdhfr mutant allele (I51 and N108) in P. falciparum population had a frequency of 84%. Pfdhfr R59 mutant allele was detected in one isolate. Mutation at codon 437 (G437) in the Pfdhps gene was detected in 44.7% of falciparum malaria isolates. Frequencies of Pfdhfr double mutant genotype (I51C59N108I164) and Pfdhfr/Pfdhps triple mutant genotype (I51C59N108I164-S436G437K540) were 82.8 and 39.3%, respectively. One isolate harboured Pfdhfr triple mutant genotype (I51, R59, N108, I164) and Pfdhfr/Pfdhps quadruple mutant genotype (I51R59N108I164-S436G437K540). High frequencies of Pfdhfr and Pfdhps mutant alleles and genotypes in P. falciparum population in Hadhramout, Yemen, highlight the risk of developing resistance for SP, the partner drug of AS, which subsequently will expose the parasite to AS monotherapy increasing then the

  19. High resolution mapping of trypanosomosis resistance loci Tir2 and Tir3 using F12 advanced intercross lines with major locus Tir1 fixed for the susceptible allele

    Directory of Open Access Journals (Sweden)

    Soller Morris

    2010-06-01

    Full Text Available Abstract Background Trypanosomosis is the most economically important disease constraint to livestock productivity in Africa. A number of trypanotolerant cattle breeds are found in West Africa, and identification of the genes conferring trypanotolerance could lead to effective means of genetic selection for trypanotolerance. In this context, high resolution mapping in mouse models are a promising approach to identifying the genes associated with trypanotolerance. In previous studies, using F2 C57BL/6J × A/J and C57BL/6J × BALB/cJ mouse resource populations, trypanotolerance QTL were mapped within a large genomic intervals of 20-40 cM to chromosomes MMU17, 5 and 1, and denoted Tir1, Tir2 and Tir3 respectively. Subsequently, using F6 C57BL/6J × A/J and C57BL/6J × BALB/cJ F6 advanced intercross lines (AIL, Tir1 was fine mapped to a confidence interval (CI of less than 1 cM, while Tir2 and Tir3, were mapped within 5-12 cM. Tir1 represents the major trypanotolerance QTL. Results In order to improve map resolutions of Tir2 and Tir3, an F12 C57BL/6J × A/J AIL population fixed for the susceptible alleles at Tir1 QTL was generated. An F12 C57BL/6J × A/J AIL population, fixed for the resistant alleles at Tir1 QTL was also generated to provide an additional estimate of the gene effect of Tir1. The AIL populations homozygous for the resistant and susceptible Tir1 alleles and the parental controls were challenged with T. congolense and followed for survival times over 180 days. Mice from the two survival extremes of the F12 AIL population fixed for the susceptible alleles at Tir1 were genotyped with a dense panel of microsatellite markers spanning the Tir2 and Tir3 genomic regions and QTL mapping was performed. Tir2 was fine mapped to less than 1 cM CI while Tir3 was mapped to three intervals named Tir3a, Tir3b and Tir3c with 95% confidence intervals (CI of 6, 7.2 and 2.2 cM, respectively. Conclusions The mapped QTL regions encompass genes that are

  20. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006.

    Science.gov (United States)

    Downes, S; Parker, T L; Mahon, R J

    2009-04-01

    Helicoverpa punctigera and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are important pests of field and horticultural crops in Australia. The former is endemic to the continent, whereas the latter is also distributed in Africa and Asia. Although H. armigera rapidly developed resistance to virtually every group of insecticide used against it, there is only one report of resistance to an insecticide in H. punctigera. In 1996 the Australian cotton industry adopted Ingard, which expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac. In 2004/2005, Bollgard II (which expresses Cry1Ac and Cry2Ab) replaced Ingard and has subsequently been grown on 80% of the area planted to cotton, Gossypium hirsutum L. From 2002/2003 to 2006/2007, F2 screens were used to detect resistance to Cry1Ac or Cry2Ab. We detected no alleles conferring resistance to Cry1Ac; the frequency was < 0.0005 (n = 2,180 alleles), with a 95% credibility interval between 0 and 0.0014. However, during the same period, we detected alleles that confer resistance to Cry2Ab at a frequency of 0.0018 (n = 2,192 alleles), with a 95% credibility interval between 0.0005 and 0.0040. For both toxins, the experiment-wise detection probability was 94%, i.e., if there actually was a resistance allele in any tested lines, we would have detected it 94% of the time. The first isolation of Cry2Ab resistance in H. punctigera was before the widespread deployment of Bollgard II. This finding supports our published notion for H. armigera that alleles conferring resistance to Cry2Ab may be present at detectable frequencies in populations before selection by transgenic crops.

  1. Is the European spatial distribution of the HIV-1-resistant CCR5-Delta32 allele formed by a breakdown of the pathocenosis due to the historical Roman expansion?

    Science.gov (United States)

    Faure, Eric; Royer-Carenzi, Manuela

    2008-12-01

    We studied the possible effects of the expansion of ancient Mediterranean civilizations during the five centuries before and after Christ on the European distribution of the mutant allele for the chemokine receptor gene CCR5 which has a 32-bp deletion (CCR5-Delta32). There is a strong evidence for the unitary origin of the CCR5-Delta32 mutation, this it is found principally in Europe and Western Asia, with generally a north-south downhill cline frequency. Homozygous carriers of this mutation show a resistance to HIV-1 infection and a slower progression towards AIDS. However, HIV has clearly emerged too recently to have been the selective force on CCR5. Our analyses showed strong negative correlations in Europe between the allele frequency and two historical parameters, i.e. the first colonization dates by the great ancient Mediterranean civilizations, and the distances from the Northern frontiers of the Roman Empire in its greatest expansion. Moreover, other studies have shown that the deletion frequencies in both German Bronze Age and Swedish Neolithic populations were similar to those found in the corresponding modern populations, and this deletion has been found in ancient DNA of around 7000 years ago, suggesting that in the past, the deletion frequency could have been relatively high in European populations. In addition, in West Nile virus pathogenesis, CCR5 plays an antimicrobial role showing that host genetic factors are highly pathogen-specific. Our results added to all these previous data suggest that the actual European allele frequency distribution might not be due to genes spreading, but to a negative selection resulting in the spread of pathogens principally during Roman expansion. Indeed, as gene flows from colonizers to European native populations were extremely low, the mutational changes might be associated with vulnerability to imported infections. To date, the nature of the parasites remains unknown; however, zoonoses could be incriminated.

  2. Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells.

    Science.gov (United States)

    Olszewska-Pazdrak, Barbara; Hein, Travis W; Olszewska, Paulina; Carney, Darrell H

    2009-05-01

    Coronary artery disease results in progressive vascular stenosis associated with chronic myocardial ischemia. Vascular endothelial growth factor (VEGF) stimulates endothelial cell angiogenic responses to revascularize ischemic tissues; however, the effect of chronic hypoxia on the responsiveness of endothelial cells to VEGF remains unclear. We, therefore, investigated whether hypoxia alters VEGF-stimulated signaling and angiogenic responses in primary human coronary artery endothelial (HCAE) cells. Exposure of HCAE cells to hypoxia (1% O(2)) for 24 h decreased VEGF-stimulated endothelial cell migration ( approximately 82%), proliferation ( approximately 30%), and tube formation. Hypoxia attenuated VEGF-stimulated activation of endothelial nitric oxide (NO) synthase (eNOS) ( approximately 72%) and reduced NO production in VEGF-stimulated cells from 237 +/- 38.8 to 61.3 +/- 28.4 nmol/l. Moreover, hypoxia also decreased the ratio of phosphorylated eNOS to total eNOS in VEGF-stimulated cells by approximately 50%. This effect was not observed in thrombin-stimulated cells, suggesting that hypoxia specifically inhibited VEGF signaling upstream of eNOS phosphorylation. VEGF-induced activation of Akt, ERK1/2, p38, p70S6 kinases, and S6 ribosomal protein was also attenuated in hypoxic cells. Moreover, VEGF-stimulated phosphorylation of VEGF receptor-2 (KDR) at Y996 and Y1175 was decreased by hypoxia. This decrease correlated with a 70 +/- 12% decrease in KDR protein expression. Analysis of mRNA from these cells showed that hypoxia reduced steady-state levels of KDR mRNA by 52 +/- 16% and decreased mRNA stability relative to normoxic cells. Our findings demonstrate that chronic hypoxia attenuates VEGF-stimulated signaling in HCAE cells by specific downregulation of KDR expression. These data provide a novel explanation for the impaired angiogenic responses to VEGF in endothelial cells exposed to chronic hypoxia.

  3. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    International Nuclear Information System (INIS)

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan

    2006-01-01

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression

  4. Low Prevalence of Pfcrt Resistance Alleles among Patients with Uncomplicated Falciparum Malaria in Niger Six Years after Chloroquine Withdrawal

    Directory of Open Access Journals (Sweden)

    Adamou Salissou

    2014-01-01

    Full Text Available Chloroquine (CQ resistance is widespread in Africa, but few data are available for Niger. Pfcrt haplotypes (aa 56–118 and ex vivo responses to CQ and amodiaquine were characterized for 26 isolates collected in South Niger from children under 15 years of age suffering from uncomplicated falciparum malaria, six years after the introduction of artemisinin-based combinations and the withdrawal of CQ. The wild-type Pfcrt haplotype CVMNK was found in 22 of the 26 isolates, with CVIET sequences observed in only three of the samples. We also describe for the first time a new CVINT haplotype. The ex vivo responses were better for CVMNK than for CVIET parasites. Pfcrt sequence data were compared with those obtained for 26 additional parasitized blood samples collected in Gabon, from an area of CQ resistance used as a control. Our findings suggest that there has been a significant decline in CQ-resistant genotypes since the previous estimates for Niger were obtained. No such decline in molecular resistance to CQ was observed in the subset of samples collected in similar conditions from Gabon. These results have important implications for public health and support the policy implemented in Niger since 2005, which aims to increase the efficacy and availability of antimalarial drugs whilst controlling the spread of resistance.

  5. The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest

    DEFF Research Database (Denmark)

    Alibegovic, Amra C; Sonne, Mette P; Højbjerre, Lise

    2010-01-01

    , the TCF7L2 rs7903146 did not influence peripheral insulin action or the rate of lipolysis before or after bed rest. CONCLUSIONS: Healthy carriers of the T-allele of TCF7L2 rs7903146 exhibit a diminished increase of insulin secretion in response to intravenous glucose to compensate for insulin resistance......OBJECTIVE: The aim of this study was to determine whether the type 2 diabetes-associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS: A total of 38....... The genetic analyses were done assuming a dominant model of inheritance. RESULTS: The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise...

  6. Malaria Vectors Insecticides Resistance in Different Agroecosystems in Western Kenya.

    Science.gov (United States)

    Wanjala, Christine Ludwin; Kweka, Eliningaya J

    2018-01-01

    Malaria vector control efforts have taken malaria related cases down to appreciable number per annum after large scale of intervention tools. Insecticides-based tools remain the major control option for malaria vectors in Kenya and, therefore, the potential of such programs to be compromised by the reported insecticide resistance is of major concern. The objective of this study was to evaluate the status of insecticide resistance in malaria vectors in different agro ecosystems from western Kenya. The study was carried out in the lowlands and highlands of western Kenya namely; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. World Health Organization tube bioassays was conducted using standard diagnostic dosages of Lambdacyhalothrin, Deltamethrin, Permethrin, DDT, Bendiocarb, and Malathion tested on Anopheles mosquitoes collected from seven sites; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. Biochemical assays, where the enzymatic activity of three enzymes (monooxygenases, esterases, and glutathione S -transferases) were performed on susceptible and resistant mosquito populations. Wild mosquito populations were identified to species level using polymerase chain reaction (PCR). The species of the wild mosquito populations were identified to species level using PCR. Real-time PCR was performed on the susceptible and resistant mosquitoes after the WHO tube bioassays to determine the presence of knockdown resistance ( kdr ) allele. WHO susceptibility tests indicated that Anopheles gambiae showed resistance to Pyrethroids and DDT in all the study sites, to Bendiocarb in Iguhu and Kabula and susceptible to Malathion (100% mortality) in all the study sites. There was an elevation of monooxygenases and esterases enzymatic activities in resistant An. gambiae mosquito populations exposed to Lambdacyhalothrin, Permethrin, Deltamethrin and DDT but no elevation in glutathione S -transferases. A high frequency of L1014S allele was detected in An

  7. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Directory of Open Access Journals (Sweden)

    Bhatt Rajendra M

    2010-05-01

    Full Text Available Abstract Background Knockdown resistance in insects resulting from mutation(s in the voltage gated Na+ channel (VGSC is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an An. culicifacies population from Malkangiri district of Orissa, India. Methods Anopheles culicifacies sensu lato (s.l. samples, collected from a population of Malkangiri district of Orissa (India, were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR was developed for the detection of the new mutation L1014S. The An. culicifacies population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing. Results DNA sequencing of An. culicifacies individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA-to-Phe (TTT or -Ser (TCA changes, respectively. A third and novel substitution, Val (GTG-to-Leu (TTG or CTG, was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the

  8. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    Science.gov (United States)

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  9. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids.

    Science.gov (United States)

    Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya

    2016-10-01

    In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection

  10. Aspergillus fumigatus carrying TR34/L98H resistance allele causing complicated suppurative otitis media in Tanzania: Call for improved diagnosis of fungi in sub-Saharan Africa.

    Science.gov (United States)

    Mushi, Martha F; Buname, Gustave; Bader, Oliver; Groß, Uwe; Mshana, Stephen E

    2016-09-02

    Suppurative otitis media (SOM) is a major public health concern worldwide and is associated with increased morbidity. Cases of fungal suppurative otitis media were studied to establish the effect of fungi in otitis media. Ear swabs from 410 patients were collected aseptically using sterile cotton swabs from discharging ear through perforated tympanic membrane. Swabs were subjected to microscopic and culture investigations. The species of fungal growing on Sabouraud's agar were identified using MALDI-TOF MS. For moulds broth micro dilution method following EUCAST guidelines was employed to determine susceptibility patterns against itraconazole, voriconazole and posaconazole. A total of 44 (10.74 %) cases with positive fungal culture growth were studied. The median age of patients with fungal infection was 29.5 (IQR 16-43) years. Of 44 patients; 35 (79.6 %) had pure growth of one type of fungal. Candida albicans was the most common fungus isolated (n = 13; 29.6 %) followed by Aspergillus versicolor (n = 8; 18.2 %). A total of 7 (15.9 %) patients had disease complication at time of enrollment; of them 6 (13.6 %) had hearing loss. On follow up 7 (15.9 %) had poor treatment outcome. All five Aspergillus fumigatus strains resistant itraconazole with reduced susceptibility to voriconazole and posaconazole carried carrying TR34/L98H resistance allele. In addition, all Penicillium citrinum isolates were resistant to voriconazole while all Penicillium sumatrense were resistant to both itraconazole and voriconazole. There were non-significant association of poor treatment outcome and female gender, being HIV positive and being infected with moulds. Fungal infections play a significant role in SOM pathology in our setting. Diagnosis of fungal infections in developing countries should be improved so that appropriate management can be initiated on time to prevent associated complications.

  11. Genetic characterisation of novel resistance alleles to stem rust and stripe rust in wheat-alien introgression lines

    OpenAIRE

    Rahmatov, Mahbubjon

    2016-01-01

    Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops world-wide, but is attacked by many diseases and pests that cause significant yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr resistance genes are already defeated...

  12. Characterization of Klebsiella sp. strain 10982, a colonizer of humans that contains novel antibiotic resistance alleles and exhibits genetic similarities to plant and clinical Klebsiella isolates.

    Science.gov (United States)

    Hazen, Tracy H; Zhao, LiCheng; Sahl, Jason W; Robinson, Gwen; Harris, Anthony D; Rasko, David A; Johnson, J Kristie

    2014-01-01

    A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC β-lactamase designated FOX-10. A novel variant of the LEN β-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, allantoin metabolism, and citrate fermentation. These three gene regions are typically present in either Klebsiella pneumoniae clinical isolates or Klebsiella nitrogen-fixing endophytes but usually not in the same organism. Phylogenomic analysis of Klebsiella sp. 10982 and sequenced Klebsiella genomes demonstrated that Klebsiella sp. 10982 is present on a branch that is located intermediate between the genomes of nitrogen-fixing endophytes and K. pneumoniae clinical isolates. Metabolic features identified in the genome of Klebsiella sp. 10982 distinguish this isolate from other Klebsiella clinical isolates. These features include the nitrogen fixation (nif) gene cluster, which is typically present in endophytic Klebsiella isolates and is absent from Klebsiella clinical isolates. Additionally, the Klebsiella sp. 10982 genome contains genes associated with allantoin metabolism, which have been detected primarily in K. pneumoniae isolates from liver abscesses. Comparative genomic analysis of Klebsiella sp. 10982 demonstrated that this organism has acquired genes conferring new metabolic strategies and novel antibiotic resistance alleles, both of which may enhance its ability to colonize the human body.

  13. Indoor Use of Plastic Sheeting Impregnated with Carbamate Combined with Long-Lasting Insecticidal Mosquito Nets for the Control of Pyrethroid-Resistant Malaria Vectors

    Science.gov (United States)

    Djènontin, Armel; Chandre, Fabrice; Dabiré, K. Roch; Chabi, Joseph; N'Guessan, Raphael; Baldet, Thierry; Akogbéto, Martin; Corbel, Vincent

    2010-01-01

    The combined efficacy of a long-lasting insecticidal net (LLIN) and a carbamate-treated plastic sheeting (CTPS) or indoor residual spraying (IRS) for control of insecticide-resistant mosquitoes was evaluated in experimental huts in Burkina Faso. Anopheles gambiae from the area is resistant to pyrethroids and to a lesser extent, carbamates. Relatively low mortality rates were observed with the LLIN (44%), IRS (42%), and CTPS (52%), whereas both combinations killed significantly more mosquitoes (~70% for LLIN + CTPS and LLIN + IRS). Blood feeding by An. gambiae was uninhibited by IRS and CTPS compared with LLIN (43%), LLIN + CTPS (58%), and LLIN + IRS (56%). No evidence for selection of the kdr and ace-1R alleles was observed with the combinations, whereas a survival advantage of mosquitoes bearing the ace-1R mutation was observed with IRS and CTPS. The results suggest that the combination of the two interventions constitutes a potential tool for vector-resistance management. PMID:20682865

  14. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    OpenAIRE

    Bhatt Rajendra M; Pradhan Sabyasachi; Das Manoj K; Dykes Cherry L; Singh Om P; Agrawal Om P; Adak Tridibes

    2010-01-01

    Abstract Background Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na+ channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of a...

  15. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides.

    Science.gov (United States)

    Foster, Stephen P; Paul, Verity L; Slater, Russell; Warren, Anne; Denholm, Ian; Field, Linda M; Williamson, Martin S

    2014-08-01

    The grain aphid, Sitobion avenae Fabricius (Hemiptera: Aphididae), is an important pest of cereal crops. Pesticides are the main method for control but carry the risk of selecting for resistance. In response to reports of reduced efficacy of pyrethroid sprays applied to S. avenae, field samples were collected and screened for mutations in the voltage-gated sodium channel, the primary target site for pyrethroids. Aphid mobility and mortality to lambda-cyhalothrin were measured in coated glass vial bioassays. A single amino acid substitution (L1014F) was identified in the domain IIS6 segment of the sodium channel from the S. avenae samples exhibiting reduced pyrethroid efficacy. Bioassays on aphids heterozygous for the kdr mutation (SR) or homozygous for the wild-type allele (SS) showed that those carrying the mutation had significantly lower susceptibility to lambda-cyhalothrin. The L1014F (kdr) mutation, known to confer pyrethroid resistance in many insect pests, has been identified for the first time in S. avenae. Clonal lines heterozygous for the mutation showed 35-40-fold resistance to lambda-cyhalothrin in laboratory bioassays, consistent with the reported effect of this mutation on pyrethroid sensitivity in other aphid species. © 2013 Society of Chemical Industry.

  16. Src Kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2002-12-01

    Full Text Available Abstract Background The cytoplasmic tyrosine kinase, Src, has been found to play a crucial role in VEGF (vascular endothelial growth factor – dependent vascular permeability involved in angiogenesis. The two main VEGFRs present on vascular endothelial cells are KDR/Flk-1 (kinase insert domain-containing receptor/fetal liver kinase-1 and Flt-1 (Fms-like tyrosine kinase-1. However, to date, it has not been determined which VEGF receptor (VEGFR is involved in binding to and activating Src kinase following VEGF stimulation of the receptors. Results In this report, we demonstrate that Src preferentially associates with KDR/Flk-1 rather than Flt-1 in human umbilical vein endothelial cells (HUVECs, and that VEGF stimulation resulted in an increase of Src activity associated with activated KDR/Flk-1. These findings were determined through immunoprecipitation-kinase experiments and coimmunoprecipitation studies, and were further confirmed by GST-pull-down assays and Far Western studies. However, Fyn and Yes, unlike Src, were found to associate preferentially with Flt-1. Conclusions Thus, Src preferentially associates with KDR/Flk-1, rather than with Flt-1, upon VEGF stimulation in endothelial cells. Our findings further highlight the potential significance of upregulated KDR/Flk-1-associated Src activity in the process of angiogenesis, and help to elucidate more clearly the specific roles and mechanisms involving Src family tyrosine kinase in VEGF-stimulated signal transduction events.

  17. Minority drug-resistant HIV-1 variants in treatment naïve East-African and Caucasian patients detected by allele-specific real-time PCR.

    Directory of Open Access Journals (Sweden)

    Halime Ekici

    Full Text Available To assess the presence of two major non-nucleoside reverse transcriptase inhibitors (NNRTI drug resistance mutations (DRMs, Y181C and K103N, in minor viral quasispecies of treatment naïve HIV-1 infected East-African and Swedish patients by allele-specific polymerase chain reaction (AS-PCR.Treatment naïve adults (n=191 with three epidemiological backgrounds were included: 92 Ethiopians living in Ethiopia; 55 East-Africans who had migrated to Sweden; and 44 Caucasians living in Sweden. The pol gene was analysed by standard population sequencing and by AS-PCR for the detection of Y181C and K103N.The Y181C was detected in the minority quasispecies of six Ethiopians (6.5%, in two Caucasians (4.5%, and in one East-African (1.8%. The K103N was detected in one East- African (1.8%, by both methods. The proportion of mutants ranged from 0.25% to 17.5%. Additional DRMs were found in all three treatment naïve patient groups by population sequencing.Major NNRTI mutations can be found by AS-PCR in minor quasispecies of treatment naïve HIV-1 infected Ethiopians living in Ethiopia, in East-African and Caucasian patients living in Sweden in whom population sequencing reveal wild-type virus only. Surveys with standard sequencing are likely to underestimate transmitted drug resistance and the presence of resistant minor quasispecies in treatment naïve patients should be topic for future large scale studies.

  18. Benzimidazole resistance allele haplotype diversity in United Kingdom isolates of Teladorsagia circumcincta supports a hypothesis of multiple origins of resistance by recurrent mutation

    Czech Academy of Sciences Publication Activity Database

    Skuce, P.; Stenhouse, L.; Jackson, F.; Hypša, Václav; Gilleard, J.

    2010-01-01

    Roč. 40, č. 11 (2010), s. 1247-1255 ISSN 0020-7519 Institutional research plan: CEZ:AV0Z60220518 Keywords : BZ resistance * b-Tubulin * Haplotype diversity * Haplotype diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.822, year: 2010

  19. Two missense mutations, E123Q and K151E, identified in the ERG11 allele of an azole-resistant isolate of Candida kefyr recovered from a stem cell transplant patient for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Célia Couzigou

    2014-07-01

    Full Text Available We report on the first cloning and nucleotide sequencing of an ERG11 allele from a clinical isolate of Candida kefyr cross-resistant to azole antifungals. It was recovered from a stem cell transplant patient, in an oncohematology unit exhibiting unexpected high prevalence of C. kefyr. Two amino acid substitutions were identified: K151E, whose role in fluconazole resistance was already demonstrated in Candida albicans, and E123Q, a new substitution never described so far in azole-resistant Candida yeast.

  20. Principal contribution of HLA-DQ alleles, DQB1*06:04 and DQB1*03:01, to disease resistance against primary biliary cholangitis in a Japanese population.

    Science.gov (United States)

    Yasunami, Michio; Nakamura, Hitomi; Tokunaga, Katsushi; Kawashima, Minae; Nishida, Nao; Hitomi, Yuki; Nakamura, Minoru

    2017-09-11

    Identification of the primary allele(s) in HLA class II associated diseases remains challenging because of a tight linkage between alleles of HLA-DR and -DQ loci. In the present study, we determined the genotypes of seven HLA loci (HLA-A, -B, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1) for 1200 Japanese patients with primary biliary cholangitis and 1196 controls. Observation of recombination derivatives facilitated an evaluation of the effects of individual HLA alleles consisting of disease-prone/disease-resistant HLA haplotypes. Consequently, a primary contribution of DQB1*06:04 (odds ratio: 0.19, p = 1.91 × 10 -22 ), DQB1*03:01 (odds ratio: 0.50, p = 6.76 × 10 -10 ), DRB1*08:03 (odds ratio: 1.75, p = 1.01 × 10 -7 ) and DQB1*04:01 (odds ratio: 1.50, p = 9.20 × 10 -6 ) was suggested. Epistasis of the protective DQB1*06:04 to risk conferred by DRB1*08:03 was demonstrated by subpopulation analysis, implicating the presence of an active immunological mechanism that alleviates pathogenic autoimmune reactions. Further, the contribution of the aforementioned HLA alleles as well as an HLA-DP allele, DPB1*02:01 to the association signals of 304 loci among 4103 SNPs in the HLA region at the genome-wide level of significance (p values less than 5 × 10 -8 ) was demonstrated by the stepwise exclusion of the individuals possessing these HLA alleles from the comparison.

  1. Susceptibility Status and Resistance Mechanisms in Permethrin-Selected, Laboratory Susceptible and Field-Collected Aedes aegypti from Malaysia

    Directory of Open Access Journals (Sweden)

    Rosilawati Rasli

    2018-04-01

    Full Text Available This study is intended to provide a comprehensive characterization of the resistance mechanisms in the permethrin-selected (IMR-PSS and laboratory susceptible (IMR-LS Aedes aegypti strain from Malaysia. Both IMR-PSS and IMR-LS provide a standard model for use in assessing the pyrethroid resistance in field-collected strains collected from three dengue hotspots: the Taman Seri Bayu (TSB, the Flat Camar (FC, and the Taman Dahlia (TD. Two established methods for determining the resistance mechanisms of the pyrethroid are the quantification of detoxification enzymes via enzyme microassay and the nucleotide sequencing of the domain 2 region from segment 1 to 6 via classical polymerase chain reaction (PCR amplification—were employed. Enzyme activities in IMR-LS served as the resistance threshold reference, providing a significant standard for comparison with IMR-PSS and other field-collected strains. The amino acids in the domain 2 region of voltage-gated sodium channel (Vgsc of IMR-LS were served as the reference for detection of any changes of the knockdown resistance (kdr alleles in IMR-PSS and field-collected strains. Studies clearly indicated that the IMR-LS was highly susceptible to insecticides, whilst the IMR-PSS was highly resistant to pyrethroids and conferred with two resistance mechanisms: the elevated oxidase enzyme activity and the altered target-site mutations. Mutations of V1023G alone, and the combination mutations of V1023G with S996P in IMR-PSS, as well as the in field-collected Aedes aegypti strain, indicate the spread of the (kdr gene in Aedes aegypti, particularly in dengue-endemic areas in Malaysia.

  2. Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos

    Directory of Open Access Journals (Sweden)

    Thiago Affonso Belinato

    2012-11-01

    Full Text Available In Brazil, decades of dengue vector control using organophosphates and pyrethroids have led to dissemination of resistance. Although these insecticides have been employed for decades against Aedes aegypti in the country, knowledge of the impact of temephos resistance on vector viability is limited. We evaluated several fitness parameters in two Brazilian Ae. aegypti populations, both classified as deltamethrin resistant but with distinct resistant ratios (RR for temephos. The insecticide-susceptible Rockefeller strain was used as an experimental control. The population presenting the higher temephos resistance level, Aparecida de Goiânia, state of Goiás (RR95 of 19.2, exhibited deficiency in the following four parameters: blood meal acceptance, amount of ingested blood, number of eggs and frequency of inseminated females. Mosquitoes from Boa Vista, state of Roraima, the population with lower temephos resistance level (RR95 of 7.4, presented impairment in only two parameters, blood meal acceptance and frequency of inseminated females. These results indicate that the overall fitness handicap was proportional to temephos resistance levels. However, it is unlikely that these disabilities can be attributed solely to temephos resistance, since both populations are also resistant to deltamethrin and harbour the kdr allele, which indicates resistance to pyrethroids. The effects of reduced fitness in resistant populations are discussed.

  3. Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Moshe Shashar

    2017-05-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is an endothelium-specific peptide that stimulates angiogenesis via two receptor tyrosine kinases, Flt-1 and KDR. Endothelial nitric oxide synthase (eNOS plays a major role in VEGF signaling. Delivery of arginine to membrane bound eNOS by the cationic amino acid transporter-1 (CAT-1 has been shown to modulate eNOS activity. The current studies were designed to test the hypothesis that VEGF enhances eNOS activity via modulation of arginine transport by CAT-1. Methods: Using radio-labeled arginine, {[3H] L-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC following incubation with VEGF with and without silencing the VEGF receptors Flt-1 or KDR. Subsequently, western blotting for CAT-1, PKCα, ERK 1/2, JNK, and their phosphorylated forms were performed. NO generation was measured by the Griess reaction. Results: VEGF (50 and 100 ng/ml significantly augmented endothelial arginine transport in a time dependent manner, an effect which was prevented by Sunitinib (2 µM, a multi targeted receptor tyrosine kinase inhibitor. The increase in arginine transport velocities by VEGF was not affected by silencing Flt-1 while silencing KDR abrogated VEGF effect. Furthermore, incubating cells with 50 and 100 ng of VEGF for 30 minutes significantly augmented CAT-1 abundance. The expression of PKC-α, JNK, and ERK1/2 and their phosphorylated forms were unchanged following incubation of HUVEC with VEGF. The concentration of NO2/NO3 following incubation with VEGF was significantly higher than from untreated cells. This increase was significantly attenuated by silencing KDR. Conclusions: VEGF increases arginine transport via modulation of CAT-1 in endothelial cells. This effect is exclusively dependent on KDR rather than Flt-1.

  4. Sodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Yuzhe Du

    2016-10-01

    Full Text Available Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr, in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vectors of dengue, zika, and yellow fever viruses, multiple single nucleotide polymorphisms in the sodium channel gene have been found in pyrethroid-resistant populations and some of them have been functionally confirmed to be responsible for kdr in an in vitro expression system, Xenopus oocytes. This mini-review aims to provide an update on the identification and functional characterization of pyrethroid resistance-associated sodium channel mutations from Aedes aegypti. The collection of kdr mutations not only helped us develop molecular markers for resistance monitoring, but also provided valuable information for computational molecular modeling of pyrethroid receptor sites on the sodium channel.

  5. Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Directory of Open Access Journals (Sweden)

    Etang Josiane

    2008-09-01

    Full Text Available Abstract Background Indoor residual spraying and insecticide-treated nets (ITN are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad. Methods Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA. Results During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1% was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9 with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35 of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49 and M form An. gambiae s.s. (N = 1 carried the susceptible allele

  6. Distribution and Frequency of kdr Mutations within Anopheles gambiae s.l. Populations and First Report of the Ace.1G119S Mutation in Anopheles arabiensis from Burkina Faso (West Africa)

    Science.gov (United States)

    Dabiré, Roch K.; Namountougou, Moussa; Diabaté, Abdoulaye; Soma, Dieudonné D.; Bado, Joseph; Toé, Hyacinthe K.; Bass, Chris; Combary, Patrice

    2014-01-01

    An entomological survey was carried out at 15 sites dispersed throughout the three eco-climatic regions of Burkina Faso (West Africa) in order to assess the current distribution and frequency of mutations that confer resistance to insecticides in An. gambiae s.l. populations in the country. Both knockdown (kdr) resistance mutation variants (L1014F and L1014S), that confer resistance to pyrethroid insecticides, were identified concomitant with the ace-1 G119S mutation confirming the presence of multiple resistance mechanisms in the An. gambiae complex in Burkina Faso. Compared to the last survey, the frequency of the L1014F kdr mutation appears to have remained largely stable and relatively high in all species. In contrast, the distribution and frequency of the L1014S mutation has increased significantly in An. gambiae s.l. across much of the country. Furthermore we report, for the first time, the identification of the ace.1 G116S mutation in An. arabiensis populations collected at 8 sites. This mutation, which confers resistance to organophosphate and carbamate insecticides, has been reported previously only in the An. gambiae S and M molecular forms. This finding is significant as organophosphates and carbamates are used in indoor residual sprays (IRS) to control malaria vectors as complementary strategies to the use of pyrethroid impregnated bednets. The occurrence of the three target-site resistance mutations in both An. gambiae molecular forms and now An. arabiensis has significant implications for the control of malaria vector populations in Burkina Faso and for resistance management strategies based on the rotation of insecticides with different modes of action. PMID:25077792

  7. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  8. New susceptibility and resistance HLA-DP alleles to HBV-related diseases identified by a trans-ethnic association study in Asia.

    Science.gov (United States)

    Nishida, Nao; Sawai, Hiromi; Kashiwase, Koichi; Minami, Mutsuhiko; Sugiyama, Masaya; Seto, Wai-Kay; Yuen, Man-Fung; Posuwan, Nawarat; Poovorawan, Yong; Ahn, Sang Hoon; Han, Kwang-Hyub; Matsuura, Kentaro; Tanaka, Yasuhito; Kurosaki, Masayuki; Asahina, Yasuhiro; Izumi, Namiki; Kang, Jong-Hon; Hige, Shuhei; Ide, Tatsuya; Yamamoto, Kazuhide; Sakaida, Isao; Murawaki, Yoshikazu; Itoh, Yoshito; Tamori, Akihiro; Orito, Etsuro; Hiasa, Yoichi; Honda, Masao; Kaneko, Shuichi; Mita, Eiji; Suzuki, Kazuyuki; Hino, Keisuke; Tanaka, Eiji; Mochida, Satoshi; Watanabe, Masaaki; Eguchi, Yuichiro; Masaki, Naohiko; Murata, Kazumoto; Korenaga, Masaaki; Mawatari, Yoriko; Ohashi, Jun; Kawashima, Minae; Tokunaga, Katsushi; Mizokami, Masashi

    2014-01-01

    Previous studies have revealed the association between SNPs located on human leukocyte antigen (HLA) class II genes, including HLA-DP and HLA-DQ, and chronic hepatitis B virus (HBV) infection, mainly in Asian populations. HLA-DP alleles or haplotypes associated with chronic HBV infection or disease progression have not been fully identified in Asian populations. We performed trans-ethnic association analyses of HLA-DPA1, HLA-DPB1 alleles and haplotypes with hepatitis B virus infection and disease progression among Asian populations comprising Japanese, Korean, Hong Kong, and Thai subjects. To assess the association between HLA-DP and chronic HBV infection and disease progression, we conducted high-resolution (4-digit) HLA-DPA1 and HLA-DPB1 genotyping in a total of 3,167 samples, including HBV patients, HBV-resolved individuals and healthy controls. Trans-ethnic association analyses among Asian populations identified a new risk allele HLA-DPB1*09 ∶ 01 (P = 1.36 × 10(-6); OR= 1.97; 95% CI, 1.50-2.59) and a new protective allele DPB1*02 ∶ 01 (P = 5.22 × 10(-6); OR = 0.68; 95% CI, 0.58-0.81) to chronic HBV infection, in addition to the previously reported alleles. Moreover, DPB1*02 ∶ 01 was also associated with a decreased risk of disease progression in chronic HBV patients among Asian populations (P = 1.55 × 10(-7); OR = 0.50; 95% CI, 0.39-0.65). Trans-ethnic association analyses identified Asian-specific associations of HLA-DP alleles and haplotypes with HBV infection or disease progression. The present findings will serve as a base for future functional studies of HLA-DP molecules in order to understand the pathogenesis of HBV infection and the development of hepatocellular carcinoma.

  9. Reduced production of OprM may promote oprD mutations and lead to imipenem resistance in Pseudomonas aeruginosa carrying an oprD-group 1A allele.

    Science.gov (United States)

    Shu, Jwu-Ching; Su, Lin-Hui; Chiu, Cheng-Hsun; Kuo, An-Jing; Liu, Tsui-Ping; Lee, Ming-Hsun; Su, I-Ning; Wu, Tsu-Lan

    2015-04-01

    Resistance mechanisms in a group of carbapenemase-negative Pseudomonas aeruginosa that were susceptible to all antibiotics except carbapenems (carbapenem resistance-only P. aeruginosa [CROPA]) were studied. Ten genetically nonrelated CROPA isolates and their carbapenem-susceptible counterparts were further investigated. OprD production was demonstrated by protein electrophoresis in only 1 of the 10 carbapenem-susceptible isolates, while the other 9 isolates showed hyperproduction of OprM. DNA sequencing of oprD revealed a shortened loop 7 domain (group 1A allele) in eight carbapenem-susceptible isolates. Various oprD mutations, leading to early terminations, were found in 9 of the 10 CROPA isolates. RNA analysis demonstrated hyperexpression of oprM with normal expression of mexA in eight of the carbapenem-susceptible isolates, while in seven of their CROPA counterparts, the oprM expression was significantly reduced. Deletion of oprM was performed in two pairs of representative isolates. Selection of imipenem resistant variants by a disc assay indicated that the lost-of-function mutations in oprD occurred relatively faster in the ΔoprM mutants compared with their corresponding parent strains. Under selection pressure, reduced production of OprM may promote the selection of spontaneous changes in oprD, resulting in the carbapenem resistance in a group of pan-susceptible P. aeruginosa isolates characterized by harboring an oprD-group 1A allele.

  10. Decreased insulin secretion and increased risk of type 2 diabetes associated with allelic variations of the WFS1 gene: the Data from Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study.

    Science.gov (United States)

    Cheurfa, N; Brenner, G M; Reis, A F; Dubois-Laforgue, D; Roussel, R; Tichet, J; Lantieri, O; Balkau, B; Fumeron, F; Timsit, J; Marre, M; Velho, G

    2011-03-01

    We investigated associations of allelic variations in the WFS1 gene with insulin secretion and risk of type 2 diabetes in a general population prospective study. We studied 5,110 unrelated French men and women who participated in the prospective Data from Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study. Additional cross-sectional analyses were performed on 4,472 French individuals with type 2 diabetes and 3,065 controls. Three single nucleotide polymorphisms (SNPs) were genotyped: rs10010131, rs1801213/rs7672995 and rs734312. We observed statistically significant associations between the major alleles of the three variants and prevalent type 2 diabetes in the DESIR cohort at baseline. Cox analyses showed an association between the G-allele of rs10010131 and incident type 2 diabetes (HR 1.34, 95% CI 1.08-1.70, p = 0.007). Similar results were observed for the G-allele of rs1801213 and the A-allele of rs734312. The GGA haplotype was associated with an increased risk of diabetes as compared with the ACG haplotype (HR 1.26, 95% CI 1.04-1.42, p = 0.02). We also observed statistically significant associations of the three SNPs with plasma glucose, HbA(1c) levels and insulin secretion at baseline and throughout the study in individuals with type 2 diabetes or at risk of developing diabetes. However, no association was observed in those who remained normoglycaemic at the end of the follow-up. Associations between the three variants and type 2 diabetes were replicated in cross-sectional studies of type 2 diabetic patients in comparison with a non-diabetic control group. The most frequent haplotype at the haplotype block containing the WFS1 gene modulated insulin secretion and was associated with an increased risk of type 2 diabetes.

