WorldWideScience

Sample records for resistance insulation systems

  1. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

    Directory of Open Access Journals (Sweden)

    Chi-Seung Lee

    2013-03-01

    Full Text Available In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  2. A Study on Effect of Concrete Foundations on Resistance and Surface Potentials of Gas Insulated Substation Grounding Systems

    Science.gov (United States)

    Rao, Mandava Mohana

    2017-10-01

    Ground resistance of high voltage substations must be as low as possible for safe grounding of their equipment both during normal and fault conditions. However, in gas insulated substations (GIS), even though resistance is low, it does not ensure the step and touch potentials of the grounding system within permissible levels. In the present study, an analytical model has been developed to calculate ground resistance, step and touch potentials of a grounding system used for GIS. Different models have been proposed for the evaluation of number of grounding rods to be inserted in to the ground. The effect of concrete foundations on above performance parameters has been analyzed by considering various fault currents, soil/earth resistivities and number of grounding rods. Finally, design optimization of GIS grounding system has been reported for fault currents in the order of 63 kA located in earth resistivity of 100Ω-m and above.

  3. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  4. Surface electrical resistivity of insulators

    International Nuclear Information System (INIS)

    Senn, B. C.; Liesegang, J.

    1996-01-01

    A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above

  5. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  6. Tunnel Magneto Resistance of Fe/Insulator/Fe

    Science.gov (United States)

    Aryee, Dennis; Seifu, Dereje

    Tri-layer thin films of Fe/Insulator/Fe were synthesized using magnetron DC/ RF sputtering with MgO insulator and Bi2Te3 topological insulators as middle buffer layer. The multi-layered samples thus produced were studied using in-house built magneto-optic Kerr effect (MOKE) instrument, vibrating sample magnetometer (VSM), torque magnetometer (TMM), AFM, MFM, and magneto-resistance (MR). This system, that is Fe/Insulator/Fe on MgO(100) substrate, is a well-known tunnel magneto resistance (TMR) structure often used in magnetic tunnel junction (MTJ) devices. TMR effect is a method by which MTJs are used in developing magneto-resistive random access memory (MRAM), magnetic sensors, and novel logic devices. The main purpose behind this research is to measure the magnetic anisotropy of Fe/Insulator /Fe structure and correlate it to magneto-resistance. In this presentation, we will present results from MOKE, VSM, TMM, AFM, MFM, and MR studies of Fe/Insulator/Fe on MgO(100). We would like to acknowledge support by NSF-MRI-DMR-1337339.

  7. Vacuum foil insulation system

    Science.gov (United States)

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  8. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  9. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  10. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    Science.gov (United States)

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.

    2017-06-01

    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  11. 49 CFR 236.552 - Insulation resistance; requirement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance; requirement. 236.552 Section 236.552 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... intermittent inductive automatic train stop system. [49 FR 3387, Jan. 26, 1984] ...

  12. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  13. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  14. Improving the reliability of stator insulation system in rotating machines

    International Nuclear Information System (INIS)

    Gupta, G.K.; Sedding, H.G.; Culbert, I.M.

    1997-01-01

    Reliable performance of rotating machines, especially generators and primary heat transport pump motors, is critical to the efficient operation on nuclear stations. A significant number of premature machine failures have been attributed to the stator insulation problems. Ontario Hydro has attempted to assure the long term reliability of the insulation system in critical rotating machines through proper specifications and quality assurance tests for new machines and periodic on-line and off-line diagnostic tests on machines in service. The experience gained over the last twenty years is presented in this paper. Functional specifications have been developed for the insulation system in critical rotating machines based on engineering considerations and our past experience. These specifications include insulation stress, insulation resistance and polarization index, partial discharge levels, dissipation factor and tip up, AC and DC hipot tests. Voltage endurance tests are specified for groundwall insulation system of full size production coils and bars. For machines with multi-turn coils, turn insulation strength for fast fronted surges in specified and verified through tests on all coils in the factory and on samples of finished coils in the laboratory. Periodic on-line and off-line diagnostic tests were performed to assess the condition of the stator insulation system in machines in service. Partial discharges are measured on-line using several techniques to detect any excessive degradation of the insulation system in critical machines. Novel sensors have been developed and installed in several machines to facilitate measurements of partial discharges on operating machines. Several off-line tests are performed either to confirm the problems indicated by the on-line test or to assess the insulation system in machines which cannot be easily tested on-line. Experience with these tests, including their capabilities and limitations, are presented. (author)

  15. Systems and Methods for Providing Insulation

    Science.gov (United States)

    Golden, Johnny L. (Inventor)

    2015-01-01

    Systems and methods provide a multi-layer insulation (MLI) that includes a plurality of sealed metalized volumes in a stacked arrangement, wherein the plurality of sealed metalized volumes encapsulate a gas therein, with the gas having one of a thermal insulating property, an acoustic insulating property, or a combination insulating property thereof. The MLI also includes at least one spacer between adjacent sealed metalized volumes of the plurality of sealed metalized volumes and a protective cover surrounding the plurality of sealed metalized volumes.

  16. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  17. Changes in electrical insulation resistance of EPR insulator irradiated in water

    International Nuclear Information System (INIS)

    Yoshikawa, Masahito; Seguchi, Tadao; Kusama, Yasuo; Yoshida, Kenzo

    1985-01-01

    The electrical insulating properties of cable-insulators in an environment where radiation and water vapor coexist. Ethylene propylene rubber (EPR) is irradiated in oxygen-free or oxygen-containing water, and changes in volume resistivity and swell are observed. Irradiation is also performed in water vapor, as well as in water, at high temperatures. It is revealed that changes in volume resistivity in such environments are basically different from those of material which is exposed alternately to radiation and vapor. In particular, volume resistivity is decreased in a high temperature range even when oxygen does not exist. No difference is observed between irradiation in vapor and water. In the case where oxygen exist, on the other hand, volume resistivity is found to decrease greatly in a low temperature range from room temperature to 70 deg C. It is demonstrated that such changes in volume resistivity are closely related with those in swell. (Nogami, K.)

  18. Characterization of systems for external insulation and retrofitting with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus; Rose, Jørgen

    1999-01-01

    to include the effect of thermal bridges by performing simple calculations, a task which normally requires the use of numerical models. The results show that thermal bridges in external insulation systems may decrease their thermal resistance by more than 25%.Key parameters was calculated by the use...... or unsatisfactory architectural look. One way of solving these problems is by adding a retrofitting system with thermal insulation to the existing building envelope. If external insulation systems are used, a new rain screen is applied on the outside of the insulation. Insulation can be applied either on the inside...... or the outside of the existing building envelope, but internal insulation has many disadvantages compared to external insulation. Several external insulation systems exist, each with different properties making it difficult for building designers to choose between systems in an objective manner.To help...

  19. Development and Performance Verification of High Resistance Semiconducting Glaze Insulators

    Science.gov (United States)

    Shinoda, Akihide; Chiyajo, Kiyonobu; Okada, Hideyuki; Suzuki, Yoshihiro; Ito, Susumu; Naito, Katsuhiko

    In case of transmission lines along the sea coast, audible noise due to partial discharges may occur from insulators when contaminated with sea salt and wetted. From the consideration to residents, insulator washing has been performed periodically, but this results in increase in the maintenance cost. As a countermeasure to reduce the audible noise, semiconducting glaze insulator (DC resistance approx. 20MΩ) has been developed and used. However, in case of a very special environment with direct spraying of sea water in seaside districts, there seems to be some risk of thermal runaway because voltage concentration on very small number of insulator units in a string is possible and it may rise the temperature of those units up to the critical point. In this paper, the thermal runaway mechanism is clarified from view point of input and output energy of the semiconducting glaze insulator under contaminated and wetted condition. The surface temperature starting thermal runaway is estimated from various experiments. As a result, the high resistance semiconducting glaze insulator, which has higher thermal runaway withstand capacity and acceptable agreeable audible noise characteristics is developed and subjected to the field evaluation.

  20. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  1. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept......This paper describes shortly the status of superconducting transmission lines and assesses what impact the recently discovered BSCCO superconductors may have on the design of the cables.Two basically different insulation systems are discussed:1) The room temperature dielectric design, where...

  2. CERTIFICATION OF THE RADIATION RESISTANCE OF COIL INSULATION MATERIAL

    CERN Document Server

    Polinski, J; Bogdan, P

    2013-01-01

    The goal of the WP 7.2.1 sub-task of the EuCARD program has been to determine the Nb$_{3}$Sn based accelerator magnet coil electrical insulation resistance against irradiation, which will occur in future accelerators. The scope of the certification covers determination of mechanical, electrical and thermal properties changes due to irradiation. The report presents a selection of the insulation material candidates for future accelerator magnets as well as the definition of the radiation certification methodology with respect of radiation type, energy, doses and irradiation conditions. The test methods and results of the electrical and mechanical insulation materials properties degradation due to irradiation are presented. Thermal conductivity and Kapitza resistance at temperature range from 1.5 K to 2.0 K (superfluid helium conditions) are given.