  11. Effect of insecticidal fusion proteins containing spider toxins targeting sodium and calcium ion channels on pyrethroid-resistant strains of peach-potato aphid (Myzus persicae).

    Science.gov (United States)

    Yang, Sheng; Fitches, Elaine; Pyati, Prashant; Gatehouse, John A

    2015-07-01

    The recombinant fusion proteins Pl1a/GNA and Hv1a/GNA contain the spider venom peptides δ-amaurobitoxin-PI1a or ω-hexatoxin-Hv1a respectively, linked to snowdrop lectin (GNA). Pl1a targets receptor site 4 of insect voltage-gated sodium channels (NaCh), while Hv1a targets voltage-gated calcium channels. Insecticide-resistant strains of peach-potato aphid (Myzus persicae) contain mutations in NaCh. The pyrethroid-resistant kdr (794J) and super-kdr (UKO) strains contain mutations at residues L1014 and M918 in the channel α-subunit respectively, while the kdr + super-kdr strain (4824J), insensitive to pyrethroids, contains mutations at both L1014 and M918. Pl1a/GNA and Hv1a/GNA fusion proteins have estimated LC50 values of 0.35 and 0.19 mg mL(-1) when fed to wild-type M. persicae. For insecticide-resistant aphids, LC50 for the Pl1a/GNA fusion protein increased by 2-6-fold, correlating with pyrethroid resistance (wild type < kdr < super-kdr < kdr + super-kdr strains). In contrast, LC50 for the Hv1a/GNA fusion protein showed limited correlation with pyrethroid resistance. Mutations in the sodium channel in pyrethroid-resistant aphids also protect against a fusion protein containing a sodium-channel-specific toxin, in spite of differences in ligand-channel interactions, but do not confer resistance to a fusion protein targeting calcium channels. The use of fusion proteins with differing targets could play a role in managing pesticide resistance. © 2014 Society of Chemical Industry.

  12. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling

    Science.gov (United States)

    Barley Mla alleles encode coiled-coil (CC), nucleotide binding and leucine-rich repeat (NB-LRR) intracellular receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at p...

  13. Effects of Cetuximab Combined with Celecoxib on Apoptosis and KDR and AQP1 
Expression in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Honggang XIA

    2013-12-01

    Full Text Available Background and objective Neoadjuvant chemotherapy is a new development in the treatment of lung cancer. In recent years, cetuximab and celecoxib have been commonly used in this procedure. This study aims to explore the effect of cetuximab combined with celecoxib on apoptosis and KDR and AQP1 expression in lung cancer A549 cells. Method The cells were cultured in RPMI-1640 and then divided into four groups: control group, 1 nmol/L cetuximab group, 25 µmol/L celecoxib group, and 1 nmol/L cetuximab+25 µmol/L celecoxib group. The treatment time was 48 h. The mRNA and protein expression levels of KDR and AQP1 were detected by RT-PCR and Western blot, respectively. The apoptosis, proliferation, and invasive ability of A549 cells before and after transfection were examined using flow cytometry, MTT, and transwell methods. Results Cetuximab and celecoxib inhibited the growth of A549 cells in a dose-dependent manner. Their combination produced a greater growth inhibition than when either was used alone (P<0.01. Cetuximab and celecoxib both induced the apoptosis of A549 cells, and their combination produced a higher apoptosis rate (P<0.01. Cetuximab in combination with celecoxib also induced G1 phase arrest and downregulated the expression of KDR and AQP1 in A549 cells (P<0.05. As a result, the invasion ability of the A549 cells was significantly decreased. Conclusion Cetuximab in combination with celecoxib can synergistically inhibit the growth of A549 cells and downregulate the expression of KDR and AQP1 in A549 cells. The combination of cetuximab and celecoxib is a potential strategy for lung cancer therapy.

  14. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Christopher M Jones

    Full Text Available In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose=65.8% in the dry season and 70.4% in the rainy season, respectively. An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency=0.4, which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa.

  15. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution.

    Science.gov (United States)

    Antonio-Nkondjio, Christophe; Fossog, Billy Tene; Ndo, Cyrille; Djantio, Benjamin Menze; Togouet, Serge Zebaze; Awono-Ambene, Parfait; Costantini, Carlo; Wondji, Charles S; Ranson, Hilary

    2011-06-08

    Urban malaria is becoming a major health priority across Africa. A study was undertaken to assess the importance of urban pollution and agriculture practice on the distribution and susceptibility to insecticide of malaria vectors in the two main cities in Cameroon. Anopheline larval breeding sites were surveyed and water samples analysed monthly from October 2009 to December 2010. Parameters analysed included turbidity, pH, temperature, conductivity, sulfates, phosphates, nitrates, nitrites, ammonia, aluminium, alkalinity, iron, potassium, manganese, magnesium, magnesium hardness and total hardness. Characteristics of water bodies in urban areas were compared to rural areas and between urban sites. The level of susceptibility of Anopheles gambiae to 4% DDT, 0.75% permethrin, 0.05% deltamethrin, 0.1% bendiocarb and 5% malathion were compared between mosquitoes collected from polluted, non polluted and cultivated areas. A total of 1,546 breeding sites, 690 in Yaoundé and 856 in Douala, were sampled in the course of the study. Almost all measured parameters had a concentration of 2- to 100-fold higher in urban compare to rural breeding sites. No resistance to malathion was detected, but bendiocarb resistance was present in Yaounde. Very low mortality rates were observed following DDT or permethrin exposure, associated with high kdr frequencies. Mosquitoes collected in cultivated areas, exhibited the highest resistant levels. There was little difference in insecticide resistance or kdr allele frequency in mosquitoes collected from polluted versus non-polluted sites. The data confirm high selection pressure on mosquitoes originating from urban areas and suggest urban agriculture rather than pollution as the major factor driving resistance to insecticide.

  16. Allele identification using immobilized mismatch binding protein: detection and identification of antibiotic-resistant bacteria and determination of sheep susceptibility to scrapie.

    OpenAIRE

    Debbie, P; Young, K; Pooler, L; Lamp, C; Marietta, P; Wagner, R

    1997-01-01

    A novel method for detection and identification of specific alleles has been developed utilizing immobilized mismatch binding protein (IMBP). The assay involves the use of biotin-labeled probes, which are prepared by PCR amplification of cloned fragments with known sequence. The use of probes avoids many of the problems associated with the extreme sensitivity of IMBP assays to errors in PCR amplification. The method can be used to monitor PCR fidelity and to genotype both diploid and haploid ...

  17. [First report of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in Aedes aegypti from Colombia].

    Science.gov (United States)

    Atencia, María Claudia; Pérez, María De Jesús; Jaramillo, María Cristina; Caldera, Sandy Milena; Cochero, Suljey; Bejarano, Eduar Elías

    2016-09-01

    The main strategy for the control of Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is based on the use of insecticides to reduce its populations. However, their use has led to insect resistance to these chemicals. Objective: To determine the presence of the F1534C mutation associated with cross-resistance to DDT and pyrethroids in A. aegypti in Sincelejo, Colombia. Materials and methods: We studied nine specimens of A. aegypti that showed resistance to lambdacyhalothrin in bioassays developed by the Secretaría de Salud de Sucre. We used a semi-nested PCR as previously described by Harris, et al., to amplify exon 31 of the para gene of the voltage-dependent sodium channel of A. aegypti. We sequenced, edited, and analyzed PCR products with the MEGA 5 software. Results: We detected the wild and mutant alleles of exon 31 in all of the nine mosquitoes tested, and observed the substitution of thymine for guanine in the nucleotide sequence of the mutant allele, producing a change to UGC in the UUC codon, which led to the replacement of phenylalanine by cysteine in residue 1534 of the protein. Conclusion: The nine mosquitoes analyzed presented a heterozygote genotype for the F1534C mutation, whose phenotypic effect is knockdown resistance (kdr) to DDT and pyrethroids.

  18. Resistance mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholine esterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China.

    Science.gov (United States)

    Zhang, Ning-ning; Liu, Cai-feng; Yang, Fang; Dong, Shuang-lin; Han, Zhao-jun

    2012-01-01

    The tobacco whitefly B-biotype Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a worldwide pest of many crops. In China, chlorpyrifos has been used to control this insect for many years and is still being used despite the fact that some resistance has been reported. To combat resistance and maintain good control efficiency of chlorpyrifos, it is essential to understand resistance mechanisms. A chlorpyrifos resistant tobacco whitefly strain (NJ-R) and a susceptible strain (NJ-S) were derived from a field-collected population in Nanjing, China, and the resistance mechanisms were investigated. More than 30-fold resistance was achieved after selected by chlorpyrifos for 13 generations in the laboratory. However, the resistance dropped significantly to about 18-fold in only 4 generations without selection pressure. Biochemical assays indicated that increased esterase activity was responsible for this resistance, while acetylcholine esterase, glutathione S-transferase, and microsomal-O-demethylase played little or no role. F392W mutations in acel were prevalent in NJ-S and NJ-R strains and 6 field-collected populations of both B and Q-biotype from locations that cover a wide geographical area of China. These findings provide important information about tobacco whitefly chlorpyrifos resistance mechanisms and guidance to combat resistance and optimize use patterns of chlorpyrifos and other organophosphate and carbamate insecticides.

  19. Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d'Ivoire.

    Science.gov (United States)

    Camara, Soromane; Koffi, Alphonsine A; Ahoua Alou, Ludovic P; Koffi, Kouakou; Kabran, Jean-Paul K; Koné, Aboubacar; Koffi, Mathieu F; N'Guessan, Raphaël; Pennetier, Cédric

    2018-01-08

    Insecticide resistance in malaria vectors is an increasing threat to vector control tools currently deployed in endemic countries. Resistance management must be an integral part of National Malaria Control Programmes' (NMCPs) next strategic plans to alleviate the risk of control failure. This obviously will require a clear database on insecticide resistance to support the development of such a plan. The present work gathers original data on insecticide resistance between 2009 and 2015 across Côte d'Ivoire in West Africa. Two approaches were adopted to build or update the resistance data in the country. Resistance monitoring was conducted between 2013 and 2015 in 35 sentinel sites across the country using the WHO standard procedure of susceptibility test on adult mosquitoes. Four insecticide families (pyrethroids, organochlorides, carbamates and organophosphates) were tested. In addition to this survey, we also reviewed the literature to assemble existing data on resistance between 2009 and 2015. High resistance levels to pyrethroids, organochlorides and carbamates were widespread in all study sites whereas some Anopheles populations remained susceptible to organophosphates. Three resistance mechanisms were identified, involving high allelic frequencies of kdr L1014F mutation (range = 0.46-1), relatively low frequencies of ace-1 R (below 0.5) and elevated activity of insecticide detoxifying enzymes, mainly mixed function oxidases (MFO), esterase and glutathione S-transferase (GST) in almost all study sites. This detailed map of resistance highlights the urgent need to develop new vector control tools to complement current long-lasting insecticidal nets (LLINs) although it is yet unclear whether these resistance mechanisms will impact malaria transmission control. Researchers, industry, WHO and stakeholders must urgently join forces to develop alternative tools. By then, NMCPs must strive to develop effective tactics or plans to manage resistance keeping in mind

  20. Knockdown resistance in pyrethroid-resistant horn fly (Diptera: Muscidae populations in Brazil Resistência Knockdown em populações de mosca-dos-chifres do Brasil resistentes aos piretróides

    Directory of Open Access Journals (Sweden)

    Gustavo A. Sabatini

    2009-09-01

    Full Text Available To investigate the kdr (knockdown resistance resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South were molecular screened through polymerase chain reaction (PCR. The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population. This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.Com o objetivo de verificar a ocorrência e determinar a frequência da mutação kdr (knock down resistance em populações de Haematobia irritans (mosca-dos-chifres resistentes aos piretróides, foram analisados 1.804 indivíduos de 37 populações de todas as Regiões do Brasil. Com exceção da Região Nordeste, o kdr (knock down resistance gene foi encontrado em populações de todas as regiões. A mutação não foi detectada em 87,08% dos indivíduos. Entretanto, o gene foi amplificado de 12,92% das moscas, das quais 11,70% se mostraram heterozigotas resistentes e 1

  1. Comparison of 454 Ultra-Deep Sequencing and Allele-Specific Real-Time PCR with Regard to the Detection of Emerging Drug-Resistant Minor HIV-1 Variants after Antiretroviral Prophylaxis for Vertical Transmission.

    Science.gov (United States)

    Hauser, Andrea; Kuecherer, Claudia; Kunz, Andrea; Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Nitsche, Andreas; Theuring, Stefanie; Bannert, Norbert; Sewangi, Julius; Mbezi, Paulina; Dugange, Festo; Harms, Gundel; Meixenberger, Karolin

    2015-01-01

    Pregnant HIV-infected women were screened for the development of HIV-1 drug resistance after implementation of a triple-antiretroviral transmission prophylaxis as recommended by the WHO in 2006. The study offered the opportunity to compare amplicon-based 454 ultra-deep sequencing (UDS) and allele-specific real-time PCR (ASPCR) for the detection of drug-resistant minor variants in the HIV-1 reverse transcriptase (RT). Plasma samples from 34 Tanzanian women were previously analysed by ASPCR for key resistance mutations in the viral RT selected by AZT, 3TC, and NVP (K70R, K103N, Y181C, M184V, T215Y/F). In this study, the RT region of the same samples was investigated by amplicon-based UDS for resistance mutations using the 454 GS FLX System. Drug-resistant HIV-variants were identified in 69% (20/29) of women by UDS and in 45% (13/29) by ASPCR. The absolute number of resistance mutations identified by UDS was twice that identified by ASPCR (45 vs 24). By UDS 14 of 24 ASPCR-detected resistance mutations were identified at the same position. The overall concordance between UDS and ASPCR was 61.0% (25/41). The proportions of variants quantified by UDS were approximately 2-3 times lower than by ASPCR. Amplicon generation from samples with viral loads below 20,000 copies/ml failed more frequently by UDS compared to ASPCR (limit of detection = 650 copies/ml), resulting in missing or insufficient sequence coverage. Both methods can provide useful information about drug-resistant minor HIV-1 variants. ASPCR has a higher sensitivity than UDS, but is restricted to single resistance mutations. In contrast, UDS is limited by its requirement for high viral loads to achieve sufficient sequence coverage, but the sequence information reveals the complete resistance patterns within the genomic region analysed. Improvements to the UDS limit of detection are in progress, and UDS could then facilitate monitoring of drug-resistant minor variants in the HIV-1 quasispecies.

  2. Comparison of 454 Ultra-Deep Sequencing and Allele-Specific Real-Time PCR with Regard to the Detection of Emerging Drug-Resistant Minor HIV-1 Variants after Antiretroviral Prophylaxis for Vertical Transmission.

    Directory of Open Access Journals (Sweden)

    Andrea Hauser

    Full Text Available Pregnant HIV-infected women were screened for the development of HIV-1 drug resistance after implementation of a triple-antiretroviral transmission prophylaxis as recommended by the WHO in 2006. The study offered the opportunity to compare amplicon-based 454 ultra-deep sequencing (UDS and allele-specific real-time PCR (ASPCR for the detection of drug-resistant minor variants in the HIV-1 reverse transcriptase (RT.Plasma samples from 34 Tanzanian women were previously analysed by ASPCR for key resistance mutations in the viral RT selected by AZT, 3TC, and NVP (K70R, K103N, Y181C, M184V, T215Y/F. In this study, the RT region of the same samples was investigated by amplicon-based UDS for resistance mutations using the 454 GS FLX System.Drug-resistant HIV-variants were identified in 69% (20/29 of women by UDS and in 45% (13/29 by ASPCR. The absolute number of resistance mutations identified by UDS was twice that identified by ASPCR (45 vs 24. By UDS 14 of 24 ASPCR-detected resistance mutations were identified at the same position. The overall concordance between UDS and ASPCR was 61.0% (25/41. The proportions of variants quantified by UDS were approximately 2-3 times lower than by ASPCR. Amplicon generation from samples with viral loads below 20,000 copies/ml failed more frequently by UDS compared to ASPCR (limit of detection = 650 copies/ml, resulting in missing or insufficient sequence coverage.Both methods can provide useful information about drug-resistant minor HIV-1 variants. ASPCR has a higher sensitivity than UDS, but is restricted to single resistance mutations. In contrast, UDS is limited by its requirement for high viral loads to achieve sufficient sequence coverage, but the sequence information reveals the complete resistance patterns within the genomic region analysed. Improvements to the UDS limit of detection are in progress, and UDS could then facilitate monitoring of drug-resistant minor variants in the HIV-1 quasispecies.

  3. A YAC contig spanning a cluster of human type III receptor protein tyrosine kinase genes (PDGFRA-KIT-KDR) in chromosome segment 4q12

    Energy Technology Data Exchange (ETDEWEB)

    Spritz, R.A.; Strunk, K.M.; Lee, S.T. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1994-07-15

    The authors have mapped five genes encoding protein tyrosine kinases (PTKs) to the pericentromeric region of human chromosome 4. PTK4 and TYRO4, which encode nonreceptor intracellular PTKs, are located at 4p12 and 4q13, respectively. The other three genes, PDGFRA, KIT, and KDR, encode type III transmembrane receptor PTKs for known ligands. The authors have developed a contig of 29 yeast artificial chromosomes (YACs) spanning approximately 2 Mb of DNA at 4q12 that includes PDGFRA, KIT, and KDR, and have used this YAC contig to map 12 different sequence-tagged sites in this region. PDGFRA, KIT, and KDR thus constitute a cluster of genes at 4q12 encoding closely related type III receptor PTKs. Mutations of the human KIT gene result in piebaldism, an autosomal dominant disorder of melanocyte development. 42 refs., 3 figs., 2 tabs.

  4. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and –susceptible alleles in response to Plasmodiophora brassicae during early infection

    Directory of Open Access Journals (Sweden)

    Jingjing eChen

    2016-01-01

    Full Text Available Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs of clubroot-resistant (CR BJN3-2 and clubroot-susceptible (BJN3-2 Chinese cabbage (Brassica rapa was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1,875 and 2,103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 hours after inoculation (hai. Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins, PR genes involved in salicylic acid (SA signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection.

  5. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl or a pyrethroid (lambdacyhalothrin alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2005-05-01

    Full Text Available Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM, an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L, a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R. Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.

  6. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibres and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609

    DEFF Research Database (Denmark)

    Grunnet, Louise Groth; Brøns, Charlotte; Jacobsen, Stine

    2009-01-01

    diabetes. Methods. Forty-six young men underwent a hyperinsulinemic euglycemic clamp with excision of skeletal muscle biopsies, an intravenous glucose tolerance test, (31)phosphorous magnetic resonance spectroscopy and 24-hour whole body metabolism was measured in a respiratory chamber. Results. The FTO rs......9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance and shorter recovery halftimes of phosphocreatine (PCr) and inorganic phosphate (Pi) after exercise in a primarily type I muscle. These relationships - except for fasting insulin - remained...... or mitochondrially encoded genes in skeletal muscle during rest. Conclusion. Increased energy efficiency - and potentially increased mitochondrial coupling - as suggested by faster recovery rates of PCr and Pi in oxidative muscle fibres may contribute to the increased risk of obesity and type 2 diabetes...

  7. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy.

    Science.gov (United States)

    Duah, Nancy O; Matrevi, Sena A; de Souza, Dziedzom K; Binnah, Daniel D; Tamakloe, Mary M; Opoku, Vera S; Onwona, Christiana O; Narh, Charles A; Quashie, Neils B; Abuaku, Benjamin; Duplessis, Christopher; Kronmann, Karl C; Koram, Kwadwo A

    2013-10-30

    With the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations. Archived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003-2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis. The percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003-04, 2005-06, 2007-08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×(2) = 96.31, p resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.

  8. Local Adaptation by Alleles of Small Effect.

    Science.gov (United States)

    Yeaman, Sam

    2015-10-01

    Population genetic models predict that alleles with small selection coefficients may be swamped by migration and will not contribute to local adaptation. But if most alleles contributing to standing variation are of small effect, how does local adaptation proceed? Here I review predictions of population and quantitative genetic models and use individual-based simulations to illustrate how the architecture of local adaptation depends on the genetic redundancy of the trait, the maintenance of standing genetic variation (V(G)), and the susceptibility of alleles to swamping. Even when population genetic models predict swamping for individual alleles, considerable local adaptation can evolve at the phenotypic level if there is sufficient V(G). However, in such cases the underlying architecture of divergence is transient: F(ST) is low across all loci, and no locus makes an important contribution for very long. Because this kind of local adaptation is mainly due to transient frequency changes and allelic covariances, these architectures will be difficult--if not impossible--to detect using current approaches to studying the genomic basis of adaptation. Even when alleles are large and resistant to swamping, architectures can be highly transient if genetic redundancy and mutation rates are high. These results suggest that drift can play a critical role in shaping the architecture of local adaptation, both through eroding V(G) and affecting the rate of turnover of polymorphisms with redundant phenotypic effects.

  9. Comparative Transcriptome Profiles of Near-Isogenic Hexaploid Wheat Lines Differing for Effective Alleles at the 2DL FHB Resistance QTL

    Directory of Open Access Journals (Sweden)

    Chiara Biselli

    2018-01-01

    Full Text Available Fusarium head blight (FHB, caused by the fungus Fusarium graminearum, represents one of the major wheat diseases worldwide, determining severe yield losses and reduction of grain quality due to the accumulation of mycotoxins. The molecular response associated with the wheat 2DL FHB resistance QTL was mined through a comprehensive transcriptomic analysis of the early response to F. graminearum infection, at 3 days post-inoculation, in spikelets and rachis. The analyses were conducted on two near isogenic lines (NILs differing for the presence of the 2DL QTL (2-2618, resistant 2DL+ and 2-2890, susceptible null. The general response to fungal infection in terms of mRNAs accumulation trend was similar in both NILs, even though involving an higher number of DEGs in the susceptible NIL, and included down-regulation of the primary and energy metabolism, up-regulation of enzymes implicated in lignin and phenylpropanoid biosynthesis, activation of hormons biosynthesis and signal transduction pathways and genes involved in redox homeostasis and transcriptional regulation. The search for candidate genes with expression profiles associated with the 2DL QTL for FHB resistance led to the discovery of processes differentially modulated in the R and S NILs related to cell wall metabolism, sugar and JA signaling, signal reception and transduction, regulation of the redox status and transcription factors. Wheat FHB response-related miRNAs differentially regulated were also identified as putatively implicated in the superoxide dismutase activities and affecting genes regulating responses to biotic/abiotic stresses and auxin signaling. Altered gene expression was also observed for fungal non-codingRNAs. The putative targets of two of these were represented by the wheat gene WIR1A, involved in resistance response, and a gene encoding a jacalin-related lectin protein, which participate in biotic and abiotic stress response, supporting the presence of a cross

  10. Host microsatellite alleles in malaria predisposition?

    Directory of Open Access Journals (Sweden)

    Trivedi Rajni

    2005-10-01

    Full Text Available Abstract Background Malaria is a serious, sometimes fatal, disease caused by Plasmodium infection of human red blood cells. The host-parasite co-evolutionary processes are well understood by the association of coding variations such as G6PD, Duffy blood group receptor, HLA, and beta-globin gene variants with malaria resistance. The profound genetic diversity in host is attributed to polymorphic microsatellites loci. The microsatellite alleles in bacterial species are known to have aided their survival in fatal environmental conditions. The fascinating question is whether microsatellites are genomic cushion in the human genome to combat disease stress and has cause-effect relationships with infections. Presentation of the hypothesis It is hypothesized that repeat units or alleles of microsatellites TH01 and D5S818, located in close proximity to beta-globin gene and immune regulatory region in human play a role in malaria predisposition. Association of alleles at aforesaid microsatellites with malaria infection was analysed. To overrule the false association in unrecognized population stratification, structure analysis and AMOVA were performed among the sampled groups. Testing of hypothesis Associations of microsatellite alleles with malaria infection were verified using recombination rate, Chi-square, and powerful likelihood tests. Further investigation of population genetic structure, and AMOVA was done to rule out the confounding effects of population stratification in interpretation of association studies. Implication of the hypothesis Lower recombination rate (θ between microsatellites and genes implicated in host fitness; positive association between alleles -13 (D5S818, 9 (TH01 and strong susceptibility to Plasmodium falciparum; and alleles-12 (D5S818 and 6 (TH01 rendering resistance to human host were evident. The interesting fact emerging from the study was that while predisposition to malaria was a prehistoric attribute, among TH01

  11. HLA-DR and HLA-DQ alleles in patients from the south of Brazil: markers for leprosy susceptibility and resistance

    Directory of Open Access Journals (Sweden)

    Peixoto Paulo R

    2009-08-01

    Full Text Available Abstract Background Many epidemiological studies have shown that the genetic factors of the host play a role in the variability of clinical response to infection caused by M. leprae. With the purpose of identifying genes of susceptibility, the present study investigated the possible role of HLA-DRB1 and DQA1/DQB1 alleles in susceptibility to leprosy, and whether they account for the heterogeneity in immune responses observed following infection in a Southern Brazilian population. Methods One hundred and sixty-nine leprosy patients and 217 healthy controls were analyzed by polymerase chain reaction amplification and reverse hybridization with sequence-specific oligonucleotide probes and sequence-specific primers(One Lambda®, CA, USA. Results There was a positive association of HLA-DRB1*16 (*1601 and *1602 with leprosy per se (7.3% vs. 3.2%, P = 0.01, OR = 2.52, CI = 1.26–5.01, in accord with previous serological studies, which showed DR2 as a marker of leprosy. Although, HLA-DQA1*05 frequency (29.8% vs. 20.9%, P = 0.0424, OR = 1.61, CI = 1.09–2.39 was higher in patients, and HLA-DQA1*02 (3.0% vs. 7.5%, P = 0.0392, OR = 0.39, CI = 0.16 – 0.95 and HLA-DQA1*04 (4.0% vs. 9.1%, P = 0.0314, OR = 0.42, CI = 0.19 – 0.93 frequencies lower, P-values were not significant after the Bonferroni's correction. Furthermore, HLA-DRB1*1601 (9.0% vs. 1.8%; P = 0.0016; OR = 5.81; CI = 2.05–16.46 was associated with susceptibility to borderline leprosy compared to control group, and while HLA-DRB1*08 (11.2% vs. 1.2%; P = 0.0037; OR = 12.00; CI = 1.51 – 95.12 was associated with susceptibility to lepromatous leprosy, when compared to tuberculoid leprosy, DRB1*04 was associated to protection. Conclusion These data confirm the positive association of HLA-DR2 (DRB1*16 with leprosy per se, and the protector effect of DRB1*04 against lepromatous leprosy in Brazilian patients.

  12. Plasmodium falciparum: Differential Selection of Drug Resistance Alleles in Contiguous Urban and Peri-Urban Areas of Brazzaville, Republic of Congo

    Science.gov (United States)

    Tsumori, Yoko; Ndounga, Mathieu; Sunahara, Toshihiko; Hayashida, Nozomi; Inoue, Megumi; Nakazawa, Shusuke; Casimiro, Prisca; Isozumi, Rie; Uemura, Haruki; Tanabe, Kazuyuki; Kaneko, Osamu; Culleton, Richard

    2011-01-01

    The African continent is currently experiencing rapid population growth, with rising urbanization increasing the percentage of the population living in large towns and cities. We studied the impact of the degree of urbanization on the population genetics of Plasmodium falciparum in urban and peri-urban areas in and around the city of Brazzaville, Republic of Congo. This field setting, which incorporates local health centers situated in areas of varying urbanization, is of interest as it allows the characterization of malaria parasites from areas where the human, parasite, and mosquito populations are shared, but where differences in the degree of urbanization (leading to dramatic differences in transmission intensity) cause the pattern of malaria transmission to differ greatly. We have investigated how these differences in transmission intensity affect parasite genetic diversity, including the amount of genetic polymorphism in each area, the degree of linkage disequilibrium within the populations, and the prevalence and frequency of drug resistance markers. To determine parasite population structure, heterozygosity and linkage disequilibrium, we typed eight microsatellite markers and performed haplotype analysis of the msp1 gene by PCR. Mutations known to be associated with resistance to the antimalarial drugs chloroquine and pyrimethamine were determined by sequencing the relevant portions of the crt and dhfr genes, respectively. We found that parasite genetic diversity was comparable between the two sites, with high levels of polymorphism being maintained in both areas despite dramatic differences in transmission intensity. Crucially, we found that the frequencies of genetic markers of drug resistance against pyrimethamine and chloroquine differed significantly between the sites, indicative of differing selection pressures in the two areas. PMID:21858115

  13. Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele.

    Science.gov (United States)

    Huang, Xinyan; Charbeneau, Raelene A; Fu, Ying; Kaur, Kuljeet; Gerin, Isabelle; MacDougald, Ormond A; Neubig, Richard R

    2008-01-01

    Guanine nucleotide binding protein (G protein)-mediated signaling plays major roles in endocrine/metabolic function. Regulators of G protein signaling (RGSs, or RGS proteins) are responsible for the subsecond turn off of G protein signaling and are inhibitors of signal transduction in vitro, but the physiological function of RGS proteins remains poorly defined in part because of functional redundancy. We explore the role of RGS proteins and G alpha(i2) in the physiologic regulation of body weight and glucose homeostasis by studying genomic "knock-in" mice expressing RGS-insensitive G alpha(i2) with a G184S mutation that blocks RGS protein binding and GTPase acceleration. Homozygous G alpha(i2)(G184S) knock-in mice show slightly reduced adiposity. On a high-fat diet, male G alpha(i2)(G184S) mice are resistant to weight gain, have decreased body fat, and are protected from insulin resistance. This appears to be a result of increased energy expenditure. Both male and female G alpha(i2)(G184S) mice on a high-fat diet also exhibit enhanced insulin sensitivity and increased glucose tolerance despite females having similar weight gain and adiposity compared with wild-type female mice. RGS proteins and G alpha(i2) signaling play important roles in the control of insulin sensitivity and glucose metabolism. Identification of the specific RGS proteins involved might permit their consideration as potential therapeutic targets for obesity-related insulin resistance and type 2 diabetes.

  14. Insecticidal and repellent activities of pyrethroids to the three major pyrethroid-resistant malaria vectors in western Kenya.

    Science.gov (United States)

    Kawada, Hitoshi; Ohashi, Kazunori; Dida, Gabriel O; Sonye, George; Njenga, Sammy M; Mwandawiro, Charles; Minakawa, Noboru

    2014-05-02

    The dramatic success of insecticide treated nets (ITNs) and long-lasting insecticidal nets (LLINs) in African countries has been countered by the rapid development of pyrethroid resistance in vector mosquitoes over the past decade. One advantage of the use of pyrethroids in ITNs is their excito-repellency. Use of the excito-repellency of pyrethroids might be biorational, since such repellency will not induce or delay the development of any physiological resistance. However, little is known about the relationship between the mode of insecticide resistance and excito-repellency in pyrethroid-resistant mosquitoes. Differences in the reactions of 3 major malaria vectors in western Kenya to pyrethroids were compared in laboratory tests. Adult susceptibility tests were performed using World Health Organization (WHO) test tube kits for F1 progenies of field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s., and laboratory colonies of An. gambiae s.s. and An. arabiensis. The contact repellency to pyrethroids or permethrin-impregnated LLINs (Olyset® Nets) was evaluated with a simple choice test modified by WHO test tubes and with the test modified by the WHO cone bioassay test. Field-collected An. gambiae s.s., An. arabiensis, and An. funestus s.s. showed high resistance to both permethrin and deltamethrin. The allelic frequency of the point mutation in the voltage-gated sodium channel (L1014S) in An. gambiae s.s. was 99.3-100%, while no point mutations were detected in the other 2 species. The frequency of takeoffs from the pyrethroid-treated surface and the flying times without contacting the surface increased significantly in pyrethroid-susceptible An. gambiae s.s. and An. arabiensis colonies and wild An. arabiensis and An. funestus s.s. colonies, while there was no significant increase in the frequency of takeoffs or flying time in the An. gambiae s.s. wild colony. A different repellent reaction was observed in the field-collected An. gambiae s.s. than

  15. Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies).

    Science.gov (United States)

    Goindin, Daniella; Delannay, Christelle; Gelasse, Andric; Ramdini, Cédric; Gaude, Thierry; Faucon, Frédéric; David, Jean-Philippe; Gustave, Joël; Vega-Rua, Anubis; Fouque, Florence

    2017-02-10

    In the Guadeloupe and Saint Martin islands, Aedes aegypti mosquitoes are the only recognized vectors of dengue, chikungunya, and Zika viruses. For around 40 years, malathion was used as a mosquito adulticide and temephos as a larvicide. Since the European Union banned the use of these two insecticide molecules in the first decade of the 21st century, deltamethrin and Bacillus thuringiensis var. israelensis are the remaining adulticide and larvicide, respectively, used in Guadeloupe. In order to improve the management of vector control activities in Guadeloupe and Saint Martin, we investigated Ae. aegypti resistance to and mechanisms associated with deltamethrin, malathion, and temephos. Ae. aegypti mosquitoes were collected from six different localities of Guadeloupe and Saint Martin. Larvae were used for malathion and temephos bioassays, and adult mosquitoes for deltamethrin bioassays, following World Health Organization recommendations. Knockdown resistance (Kdr) genotyping for V1016I and F1534C mutations, and expression levels of eight enzymes involved in detoxification mechanisms were examined in comparison with the susceptible reference Bora Bora strain. Resistance ratios (RR 50 ) calculated for Ae. aegypti larvae showed high resistance levels to temephos (from 8.9 to 33.1-fold) and low resistance levels to malathion (from 1.7 to 4.4-fold). Adult females displayed moderate resistance levels to deltamethrin regarding the time necessary to affect 50% of individuals, varying from 8.0 to 28.1-fold. Molecular investigations on adult mosquitoes showed high resistant allele frequencies for V1016I and F1534C (from 85 to 96% and from 90 to 98%, respectively), as well as an overexpression of the glutathione S-transferase gene, GSTe2, the carboxylesterase CCEae3a, and the cytochrome genes 014614, CYP6BB2, CYP6M11, and CYP9J23. Ae. aegypti populations from Guadeloupe and Saint Martin exhibit multiple resistance to organophosphates (temephos and malathion), and

  16. Amino substituted nitrogen heterocycle ureas as kinase insert domain containing receptor (KDR inhibitors: Performance of structure–activity relationship approaches

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-06-01

    Full Text Available A quantitative structure–activity relationship (QSAR study was performed on a set of amino-substituted nitrogen heterocyclic urea derivatives. Two novel approaches were applied: (1 the simplified molecular input-line entry systems (SMILES based optimal descriptors approach; and (2 the fragment-based simplex representation of molecular structure (SiRMS approach. Comparison with the classic scheme of building up the model and balance of correlation (BC for optimal descriptors approach shows that the BC scheme provides more robust predictions than the classic scheme for the considered pIC50 of the heterocyclic urea derivatives. Comparison of the SMILES-based optimal descriptors and SiRMS approaches has confirmed good performance of both techniques in prediction of kinase insert domain containing receptor (KDR inhibitory activity, expressed as a logarithm of inhibitory concentration (pIC50 of studied compounds.

  17. Rifampin Resistance rpoB Alleles or Multicopy Thioredoxin/Thioredoxin Reductase Suppresses the Lethality of Disruption of the Global Stress Regulator spx in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Villanueva, Maite; Jousselin, Ambre; Baek, Kristoffer T

    2016-01-01

    and that a previously reported Δspx strain harbored suppressor mutations that allowed it to grow without spx One of these mutations is a single missense mutation in rpoB (a P-to-L change at position 519 encoded by rpoB [rpoB-P519L]) that conferred high-level resistance to rifampin. This mutation alone was found......UNLABELLED: Staphylococcus aureus is capable of causing a remarkable spectrum of disease, ranging from mild skin eruptions to life-threatening infections. The survival and pathogenic potential of S. aureus depend partly on its ability to sense and respond to changes in its environment. Spx...... is a thiol/oxidative stress sensor that interacts with the C-terminal domain of the RNA polymerase RpoA subunit, leading to changes in gene expression that help sustain viability under various conditions. Using genetic and deep-sequencing methods, we show that spx is essential in S. aureus...

  18. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Miller, R J; Davey, R B; George, J E

    1999-09-01

    Two patterns of pyrethroid resistance were characterized from Boophilus microplus (Canestrini) collected in Mexico. One was characteristic of a kdr mutation and the other involved esterase and cytochrome P450 enzyme systems. Very high resistance to permethrin, cypermethrin, and flumethrin, not synergized by TPP and PBO and high resistance to DDT, characterized the kdr-like pattern found in the Corrales and San Felipe strains. Esterase and cytochrome P450-dependent resistance was found in the Coatzacoalcos strain. It was characterized by resistance to permethrin, cypermethrin, and flumethrin, synergized by TPP and PBO, but no resistance to DDT. The Coatzacoalcos strain also showed 3.6-fold resistance to the organophosphate coumaphos. This factor appeared to be independent of pyrethroid resistance. Pyrethroid resistance patterns found in Mexico were similar to those found earlier in Australia. The significance of pyrethroid and coumaphos resistance to the U.S. cattle fever tick quarantine is discussed.

  19. Novel Alleles of Two Tightly Linked Genes Encoding Polygalacturonase-Inhibiting Proteins (VrPGIP1 and VrPGIP2 Associated with the Br Locus That Confer Bruchid (Callosobruchus spp. Resistance to Mungbean (Vigna radiata Accession V2709

    Directory of Open Access Journals (Sweden)

    Anochar Kaewwongwal

    2017-09-01

    Full Text Available Nearly all mungbean cultivars are completely susceptible to seed bruchids (Callosobruchus chinensis and Callosobruchus maculatus. Breeding bruchid-resistant mungbean is a major goal in mungbean breeding programs. Recently, we demonstrated in mungbean (Vigna radiata accession V2802 that VrPGIP2, which encodes a polygalacturonase inhibiting protein (PGIP, is the Br locus responsible for resistance to C. chinensis and C. maculatus. In this study, mapping in mungbean accession V2709 using a BC11F2 population of 355 individuals revealed that a single major quantitative trait locus, which controlled resistance to both C. chinensis and C. maculatus, was located in a 237.35 Kb region of mungbean chromosome 5 that contained eight annotated genes, including VrPGIP1 (LOC106760236 and VrPGIP2 (LOC106760237. VrPGIP1 and VrPGIP2 are located next to each other and are only 27.56 Kb apart. Sequencing VrPGIP1 and VrPGIP2 in “V2709” revealed new alleles for both VrPGIP1 and VrPGIP2, named VrPGIP1-1 and VrPGIP2-2, respectively. VrPGIP2-2 has one single nucleotide polymorphism (SNP at position 554 of wild type VrPGIP2. This SNP is a guanine to cystine substitution and causes a proline to arginine change at residue 185 in the VrPGIP2 of “V2709”. VrPGIP1-1 has 43 SNPs compared with wild type and “V2802”, and 20 cause amino acid changes in VrPGIP1. One change is threonine to proline at residue 185 in VrPGIP1, which is the same as in VrPGIP2. Sequence alignments of VrPGIP2 and VrPGIP1 from “V2709” with common bean (Phaseolus vulgaris PGIP2 revealed that residue 185 in VrPGIP2 and VrPGIP1 contributes to the secondary structures of proteins that affect interactions between PGIP and polygalacturonase, and that some amino acid changes in VrPGIP1 also affect interactions between PGIP and polygalacturonase. Thus, tightly linked VrPGIP1 and VrPGIP2 are the likely genes at the Br locus that confer bruchid resistance in mungbean “V2709”.

  20. Association of H2A{sup b} with resistance to collagen-induced arthritis in H2-recombinant mouse strains: An allele associated with reduction of several apparently unrelated responses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchison, N.A.; Brunner, M.C. [Deutsches Rheuma-Forschungszentrum, Berlin (Germany)

    1995-02-01

    HLA class II alleles can protect against immunological diseases. Seeking an animal model for a naturally occurring protective allele, we screened a panel of H2-congenic and recombinant mouse strains for ability to protect against collagen-induced arthritis. The strains were crossed with the susceptible strain DBA/1, and the F{sub 1} hybrids immunized with cattle and chicken type II collagen. Hybrids having the H2A{sup b} allele displayed a reduced incidence and duration of the disease. They also had a reduced level of pre-disease inflammation, but not of anti-collagen antibodies. The allele is already known to be associated with reduction of other apparently unrelated immune responses, suggesting that some form of functional differentiation may operate that is not exclusively related to epitope-binding. It is suggested that this may reflect allelic variation in the class II major histocompatibility complex promoter region. 42 refs., 7 figs., 1 tab.

  1. Genetic variation in target-site resistance to pyrethroids and pirimicarb in Tunisian populations of the peach potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae).

    Science.gov (United States)

    Charaabi, Kamel; Boukhris-Bouhachem, Sonia; Makni, Mohamed; Fenton, Brian; Denholm, Ian

    2016-12-01

    We used molecular assays to diagnose resistance to pyrethroids and pirimicarb in samples of Myzus persicae from field crops or an insect suction trap in Tunisia. Genotypes for resistance loci were related to ones for polymorphic microsatellite loci in order to investigate breeding systems and patterns of genetic diversity, and to inform resistance management tactics. The kdr mutation L1014F conferring pyrethroid resistance was found in all samples. The M918T s-kdr mutation also occurred in most samples, but only in conjunction with kdr. We discovered a previously unreported genotype heterozygous for L1014F but homozygous for M918T. Samples with modified acetylcholinesterase (MACE) conferring resistance to pirimicarb were less common but widespread. 16% of samples contained both the kdr and MACE mutations. Many unique microsatellite genotypes were found, suggesting that M. persicae is holocyclic in Tunisia. There were no consistent associations between resistance and microsatellite markers. This first study of insecticide resistance in M. persicae in North Africa showed genetic variation in insecticide resistance within microsatellite multilocus genotypes (MLG M s) and the same resistance mechanisms to be present in different MLG M s. This contrasts with variation in northern Europe where M. persicae is fully anholocyclic. Implications for selection and control strategies are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Co-occurrence and distribution of East (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania

    Science.gov (United States)

    Kabula, Bilali; Kisinza, William; Tungu, Patrick; Ndege, Chacha; Batengana, Benard; Kollo, Douglas; Malima, Robert; Kafuko, Jessica; Mohamed, Mahdi; Magesa, Stephen

    2014-01-01

    Objective Insecticide resistance molecular markers can provide sensitive indicators of resistance development in Anopheles vector populations. Assaying these makers is of paramount importance in the resistance monitoring programme. We investigated the presence and distribution of knock-down resistance (kdr) mutations in Anopheles gambiae s.l. in Tanzania. Methods Indoor-resting Anopheles mosquitoes were collected from 10 sites and tested for insecticide resistance using the standard WHO protocol. Polymerase chain reaction-based molecular diagnostics were used to genotype mosquitoes and detect kdr mutations. Results The An. gambiae tested were resistance to lambdacyhalothrin in Muheza, Arumeru and Muleba. Out of 350 An. gambiae s.l. genotyped, 35% were An. gambiae s.s. and 65% An. arabiensis. L1014S and L1014F mutations were detected in both An. gambiae s.s. and An. arabiensis. L1014S point mutation was found at the allelic frequency of 4–33%, while L1014F was at the allelic frequency 6–41%. The L1014S mutation was much associated with An. gambiae s.s. (χ2 = 23.41; P protocolo estándar de la OMS. Mediante un diagnóstico molecular basado en la PCR se genotiparon los mosquitos y se detectaron los genotipos kdr. Resultados Los An. gambiae evaluados eran resistentes a lambdacialotrina en Muheza, Arumeru y Muleba. De 350 An. gambiae s.l. genotipados, 35% eran An. gambiae s.s. y 65% eran An. arabiensis. Se detectaron mutaciones L1014S y L1014F tanto en An. gambiae s.s. como en An. arabiensis. La mutación puntual L1014S se encontró con una frecuencia alélica de 4-33%, mientras que L1014F tenía una frecuencia alélica de 6-14%. La mutación L1014S estaba ampliamente asociada a An. gambiae s.s. (Chi-Cuadrado = 23.41; P < 0.0001) y la L1014F estaba asociada con An. arabiensis (Chi-Square = 11.21; P = 0.0008). El alelo L1014S estaba significativamente asociado con mosquitos resistentes a la lambdacialotrina (P < 0.001). Conclusión La

  3. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes

    Science.gov (United States)

    2012-01-01

    Background Zanzibar has a long history of lymphatic filariasis (LF) caused by the filarial parasite Wuchereria bancrofti, and transmitted by the mosquito Culex quinquefasciatus Say. The LF Programme in Zanzibar has successfully implemented mass drug administration (MDA) to interrupt transmission, and is now in the elimination phase. Monitoring infections in mosquitoes, and assessing the potential role of interventions such as vector control, is important in case the disease re-emerges as a public health problem. Here, we examine Culex mosquito species from the two main islands to detect W. bancrofti infection and to determine levels of susceptibility to the insecticides used for vector control. Methods Culex mosquitoes collected during routine catches in Vitongoji, Pemba Island, and Makadara, Unguja Island were tested for W. bancrofti infection using PCR. Insecticide bioassays on Culex mosquitoes were performed to determine susceptibility to permethrin, deltamethrin, lambda-cyhalothrin, DDT and bendiocarb. Additional synergism assays with piperonyl butoxide (PBO) were used for lambda-cyhalothrin. Pyrosequencing was used to determine the kdr genotype and sequencing of the mitochondrial cytochrome oxidase I (mtCOI) subunit performed to identify ambiguous Culex species. Results None of the wild-caught Culex mosquitoes analysed were found to be positive for W. bancrofti. High frequencies of resistance to all insecticides were found in Wete, Pemba Island, whereas Culex from the nearby site of Tibirinzi (Pemba) and in Kilimani, Unguja Island remained relatively susceptible. Species identification confirmed that mosquitoes from Wete were Culex quinquefasciatus. The majority of the Culex collected from Tibirinzi and all from Kilimani could not be identified to species by molecular assays. Two alternative kdr alleles, both resulting in a L1014F substitution were detected in Cx. quinquefasciatus from Wete with no homozygote susceptible detected. Metabolic resistance to

  4. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes.

    Science.gov (United States)

    Jones, Christopher M; Machin, Camille; Mohammed, Khalfan; Majambere, Silas; Ali, Abdullah S; Khatib, Bakari O; McHa, Juma; Ranson, Hilary; Kelly-Hope, Louise A

    2012-04-21

    Zanzibar has a long history of lymphatic filariasis (LF) caused by the filarial parasite Wuchereria bancrofti, and transmitted by the mosquito Culex quinquefasciatus Say. The LF Programme in Zanzibar has successfully implemented mass drug administration (MDA) to interrupt transmission, and is now in the elimination phase. Monitoring infections in mosquitoes, and assessing the potential role of interventions such as vector control, is important in case the disease re-emerges as a public health problem. Here, we examine Culex mosquito species from the two main islands to detect W. bancrofti infection and to determine levels of susceptibility to the insecticides used for vector control. Culex mosquitoes collected during routine catches in Vitongoji, Pemba Island, and Makadara, Unguja Island were tested for W. bancrofti infection using PCR. Insecticide bioassays on Culex mosquitoes were performed to determine susceptibility to permethrin, deltamethrin, lambda-cyhalothrin, DDT and bendiocarb. Additional synergism assays with piperonyl butoxide (PBO) were used for lambda-cyhalothrin. Pyrosequencing was used to determine the kdr genotype and sequencing of the mitochondrial cytochrome oxidase I (mtCOI) subunit performed to identify ambiguous Culex species. None of the wild-caught Culex mosquitoes analysed were found to be positive for W. bancrofti. High frequencies of resistance to all insecticides were found in Wete, Pemba Island, whereas Culex from the nearby site of Tibirinzi (Pemba) and in Kilimani, Unguja Island remained relatively susceptible. Species identification confirmed that mosquitoes from Wete were Culex quinquefasciatus. The majority of the Culex collected from Tibirinzi and all from Kilimani could not be identified to species by molecular assays. Two alternative kdr alleles, both resulting in a L1014F substitution were detected in Cx. quinquefasciatus from Wete with no homozygote susceptible detected. Metabolic resistance to pyrethroids was also implicated

  5. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  6. Studies on [5,6]-Fused Bicyclic Scaffolds Derivatives as Potent Dual B-RafV600E/KDR Inhibitors Using Docking and 3D-QSAR Approaches

    Science.gov (United States)

    Liu, Hai-Chun; Tang, San-Zhi; Lu, Shuai; Ran, Ting; Wang, Jian; Zhang, Yan-Min; Xu, An-Yang; Lu, Tao; Chen, Ya-Dong

    2015-01-01

    Research and development of multi-target inhibitors has attracted increasing attention as anticancer therapeutics. B-RafV600E synergistically works with vascular endothelial growth factor receptor 2 (KDR) to promote the occurrence and progression of cancers, and the development of dual-target drugs simultaneously against these two kinds of kinase may offer a better treatment advantage. In this paper, docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies were performed on a series of dual B-Raf/KDR inhibitors with a novel hinge-binding group, [5,6]-fused bicyclic scaffold. Docking studies revealed optimal binding conformations of these compounds interacting with both B-Raf and KDR. Based on these conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were constructed, and the best CoMFA (q2 = 0.542, r2 = 0.989 for B-Raf; q2 = 0.768, r2 = 0.991 for KDR) and CoMSIA models (q2 = 0.519, r2 = 0.992 for B-Raf; q2 = 0.849, r2 = 0.993 for KDR) were generated. Further external validations confirmed their predictability, yielding satisfactory correlation coefficients (r2pred = 0.764 (CoMFA), r2pred = 0.841 (CoMSIA) for B-Raf, r2pred = 0.912 (CoMFA), r2pred = 0.846 (CoMSIA) for KDR, respectively). Through graphical analysis and comparison on docking results and 3D-QSAR contour maps, key amino acids that affect the ligand-receptor interactions were identified and structural features influencing the activities were discussed. New potent derivatives were designed, and subjected to preliminary pharmacological evaluation. The study may offer useful references for the modification and development of novel dual B-Raf/KDR inhibitors. PMID:26501259

  7. Insecticide resistance in Aedes aegypti populations from Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Goulart Marilia OF

    2011-01-01

    Full Text Available Abstract Background Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms. Results Resistance to temephos varied widely across the three studied populations, with resistance ratios (RR95 of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ≥ 30 imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain. Conclusions Our results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time

  8. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. \\paragraph*{Results:} Theoretical derivations showed that parameter...

  9. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    Science.gov (United States)

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs. © 2016 The Society for Vector Ecology.

  10. Molecular characterization of DDT resistance in Anopheles gambiae from Benin.

    Science.gov (United States)

    Djègbè, Innocent; Agossa, Fiacre R; Jones, Christopher M; Poupardin, Rodolphe; Cornelie, Sylvie; Akogbéto, Martin; Ranson, Hilary; Corbel, Vincent

    2014-08-29

    Insecticide resistance in the mosquito vector is the one of the main obstacles against effective malaria control. In order to implement insecticide resistance management strategies, it is important to understand the genetic factors involved. In this context, we investigated the molecular basis of DDT resistance in the main malaria vector from Benin. Anopheles gambiae mosquitoes were collected from four sites across Benin and identified to species/molecular form. Mosquitoes from Cotonou (M-form), Tori-Bossito (S-form) and Bohicon (S-form) were exposed to DDT 4% at a range of exposure times (30 min to 300 min). Another batch of mosquitoes from Cotonou and Malanville were exposed to DDT for 1 hour and the survivors 48 hours post exposure were used to quantify metabolic gene expression. Quantitative PCR assays were used to quantify mRNA levels of metabolic enzymes: GSTE2, GSTD3, CYP6P3 and CYP6M2. Expression (fold-change) was calculated using the ∆∆Ct method and compared to susceptible strains. Detection of target-site mutations (L1014F, L1014S and N1575Y) was performed using allelic discrimination TaqMan assays. DDT resistance was extremely high in all populations, regardless of molecular form, with no observed mortality after 300 min exposure. In both DDT-survivors and non-exposed mosquitoes, GSTE2 and GSTD3 were over-expressed in the M form at 4.4-fold and 3.5-fold in Cotonou and 1.5-fold and 2.5-fold in Malanville respectively, when compared to the susceptible strain. The CYP6M2 and CYP6P3 were over-expressed at 4.6-fold and 3.8-fold in Cotonou and 1.2-fold and 2.5-fold in Malanville respectively. In contrast, no differences in GSTE2 and CYP6M2 were observed between S form mosquitoes from Tori-Bossito and Bohicon compared to susceptible strain. The 1014 F allele was fixed in the S-form and at high frequency in the M-form (0.7-0.914). The frequency of 1575Y allele was 0.29-0.36 in the S-form and nil in the M-form. The 1014S allele was detected in the S

  11. Association mapping of insecticide resistance in wild Anopheles gambiae populations: major variants identified in a low-linkage disequilbrium genome.

    Directory of Open Access Journals (Sweden)

    David Weetman

    2010-10-01

    Full Text Available Association studies are a promising way to uncover the genetic basis of complex traits in wild populations. Data on population stratification, linkage disequilibrium and distribution of variant effect-sizes for different trait-types are required to predict study success but are lacking for most taxa. We quantified and investigated the impacts of these key variables in a large-scale association study of a strongly selected trait of medical importance: pyrethroid resistance in the African malaria vector Anopheles gambiae.We genotyped ≈1500 resistance-phenotyped wild mosquitoes from Ghana and Cameroon using a 1536-SNP array enriched for candidate insecticide resistance gene SNPs. Three factors greatly impacted study power. (1 Population stratification, which was attributable to co-occurrence of molecular forms (M and S, and cryptic within-form stratification necessitating both a partitioned analysis and genomic control. (2 All SNPs of substantial effect (odds ratio, OR>2 were rare (minor allele frequency, MAF<0.05. (3 Linkage disequilibrium (LD was very low throughout most of the genome. Nevertheless, locally high LD, consistent with a recent selective sweep, and uniformly high ORs in each subsample facilitated significant direct and indirect detection of the known insecticide target site mutation kdr L1014F (OR≈6; P<10(-6, but with resistance level modified by local haplotypic background.Primarily as a result of very low LD in wild A. Gambiae, LD-based association mapping is challenging, but is feasible at least for major effect variants, especially where LD is enhanced by selective sweeps. Such variants will be of greatest importance for predictive diagnostic screening.

  12. A four-element based transposon system for allele specific tagging ...

    Indian Academy of Sciences (India)

    genetics of crop-specific alleles that confer resistance to biotic and abiotic stresses. Molecular analysis of such al- leles could be of tremendous significance for stabilization breeding of crop species. Of particular interest are alleles that have been transferred from alien relatives to crop spe- cies (Jiang et al 1994). In many ...

  13. Pyrethroid resistance persists after ten years without usage against Aedes aegypti in governmental campaigns: Lessons from São Paulo State, Brazil.

    Science.gov (United States)

    Macoris, Maria de Lourdes; Martins, Ademir Jesus; Andrighetti, Maria Teresa Macoris; Lima, José Bento Pereira; Valle, Denise

    2018-03-01

    Aedes aegypti, vector of dengue, chikungunya and Zika viruses, is found at high densities in tropical urban areas. The dissemination of this vector is partially the consequence of failures in current vector control methods, still mainly relying upon insecticides. In the State of São Paulo (SP), Brazil, public health managers employed pyrethroids against Ae. aegypti adults from 1989 to 2000, when a robust insecticide resistance monitoring system detected resistance to pyrethroids in several Ae. aegypti populations. However, pyrethroids are also the preferred compounds engaged in household applications due to their rapid knockdown effect, lower toxicity to mammals and less irritating smell. We evaluated pyrethroid resistance in Ae. aegypti populations over the course of a decade, from 2004 to 2015, after interruption of pyrethroid public applications in SP. Qualitative bioassays with papers impregnated with a deltamethrin diagnostic dose (DD) performed with insects from seven SP municipalities and evaluated yearly from 2006 to 2014, detected resistance in most of the cases. Quantitative bioassays were also carried out with four populations in 2011, suggesting a positive correlation between resistance level and survivorship in the DD bioassays. Biochemical tests conducted with seven insect populations in 2006 and 2015, detected increasing metabolic alterations of all major classes of detoxifying enzymes, mostly of mixed function oxidases. Genotyping of the voltage-gated sodium channel (AaNaV, the pyrethroid target-site) with a TaqMan real time PCR based technique was performed from 2004 to 2014 in all seven localities. The two kdr mutations, Val1016Ile and Phe1534Cys, known to be spread throughout Brazil, were always present with a severe decrease of the susceptible allele over time. These results are discussed in the context of public and domestic insecticide use, the necessity of implementation of a strong integrated vector control strategy and the conceptual

  14. Exquisite allele discrimination by toehold hairpin primers

    Science.gov (United States)

    Byrom, Michelle; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.

    2014-01-01

    The ability to detect and monitor single nucleotide polymorphisms (SNPs) in biological samples is an enabling research and clinical tool. We have developed a surprising, inexpensive primer design method that provides exquisite discrimination between SNPs. The field of DNA computation is largely reliant on using so-called toeholds to initiate strand displacement reactions, leading to the execution of kinetically trapped circuits. We have now similarly found that the short toehold sequence to a target of interest can initiate both strand displacement within the hairpin and extension of the primer by a polymerase, both of which will further stabilize the primer:template complex. However, if the short toehold does not bind, neither of these events can readily occur and thus amplification should not occur. Toehold hairpin primers were used to detect drug resistance alleles in two genes, rpoB and katG, in the Mycobacterium tuberculosis genome, and ten alleles in the Escherichia coli genome. During real-time PCR, the primers discriminate between mismatched templates with Cq delays that are frequently so large that the presence or absence of mismatches is essentially a ‘yes/no’ answer. PMID:24990378

  15. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  16. Allelic diversity of S-RNase alleles in diploid potato species.

    Science.gov (United States)

    Dzidzienyo, Daniel K; Bryan, Glenn J; Wilde, Gail; Robbins, Timothy P

    2016-10-01

    The S-ribonuclease sequences of 16 S-alleles derived from diploid types of Solanum are presented. A phylogenetic analysis and partial phenotypic analysis support the conclusion that these are functional S-alleles. S-Ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly, few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3'RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full-length sequences were obtained for two alleles by 5'RACE. Database searches with these sequences identified 16 S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further

  17. Detecting the presence of target-site resistance to neonicotinoids and pyrethroids in Italian populations of Myzus persicae.

    Science.gov (United States)

    Panini, Michela; Dradi, Davide; Marani, Gabriele; Butturini, Alda; Mazzoni, Emanuele

    2014-06-01

    Myzus persicae is a key pest of peach, which in commercial orchards is mainly controlled by chemical treatments. Neonicotinoids represent the main control strategy, but resistance monitoring programmes in Southern Europe have shown the widespread presence of populations highly resistant to this insecticide class in peach orchards. Moreover, in Italy reports of neonicotinoid application failures are increasing. This work describes the status of the main target-site mutations associated with neonicotinoid and pyrethroid resistance in Italian populations collected in 2012. R81T mutation linked with neonicotinoid resistance was found in 65% of analysed aphids (35.5% with a homozygous resistant genotype). For the first time, R81T was found in samples collected from herbaceous hosts. Bioassays on a few genotyped populations also revealed the involvement of P450-based metabolic resistance. Only a few individuals without kdr (L1014F) and s-kdr (M918T) target-site mutations were collected. A new single nucleotide polymorphism in the s-kdr locus producing M918L substitution was found. Target-site resistance to neonicotinoids is common in specialised peach-growing areas, and it is spreading in other Italian regions and on herbaceous hosts. The high frequency of target-site mutations and data obtained from bioassays confirm the presence of multiple resistance mechanisms and suggest the importance of coordinated control strategies. © 2013 Society of Chemical Industry.

  18. Imaging targeted at tumor with 188Re-labeled VEGF189 exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Qin Zhexue; Li Qianwei; Liu Guangyuan; Luo Chaoxue; Xie Ganfeng; Zheng Lei; Huang Dingde

    2009-01-01

    Introduction: Planar imaging of 188 Re-labeled vascular endothelial growth factor (VEGF) 189 exon 6-encoded peptide (QKRKRKKSRYKS) with single photon emission computed tomography (SPECT) in tumor-bearing nude mice and effects of the transfecting truncated KDR gene on its imaging were investigated, so as to provide a basis for further applying the peptide to tumor-targeted radionuclide treatment. Methods: QKRKRKKSRYKS, coupling with mercaptoacetyltriglycine (MAG 3 ) chelator was labeled with 188 Re; then in vivo distribution, planar imaging with SPECT and blocking experiment in tumor-bearing nude mice were analyzed. Recombinant adenovirus vectors carrying the truncated KDR gene were constructed to transfect tumor tissues to evaluate the effects of truncated KDR on the in vivo distribution and tumor planar imaging of 188 Re-MAG 3 -QKRKRKKSRYKS in tumor-bearing nude mice. Results: The labeled peptide exhibited a sound receptor binding activity. Planar imaging with SPECT demonstrated significant radioactivity accumulation in tumor 1 h after injection of the labeled peptide and disappearance of radioactivity 3 h later. Significant radioactivity accumulation was also observed in the liver, intestines and kidneys but was not obvious in other tissues. An hour after injection of the labeled peptide, the percentage of the injected radioactive dose per gram (%ID/g) of tumor and tumor/contralateral muscle tissues ratio were 1.98±0.38 and 2.53±0.33, respectively, and increased to 3.08±0.84 and 3.61±0.59 in the group transfected with the truncated KDR gene, respectively, and radioactivity accumulation in tumor with planar imaging also increased significantly in the transfection group. Conclusion: 188 Re-MAG 3 -QKRKRKKSRYKS can accumulate in tumor tissues, which could be increased by the transfection of truncated KDR gene. This study provides a basis for further applying the peptide to tumor targeted radionuclide imaging and treatment.

  19. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    Science.gov (United States)

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  20. Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms.

    Science.gov (United States)

    Voudouris, Costas Ch; Kati, Amalia N; Sadikoglou, Eldem; Williamson, Martin; Skouras, Panagiotis J; Dimotsiou, Ourania; Georgiou, Stella; Fenton, Brian; Skavdis, George; Margaritopoulos, John T

    2016-04-01

    Myzus persicae nicotianae is an important pest in Greece, controlled mainly by neonicotinoids. Monitoring of the aphid populations for resistance mechanisms is essential for effective control. Two new RFLP-based diagnostics for the detection of the M918T (super-kdr pyrethroid resistance) and nAChR R81T (neonicotinoid resistance) mutations were applied, along with other established assays, on 131 nicotianae multilocus genotypes (MLGs) collected from tobacco and peach in Greece in 2012-2013. Furthermore, we present resistance data from aphid clones (>500, mainly nicotianae) collected in 2006-2007. About half of the clones tested with a diagnostic dose of imidacloprid were tolerant. The R81T mutation was not found in the 131 MLGs and 152 clones examined. Over half (58.6%) of a subset of 29 clones showed a 9-36-fold overexpression of CYP6CY3. M918T was found at low to moderate frequencies. The kdr and MACE mechanisms and carboxylesterase-based resistance were found at high frequency in all years. The aphid retains costly resistance mechanisms even in the absence of pressure from certain insecticides, which could be attributed to factors related to climate and genetic properties of the populations. The indication of build-up of resistance/tolerance to neonicotinoids, related to CYP6CY3 overexpression, is a matter of concern. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Development of multifunctional metabolic synergists to suppress the evolution of resistance against pyrethroids in insects that blood feed on humans.

    Science.gov (United States)

    Hardstone, Melissa C; Strycharz, Joseph P; Kim, Junheon; Park, Il-Kwon; Yoon, Kyong Sup; Ahn, Young Joon; Harrington, Laura C; Lee, Si Hyeock; Clark, J Marshall

    2015-06-01

    Pyrethroids are the insecticides of choice when exposure to humans is likely, such as occurs in vector and public-health-related control programs. Unfortunately, the pyrethroids share a common resistance mechanism with dichlorodiphenyltrichloroethane (DDT), knockdown resistance (kdr), and prior extensive use of DDT has predisposed the pyrethroids to cross-resistance via kdr. Given the widespread occurrence of kdr, the use of synergists with pyrethroids is considered to be prudent to guard against the selection of multiply resistant insects. 3-Phenoxybenzyl hexanoate (PBH) was synthesized as a multifunctional pyrethroid synergist that, besides being a surrogate substrate for sequestration/hydrolytic carboxylesterases, now also functions as a substrate for oxidative xenobiotic metabolism. The addition of PBH to permethrin-treated females of the ISOP450 strain of Culex pipiens quinquefasciatus resulted in a threefold increase in synergism, as judged by the synergistic ratio. Similarly, PBH synergized the action of deltamethrin sixfold on females of the common bed bug, Cimex lectularius, and was 2.8-fold more synergistic than piperonyl butoxide (PBO). PBH synergized the action of both type I and type II pyrethroids in a mosquito vector (Cx. p. quinquefasciatus) and in a public-health pest, C. lectularius, respectively, indicating a broad spectrum of action on blood-feeding insects. PBH appears to have residual properties similar to permethrin and is itself non-toxic, unlike PBO, and therefore should be compatible with existing pyrethroid formulations used for insecticide-treated nets and home/residential sprays. © 2014 Society of Chemical Industry.

  2. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis.

    Science.gov (United States)

    Jacobsen, S E; Meyerowitz, E M

    1997-08-22

    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.

  3. Insecticide resistance status in Anopheles gambiae in southern Benin

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2010-03-01

    Full Text Available Abstract Background The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs and IRS has previously been reported. Methods The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1% following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR. Results Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100% to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%. The molecular M form of An. gambiae was predominant in southern Benin (97%. The kdr mutation was detected in all districts at various frequency (1% to 95% whereas the Ace-1 mutation was found at a very low frequency (≤ 5%. Conclusion This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to

  4. Novel alleles of 31-bp VNTR polymorphism in the human ...

    Indian Academy of Sciences (India)

    We report here for the first time, the detection of allele 20, which was absent in Caucasian and Indo–Caucasoid populations, as a common allele present in Singaporean Chinese (6.25%), Indians (11.7%), and Malays (11.5%). Hence, allele 20 might be a specific allele for Asian populations. A relatively common allele 19 ...

  5. Characterization of Tn6238 with a New Allele of aac(6′)-Ib-cr

    Science.gov (United States)

    Quiroga, María P.; Orman, Betina; Errecalde, Laura; Kaufman, Sara

    2015-01-01

    Here, we report that the genetic structure of Tn1331 remained conserved in Argentina from 1989 to 2013 (72 of 73 isolates), with the exception being the plasmid-borne Tn1331-like transposon Tn6238 containing a new aac(6′)-Ib-cr allele recovered from a colistin-resistant Klebsiella pneumoniae clinical isolate. A bioinformatic analysis of aac(6′)-Ib-like gene cassettes suggests that this new aac(6′)-Ib-cr allele emerged through mutation or homologous recombination in the Tn1331 genetic platform. Tn6238 is a novel platform for the dissemination of aminoglycoside and fluoroquinolone resistance determinants. PMID:25691640

  6. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange

    DEFF Research Database (Denmark)

    Hmelo, Laura R; Borlee, Bradley R; Almblad, Henrik

    2015-01-01

    Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic...... exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selections are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions...... of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic-resistant single-crossover mutants...

  7. Comparison of HLA allelic imputation programs.

    Directory of Open Access Journals (Sweden)

    Jason H Karnes

    Full Text Available Imputation of human leukocyte antigen (HLA alleles from SNP-level data is attractive due to importance of HLA alleles in human disease, widespread availability of genome-wide association study (GWAS data, and expertise required for HLA sequencing. However, comprehensive evaluations of HLA imputations programs are limited. We compared HLA imputation results of HIBAG, SNP2HLA, and HLA*IMP:02 to sequenced HLA alleles in 3,265 samples from BioVU, a de-identified electronic health record database coupled to a DNA biorepository. We performed four-digit HLA sequencing for HLA-A, -B, -C, -DRB1, -DPB1, and -DQB1 using long-read 454 FLX sequencing. All samples were genotyped using both the Illumina HumanExome BeadChip platform and a GWAS platform. Call rates and concordance rates were compared by platform, frequency of allele, and race/ethnicity. Overall concordance rates were similar between programs in European Americans (EA (0.975 [SNP2HLA]; 0.939 [HLA*IMP:02]; 0.976 [HIBAG]. SNP2HLA provided a significant advantage in terms of call rate and the number of alleles imputed. Concordance rates were lower overall for African Americans (AAs. These observations were consistent when accuracy was compared across HLA loci. All imputation programs performed similarly for low frequency HLA alleles. Higher concordance rates were observed when HLA alleles were imputed from GWAS platforms versus the HumanExome BeadChip, suggesting that high genomic coverage is preferred as input for HLA allelic imputation. These findings provide guidance on the best use of HLA imputation methods and elucidate their limitations.

  8. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    Directory of Open Access Journals (Sweden)

    Carol A Soderlund

    Full Text Available Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor, where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense, and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available

  9. Comprehensive identification of MHC class II alleles in a cohort of Chinese rhesus macaques.

    Science.gov (United States)

    Zhang, Huiling; Deng, Qing; Jin, Yabin; Liu, Beilei; Zhuo, Min; Ling, Fei

    2014-10-01

    Rhesus macaque is a very important animal model for various human diseases, especially for AIDS and vaccine research. The susceptibility and/or resistance to some of these diseases are related to the major histocompatibility complex (MHC). To gain insight into the MHC background and to facilitate the experimental use of Chinese rhesus macaques, Mamu-DPB1, Mamu-DQB1, and Mamu-DRB alleles were investigated in 30 Chinese rhesus macaques through gene cloning and sequencing. A total of 66 alleles were identified in this study, including 14 Mamu-DPB1, 20 Mamu-DQB1, and 30 Mamu-DRB alleles as well as 2 high-frequency Mamu-DPB1 alleles. Interestingly, one of the high-frequency Mamu-DPB1 alleles had been undocumented in earlier studies. Eleven of the other alleles, including four Mamu-DPB1, three Mamu-DQB1, and four Mamu-DRB alleles were also novel. Importantly, like MHC-DRB, more than two Mamu-DPB1 sequences per animal were detected in 13 monkeys, which suggested that they might represent gene duplication. Our data also indicated quite a few differences in the distribution of MHC class II alleles between the Chinese rhesus macaques and the previously reported Indian rhesus macaques. To our knowledge, our results revealed comprehensively the combination of MHC II alleles. This information will not only promote the understanding of Chinese rhesus macaque MHC polymorphism but will also facilitate the use of Chinese rhesus macaques in studies of human disease.

  10. High levels of insecticide resistance in introduced horn fly (Diptera: Muscidae) populations and implications for management.

    Science.gov (United States)

    Oyarzún, M P; Li, A Y; Figueroa, C C

    2011-02-01

    The horn fly, Haematobia irritans (L.) (Diptera: Muscidae), was introduced to Chile in the beginning of the 1990s. Since its introduction, farmers have controlled this pest almost exclusively with insecticides. To understand the consequences of different control strategies on the development of insecticide resistance and their persistence, a field survey was conducted at eight farms in the south of Chile to characterize insecticide resistance in field populations and resistance mechanisms. Horn fly samples were assayed to determine levels of resistance to pyrethroids and diazinon, genotyped for kdr and HialphaE7 mutations, and tested for general esterase activity. All field populations, including ones that were not treated with insecticides for the past 5 yr, showed high levels of cypermethrin resistance and high frequencies of the kdr mutation. None of the fly populations demonstrated resistance to diazinon and the HialphaE7 mutation was not detected in any of the fly samples. Esterase activities in all populations were comparable to those found in the susceptible reference strain. The findings of high frequencies of homozygous resistant and heterozygous individuals both in insecticide treated horn fly populations and in the untreated fly populations suggests complex interactions among field populations of the horn fly in Chile.

  11. Mechanisms of pyrethroid resistance inHaematobia irritans (Muscidae from Mato Grosso do Sul state, Brazil

    Directory of Open Access Journals (Sweden)

    Antonio Thadeu Medeiros Barros

    Full Text Available Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO and triphenyl phosphate (TPP, were conducted from March 2004 to June 2005 in horn fly populations (n = 33 from all over the state. All populations were highly resistant to cypermethrin, with resistance factors (RF ranging from 89.4 to 1,020.6. Polymerase chain reaction (PCR assays to detect the knockdown resistance (kdr mutation also were performed in 16 samples. The kdr mutation was found in 75% of the tested populations, mostly with relatively low frequencies (<20%, and was absent in some highly resistant populations. Addition of TPP did not significantly reduce the LC50 in any population. However, PBO reduced LC50s above 40-fold in all tested populations, resulting in RFs ≤ 10 in most cases. Horn fly resistance to cypermethrin is widespread in the state, being primarily caused by an enhanced activity of P450 mono-oxygenases and secondarily by reduced target site sensitivity.

  12. Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou9308.

    Directory of Open Access Journals (Sweden)

    Rongrong Zhai

    Full Text Available Hybridization, a common process in nature, can give rise to a vast reservoir of allelic variants. Combination of these allelic variants may result in novel patterns of gene action and is thought to contribute to heterosis. In this study, we analyzed genome-wide allele-specific gene expression (ASGE in the super-hybrid rice variety Xieyou9308 using RNA sequencing technology (RNA-Seq. We identified 9325 reliable single nucleotide polymorphisms (SNPs distributed throughout the genome. Nearly 68% of the identified polymorphisms were CT and GA SNPs between R9308 and Xieqingzao B, suggesting the existence of DNA methylation, a heritable epigenetic mark, in the parents and their F1 hybrid. Of 2793 identified transcripts with consistent allelic biases, only 480 (17% showed significant allelic biases during tillering and/or heading stages, implying that trans effects may mediate most transcriptional differences in hybrid offspring. Approximately 67% and 62% of the 480 transcripts showed R9308 allelic expression biases at tillering and heading stages, respectively. Transcripts with higher levels of gene expression in R9308 also exhibited R9308 allelic biases in the hybrid. In addition, 125 transcripts were identified with significant allelic expression biases at both stages, of which 74% showed R9308 allelic expression biases. R9308 alleles may tend to preserve their characteristic states of activity in the hybrid and may play important roles in hybrid vigor at both stages. The allelic expression of 355 transcripts was highly stage-specific, with divergent allelic expression patterns observed at different developmental stages. Many transcripts associated with stress resistance were differently regulated in the F1 hybrid. The results of this study may provide valuable insights into molecular mechanisms of heterosis.

  13. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes.

    Science.gov (United States)

    Alout, H; Labbé, P; Berthomieu, A; Makoundou, P; Fort, P; Pasteur, N; Weill, M

    2016-02-01

    We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.

  14. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Human Genetics Center, School of Public Health, University of Texas, P.O. Box 20186, Houston, TX 77225, USA; Department of Genetics, Owaisi Medical and Research Centre, Deccan College of Medical Sciences and Allied Hospitals, Kanchan Bagh, Santosh Nagar, Hyderabad 500 058, India; Center for ...

  15. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    Unknown

    The estimated relative hazard values for the populations, computed from the three-locus genotype data, are comparable to those from Africa and Southeast Asia, where AIDS is known to be widespread. [Ramana G. V., Vasanthi A., Khaja M., Su B., Govindaiah V., Jin L., Singh L. and Chakraborty R. 2001 Distribution of HIV-1.

  16. Insecticide resistance status of malaria vectors in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Sébastien Marcombe

    Full Text Available Knowledge on insecticide resistance in Anopheles species is a basic requirement to guide malaria vector control programs. In Lao PDR, vector control relies on insecticide residual spraying (IRS and impregnated bed-nets (ITNs with the use of pyrethroids. Here, the susceptibility of Anopheles species, including several malaria vectors (An. maculatus and An. minimus, to various insecticides was investigated in ten provinces of Lao PDR through a north-south transect. Bioassays were performed on field caught female mosquitoes using the standard WHO susceptibility tests with DDT (4%, deltamethrin (0.05% and permethrin (0.75%. In addition, the DIIS6 region of the para-type sodium channel gene was amplified and sequenced to identify knockdown resistance mutations (kdr. Resistance to DDT and permethrin was detected in suspected malaria vectors, such as An. nivipes and An. philippinensis in Lao PDR. Resistance to the formerly used DDT was found in a population of An. maculatus s.l. from Luang Prabang province. No resistance to pyrethroids was found in primary vectors, indicating that these insecticides are still adequate for malaria vector control. However, high resistance levels to pyrethroids was found in-vector species and reduced susceptibility to permethrin in An. minimus and An. maculatus was reported in specific localities which raises concerns for pyrethroid-based control in the future. No kdr mutation was found in any of the resistant populations tested hence suggesting a probable role detoxification enzymes in resistance. This study highlights the necessity to continue the monitoring of insecticide susceptibility to early detect potential occurrence and/or migration of insecticide resistance in malaria vectors in Lao PDR.

  17. Multiple phosphoglucomutase alleles in Toxorhynchites splendens (Diptera: Culcidae).

    Science.gov (United States)

    Yong, H S; Chan, K L; Dhaliwal, S S; Burton, J J; Cheong, W H; Mak, J W

    1980-09-15

    Multiple phosphoglucomutase (E.C. 2.7.5.1) alleles are found in the mosquito Toxorhynchites splendens. The sample studied reveals 3 Pgm alleles whose frequencies are in good accord with Hardy-Weinberg expectations. The most frequent allele is that controlling a phenotype with an intermediate electrophoretic mobility. Each Pgm allele determines a two-band electrophoretic pattern.

  18. Multiple resistances and complex mechanisms of Anopheles sinensis mosquito: a major obstacle to mosquito-borne diseases control and elimination in China.

    Directory of Open Access Journals (Sweden)

    Xuelian Chang

    2014-05-01

    Full Text Available Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring

  19. Expression of human PTPN22 alleles

    DEFF Research Database (Denmark)

    Nielsen, C; Barington, T; Husby, S

    2007-01-01

    Considering the female predominance in most of the autoimmune disorders that associate with the PTPN22 Trp620 variant and the complexity by which this variant influences immunologic tolerance, the objective of this study was to ascertain if the allele-specific expression of the disease...... and 72 h of activation, respectively, the expression of PTPN22 1858C- and T-alleles increased to the same extent (P=0.64). The present result essentially excludes such phenomena as a partial explanation for the female predominance in most of the autoimmune disorders that associate with the PTPN22 Trp620...