  3. Building America Top Innovations 2012: Basement Insulation Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  4. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  5. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  6. THE STABILITY MONITORING OF THE MANUFACTURING PROCESS OF ELECTRICAL INSULATING SYSTEMS OF TRACTION ELECTRIC MACHINES

    Directory of Open Access Journals (Sweden)

    G. V. Bezprozvannych

    2017-12-01

    Full Text Available Introduction. Electrical insulation systems make up about 0.03 % of the traction electric machines (TEM mass, but they are of exceptional importance and affect the design capabilities and manufacturing techniques of electric machines, ultimately - on their specific weight and overall dimensions, on the reliability and durability of the TEM. Purpose. The monitoring of the stability of the manufacturing process of electrical insulating systems of the TEM based on the insulation resistance measurements. Methodology. The analysis of the manufacturing process is carried out for three versions of the case of insulation of the magnetic system of the DC traction electric motor. Practical value. Construction and analysis of special graphs (charts of individual values and cumulative sums of insulation resistance, sliding range MR allow to find out whether the technological process of manufacturing electric insulating systems of traction electric machines is in a statistically controllable state.

  7. Insulating and protecting systems for a circuit

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1975-01-01

    The invention concerns a device for insulating and protecting systems or pipework carrying liquid sodium in fast neutron nuclear reactor installations or water or superheated steam. This device considerably lowers the risks whilst making it possible to give the insulating improved mechanical strength, without limiting its thermal protection performance and particularly to build into this insulating a protection and safety barrier against projections of the fluid outwards should the system burst accidentally. To this effect, the device considered includes on the outer surface of the system at least two successive windings of a continuous and long strip composed of a flat sock in knitted metal, comprising transversal openings to provide communication between the inside and outside of the sock, such openings allowing the insertion of thin successive metal sheets extending over the length of the strip [fr

  8. Designing and Implementation a Lab Testing Method for Power Cables Insulation Resistance According with STAS 10411-89, SR EN ISO/CEI/17025/2005

    Science.gov (United States)

    Dobra, R.; Pasculescu, D.; Marc, G.; Risteiu, M.; Antonov, A.

    2017-06-01

    Insulation resistance measurement is one of the most important tests required by standards and regulations in terms of electrical safety. Why these tests are is to prevent possible accidents caused by electric shock, damage to equipment or outbreak of fire in normal operating conditions of electrical cables. The insulation resistance experiment refers to the testing of electrical cable insulation, which has a measured resistance that must be below the imposed regulations. Using a microcontroller system data regarding the insulation resistance of the power cables is acquired and with SCADA software the test results are displayed.

  9. Aerogel Beads as Cryogenic Thermal Insulation System

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  10. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  11. Environmental and Sustainable Technology Evaluation: Mold-Resistant Armacell Insulation--Armacell LLC, AP Armaflex Black

    Science.gov (United States)

    The ESTE test program measured the mold resistance of Armacell AP Armaflex Black insulation. Tests for emissions of VOCs and formaldehyde were also performed. AP Armaflex Roll Insulation is a black flexible closed-cell, fiber-free elastomeric thermal insulation. The expanded clos...

  12. Integrated Electrical Wire Insulation Repair System

    Science.gov (United States)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  13. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  14. Thermoplastic high performance cable insulation systems for flexible system operation

    OpenAIRE

    Vaughan, A.S.; Green, C.D.; Hosier, I.L.; Stevens, G.C.; Pye, A.; Thomas, J.L.; Sutton, S.J.; Guessens, T.

    2015-01-01

    Crosslinked polyethylene (XLPE) has been the cable insulation material of choice in many different transmission and distribution applications for many years and, while this material has many desirable characteristics, its thermo-mechanical properties have consequences for both continuous and emergency cable ratings which, in turn, have implications for system operational flexibility. In this paper, we describe the principles and two embodiments through which new thermoplastic insulation syste...

  15. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Bruno, F.; Saman, W. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, SA 5095 (Australia)

    2011-01-15

    An experimental investigation was undertaken in which the thermal resistance for the heat flow through a typical timber framed pitched roofing system was measured under outdoor conditions for heat flow up. The measured thermal resistance of low resistance systems such as an uninsulated attic space and a reflective attic space compared well with published data. However, with higher thermal resistance systems containing bulk insulation within the timber frame, the measured result for a typical installation was as low as 50% of the thermal resistance determined considering two dimensional thermal bridging using the parallel path method. This result was attributed to three dimensional heat flow and insulation installation defects, resulting from the design and construction method used. Translating these results to a typical house with a 200 m{sup 2} floor area, the overall thermal resistance of the roof was at least 23% lower than the overall calculated thermal resistance including two dimensional thermal bridging. When a continuous layer of bulk insulation was applied to the roofing system, the measured values were in agreement with calculated resistances representing a more reliable solution. (author)

  16. Stator insulation systems for medium voltage PWM drives fed motors

    International Nuclear Information System (INIS)

    Gao, G.; Chen, W.

    2005-01-01

    This paper presents the partial results of a research project that studied the impact of medium voltage PWM ASD (adjustable speed drives) on motor stator insulation system. The findings from this study/ investigation have aided designers to improve the robustness of the insulation system used for ASD-fed motors, based on accelerated laboratory tests. (author)

  17. Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, M.P.A.; Grinstein, G. (IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (US)); Girvin, S.M. (Physics Department, Swain Hall West 117, Indiana University, Bloomington, Indiana 47405 (USA))

    1990-01-29

    We argue that whenever the transition between the insulating and superconducting phases of a disordered two-dimensional Fermi system at zero temperature ({ital T}=0) is continuous, the system behaves like a normal metal right at the transition; i.e., the resistance has a finite, nonzero value at {ital T}=0. This value is {ital universal}---independent of all microscopic details. These features, consistent with recent measurements on disordered films, are hypothesized to apply to other 2D transitions at {ital T}=0, such as Anderson localization with spin-orbit coupling, and the quantum Hall effect.

  18. Measuring the thermal insulation and evaporative resistance of sleeping bags using a supine sweating fabric manikin

    International Nuclear Information System (INIS)

    Wu, Y S; Fan, Jintu

    2009-01-01

    For testing the thermal insulation of sleeping bags, standard test methods and procedures using heated manikins are provided in ASTM F1720-06 and EN 13537:2002. However, with regard to the evaporative resistance of sleeping bags, no instrument or test method has so far been established to give a direct measurement. In this paper, we report on a novel supine sweating fabric manikin system for directly measuring the evaporative resistance of sleeping bags. Eleven sleeping bags were tested using the manikin under the isothermal condition, namely, both the mean skin temperature of the manikin and that of the environment were controlled to be the same at 35 °C, with the wind speed and ambient relative humidity at 0.3 m s −1 and 50%, respectively. The results showed that the novel supine sweating fabric manikin is reproducible and accurate in directly measuring the evaporative resistance of sleeping bags, and the measured evaporative resistance can be combined with thermal insulation to calculate the moisture permeability index of sleeping bags

  19. A simple approach to measure the surface resistivity of insulating materials

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Wang, Qian

    2011-01-01

    or 250V DC signal. The probe assembly is constructed according to Danish Standard (DS/EN 1149-1:2006). The multi-meter (Agilent 3440 1A 6½) is used to measure the micro voltage over a known resistor which is serially connected with electrodes in the probe assembly. In order to obtain reliable...... for different materials, source voltages, and serially connected resistors. The testing results showed that the developed system and methods can provide a reasonably accurate measurement of surface resistivity of insulating materials in a robust and economic manner....

  20. Analysis of surface insulation resistance related failures in electronics by circuit simulation

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Joshy, Salil; Jellesen, Morten Stendahl

    2017-01-01

    of the circuits using a range of empirical leakage resistance values combined with the knowledge of the humidity and contamination profile of the electronics can be used for the robust design of a device, which is also important for electronic products relying on low current consumption for long battery lifetime......Purpose-The purpose of this study is to show that the humidity levels for surface insulation resistance (SIR)-related failures are dependent on the type of activators used in no-clean flux systems and to demonstrate the possibility of simulating the effects of humidity and contamination on printed...... conduction medium. Findings-This paper provides a summary of the effects of contamination with various weak organic acids representing the active components in no-clean solder flux residue, and demonstrates the effect of humidity and contamination on the possible malfunctions and errors in electronic...

  1. High temperature insulation materials for reradiative thermal protection systems

    Science.gov (United States)

    Hughes, T. A.

    1972-01-01

    Results are presented of a two year program to evaluate packaged thermal insulations for use under a metallic radiative TPS of a shuttle orbiter vehicle. Evaluations demonstrated their survival for up to 100 mission reuse cycles under shuttle acoustic and thermal loads with peak temperatures of 1000 F, 1800 F, 2000 F, 2200 F and 2500 F. The specimens were composed of low density refractory fiber felts, packaged in thin gage metal foils. In addition, studies were conducted on the venting requirements of the packages, salt spray resistance of the metal foils, and the thermal conductivity of many of the insulations as a function of temperature and ambient air pressure. Data is also presented on the radiant energy transport through insulations, and back-scattering coefficients were experimentally determined as a function of source temperature.

  2. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    of prefabricated lightweight elements were introduced and demonstrated. The principle was demonstrated on a concrete ground slab floor with a concrete slab on top of a thermal insulation layer above a capillary-breaking layer mounted on stable ground. The thermal insulation and the capillary-breaking layer......A new principle for radon protection, using a system containing a horizontal grid of air ducts pressurised within the rigid insulation material, was presented. The principle was based on the principles for pressure reduction of the zone underneath the ground floor construction. A new element...... consisted of a rigid insulation material. The new solution integrates the capillary-breaking layer and a pressure reduction zone,denoted the radon–suctioning layer, in one element. The new solution introduces the radonsuctioning layer as a horizontal grid of air ducts with low pressure to catch air...