  20. Mechanisms of pyrethroid resistance in Haematobia irritans (Muscidae from Mato Grosso do Sul state, Brazil Mecanismos de resistência da Haematobia irritans (Muscidae a piretróides em Mato Grosso do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Antonio Thadeu Medeiros Barros

    Full Text Available Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO and triphenyl phosphate (TPP, were conducted from March 2004 to June 2005 in horn fly populations (n = 33 from all over the state. All populations were highly resistant to cypermethrin, with resistance factors (RF ranging from 89.4 to 1,020.6. Polymerase chain reaction (PCR assays to detect the knockdown resistance (kdr mutation also were performed in 16 samples. The kdr mutation was found in 75% of the tested populations, mostly with relatively low frequencies (Resistência da mosca-dos-chifres a inseticidas piretróides ocorre em todo o país, entretanto, o conhecimento sobre os mecanismos envolvidos é ainda incipiente. Este estudo objetivou identificar os mecanismos de resistência desta mosca à cipermetrina em Mato Grosso do Sul. Bioensaios utilizando papéis impregnados com cipermetrina, isoladamente ou sinergizada por butóxido de piperonila (PBO ou trifenil fosfato (TPP, foram realizados de março∕2004 a junho∕2005 em 33 populações. Todas as populações apresentaram elevada resistência à cipermetrina, com fatores de resistência (FR variando de 89,4 a 1.020,6. Ensaios de reação em cadeia da polimerase (PCR visando a detecção de kdr (“knockdown resistance” foram realizados em 16 amostras. A mutação kdr foi detectada em 75% das populações, geralmente em baixas frequências (<20% e ausente em algumas populações resistentes. A adição de TPP não reduziu significativamente a CL50 em nenhuma população. Entretanto, o PBO reduziu em mais de 40 vezes a CL50 de todas as populações testadas, resultando em FR ≤ 10 na maioria dos casos. Resist

  1. Overcoming evolved resistance to population-suppressing homing-based gene drives

    OpenAIRE

    Marshall, John M.; Buchman, Anna; S?nchez C., H?ctor M.; Akbari, Omar S.

    2017-01-01

    The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele g...

  2. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis.

    Science.gov (United States)

    Zhong, Daibin; Chang, Xuelian; Zhou, Guofa; He, Zhengbo; Fu, Fengyang; Yan, Zhentian; Zhu, Guoding; Xu, Tielong; Bonizzoni, Mariangela; Wang, Mei-Hui; Cui, Liwang; Zheng, Bin; Chen, Bin; Yan, Guiyun

    2013-01-01

    Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations.

  3. Insecticide resistance may enhance the response to a host-plant volatile kairomone for the codling moth, Cydia pomonella (L.)

    Science.gov (United States)

    Sauphanor, Benoît; Franck, Pierre; Lasnier, Thérèse; Toubon, Jean-François; Beslay, Dominique; Boivin, Thomas; Bouvier, Jean-Charles; Renou, Michel

    2007-06-01

    The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2 E,4 Z)-2,4-decadienoate (Et- E, Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et- E, Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et- E, Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.

  4. Standardized SSR allele naming and binning among projects.

    Science.gov (United States)

    Deemer, Dennis L; Nelson, C Dana

    2010-11-01

    Simple sequence repeats (SSRs) have proven to be extremely valuable DNA markers for genetic mapping and population genetic analyses. However, data collected across laboratories or even within laboratories are difficult to combine due to challenges in standardizing allele names, especially for nonmodel systems. Here we provide a new approach for standardizing SSR allele names that combines several previously recognized components for standardization, including reference samples/alleles, cumulative binsets, static between-allele spacing, and interval allele naming.

  5. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa.

    Directory of Open Access Journals (Sweden)

    Aristide Sawdetuo Hien

    Full Text Available Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC and biological cotton (BC growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC growing sites compared to that from conventional cotton (WCC sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75% and a wild-type strain (49.75% vs 66.5%. The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests

  6. Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa.

    Science.gov (United States)

    Hien, Aristide Sawdetuo; Soma, Dieudonné Diloma; Hema, Omer; Bayili, Bazoma; Namountougou, Moussa; Gnankiné, Olivier; Baldet, Thierry; Diabaté, Abdoulaye; Dabiré, Kounbobr Roch

    2017-01-01

    Many studies have shown the role of agriculture in the selection and spread of resistance of Anopheles gambiae s.l. to insecticides. However, no study has directly demonstrated the presence of insecticides in breeding sources as a source of selection for this resistance. It is in this context that we investigated the presence of pesticide residues in breeding habitats and their formal involvement in vector resistance to insecticides in areas of West Africa with intensive farming. This study was carried out from June to November 2013 in Dano, southwest Burkina Faso in areas of conventional (CC) and biological cotton (BC) growing. Water and sediment samples collected from breeding sites located near BC and CC fields were submitted for chromatographic analysis to research and titrate the residual insecticide content found there. Larvae were also collected in these breeding sites and used in toxicity tests to compare their mortality to those of the susceptible strain, Anopheles gambiae Kisumu. All tested mosquitoes (living and dead) were analyzed by PCR for species identification and characterization of resistance genes. The toxicity analysis of water from breeding sites showed significantly lower mortality rates in breeding site water from biological cotton (WBC) growing sites compared to that from conventional cotton (WCC) sites respective to both An. gambiae Kisumu (WBC: 80.75% vs WCC: 92.75%) and a wild-type strain (49.75% vs 66.5%). The allele frequencies L1014F, L1014S kdr, and G116S ace -1R mutations conferring resistance, respectively, to pyrethroids and carbamates / organophosphates were 0.95, 0.4 and 0.12. Deltamethrin and lambda-cyhalothrin were identified in the water samples taken in October/November from mosquitoes breeding in the CC growing area. The concentrations obtained were respectively 0.0147ug/L and 1.49 ug/L to deltamethrin and lambdacyhalothrin. Our results provided evidence by direct analysis (biological and chromatographic tests) of the role

  7. Frequency of the CCRdelta32 allele in Brazilians: a study in colorectal cancer and in HTLV-I infection

    OpenAIRE

    Pereira, Rinaldo W.; Pires, Edina R.; Duarte, Ana P.M.; Moura, Ricardo P. de; Monteiro, Elisangela; Torloni, Humberto; Proietti, Anna B.; Simpson, Andrew J.G.; Pena, Sérgio D.J.

    2000-01-01

    The identification of a 32-bp deletion in the cc-chemokine receptor-5 gene (CCR5delta32 allele) that renders homozygous individuals highly resistant to HIV infection has prompted worldwide investigations of the frequency of the CCR5delta32 allele in regional populations. It is important to ascertain if CCR5delta32 is a factor to be considered in the overall epidemiology of HIV in individual populations. With this in mind we determined the CCR5delta32 allele frequency in a large sample (907 in...

  8. RHD alleles in the Tunisian population

    Science.gov (United States)

    Ouchari, Mouna; Jemni-Yaacoub, Saloua; Chakroun, Taher; Abdelkefi, Saida; Houissa, Batoul; Hmida, Slama

    2013-01-01

    Background: A comprehensive survey of RHD alleles in Tunisia population was lacking. The aim of this study was to use a multiplex RHD typing assay for simultaneous detection of partial D especially with RHD/RHCE deoxyribonucleic acid (DNA) sequence exchange mechanism and some weak D alleles. Materials and Methods: Six RHD specific primer sets were designed to amplify RHD exons 3, 4, 5, 6, 7 and 9. DNA from 2000 blood donors (1777 D+ and 223 D-) from several regions was selected for RHD genotyping using a PCR multiplex assay. Further molecular investigations were done to characterize the RHD variants that were identified by the PCR multiplex assay. Results: In the 1777 D+ samples, only 10 individuals showed the absence of amplification of exons 4 and 5 that were subsequently identified by PCR-SSP as weak D type 4 variants. No hybrid allele was detected. In the 223 D-, RHD amplification of some exons was observed only in 5 samples: 4 individuals expressed only RHD exon 9, and one subject lacking exons 4 and 5. These samples were then screened by PCR-SSPs on d(C) ces and weak D type 4, respectively. Conclusion: The weak D type 4 appears to be the most common D variant allele. We have not found any partial D variant. Findings also indicated that RHD gene deletion is the most prevalent cause of the D- phenotype in the Tunisian population. PMID:24014941

  9. RHD alleles in the Tunisian population

    Directory of Open Access Journals (Sweden)

    Mouna Ouchari

    2013-01-01

    Full Text Available Background: A comprehensive survey of RHD alleles in Tunisia population was lacking. The aim of this study was to use a multiplex RHD typing assay for simultaneous detection of partial D especially with RHD/RHCE deoxyribonucleic acid (DNA sequence exchange mechanism and some weak D alleles. Materials and Methods: Six RHD specific primer sets were designed to amplify RHD exons 3, 4, 5, 6, 7 and 9. DNA from 2000 blood donors (1777 D+ and 223 D- from several regions was selected for RHD genotyping using a PCR multiplex assay. Further molecular investigations were done to characterize the RHD variants that were identified by the PCR multiplex assay. Results: In the 1777 D+ samples, only 10 individuals showed the absence of amplification of exons 4 and 5 that were subsequently identified by PCR-SSP as weak D type 4 variants. No hybrid allele was detected. In the 223 D-, RHD amplification of some exons was observed only in 5 samples: 4 individuals expressed only RHD exon 9, and one subject lacking exons 4 and 5. These samples were then screened by PCR-SSPs on d(C ce s and weak D type 4, respectively. Conclusion: The weak D type 4 appears to be the most common D variant allele. We have not found any partial D variant. Findings also indicated that RHD gene deletion is the most prevalent cause of the D- phenotype in the Tunisian population.

  10. Diversity of Lactase Persistence Alleles in Ethiopia

    DEFF Research Database (Denmark)

    Jones, BL; Raga, TO; Liebert, Anke

    2013-01-01

    The persistent expression of lactase into adulthood in humans is a recent genetic adaptation that allows the consumption of milk from other mammals after weaning. In Europe, a single allele (−13910∗T, rs4988235) in an upstream region that acts as an enhancer to the expression of the lactase gene ...

  11. Microangiopathic complications related to different alleles of ...

    African Journals Online (AJOL)

    Microangiopathic complications related to different alleles of manganese superoxide dismutase gene in diabetes mellitus type 1. TM EL Masry, MA Abou Zahra, Kh. A Soliman, M El-Taweel. Abstract. No Abstract. The Egyptian Journal of Biochemistry and Molecular Biology Vol. 23(2) 2005: 155-167. Full Text: EMAIL FULL ...

  12. Estimating the probability of allelic drop-out of STR alleles in forensic genetics

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2009-01-01

    In crime cases with available DNA evidence, the amount of DNA is often sparse due to the setting of the crime. In such cases, allelic drop-out of one or more true alleles in STR typing is possible. We present a statistical model for estimating the per locus and overall probability of allelic drop......-out using the results of all STR loci in the case sample as reference. The methodology of logistic regression is appropriate for this analysis, and we demonstrate how to incorporate this in a forensic genetic framework....

  13. Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) I: A Transcriptomic Survey

    Science.gov (United States)

    Silva, Andrea X.; Jander, Georg; Samaniego, Horacio; Ramsey, John S; Figueroa, Christian C.

    2012-01-01

    Background Insecticide resistance is one of the best examples of rapid micro-evolution found in nature. Since the development of the first synthetic insecticide in 1939, humans have invested considerable effort to stay ahead of resistance phenotypes that repeatedly develop in insects. Aphids are a group of insects that have become global pests in agriculture and frequently exhibit insecticide resistance. The green peach aphid, Myzus persicae, has developed resistance to at least seventy different synthetic compounds, and different insecticide resistance mechanisms have been reported worldwide. Methodology/Principal Findings To further characterize this resistance, we analyzed genome-wide transcriptional responses in three genotypes of M. persicae, each exhibiting different resistance mechanisms, in response to an anti-cholinesterase insecticide. The sensitive genotype (exhibiting no resistance mechanism) responded to the insecticide by up-regulating 183 genes primarily ones related to energy metabolism, detoxifying enzymes, proteins of extracellular transport, peptidases and cuticular proteins. The second genotype (resistant through a kdr sodium channel mutation), up-regulated 17 genes coding for detoxifying enzymes, peptidase and cuticular proteins. Finally, a multiply resistant genotype (carrying kdr and a modified acetylcholinesterase), up-regulated only 7 genes, appears not to require induced insecticide detoxification, and instead down-regulated many genes. Conclusions/Significance This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms. The sensitive genotype exhibited the highest transcriptional plasticity, accounting for the wide range of potential adaptations to insecticides that this species can evolve. In contrast, the multiply resistant genotype exhibited a low transcriptional plasticity, even for the expression of genes encoding

  14. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  15. Survey of Permethrin and Malathion Resistance in Human Head Lice Populations from Denmark

    DEFF Research Database (Denmark)

    Kristensen, Michael; Knorr, Mette; Rasmussen, Anne-Marie

    2006-01-01

    at the discriminating dose. The connection between permethrin resistance and kdr-like mutations is confirmed by our findings. The frequency of the double mutation T929I-L932 F in the voltage-sensitive sodium channel gene associated with permethrin resistance was 0.95 in Danish head lice populations.......Head lice, Pediculis capitis De Geer, populations were investigated for permethrin and malathion resistance after initial establishment of a discriminating dose of topical application bioassay with body lice, Pediculus humanus L. For both insecticides, 2 times the lethal dose (LD)95 at 4 h...... attached to a vacuum cleaner. A resistance survey covers head lice collected from 208 of 1,441 persons combed. The frequency of permethrin- and malathion-resistant head lice is high in Danish head lice populations. In 17 of 24 samples tested for permethrin resistance, all head lice survived...

  16. Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression.

    Science.gov (United States)

    Stratigi, Kalliopi; Kapsetaki, Manouela; Aivaliotis, Michalis; Town, Terrence; Flavell, Richard A; Spilianakis, Charalampos G

    2015-03-31

    Physiological processes rely on the regulation of total mRNA levels in a cell. In diploid organisms, the transcriptional activation of one or both alleles of a gene may involve trans-allelic interactions that provide a tight spatial and temporal level of gene expression regulation. The mechanisms underlying such interactions still remain poorly understood. Here, we demonstrate that lipopolysaccharide stimulation of murine macrophages rapidly resulted in the actin-mediated and transient homologous spatial proximity of Tnfα alleles, which was necessary for the mono- to biallelic switch in gene expression. We identified two new complementary long noncoding RNAs transcribed from the TNFα locus and showed that their knockdown had opposite effects in Tnfα spatial proximity and allelic expression. Moreover, the observed spatial proximity of Tnfα alleles depended on pyruvate kinase muscle isoform 2 (PKM2) and T-helper-inducing POZ-Krüppel-like factor (ThPOK). This study suggests a role for lncRNAs in the regulation of somatic homologous spatial proximity and allelic expression control necessary for fine-tuning mammalian immune responses.

  17. Use of allele scores as instrumental variables for Mendelian randomization.

    Science.gov (United States)

    Burgess, Stephen; Thompson, Simon G

    2013-08-01

    An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate 'weak instrument' bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score.

  18. Identification of 48 full-length MHC-DAB functional alleles in miiuy croaker and evidence for positive selection.

    Science.gov (United States)

    Liu, Jiang; Sun, Yueyan; Xu, Tianjun

    2016-07-01

    Major histocompatibility complex (MHC) molecules play a vital role in the immune response and are a highly polymorphic gene superfamily in vertebrates. As the molecular marker associated with polymorphism and disease susceptibility/resistance, the polymorphism of MHC genes has been investigated in many tetrapods and teleosts. Most studies were focused on the polymorphism of the second exon, which encodes the peptide-binding region (PBR) in the α1- or β1-domain, but few studies have examined the full-length coding region. To comprehensive investigate the polymorphism of MHC gene, we identified 48 full-length miiuy croaker (Miichthys miiuy) MHC class IIB (Mimi-DAB) functional alleles from 26 miiuy croaker individuals. All of the alleles encode 34 amino acid sequences, and a high level of polymorphism was detected in Mimi-DAB alleles. The rate of non-synonymous substitutions (dN) occurred at a significantly higher frequency than that of synonymous substitutions (dS) in the PBR, and this result suggests that balancing selection maintains polymorphisms at the Mimi-DAB locus. Phylogenetic analysis based on the full-length and exon 2 sequences of Mimi-DAB alleles both showed that the Mimi-DAB alleles were clustered into two major groups. A total of 19 positive selected sites were identified on the Mimi-DAB alleles after testing for positive selection, and 14 sites were predicted to be associated with antigen-binding sites, which suggests that most of selected sites are significant for disease resistance. The polymorphism of Mimi-DAB alleles provides an important resource for analyzing the association between the polymorphism of MHC gene and disease susceptibility/resistance, and for researching the molecular selective breeding of miiuy croaker with enhanced disease resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Allele specific expression and methylation in the bumblebee, Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Zoë Lonsdale

    2017-09-01

    Full Text Available The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.

  20. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts.

    Science.gov (United States)

    Bouwman, Aniek C; Hayes, Ben J; Calus, Mario P L

    2017-10-30

    Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of allele counts results in less shrinkage towards the mean for low minor allele frequency (MAF) variants. Scaling may become relevant for estimating ASE as more low MAF variants will be used in genomic evaluations. We show the impact of scaling on estimates of ASE using real data and a theoretical framework, and in terms of power, model fit and predictive performance. In a dairy cattle dataset with 630 K SNP genotypes, the correlation between DGV for stature from a random regression model using centered allele counts (RRc) and centered and scaled allele counts (RRcs) was 0.9988, whereas the overall correlation between ASE using RRc and RRcs was 0.27. The main difference in ASE between both methods was found for SNPs with a MAF lower than 0.01. Both the ratio (ASE from RRcs/ASE from RRc) and the regression coefficient (regression of ASE from RRcs on ASE from RRc) were much higher than 1 for low MAF SNPs. Derived equations showed that scenarios with a high heritability, a large number of individuals and a small number of variants have lower ratios between ASE from RRc and RRcs. We also investigated the optimal scaling parameter [from - 1 (RRcs) to 0 (RRc) in steps of 0.1] in the bovine stature dataset. We found that the log-likelihood was maximized with a scaling parameter of - 0.8, while the mean squared error of prediction was minimized with a scaling parameter of - 1, i.e., RRcs. Large differences in estimated ASE were observed for low MAF SNPs when allele counts were scaled or not scaled because there is less shrinkage towards the mean for scaled allele counts. We derived a theoretical framework that shows that the difference in ASE due to shrinkage is heavily influenced by the

  1. Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins.

    Science.gov (United States)

    Remington, David L

    2015-12-01

    Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Target-site resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus F

    DEFF Research Database (Denmark)

    Nauen, Ralf; Zimmer, Christoph T; Andrews, Melanie

    2012-01-01

    detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed......Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has...... resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated...

  3. Impact of three years of large scale Indoor Residual Spraying (IRS and Insecticide Treated Nets (ITNs interventions on insecticide resistance in Anopheles gambiae s.l. in Benin

    Directory of Open Access Journals (Sweden)

    Padonou Gil

    2012-04-01

    Full Text Available Abstract Background In Benin, Indoor Residual Spraying (IRS and long-lasting insecticidal nets (LLINs are the cornerstones of malaria prevention. In the context of high resistance of Anopheles gambiae to pyrethroids, The National Malaria Control Program (NMCP has undertaken a full coverage of IRS in a no-flood zone in the Oueme region, coupled with the distribution of LLINs in a flood zone. We assessed the impact of this campaign on phenotypic resistance, kdr (knock-down resistance and ace-1R (insensitive acetylcholinesterase mutations. Methods Insecticides used for malaria vector control interventions were bendiocarb WP (0.4 g/m2 and deltamethrin (55 mg/m2, respectively for IRS and LLINs. Susceptibility status of An. gambiae was assessed using World Health Organization bioassay tests to DDT, permethrin, deltamethrin and bendiocarb in the Oueme region before intervention (2007 and after interventions in 2008 and 2010. An. gambiae specimens were screened for identification of species, molecular M and S forms and for the detection of the West African kdr (L1014F as well as ace-1R mutations using PCR techniques. Results The univariate logistic regression performed showed that kdr frequency has increased significantly during the three years in the intervention area and in the control area. Several factors (LLINs, IRS, mosquito coils, aerosols, use of pesticides for crop protection could explain the selection of individual resistant An. gambiae. The Kdr resistance gene could not be the only mechanism of resistance observed in the Oueme region. The high susceptibility to bendiocarb is in agreement with a previous study conducted in Benin. However, the occurrence of ace-1R heterozygous individuals even on sites far from IRS areas, suggests other factors may contribute to the selection of resistance other than those exerted by the vector control program. Conclusion The results of this study have confirmed that An.gambiae have maintained and developed

  4. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    Science.gov (United States)

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  5. [An allelism test for quantitative trait genes].

    Science.gov (United States)

    Smiriaev, A V

    2011-04-01

    Analytical modeling has been used to test assumptions on the mode of inheritance of a quantitative trait in the course of diallel crossing between pure strains that are sufficient for adequacy of a simple regression model. This model frequently proved to be adequate in analysis of numerous data on diallel crossings of wheat and maize. An allelism test for quantitative trait genes has been suggested. Computer simulation has been used to estimate the effect of random experimental errors and deviations from the suggested model.

  6. Allelic genealogies in sporophytic self-incompatibility systems in plants

    DEFF Research Database (Denmark)

    Schierup, M H; Vekemans, X; Christiansen, F B

    1998-01-01

    Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model...... action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles...

  7. Existence of the rdl mutant alleles among the anopheles malaria vector in Indonesia.

    Science.gov (United States)

    Asih, Puji Bs; Syahrani, Lepa; Rozi, Ismail Ep; Pratama, Nandha R; Marantina, Sylvia S; Arsyad, Dian S; Mangunwardoyo, Wibowo; Hawley, William; Laihad, Ferdinand; Shinta; Sukowati, Supratman; Lobo, Neil F; Syafruddin, Din

    2012-02-25

    The gamma-aminobutyric acid (GABA) receptor-chloride channel complex is known to be the target site of dieldrin, a cyclodiene insecticide. GABA-receptors, with a naturally occurring amino acid substitution, A302S/G in the putative ion-channel lining region, confer resistance to cyclodiene insecticides that includes aldrin, chlordane, dieldrin, heptachlor, endrin and endosulphan. A total of 154 mosquito samples from 10 provinces of malaria-endemic areas across Indonesia (Aceh, North Sumatra, Bangka Belitung, Lampung, Central Java, East Nusa Tenggara, West Nusa Tenggara, West Sulawesi, Molucca and North Molucca) were obtained and identified by species, using morphological characteristic. The DNA was individually extracted using chelex-ion exchanger and the DNA obtained was used for analyses using sequencing method. Molecular analysis indicated 11% of the total 154 Anopheles samples examined, carried Rdl mutant alleles. All of the alleles were found in homozygous form. Rdl 302S allele was observed in Anopheles vagus (from Central Java, Lampung, and West Nusa Tenggara), Anopheles aconitus (from Central Java), Anopheles barbirostris (from Central Java and Lampung), Anopheles sundaicus (from North Sumatra and Lampung), Anopheles nigerrimus (from North Sumatra), whereas the 302 G allele was only found in Anopheles farauti from Molucca. The existence of the Rdl mutant allele indicates that, either insecticide pressure on the Anopheles population in these areas might still be ongoing (though not directly associated with the malaria control programme) or that the mutant form of the Rdl allele is relatively stable in the absence of insecticide. Nonetheless, the finding suggests that integrated pest management is warranted in malaria-endemic areas where insecticides are widely used for other purposes.

  8. Existence of the rdl mutant alleles among the anopheles malaria vector in Indonesia

    Directory of Open Access Journals (Sweden)

    Asih Puji BS

    2012-02-01

    Full Text Available Abstract Background The gamma-aminobutyric acid (GABA receptor-chloride channel complex is known to be the target site of dieldrin, a cyclodiene insecticide. GABA-receptors, with a naturally occurring amino acid substitution, A302S/G in the putative ion-channel lining region, confer resistance to cyclodiene insecticides that includes aldrin, chlordane, dieldrin, heptachlor, endrin and endosulphan. Methods A total of 154 mosquito samples from 10 provinces of malaria-endemic areas across Indonesia (Aceh, North Sumatra, Bangka Belitung, Lampung, Central Java, East Nusa Tenggara, West Nusa Tenggara, West Sulawesi, Molucca and North Molucca were obtained and identified by species, using morphological characteristic. The DNA was individually extracted using chelex-ion exchanger and the DNA obtained was used for analyses using sequencing method. Results Molecular analysis indicated 11% of the total 154 Anopheles samples examined, carried Rdl mutant alleles. All of the alleles were found in homozygous form. Rdl 302S allele was observed in Anopheles vagus (from Central Java, Lampung, and West Nusa Tenggara, Anopheles aconitus (from Central Java, Anopheles barbirostris (from Central Java and Lampung, Anopheles sundaicus (from North Sumatra and Lampung, Anopheles nigerrimus (from North Sumatra, whereas the 302 G allele was only found in Anopheles farauti from Molucca. Conclusion The existence of the Rdl mutant allele indicates that, either insecticide pressure on the Anopheles population in these areas might still be ongoing (though not directly associated with the malaria control programme or that the mutant form of the Rdl allele is relatively stable in the absence of insecticide. Nonetheless, the finding suggests that integrated pest management is warranted in malaria-endemic areas where insecticides are widely used for other purposes.

  9. Allele-specific KRT1 expression is a complex trait.

    Directory of Open Access Journals (Sweden)

    Heng Tao

    2006-06-01

    Full Text Available The differential expression of alleles occurs commonly in humans and is likely an important genetic factor underlying heritable differences in phenotypic traits. Understanding the molecular basis of allelic expression differences is thus an important challenge. Although many genes have been shown to display differential allelic expression, this is the first study to examine in detail the cumulative effects of multiple cis-regulatory polymorphisms responsible for allele-specific expression differences. We have used a variety of experimental approaches to identify and characterize cis-regulatory polymorphisms responsible for the extreme allele-specific expression differences of keratin-1 (KRT1 in human white blood cells. The combined data from our analyses provide strong evidence that the KRT1 allelic expression differences result from the haplotypic combinations and interactions of five cis-regulatory single nucleotide polymorphisms (SNPs whose alleles differ in their affinity to bind transcription factors and modulate KRT1 promoter activity. Two of these cis-regulatory SNPs bind transcriptional activators with the alleles on the high-expressing KRT1 haplotype pattern having a higher affinity than the alleles on the low-expressing haplotype pattern. In contrast, the other three cis-regulatory SNPs bind transcriptional inhibitors with the alleles on the low-expressing haplotype pattern having a higher affinity than the alleles on the high-expressing haplotype pattern. Our study provides important new insights into the degree of complexity that the cis-regulatory sequences responsible for allele-specific transcriptional regulation have. These data suggest that allelic expression differences result from the cumulative contribution of multiple DNA sequence polymorphisms, with each having a small effect, and that allele-specific expression can thus be viewed as a complex trait.

  10. Demography can favour female-advantageous alleles

    Science.gov (United States)

    Harts, Anna M. F.; Schwanz, Lisa E.; Kokko, Hanna

    2014-01-01

    When female fecundity is relatively independent of male abundance, while male reproduction is proportional to female abundance, females have a larger effect on population dynamics than males (i.e. female demographic dominance). This population dynamic phenomenon might not appear to influence evolution, because male and female genomes still contribute equally much to the next generation. However, here we examine two evolutionary scenarios to provide a proof of principle that spatial structure can make female demographic dominance matter. Our two simulation models combine dispersal evolution with local adaptation subjected to intralocus sexual conflict and environmentally driven sex ratio biases, respectively. Both models have equilibria where one environment (without being intrinsically poorer) has so few reproductive females that trait evolution becomes disproportionately determined by those environments where females survive better (intralocus sexual conflict model), or where daughters are overproduced (environmental sex determination model). Surprisingly, however, the two facts that selection favours alleles that benefit females, and population growth is improved when female fitness is high, together do not imply that all measures of population performance are improved. The sex-specificity of the source–sink dynamics predicts that populations can evolve to fail to persist in habitats where alleles do poorly when expressed in females. PMID:25056617

  11. Brazilian quilombos: A repository of Amerindian alleles.

    Science.gov (United States)

    Gontijo, Carolina Carvalho; Guerra Amorim, Carlos Eduardo; Godinho, Neide Maria Oliveira; Toledo, Rafaela Cesare Parmezan; Nunes, Adriana; Silva, Wellington; Da Fonseca Moura, Maria Manuela; De Oliveira, José Carlos Coutinho; Pagotto, Rubiani C; Klautau-Guimarães, Maria De Nazaré; De Oliveira, Silviene Fabiana

    2014-01-01

    As a consequence of colonization of the Americas and decimation of the native population, an important portion of autochthonous genetic variation has been lost. However, some alleles have been incorporated into the growing populations of admixed mestizos. In this study, we evaluated the potential of African-derived communities in Brazil to be repositories of Amerindian alleles and, by extension, a source of information on American prehistory. In this study, we describe the genetic variation of 15 ancestry informative markers (AIMs) of autosomal origin in two quilombos, Brazilian populations mainly of African descent, Santo Antônio do Guaporé (SAG; N = 31), and Santiago do Iguape (STI; N = 37). We compared the AIMs from these populations to those of other African-Brazilian populations, and to the Distrito Federal (N = 168), an urban population representative of Brazilian genetic diversity. By admixture analysis, we found that the SAG and STI communities have a much higher proportion (over 40%) of Amerindian contribution to their gene pools than other admixed Brazilian populations, in addition to marked African contributions. These results identify two living African-Brazilian populations that carry unique and important genetic information regarding Amerindian history. These populations will be extremely valuable in future investigations into American pre-history and Native American evolutionary dynamics. Copyright © 2014 Wiley Periodicals, Inc.

  12. Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat

    Directory of Open Access Journals (Sweden)

    Zhang Xiaofei

    2012-12-01

    provided new insights into the composition and function of 18 LMW-GS alleles in bread wheat. The variation of i-type genes mainly contributed to the high diversity of Glu-A3 alleles, and the differences among Glu-B3 alleles were mainly derived from the high polymorphism of s-type genes. Among LMW-GS alleles, Glu-A3e and Glu-B3c represented inferior alleles for bread-making quality, whereas Glu-A3d, Glu-B3b, Glu-B3g and Glu-B3i were correlated with superior bread-making quality. Glu-D3 alleles played minor roles in determining quality variation in bread wheat. Thus, LMW-GS alleles not only affect dough extensibility but greatly contribute to the dough resistance, glutenin macro-polymers and bread quality.

  13. Current status of insecticide resistance among malaria vectors in Kenya.

    Science.gov (United States)

    Ondeto, Benyl M; Nyundo, Christopher; Kamau, Luna; Muriu, Simon M; Mwangangi, Joseph M; Njagi, Kiambo; Mathenge, Evan M; Ochanda, Horace; Mbogo, Charles M

    2017-09-19

    Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while

  14. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status

    DEFF Research Database (Denmark)

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression...

  15. An allelic variant of congenital Salih myopathy

    Directory of Open Access Journals (Sweden)

    M. S. Belenikin

    2015-01-01

    Full Text Available The paper describes the steps and problems of diagnosing congenital myopathy with early respiratory disorders. While differentially diagnosing, the authors consider congenital myopathies, in which early cardiac involvement is encountered. Since the course of the disease in an observed female patient differed from that of such nosological entities and appeared as not only muscle weakness, but also as early respiratory disorders, we could not identify what nosological entity the disease belonged to in view of its clinical presentation and the results of muscle histological examination and we decided to perform exome sequencing. Molecular genetic testing could find heterozygous mutations in the titin (TTN gene. The findings are suggestive of congenital proximal myopathy with early respiratory failure, which is an allelic variant of Salih myopathy. This case is the first and so far only description of this disease in Russia. 

  16. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs.

    Science.gov (United States)

    Bonizzoni, Mariangela; Ochomo, Eric; Dunn, William Augustine; Britton, Monica; Afrane, Yaw; Zhou, Guofa; Hartsel, Joshua; Lee, Ming-Chieh; Xu, Jiabao; Githeko, Andrew; Fass, Joseph; Yan, Guiyun

    2015-09-17

    The extensive use of pyrethroids for control of malaria vectors, driven by their cost, efficacy and safety, has led to widespread resistance. To favor their sustainable use, the World Health Organization (WHO) formulated an insecticide resistance management plan, which includes the identification of the mechanisms of resistance and resistance surveillance. Recognized physiological mechanisms of resistance include target site mutations in the para voltage-gated sodium channel, metabolic detoxification and penetration resistance. Such understanding of resistance mechanisms has allowed the development of resistance monitoring tools, including genotyping of the kdr mutation L1014F/S in the para gene. The sequence-based technique RNA-seq was applied to study changes in the transcriptome of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from the Western Province of Kenya. The resulting gene expression profiles were compared to data in the most recent literature to derive a list of candidate resistance genes. RNA-seq data were analyzed also to identify sequence polymorphisms linked to resistance. A total of five candidate-resistance genes (AGAP04177, AGAP004572, AGAP008840, AGAP007530 and AGAP013036) were identified with altered expression between resistant and susceptible mosquitoes from West and East Africa. A change from G to C at position 36043997 of chromosome 3R resulting in A101G of the sulfotransferase gene AGAP009551 was significantly associated with the resistance phenotype (odds ratio: 5.10). The kdr L1014S mutation was detected at similar frequencies in both phenotypically resistant and susceptible mosquitoes, suggesting it is no longer fully predictive of the resistant phenotype. Overall, these results support the conclusion that resistance to pyrethroids is a complex and evolving phenotype, dependent on multiple gene functions including, but not limited to, metabolic detoxification. Functional convergence among metabolic detoxification

  17. Allele Frequency - JSNP | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available nd 39 SNPs are assayed in three (POP_*) and two (RIKEN_japanese_*) panels, respectively. Derived from Flat f... assay (JBIC-allele and RIKEN_japanese_*), TaqMan assay (RIKEN-allele) or direct sequencing / allelic discri...unteers under informed consent RIKEN_japanese_normal_weight - 711 unrelated japanese normal weight volunteer...s ( body mass index RIKEN_japanese_obese - 796 unrelated japanese obese patients

  18. Insecticide resistance in malaria vectors along the Thailand-Myanmar border.

    Science.gov (United States)

    Chaumeau, Victor; Cerqueira, Dominique; Zadrozny, John; Kittiphanakun, Praphan; Andolina, Chiara; Chareonviriyaphap, Theeraphap; Nosten, François; Corbel, Vincent

    2017-03-31

    There is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area. Anopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July 2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%). DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides. A total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n = 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus (75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91) and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was detected only in

  19. ABO locus O1 allele and risk of myocardial infarction.

    Science.gov (United States)

    von Beckerath, Nicolas; Koch, Werner; Mehilli, Julinda; Gorchakova, Olga; Braun, Siegmund; Schömig, Albert; Kastrati, Adnan

    2004-01-01

    An association between ABO blood group and myocardial infarction (MI) has been described. One probable mechanism underlying this association is the influence of ABO blood group on plasma von Willebrand factor (vWF) levels. We conducted this genetic study to test whether the ABO O1 allele is associated with low vWF plasma levels and with a reduced risk of MI. Cases consisted of 793 consecutive, angiographically examined patients with either acute or prior MI. As controls served 340 angiographically examined patients with neither coronary artery disease nor signs of MI. ABO1 locus alleles (A1, A2, B, O1, O2) were identified with polymerase chain reaction and fluorogenic probes. The distribution of O1 alleles in the MI group versus the control group was: no O1 allele (15.4%/10.0%), one O1 allele (49.7%/50.0%) and two O1 alleles (34.9%/40.0%) (P = 0.035). O1 allele carriage was associated with a 39% reduction in the risk of MI unadjusted odds ratio, 0.61; 95% confidence interval, 0.41-0.91). The significant association was maintained after adjustment for other cardiovascular risk factors. vWF antigen levels correlated with the number of O1 alleles (P = 0.00003) in a separate control group (n = 164). Carriage of the O1 allele is associated with a decreased risk of myocardial infarction, with homozygosity providing the greatest protection. Copyright 2004 Lippincott Williams and Wilkins

  20. A novel HLA-A allele: A*0257.

    Science.gov (United States)

    García-Ortiz, J E; Cox, S T; Sandoval-Ramirez, L; Little, A M; Marsh, S G E; Madrigal, J A; Argüello, J R

    2004-01-01

    A novel human leucocyte antigen-A*02 (HLA-A*02) allele was detected by reference strand-mediated conformation analysis (RSCA) of a DNA sample from a Tarahumara individual. Direct sequencing of HLA-A locus polymerase chain reaction products identified a mutation in one of the alleles. Cloning and sequencing confirmed the presence of a new allele, A*0257 which differed from A*0206 by two nucleotides at positions 355 and 362, inducing changes in residues 95 and 97, respectively, within the peptide-binding site. Those changes suggest that allele A*0257 may have resulted from an intralocus recombination event.

  1. Frequency of CCR5Δ32 allele in healthy Bosniak population.

    Directory of Open Access Journals (Sweden)

    Grażyna Adler

    2014-08-01

    Full Text Available Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12% and lower in the regions of Southeast Mediterranean (about 5%. Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013.  Mean age of the cohort being 58.8 (±10.7 years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary. 

  2. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    Science.gov (United States)

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  3. Characterization of genetic polymorphism of novel MHC B-LB II alleles in Chinese indigenous chickens.

    Science.gov (United States)

    Xu, Rifu; Li, Kui; Chen, Guohong; Xu, Hui; Qiang, Bayangzong; Li, Changchun; Liu, Bang

    2007-02-01

    Genetic polymorphism of the major histocompatibility complex (MHC) B-LB II gene was studied by amplification of exon 2 using PCR, followed by cloning and DNA sequencing in eight indigenous Chinese chicken populations. To reveal the genetic variation of the B-LB II gene, 37 types of patterns detected by PCR-SSCP were investigated first, which would be used to screen novel B-LB II sequences within the breeds. The types of PCR-SSCP patterns and final sequencing allowed for the identification of 31 novel MHC B-LB II alleles from 30 unrelated individuals of Chinese chickens that were sampled. These are the first designators for the alleles of chicken MHC B-LB II gene based on the rule of assignment for novel mammalian alleles. Sequence alignment of the 31 B-LB II alleles revealed a total of 68 variable sites in the fragment of exon 2, of which 51 parsimony informative and 17 singleton variable sites were observed. Among the polymorphic sites, the nucleotide substitutions in the first and second positions of the codons accounted for 36.76% and 35.29%, respectively. The sequence similarities between the alleles were estimated to be 90.6%-99.5%. The relative frequencies of synonymous and nonsynonymous nucleotide substitutions within the region were 2.92%+/-0.94% and 14.64%+/-2.67%, respectively. These results indicated that the genetic variation within exon 2 appeared to have largely arisen by gene recombination and balancing selection. Alignment of the deduced amino acid sequences of the beta1 domain coded by exon 2 revealed 6 synonymous mutations and 27 nonsynonymous substitutions at the 33 disparate sites. In particular, the nonsynonymous substitutions at the putative peptide-binding sites are considered to be associated with immunological specificity of MHC B-LB II molecule in Chinese native chickens. These results can provide a molecular biological basis for the study of disease resistance in chicken breeding.

  4. Identification of the third/extra allele for forensic application in cases with TPOX tri-allelic pattern.

    Science.gov (United States)

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; Motta, Carlos Henrique Ares Silveira da; Rodenbusch, Rodrigo; Gusmão, Leonor; Alho, Clarice Sampaio

    2015-05-01

    Genotyping of polymorphic short tandem repeats (STRs) loci is widely used in forensic DNA analysis. STR loci eventually present tri-allelic pattern as a genotyping irregularity and, in that situation, the doubt about the tri-allele locus frequency calculation can reduce the analysis strength. In the TPOX human STR locus, tri-allelic genotypes have been reported with a widely varied frequency among human populations. We investigate whether there is a single extra allele (the third allele) in the TPOX tri-allelic pattern, what it is, and where it is, aiming to understand its genomic anatomy and to propose the knowledge of this TPOX extra allele from genetic profile, thus preserving the two standard TPOX alleles in forensic analyses. We looked for TPOX tri-allelic subjects in 75,113 Brazilian families. Considering only the parental generation (mother+father) we had 150,226 unrelated subjects evaluated. From this total, we found 88 unrelated subjects with tri-allelic pattern in the TPOX locus (0.06%; 88/150,226). Seventy three of these 88 subjects (73/88; 83%) had the Clayton's original Type 2 tri-allelic pattern (three peaks of even intensity). The remaining 17% (15/88) show a new Type 2 derived category with heterozygote peak imbalance (one double dose peak plus one regular sized peak). In this paper we present detailed data from 66 trios (mother+father+child) with true biological relationships. In 39 of these families (39/66; 59%) the extra TPOX allele was transmitted either from the mother or from the father to the child. Evidences indicated the allele 10 as the extra TPOX allele, and it is on the X chromosome. The present data, which support the previous Lane hypothesis, improve the knowledge about tri-allelic pattern of TPOX CODIS' locus allowing the use of TPOX profile in forensic analyses even when with tri-allelic pattern. This evaluation is now available for different forensic applications. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana.

    Science.gov (United States)

    Stergiopoulos, Ioannis; Cordovez, Viviane; Okmen, Bilal; Beenen, Henriek G; Kema, Gert H J; de Wit, Pierre J G M

    2014-06-01

    Previously, we have determined the nonhost-mediated recognition of the MfAvr4 and MfEcp2 effector proteins from the banana pathogen Mycosphaerella fijiensis in tomato, by the cognate Cf-4 and Cf-Ecp2 resistance proteins, respectively. These two resistance proteins could thus mediate resistance against M. fijiensis if genetically transformed into banana (Musa spp.). However, disease resistance controlled by single dominant genes can be overcome by mutated effector alleles, whose products are not recognized by the cognate resistance proteins. Here, we surveyed the allelic variation within the MfAvr4, MfEcp2, MfEcp2-2 and MfEcp2-3 effector genes of M. fijiensis in a global population of the pathogen, and assayed its impact on recognition by the tomato Cf-4 and Cf-Ecp2 resistance proteins, respectively. We identified a large number of polymorphisms that could reflect a co-evolutionary arms race between host and pathogen. The analysis of nucleotide substitution patterns suggests that both positive selection and intragenic recombination have shaped the evolution of M. fijiensis effectors. Clear differences in allelic diversity were observed between strains originating from South-East Asia relative to strains from other banana-producing continents, consistent with the hypothesis that M. fijiensis originated in the Asian-Pacific region. Furthermore, transient co-expression of the MfAvr4 effector alleles and the tomato Cf-4 resistance gene, as well as of MfEcp2, MfEcp2-2 and MfEcp2-3 and the putative Cf-Ecp2 resistance gene, indicated that effector alleles able to overcome these resistance genes are already present in natural populations of the pathogen, thus questioning the durability of resistance that can be provided by these genes in the field. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  6. (GHRH Alleles in Iranian Sarabi Cows

    Directory of Open Access Journals (Sweden)

    mehdi khosravi

    2013-08-01

    Full Text Available Selection based on molecular markers is one of the new methods that may improve progress and accuracy of selection in animal breeding programs. The GHRH gene (Growth Hormone-releasing Hormone is a candidate gene for marker-assisted selection strategies. Polymorphs of GHRH gene are reported to be significantly associated with milk production and constituent traits. In order to study the polymorphism of GHRH gene, blood samples were collected from 112 Sarabi cows. Genomic DNA was extracted and a fragment of 297 bp in size was amplified using polymerase chain reaction. The amplified fragments were subjected to restriction digestion with HaeIII endonuclease enzyme and the resultant digested products were run on 2% Agarose gel. The results revealed the existence of two alleles of GHRH A and GHRH B for the examined locus with frequencies of 0.19 and 0.81 respectively. Three different genotypic variants including GHRH A GHRH A, GHRH A GHRH B and GHRH B GHRH B were identified with genotypic frequencies of 0.0357, 0.3037 and 0.6607 respectively. The χ2 test showed that population is in Hardy-Weinberg equilibrium (P

  7. Comparative frequency and allelic distribution of ABO and Rh (D ...

    African Journals Online (AJOL)

    Background: Allelic distribution of major blood groups (ABO and rhesus) has not been defined in Bangladeshi population. Determinants of blood group frequency in this region have not been studied properly. Aim: To determine ABO and rhesus blood group frequency and allelic distribution in a multiethnic area of ...

  8. Silvicultural management and the manipulation of rare alleles

    Science.gov (United States)

    Paul G. Schaberg; Gary J. Hawley; Donald H. DeHayes; Samuel E. Nijensohn

    2004-01-01

    Because rare alleles provide a means for adaptation to environmental change they are often considered important to long-term forest health. Through the selective removal of trees (and genes), silvicultural management may alter the genetic structure of forests, with rare alleles perhaps being uniquely vulnerable to manipulation due to their low frequencies or...

  9. Allelic genealogies in sporophytic self-incompatibility systems in plants

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Vekemans, Xavier; Christiansen, Freddy Bugge

    1998-01-01

    Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model...

  10. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Vekemans, Xavier; Christiansen, Freddy Bugge

    1997-01-01

    codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in pollen and style (SSIdom). In the third model, alleles interact codominantly in the style and form a dominance hierarchy in the pollen (SSIdomcod). The SSIcod model behaves similarly to the model...

  11. Comparative frequency and allelic distribution of ABO and Rh (D ...

    African Journals Online (AJOL)

    Gourab Dewan

    2015-02-18

    Feb 18, 2015 ... Abstract Background: Allelic distribution of major blood groups (ABO and rhesus) has not been defined in Bangladeshi population. Determinants of blood group frequency in this region have not been studied properly. Aim: To determine ABO and rhesus blood group frequency and allelic distribution in a.

  12. Novel alleles of 31-bp VNTR polymorphism in the human ...

    Indian Academy of Sciences (India)

    2010-12-06

    Dec 6, 2010 ... with age at onset of Alzheimer's disease (AD). Allele 19 is related to a three-fold increased risk for developing AD at 75 years of age or older, while allele 21 is related to an almost two-fold increased risk for developing AD before 64 years of age (Beyer et al. 2004, 2005). Keywords. cystathionine β-synthase ...

  13. Estimating and testing the effect of allelic recombination on the ...

    African Journals Online (AJOL)

    Jane

    2011-01-21

    Jan 21, 2011 ... The significance of the correlation coefficient as well as the fitted regression model was obtained using. Analysis of Variance method. Key words: Allele, genotype, regression, correlation, F-ratio, analysis of variance. INTRODUCTION .... while if the allelic replacement is being made on an Aa individual the ...

  14. Observations Suggesting Allelism of the Achondroplasia and Hypochondroplasia Genes

    Science.gov (United States)

    McKusick, Victor A.; Kelly, Thaddeus E.; Dorst, John P.

    1973-01-01

    It is argued that there are at least two alleles at the achondroplasia locus: one responsible for classic achondroplasia and one responsible for hypochondroplasia. Homozygosity for the achondroplasia gene produces a lethal skeletal dysplasia; homozygosity for hypochondroplasia has not been described. We report here a child considered to be a genetic compound for the achondroplasia and hypochondroplasia alleles. Images PMID:4697848

  15. Human minisatellite alleles detectable only after PCR amplification.

    Science.gov (United States)

    Armour, J A; Crosier, M; Jeffreys, A J

    1992-01-01

    We present evidence that a proportion of alleles at two human minisatellite loci is undetected by standard Southern blot hybridization. In each case the missing allele(s) can be identified after PCR amplification and correspond to tandem arrays too short to detect by hybridization. At one locus, there is only one undetected allele (population frequency 0.3), which contains just three repeat units. At the second locus, there are at least five undetected alleles (total population frequency 0.9) containing 60-120 repeats; they are not detected because these tandem repeats give very poor signals when used as a probe in standard Southern blot hybridization, and also cross-hybridize with other sequences in the genome. Under these circumstances only signals from the longest tandemly repeated alleles are detectable above the nonspecific background. The structures of these loci have been compared in human and primate DNA, and at one locus the short human allele containing three repeat units is shown to be an intermediate state in the expansion of a monomeric precursor allele in primates to high copy number in the longer human arrays. We discuss the implications of such loci for studies of human populations, minisatellite isolation by cloning, and the evolution of highly variable tandem arrays.

  16. Estimation of allelic frequencies for ABO and Rh blood groups

    African Journals Online (AJOL)

    Mostafa Saadat

    2015-02-18

    Feb 18, 2015 ... Estimation of allelic frequencies for ABO and Rh blood groups. Dear Editor. Estimation of the allelic frequencies for genetic markers is very important in genetic studies. Also investigation of the concordance between observed and expected value based on the Hardy–Weinberg equilibrium (HWE) is strongly ...

  17. Apolipoprotein E4 allele does not influence serum triglyceride ...

    African Journals Online (AJOL)

    This study investigated how the APOε4 allele affects the serum triglyceride response after a fatmeal in apparently healthy black South African young adults. Sixty students were successfully screened for APOE genotype using Restriction Fragment Length Polymorphism (RFLP) and were divided into four groups; the ε2 allele ...

  18. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L. in Lower-Income Housing.

    Directory of Open Access Journals (Sweden)

    Ronald W Raab

    Full Text Available Infestations of the common bed bug (Cimex lectularius L. have increased substantially in the United States in the past 10-15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4-6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a 16/21 (73% infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr, from valine to leucine (V419L and leucine to isoleucine (L925I that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40% bed bugs were homozygous for both kdr mutations (L419/I925, and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  19. Assigning breed origin to alleles in crossbred animals.

    Science.gov (United States)

    Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M

    2016-08-22

    For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns

  20. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence.

    Science.gov (United States)

    Grucza, Richard A; Wang, Jen C; Stitzel, Jerry A; Hinrichs, Anthony L; Saccone, Scott F; Saccone, Nancy L; Bucholz, Kathleen K; Cloninger, C Robert; Neuman, Rosalind J; Budde, John P; Fox, Louis; Bertelsen, Sarah; Kramer, John; Hesselbrock, Victor; Tischfield, Jay; Nurnberger, John I; Almasy, Laura; Porjesz, Bernice; Kuperman, Samuel; Schuckit, Marc A; Edenberg, Howard J; Rice, John P; Goate, Alison M; Bierut, Laura J

    2008-12-01

    A nonsynonymous coding polymorphism, rs16969968, of the CHRNA5 gene that encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence. The goal of this study was to examine the association of this variant with cocaine dependence. Genetic association analysis was performed in two independent samples of unrelated case and control subjects: 1) 504 European Americans participating in the Family Study on Cocaine Dependence (FSCD) and 2) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholism (COGA). In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (odds ratio = .67 per allele, p = .0045, assuming an additive genetic model), but in the reverse direction compared with that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.

  1. Ethical guideposts for allelic variation databases.

    Science.gov (United States)

    Knoppers, B M; Laberge, C M

    2000-01-01

    Basically, a mutation database (MDB) is a repository where allelic variations are described and assigned within a specific gene locus. The purposes of an MDB may vary greatly and have different content and structure. The curator of an electronic and computer-based MDB will provide expert feedback (clinical and research). This requires ethical guideposts. Going to direct on-line public access for the content of an MDB or to interactive communication also raises other considerations. Currently, HUGO's MDI (Mutation Database Initiative) is the only integrated effort supporting and guiding the coordinated deployment of MDBs devoted to genetic diversity. Thus, HUGO's ethical "Statements" are applicable. Among the ethical principles, the obligation of preserving the confidentiality of information transferred by a collaborator to the curator is particularly important. Thus, anonymization of such data prior to transmission is essential. The 1997 Universal Declaration on the Human Genome and Human Rights of UNESCO addresses the participation of vulnerable persons. Researchers in charge of MDBs should ensure that information received on the testing of children or incompetent adults is subject to ethical review and approval in the country of origin. Caution should be taken against the involuntary consequences of public disclosure of results without complete explanation. Clear and enforceable regulations must be developed to protect the public against misuse of genetic databanks. Interaction with a databank could be seen as creating a "virtual" physician-patient relationship. However, interactive public MDBs should not give medical advice. We have identified new social ethical principles to govern different levels of complexity of genetic information. They are: reciprocity, mutuality, solidarity, and universality. Finally, precaution and prudence at this early stage of the MDI may not only avoid ethically inextricable conundrums but also provide for the respect for the rights

  2. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt

    2013-01-01

    In certain crime cases, information about a perpetrator's phenotype, including eye colour, may be a valuable tool if no DNA profile of any suspect or individual in the DNA database matches the DNA profile found at the crime scene. Often, the available DNA material is sparse and allelic drop......-out when the amount of DNA was greater than 125 pg for 29 cycles of PCR and greater than 62 pg for 30 cycles of PCR. With the use of a logistic regression model, we estimated the allele specific probability of drop-out in heterozygote systems based on the signal strength of the observed allele...

  3. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control.

    Science.gov (United States)

    Riveron, Jacob M; Chiumia, Martin; Menze, Benjamin D; Barnes, Kayla G; Irving, Helen; Ibrahim, Sulaiman S; Weedall, Gareth D; Mzilahowa, Themba; Wondji, Charles S

    2015-09-15

    Deciphering the dynamics and evolution of insecticide resistance in malaria vectors is crucial for successful vector control. This study reports an increase of resistance intensity and a rise of multiple insecticide resistance in Anopheles funestus in Malawi leading to reduced bed net efficacy. Anopheles funestus group mosquitoes were collected in southern Malawi and the species composition, Plasmodium infection rate, susceptibility to insecticides and molecular bases of the resistance were analysed. Mosquito collection revealed a predominance of An. funestus group mosquitoes with a high hybrid rate (12.2 %) suggesting extensive species hybridization. An. funestus sensu stricto was the main Plasmodium vector (4.8 % infection). Consistently high levels of resistance to pyrethroid and carbamate insecticides were recorded and had increased between 2009 and 2014. Furthermore, the 2014 collection exhibited multiple insecticide resistance, notably to DDT, contrary to 2009. Increased pyrethroid resistance correlates with reduced efficacy of bed nets (change in resistance dynamics is mirrored by prevalent resistance mechanisms, firstly with increased over-expression of key pyrethroid resistance genes (CYP6Pa/b and CYP6M7) in 2014 and secondly, detection of the A296S-RDL dieldrin resistance mutation for the first time. However, the L119F-GSTe2 and kdr mutations were absent. Such increased resistance levels and rise of multiple resistance highlight the need to rapidly implement resistance management strategies to preserve the effectiveness of existing insecticide-based control interventions.

  4. Genetic Variability and Distribution of Mating Type Alleles in Field Populations of Leptosphaeria maculans from France

    Science.gov (United States)

    Gout, Lilian; Eckert, Maria; Rouxel, Thierry; Balesdent, Marie-Hélène

    2006-01-01

    Leptosphaeria maculans is the most ubiquitous fungal pathogen of Brassica crops and causes the devastating stem canker disease of oilseed rape worldwide. We used minisatellite markers to determine the genetic structure of L. maculans in four field populations from France. Isolates were collected at three different spatial scales (leaf, 2-m2 field plot, and field) enabling the evaluation of spatial distribution of the mating type alleles and of genetic variability within and among field populations. Within each field population, no gametic disequilibrium between the minisatellite loci was detected and the mating type alleles were present at equal frequencies. Both sexual and asexual reproduction occur in the field, but the genetic structure of these populations is consistent with annual cycles of randomly mating sexual reproduction. All L. maculans field populations had a high level of gene diversity (H = 0.68 to 0.75) and genotypic diversity. Within each field population, the number of genotypes often was very close to the number of isolates. Analysis of molecular variance indicated that >99.5% of the total genetic variability was distributed at a small spatial scale, i.e., within 2-m2 field plots. Population differentiation among the four field populations was low (GST < 0.02), suggesting a high degree of gene exchange between these populations. The high gene flow evidenced here in French populations of L. maculans suggests a rapid countrywide diffusion of novel virulence alleles whenever novel resistance sources are used. PMID:16391041

  5. MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout.

    Science.gov (United States)

    Sommer, Simone; Courtiol, Alexandre; Mazzoni, Camila J

    2013-08-09

    The Major Histocompatibility Complex (MHC) is the most important genetic marker to study patterns of adaptive genetic variation determining pathogen resistance and associated life history decisions. It is used in many different research fields ranging from human medical, molecular evolutionary to functional biodiversity studies. Correct assessment of the individual allelic diversity pattern and the underlying structural sequence variation is the basic requirement to address the functional importance of MHC variability. Next-generation sequencing (NGS) technologies are likely to replace traditional genotyping methods to a great extent in the near future but first empirical studies strongly indicate the need for a rigorous quality control pipeline. Strict approaches for data validation and allele calling to distinguish true alleles from artefacts are required. We developed the analytical methodology and validated a data processing procedure which can be applied to any organism. It allows the separation of true alleles from artefacts and the evaluation of genotyping reliability, which in addition to artefacts considers for the first time the possibility of allelic dropout due to unbalanced amplification efficiencies across alleles. Finally, we developed a method to assess the confidence level per genotype a-posteriori, which helps to decide which alleles and individuals should be included in any further downstream analyses. The latter method could also be used for optimizing experiment designs in the future. Combining our workflow with the study of amplification efficiency offers the chance for researchers to evaluate enormous amounts of NGS-generated data in great detail, improving confidence over the downstream analyses and subsequent applications.

  6. AllelicImbalance: An R/ bioconductor package for detecting, managing, and visualizing allele expression imbalance data from RNA sequencing

    DEFF Research Database (Denmark)

    Gådin, Jesper R.; van't Hooft, Ferdinand M.; Eriksson, Per

    2015-01-01

    the possible biases. Results: We present AllelicImblance, a software program that is designed to detect, manage, and visualize allelic imbalances comprehensively. The purpose of this software is to allow users to pose genetic questions in any RNA sequencing experiment quickly, enhancing the general utility......Background: One aspect in which RNA sequencing is more valuable than microarray-based methods is the ability to examine the allelic imbalance of the expression of a gene. This process is often a complex task that entails quality control, alignment, and the counting of reads over heterozygous single...

  7. Experiments to Demonstrate Change in Allelic Frequency by ...

    Indian Academy of Sciences (India)

    /fulltext/reso/014/11/1110-1118. Keywords. Population genetics; genetic drift; allele frequency. Author Affiliations. N B Ramachandra1 M S Ranjini1. Unit on Evolution and Genetics DOS in Zoology Manasagangotri University of Mysore, India.

  8. Marker-assisted selection of high molecular weight glutenin alleles ...

    Indian Academy of Sciences (India)

    2012-08-08

    Triticum aestivum L.), while their allelic variation explains ... Glutamine-rich repetitive sequences that comprise the central part of the. HMW subunits are actually responsible for the elastic prop- erties due to extensive arrays of ...

  9. Reliable allele detection using SNP-based PCR primers containing Locked Nucleic Acid: application in genetic mapping

    Directory of Open Access Journals (Sweden)

    Trognitz Friederike

    2007-02-01

    Full Text Available Abstract Background The diploid, Solanum caripense, a wild relative of potato and tomato, possesses valuable resistance to potato late blight and we are interested in the genetic base of this resistance. Due to extremely low levels of genetic variation within the S. caripense genome it proved impossible to generate a dense genetic map and to assign individual Solanum chromosomes through the use of conventional chromosome-specific SSR, RFLP, AFLP, as well as gene- or locus-specific markers. The ease of detection of DNA polymorphisms depends on both frequency and form of sequence variation. The narrow genetic background of close relatives and inbreds complicates the detection of persisting, reduced polymorphism and is a challenge to the development of reliable molecular markers. Nonetheless, monomorphic DNA fragments representing not directly usable conventional markers can contain considerable variation at the level of single nucleotide polymorphisms (SNPs. This can be used for the design of allele-specific molecular markers. The reproducible detection of allele-specific markers based on SNPs has been a technical challenge. Results We present a fast and cost-effective protocol for the detection of allele-specific SNPs by applying Sequence Polymorphism-Derived (SPD markers. These markers proved highly efficient for fingerprinting of individuals possessing a homogeneous genetic background. SPD markers are obtained from within non-informative, conventional molecular marker fragments that are screened for SNPs to design allele-specific PCR primers. The method makes use of primers containing a single, 3'-terminal Locked Nucleic Acid (LNA base. We demonstrate the applicability of the technique by successful genetic mapping of allele-specific SNP markers derived from monomorphic Conserved Ortholog Set II (COSII markers mapped to Solanum chromosomes, in S. caripense. By using SPD markers it was possible for the first time to map the S. caripense alleles

  10. DRD4 dopamine receptor allelic diversity in various primate species

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.; Higley, D. [NIAAA, Rockville, MD (United States); O`Brien, S. [NCI, Frederick, MD (United States)] [and others

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  11. Detection and Distribution of V1016Ikdr Mutation in the Voltage-Gated Sodium Channel Gene in Aedes aegypti (Diptera: Culicidae) Populations From Sergipe State, Northeast Brazil.

    Science.gov (United States)

    Dolabella, S S; Santos, R L C; Silva, M C N; Steffler, L M; Ribolla, P E M; Cavalcanti, S C H; Jain, S; Martins, A J

    2016-07-01

    Aedes aegypti (L.) resistance to pyrethroids was recorded in Brazil few years after its introduction as the adulticide in the National Dengue Control Program campaigns. Altered susceptibility to pyrethroids had been reported in the state of Sergipe, northeast Brazil, through biological assays, even before its use against Ae. aegypti in the state. Metabolic and target-site resistance mechanisms were also revealed in samples from Aracaju, the capital of Sergipe. Herein, we investigated the presence and distribution of the kdr mutation V1016I kdr in Ae. aegypti populations from different municipalities of the state. Aedes aegypti eggs were collected from seven municipalities located in areas showing different climatic types and infestation levels. Approximately 20 Ae. aegypti females from each municipality (total of 135 subjects) were individually submitted to allele-specific polymerase chain reaction (AS-PCR) for the 1016 site of the voltage-gated sodium channel (Na V ). The V1016I kdr mutation was found in subjects from all the municipalities under study with a high frequency of heterozygotes in several locations. Homozygous recessive subjects (resistant kdr genotype) were found only in one municipality. The results suggest a wide distribution of the V1016I kdr mutation in the northeast Brazil, which indicates urgent need for monitoring the effectiveness of the pyrethroids currently used for vector control. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility

    Directory of Open Access Journals (Sweden)

    Garcia-Mas Jordi

    2007-06-01

    Full Text Available Abstract Background Translation initiation factors of the 4E and 4G protein families mediate resistance to several RNA plant viruses in the natural diversity of crops. Particularly, a single point mutation in melon eukaryotic translation initiation factor 4E (eIF4E controls resistance to Melon necrotic spot virus (MNSV in melon. Identification of allelic variants within natural populations by EcoTILLING has become a rapid genotype discovery method. Results A collection of Cucumis spp. was characterised for susceptibility to MNSV and Cucumber vein yellowing virus (CVYV and used for the implementation of EcoTILLING to identify new allelic variants of eIF4E. A high conservation of eIF4E exonic regions was found, with six polymorphic sites identified out of EcoTILLING 113 accessions. Sequencing of regions surrounding polymorphisms revealed that all of them corresponded to silent nucleotide changes and just one to a non-silent change correlating with MNSV resistance. Except for the MNSV case, no correlation was found between variation of eIF4E and virus resistance, suggesting the implication of different and/or additional genes in previously identified resistance phenotypes. We have also characterized a new allele of eIF4E from Cucumis zeyheri, a wild relative of melon. Functional analyses suggested that this new eIF4E allele might be responsible for resistance to MNSV. Conclusion This study shows the applicability of EcoTILLING in Cucumis spp., but given the conservation of eIF4E, new candidate genes should probably be considered to identify new sources of resistance to plant viruses. Part of the methodology described here could alternatively be used in TILLING experiments that serve to generate new eIF4E alleles.

  13. SSR allelic variation in almond (Prunus dulcis Mill.).

    Science.gov (United States)

    Xie, Hua; Sui, Yi; Chang, Feng-Qi; Xu, Yong; Ma, Rong-Cai

    2006-01-01

    Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach.

  14. Origin of allelic diversity in antirrhinum S locus RNases.

    Science.gov (United States)

    Xue, Y; Carpenter, R; Dickinson, H G; Coen, E S

    1996-01-01

    In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate. PMID:8672882

  15. DDT and pyrethroid resistance status and laboratory evaluation of bio-efficacy of long lasting insecticide treated nets against Culex quinquefasciatus and Culex decens in Ghana.

    Science.gov (United States)

    Kudom, Andreas A; Mensah, Ben A; Froeschl, Guenter; Rinder, Heinz; Boakye, Daniel

    2015-10-01

    Nuisance from Culex mosquitoes in Ghana has a serious negative impact on the standard of living in many urban communities. In addition, a perceived lack of efficacy of long lasting insecticide treated nets (LLINs) against nuisance mosquitoes contributes to their discontinued use. This again compromises malaria control, even if Anopheles species themselves would still be susceptible to the insecticides used. Control strategies involve pyrethroid insecticides but information on Culex mosquito susceptibility to these insecticides is limited. A nationwide survey was conducted to address this problem. In adults, susceptibility to permethrin, deltamethrin and DDT as well as enzyme activity and kdr mutation were determined. Cone and tunnel bioassay were also carried out to determine the efficacy of LLINs against the mosquitoes. Culex quinquefasciatus and Culex decens were identified in the study area. Higher deltamethrin and DDT resistance and relatively low permethrin resistance were observed in both species. High enzyme activities and kdr mutations were observed in C. quinquefasciatus but not in C. decens. However, reduced efficacy of LLINs was observed in both mosquito species. This adds up to the evidence of the spread of pyrethroid resistance in mosquitoes and its negative impact on control strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles

    DEFF Research Database (Denmark)

    Pavlos, Rebecca; McKinnon, Elizabeth J.; Ostrov, David A.

    2017-01-01

    specificities and binding pocket structure. We demonstrate that primary predisposition to cutaneous NVP HSR, seen across ancestral groups, can be attributed to a cluster of HLA-C alleles sharing a common binding groove F pocket with HLA-C*04:01. An independent association with a group of class II alleles which......Genes of the human leukocyte antigen (HLA) system encode cell-surface proteins involved in regulation of immune responses, and the way drugs interact with the HLA peptide binding groove is important in the immunopathogenesis of T-cell mediated drug hypersensitivity syndromes. Nevirapine (NVP......), is an HIV-1 antiretroviral with treatment-limiting hypersensitivity reactions (HSRs) associated with multiple class I and II HLA alleles. Here we utilize a novel analytical approach to explore these multi-allelic associations by systematically examining HLA molecules for similarities in peptide binding...

  17. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    /GCA, MBL variant alleles were associated with signs of increased inflammatory activity and clinical signs of arteritic manifestations. This was not found for HLA-DR4 alleles. These findings indicate that HLA-DR4 and MBL are contributing to the pathophysiology of GCA at different levels in the disease......OBJECTIVE: To determine whether variant alleles of the mannose-binding lectin (MBL) gene causing low serum concentrations of MBL and/or polymorphisms of HLA-DRB1 are associated with increased susceptibility to polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) or particular clinical...... phenotypes of PMR/GCA. METHODS: MBL and HLA-DRB1 alleles were determined by polymerase chain reaction in 102 Danish patients with PMR (n = 37) or GCA (n = 65). Two hundred fifty and 193 healthy individuals served as controls for MBL and HLA genotyping, respectively. RESULTS: The prevalence of MBL variant...

  18. Frequency of the CCRD32 allele in Brazilians: a study in colorectal cancer and in HTLV-I infection

    Directory of Open Access Journals (Sweden)

    Pereira Rinaldo W.

    2000-01-01

    Full Text Available The identification of a 32-bp deletion in the cc-chemokine receptor-5 gene (CCR5delta32 allele that renders homozygous individuals highly resistant to HIV infection has prompted worldwide investigations of the frequency of the CCR5delta32 allele in regional populations. It is important to ascertain if CCR5delta32 is a factor to be considered in the overall epidemiology of HIV in individual populations. With this in mind we determined the CCR5delta32 allele frequency in a large sample (907 individuals of the southeastern Brazilian urban population, stratified as follows: 322 healthy unrelated individuals, 354 unselected colorectal cancer patients, and 229 blood donors. The three groups displayed essentially identical allelic frequencies of CCR5delta32 and pairwise comparisons did not show significant differences. Thus, our results can be pooled to provide a reliable estimate of the CCR5delta32 allele frequency in the southeastern Brazil of 0.053 ± 0.005. The blood donors comprised 50 HTLV-I serologically negative individuals, 115 non-symptomatic individuals HTLV-I positive by ELISA but with indeterminate Western blot results, 49 healthy blood donors HTLV-I positive both at ELISA and Western blot and 15 patients with clinical spinal cord disease (HAM. A suggestive trend was observed, with the CCR5delta32 frequencies decreasing progressively in these four categories. However, when we applied Fischer's exact test no significant differences emerged. We believe that further studies in larger cohorts should be performed to ascertain whether the CCR5delta32 allele influences the chance of becoming infected or developing clinical symptoms of HTLV-I infection.

  19. Allelic variation in a single genomic region alters the microbiome of the snail Biomphalaria glabrata.

    Science.gov (United States)

    Allan, Euan R O; Tennessen, Jacob A; Sharpton, Thomas J; Blouin, Michael S

    2018-03-16

    Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe Resistance Complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection, and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails, and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.

  20. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    Science.gov (United States)

    2012-01-01

    Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P insecticide resistance management strategies to combat the multiple resistance identified. PMID:22686575

  1. Circumsporozoite protein rates, blood-feeding pattern and frequency of knockdown resistance mutations in Anopheles spp. in two ecological zones of Mauritania.

    Science.gov (United States)

    Lekweiry, Khadijetou Mint; Salem, Mohamed Salem Ould Ahmedou; Cotteaux-Lautard, Christelle; Jarjaval, Fanny; Marin-Jauffre, Adeline; Bogreau, Hervé; Basco, Leonardo; Briolant, Sébastien; Boukhary, Ali Ould Mohamed Salem; Brahim, Khyarhoum Ould; Pagès, Frédéric

    2016-05-05

    Mosquitoes belonging to Anopheles gambiae species complex are the main malaria vector in Mauritania but data on their vector capacities, feeding habits and insecticide susceptibility are still scanty. The objectives of this study were to fill this gap. Adult Anopheles spp. mosquitoes were collected using pyrethrum spray catch method from two ecological zones of Mauritania: Nouakchott (Saharan zone) and Hodh Elgharbi region (Sahelian zone). Circumsporozoite proteins (CSP) for P. falciparum, P. vivax VK210 and P. vivax VK247 were detected by enzyme-linked immunosorbent assay (ELISA) from the female anopheline mosquitoes. To confirm CSP-ELISA results, polymerase chain reaction (PCR) was also performed. Blood meal identification was performed in all engorged females by partial sequencing of the mitochondrial cytochrome b gene. Molecular assessments of pyrethroid knockdown resistance (kdr) and insensitive acetylcholinesterase resistance (ace-1) were conducted. In Nouakchott, the only species of Anopheles identified during the survey was Anopheles arabiensis (356 specimens). In Hodh Elgharbi, 1016 specimens of Anopheles were collected, including 578 (56.9%) Anopheles rufipes, 410 (40.35%) An. arabiensis, 20 (1.96%) An. gambiae, 5 (0.5%) An. pharoensis and 3 (0.3 %) An. funestus. Three of 186 female An. arabiensis collected in Nouakchott and tested by ELISA were found positive for Plasmodium vivax VK210, corresponding to a sporozoite rate of 1.6%; however PCR confirmed infection by P. vivax sporozoite in only one of these. In Hodh Elgharbi, no mosquito was found positive for Plasmodium spp. infection. There was a statistically significant difference in the percentage of human blood-fed Anopheles spp. between Nouakchott (58.7%, 47 of 80 blood-engorged An. arabiensis females) and Hodh Elgharbi (11.1%, 2 of 18 blood-engorged mosquitoes). Analysis of the kdr polymorphisms showed 48.2% (70/145) of East African kdr mutation (L1014S) in Nouakchott compared to 10% (4/40) in Hodh

  2. SH1 leaf rust and bacterial halo blight coffee resistances are genetically independent

    Directory of Open Access Journals (Sweden)

    Lucas Mateus Rivero Rodrigues

    Full Text Available ABSTRACT Coffee resistance to Pseudomonas syringae pv. garcae has been associated to pleiotropic effect of SH1 allele, present in coffee plants resistant to certain races of Hemileia vastatrix, the causal agent of leaf rust, or genetic linkage between resistance alleles to both pathogens. To validate this hypothesis, 63 coffee plants in F2 generation were evaluated for resistance to 2 isolates of H. vastatrix carriers of alleles, respectively, v2, v5 (isolate I/2015 and v1; v2; v5 (isolate II/2015 with the objective to confirm presence of SH1 allele in resistant plants to isolate I/2015. The same coffee plants were evaluated for resistance to a mixture of P. syringae pv. garcae strains highly pathogenic to coffee. Results showed that, among F2 coffee allele SH1 carriers, resistant to isolate I/2015, resistant and susceptible plants to bacterial halo blight were found; the same segregation occurs between F2 homozygous for SH1 allele, susceptible to the same isolate (I/2015 of H. vastatrix. Results also indicate that there is no pleiotropic effect of gene or allele SH1 connection between genes conferring resistance to leaf rust caused by H. vastatrix and bacterial halo blight caused by P. syringae pv. garcae.

  3. Marker mapping and resistance gene associations in soybean

    OpenAIRE

    2011-01-01

    The invention provides novel molecular genetic markers in soybean, where the markers are useful, for example, in the marker-assisted selection of gene alleles that impart disease-resistance, thereby allowing the identification and selection of a disease-resistant plant. The markers also find use in positional cloning of disease-resistance genes.

  4. Ethnic differences in allelic distribution of IFN-g in South African women but no link with cervical cancer

    Directory of Open Access Journals (Sweden)

    Govan Vandana A

    2003-05-01

    Full Text Available Abstract Background The failure of specific types of human papillomaviruses (HPV to raise effective immune responses may be important in the pathogenesis of cervical cancer, the second most common cancer in South African women. Polymorphisms of a number of cytokine genes have been implicated in inducing susceptibility or resistance to cancers caused by infectious agents owing to their role in determining host immune response. Polymorphisms of IL-10 and IFN-γ genes are believed to influence the expression and/or secretion levels of their respective cytokines. Methods and Results In this study, women with histologically proven cancer of the cervix (n = 458 and hospital-based controls (n = 587 were investigated for bi-allelic -1082 (A/G polymorphisms of IL-10 and the bi-allelic +874(A/T polymorphisms of IFN-γ. In addition, the distributions of the allelic frequencies were stratified in both the African and mixed race population groups of South Africa. We found striking differences in the allele distribution of IFN-γ (X2 = 0.02 among the two ethnic groups. A significant increase in the allele distribution of the IFN-γ AA genotype was found in the African group compared to the mixed population group (OR, 0.5; 95% CI, 0.2–1.0. For IL-10 there were no significant allelic differences between the two South African ethnic groups. Furthermore, when the ethnic groups were combined the IL-10 allelic frequencies in the combined South African data were similar to those observed in an Oriental population from Southern China and in an Italian population. However, the allele frequencies of the IFN-γ genotype among the two South African ethnic groups were different when compared to an Italian Caucasoid group. While crude analysis of these data showed both statistically significantly increased and diminished risks of cervical cancer among high producers of INF-γ and low producers of IL-10 respectively, these associations were no longer significant when the

  5. Correlation Between HLA-A, B and DRB1 Alleles and Severe Fever with Thrombocytopenia Syndrome.

    Directory of Open Access Journals (Sweden)

    Shu-Jun Ding

    2016-10-01

    Full Text Available Severe fever with thrombocytopenia syndrome (SFTS is an emerging hemorrhagic fever caused by a tick-borne bunyavirus (SFTSV in East Asian countries. The role of human leukocyte antigen (HLA in resistance and susceptibility to SFTSV is not known. We investigated the correlation of HLA locus A, B and DRB1 alleles with the occurrence of SFTS.A total of 84 confirmed SFTS patients (patient group and 501 unrelated non-SFTS patients (healthy individuals as control group from Shandong Province were genotyped by PCR-sequence specific oligonucleotide probe (PCR-SSOP for HLA-A, B and DRB1 loci.Allele frequency was calculated and compared using χ2 test or the Fisher's exact test. A corrected P value was calculated with a bonferronis correction. Odds Ratio (OR and 95% confidence intervals (CI were calculated by Woolf's method.A total of 11 HLA-A, 23 HLA-B and 12 HLA-DRB1 alleles were identified in the patient group, whereas 15 HLA-A, 30 HLA-B and 13 HLA-DRB1 alleles were detected in the control group. The frequencies of A*30 and B*13 in the SFTS patient group were lower than that in the control group (P = 0.0341 and 0.0085, Pc = 0.5115 and 0.252. The ORs of A*30 and B*13 in the SFTS patient group were 0.54 and 0.49, respectively. The frequency of two-locus haplotype A*30-B*13 was lower in the patient group than in the control group(5.59% versus 12.27%, P = 0.037,OR = 0.41, 95%CI = 0.18-0.96 without significance(Pc>0.05. A*30-B*13-DRB1*07 and A*02-B*15-DRB1*04 had strong associations with SFTS resistance and susceptibility respectively (Pc = 0.0412 and 0.0001,OR = 0.43 and 5.07.The host HLA class I polymorphism might play an important role with the occurrence of SFTS. Negative associations were observed with HLA-A*30, HLA-B*13 and Haplotype A*30-B*13, although the associations were not statistically significant. A*30-B*13-DRB1*07 had negative correlation with the occurrence of SFTS; in contrast, haplotype A*02-B*15-DRB1*04 was positively correlated with SFTS.