  3. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  4. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  5. Linear magneto-resistance in Bi{sub 2}SeTe{sub 2} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Amaladass, E. P., E-mail: edward@igcar.gov.in; Sharma, Shilpam; Devidas, T. R.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2016-05-23

    Magnetic field and temperature dependent electronic transport measurements have been carried out on Bi{sub 2}SeTe{sub 2} topological insulator single crystals. The measurements reveal an insulating behavior and the carriers were found to be electrons (n-type) from Hall measurement. Magneto-resistance (MR) measurements in the field range (B) of 15 T to -15 T carried out at 4.2 K showed a cusp like weak anti-localization behavior for lower fields (-5 T 5 T. Upon increasing temperature, MR transforms to linear dependence of B at 40, 50 and 100 K. On further increasing temperatures (> 200 K), a parabolic MR is observed. Temperature dependent Hall data also showed a transition from a nonlinear to linear behavior upon increasing temperatures. Disorder induced changes in the electronic transport characteristics of bulk and surface electrons are believed to cause such changes in the magneto-transport behavior of this system.

  6. Oil Impregnated Pressboard Barrier Systems Based on Ester Fluids for an Application in HVDC Insulation Systems

    Directory of Open Access Journals (Sweden)

    Patrick Rumpelt

    2017-12-01

    Full Text Available Ester-based insulation fluids are being increasingly used in high-voltage insulation systems. The reasons are the advantages in the area of ecological compatibility and resource-saving provision. The intention to use ester-based insulation fluids in high voltage direct current (HVDC equipment is new. The major challenge in designing the HVDC insulation system is, that the systems do not only experience an alternating voltage, but also a direct voltage Offset. This presents a challenge to predict the electric field distribution. For this purpose, basic investigations are carried out in the form of conductivity investigations for various insulation barrier systems. In addition, a mineral oil serves as a reference oil for estimating existing insights. The results show the influence of the ester-based insulating liquids on the direct current (DC conductivity for basic arrangements, consisting of pressboard barriers and mixed insulations.

  7. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  8. Investigation of Insulation Materials for Future Radioisotope Power Systems

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  9. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  10. Influence of radiation oxidation and steam exposure on insulation resistance of polymers

    International Nuclear Information System (INIS)

    Yoshikawa, Masato; Seguchi, Tadao; Yoshida, Kenzo

    1983-01-01

    In the polymers used as the insulation materials of wires and cables for nuclear reactors, in order to confirm the soundness in the case of LOCA, the environment test has been carried out. In this study, successive deterioration treatment was applied to polymer insulation materials by the exposure to high temperature steam after gamma irradiation, and the change of the volume resistivity due to the conditions of irradiation and steam exposure was examined. Besides, in order to study the influence of absorbed water during steam exposure on the insulation resistance, the rate of swelling was measured. The test material was ethylene propylene rubber EPR-P for cable insulation and EPR-M of model matching. The irradiation was performed at 0.47Mrad/h in pressurized oxygen or in vacuum at room temperature. The steam exposure was carried out in saturated steam atmosphere at 135, 155 and 195 deg C for 3, 6, 12, 24 and 48 hours. The volume resistivity of EPR lowered due to radiation oxidation, but the change was very small in the irradiation without oxidation. In the specimens irradiated in pressurized oxygen, the volume resistivity recovered by the steam exposure when the dose was small, but it lowered with high temperature steam when the dose was large. (Kako, I.)

  11. Effect of posture positions on the evaporative resistance and thermal insulation of clothing.

    Science.gov (United States)

    Wu, Y S; Fan, J T; Yu, W

    2011-03-01

    Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.

  12. Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene

    Science.gov (United States)

    Barnat-Hunek, Danuta; Łagód, Grzegorz; Klimek, Beata

    2017-07-01

    The aim of the research presented in the paper was to evaluate the feasibility of using hydrophobic preparation based on organosilicon compounds for surface protection on the heat-insulating mortars modified with polystyrene. The work discusses issues related to wettability, absorptivity and frost resistance of the surface layer of mortars. The experimental part pertains to the physical and mechanical properties of polystyrene-modified mortars and the influence of hydrophobic preparation on the contact angle and frost resistance. The frost resistance of mortars was examined following 25 cycles of freezing and thawing. The contact angle of light mortars (θw) was determined before and after the tests of frost resistance, in the function of time using a single measurement liquid. This provided a basis for calculating the surface free energy with Neumann method, characterizing the wettability and adhesion of mortars under normal conditions and with damages resulting from frost weathering. The structure of mortars and the adhesion of lightweight aggregate to cement paste were presented by means of scanning electron microscopy. The studies enabled to determine the hydrophobisation efficiency of heat-insulating mortars with polystyrene. The obtained results confirmed the possibility of producing heat-insulating mortars modified with polystyrene along with proper surface protection against moisture and frost.

  13. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced....... The system is shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. How to implement and use the system in an effective way is described....

  14. Anisotropic electrical resistivity of the Kondo insulator CeRu4Sn6

    International Nuclear Information System (INIS)

    Winkler, H; Lorenzer, K-A; Prokofiev, A; Paschen, S

    2012-01-01

    The intermetallic compound CeRu 4 Sn 6 has tentatively been classified as anisotropic Kondo insulator. Here we present electrical resistivity measurements on CeRu 4 Sn 6 single crystals, both along the main directions a and c of the tetragonal crystal structure, and v along the diagonal c' of the a-a plane. This direction was selected because c' = √2a differs from c by only 0.2 %, suggesting that the coumpound might alternatively be regarded as quasi-cubic. Amazingly, strong anisotropy is observed not only between a and c but also between c and c'. We analyse the temperature dependent resistivities both with a simple semiconductor model and within a Kondo insulator picture.

  15. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  16. Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

    International Nuclear Information System (INIS)

    Green, M.A.

    1994-01-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included

  17. Detection and localization of building insulation faults using optical-fiber DTS system

    Science.gov (United States)

    Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2013-05-01

    Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.

  18. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  19. Resistance noise spectroscopy across the thermally and electrically driven metal-insulator transitions in VO2 nanobeams

    Science.gov (United States)

    Alsaqqa, Ali; Kilcoyne, Colin; Singh, Sujay; Horrocks, Gregory; Marley, Peter; Banerjee, Sarbajit; Sambandamurthy, G.

    Vanadium dioxide (VO2) is a strongly correlated material that exhibits a sharp thermally driven metal-insulator transition at Tc ~ 340 K. The transition can also be triggered by a DC voltage in the insulating phase with a threshold (Vth) behavior. The mechanisms behind these transitions are hotly discussed and resistance noise spectroscopy is a suitable tool to delineate different transport mechanisms in correlated systems. We present results from a systematic study of the low frequency (1 mHz noise behavior in VO2 nanobeams across the thermally and electrically driven transitions. In the thermal transition, the power spectral density (PSD) of the resistance noise is unchanged as we approach Tc from 300 K and an abrupt drop in the magnitude is seen above Tc and it remains unchanged till 400 K. However, the noise behavior in the electrically driven case is distinctly different: as the voltage is ramped from zero, the PSD gradually increases by an order of magnitude before reaching Vth and an abrupt increase is seen at Vth. The noise magnitude decreases above Vth, approaching the V = 0 value. The individual roles of percolation, Joule heating and signatures of correlated behavior will be discussed. This work is supported by NSF DMR 0847324.

  20. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  1. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties...

  2. Numerical simulations of quantum many-body systems with applications to superfluid-insulator and metal-insulator transitions

    International Nuclear Information System (INIS)

    Niyaz, P.

    1993-01-01

    Quantum Monte Carlo techniques were used to study two quantum many-body systems, the one-dimensional extended boson-Hubbard Hamiltonian, a model of superfluid-insulator quantum phase transitions, and the two-dimensional Holstein Model, a model for electron-phonon interactions. For the extended boson-Hubbard model, the authors studied the ground state properties at commensurate filling (density = 1) and half-integer filling (density = 1/2). At commensurate filling, the system has two possible insulating phases for strong coupling. If the on-site repulsion dominates, the system freezes into an insulating phase where each site is singly occupied. If the intersite repulsion dominates, doubly occupied and empty sites alternate. At weak coupling, the system becomes a superfluid. The authors investigated the order of phase transitions between these different phases. At half-integer filling, the authors found one strong coupling insulating phase, where singly occupied and empty sites alternate, and a weak coupling superfluid phase. The authors also investigated the possibility of a supersolid phase and found no clear evidence of such a new phase. For the electron-phonon (Holstein) model, the authors focused on the finite temperature phase transition from a metallic state to an insulating charge density wave (CDW) state as the temperature is lowered. The authors present the first calculation of the spectral density from Monte Carlo data for this system. The authors also investigated the formation of a CDW state as a function of various parameters characterizing the electron-phonon interactions. Using these numerical results as benchmarks, the authors then investigated different levels of Migdal approximations. The authors found the solutions of a set of gapped Migdal-Eliashberg equations agreed qualitatively with the Monte Carlo results

  3. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  4. BOA: Asbestos pipe insulation removal robot system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  5. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  6. Residual life estimation of electrical insulation system for rotating equipment

    International Nuclear Information System (INIS)

    Vashishtha, Y.D.; Gupta, A.K.; Bhattacharyya, A.K.; Verma, A.K.