  6. Differentiating Plasmodium falciparum alleles by transforming Cartesian X,Y data to polar coordinates

    Directory of Open Access Journals (Sweden)

    Zimmerman Peter A

    2010-06-01

    Full Text Available Abstract Background Diagnosis of infectious diseases now benefits from advancing technology to perform multiplex analysis of a growing number of variables. These advances enable simultaneous surveillance of markers characterizing species and strain complexity, mutations associated with drug susceptibility, and antigen-based polymorphisms in relation to evaluation of vaccine effectiveness. We have recently developed assays detecting single nucleotide polymorphisms (SNPs in the P. falciparum genome that take advantage of post-PCR ligation detection reaction and fluorescent microsphere labeling strategies. Data from these assays produce a spectrum of outcomes showing that infections result from single to multiple strains. Traditional methods for distinguishing true positive signal from background can cause false positive diagnoses leading to incorrect interpretation of outcomes associated with disease treatment. Results Following analysis of Plasmodium falciparum dihydrofolate reductase SNPs associated with resistance to a commonly used antimalarial drug, Fansidar (Sulfadoxine/pyrimethamine, and presumably neutral SNPs for parasite strain differentiation, we first evaluated our data after setting a background signal based on the mean plus three standard deviations for known negative control samples. Our analysis of single allelic controls suggested that background for the absent allele increased as the concentration of the target allele increased. To address this problem, we introduced a simple change of variables from customary (X,Y (Cartesian coordinates to planar polar coordinates (X = rcos(θ, Y = rsin(θ. Classification of multidimensional fluorescence signals based on histograms of angular and radial data distributions proved more effective than classification based on Cartesian thresholds. Comparison with known diallelic dilution controls suggests that histogram-based classification is effective for major:minor allele concentration ratios as

  7. Implication of HLA-DMA Alleles in Corsican IDDM

    Directory of Open Access Journals (Sweden)

    P. Cucchi-Mouillot

    1998-01-01

    Full Text Available The HLA-DM molecule catalyses the CLIP/antigen peptide exchange in the classical class II peptide-binding groove. As such, DM is an antigen presentation regulator and may be linked to autoimmune diseases. Using PCR derived methods, a relationship was revealed between DM gene polymorphism and IDDM, in a Corsican population. The DMA*0101 allele was observed to confer a significant predisposition to this autoimmune disease while the DMA*0102 allele protected significantly. Experiments examining polymorphism of the HLA-DRB1 gene established that these relationships are not a consequence of linkage disequilibrium with HLA-DRB1 alleles implicated in this pathology. The study of the DMA gene could therefore be an additional tool for early IDDM diagnosis in the Corsican population.

  8. Common breast cancer risk alleles and risk assessment

    DEFF Research Database (Denmark)

    Näslund-Koch, C; Nordestgaard, B G; Bojesen, S E

    2017-01-01

    mammography in Denmark, the average 5-year breast cancer risk was 1.5%, overall and 1.1%, 1.4%, 1.6%, 1.7%, 2.1%, for the 1(st) through 5(th) quintile, respectively. Based on age, nulliparity, familial history, and allele sum, 25% of women aged 50-69, and 94% of women aged 40-49, had absolute 5-year breast...... cancer risks ≤ 1.5%. Using polygenic risk score led to similar results. CONCLUSION: Common breast cancer risk alleles are associated with incidence and mortality of breast cancer in the general population, but not with other cancers. After including breast cancer allele sum in risk assessment, 25...

  9. Allele-sharing statistics using information on family history.

    Science.gov (United States)

    Callegaro, A; Meulenbelt, I; Kloppenburg, M; Slagboom, P E; Houwing-Duistermaat, J J

    2010-11-01

    When conducting genetic studies for complex traits, large samples are commonly required to detect new genetic factors. A possible strategy to decrease the sample size is to reduce heterogeneity using available information. In this paper we propose a new class of model-free linkage analysis statistics which takes into account the information given by the ungenotyped affected relatives (positive family history). This information is included into the scoring function of classical allele-sharing statistics. We studied pedigrees of affected sibling pairs with one ungenotyped affected relative. We show that, for rare allele common complex diseases, the proposed method increases the expected power to detect linkage. Allele-sharing methods were applied to the symptomatic osteoarthritis GARP study where taking into account the family-history increased considerably the evidence of linkage in the region of the DIO2 susceptibility locus. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  10. An update on HLA alleles associated with adverse drug reactions.

    Science.gov (United States)

    Fricke-Galindo, Ingrid; LLerena, Adrián; López-López, Marisol

    2017-05-24

    Adverse drug reactions (ADRs) are considered as an important cause of morbidity and mortality. The hypersensitivity reactions are immune-mediated ADRs, which are dose-independent, unpredictable and have been associated with several HLA alleles. The present review aimed to describe HLA alleles that have been associated with different ADRs in populations worldwide, the recommendations of regulatory agencies and pharmacoeconomic information and databases for the study of HLA alleles in pharmacogenetics. A systematic search was performed in June 2016 of articles relevant to this issue in indexed journals and in scientific databases (PubMed and PharmGKB). The information of 95 association studies found was summarized. Several HLA alleles and haplotypes have been associated with ADRs induced mainly by carbamazepine, allopurinol, abacavir and nevirapine, among other drugs. Years with the highest numbers of publications were 2013 and 2014. The majority of the reports have been performed on Asians and Caucasians, and carbamazepine was the most studied ADR drug inducer. Two HLA alleles' databases are described, as well as the recommendations of the U.S. Food and Drug Administration, the European Medicine Agency and the Clinical Pharmacogenetics Implementation Consortium. Pharmacoeconomic studies on this issue are also mentioned. The strongest associations remain for HLA-B*58:01, HLA-B*57:01, HLA-B*15:02 and HLA-A*31:01 but only in certain populations; therefore, studies on different ethnic groups would be useful. Due to the improvement of drug therapy and the economic benefit that HLA screening represents, investigations on HLA alleles associated with ADR should continue.

  11. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pdirect pleiotropic effect of GA-insensitivity, rather than an effect consequential to yield and/or height.

  12. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, J.; Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Boogen, C. (Univ. of Essen Medical School (Germany))

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  13. HLA Class II Alleles Susceptibility Markers of Type 1 Diabetes Fail to Specify Phenotypes of Ketosis-Prone Diabetes in Adult Tunisian Patients

    Directory of Open Access Journals (Sweden)

    Lilia Laadhar

    2011-01-01

    Full Text Available We aimed to characterize the different subgroups of ketosis-prone diabetes (KPD in a sample of Tunisian patients using the Aβ scheme based on the presence or absence of β-cell autoantibodies (A+ or A− and β-cell functional reserve (β+ or β− and we investigated whether HLA class II alleles could contribute to distinct KPD phenotypes. We enrolled 43 adult patients with a first episode of ketosis. For all patients we evaluated clinical parameters, β-cell autoimmunity, β-cell function and HLA class II alleles. Frequency distribution of the 4 subgroups was 23.3% A+β−, 23.3% A−β−, 11.6% A+β+ and 41.9% A−β+. Patients from the group A+β− were significantly younger than those from the group A−β− (P=.002. HLA susceptibility markers were significantly more frequent in patients with autoantibodies (P=.003. These patients also had resistance alleles but they were more frequent in A+β+ than A+β− patients (P=.04. Insulin requirement was not associated to the presence or the absence of HLA susceptibility markers. HLA class II alleles associated with susceptibility to autoimmune diabetes have not allowed us to further define Tunisian KPD groups. However, high prevalence of HLA resistance alleles in our patients may reflect a particular genetic background of Tunisian KPD population.

  14. Simultaneous inference of haplotypes and alleles at a causal gene

    Directory of Open Access Journals (Sweden)

    Fabrice eLarribe

    2015-10-01

    Full Text Available We present a new methodology which jointly infers haplotypes and the causal alleles at a gene influencing a given trait. Often in human genetic studies, the available data consists of genotypes (series of genetic markers along the chromosomes and a phenotype. However, for many genetic analyses, one needs haplotypes instead of genotypes. Our methodology is not only able to estimate haplotypes conditionally on the disease status, but is also able to infer the alleles at the unknown disease locus. Some applications of our methodology are in genetic mapping and in genetic counselling.

  15. A common allele on chromosome 9 associated with coronary heartdisease

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Ruth; Pertsemlidis, Alexander; Kavaslar, Nihan; Stewart, Alexandre; Roberts, Robert; Cox, David R.; Hinds, David; Pennachio, Len; Tybjaerg-Hansen, Anne; Folsom, Aaron R.; Boerwinkle,Eric; Hobbs, Helen H.; Cohen, Jonathan C.

    2007-03-01

    Coronary heart disease (CHD) is a major cause of death in Western countries. Here we used genome-wide association scanning to identify a 58 kb interval on chromosome 9 that was consistently associated with CHD in six independent samples. The interval contains no annotated genes and is not associated with established CHD risk factors such as plasma lipoproteins, hypertension or diabetes. Homozygotes for the risk allele comprise 20-25% of Caucasians and have a {approx}30-40% increased risk of CHD. These data indicate that the susceptibility allele acts through a novel mechanism to increase CHD risk in a large fraction of the population.

  16. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  17. Homology modelling of frequent HLA class-II alleles: A perspective to improve prediction of HLA binding peptide and understand the HLA associated disease susceptibility.

    Science.gov (United States)

    Kashyap, Manju; Farooq, Umar; Jaiswal, Varun

    2016-10-01

    Human leukocyte antigen (HLA) plays significant role via the regulation of immune system and contribute in the progression and protection of many diseases. HLA molecules bind and present peptides to T- cell receptors which generate the immune response. HLA peptide interaction and molecular function of HLA molecule is the key to predict peptide binding and understanding its role in different diseases. The availability of accurate three dimensional (3D) structures is the initial step towards this direction. In the present work, homology modelling of important and frequent HLA-DRB1 alleles (07:01, 11:01 and 09:01) was done and acceptable models were generated. These modelled alleles were further refined and cross validated by using several methods including Ramachandran plot, Z-score, ERRAT analysis and root mean square deviation (RMSD) calculations. It is known that numbers of allelic variants are related to the susceptibility or protection of various infectious diseases. Difference in amino acid sequences and structures of alleles were also studied to understand the association of HLA with disease susceptibility and protection. Susceptible alleles showed more amino acid variations than protective alleles in three selected diseases caused by different pathogens. Amino acid variations at binding site were found to be more than other part of alleles. RMSD values were also higher at variable positions within binding site. Higher RMSD values indicate that mutations occurring at peptide binding site alter protein structure more than rest of the protein. Hence, these findings and modelled structures can be used to design HLA-DRB1 binding peptides to overcome low prediction accuracy of HLA class II binding peptides. Furthermore, it may help to understand the allele specific molecular mechanisms involved in susceptibility/resistance against pathogenic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Selective breeding for scrapie resistance in sheep

    Directory of Open Access Journals (Sweden)

    Cristina Santos Sotomaior

    2012-11-01

    Full Text Available It is well known that the susceptibility of sheep to scrapie is determined by the host’s prion protein gene (PRNP. PRNP polymorphisms at codons 136 (alanine, A/valine, V, 154 (histidine, H/arginine, R and 171 (glutamine, Q/histidine, H/arginine, R are the main determinants of sheep susceptibility/resistance to classical scrapie. There are four major variants of the wild-type ARQ allele: VRQ, AHQ, ARH and ARR. Breeding programs have been developed in the European Union and the USA to increase the frequency of the resistant ARR allele while decreasing the frequency of the susceptible VRQ allele in sheep populations. In Brazil, little PRNP genotyping data are available for sheep, and thus far, no controlled breeding scheme for scrapie has been implemented. This review will focus on important epidemiological aspects of scrapie and the use of genetic resistance as a tool in breeding programs to control the disease.

  19. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    OpenAIRE

    Zhang, Yu-Xian; Qian, Xiao-Yi; Peng, Hui-Deng; Wang, Jian-Hui

    2016-01-01

    For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating alle...

  20. Determining the frequencies of B1, B2, B3 and E alleles of the ...

    African Journals Online (AJOL)

    The allelic frequencies of the B1, B2, B3 and E alleles were 0.927, 0.073, 0.390, and 0.272, respectively. B1 and B2 alleles did not affect milk yield and composition. B3 allele had significant effects on protein, fat, total solid (TS), solid not fat (SNF), casein and lactose percentages, but not on lactose yield. E allele significantly ...

  1. Distribution of DRB1 and DQB1 HLA class II alleles in occupational asthma due to western red cedar.

    Science.gov (United States)

    Horne, C; Quintana, P J; Keown, P A; Dimich-Ward, H; Chan-Yeung, M

    2000-05-01

    Occupational asthma caused by western red cedar is a common problem in sawmill industries. The objective of this study was to examine a possible association of human leukocyte antigen (HLA) class II genetic markers with susceptibility or resistance to western red cedar induced asthma. The distribution of DRB1 and DQB1 HLA class II alleles and DRB1-DQB1 haplotypes was studied in 56 Caucasian patients with proven red cedar asthma and 63 healthy Caucasian control subjects exposed to red cedar dust. DRB1 and DQB1 high resolution typing was performed by the polymerase chain reaction-based method. Patients with red cedar asthma had a higher frequency of HLA DQB1*0603 and DQB1*0302 alleles compared to a group of healthy exposed control subjects and a reduced frequency of DQB1*0501 allele. The frequency of the DRB1*0401-DQB1* 0302 haplotype was increased and the DRB1*0101-DQB1*0501 haplotype was reduced. These findings suggest that genetic factors such as human leukocyte antigen class II antigens may be associated with susceptibility or resistance to development of red cedar asthma.

  2. Selection of Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality by Using PCR (STS Method)

    International Nuclear Information System (INIS)

    Zamani, M.J.; Bihamta, M.R.; Khiabani, B.N.; Hallajian, M.T.

    2009-01-01

    This study was performed in the Agriculture, Medicine and Industry Research School, Nuclear Science and Technology Research Institute of Iran in 2005-2006, through Polymerase Chain Reaction by using Sequence Tagged Site (STS) method, to characterize in terms of bread quality of some wheat mutant genotypes (Roshan, Omid, Tabasi, Azar and Azadi), their parents and other cultivars such as Chamran, Enia, Bezostaya, Tajan, Pishtaz and Chinese spring. Twelve pairs of primers were used in this study; seven of them were extracted from the literature and the others were designed from the D genome subunites sequences of wheat. Some studies on drought resistance, salt resistance, etc., have been done for these mutant genotypes, some of them showing good results. However, their baking quality has not been studied before. The alleles Dx2+Dy12 (with negative effect on bread quality) and Dx2*, Dx5+Dy10 (with positive effect on bread quality) had the main effect on wheat bread quality. Special primers of these subunits were used to amplify these alleles. Except for the cultivars that had Dx5+Dx10, six mutant genotypes whose parents did not have these alleles (T-66-58-60, Ro-5, Ro-4, Ro-3, Ro-1 and O-64-1-10), showed Dx5+Dx10. SDS-PAGE analyses showed no contradictory results with molecular experiments. Significant differences were seen on protein percentage for polymorphic mutant genotypes, Ro-1 , Ro-3 and Ro-5 with Roshan (their parent), at 1% probability level. (author)

  3. Experiments to Demonstrate Change in Allelic Frequency by ...

    Indian Academy of Sciences (India)

    Admin

    a number of factors such as migration from or to other populations, mutation, selection and random ... beneficial, neutral, or detrimental to reproductive success. The statistical effect of sampling error ... original population, and through the random sampling of alleles during reproduction of sub- sequent generations, continue ...

  4. Estimating and testing the effect of allelic recombination on the ...

    African Journals Online (AJOL)

    Jane

    2011-01-21

    Jan 21, 2011 ... The significance of the correlation coefficient as well as the fitted regression model was obtained using. Analysis of Variance method. Key words: Allele, genotype, regression, correlation, F-ratio, analysis of variance. INTRODUCTION. Genetic recombination is an effective means of combining one individual ...

  5. Haplotype allelic classes for detecting ongoing positive selection

    Directory of Open Access Journals (Sweden)

    Lefebvre Jean-François

    2010-01-01

    Full Text Available Abstract Background Natural selection eliminates detrimental and favors advantageous phenotypes. This process leaves characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms: haplotype allelic classes. Results The model combines segregating sites and haplotypic information in order to reveal useful data characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the distributions under standard population models assuming neutrality, demographic scenarios and selection models. To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in the three HapMap Phase II populations. Conclusions We showed that the Svd statistic is less sensitive than other tests to confounding factors such as demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to study natural selection in genomic data.

  6. MHC class II DR allelic diversity in bighorn sheep

    Science.gov (United States)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  7. Distribution of forensic marker allelic frequencies in Pernambuco, Northestern Brazil.

    Science.gov (United States)

    Santos, S M; Souza, C A; Rabelo, K C N; Souza, P R E; Moura, R R; Oliveira, T C; Crovella, S

    2015-04-30

    Pernambuco is one of the 27 federal units of Brazil, ranking seventh in the number of inhabitants. We examined the allele frequencies of 13 short tandem repeat loci (CFS1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, TH01, vWA, and TPOX), the minimum recommended by the Federal Bureau of Investigation and commonly used in forensic genetics laboratories in Brazil, in a sample of 609 unrelated individuals from all geographic regions of Pernambuco. The allele frequencies ranged from 5 to 47.2%. No significant differences for any loci analyzed were observed compared with other publications in other various regions of Brazil. Most of the markers observed were in Hardy-Weinberg equilibrium. The occurrence of the allele 47.2 (locus FGA) and alleles 35.1 and 39 (locus D21S11), also described in a single study of the Brazilian population, was observed. The other forensic parameters analyzed (matching probability, power of discrimination, polymorphic information content, paternity exclusion, complement factor I, observed heterozygosity, expected heterozygosity) indicated that the studied markers are very informative for human forensic identification purposes in the Pernambuco population.

  8. Comparison of bovine lymphocyte antigen DRB3.2 allele ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... polymorphic bovine MHC class II gene which encodes the peptide-binding groove. Since different ... patibility Complex (MHC) of cattle is known as Bovine .... Table 1. Frequencies of BoLA-DRB3.2 alleles detected by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP).

  9. Allelic variations of functional markers for polyphenol oxidase (PPO)

    Indian Academy of Sciences (India)

    Allelic variations of functional markers for polyphenol oxidase (PPO) genes in Indian bread wheat (Triticum aestivum L.) cultivars. Rajender Singh, Umesh Goutam, R. K. Gupta, G. C. Pandey, Jag Shoran and Ratan Tiwari. J. Genet. 88, 325–329. Figure 1. Phenol colour reaction of kernels. Kernels without treatment by ...

  10. Allelic variation of HMW glutenin subunits of Ethiopian bread wheat ...

    African Journals Online (AJOL)

    There were highly significant differences between genotypes and banding patterns for the SDS-sedimentation test, mixograph development time, alveograph strength and loaf volume; but not for protein content. The frequency of subunits 5+10 among genotypes was 73%. The accumulation of high scoring alleles in our ...

  11. Allelic reůationships of Pea Nodulation Mutants

    Czech Academy of Sciences Publication Activity Database

    Novák, Karel

    2003-01-01

    Roč. 94, č. 2 (2003), s. 191-193 ISSN 0022-1503 R&D Projects: GA ČR GA521/00/0937 Institutional research plan: CEZ:AV0Z5020903 Keywords : allelic * relationships * pea Subject RIV: EE - Microbiology, Virology Impact factor: 1.707, year: 2003

  12. Comparison of bovine lymphocyte antigen DRB3.2 allele ...

    African Journals Online (AJOL)

    The bovine lymphocyte antigen (BoLA-DRB3) gene encodes cell surface glycoproteins that initiate immune responses by presenting processed antigenic peptides to CD4 T helper cells. DRB3 is the most polymorphic bovine MHC class II gene which encodes the peptide-binding groove. Since different alleles favor the ...

  13. Novel HLA Class I Alleles Associated with Indian Leprosy Patients

    Directory of Open Access Journals (Sweden)

    U. Shankarkumar

    2003-01-01

    A*0101, Cw*04011, and Cw*0602 leprosy patients was observed when compared to the controls. Further haplotype A*1102-B*4006-Cw*1502 was significantly increased among the lepromatous leprosy patients when compared to the controls. It seems that HLA class I alleles play vital roles in disease association/pathogenesis with leprosy among Indians.

  14. The 'rare allele phenomenon' in a ribosomal spacer

    NARCIS (Netherlands)

    Schilthuizen, M.; Hoekstra, R.F.; Gittenberger, E.

    2001-01-01

    We describe the increased frequency of a particular length variant of the internal transcribed spacer 1 (ITS-1) of the ribosomal DNA in a hybrid zone of the land snail Albinaria hippolyti. The phenomenon that normally rare alleles or other markers can increase in frequency in the centre of hybrid

  15. Allelic drop-out probabilities estimated by logistic regression

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic dro...

  16. Allele frequency analysis of Chinese chestnut ( Castanea mollissima ...

    African Journals Online (AJOL)

    The aim of this study was to establish a method for allele frequency detection in bulk samples. The abundance of polymerase chain reaction (PCR) products in bulk leaf samples was detected using fluorescent labeled Simple sequence repeat (SSR) primers and an Applied biosystems (AB) automatic DNA analyzer.

  17. weight glutenin subunits and waxy alleles on dough-mix

    Indian Academy of Sciences (India)

    weight glutenin subunits and waxy alleles on dough-mixing properties in common wheat. Zhiying Deng, Shuna Hu, Feifei Zheng, Junnan Chen, Xinye Zhang, Jiansheng Chen, Cailing Sun,. Yongxiang Zhang, Shouyi Wang and Jichun Tian. J. Genet. 92, 69–79. Table 1. The data of the mixing properties of the RIL population ...

  18. Multifragment alleles in DNA fingerprints of the parrot, Amazona ventralis

    Science.gov (United States)

    Brock, M.K.; White, B.N.

    1991-01-01

    Human DNA probes that identify variable numbers of tandem repeat loci are being used to generate DNA fingerprints in many animal and plant species. In most species the majority of the sc rable autoradiographic bands of the DNA fingerprint represent alleles from numerous unlinked loci. This study was initiated to use DNA fingerprints to determine the amount of band-sharing among captive Hispaniolan parrots (Amazona ventralis) with known genetic relationships. This would form the data base to examine DNA fingerprints of the closely related and endangered Puerto Rican parrot (A. vittata) and to estimate the degree of inbreeding in the relic population. We found by segregation analysis of the bands scored in the DNA fingerprints of the Hispaniolan parrots that there may be as few as two to five loci identified by the human 33.15 probe. Furthermore, at one locus we identified seven alleles, one of which is represented by as many as 19 cosegregating bands. It is unknown how common multiband alleles might be in natural populations, and their existence will cause problems in the assessment of relatedness by band-sharing analysis. We believe, therefore, that a pedigree analysis should be included in all DNA fingerprinting studies, where possible, in order to estimate the number of loci identified by a minisatellite DNA probe and to examine the nature of their alleles.

  19. HLA-A alleles differentially associate with severity to Plasmodium ...

    African Journals Online (AJOL)

    Human Leukocyte Antigen (HLA), particularly HLA-B and class II alleles have been differentially associated with disease outcomes in different populations following infection with the malaria Plasmodium falciparum. However, the effect of HLA-A on malaria infection and/or disease is not fully understood. Recently, HLA-A ...

  20. Introgression of Crop Alleles into Wild or Weedy Populations

    NARCIS (Netherlands)

    Ellstrand, N.C.; Meirmans, P.; Rong, J.; Bartsch, D.; Ghosh, A.; de Jong, T.J.; Haccou, P.; Lu, B-R.; Snow, A.A.; Stewart, C.N.; Strasburg, J.L.; van Tienderen, P.H.; Vrieling, K; Hooftman, D.A.P.

    2013-01-01

    The evolutionary significance of introgression has been discussed for decades. Questions about potential impacts of transgene flow into wild and weedy populations brought renewed attention to the introgression of crop alleles into those populations. In the past two decades, the field has advanced

  1. Allelic Frequency Analysis of Chinese Chestnut (Castanea mollissima)

    African Journals Online (AJOL)

    Chengxiang Ai

    The aim of this study was to establish a method for allele frequency detection in bulk samples. The abundance of polymerase chain reaction (PCR) products in bulk leaf samples was detected using fluorescent labeled Simple sequence repeat (SSR) primers and an Applied biosystems (AB) automatic. DNA analyzer.

  2. Increased risk of venous thrombosis by AB alleles of the ABO blood group and Factor V Leiden in a Brazilian population

    OpenAIRE

    Lima, Magaly B. P. L. V.; de Oliveira-Filho, Aldemir Branco; Campos, Júlia F.; Melo, Fárida C. B. C.; Neves, Washington Batista das; Melo, Raul Antônio Morais; Lemos, José Alexandre Rodrigues

    2009-01-01

    Most cases of a predisposition to venous thrombosis are caused by resistance to activated protein C, associated in 95% of cases with the Factor V Leiden allele (FVL or R506Q). Several recent studies report a further increased risk of thrombosis by an association between the AB alleles of the ABO blood group and Factor V Leiden. The present study investigated this association with deep vein thrombosis (DVT) in individuals treated at the Hemocentro de Pernambuco in northeastern Brazil. A case-c...

  3. Bipolar disorder risk alleles in children with ADHD.

    Science.gov (United States)

    Schimmelmann, B G; Hinney, A; Scherag, A; Pütter, C; Pechlivanis, S; Cichon, S; Jöckel, K-H; Schreiber, S; Wichmann, H E; Albayrak, Ö; Dauvermann, M; Konrad, K; Wilhelm, C; Herpertz-Dahlmann, B; Lehmkuhl, G; Sinzig, J; Renner, T J; Romanos, M; Warnke, A; Lesch, K P; Reif, A; Hebebrand, J

    2013-11-01

    Bipolar disorder (BD) and attention deficit/hyperactivity disorder (ADHD) may share common genetic risk factors as indicated by the high co-morbidity of BD and ADHD, their phenotypic overlap especially in pediatric populations, the high heritability of both disorders, and the co-occurrence in families. We therefore examined whether known polygenic BD risk alleles are associated with ADHD. We chose the eight best SNPs of the recent genome-wide association study (GWAS) of BD patients of German ancestry and the nine SNPs from international GWAS meeting a 'genome-wide significance' level of α = 5 × 10(-8). A GWAS was performed in 495 ADHD children and 1,300 population-based controls using HumanHap550v3 and Human660 W-Quadv1 BeadArrays. We found no significant association of childhood ADHD with single BD risk alleles surviving adjustment for multiple testing. Yet, risk alleles for BD and ADHD were directionally consistent at eight of nine loci with the strongest support for three SNPs in or near NCAN, BRE, and LMAN2L. The polygene analysis for the BP risk alleles at all 14 loci indicated a higher probability of being a BD risk allele carrier in the ADHD cases as compared to the controls. At a moderate power to detect association with ADHD, if true effects were close to estimates from GWAS for BD, our results suggest that the possible contribution of BD risk variants to childhood ADHD risk is considerably lower than for BD. Yet, our findings should encourage researchers to search for common genetic risk factors in BD and childhood ADHD in future studies.

  4. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    phenotypes of PMR/GCA. METHODS: MBL and HLA-DRB1 alleles were determined by polymerase chain reaction in 102 Danish patients with PMR (n = 37) or GCA (n = 65). Two hundred fifty and 193 healthy individuals served as controls for MBL and HLA genotyping, respectively. RESULTS: The prevalence of MBL variant...

  5. KIR2DL2/2DL3-E35 alleles are functionally stronger than -Q35 alleles

    Science.gov (United States)

    Bari, Rafijul; Thapa, Rajoo; Bao, Ju; Li, Ying; Zheng, Jie; Leung, Wing

    2016-03-01

    KIR2DL2 and KIR2DL3 segregate as alleles of a single locus in the centromeric motif of the killer cell immunoglobulin-like receptor (KIR) gene family. Although KIR2DL2/L3 polymorphism is known to be associated with many human diseases and is an important factor for donor selection in allogeneic hematopoietic stem cell transplantation, the molecular determinant of functional diversity among various alleles is unclear. In this study we found that KIR2DL2/L3 with glutamic acid at position 35 (E35) are functionally stronger than those with glutamine at the same position (Q35). Cytotoxicity assay showed that NK cells from HLA-C1 positive donors with KIR2DL2/L3-E35 could kill more target cells lacking their ligands than NK cells with the weaker -Q35 alleles, indicating better licensing of KIR2DL2/L3+ NK cells with the stronger alleles. Molecular modeling analysis reveals that the glutamic acid, which is negatively charged, interacts with positively charged histidine located at position 55, thereby stabilizing KIR2DL2/L3 dimer and reducing entropy loss when KIR2DL2/3 binds to HLA-C ligand. The results of this study will be important for future studies of KIR2DL2/L3-associated diseases as well as for donor selection in allogeneic stem cell transplantation.

  6. The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis.

    Science.gov (United States)

    Jones, Christopher M; Haji, Khamis A; Khatib, Bakari O; Bagi, Judit; Mcha, Juma; Devine, Gregor J; Daley, Matthew; Kabula, Bilali; Ali, Abdullah S; Majambere, Silas; Ranson, Hilary

    2013-12-06

    The emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays. WHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays. Pyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the

  7. Tri-allelic pattern at the TPOX locus: a familial study.

    Science.gov (United States)

    Picanço, Juliane Bentes; Raimann, Paulo Eduardo; Paskulin, Giorgio Adriano; Alvarez, Luís; Amorim, António; Batista Dos Santos, Sidney Emanuel; Alho, Clarice Sampaio

    2014-02-10

    Alleles at the TPOX STR locus have 6-14 different numbers of a four-nucleotide (AATG) repeat motif arranged in tandem. Although tri-allelic genotypes are generally rare, the TPOX tri-allelic pattern has a higher frequency, varying widely among populations. Despite this, there are few accurate reports to disclose the nature of the TPOX third allele. In this work we present data obtained from 45 individuals belonging to the same pedigree, in which there are cases of tri-allelic TPOX genotypes. The subjects were apparently healthy with a normal biological development. We noticed six tri-allelic cases in this family, and all of them were women. Karyotype analysis showed no occurrence of partial 2p trisomy. All the tri-allelic cases had the genotype 8-10-11, probably due to three copies of the TPOX STR sequence in all cells (Type 2 tri-allelic pattern). Based on previous data we assumed the allele 10 as the TPOX third allele. The pedigree analyses show evidences that the TPOX extra-allele was the allele10, it is placed far from the main TPOX locus, and that there is a potential linkage of the TPOX extra-allele-10 with Xq. This was the first study that included a large pedigree analysis in order to understand the nature TPOX tri-allelic pattern. © 2013.

  8. Diminished levels of allelic losses by homologous recombination in radiation-hypersensitive cells

    International Nuclear Information System (INIS)

    Tatsumi, K.; Abe, M.; Hoki, Y.; Kubo, E.; Muto, M.; Araki, R.; Sato, K.

    2003-01-01

    Mitotic recombination (MR) due to somatic crossing-over is a predominant mechanism for allelic losses in mammalian cells either spontaneous or radiation-induced. A selectable mutation assay accompanying real-time detection PCR was developed to analyze the second step in loss-of-function mutations employing a human lympho-blastoid cell line derived from an obligate heterozygote of 2,8-dihydroxyadenine urolithiasis, adenine phosphoribosyltransferase (APRT) deficiency with a nonsense mutation at exon 3 of the gene. 68 % of spontaneously arising 2,6-diaminopurine resistance (DAP r ) mutant clones were associated with loss of heterozygosity (LOH), while 92 % of 2 Gy gamma-ray induced mutant clones were so associated. Investigation of gene dosage revealed that about one half of the spontaneously arising mutant clones and two-thirds of those induced by gamma-rays showed reduction to homozygosity of the constitutionally inactivated APRT allele. In an ataxia telangiectasia (AT) cell subline in which a new inactivation mutation had been introduced into one APRT allele by ICR-191, MR rarely occurred and exclusively deletions predominated in both spontaneous and X-ray induced DAP r mutants with LOH. A similar assay system was also developed with C3H mouse FM3A mammary tumor cells, SR-1, carrying a C .T transition at exon 5 of an APRT allele. In an XRCC7 (DNA-PKcs) deficient subline of SR-1, SX9 , spontaneous mutation frequencies for the Aprt locus (8AA r ) was 10 -3 , which was about 10 times higher than that in parental SR-1 cells. Mutation frequencies induced by X-rays comparably increased in a dose-dependent manner for the Aprt locus in both cell lines. Against our expectation, the lack of an NHEJ pathway of DNA double strand break repair resulted in a lower proportion (11.1 %) of MR with deletions (77.8 %) as the molecular cause for 8AA r mutations following X-irradiation, while virtually all of X-ray induced 8AA r mutant clones were MR in the control SR-1 cells. Factors

  9. ASElux: An Ultra-Fast and Accurate Allelic Reads Counter.

    Science.gov (United States)

    Miao, Zong; Alvarez, Marcus; Pajukanta, Päivi; Ko, Arthur

    2017-11-23

    Mapping bias causes preferential alignment to the reference allele, forming a major obstacle in allele-specific expression (ASE) analysis. The existing methods, such as simulation and SNP-aware alignment, are either inaccurate or relatively slow. To fast and accurately count allelic reads for ASE analysis, we developed a novel approach, ASElux, which utilizes the personal SNP information and counts allelic reads directly from unmapped RNA-sequence (RNA-seq) data. ASElux significantly reduces runtime by disregarding reads outside single nucleotide polymorphisms (SNPs) during the alignment. When compared to other tools on simulated and experimental data, ASElux achieves a higher accuracy on ASE estimation than non-SNP-aware aligners and requires a much shorter time than the benchmark SNP-aware aligner, GSNAP with just a slight loss in performance. ASElux can process 40 million read-pairs from an RNA-sequence (RNA-seq) sample and count allelic reads within 10 minutes, which is comparable to directly counting the allelic reads from alignments based on other tools. Furthermore, processing an RNA-seq sample using ASElux in conjunction with a general aligner, such as STAR, is more accurate and still ∼4X faster than STAR+WASP, and ∼33X faster than the lead SNP-aware aligner, GSNAP, making ASElux ideal for ASE analysis of large-scale transcriptomic studies. We applied ASElux to 273 lung RNA-seq samples from GTEx and identified a splice-QTL rs11078928 in lung which explains the mechanism underlying an asthma GWAS SNP rs11078927. Thus, our analysis demonstrated ASE as a highly powerful complementary tool to cis-expression quantitative trait locus (eQTL) analysis. The software can be downloaded from https://drive.google.com/open?id=0B7E7HSjQ-SumQmlPc1Z0aUR5Sk0. a5ko@ucla.edu (Arthur Ko), zmiao@ucla.edu (Zong Miao). Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions

  10. Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ beta-chain alleles associated with insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Atar, D; Dyrberg, T; Michelsen, Birgitte

    1989-01-01

    The HLA-DQ beta-chain gene shows a close association with susceptibility or resistance to autoimmune insulin-dependent diabetes mellitus (IDDM) and it has been suggested that the amino acid in position 57 may be of pathogenetic importance. To study the expression of the IDDM associated HLA-DQ beta......-chain alleles, we immunized rabbits with 12 to 13 amino acid long peptides representing HLA-DQw7 and -DQw8 allelic sequences, differing only by one amino acid in position 57 being aspartic acid (Asp) and alanine (Ala), respectively. Immunoblot analysis of lymphoblastoid cells showed that several antisera...... amino acid substitutions in predetermined positions of allelic HLA-DQ beta-chain gene products. Such sera should become useful to detect and investigate HLA associated susceptibility to autoimmune diseases in man....

  11. Detection of complex alleles by direct analysis of DNA heteroduplexes.

    Science.gov (United States)

    Sorrentino, R; Iannicola, C; Costanzi, S; Chersi, A; Tosi, R

    1991-01-01

    DNA molecules derived from three alleles of the HLA-DRB3 locus and differing from each other at several nucleotide sites were denatured and cross-hybridized. Each allelic combination was found to generate a pair of heteroduplexes of different mobility. Their retardation as compared to homoduplexes was proportional to the number of mismatches. In each heteroduplexes pair the component possessing the highest number of Pyr-Pyr oppositions was the most retarded. The results are those predicted by a theoretical model implying a correlation between base-pair opening and bending of the DNA double helix. These observations introduce a new HLA typing method at the genomic level and indicate an experimental approach to the analysis of the superhelical DNA conformation as related to different types of base oppositions.

  12. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions.

    Science.gov (United States)

    Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena

    2017-07-05

    Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the

  13. Determination of allele frequencies in nine short tandem repeat loci ...

    African Journals Online (AJOL)

    Determination of allele frequencies in nine short tandem repeat loci of five human sub-populations in Botswana. ... use in individual identification. ... Targeted regions of DNA (vWA, FGA, D3S1358, D5S818, D7S820, D8S1179, D13S317, D18S51, D21S11 and the sex determining locus Amelogenin) were amplified using ...

  14. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    Czech Academy of Sciences Publication Activity Database

    Baker, C.L.; Petkova, P.; Walker, M.; Flachs, Petr; Mihola, Ondřej; Trachtulec, Zdeněk; Petkov, P.M.; Paigen, K.

    2015-01-01

    Roč. 11, č. 9 (2015), e1005512-e1005512 ISSN 1553-7390 R&D Projects: GA ČR GAP305/10/1931; GA ČR(CZ) GA14-20728S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : recombination * PRDM9 * allelic competition Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.528, year: 2014

  15. ABO genotyping in leukemia patients reveals new ABO variant alleles

    OpenAIRE

    NOVARETTI, M. C. Z.; DOMINGUES, A. E.; MANHANI, R.; PINTO, E. M.; DORLHIAC-LLACER, P. E.; CHAMONE, D. A. F.

    2008-01-01

    The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic...

  16. HLA- DR Alleles in Pakistani Patients of Pemphigus Vulgaris.

    Science.gov (United States)

    Khan, Sara Waqar; Iftikhar, Nadia; Ahmed, Tahir Aziz; Bashir, Mukarram

    2015-04-01

    To determine frequency of HLA-DR alleles in Pakistani patients of pemphigus vulgaris in comparison with local healthy controls. Cross-sectional, comparative study. Department of Immunology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from January 2011 to January 2014. Twenty eight patients with biopsy proven diagnosis of pemphigus vulgaris referred from Department of Dermatology, Military Hospital, Rawalpindi were included. Patients were compared with a group of 150 unrelated local healthy subjects. DNA was extracted from peripheral blood collected in Tri-potassium EDTA. HLA-DRB1 typing was carried out on allele level (DRB1*01--DRB1*16) using SSP (sequence specific primers). HLA type was determined by agarose gel electrophoresis and results recorded. Phenotype frequency of various alleles among patient group and control group was calculated by direct counting and significance of their association was determined by Fisher's exact test/ Chi square test. A total of 12 male and 16 female patients, with age ranging from 21 to 34 (mean 23.4 years) were genotyped for HLA-DRB1 loci. A statistically significant association of the disease with HLA-DRB1*04 was observed (50% versus 20.7% in controls, p pemphigus vulgaris in Pakistani population.

  17. HLA- DR Alleles in Pakistani Patients of Pemphigus Vulgaris

    International Nuclear Information System (INIS)

    Khan, S. W.; Ahmad, T. A.; Bashir, M.; Iftikhar, N.

    2015-01-01

    Objective: To determine frequency of HLA-DR alleles in Pakistani patients of pemphigus vulgaris in comparison with local healthy controls. Study Design: Cross-sectional, comparative study. Place and Duration of Study: Department of Immunology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from January 2011 to January 2014. Methodology: Twenty eight patients with biopsy proven diagnosis of pemphigus vulgaris referred from Department of Dermatology, Military Hospital, Rawalpindi were included. Patients were compared with a group of 150 unrelated local healthy subjects. DNA was extracted from peripheral blood collected in Tri-potassium EDTA. HLA-DRB1 typing was carried out on allele level (DRB1*01 - DRB1*16) using SSP (sequence specific primers). HLA type was determined by agarose gel electrophoresis and results recorded. Phenotype frequency of various alleles among patient group and control group was calculated by direct counting and significance of their association was determined by Fisher's exact test/ Chi square test. Results: A total of 12 male and 16 female patients, with age ranging from 21 to 34 (mean 23.4 years) were genotype for HLA-DRB1 loci. A statistically significant association of the disease with HLA-DRB1*04 was observed (50% versus 20.7% in controls, p < 0.05). Conclusion: There is a strong association of HLA-DRB1*04 with pemphigus vulgaris in Pakistani population. (author)

  18. The protease inhibitor PI*S allele and COPD

    DEFF Research Database (Denmark)

    Hersh, C P; Ly, N P; Berkey, C S

    2005-01-01

    In many countries, the protease inhibitor (SERPINA1) PI*S allele is more common than PI*Z, the allele responsible for most cases of chronic obstructive pulmonary disease (COPD) due to severe alpha 1-antitrypsin deficiency. However, the risk of COPD due to the PI*S allele is not clear. The current...... authors located studies that addressed the risk of COPD or measured lung function in individuals with the PI SZ, PI MS and PI SS genotypes. A separate meta-analysis for each genotype was performed. Aggregating data from six studies, the odds ratio (OR) for COPD in PI SZ compound heterozygotes compared...... with PI MM (normal) individuals was significantly increased at 3.26 (95% confidence intervals (CI): 1.24-8.57). In 17 cross-sectional and case-control studies, the OR for COPD in PI MS heterozygotes was 1.19 (95%CI: 1.02-1.38). However, PI MS genotype was not associated with COPD risk after correcting...

  19. Polymorphic amino acids at codons 9 and 37 of HLA-DQB1 alleles may confer susceptibility to cervical cancer among Chinese women.

    Science.gov (United States)

    Wu, Yuping; Chen, Yulong; Li, Longyu; Cao, Yicheng; Liu, Zehuan; Liu, Benrong; Du, Zhengping; Zhang, Yanling; Chen, Shangwu; Lin, Zhongqiu; Xu, Anlong

    2006-06-15

    Cervical cancer is strongly associated with the infection by oncogenic forms of human papillomavirus (HPV). Although most women are able to clear HPV infection, some develop persistent infections that may lead to cancer, implying genetic susceptibility factors for malignant progression. To verify whether HLA class II DQB1 polymorphism is related to cervical cancer in Chinese population, HLA-DQB typing was carried out by PCR-SBT for 258 patients with cervical cancer and 284 healthy controls, and the allele frequencies were calculated. In this study, HLA-DQB1*060101 and DQB1*0602 alleles were significantly higher in the HPV16 infected patients with cervical cancer compared with healthy controls (chi(2) = 31.7452, p HLA-DQB1*060101 and DQB1*0602 may confer susceptibility to cervical cancer, and DQB1*050201 may contribute to the resistance to the development of cervical cancer among Chinese women. Sequence analysis reveals that DQB1*060101 allele encodes Leu at position 9 and Asp at position 37, unique to the susceptibility to cervical cancer, whereas the other DQB1 alleles encode Phe or Tyr and Ile or Tyr at the same two positions, respectively. This finding implies that polymorphic amino acids at the putative antigen binding residues 9 and 37 of HLA-DQB1 alleles may play an important role in the development of cervical cancer. Copyright 2006 Wiley-Liss, Inc.

  20. Pyrethroids and DDT tolerance of Anopheles gambiae s.l. from Sengerema District, an area of intensive pesticide usage in north-western Tanzania.

    Science.gov (United States)

    Philbert, Anitha; Lyantagaye, Sylvester Leonard; Pradel, Gabriele; Ngwa, Che Julius; Nkwengulila, Gamba

    2017-04-01

    To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro-chemical use in resistance selection among malaria vectors in Sengerema agro-ecosystem zone, Tanzania. Mosquito larvae were collected from farms and reared to obtain adults. The susceptibility status of An. gambiae s.l. was assessed using WHO bioassay tests to permethrin, deltamethrin, lambdacyhalothrin, etofenprox, cyfluthrin and DDT. Resistant specimens were screened for knock-down resistance gene (kdr), followed by sequencing both Western and Eastern African variants. A gas chromatography-mass spectrophotometer (GC-MS) was used to determine pesticide residues in soil and sediments from mosquitoes' breeding habitats. Anopheles gambiae s.l. was resistant to all the insecticides tested. The population of Anopheles gambiae s.l was composed of Anopheles arabiensis by 91%. The East African kdr (L1014S) allele was found in 13 of 305 specimens that survived insecticide exposure, with an allele frequency from 0.9% to 50%. DDTs residues were found in soils at a concentration up to 9.90 ng/g (dry weight). The observed high resistance levels of An. gambiae s.l., the detection of kdr mutations and pesticide residues in mosquito breeding habitats demonstrate vector resistance mediated by pesticide usage. An integrated intervention through collaboration of agricultural, livestock and vector control units is vital. © 2017 John Wiley & Sons Ltd.

  1. Detection of target site resistance to pyrethroids and organophosphates in the horn fly using multiplex polymerase chain reaction.

    Science.gov (United States)

    Foil, L D; Guerrero, F D; Bendele, K G

    2010-09-01

    The horn fly, Haematobia irritans L., is an obligate blood-feeding fly and the primary insect pest parasitizing cattle in the United States. Pesticide resistance has become a substantial problem for cattle producers, and although several mechanisms of resistance are possible, target site resistance is the most important mechanism preventing control of this fly in the United States and possibly other countries. We developed a multiplex polymerase chain reaction assay to detect the known target site, pyrethroid resistance-associated mutation in the horn fly and a recently reported G262A mutation in the horn fly acetylcholinesterase, the target site for organophosphates. As expected, the pyrethroid resistance target site mutation was found in fly populations from Texas, Louisiana, Washington, Georgia, Mexico, and Brazil. This mutation was found to have a gender bias as it was more prevalent in females than males. The G262A acetylcholinesterase mutation was found in Texas, Louisiana, Washington, Georgia, and Mexico, but not Brazil. There was no gender bias in the occurrence of this mutation, and there was no correlation between the occurrence of the kdr and the G262A mutations. Unlike the case with the pyrethroid target site mutation, the presence of G262A did not appear to exclusively provide the level of resistance required to account for bioassay results. It is likely an additional mutation(s) occurs in the target site and/or a metabolic resistance mechanism exists in organophosphate-resistant horn fly populations.

  2. Novel method for analysis of allele specific expression in triploid Oryzias latipes reveals consistent pattern of allele exclusion.

    Directory of Open Access Journals (Sweden)

    Tzintzuni I Garcia

    Full Text Available Assessing allele-specific gene expression (ASE on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types and diseased tissues (trisomies, non-disjunction events, cancerous tissues. In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82% shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18% displayed a wide range of ASE levels. Interestingly the majority of genes (78% displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.

  3. HLA Dr beta 1 alleles in Pakistani patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Naqi, N.; Ahmed, T.A.; Bashir, M.M.

    2011-01-01

    Objective: To determine frequencies of HLA DR beta 1 alleles in rheumatoid arthritis in Pakistani patients. Study Design: Cross sectional / analytical study. Place and Duration of Study: Department of Immunology, Armed Forces Institute of Pathology, Rawalpindi in collaboration with Rheumatology departments of Military Hospital, Rawalpindi and Fauji Foundation Hospital, Rawalpindi, from January 2009 to January 2010. Methodology: HLA DR beta 1 genotyping of one hundred Pakistani patients, diagnosed as having RA as per American College of Rheumatology revised criteria 1987, was done. HLA DR beta 1 genotyping was carried out at allele group level (DR beta 1*01-DR beta 1*16) by sequence specific primers in RA patients. Comparison of HLA DR beta 1 allele frequencies between patients and control groups was made using Pearson's chi-square test to find possible association of HLA DR?1 alleles with RA in Pakistani rheumatoid patients. Results: HLA DR beta 1*04 was expressed with significantly increased frequency in patients with rheumatoid arthritis (p <0.05). HLA DR?1*11 was expressed statistically significantly more in control group as compared to rheumatoid patients indicating a possible protective effect. There was no statistically significant difference observed in frequencies of HLA DR beta 1 allele *01, DR beta 1 allele *03, DR beta 1 allele *07, DR beta 1 allele *08, DR beta 1 allele *09, DR beta 1 allele *10, DR beta 1 allele *12, DR beta 1 allele *13, DR beta 1 allele *14, DR?1 allele *15 and DR beta 1 allele *16 between patients and control groups. Conclusion: The identification of susceptible HLA DR beta 1 alleles in Pakistani RA patients may help physicians to make early decisions regarding initiation of early intensive therapy with disease modifying anti rheumatic medicines and biological agents decreasing disability in RA patients. (author)

  4. Haplotypic Background of a Private Allele at High Frequency in the Americas

    OpenAIRE

    Schroeder, Kari B.; Jakobsson, Mattias; Crawford, Michael H.; Schurr, Theodore G.; Boca, Simina M.; Conrad, Donald F.; Tito, Raul Y.; Osipova, Ludmilla P.; Tarskaia, Larissa A.; Zhadanov, Sergey I.; Wall, Jeffrey D.; Pritchard, Jonathan K.; Malhi, Ripan S.; Smith, David G.; Rosenberg, Noah A.

    2009-01-01

    Recently, the observation of a high-frequency private allele, the 9-repeat allele at microsatellite D9S1120, in all sampled Native American and Western Beringian populations has been interpreted as evidence that all modern Native Americans descend primarily from a single founding population. However, this inference assumed that all copies of the 9-repeat allele were identical by descent and that the geographic distribution of this allele had not been influenced by natural selection. To invest...

  5. A high-throughput method for genotyping S-RNase alleles in apple

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Ørgaard, Marian; Toldam-Andersen, Torben Bo

    2016-01-01

    We present a new efficient screening tool for detection of S-alleles in apple. The protocol using general and multiplexed primers for PCR reaction and fragment detection on an automatized capillary DNA sequencer exposed a higher number of alleles than any previous studies. Analysis of alleles...

  6. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes

    Directory of Open Access Journals (Sweden)

    Stringer Saundra L

    2006-10-01

    Full Text Available Abstract Background Loss of heterozygosity (LOH contributes to many cancers, but the rate at which these events occur in normal cells of the body is not clear. LOH would be detectable in diverse cell types in the body if this event were to confer an obvious cellular phenotype. Mice that carry two different fluorescent protein genes as alleles of a locus would seem to be a useful tool for addressing this issue because LOH would change a cell's phenotype from dichromatic to monochromatic. In addition, LOH caused by mitotic crossing over might be discernable in tissues because this event produces a pair of neighboring monochromatic cells that are different colors. Results As a step in assessing the utility of this approach, we derived primary embryonic fibroblast populations and embryonic stem cell lines from mice that carried two different fluorescent protein genes as alleles at the chromosome 6 locus, ROSA26. Fluorescence activated cell sorting (FACS showed that the vast majority of cells in each line expressed the two marker proteins at similar levels, and that populations exhibited expression noise similar to that seen in bacteria and yeast. Cells with a monochromatic phenotype were present at frequencies on the order of 10-4 and appeared to be produced at a rate of approximately 10-5 variant cells per mitosis. 45 of 45 stably monochromatic ES cell clones exhibited loss of the expected allele at the ROSA26 locus. More than half of these clones retained heterozygosity at a locus between ROSA26 and the centromere. Other clones exhibited LOH near the centromere, but were disomic for chromosome 6. Conclusion Allelic fluorescent markers allowed LOH at the ROSA26 locus to be detected by FACS. LOH at this locus was usually not accompanied by LOH near the centromere, suggesting that mitotic recombination was the major cause of ROSA26 LOH. Dichromatic mouse embryonic cells provide a novel system for studying genetic/karyotypic stability and factors

  7. Validation of QTL for resistance to Aphanomyces euteiches in different pea genetic backgrounds using near-isogenic lines.

    Science.gov (United States)

    Lavaud, C; Lesné, A; Piriou, C; Le Roy, G; Boutet, G; Moussart, A; Poncet, C; Delourme, R; Baranger, A; Pilet-Nayel, M-L

    2015-11-01

    Marker-assisted backcrossing was used to generate pea NILs carrying individual or combined resistance alleles at main Aphanomyces resistance QTL. The effects of several QTL were successfully validated depending on genetic backgrounds. Quantitative trait loci (QTL) validation is an important and often overlooked step before subsequent research in QTL cloning or marker-assisted breeding for disease resistance in plants. Validation of QTL controlling partial resistance to Aphanomyces root rot, one of the most damaging diseases of pea worldwide, is of major interest for the future development of resistant varieties. The aim of this study was to validate, in different genetic backgrounds, the effects of various resistance alleles at seven main resistance QTL recently identified. Five backcross-assisted selection programs were developed. In each, resistance alleles at one to three of the seven main Aphanomyces resistance QTL were transferred into three genetic backgrounds, including two agronomically important spring (Eden) and winter (Isard) pea cultivars. The subsequent near-isogenic lines (NILs) were evaluated for resistance to two reference strains of the main A. euteiches pathotypes under controlled conditions. The NILs carrying resistance alleles at the major-effect QTL Ae-Ps4.5 and Ae-Ps7.6, either individually or in combination with resistance alleles at other QTL, showed significantly reduced disease severity compared to NILs without resistance alleles. Resistance alleles at some minor-effect QTL, especially Ae-Ps2.2 and Ae-Ps5.1, were also validated for their individual or combined effects on resistance. QTL × genetic background interactions were observed, mainly for QTL Ae-Ps7.6, the effect of which increased in the winter cultivar Isard. The pea NILs are a novel and valuable resource for further understanding the mechanisms underlying QTL and their integration in breeding programs.

  8. The Rh allele frequencies in Gaza city in Palestine

    Directory of Open Access Journals (Sweden)

    Skaik Younis

    2011-01-01

    Full Text Available Background: The Rh blood group system is the second most clinically significant blood group system. It includes 49 antigens, but only five (D, C, E, c and e are the most routinely identified due to their unique relation to hemolytic disease of the newborn (HDN and transfusion reactions. Frequency of the Rh alleles showed variation, with regard to race and ethnic. Objectives: The purpose of the study was to document the Rh alleles′ frequencies amongst males (M and females (F in Gaza city in Palestine. Materials and Methods: Two hundred and thirty-two blood samples (110 M and 122 F were tested against monoclonal IgM anti-C,anti-c, anti-E, anti-e and a blend of monoclonal/polyclonal IgM/IgG anti-D. The expected Rh phenotypes were calculated using gene counting method. Results: The most frequent Rh antigen in the total sample was e, while the least frequent was E.The order of the combined Rh allele frequencies in both M and F was CDe > cDe > cde > CdE > cDE > Cde > CDE. A significant difference was reported between M and F regarding the phenotypic frequencies (P < 0.05. However, no significance (P > 0.05 was reported with reference to the observed and expected Rh phenotypic frequencies in either M or F students. Conclusion: It was concluded that the Rh antigens, alleles and phenotypes in Gaza city have unique frequencies, which may be of importance to the Blood Transfusion Center in Gaza city and anthropology.

  9. Autoimmune disease classification by inverse association with SNP alleles.

    Directory of Open Access Journals (Sweden)

    Marina Sirota

    2009-12-01

    Full Text Available With multiple genome-wide association studies (GWAS performed across autoimmune diseases, there is a great opportunity to study the homogeneity of genetic architectures across autoimmune disease. Previous approaches have been limited in the scope of their analysis and have failed to properly incorporate the direction of allele-specific disease associations for SNPs. In this work, we refine the notion of a genetic variation profile for a given disease to capture strength of association with multiple SNPs in an allele-specific fashion. We apply this method to compare genetic variation profiles of six autoimmune diseases: multiple sclerosis (MS, ankylosing spondylitis (AS, autoimmune thyroid disease (ATD, rheumatoid arthritis (RA, Crohn's disease (CD, and type 1 diabetes (T1D, as well as five non-autoimmune diseases. We quantify pair-wise relationships between these diseases and find two broad clusters of autoimmune disease where SNPs that make an individual susceptible to one class of autoimmune disease also protect from diseases in the other autoimmune class. We find that RA and AS form one such class, and MS and ATD another. We identify specific SNPs and genes with opposite risk profiles for these two classes. We furthermore explore individual SNPs that play an important role in defining similarities and differences between disease pairs. We present a novel, systematic, cross-platform approach to identify allele-specific relationships between disease pairs based on genetic variation as well as the individual SNPs which drive the relationships. While recognizing similarities between diseases might lead to identifying novel treatment options, detecting differences between diseases previously thought to be similar may point to key novel disease-specific genes and pathways.

  10. Clinical manifestations of intermediate allele carriers in Huntington disease.

    Science.gov (United States)

    Cubo, Esther; Ramos-Arroyo, María A; Martinez-Horta, Saul; Martínez-Descalls, Asunción; Calvo, Sara; Gil-Polo, Cecilia

    2016-08-09

    There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. We assessed a cohort of participants at risk with Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. NCT01590589. © 2016 American Academy of Neurology.

  11. AB0 blood subgroup allele frequencies in the Turkish population.

    Science.gov (United States)

    Akbas, Fahri; Aydin, Müge; Cenani, Asim

    2003-09-01

    We determined the AB0 blood group system with a PCR based technique termed APLP (Amplified Product Length Polymorphism) in the Turkish population. The method includes ten different allele specific primers and permits identification of the major AB0 genotypes and its suballeles (A1-A2-B-0A-02-0G-AG). The suballeles were amplified in a single tube reaction. We have determined AB0 phenotypes in 129 Turkish individuals. No significant deviation from the Hardy-Weinberg equilibrium was observed.

  12. Identification and characterization of two CD4 alleles in Microminipigs

    OpenAIRE

    Matsubara, Tatsuya; Nishii, Naohito; Takashima, Satoshi; Takasu, Masaki; Imaeda, Noriaki; Aiki-Oshimo, Kayo; Yamazoe, Kazuaki; Kakisaka, Michinori; Takeshima, Shin-nosuke; Aida, Yoko; Kametani, Yoshie; Kulski, Jerzy K.; Ando, Asako; Kitagawa, Hitoshi

    2016-01-01

    Background We previously identified two phenotypes of CD4+ cells with and without reactions to anti-pig CD4 monoclonal antibodies by flow cytometry in a herd of Microminipigs. In this study, we analyzed the coding sequences of CD4 and certified the expression of CD4 molecules in order to identify the genetic sequence variants responsible for the positive and negative PBMCs reactivity to anti-pig CD4 monoclonal antibodies. Results We identified two CD4 alleles, CD4.A and CD4.B, corresponding t...

  13. An extensive polymerase chain reaction-allele-specific polymorphism strategy for clinical ABO blood group genotyping that avoids potential errors caused by null, subgroup, and hybrid alleles.

    Science.gov (United States)

    Hosseini-Maaf, Bahram; Hellberg, Asa; Chester, M Alan; Olsson, Martin L

    2007-11-01

    ABO genotyping is complicated by the remarkable diversity at the ABO locus. Recombination or gene conversion between common alleles may lead to hybrids resulting in unexpected ABO phenotypes. Furthermore, numerous mutations associated with weak subgroups and nondeletional null alleles should be considered. All known ABO genotyping methods, however, risk incorrect phenotype predictions if any such alleles are present. An extensive set of allele-specific primers was designed to accomplish hybrid-proof multiplex polymerase chain reaction (PCR) amplification of DNA fragments for detection of ABO alleles. Results were compared with serologic findings and ABO genotypes defined by previously published PCR-restriction fragment length polymorphism/PCR-allele-specific polymorphism (ASP) methods or DNA sequencing. Phenotypically well-characterized samples from blood donors with common blood groups and rare-subgroup families were analyzed. In addition to the commonly encountered alleles (A1, A1(467C>T), A2, B, O1, O1v, and O2), the new method can detect hybrid alleles thanks to long-range amplification across intron 6. Four of 12 PCR-ASP procedures are used to screen for multiple infrequent subgroup and null alleles. This concept allows for a low-resolution typing format in which the presence of, for example, a weak subgroup or cis-AB/B(A) is indicated but not further defined. In an optional high-resolution step, more detailed genotype information is obtained. A new genotyping approach has been developed and evaluated that can correctly identify ABO alleles including nondeletional null alleles, subgroups, and hybrids resulting from recombinational crossing-over events between exons 6 and 7. This approach is clinically applicable and decreases the risk for erroneous ABO phenotype prediction compared to previously published methods.

  14. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar.

    Science.gov (United States)

    Rakotoson, Jean-Desire; Fornadel, Christen M; Belemvire, Allison; Norris, Laura C; George, Kristen; Caranci, Angela; Lucas, Bradford; Dengela, Dereje

    2017-08-23

    Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF

  15. Origins and spread of pfdhfr mutant alleles in Plasmodium falciparum.

    Science.gov (United States)

    Mita, Toshihiro

    2010-06-01

    The emergence and spread of Plasmodium falciparum parasite resistant to sulfadoxine and pyrimethamine (SP) poses a serious public health problem. Resistance is caused by point mutations in dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps), the two key enzymes in the folate biosynthetic pathway. The use of microsatellite markers flanking pfdhfr has recently shown that the invasion of limited resistant lineages may explain the widespread SP resistance in many endemic regions. In Africa, however, multiple indigenous origins of pfdhfr triple mutants have been demonstrated. More new independent lineages and routes of geographical spread of resistance may be found by further molecular evolutionary analyses using samples from various endemic regions. Here, I review recent studies about the history of SP usage and the evolution and spread of resistant lineages while addressing the technical issue of microsatellite analysis. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1

    Science.gov (United States)

    Wu, Yuye; Li, Xianran; Xiang, Wenwen; Zhu, Chengsong; Lin, Zhongwei; Wu, Yun; Li, Jiarui; Pandravada, Satchidanand; Ridder, Dustan D.; Bai, Guihua; Wang, Ming L.; Trick, Harold N.; Bean, Scott R.; Tuinstra, Mitchell R.; Tesso, Tesfaye T.; Yu, Jianming

    2012-01-01

    Sorghum, an ancient old-world cereal grass, is the dietary staple of over 500 million people in more than 30 countries in the tropics and semitropics. Its C4 photosynthesis, drought resistance, wide adaptation, and high nutritional value hold the promise to alleviate hunger in Africa. Not present in other major cereals, such as rice, wheat, and maize, condensed tannins (proanthocyanidins) in the pigmented testa of some sorghum cultivars have been implicated in reducing protein digestibility but recently have been shown to promote human health because of their high antioxidant capacity and ability to fight obesity through reduced digestion. Combining quantitative trait locus mapping, meta-quantitative trait locus fine-mapping, and association mapping, we showed that the nucleotide polymorphisms in the Tan1 gene, coding a WD40 protein, control the tannin biosynthesis in sorghum. A 1-bp G deletion in the coding region, causing a frame shift and a premature stop codon, led to a nonfunctional allele, tan1-a. Likewise, a different 10-bp insertion resulted in a second nonfunctional allele, tan1-b. Transforming the sorghum Tan1 ORF into a nontannin Arabidopsis mutant restored the tannin phenotype. In addition, reduction in nucleotide diversity from wild sorghum accessions to landraces and cultivars was found at the region that codes the highly conserved WD40 repeat domains and the C-terminal region of the protein. Genetic research in crops, coupled with nutritional and medical research, could open the possibility of producing different levels and combinations of phenolic compounds to promote human health. PMID:22699509

  17. Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas.

    Science.gov (United States)

    Zhang, L; Wu, Q; Hu, Y; Wu, H; Wei, F

    2015-01-01

    Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.

  18. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles.

    Science.gov (United States)

    Retchless, Adam C; Kretz, Cécilia B; Chang, How-Yi; Bazan, Jose A; Abrams, A Jeanine; Norris Turner, Abigail; Jenkins, Laurel T; Trees, David L; Tzeng, Yih-Ling; Stephens, David S; MacNeil, Jessica R; Wang, Xin

    2018-03-02

    Increased reports of Neisseria meningitidis urethritis in multiple U.S. cities during 2015 have been attributed to the emergence of a novel clade of nongroupable N. meningitidis within the ST-11 clonal complex, the "U.S. NmNG urethritis clade". Genetic recombination with N. gonorrhoeae has been proposed to enable efficient sexual transmission by this clade. To understand the evolutionary origin and diversification of the U.S. NmNG urethritis clade, whole-genome phylogenetic analysis was performed to identify its members among the N. meningitidis strain collection from the Centers for Disease Control and Prevention, including 209 urogenital and rectal N. meningitidis isolates submitted by U.S. public health departments in eleven states starting in 2015. The earliest representatives of the U.S. NmNG urethritis clade were identified from cases of invasive disease that occurred in 2013. Among 209 urogenital and rectal isolates submitted from January 2015 to September 2016, the clade accounted for 189/198 male urogenital isolates, 3/4 female urogenital isolates, and 1/7 rectal isolates. In total, members of the clade were isolated in thirteen states between 2013 and 2016, which evolved from a common ancestor that likely existed during 2011. The ancestor contained N. gonorrhoeae-like alleles in three regions of its genome, two of which may facilitate nitrite-dependent anaerobic growth during colonization of urogenital sites. Additional gonococcal-like alleles were acquired as the clade diversified. Notably, one isolate contained a sequence associated with azithromycin resistance in N. gonorrhoeae, but no other gonococcal antimicrobial resistance determinants were detected. Interspecies genetic recombination contributed to the early evolution and subsequent diversification of the U.S. NmNG urethritis clade. Ongoing acquisition of N. gonorrhoeae alleles by the U.S. NmNG urethritis clade may facilitate the expansion of its ecological niche while also increasing the

  19. Allelic Diversity of Major Histocompatibility Complex Class II DRB Gene in Indian Cattle and Buffalo

    Directory of Open Access Journals (Sweden)

    Sachinandan De

    2011-01-01

    Full Text Available The present study was conducted to study the diversity of MHC-DRB3 alleles in Indian cattle and buffalo breeds. Previously reported BoLA-DRB exon 2 alleles of Indian Zebu cattle, Bos taurus cattle, buffalo, sheep, and goats were analyzed for the identities and divergence among various allele sequences. Comparison of predicted amino acid residues of DRB3 exon 2 alleles with similar alleles from other ruminants revealed considerable congruence in amino acid substitution pattern. These alleles showed a high degree of nucleotide and amino acid polymorphism at positions forming peptide-binding regions. A higher rate of nonsynonymous substitution was detected at the peptide-binding regions, indicating that BoLA-DRB3 allelic sequence evolution was driven by positive selection.

  20. Allelic variation at loci controlling stripe rust resistance in spring wheat

    Indian Academy of Sciences (India)

    2014-08-20

    Aug 20, 2014 ... 1Department of Plant Genomics & Biotechnology, PARC Institute of Advanced Studies in Agriculture, National Agricultural. Research Centre, Islamabad 45500, Pakistan. 2National Institute for Genomics & Advanced Biotechnology, National Agricultural Research Centre,. Park Road, Islamabad 45500, ...

  1. Allelic variation at loci controlling stripe rust resistance in spring wheat

    Indian Academy of Sciences (India)

    ... Studies in Agriculture, National Agricultural Research Centre, Islamabad 45500, Pakistan; National Institute for Genomics & Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, ...

  2. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    Science.gov (United States)

    2011-12-01

    Conceived and designed the experiments: JKT CKC SLW AJL RCD SML KAB. Performed the experiments: JKT BF CKC AJ JAB SLW RB CLH SML. Analyzed the data...JKT CKC SLW MM CP RCD SML KAB. Contributed reagents/materials/analysis tools: MM CP RCD AJL. Wrote the paper: JKT CKC SLW SML KAB. References 1. Brodsky

  3. Functional study of a genetic marker allele associated with resistance to Ascaris suum in pigs

    DEFF Research Database (Denmark)

    Skallerup, Per; Thamsborg, Stig M.; Jørgensen, Claus B.

    2014-01-01

    Two single nucleotide polymorphisms (SNP TXNIP and SNP ARNT), both on chromosome 4, have been reported to be associated with roundworm (Ascaris suum) burden in pigs. In the present study, we selected pigs with two SNP TXNIP genotypes (AA; n=24 and AB; n=24) which, from eight weeks of age were...

  4. Allelic variation at loci controlling stripe rust resistance in spring wheat

    Indian Academy of Sciences (India)

    ... National Agricultural Research Centre, Islamabad 45500, Pakistan; National Institute for Genomics & Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada ...

  5. Chemokine receptor allelic polymorphisms: relationships to HIV resistance and disease progression

    NARCIS (Netherlands)

    Paxton, W. A.; Kang, S.

    1998-01-01

    It is now well established that an array of CC and CXC chemokine receptors, in association with the CD4 molecule, can interact with the HIV-1 gp120 protein to facilitate viral fusion. A 32bp deletion in the CC chemokine receptor CCR5, the major M-tropic viral co-receptor, provides considerable

  6. Allelic variation at loci controlling stripe rust resistance in spring wheat

    Indian Academy of Sciences (India)

    2014-08-20

    Aug 20, 2014 ... (2012) for the detection of Yr9 and Sr31 in Pakistani wheat varieties. Similarly, Pretorius et al. (2012) also used iag95 to detect Sr31 in African wheat. These studies indicated the reliability of marker iag95. Although this marker has been proved diagnostic, it can- not be used to differentiate the heterozygotes ...

  7. Diversity of MHC class I alleles in Spheniscus humboldti.

    Science.gov (United States)

    Kikkawa, Eri; Tanaka, Masafumi; Naruse, Taeko K; Tsuda, Tomi T; Tsuda, Michio; Murata, Koichi; Kimura, Akinori

    2017-02-01

    The major histocompatibility complex locus (MHC) is a gene region related to immune response and exhibits a remarkably great diversity. We deduced that polymorphisms in MHC genes would help to solve several issues on penguins, including classification, phylogenetic relationship, and conservation. This study aimed to elucidate the structure and diversity of the so far unknown MHC class I gene in a penguin species. The structure of an MHC class I gene from the Humboldt penguin (Spheniscus humboldti) was determined by using an inverse PCR method. We designed PCR primers to directly determine nucleotide sequences of PCR products from the MHC class I gene and to obtain recombinant clones for investigating the diversity of the MHC class I gene in Humboldt penguins. A total of 24 MHC class I allele sequences were obtained from 40 individuals. Polymorphisms were mainly found in exons 2 and 3, as expected from the nature of MHC class I genes in vertebrate species including birds and mammals. Phylogenetic analyses of MHC class I alleles have revealed that the Humboldt penguin is closely related to the Red Knot (Calidris canutus) belonging to Charadriiformes.

  8. Inbreeding and PKU allele frequency: Estimating by microsatellite approaches.

    Science.gov (United States)

    Santos, Luciana L; da Fonseca, Cleusa G; Vaintraub, Marco T; Vaintraub, Patricia; Januário, José N; de Aguiar, Marcos J B; Raquel Santos Carvalho, Maria

    2010-01-01

    Estimates of allele frequencies for recessive diseases are generally based on the frequency of affected individuals (q(2)). However, these estimates can be strongly biased due to inbreeding in the population. The purpose of this study was to gain a better understanding of how inbreeding in the Minas Gerais State population affects phenylketonuria (PKU) incidence in the state and to determine the inbreeding coefficient based on microsatellites. Inbreeding coefficients of samples of 104 controls and 76 patients with PKU were estimated through a microsatellite approach. Besides, the amount and distribution of genetic variation within and among patients with PKU and control samples were characterized. No genetic differentiation was observed between the samples. However, the Fis value found for samples of patients with PKU (0.042) was almost 15 times higher than that found among controls (0.003). When corrected by the inbreeding coefficient found among the controls, the PKU allele frequency decreased to 0.0057. The results enables us to infer that at least 35% of the PKU recessive homozygotes from the Minas Gerais population could be due to consanguineous marriages and suggest that microsatellites can be an useful approach to estimate inbreeding coefficients. (c) 2010 Wiley-Liss, Inc.

  9. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  10. A genetic model of melanoma tumorigenesis based on allelic losses

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, N.K.; Palmer, J.M.; Walters, M.K. [Queensland Institute of Medical Research, Herston (Australia)] [and others

    1994-09-01

    Previous karyotypic studies have indicated a possible series of non-random chromosomal events involved in the progression of melanoma. We sought to define a model of melanocyte tumorigenesis by studying allelic deletions of polymorphic simple tandem repeat markers mapping to chromosome 1, 6q, 7, 9p, 10, 11, 17, and 21 in thirty matched pairs of melanoma and constitutional DNAs. The most frequent and earliest deletions were found on 9p (57%) and 10q (32%) and with the exception of one case, no sample has loss of markers on another chromosome without concomitant loss of markers on 9p and/or 10q. Losses on 6q were also a frequent (32%) event that sometimes occurred in primary melanomas, whereas losses of loci on distal 1p (26%) or 11q (26%) occurred only in metastic melanomas. A background rate (0-17%) of allele loss was seen on chromosomes 7, 17, and 21. Homozygous deletions in a panel of 31 melanoma cell lines were only detected for markers on 9p (4 cases). These data strongly support the previous model of melanoma tumorigenesis based primarily on karyotypic findings in melanocytic lesions. However, we have been able to further augment the model by delimiting the regions of loss on 10q to a region distal to D10S254, and on 1p, to between D1S243 and D1S160.

  11. Characterization of ROP18 alleles in human toxoplasmosis.

    Science.gov (United States)

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis. © 2013.

  12. Searching for alleles associated with complicated outcomes after burn injury.

    Science.gov (United States)

    Barber, Robert C; Diaz-Arrastia, Ramon; Purdue, Gary F

    2007-01-01

    Sepsis is a serious and growing health problem among patients admitted to intensive care units. When accompanied by organ failure, sepsis carries a 30-50% case-fatality rate. Although our understanding of burn pathophysiology has grown in recent years, we are still unable to identify accurately patients who are at increased risk for infectious complications and death. Genetic predisposition is likely to explain a portion of this variation. Understanding which genes and allelic variants contribute to disease risk would increase our ability to predict who is at increased risk and intervene accordingly, as well as identify molecular targets for novel and individualized therapies. Several obstacles exist to identification of which specific alleles and loci contribute to patient risk, including achievement of sufficient statistical power, population admixture and epistatic interaction among multiple genes and environmental factors. Although increasing sample size will resolve most, if not all, of these issues, slow patient accrual often makes this solution impractical for a single institution within a reasonable timeframe. This situation is complicated by the fact that traditional analysis methods perform poorly in the face of data sparseness. Identification of risk factors for severe sepsis and death after burn injury will likely require collaborative patient enrollment as well as development of advanced analytical methodologies. While overcoming these obstacles may prove difficult, the effort is warranted, as the ultimate benefit to patients is considerable.

  13. Frequency of a natural truncated allele ofMdMLO19in the germplasm ofMalus domestica.

    Science.gov (United States)

    Pessina, Stefano; Palmieri, Luisa; Bianco, Luca; Gassmann, Jennifer; van de Weg, Eric; Visser, Richard G F; Magnago, Pierluigi; Schouten, Henk J; Bai, Yuling; Riccardo Velasco, R; Malnoy, Mickael

    2017-01-01

    Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes ( MdMLO5, MdMLO7, MdMLO11, MdMLO18 , and MdMLO19 ), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.

  14. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    Directory of Open Access Journals (Sweden)

    Waikhom Bimolata

    Full Text Available Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS were present in Xa26 (π = 0.01958; SVS = 182 followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  15. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium.

    Science.gov (United States)

    Björkman, J; Samuelsson, P; Andersson, D I; Hughes, D

    1999-01-01

    Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE. Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium. To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium. We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL, being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL. This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity (ram) phenotype.

  16. Null allele, allelic dropouts or rare sex detection in clonal organisms: simulations and application to real data sets of pathogenic microbes.

    Science.gov (United States)

    Séré, Modou; Kaboré, Jacques; Jamonneau, Vincent; Belem, Adrien Marie Gaston; Ayala, Francisco J; De Meeûs, Thierry

    2014-07-15

    Pathogens and their vectors are organisms whose ecology is often only accessible through population genetics tools based on spatio-temporal variability of molecular markers. However, molecular tools may present technical difficulties due to the masking of some alleles (allelic dropouts and/or null alleles), which tends to bias the estimation of heterozygosity and thus the inferences concerning the breeding system of the organism under study. This is especially critical in clonal organisms in which deviation from panmixia, as measured by Wright's FIS, can, in principle, be used to infer both the extent of clonality and structure in a given population. In particular, null alleles and allelic dropouts are locus specific and likely produce high variance of Wright's FIS across loci, as rare sex is expected to do. In this paper we propose a tool enabling to discriminate between consequences of these technical problems and those of rare sex. We have performed various simulations of clonal and partially clonal populations. We introduce allelic dropouts and null alleles in clonal data sets and compare the results with those that exhibit increasing rates of sexual recombination. We use the narrow relationship that links Wright's FIS to genetic diversity in purely clonal populations as assessment criterion, since this relationship disappears faster with sexual recombination than with amplification problems of certain alleles. We show that the relevance of our criterion for detecting poorly amplified alleles depends partly on the population structure, the level of homoplasy and/or mutation rate. However, the interpretation of data becomes difficult when the number of poorly amplified alleles is above 50%. The application of this method to reinterpret published data sets of pathogenic clonal microbes (yeast and trypanosomes) confirms its usefulness and allows refining previous estimates concerning important pathogenic agents. Our criterion of superimposing between the FIS

  17. BREEDING OF TOMATO (LYCOPERSICON ESCULENTUM RESISTANT TO TOMATO SPOTTED WILT VIRUS

    Directory of Open Access Journals (Sweden)

    G. F. Monakhos

    2014-01-01

    Full Text Available The results of tomato lines resistance test to tomato spotted wilt virus and its comparison to molecular marker SCAR Sw421 genotyping data is shown. A molecular marker SCAR Sw421 analysis allowed identifying homozygous and heterozygous tomato genotypes possessing Sw5 alleles in segregating populations. Selected tomato lines possessing dominant homozygous alleles of Sw5 gene represent a tomato germplasm resistant to tomato spotted wilt virus and would be useful for following crop improvement.

  18. Infestation by pyrethroids resistant bed bugs in the suburb of Paris, France

    Directory of Open Access Journals (Sweden)

    Durand R.

    2012-11-01

    Full Text Available Bed bugs are hematophagous insects responsible for a re-emerging and challenging indoor pest in many countries. Bed bugs infestations may have health consequences including nuisance biting, cutaneous and systemic reactions. This resurgence can probably be attributed to factors such as increased international travel and development of resistance against insecticides. Resistance against pyrethroids has been reported several times from the USA and rarely in Europe. In France, very few data on bed bugs are available. The present study aimed to assess the infestation by bed bugs of a complex of two high-rise apartment buildings in the suburb of Paris and to evaluate their susceptibility to pyrethroid insecticides. We inspected for bed bugs 192 out of 198 apartments units (97% and interviewed their residents. 76 (39.6% apartments were infested. Among the 97 residents living in infested apartments, 53 (54.6% reported bed bug bites. A total of 564 bed bugs were collected in the infested units. Bioassays showed that 54 out of 143 bed bugs were resistant to pyrethroids (37.8%; 95% confidence interval: 29.9-45.7%. DNA sequencing showed that all bed bugs tested (n = 124 had homozygous L925I kdr-like gene mutation. The level of pyrethroid resistance found indicates that this phenomenon was already established in the site and prompts the need to reevaluate the wide use of pyrethroids to control bed bugs.

  19. Albinism and disease causing pathogens in Tanzania: are alleles that are associated with OCA2 being maintained by balancing selection?