    1994-01-01

    Residual life assessment gains significance towards the end of designed life for granting plant life extensions and resource planning for costly equipment replacement. A critical review of all the diagnostic techniques presently used to assess either health of insulation system or to infer qualitatively the remaining life for rotating machines is presented. However more emphasis is required on developing quantitative methods. This paper also formulates the experimental plan for progressively censored ageing tests, measurement of partial discharge parameters, micro-structural study for delamination and electrical tree growth and measurement of electrical breakdown strength. Partial discharge (PD) patterns, electrical tree growth and time to failure data shall be taken as training set for the neural network learning which can be useful to predict residual life with only one candidate parameter i.e. PD patterns. (author). 9 refs

  7. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  8. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal...... conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  9. EHT Siegmund GmbH: Floor heating systems made of resistant polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The two special features of Siegmund's floor heating system are as follows: first, the insulating material which is said not to lose its quality even after 30 years of operation is based on polyurethane, and secondly, the deep polyethylene shell which covers the insulating layer is also the plate which carries the heating tubes. The advantages are that they are wear resisting, soundproof, they insulate against humidity and reflect heat.

  10. EHT Siegmund GmbH: floor heating systems made of resistant polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The two special features of Siegmund's floor heating system are as follows: first, the insulating material which is said not to lose its quality even after 30 years of operation is based on polyurethane, and secondly, the deep polyethylene shell which covers the insulating layer is also the plate which carries the heating tubes. The advantages are that they are wear resisting, soundproof, they insulate against humidity and reflect heat.

  11. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  12. Investigation of the Hydrogen Silsesquioxane (HSQ) Electron Resist as Insulating Material in Phase Change Memory Devices

    Science.gov (United States)

    Zhou, Jiao; Ji, Hongkai; Lan, Tian; Yan, Junbing; Zhou, Wenli; Miao, Xiangshui

    2015-01-01

    Phase change random access memory (PCRAM) affords many advantages over conventional solid-state memories due to its nonvolatility, high speed, and scalability. However, high programming current to amorphize the crystalline phase through the melt-quench process of PCRAM, known as the RESET current, poses a critical challenge and has become the most significant obstacle for its widespread commercialization. In this work, an excellent negative tone resist for high resolution electron beam lithography, hydrogen silsesquioxane (HSQ), has been investigated as the insulating material which locally blocks the contact between the bottom electrode and the phase change material in PCRAM devices. Fabrications of the highly scaled HSQ nanopore arrays (as small as 16 nm) are presented. The insulating properties of the HSQ material are studied, especially under e-beam exposure plus thermal curing. Some other critical issues about the thickness adjustment of HSQ films and the influence of the PCRAM electrode on electron scattering in e-beam lithography are discussed. In addition, the HSQ material was successfully integrated into the PCRAM devices, achieving ultra-low RESET current (sub-100 μA), outstanding on/off ratios (~50), and improved endurance at tens of nanometers.

  13. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  14. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Laboratories, Waterloo, ON (Canada); Fox, M. J. [Building Science Laboratories, Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  15. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Labs., Waterloo, ON (Canada); Fox, M. J. [Building Science Labs., Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  16. Integrated human-clothing system model for estimating the effect of walking on clothing insulation

    Energy Technology Data Exchange (ETDEWEB)

    Ghaddar, Nesreen [American University of Beirut, Faculty of Engineering and Architecture, P.O. Box 11-236, Riad ElSolh, 1107 2020, Beirut (Lebanon); Ghali, Kamel [Beirut Arab University, Faculty of Engineering, Beirut (Lebanon); Jones, Byron [Kansas State University, College of Engineering, 148 Rathbone Hall, 66506-5202, Manhattan, KS (United States)

    2003-06-01

    The objective of this work is to develop a 1-D transient heat and mass transfer model of a walking clothed human to predict the dynamic clothing dry heat insulation values and vapor resistances. Developing an integrated model of human and clothing system under periodic ventilation requires estimation of the heat and mass transfer film coefficients at the skin to the air layer subject to oscillating normal flow. Experiments were conducted in an environmental chamber under controlled conditions of 25 C and 50% relative humidity to measure the mass transfer coefficient at the skin to the air layer separating the wet skin and the fabric. A 1-D mathematical model is developed to simulate the dynamic thermal behavior of clothing and its interaction with the human thermoregulation system under walking conditions. A modification of Gagge's two-node model is used to simulate the human physiological regulatory responses. The human model is coupled to a clothing three-node model of the fabric that takes into consideration the adsorption of water vapor in the fibers during the periodic ventilation of the fabric by the air motion in from ambient environment and out from the air layer adjacent to the moist skin. When physical activity and ambient conditions are specified, the integrated model of human-clothing can predict the thermo-regulatory responses of the body together with the temperature and insulation values of the fabric. The developed model is used to predict the periodic ventilation flow rate in and out of the fabric, the periodic fabric regain, the fabric temperature, the air layer temperature, the heat loss or gain from the skin, and dry and vapor resistances of the clothing. The heat loss from the skin increases with the increase of the frequency of ventilation and with the increased metabolic rate of the body. In addition, the dry resistance of the clothing fabrics, predicted by the current model, IS compared with published experimental data. The current

  17. Choice of insulation standard for pipe networks in 4th generation district heating systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mohammadi, Soma

    2016-01-01

    and smart gas grids. Improving DH pipes by improving the insulation standard results in decreasing the heat and temperature losses from the pipe networks. When reducing heat losses from DH pipes, there is a trade-off between the increasing cost of pipe insulation and the associated savings in the heat...... by implementing different pipe insulation standards. In the second step, the specific grid losses found in the first step are analysed in an integrated energy systems model where all main energy sectors and their interrelations are included. The outcome of the study can provide decision support when planning...... investments in DH systems today and in the future. The results from the case of Denmark shows that pipes with higher insulation standard (series 3) is generally preferable, but the highest insulation standard available today (series 4) might be preferable in the future if fuel prices or increase or investment...

  18. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  19. Using Expert Systems in Evaluation of the State of High Voltage Machine Insulation Systems

    Directory of Open Access Journals (Sweden)

    K. Záliš

    2000-01-01

    Full Text Available Expert systems are used for evaluating the actual state and future behavior of insulating systems of high voltage electrical machines and equipment. Several rule-based expert systems have been developed in cooperation with top diagnostic workplaces in the Czech Republic for this purpose. The IZOLEX expert system evaluates diagnostic measurement data from commonly used offline diagnostic methods for the diagnostic of high voltage insulation of rotating machines, non-rotating machines and insulating oils. The CVEX expert system evaluates the discharge activity on high voltage electrical machines and equipment by means of an off-line measurement. The CVEXON expert system is for evaluating the discharge activity by on-line measurement, and the ALTONEX expert system is the expert system for on-line monitoring of rotating machines. These developed expert systems are also used for educating students (in bachelor, master and post-graduate studies and in courses which are organized for practicing engineers and technicians and for specialists in the electrical power engineering branch. A complex project has recently been set up to evaluate the measurement of partial discharges. Two parallel expert systems for evaluating partial dischatge activity on high voltage electrical machines will work at the same time in this complex evaluating system.

  20. Thermally Bonded PET–Basalt Sandwich Composites for Heat Pipeline Protection: Preparation, Stab Resisting, and Thermal-Insulating Properties

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2018-03-01

    Full Text Available In order to solve the cost and bulky problems of buried thermal pipeline insulating materials, this study adopts basalt fabric and low-melting PET nonwoven to construct low-cost and light-weight pipeline thermal-insulating composites after needle punching and thermal bonding processes. Research result shows that thermal-bonded temperature affected the stab resistance and burst energy more significantly. As thermal-bonded temperature increased, knife resistance and spike resistance presented the upward and then downward trends, but the burst energy gradually decreased. Yarn pull-out result shows that the enhancement of stab resistance of intra-/inter-thermal-bonded structure resulted from the increment in the coefficient of friction between yarns. When PET–basalt sandwich composites were thermal-bonded at 140 °C for 5 min, the maximum knife and spike resistance were 147.00 N (1.99 J and 196.30 N (1.11 J, respectively, and burst energy was 4.79 J, thermal conductivity reduced to 0.0073 W/(m∙K. The resultant thermally bonded sandwich composites can be used as thermal-insulating protection for buried thermal pipeline.

  1. COMFORT PROVIDING SYSTEMS IN SPACES WITH ACOUTIC INSULATION

    Directory of Open Access Journals (Sweden)

    Grzegorz KLEKOT

    2014-12-01

    Full Text Available High capacities of currently available devices for sound registering and processing have generated a need for sound insulated spaces dedicated to exchange of confidential information. In such spaces, preventing propagation of vibroacoustic signals both by the way of air and construction elements entails complete insulation of the room. In order to meet this requirement, proper chemical composition of air and stabilized temperature conditions have to be guaranteed. The paper discusses questions related to the process of solving the task of providing thermal comfort and satisfying air quality in a room for confidential discussions. It presents prototype solutions of installations dedicated to stabilize human-friendly conditions inside a modular chamber provided with acoustic insulation.

  2. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  3. Topological insulators: A romance with many dimensions

    Science.gov (United States)

    Manoharan, Hari C.

    2010-07-01

    Electric charges on the boundaries of certain insulators are programmed by topology to keep moving forward when they encounter an obstacle, rather than scattering backwards and increasing the resistance of the system. This is just one reason why topological insulators are one of the hottest topics in physics right now.