    Science.gov (United States)

    Tuli, Abbas M; Valenzuela, Robert K; Kamugisha, Erasmus; Brilliant, Murray H

    2012-12-01

    Oculocutaneous albinism type 2 (OCA2) is present at significantly higher frequencies in sub-Saharan African populations compared to populations in other regions of the world. In Tanzania and other sub-Saharan countries, most OCA2 is associated with a common 2.7kb deletion allele. Leprosy is also in high prevalence in sub-Saharan African populations. The infectious agent of leprosy, Mycobacterium leprae, contains a gene, 38L, that is similar to OCA2. Hypopigmented patches of skin are early symptoms that present with infection of leprosy. In consideration of both the genetic similarity of OCA2 and the 38L gene of M. leprae and the involvement of pigmentation in both disorders, we hypothesized that the high rates of OCA2 may be due to heterozygote advantage. Hence, we hypothesized that carriers of the 2.7kb deletion allele of OCA2 may provide a protective advantage from infection with leprosy. We tested this hypothesis by determining the carrier frequency of the 2.7kb deletion allele from a sample of 240 individuals with leprosy from Tanzania. The results were inconclusive due to the small sample size; however, they enabled us to rule out a large protective effect, but perhaps not a small advantage. Mycobacterium tuberculosis is another infectious organism prevalent in sub-Saharan Africa that contains a gene, arsenic-transport integral membrane protein that is also similar to OCA2. Interestingly, chromosomal region 15q11-13, which also contains OCA2, was reported to be linked to tuberculosis susceptibility. Although variants within OCA2 were tested for association, the 2.7kb deletion allele of OCA2 was not tested. This led us to hypothesize that the deletion allele may confer resistance to susceptibility. Confirmation of our hypothesis would enable development of novel pharmocogenetic therapies for the treatment of tuberculosis, which in turn, may enable development of drugs that target other pathogens that utilize a similar infection mechanism as M. tuberculosis

  20. A new analysis tool for individual-level allele frequency for genomic studies.

    Science.gov (United States)

    Yang, Hsin-Chou; Lin, Hsin-Chi; Huang, Mei-Chu; Li, Ling-Hui; Pan, Wen-Harn; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2010-07-05

    Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors. This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by coefficients of preferential amplification/hybridization (CPA), and large ethnicity-specific and cross-ethnicity databases of CPA and allele frequency are established. The results show that using the CPA significantly improves the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool, ALOHA (Allele-frequency/Loss-of-heterozygosity/Allele-imbalance). This is the first time that these important genetic/genomic applications have been simultaneously conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring approach. We expect that additional practical applications for allele frequency analysis will be found. The developed databases and tools provide useful resources for human genome analysis via high-throughput single-nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and can be downloaded at http://www.stat.sinica.edu.tw/hsinchou/genetics/aloha/ALOHA.htm.

  1. A new analysis tool for individual-level allele frequency for genomic studies

    Directory of Open Access Journals (Sweden)

    Pan Wen-Harn

    2010-07-01

    Full Text Available Abstract Background Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors. Results This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by coefficients of preferential amplification/hybridization (CPA, and large ethnicity-specific and cross-ethnicity databases of CPA and allele frequency are established. The results show that using the CPA significantly improves the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool, ALOHA (Allele-frequency/Loss-of-heterozygosity/Allele-imbalance. Conclusions This is the first time that these important genetic/genomic applications have been simultaneously conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring approach. We expect that additional practical applications for allele frequency analysis will be found. The developed databases and tools provide useful resources for human genome analysis via high-throughput single-nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and

  2. Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles.

    Science.gov (United States)

    Roer, Louise; Tchesnokova, Veronika; Allesøe, Rosa; Muradova, Mariya; Chattopadhyay, Sujay; Ahrenfeldt, Johanne; Thomsen, Martin C F; Lund, Ole; Hansen, Frank; Hammerum, Anette M; Sokurenko, Evgeni; Hasman, Henrik

    2017-08-01

    The aim of this study was to construct a valid publicly available method for in silico fimH subtyping of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multilocus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available at https://bitbucket.org/genomicepidemiology/fimtyper, the database is freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software is available at https://cge.cbs.dtu.dk/services/FimTyper FimTyper was validated on three data sets: one containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study (data set 1), one containing whole-genome sequence (WGS) data of 243 third-generation-cephalosporin-resistant E. coli isolates (data set 2), and one containing a randomly chosen subset of 40 E. coli isolates from data set 2 that were subjected to conventional fimH subtyping (data set 3). The combination of the three data sets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 42 fimH subtypes from the Sanger sequences from data set 1 and successfully analyzed all 243 draft genomes from data set 2. FimTyper subtyping of the Sanger sequences and WGS data from data set 3 were in complete agreement. Additionally, fimH subtyping was evaluated on a phylogenetic network of 122 sequence type 131 (ST131) E. coli isolates. There was perfect concordance between the typology and fimH -based subclones within ST131, with accurate identification of the pandemic multidrug-resistant clonal subgroup ST131- H 30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH subtyping, highly suitable for surveillance and outbreak detection. Copyright © 2017 American Society for Microbiology.

  3. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2008-11-01

    Full Text Available Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron and an urban area (Gbedjromede, low levels of resistance in mosquito samples from an oil contaminated site (Ojoo and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84 but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold and Ojoo (7.4-fold populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential

  4. Mutants of Aspergillus nidulans with increased resistance to the alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine.

    Science.gov (United States)

    Hooley, P; Shawcross, S G; Strike, P

    1988-05-01

    The isolation and characterisation of mutants of Aspergillus nidulans showing resistance to MNNG is described. Such isolates were stable through prolonged subculture in the absence of the selective agent, and resistance segregated as an allele of a single gene in meiotic and mitotic analysis. MNNG-resistant strains showed an increase in resistance to EMS and UV irradiation but no cross-resistance to MMS was detected. Possible mechanisms of resistance to alkylating agents are discussed.

  5. Pyrethroid resistance in an Anopheles funestus population from Uganda.

    Directory of Open Access Journals (Sweden)

    John C Morgan

    2010-07-01

    Full Text Available The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved.A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin. Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate, malathion (organophosphate and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken

  6. Prevalence of bovine dermatophilosis and disease-associated alleles in zebu Goudali cattle and their Italian Simmental crosses ranching in the western highland plateau savannah of Cameroon.

    Science.gov (United States)

    Ojong, Bessong Willington; Saccà, Elena; Bessong, Pascal; Piasentier, Edi

    2016-10-01

    Abundance of native pastures makes Cameroon's western highland savannah (WHS) a hotspot for low-input beef-type cattle. Dumbo Ranch is central to cattle seed stock multiplication in WHS and holds that Dermatophilus congolensis infection undermines production. The bovine BoLA-DRB3 has been variously demonstrated as the principal gene of the major histocompatibility locus associated with immunity and resistance to dermatophilosis in cattle. We studied the profile of dermatophilosis prevalence in zebu Goudali (G) and its Simmental composite, SimGoud (SG), at Dumbo Ranch and determined the distribution of a dermatophilosis-associated susceptibility allele of the BoLA-DRB3 gene by allele-specific polymerase chain reaction (PCR). We recorded a 42 % prevalence of dermatophilosis in the studied cohort (337 animals). Dermatophilosis was more common in older cattle than in cattle ≤36 months (p ≤ 0.05). G was more affected compared to SG, because of the prevalence of the disease in the oldest animals and the age distribution of the experimental subjects. No susceptible homozygote was observed. About 85 and 15 % of the cohort carried the homozygous resistant and heterozygous condition, respectively. This genotype distribution was not affected by cattle type. The study confirms the presence of dermatophilosis among G and SG cattle in WHS. However, there was no correlation between the presence of the disease-associated susceptible allele considered and clinical manifestation. Screening for this dermatophilosis resistance-associated allele of BoLA-DRB3 gene appeared not useful for selection of G and SG in WHS.

  7. Increased risk of venous thrombosis by AB alleles of the ABO blood group and Factor V Leiden in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Magaly B.P.L.V. Lima

    2009-01-01

    Full Text Available Most cases of a predisposition to venous thrombosis are caused by resistance to activated protein C, associated in 95% of cases with the Factor V Leiden allele (FVL or R506Q. Several recent studies report a further increased risk of thrombosis by an association between the AB alleles of the ABO blood group and Factor V Leiden. The present study investigated this association with deep vein thrombosis (DVT in individuals treated at the Hemocentro de Pernambuco in northeastern Brazil. A case-control comparison showed a significant risk of thrombosis in the presence of Factor V Leiden (OR = 10.1, which was approximately doubled when the AB alleles of the ABO blood group were present as well (OR = 22.3. These results confirm that the increased risk of deep vein thrombosis in the combined presence of AB alleles and Factor V Leiden is also applicable to the Brazilian population suggesting that ABO blood group typing should be routinely added to FVL in studies involving thrombosis.

  8. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis.

    Science.gov (United States)

    Lucotte, Gérard

    2002-05-01

    The CCR5 gene encodes for the co-receptor for the major macrophage-tropics strains of human immunodeficiency virus (HIV-1), and a mutant allele of this gene (Delta 32) provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta 32 allele was investigated in 40 populations of 8842 non-infected subjects coming from Europe, the Middle-East and North Africa. A clear north-south decreasing gradient was evident for Delta 32 frequencies, with a significant correlation coefficient (r=0.83). The main frequency value of Delta 32 for Sweden, Norway, Denmark, Finland and Iceland (0.134) is significantly (chi(2)=63.818, PVikings might have been instrumental in disseminating the Delta 32 allele during the eighth to the tenth centuries during historical times. Possibly variola virus has discriminated the Delta 32 carriers in Europe since the eighth century AD, explaining the high frequency of the Delta 32 allele in Europe today.

  9. Insecticide resistance to organophosphates in Culex pipiens complex from Lebanon

    Directory of Open Access Journals (Sweden)

    Osta Mike A

    2012-07-01

    Full Text Available Abstract Background Analysis of Culex pipiens mosquitoes collected from a single site in Lebanon in 2005, revealed an alarming frequency of ace-1 alleles conferring resistance to organophosphate insecticides. Following this, in 2006 the majority of municipalities switched to pyrethroids after a long history of organophosphate usage in the country; however, since then no studies have assessed the impact of changing insecticide class on the frequency of resistant ace-1 alleles in C. pipiens. Methods C. pipiens mosquitoes were captured indoors from 25 villages across the country and subjected to established methods for the analysis of gene amplification at the Ester locus and target site mutations in ace-1 gene that confer resistance to organophosphates. Results We conducted the first large-scale screen for resistance to organosphosphates in C. pipiens mosquitoes collected from Lebanon. The frequency of carboxylesterase (Ester and ace-1 alleles conferring resistance to organophosphates were assessed among C. pipiens mosquitoes collected from 25 different villages across the country between December 2008 and December 2009. Established enzymatic assay and PCR-based molecular tests, both diagnostic of the major target site mutations in ace-1 revealed the absence of the F290V mutation among sampled mosquitoes and significant reduction in the frequency of G119S mutation compared to that previously reported for mosquitoes collected from Beirut in 2005. We also identified a new duplicated ace-1 allele, named ace-1D13, exhibiting a resistant phenotype by associating a susceptible and a resistant copy of ace-1 in a mosquito line sampled from Beirut in 2005. Fisher’s exact test on ace-1 frequencies in the new sample sites, showed that some populations exhibited a significant excess of heterozygotes, suggesting that the duplicated allele is still present. Starch gel electrophoresis indicated that resistance at the Ester locus was mainly attributed to the

  10. ALADYN - a spatially explicit, allelic model for simulating adaptive dynamics.

    Science.gov (United States)

    Schiffers, Katja H; Travis, Justin Mj

    2014-12-01

    ALADYN is a freely available cross-platform C++ modeling framework for stochastic simulation of joint allelic and demographic dynamics of spatially-structured populations. Juvenile survival is linked to the degree of match between an individual's phenotype and the local phenotypic optimum. There is considerable flexibility provided for the demography of the considered species and the genetic architecture of the traits under selection. ALADYN facilitates the investigation of adaptive processes to spatially and/or temporally changing conditions and the resulting niche and range dynamics. To our knowledge ALADYN is so far the only model that allows a continuous resolution of individuals' locations in a spatially explicit landscape together with the associated patterns of selection.

  11. Clinical manifestations of intermediate allele carriers in Huntington disease

    DEFF Research Database (Denmark)

    Cubo, Esther; Ramos-Arroyo, María A; Martinez-Horta, Saul

    2016-01-01

    into IA carriers (27-35 CAG) and controls (IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. RESULTS: Of 12......OBJECTIVE: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. METHODS: We assessed......,190 participants, 657 (5.38%) with IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores...

  12. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide.

    Directory of Open Access Journals (Sweden)

    Isabelle Dusfour

    2015-11-01

    Full Text Available Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America, Guadeloupe islands (Lesser Antilles as well as New Caledonia (Pacific Ocean, have encountered such resistance.We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534.This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence.

  13. Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide.

    Science.gov (United States)

    Dusfour, Isabelle; Zorrilla, Pilar; Guidez, Amandine; Issaly, Jean; Girod, Romain; Guillaumot, Laurent; Robello, Carlos; Strode, Clare

    2015-11-01

    Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence.

  14. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  15. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  16. Shatter resistance in sesame

    International Nuclear Information System (INIS)

    Langham, D.R.

    2001-01-01

    The majority of the world's sesame (probably over 99%) is shattering, and most of the harvest is manual. In a non-mechanized environment the last thing that farmers want is seed retention (''hold''). They want the seed to fall out as easily as possible. The amount of shattering desired is dependent on the method of harvest. By 1944 the first stage of mechanization was initiated. The indehiscent mutant found in 1943 showed in succeeding generations that it was controlled monogenically, and the homozygous recessive (id/id) gave indehiscence. Unfortunately, the id allele had pleiotropic effects including cupped leaves, twisted stems, short seed pods, semi-sterility, and low yield. Improvements in shatter resistance are relative within a specific program. For example, Sesaco has improved its shatter resistance each year, and still for the USA methods of harvest, further improvements are necessary to allow for better retention in adverse weather. This paper presents a methodology for quantifying shatter resistance so researchers can compare levels of shatter resistance between programs. (author)

  17. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  18. Resistance-resistant antibiotics.

    Science.gov (United States)

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. An Allele Real-Coded Quantum Evolutionary Algorithm Based on Hybrid Updating Strategy

    Directory of Open Access Journals (Sweden)

    Yu-Xian Zhang

    2016-01-01

    Full Text Available For improving convergence rate and preventing prematurity in quantum evolutionary algorithm, an allele real-coded quantum evolutionary algorithm based on hybrid updating strategy is presented. The real variables are coded with probability superposition of allele. A hybrid updating strategy balancing the global search and local search is presented in which the superior allele is defined. On the basis of superior allele and inferior allele, a guided evolutionary process as well as updating allele with variable scale contraction is adopted. And Hε gate is introduced to prevent prematurity. Furthermore, the global convergence of proposed algorithm is proved by Markov chain. Finally, the proposed algorithm is compared with genetic algorithm, quantum evolutionary algorithm, and double chains quantum genetic algorithm in solving continuous optimization problem, and the experimental results verify the advantages on convergence rate and search accuracy.

  20. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  1. A new analysis tool for individual-level allele frequency for genomic studies

    OpenAIRE

    Pan Wen-Harn; Li Ling-Hui; Huang Mei-Chu; Lin Hsin-Chi; Yang Hsin-Chou; Wu Jer-Yuarn; Chen Yuan-Tsong

    2010-01-01

    Abstract Background Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors. Results This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human...

  2. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, G.; David, F.; Berriche, S. [Regional Center of Neurogenetics, Reims (France)] [and others

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  3. AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission

    OpenAIRE

    Yrigollen, Carolyn M; Martorell, Loreto; Durbin-Johnson, Blythe; Naudo, Montserrat; Genoves, Jordi; Murgia, Alessandra; Polli, Roberta; Zhou, Lili; Barbouth, Deborah; Rupchock, Abigail; Finucane, Brenda; Latham, Gary J; Hadd, Andrew; Berry-Kravis, Elizabeth; Tassone, Flora

    2014-01-01

    Background The presence of AGG interruptions in the CGG repeat locus of the fragile X mental retardation 1 (FMR1) gene decreases the instability of the allele during transmission from parent to child, and decreases the risk of expansion of a premutation allele to a full mutation allele (the predominant cause of fragile X syndrome) during maternal transmission. Methods To strengthen recent findings on the utility of AGG interruptions in predicting instability or expansion to a full mutation of...

  4. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    Full Text Available Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA while jasmonic acid (JA regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.

  5. Association between the CCR5 32-bp deletion allele and late onset of schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Timm, Sally; Wang, August G

    2006-01-01

    OBJECTIVE: The 32-bp deletion allele in chemokine receptor CCR5 has been associated with several immune-mediated diseases and might be implicated in schizophrenia as well. METHOD: The authors genotyped DNA samples from 268 schizophrenia patients and 323 healthy subjects. Age at first admission...... of the deletion allele in the latter subgroup of patients. CONCLUSIONS: These findings suggest that the CCR5 32-bp deletion allele is a susceptibility factor for schizophrenia with late onset. Alternatively, the CCR5 32-bp deletion allele may act as a modifier by delaying the onset of schizophrenia without...

  6. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. (Beckman Research Institute of the City of Hope, Duarte, CA (USA))

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  7. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Harindra E. Amarasinghe

    2015-07-01

    Full Text Available Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  8. Physical properties of VNTR data, and their impact on a test of allelic independence

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, B.; Risch, N. (Yale Univ., New Haven, CT (United States))

    1993-08-01

    In this article the authors describe the physical properties of VNTR data, as well as their effects on the two-dimensional distribution of fragment pairs. Tests of independence of alleles at a locus may confound those physical properties with allele independence. A recently proposed test by Geisser and Johnson is an example. The authors show that alleles can be strictly independent, yet the proposed test suggests large violations of allele independence because it is sensitive to well-known electrophoretic phenomena. 7 refs., 4 tabs.

  9. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells.

    Science.gov (United States)

    Kanata, Eirini; Arsenakis, Minas; Sklaviadis, Theodoros

    2016-09-02

    Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrP SC ), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.

  10. The attack of the clones: tracking the movement of insecticide-resistant peach-potato aphids Myzus persicae (Hemiptera: Aphididae).

    Science.gov (United States)

    Fenton, B; Malloch, G; Woodford, J A T; Foster, S P; Anstead, J; Denholm, I; King, L; Pickup, J

    2005-10-01

    Myzus persicae (Sulzer) collected in Scotland were characterized for four microsatellite loci, intergenic spacer fingerprints and the resistance mechanisms modified acetylcholinesterase (MACE), overproduced carboxylesterase and knockdown resistance (kdr). Microsatellite polymorphisms were used to define a limited number of clones that were either fully susceptible to insecticides or possessed characteristic combinations of resistance mechanisms. Within these clones, intergenic spacer fingerprints could either be very consistent or variable, with the latter indicating ongoing evolution within lineages, most likely derived from the same zygote. Two clones (termed A and B) possessed all three resistance mechanisms and predominated at sites treated with insecticides. Their appearance on seed potatoes and oilseed rape in Scotland in 2001 coincided with extensive insecticide use and severe control failures. Clones C, I and J, with no or fewer resistance mechanisms, were found in samples from 1995 and were dominant at untreated sites in 2001. A comparison of Scottish collections with those from other UK and non-UK sites provides insight into the likely origins, distribution and dynamics of M. persicae clones in a region where asexual (anholocyclic) reproduction predominates, but is vulnerable to migration by novel genotypes from areas of Europe where sexual (holocyclic) reproduction occurs.

  11. Clinical characteristics and HLA alleles of a family with simultaneously occurring alopecia areata.

    Science.gov (United States)

    Emre, Selma; Metin, Ahmet; Caykoylu, Ali; Akoglu, Gulsen; Ceylan, Gülay G; Oztekin, Aynure; Col, Esra S

    2016-06-01

    Alopecia areata (AA) is a T-cell-mediated autoimmune disease resulting in partial or total noncicatricial hair loss. HLA class II antigens are the most important markers that constitute genetic predisposition to AA. Various life events and intense psychological stress may play an important role in triggering AA attacks. We report an unusual case series of 4 family members who had simultaneously occurring active AA lesions. Our aim was to evaluate the clinical and psychiatric features of 4 cases of active AA lesions occurring simultaneously in a family and determine HLA alleles. The clinical and psychological features of all patients were examined. HLA antigen DNA typing was performed by polymerase chain reaction with sequence-specific primers. All patients had typical AA lesions over the scalp and/or beard area. Psychological examinations revealed obsessive-compulsive personality disorder in the proband's parents as well as anxiety and lack of self-confidence in both the proband and his sister. HLA antigen types were not commonly shared with family members. These findings suggest that AA presenting concurrently in members of the same family was not associated with genetic predisposition. Shared psychological disorders and stressful life events might be the major key points in the concurrent presentation of these familial AA cases and development of resistance against treatments.

  12. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.

    Science.gov (United States)

    McGranahan, Nicholas; Rosenthal, Rachel; Hiley, Crispin T; Rowan, Andrew J; Watkins, Thomas B K; Wilson, Gareth A; Birkbak, Nicolai J; Veeriah, Selvaraju; Van Loo, Peter; Herrero, Javier; Swanton, Charles

    2017-11-30

    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT. Copyright © 2017 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  13. Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers.

    Science.gov (United States)

    Hippolyte, I; Jenny, C; Gardes, L; Bakry, F; Rivallan, R; Pomies, V; Cubry, P; Tomekpe, K; Risterucci, A M; Roux, N; Rouard, M; Arnaud, E; Kolesnikova-Allen, M; Perrier, X

    2012-04-01

    The production of triploid banana and plantain (Musa spp.) cultivars with improved characteristics (e.g. greater disease resistance or higher yield), while still preserving the main features of current popular cultivars (e.g. taste and cooking quality), remains a major challenge for Musa breeders. In this regard, breeders require a sound knowledge of the lineage of the current sterile triploid cultivars, to select diploid parents that are able to transmit desirable traits, together with a breeding strategy ensuring final triploidization and sterility. Highly polymorphic single sequence repeats (SSRs) are valuable markers for investigating phylogenetic relationships. Here, the allelic distribution of each of 22 SSR loci across 561 Musa accessions is analysed. We determine the closest diploid progenitors of the triploid 'Cavendish' and 'Gros Michel' subgroups, valuable information for breeding programmes. Nevertheless, in establishing the likely monoclonal origin of the main edible triploid banana subgroups (i.e. 'Cavendish', 'Plantain' and 'Mutika-Lujugira'), we postulated that the huge phenotypic diversity observed within these subgroups did not result from gamete recombination, but rather from epigenetic regulations. This emphasizes the need to investigate the regulatory mechanisms of genome expression on a unique model in the plant kingdom. We also propose experimental standards to compare additional and independent genotyping data for reference.

  14. SSR allelic variation of rice variety Hangxiangnuo bred by space mutation

    International Nuclear Information System (INIS)

    Yang Tifeng; Liu Chuanguang; Pan Dajian; Fan Zhilan; Li Chen; Chen Jianyou; Liu Bin; Jiang Yijun; Gao Yun; Zhou Hanqin

    2011-01-01

    Hangxiangnuo, an indica fragrant glutinous rice mutant, was induced by space environment. Comparing with its wild type Nanfengnuo, the yield and blast resistance of Hangxiangnuo are improved significantly and the grain shape became slender and with fragrance. To understand the mechanisms of space mutation and identify the changes at molecular level associated with phenotypic variations, SSR allelic variation analysis were performed on Hangxiangnuo and Nanfengnuo in this study. The results showed that 45 loci were polymorphic among the 156 SSR loci tested throughout the genome, the frequency of variation was 28.85%. Among the polymorphic loci, 42 loci only showed variations in the molecular weight of the amplified bands, only on locus increased the number of amplification bands in Hangxiangnuo and two loci were differed by heterozygous loci (with two amplification bands at one locus) detected in Nanfengnuo and homozygous loci in Hangxiangnuo. It suggests that the change of some loci in mutants was due to the normal segregation and recombination of heterozygous loci of the wild type. The variation frequencies among different chromosomes were quite different, with the highest one at 50.00% detected on chromosomes 7, 8 and 12, and the lowest at 6.25% on chromosome 6. The polymorphic loci were clustered on chromosomes throughout the genome indicating that large DNA segments mutation is one of the major variation patterns induced by space environment. Some of reported QTLs involved in grain shape, yield, fragrance and blast resistance were found to be located exactly in the mutated regions. Therefore, further study is needed to confirm that these QTLs are responsible for the trait variations. (authors)

  15. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    Directory of Open Access Journals (Sweden)

    Stephanie M Craig

    Full Text Available The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL, have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  16. Overcoming evolved resistance to population-suppressing homing-based gene drives.

    Science.gov (United States)

    Marshall, John M; Buchman, Anna; Sánchez C, Héctor M; Akbari, Omar S

    2017-06-19

    The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size. Our results suggest that, to achieve meaningful population suppression, tolerable rates of resistance allele generation are orders of magnitude smaller than those observed for current designs for CRISPR-Cas9-based homing systems. To remedy this, we theoretically explore a homing system architecture in which guide RNAs (gRNAs) are multiplexed, increasing the effective homing rate and decreasing the effective resistant allele generation rate. Modeling results suggest that the size of the population that can be suppressed increases exponentially with the number of multiplexed gRNAs and that, with four multiplexed gRNAs, a mosquito species could potentially be suppressed on a continental scale. We also demonstrate successful proof-of-principle use of multiplexed ribozyme flanked gRNAs to induce mutations in vivo in Drosophila melanogaster - a strategy that could readily be adapted to engineer stable, homing-based drives in relevant organisms.

  17. Clip binds to HLA class II using methionine-based, allele-dependent motifs as well as allele-independent supermotifs.

    Science.gov (United States)

    Geluk, A; Van Meijgaarden, K E; Drijfhout, J W; Ottenhoff, T H

    1995-09-01

    The invariant chain (Ii) region that interacts with class II and inhibits premature peptide binding has been mapped to amino acids 82-107, known as CLIP. It is unclear whether CLIP binds directly to the class II peptide binding groove and thus competitively blocks binding of other peptides, or whether it binds to conserved class II sites and indirectly inhibits peptide binding by inducing conformational changes in class II. Here we show evidence that strongly suggests that CLIP binds within the peptide binding groove, as CLIP binds to various HLA-DR alleles using allele-dependent as well as allele-independent, methionine-based binding motifs. First, a core sequence of 12 amino acids was identified within CLIP which is required for optimal binding to DR1, DR2, DR3(17) and DR7. This sequence is composed of CLIP p88-99 (SKMRMATPLLMQ). By substitution analysis, all three methionine residues appeared to control CLIP binding to HLA-DR. However, whereas M90 controlled binding to all four alleles, M92 and M98 were of different importance for the various alleles: M92 is involved in CLIP binding to DR1 and DR3(17) but not to DR2 or DR7, and M98 controls CLIP binding to DR2, DR3(17) and DR7 but not DR1. Also, CLIP competes with known immunogenic peptides for class II binding in a manner indistinguishable from regular, class II binding competitor peptides. Finally, the dissociation rates of CLIP-class II complexed are similar to those of antigenic peptide-class II complexes. Thus, CLIP most likely binds to the class II peptide binding groove, since most allelic class II differences are clustered here. CLIP uses unconventional methionine anchor residues representing an allele-independent supermotif (M90) as well as allele-dependent motifs (M92 and M98).

  18. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    Science.gov (United States)

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  19. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    Directory of Open Access Journals (Sweden)

    Rong Chen

    Full Text Available Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may

  20. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project.

    Science.gov (United States)

    Cross, Deanna S; Ivacic, Lynn C; Stefanski, Elisha L; McCarty, Catherine A

    2010-06-17

    There is a lack of knowledge regarding the frequency of disease associated polymorphisms in populations and population attributable risk for many populations remains unknown. Factors that could affect the association of the allele with disease, either positively or negatively, such as race, ethnicity, and gender, may not be possible to determine without population based allele frequencies.Here we used a panel of 51 polymorphisms previously associated with at least one disease and determined the allele frequencies within the entire Personalized Medicine Research Project population based cohort. We compared these allele frequencies to those in dbSNP and other data sources stratified by race. Differences in allele frequencies between self reported race, region of origin, and sex were determined. There were 19544 individuals who self reported a single racial category, 19027 or (97.4%) self reported white Caucasian, and 11205 (57.3%) individuals were female. Of the 11,208 (57%) individuals with an identifiable region of origin 8337 or (74.4%) were German.41 polymorphisms were significantly different between self reported race at the 0.05 level. Stratification of our Caucasian population by self reported region of origin revealed 19 polymorphisms that were significantly different (p = 0.05) between individuals of different origins. Further stratification of the population by gender revealed few significant differences in allele frequencies between the genders. This represents one of the largest population based allele frequency studies to date. Stratification by self reported race and region of origin revealed wide differences in allele frequencies not only by race but also by region of origin within a single racial group. We report allele frequencies for our Asian/Hmong and American Indian populations; these two minority groups are not typically selected for population allele frequency detection. Population wide allele frequencies are important for the design and

  1. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria

    Science.gov (United States)

    Ariey, Frédéric; Witkowski, Benoit; Amaratunga, Chanaki; Beghain, Johann; Langlois, Anne-Claire; Khim, Nimol; Kim, Saorin; Duru, Valentine; Bouchier, Christiane; Ma, Laurence; Lim, Pharath; Leang, Rithea; Duong, Socheat; Sreng, Sokunthea; Suon, Seila; Chuor, Char Meng; Bout, Denis Mey; Ménard, Sandie; Rogers, William O.; Genton, Blaise; Fandeur, Thierry; Miotto, Olivo; Ringwald, Pascal; Le Bras, Jacques; Berry, Antoine; Barale, Jean-Christophe; Fairhurst, Rick M.; Benoit-Vical, Françoise; Mercereau-Puijalon, Odile; Ménard, Didier

    2016-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain (‘K13-propeller’) with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread. PMID:24352242

  2. The PNPLA3 rs738409 G-Allele Associates with Reduced Fasting Serum Triglyceride and Serum Cholesterol in Danes with Impaired Glucose Regulation

    DEFF Research Database (Denmark)

    Krarup, N. T.; Grarup, N.; Banasik, K.

    2012-01-01

    Background and Aim: Non-alcoholic fatty liver disease (NAFLD) is a common condition, associated with hepatic insulin resistance and the metabolic syndrome including hyperglycaemia and dyslipidemia. We aimed at studying the potential impact of the NAFLD-associated PNPLA3 rs738409 G-allele on NAFLD......-related metabolic traits in hyperglycaemic individuals. Methods: The rs738409 variant was genotyped in the population-based Inter99 cohort examined by an oral glucose-tolerance test, and a combined study-sample consisting of 192 twins (96 twin pairs) and a sub-set of the Inter99 population (n = 63) examined...... by a hyperinsulinemic euglycemic clamp (n(total) = 255). In Inter99, we analyzed associations of rs738409 with components of the WHO-defined metabolic syndrome (n = 5,847) and traits related to metabolic disease (n = 5,663). In the combined study sample we elucidated whether the rs738409 G-allele altered hepatic...

  3. Genome-wide identification and quantification of cis- and trans-regulated genes responding to Marek’s disease virus infection via analysis of allele-specific expression

    Directory of Open Access Journals (Sweden)

    Sean eMaceachern

    2012-01-01

    Full Text Available Marek’s disease (MD is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV, an oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE amongst F1 progeny of two inbred chicken lines that differ in MD resistance. High throughput sequencing was used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis and elsewhere in the genome (trans by examining differences in expression between F1 individuals and artificial F1 RNA pools over 6 time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified 7 genes that display trans-regulation only in infected animals and approximately 500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs may have practical implications for applying marker-assisted selection to complex traits that are

  4. Allelic variation partially regulates galactose-dependent hydrogen peroxide release from circulating hemocytes of the snail Biomphalaria glabrata.

    Science.gov (United States)

    Allan, Euan R O; Blouin, Michael S

    2018-01-01

    Freshwater snails are the intermediate hosts for numerous parasitic worms that are detrimental to human and agricultural health. Understanding the immune responses of these snails could be vital for finding ways to block transmission of those parasites. Allelic variation in a recently discovered genomic region in the snail, Biomphalaria glabrata, influences their susceptibility to schistosomes. Here we tested whether genes in that region, termed the Guadeloupe Resistance Complex (GRC), are involved in recognition of common pathogen-associated molecules that have been shown to be stimulants of the hydrogen peroxide defense pathway. We show that hemocytes extracted from individuals with one of the three GRC genotypes released less hydrogen peroxide than the other two genotypes, after stimulation with galactose. This difference was not observed after stimulation with several other microbial-associated carbohydrates, despite those ligands sharing the same putative pathway for hydrogen peroxide release. Therefore, we conclude that allelic variation in the GRC region may influence the recognition of galactose, rather than the conserved downstream steps in the hydrogen peroxide pathway. These results thus are consistent with the hypothesis that proteins produced by this region are involved in pathogen recognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock.

    Science.gov (United States)

    Harrington, Robert D; Herrmann-Hoesing, Lynn M; White, Stephen N; O'Rourke, Katherine I; Knowles, Donald P

    2009-01-22

    Selective breeding of sheep for arginine (R) at prion gene (PRNP) codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV) may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1) associated with the presence of OPPV provirus and 2) associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05). Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05). These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.

  6. Ovine progressive pneumonia provirus levels are unaffected by the prion 171R allele in an Idaho sheep flock

    Directory of Open Access Journals (Sweden)

    Herrmann-Hoesing Lynn M

    2009-01-01

    Full Text Available Abstract Selective breeding of sheep for arginine (R at prion gene (PRNP codon 171 confers resistance to classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive pneumonia/Maedi-Visna virus (OPPV may infect up to 66% of a flock thus any affect of 171R selection on OPPV susceptibility or disease progression could have major impact on the sheep industry. Hypotheses that the PRNP 171R allele is 1 associated with the presence of OPPV provirus and 2 associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05. Also, OPPV provirus levels in infected ewes were not significantly different among codon 171 genotypes (p > 0.05. These results show that, in the flock examined, the presence of OPPV provirus and provirus levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is not expected to increase or decrease the number of OPPV infected sheep or the progression of disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie control measure.

  7. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus.

    Science.gov (United States)

    Fraser, Louise D; Zhao, Yuan; Lutalo, Pamela M K; D'Cruz, David P; Cason, John; Silva, Joselli S; Dunn-Walters, Deborah K; Nayar, Saba; Cope, Andrew P; Spencer, Jo

    2015-08-01

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Naturally occurring allele diversity allows potato cultivation in northern latitudes.

    Science.gov (United States)

    Kloosterman, Bjorn; Abelenda, José A; Gomez, María del Mar Carretero; Oortwijn, Marian; de Boer, Jan M; Kowitwanich, Krissana; Horvath, Beatrix M; van Eck, Herman J; Smaczniak, Cezary; Prat, Salomé; Visser, Richard G F; Bachem, Christian W B

    2013-03-14

    Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world's most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.

  9. FINDbase: a worldwide database for genetic variation allele frequencies updated.

    Science.gov (United States)

    Georgitsi, Marianthi; Viennas, Emmanouil; Antoniou, Dimitris I; Gkantouna, Vassiliki; van Baal, Sjozef; Petricoin, Emanuel F; Poulas, Konstantinos; Tzimas, Giannis; Patrinos, George P

    2011-01-01

    Frequency of INherited Disorders database (FIND base; http://www.findbase.org) records frequencies of causative genetic variations worldwide. Database records include the population and ethnic group or geographical region, the disorder name and the related gene, accompanied by links to any related external resources and the genetic variation together with its frequency in that population. In addition to the regular data content updates, we report the following significant advances: (i) the systematic collection and thorough documentation of population/ethnic group-specific pharmacogenomic markers allele frequencies for 144 markers in 14 genes of pharmacogenomic interest from different classes of drug-metabolizing enzymes and transporters, representing 150 populations and ethnic groups worldwide; (ii) the development of new data querying and visualization tools in the expanded FINDbase data collection, built around Microsoft's PivotViewer software (http://www.getpivot.com), based on Microsoft Silverlight technology (http://www.silverlight.net) that facilitates querying of large data sets and visualizing the results; and (iii) the establishment of the first database journal, by affiliating FINDbase with Human Genomics and Proteomics, a new open-access scientific journal, which would serve as a prime example of a non-profit model for sustainable database funding.

  10. HLA –DRB1*, DQB1* Alleles In Hydatid Patients By Molecular Typing

    Directory of Open Access Journals (Sweden)

    mehdi Mosayebi

    2007-10-01

    Full Text Available Mosayebi M1, Dalimi Asl A2, Moazeni M3, Mosayebi Gh4 1. Ph.D Student, Department of Parasitology, Faculty of medicine, Tarbiat Modarres University 2. Professor, Department of Parasitology, Faculty of medicine, Tarbiat Modarres University 3. Professor, Department of Immunology, Faculty of medicine, Tarbiat Modarres University 4. Assistant professor, Department of Immunology, Faculty of medicine, Arak Medical Sciences University Abstract Background: Hydatidosis is a important disease that results from infection with larvae of the dog tape worm , Echinococcus granulosus in human and farm animals .Resistance or susceptibility to infectious diseases , for example , cystic and alveolar echinococcosis is restricted by individual host factors and immunologic responses,in many surveys has been shown.The target of this study that is the first survey dealing with the correlation between HLA-DRB1*& DQB1* alleles and cystic echinococcosis in Iranian patient,is investigation HLA-DRB1*and DQB1* allelic polymorphism in Iranian patient with hydatidosis . Materials and methods: The study was carried out on 56 patients with confirmed cystic echinococcosis and 30 apparently healthy individuals living on Arak area by HLA-DRB1*& DQB1* typing with PCR-SSP method.The first step was founding patients and blood sampling .DNA was prepared from whole blood and we used PCR-SSP with 31 primer mixes for per sample . PCR reaction mixtures were loaded in agarose gels and after electrophoresis , geles were examine under UV illumination and gel document . Analyse of results carried out with specific software and frequency& interpretation tables and homogeneity test for calculation of P-value in χ2 test with fisher΄s exact test . significant samples with logistic regression analysed and Odds-ratio calculate . Results: A statistically significant positive association was found between HLA-DQB1*02 and the occurrence of cystic echinococcosis(P<0.05,(Odds-ratio=2.87 Conclusion: The

  11. DNA marker characterization for allele mining of blast and bacterial ...

    African Journals Online (AJOL)

    admiistrator

    2013-05-01

    May 1, 2013 ... Marker assisted selection of bacterial blight resistance genes in rice. Biochem Genet. 39 (7): 261-278. Du PV, Loan, LC, Sang ND (2007). Blast research in Mekong river delta of Vietnam. In: JIRCAS (Japan International Research Center for Agricultural Sciences, Tsukuba, Japan) working report No. 53,.

  12. A national survey on the allelic, genotypic, and haplotypic ...

    Indian Academy of Sciences (India)

    reason, BSE poses a serious threat to humans as well as cat- tle. Prion diseases may be present not only as sporadic or infectious disorders, but also as genetic illnesses (Prusiner. 1991). The genetic resistance to prion diseases is believed to be an important factor in preventing disease recurrence. (Goldmann 2008).

  13. The effect of wild card designations and rare alleles in forensic DNA database searches.

    Science.gov (United States)

    Tvedebrink, Torben; Bright, Jo-Anne; Buckleton, John S; Curran, James M; Morling, Niels

    2015-05-01

    Forensic DNA databases are powerful tools used for the identification of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database containing DNA profiles of known individuals and (2) a database of DNA profiles associated with crime scenes. The risk of adventitious or chance matches between crimes and innocent people increases as the number of profiles within a database grows and more data is shared between various forensic DNA databases, e.g. from different jurisdictions. The DNA profiles obtained from crime scenes are often partial because crime samples may be compromised in quantity or quality. When an individual's profile cannot be resolved from a DNA mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped out or when an ambiguous profile is resolved from a DNA mixture. Variant alleles