  4. Optimum interior area thermal resistance model to analyze the heat transfer characteristics of an insulated pipe with arbitrary shape

    International Nuclear Information System (INIS)

    Chou, H.-M.

    2003-01-01

    The heat transfer characteristics for an insulated regular polygonal (or circular) pipe are investigated by using a wedge thermal resistance model as well as the interior area thermal resistance model R th =t/K s /[(1-α)A 2 +αA 3 ] with a surface area weighting factor α. The errors of the results generated by an interior area model can be obtained by comparing with the exact results generated by a wedge model. Accurate heat transfer rates can be obtained without error at the optimum α opt with the related t/R 2 . The relation between α opt and t/R 2 is α opt =1/ln(1+t/R 2 )-1/(t/R 2 ). The value of α opt is greater than zero and less than 0.5 and is independent of pipe size R 2 /R cr but strongly dependent on the insulation thickness t/R 2 . The interior area model using the optimum value α opt with the related t/R 2 should also be applied to an insulated pipe with arbitrary shape within a very small amount of error for the results of heat transfer rates. The parameter R 2 conservatively corresponds to the outside radius of the maximum inside tangent circular pipe within the arbitrary shaped pipes. The approximate dimensionless critical thickness t cr /R 2 and neutral thickness t e /R 2 of an insulated pipe with arbitrary shape are also obtained. The accuracies of the value of t cr /R 2 as well as t e /R 2 are strongly dependent on the shape of the insulated small pipe. The closer the shape of an insulated pipe is to a regular polygonal or circular pipe, the more reliable will the values of t cr /R 2 as well as t e /R 2 be

  5. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  6. A new system for rating impact sound insulation

    NARCIS (Netherlands)

    Gerretsen, E.

    1976-01-01

    The rating of impact sound insulation on the basis of tapping machine measurements with the ISO reference values has proved to be unsatisfactory in practice. This is mainly due to the differences in spectrum shape of tapping machine noise and real life impact noises, such as walking. The problem can

  7. 55-TW magnetically insulated transmission-line system: Design, simulations, and performance

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2009-12-01

    Full Text Available We describe herein a system of self-magnetically insulated vacuum transmission lines (MITLs that operated successfully at 20 MA, 3 MV, and 55 TW. The system delivered the electromagnetic-power pulse generated by the Z accelerator to a physics-package load on over 1700 Z shots. The system included four levels that were electrically in parallel. Each level consisted of a water flare, vacuum-insulator stack, vacuum flare, and 1.3-m-radius conical outer MITL. The outputs of the four outer MITLs were connected in parallel by a 7.6-cm-radius 12-post double-post-hole vacuum convolute. The convolute added the currents of the four outer MITLs, and delivered the combined current to a single 6-cm-long inner MITL. The inner MITL delivered the current to the load. The total initial inductance of the stack-MITL system was 11 nH. A 300-element transmission-line-circuit model of the system has been developed using the tl code. The model accounts for the following: (i impedance and electrical length of each of the 300 circuit elements, (ii electron emission from MITL-cathode surfaces wherever the electric field has previously exceeded a constant threshold value, (iii Child-Langmuir electron loss in the MITLs before magnetic insulation is established, (iv MITL-flow-electron loss after insulation, assuming either collisionless or collisional electron flow, (v MITL-gap closure, (vi energy loss to MITL conductors operated at high lineal current densities, (vii time-dependent self-consistent inductance of an imploding z-pinch load, and (viii load resistance, which is assumed to be constant. Simulations performed with the tl model demonstrate that the nominal geometric outer-MITL-system impedance that optimizes overall performance is a factor of ∼3 greater than the convolute-load impedance, which is consistent with an analytic model of an idealized MITL-load system. Power-flow measurements demonstrate that, until peak current, the Z stack-MITL system

  8. Evaluation of propellent tank insulation concepts for low-thrust chemical propulsion systems: Executive summary

    Science.gov (United States)

    Kramer, T.; Brogren, E.; Siegel, B.

    1984-01-01

    Cryogenic propellant tank insulations or liquid oxygen/liquid hydrogen low-thrust 2224N (500 lbf) propulsion systems (LTPS) were assessed. The insulation studied consisted of combinations of N2-purged foam and multilayer insulation (MLI) as well as He-purged MLI-only. Heat leak and payload performance predictions were made for three shuttle-launched LTPS designed for shuttle bay packaged payload densities of 56 kg cu/m (3.5 lbm/cu ft), 40 kg/cu m (2.5 lbm/cu ft) and 24 kg/cu m (1.5 lbm/cu ft). Foam/MLI insulations were found to increase LTPS payload delivery capability when compared with He-purged MLI-only. An additional benefit of foam/MLI was reduced operational complexity because orbiter cargo bay N2 purge gas could be used for MLI purging. Maximum payload mass benefit occurred when an enhanced convection, rather than natural convection, heat transfer was specified for the insulation purge enclosure. The enhanced convection environment allowed minimum insulation thickness to be used for the foam/MLI interface temperature selected to correspond to the moisture dew point in the N2 purge gas. Experimental verification of foam/MLI benefits was recommended. A conservative program cost estimate for testing a MLI-foam insulated tank was 2.1 million dollars. This cost could be reduced significantly without increasing program risk.

  9. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Podorson, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  10. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  11. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal condu...... resist to temperature as high as 800°C without major structural changes [3]. The challenge of this project consists in the association of the two materials. The study will be based both on numerical models and experimental tests (small and large scales)....

  12. Dimensional effects in a disordered system near metal-insulator transitions and superconductor-insulator transitions; Effets dimensionnels dans un systeme desordonne au voisinage des transitions metal-isolant et supraconducteur-isolant

    Energy Technology Data Exchange (ETDEWEB)

    Akiko Marrache-Kikuchi, C

    2006-02-15

    Low temperature transport in disordered conducting materials implies quantum interference, Coulomb repulsion, and superconducting fluctuations. Since 2-D is the lower critical dimension for the existence of metallic and superconducting states, we have studied two quantum phase transitions - the Superconductor-to-Insulator Transition (SIT) and the Metal-to-Insulator Transition (MIT) - when the thickness of a disordered system - here a-NbSi - is lowered. The underlying problem is the transition between the different states and the conditions for a 2-D metal to exist. We have studied the field and disorder-induced SIT. The principal characteristics we have observed (renormalization, role of the field orientation) are well explained by M.P.A. Fisher's theory. However, we do not find the critical exponents values and a universal resistance at the transition as predicted by this theory. Concerning the MIT, we have decreased the thickness of a metallic system to reach the dimension 2 and an insulating state. In both transitions, the passage to the insulating state clearly shows the existence of dissipative states at zero temperature that are not predicted by conventional theories. We propose an interpretation of all our results that implies the existence of a novel phase in 2-D, a Bose Metal, between the superconducting and the metallic states. This new state has been predicted by recent theories. We trace the corresponding phase diagram for the model system NbSi with respect to concentration and film thickness. In the second appendix it is shown how superconducting thin films of Nb{sub x}Si{sub 1-x} are used to make transition edge sensors used in the particle detection field. (author)

  13. Evaluation of the Fretting Resistance of the High Voltage Insulation on the ITER Magnet Feeder Busbars

    Science.gov (United States)

    Clayton, N.; Crouchen, M.; Evans, D.; Gung, C.-Y.; Su, M.; Devred, A.; Piccin, R.

    2017-12-01

    The high voltage (HV) insulation on the ITER magnet feeder superconducting busbars and current leads will be prepared from S-glass fabric, pre-impregnated with an epoxy resin, which is interleaved with polyimide film and wrapped onto the components and cured during feeder manufacture. The insulation architecture consists of nine half-lapped layers of glass/Kapton, which is then enveloped in a ground-screen, and two further half-lapped layers of glass pre-preg for mechanical protection. The integrity of the HV insulation is critical in order to inhibit electrical arcs within the feeders. The insulation over the entire length of the HV components (bus bar, current leads and joints) must provide a level of voltage isolation of 30 kV. In operation, the insulation on ITER busbars will be subjected to high mechanical loads, arising from Lorentz forces, and in addition will be subjected to fretting erosion against stainless steel clamps, as the pulsed nature of some magnets results in longitudinal movement of the busbar. This work was aimed at assessing the wear on, and the changes in, the electrical properties of the insulation when subjected to typical ITER operating conditions. High voltage tests demonstrated that the electrical isolation of the insulation was intact after the fretting test.

  14. Optimum Scheme for Insulation System in HV Generator Based on Electromagnetic Analysis

    Directory of Open Access Journals (Sweden)

    A. Gholami

    2011-06-01

    Full Text Available Electrical insulations are one of the basic parts of electrical machinery in any sizes and characteristics. Focusing on insulating, studies on the operation of industrial-electrical machinery came to the fact that the most important part of a machine is the Stator. This fact reveals the requirement for inspection of the electrical machine insulation along with the electromagnetic tensions. Therefore with respect to insulation system improvement of stator, the HV generator can be optimized. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electromagnetic performance is Finite Element Method (FEM which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical stresses in order to increase the power of generator in the same volume of core. These processes of optimization have been done according the proposed algorithm. In this algorithm the technical constraints have been considered. This paper describes the process used to perform classical design and improvement analysis of stator slot’s insulation with respect to objective function and constraints.

  15. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  16. Dynamic phase coexistence and non-Gaussian resistance fluctuations in VO2 near the metal-insulator transition

    Science.gov (United States)

    Samanta, Sudeshna; Raychaudhuri, A. K.; Zhong, Xing; Gupta, A.

    2015-11-01

    We have carried out an extensive investigation on the resistance fluctuations (noise) in an epitaxial thin film of VO2 encompassing the metal-insulator transition (MIT) region to investigate the dynamic phase coexistence of metal and insulating phases. Both flicker noise as well as the Nyquist noise (thermal noise) were measured. The experiments showed that flicker noise, which has a 1 /f spectral power dependence, evolves with temperature in the transition region following the evolution of the phase fractions and is governed by activated kinetics. Importantly, closer to the insulating end of the transition, when the metallic phase fraction is low, the magnitude of the noise shows an anomaly and a strong non-Gaussian component of noise develops. In this region, the local electron temperature (as measured through the Nyquist noise thermometry) shows a deviation from the equilibrium bath temperature. It is proposed that this behavior arises due to current crowding where a substantial amount of the current is carried through well separated small metallic islands leading to a dynamic correlated current path redistribution and an enhanced effective local current density. This leads to a non-Gaussian component to the resistance fluctuation and an associated local deviation of the electron temperature from the bath. Our experiment establishes that phase coexistence leads to a strong inhomogeneity in the region of MIT that makes the current transport strongly inhomogeneous and correlated.

  17. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  18. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  19. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS Inc., Pittsburgh, PA (United States)

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  20. Design parameters for single pipe thermal insulation systems for offshore flow assurance

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Adam; Johnsen, Erik; Kopystynski, Adam; Simonsen, Eirik; Boye-Hansen, Allan [Bredero Shaw (Thermotite), Orkanger (Norway)

    2005-07-01

    Limit state design of subsea thermal insulation systems has been shown to be feasible and robust. This requires careful implementation of extensive long-term laboratory data and property models into verified FEA / FDA tools. Such simulations allow for the determination of not only the steady state response, but also the transient response of the system as a function of temperature, hydrostatic loading, ageing, water ingress and time. This departure from the traditional use of monolithic thermal conductivities, heat capacities and water absorption values can allow in some cases for a reduction in the thickness of insulation, whilst simultaneously enabling control of conservatism. The current paper discusses the important influences affecting the performance of insulant systems and the results of verification testing along with design examples where the generally accepted design method is compared to the limit state approach. (author)

  1. Evaluation of a strengthening and insulation system for high temperature BSCCO-2223 superconducting tape

    Energy Technology Data Exchange (ETDEWEB)

    King, C.; Mantone, A. [GE Medical Systems, Florence, SC (United States); Herd, K.; Laskaris, T. [GE Corp. Research and Development Center, Schenectady, NY (United States)

    1995-12-31

    Recent advances in BSCCO-2223 superconducting tape quality and length have led to demonstration programs for coil performance. The conductors in these coils need to be insulated without damage to the superconducting properties. A paper insulation process developed at the General Electric Company (GE) for low temperature superconducting Nb{sub 3}Sn tape has been modified to provide the same insulation system to high temperature (HTS) superconducting tapes, such as BSCCO-2223. In this paper, we report on the insulation process and its effect on the tape performance. Several long lengths of conductor have been tested, unwound, insulated and retested to examine any degradation issues. Additionally, it is known that HTS materials are inherently weak in relation to the winding and handling stresses in a manufacturing environment. A system to provide mechanical stabilization to Nb{sub 3}Sn tape through a lamination process has been successfully applied to high temperature superconductors as a method to build a strong, windable composite. The system is described and mechanical and electrical properties of the strengthened tapes are discussed.

  2. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  3. Insulator and Clerance Requirements in Overhead Line Transmission Systems without Shield Wires

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2008-01-01

    This paper theoretically examines the required insulation lengths and clearances in 400 kV overhead line systems when not making use of ground wires as lightning protection. The influence of lightning strikes to the system is investigated based on dynamic transmission line simulations of a 400 kV...

  4. Metal-insulator transition in disordered systems from the one-body density matrix

    DEFF Research Database (Denmark)

    Olsen, Thomas; Resta, Raffaele; Souza, Ivo

    2017-01-01

    systems. In particular, for noninteracting systems the geometrical marker can be obtained from the configurational average of the norm-squared one-body density matrix, which can be calculated within open as well as periodic boundary conditions. This is in sharp contrast to a classification based......The insulating state of matter can be probed by means of a ground state geometrical marker, which is closely related to the modern theory of polarization (based on a Berry phase). In the present work we show that this marker can be applied to determine the metal-insulator transition in disordered...

  5. A note on the topological insulator phase in non-Hermitian quantum systems.

    Science.gov (United States)

    Ghosh, Pijush K

    2012-04-11

    Examples of non-Hermitian quantum systems admitting a topological insulator phase are presented in one, two and three space dimensions. All of these non-Hermitian Hamiltonians have entirely real bulk eigenvalues and unitarity is maintained with the introduction of appropriate inner products in the corresponding Hilbert spaces. The topological invariant characterizing a particular phase is shown to be identical for a non-Hermitian Hamiltonian and its Hermitian counterpart, to which it is related through a non-unitary similarity transformation. A classification scheme for topological insulator phases in pseudo-Hermitian quantum systems is suggested.

  6. Impact of steep-front short-duration impulse on electric power system insulation

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, L M; Veverka, E F; Shaw, J H [Cooper Industries, Inc., Franksville, WI (USA). Cooper Power Systems; McConnell, B W [Oak Ridge National Lab., TN (USA)

    1991-04-01

    This research effort required the performance evaluation of three specific insulation systems in common usage by electric power transmission and distribution utilities under stresses imposed by: three characteristic impulse waveforms (two waves representative of steep-front short duration (SFSD) impulses and one representative of lightning), the cumulative effect of multiple shots'' of each pulse, 60 Hz voltage, and, where appropriate, and mechanical load. The insulation systems evaluated are the cellulose-paper/oil combination typical of power transformer and condenser bushing usage, the cellulose-paper/enamel/oil combination used in distribution transformer construction, and the porcelain/air combination representing transmission and distribution line structural insulation. 4 refs., 94 figs., 11 tabs.

  7. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  8. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2.

    Science.gov (United States)

    Yang, Lei; Mukhopadhyay, Alolika; Jiao, Yucong; Yong, Qiang; Chen, Liao; Xing, Yingjie; Hamel, Jonathan; Zhu, Hongli

    2017-08-17

    Thermally insulating materials, made from earth-abundant and sustainable resources, are highly desirable in the sustainable construction of energy efficient buildings. Cellulose from wood has long been recognized for these characteristics. However, cellulose can be a flammability hazard, and for construction this has been addressed via chemical treatment such as that with halogen and/or phosphorus, which leads to further environmental concerns. Fortunately, the structure of cellulose lends itself well to chemical modification, giving great potential to explore interaction with other compounds. Thus, in this study, cellulose nanofibers (CNFs) were nano-wrapped with ultrathin 1T phase molybdenum disulfide (MoS 2 ) nanosheets via chemical crosslinking, to produce an aerogel. Thermal and combustion characterization revealed highly desirable properties (thermal conductivity k = 28.09 mW m -1 K -1 , insulation R value = 5.2, limit oxygen index (LOI) = 34.7%, total heat release = 0.4 MJ m -2 ). Vertical burning tests also demonstrated excellent fire retardant and self-extinguishing capabilities. Raman spectra further revealed that MoS 2 remained unscathed after 30 seconds of burning in a 1300 °C butane flame. Considering the inherently low density of this material, there is significant opportunity for its usage in a number of insulating applications demanding specific fire resistance properties.

  9. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  10. 49 CFR 179.400-4 - Insulation system and performance standard.

    Science.gov (United States)

    2010-10-01

    ... specification— (1) Standard Heat Transfer Rate (SHTR), expressed in Btu/day/lb of water capacity, means the rate of heat transfer used for determining the satisfactory performance of the insulation system of a cryogenic tank car tank in cryogenic liquid service (see § 179.401-1 table). (2) Test cryogenic liquid means...

  11. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  12. Development of polystyrene-geopolymer composite for thermal insulating material and its properties with special regards to flame resistance

    Science.gov (United States)

    Mucsi, G.; Szabó, R.; Nagy, S.; Bohács, K.; Gombkötő, I.; Debreczeni, Á.

    2017-10-01

    As a first part of the research, systematic experimental series were conducted in order to develop an appropriate fly ash-based geopolymer binder focusing on the workability of the paste. In these series, the NaOH molar ratio and water glass/NaOH ratio were investigated and the fineness of the fly ash was optimized presented in a recent paper. Based on these results the effect of metakaolin on the mechanical properties was studied. After developing the appropriate binder, experimental series were carried out using ground polystyrene as light aggregate in various concentration (from 30 V/V% up to 98 V/V%) and geopolymer as a binder in order to develop a heat insulating material. Compressive and flexural strength, specimen density, flammability, freeze-thaw resistance were determined in order to characterize the composite product. As a result of the experimental investigation, it was found that the flexural strength of the composite was found to be ~400 kPa which is as high as the original polystyrene heat insulating panel. Additionally, the flammability was much better than the original pure PS product, the sample was not ignited even at higher PS content (90%). Furthermore, the freeze-thaw resistance of the composite improved compared with the neat geopolymer.

  13. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    Science.gov (United States)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  14. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  15. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  16. Building materials and systems with vacuum insulation panels for external walls; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Steinke, G.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at materials and systems using vacuum insulation panels (VIP) for the construction of external walls. The aim of this research project was the development, practical use and market introduction of VIP systems that take account of the special properties of VIP. Along with partners in industry, applications involving external and internal insulation were examined. The need for protecting the vacuum panels against mechanical damage is stressed. The specific needs for the protection of external and internal applications are discussed. The dynamic developments in this relatively new area are commented on. Various mounting systems are examined and commented on. The thermal properties of such insulation systems and applications are noted and commented on.

  17. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    International Nuclear Information System (INIS)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions

  18. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  19. Field-tuned superconductor–insulator transitions and Hall resistance in thin polycrystalline MoN films

    Science.gov (United States)

    Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju

    2018-02-01

    We report on the superconductor–insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν  ≃  0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2  +  1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP(T) \\propto |1  ‑  T/T C0| in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H)  =  σ xy (H)  ‑  σ xyn and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.

  20. Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames

    Science.gov (United States)

    Lee, Ah Rahm; Baek, Gwang Ho; Kim, Tae Yoon; Ko, Won Bae; Yang, Seung Mo; Kim, Jongmin; Im, Hyun Sik; Hong, Jin Pyo

    2016-07-01

    Three-dimensional (3D) stackable memory frames, including nano-scaled crossbar arrays, are one of the most reliable building blocks to meet the demand of high-density non-volatile memory electronics. However, their utilization has the disadvantage of introducing issues related to sneak paths, which can negatively impact device performance. We address the enhancement of complementary resistive switching (CRS) features via the incorporation of insulating frames as a generic approach to extend their use; here, a Pt/Ta2O5-x/Ta/Ta2O5-x/Pt frame is chosen as the basic CRS cell. The incorporation of Ta/Ta2O5-x/Ta or Pt/amorphous TaN/Pt insulting frames into the basic CRS cell ensures the appreciably advanced memory features of CRS cells including higher on/off ratios, improved read margins, and increased selectivity without reliability degradation. Experimental observations identified that a suitable insulating frame is crucial for adjusting the abrupt reset events of the switching element, thereby facilitating the enhanced electrical characteristics of CRS cells that are suitable for practical applications.

  1. Do clinical examination gloves provide adequate electrical insulation for safe hands-on defibrillation? I: Resistive properties of nitrile gloves.

    Science.gov (United States)

    Deakin, Charles D; Lee-Shrewsbury, Victoria; Hogg, Kitwani; Petley, Graham W

    2013-07-01

    Uninterrupted chest compressions are a key factor in determining resuscitation success. Interruptions to chest compression are often associated with defibrillation, particularly the need to stand clear from the patient during defibrillation. It has been suggested that clinical examination gloves may provide adequate electrical resistance to enable safe hands-on defibrillation in order to minimise interruptions. We therefore examined whether commonly used nitrile clinical examination gloves provide adequate resistance to current flow to enable safe hands-on defibrillation. Clinical examination gloves (Kimberly Clark KC300 Sterling nitrile) worn by members of hospital cardiac arrest teams were collected immediately following termination of resuscitation. To determine the level of protection afforded by visually intact gloves, electrical resistance across the glove was measured by applying a DC voltage across the glove and measuring subsequent resistance. Forty new unused gloves (control) were compared with 28 clinical (non-CPR) gloves and 128 clinical (CPR) gloves. One glove in each group had a visible tear and was excluded from analysis. Control gloves had a minimum resistance of 120 kΩ (median 190 kΩ) compared with 60 kΩ in clinical gloves (both CPR (median 140 kΩ) and non-CPR groups (median 160 kΩ)). Nitrile clinical examination gloves do not provide adequate electrical insulation for the rescuer to safely undertake 'hands-on' defibrillation and when exposed to the physical forces of external chest compression, even greater resistive degradation occurs. Further work is required to identify gloves suitable for safe use for 'hands-on' defibrillation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Universal scheme to generate metal–insulator transition in disordered systems

    International Nuclear Information System (INIS)

    Guo, Ai-Min; Xiong, Shi-Jie; Xie, X C; Sun, Qing-feng

    2013-01-01

    We propose a scheme to generate metal–insulator transition in the random binary layer (RBL) model, which is constructed by randomly assigning two types of layers along the longitudinal direction. Based on a tight-binding Hamiltonian, the localization length is calculated for a variety of RBLs with different cross section geometries by using the transfer-matrix method. Both analytical and numerical results show that a band of extended states could appear in the quasi-one-dimensional RBLs and the systems behave as metals by properly tuning the model parameters, due to the existence of a completely ordered subband, leading to a metal–insulator transition in parameter space. Furthermore, the extended states are irrespective of the diagonal and off-diagonal disorder strengths. Our results can be generalized to two- and three-dimensional disordered systems with arbitrary layer structures, and may be realized in Bose–Einstein condensates. (paper)

  3. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  4. Propylene based systems for high voltage cable insulation applications

    Science.gov (United States)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  5. Long time behavior and attractors for energetically insulated fluid systems

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2010-01-01

    Roč. 27, č. 4 (2010), s. 1587-1609 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier system * attractor * long time behavior Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5040

  6. Building elements and systems using vacuum insulated panels in external walling; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Steinke, G.

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) takes a look at a research project concerning vacuum-insulated building elements and systems. The advantages of the thin vacuum insulation panels (VIP) are listed and compared with the increasingly thick layers of conventional insulation required for low energy consumption buildings that meet so-called 'passive house' standard. The aims of the research project are discussed which addressed the particular requirements placed on the materials and their protection against external damage. The monitoring of vacuum state using RFID chips is discussed. Various protective elements are examined. Also, facade constructions and the avoidance of thermal short circuits are discussed. Illustrated examples of applications are presented and developments in this fast-moving area are commented on.

  7. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    Science.gov (United States)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  8. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  9. Technology of Double Thermal Insulation for the Repair and Energy Optimization of Existing Thermal Insulation Composite Systems

    Science.gov (United States)

    Belániová, Barbora; Antošová, Naďa

    2017-06-01

    The theme of improvement thermal proprieties of external cladding according to the New EU Directive is still a hot topic, which needs to be answered necessarily till December 2020. Maintenance and repair of existing ETICS became to also an actual open theme in search solutions for existing constructions. The aim of the research in this review is to analyze influence of layers the alternative thermal materials in technology "double thermal insulation". Humidity and temperature conditions will be further examined in connection with the development and colonization of microorganisms on surface construction.

  10. Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis

    OpenAIRE

    Prasanta Kundu; N.K. Kishore; A.K. Sinha

    2008-01-01

    Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UH...

  11. Polyisocyanurate systems for insulating and sandwich elements; Polyisocyanurat-Systeme fuer Daemm- und Sandwichelemente

    Energy Technology Data Exchange (ETDEWEB)

    Malotki, P. von [Elastogran GmbH, Lemfoerde (Germany)

    2000-07-01

    PUR rigid foam plates are laminated with flexible Al films, paper or glass non-wovens, or may be processed into sandwich elements with metallic top-layers via coil-coating. Dependence of heat insulation efficiency, dimensional stability and fire behavior of the foam on chemical composition and the blowing agents is considered and compared with polyisocyanurate foams. Recipes for the production of PIR heat insulation elements and sandwich elements are given.

  12. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  13. Photoinduced dynamics and nonequilibrium characteristics in quasi-one-dimensional effectron systems: Mott insulators vs band insulators

    Science.gov (United States)

    Yonemitsu, Kenji

    2005-01-01

    Effectron-effectron interactions play an important role in nonequilibrium properties of molecular materials. First, we show differences between photoinduced ionic-to-neutral and neutral-to-ionic transitions in quasi-one-dimensional extended Peierls Hubbard models with alternating potentials. Cooperative dynamics lead to nonlinear ionicity in the former, while uncooperative dynamics lead to quite linear ionicity in the latter, as a function of the energy supplied from the oscillating effectric field. Interchain effectron-effectron interactions bring about initial competition among metastable and stable domains in neighboring chains, slowing down the phase transition. Interchain elastic couplings are necessary to form a ferroeffectric long-range order. Second, we show differences between field-effect characteristics of Mott insulators and those of band insulators in one-dimensional Hubbard models, to which tight-binding models are attached for metallic effectrodes and scalar potentials are added for interfacial barriers. Ambipolar characteristics are found in the former, while unipolar characteristics generally appear in the latter. In the former, charge transport is cooperative so that the drain current is insensitive to the difference between the work function of the channel and that of the effectrodes, and thus insensitive to the polarity of the gate bias.

  14. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  15. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P sc ), in the case of reflectors installed, was reinforced.

  16. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  17. Understanding The Resistance to Health Information Systems

    OpenAIRE

    David Ackah; Angelito E Alvarado; Heru Santoso Wahito Nugroho; Sanglar Polnok; Wiwin Martiningsih

    2017-01-01

    User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing...

  18. RELEVANT OBJECTIVES OF ASSURANCE OF RELIABILITY OF FACADE SYSTEMS SERVING THERMAL INSULATION AND FINISHING PURPOSES

    Directory of Open Access Journals (Sweden)

    Yavorskiy Andrey Andreevich

    2012-12-01

    Full Text Available The authors consider up-to-date methods of implementation of requirements stipulated by Federal Law no. 261-FZ that encompasses reduction of heat losses through installation of progressive heat-insulation systems, cement plaster system (CPS, and ventilated facades (VF. Unresolved problems of their efficient application caused by the absence of the all-Russian regulatory documents capable of controlling the processes of their installation and maintenance, as well as the projection of their behaviour, are also considered in the article. The authors argue that professional skills of designers and construction workers responsible for the design and installation of façade systems influence the quality and reliability of design and construction works. Unavailability of unified solutions or regulations serves as the objective reason for the unavailability of the respective database; therefore, there is an urgent need to perform a set of researches to have the unified database compiled. The authors use the example of thermal insulation cement plaster systems designated for facades as results of researches into the quantitative analysis of safety systems. Collected and systematized data that cover defects that have proven to be reasons for failures, as well as potential methods of their prevention are also studied. Data on pilot studies of major factors of influence onto reliability of glutinous adhesion of CPS to the base of a wall are provided.

  19. Superhydrophobic RTV silicone rubber insulator coatings

    Science.gov (United States)

    Seyedmehdi, Seyed Amirhossein; Zhang, Hui; Zhu, Jesse

    2012-01-01

    On wet days, environmental contamination of outdoor insulation surfaces can reduce the reliability of electrical transmission systems and lead to flashover and arcing over the entire insulator. The use of superhydrophobic coatings would resolve this problem due to their self-cleaning effect. Water droplets can pick up dirt particles and remove contamination from the surfaces of insulators. This paper reports on a study to make a superhydrophobic RTV silicone rubber coating that has contact angles of higher than 145° and good UV durability. The Inclined Plane Test, water durability test and adhesion test are presented to show the effectiveness of this coating and the best formulations. The results of tracking and erosion resistance test (Inclined Plane Test) showed that formulations with at least 35 wt% ATH can be used for superhydrophobic RTV insulator coatings.

  20. Development of a Leave-in-Place Slab Edge Insulating Form System

    Energy Technology Data Exchange (ETDEWEB)

    Marc Hoeschele; Eric Lee

    2009-08-31

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom

  1. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  2. Design and Construction of a Live Insulator Washing System for Transformers

    OpenAIRE

    Lizama-Cámara Y.A.; Mendieta-Antúnez J.A.; Blanco-Brisset E.; Olivares Galván J.C.; Escarela-Pérez R.

    2012-01-01

    Through the electrical industry history there have been developments of different cleaning methods to avoid the insulators flashovers due to pollution. This paper describes the principal cleaning methods applicable to transformers insulators, emphasizing the high pressure fixed-type live insulator washing method, which was applied for cleaning the insulators of 900 MVA transformer bank of the “Laguna Verde” power plant localized at the state of Veracruz in Mexico. We propose a transformer ins...

  3. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  4. A study on the insulation coordination of 765 kV system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Boo; Shim, Eung Bo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Lee, Yong Han; Youn, Jae Yeong; Hwang, Chi Woo; Jung, Dong Hak [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1995-12-31

    Analysis of the power frequency temporary overvoltage. Analysis of switching surges - Fault imitation, closing and re closing, fault clearing. Analysis of lightning surges. Insulation design of 765 kV overhead transmission line. Insulation coordination of 765 kV gas insulated substation. Transient recovery voltage and high speed ground switch (author). 38 refs., 55 figs.

  5. Impact resistant battery enclosure systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  6. Low carrier concentration crystals of the topological insulator Bi2-xSbxTe3-ySey: a magnetotransport study

    NARCIS (Netherlands)

    Pan, Y.; Wu, D.; Angevaare, J.R.; Luigjes, H.; Frantzeskakis, E.; de Jong, N.; van Heumen, E.; Bay, T.V.; Zwartsenberg, B.; Huang, Y.; Snelder, M.; Brinkman, Alexander; Golden, M.S.; de Visser, A.

    2014-01-01

    In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)2(Te,Se)3 (BSTS) has been proposed as a topological insulator with high resistivity and a low carrier concentration (Ren et al 2011 Phys. Rev. B 84 165311).

  7. High Voltage Resistive Divider Based on Cast Microwire in Glass Insulation on 6–24 kV Alternating Current of Commercial Frequency.

    Directory of Open Access Journals (Sweden)

    Juravleov A.

    2008-12-01

    Full Text Available It is presented the analysis and description of the construction of the high voltage resistive divider on the base of cast microwire in glass insulation on 6–24 kV alternating current of commercial frequency. It is presented the procedure of compensation of frequency error during the process of fabrication of divides and results of tests of the sample model of the divider as well.

  8. A vacuum system for the thermal insulation of the SciFi distribution lines and manifolds

    CERN Document Server

    Joram, Christian

    2017-01-01

    This note describes some calculations and estimates for the layout, technology choice and performance of a vacuum system which shall ensure thermal insulation of the distribution lines and manifolds of the SiPM cooling system of the LHCb SciFi detector. We estimate the heat losses in concentric corrugated stainless steel pipes which leads to the conclusion that the pipes need to be evacuated to a pressure of about 1·10$^{-4}$ mbar. We then estimate the pumping conductance of the pipes and find that it will dominate over the effective pumping speed of any pump. We therefore conclude that a turbo molecular pump of small nominal pumping speed, which can easily achieve end pressures below 10$^{-5}$ mbar is adequate for this purpose. A preliminary layout of the vacuum system is being discussed at the end of the document.

  9. Description and characterization of system for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Rudbeck, C.; Svendsen, S.

    1999-06-01

    Lately there has been quite a large focus on retrofitting of the Danish buildings. The retrofitting of the building is done in order to solve one or more of the following problems: bad indoor climate, large use of energy for heating, insufficient durability or architectural unsatisfactory. In order to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here. As there are several different systems for external insulation, each with different properties, there is a need for a systematic approach when the building designer chooses which system should be used on the building which is to be retrofitted. All 12 systems are described using a format that subdivides the information from the producers into description of the system, drawings showing the system and index-numbers regarding heat, moisture and economy. From the 12 systems descriptions it is seen that the investment cost for most of the system used for retrofitting and external insulation is almost equal. The parameters which separates the systems from each other is the maintenance cost and the cost of the heat transmission loss through the retrofitting-system. According to the calculations there is not one system which performs better than the others when changing the parameters. The choice of a system for retrofitting depends (as far as total economy is concerned) mainly on the maintenance cost (which is difficult to predict) and the energy cost. Likewise the life time of the retrofitting system does also influence the total economy. Apart from these three factors aesthetics should also be taken into account when choosing a retrofitting system but this aspect has not been dealt with in this report. (EHS)

  10. Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0

    Science.gov (United States)

    Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan

    2010-01-01

    The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.

  11. Discharge Onset Voltage Prediction for a Gas-Insulated System Via the Figure-of-Merit Concept

    DEFF Research Database (Denmark)

    Crichton, George C; Vibholm, Svend

    1987-01-01

    The accuracy of discharge onset prediction via thefigur figure-of-merit concept for a strongly electronegative gas is examined. A coaxial system is employed, for which the inner electrode possesses a surface roughness of Ra=35 ¿m. With SF6 as the insulating medium a reference discharge-onset cha......The accuracy of discharge onset prediction via thefigur figure-of-merit concept for a strongly electronegative gas is examined. A coaxial system is employed, for which the inner electrode possesses a surface roughness of Ra=35 ¿m. With SF6 as the insulating medium a reference discharge...

  12. Design and Construction of a Live Insulator Washing System for Transformers

    Directory of Open Access Journals (Sweden)

    Lizama-Cámara Y.A.

    2012-04-01

    Full Text Available Through the electrical industry history there have been developments of different cleaning methods to avoid the insulators flashovers due to pollution. This paper describes the principal cleaning methods applicable to transformers insulators, emphasizing the high pressure fixed-type live insulator washing method, which was applied for cleaning the insulators of 900 MVA transformer bank of the “Laguna Verde” power plant localized at the state of Veracruz in Mexico. We propose a transformer insulator cleaning methodology, which identifies the main variables to take into account (the voltage level of the transformers, the pollution level of the insulators, determination of the optimal wash time, the amount of water, the optimal pressure of water jet, the maximum conductivity of the water and the wind velocity, reference values are given for these variables. In addition, we present an economic cost analysis when applying a method of this kind in an electric substation.

  13. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report.

  14. BOA: Asbestos pipe-insulation removal robot system. Phase I. Topical report, November 1993--December 1994

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.E.

    1995-01-01

    Based on several key design criteria and site visits, we developed a Robot design and built a system which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure. Experimental results indicated that the current robotic abatement process is sound yet needs to be further expanded and modified. One of the main discoveries was that a longitudinal cut to fully allow the paddles to dig in and compress the insulation off the pipe is essential. Furthermore, a different cutting method might be explored to alleviate the need for a deeper cut and to enable a combination of certain functions such as compression and cutting. Unfortunately due to a damaged mechanism caused by extensive testing, we were unable to perform vertical piping abatement experiments, but foresee no trouble in implementing them in the next proposed Phase. Other encouraging results have BOA removing asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. However, we feel confident that we can double the asbestos removal rate by improving cutting speed, and increasing the length of the BOA robot. The containment and vacuum system on BOA is able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/8-hr. shift. Currently, BOA weighs about 117 pounds which is more than a human is permitted to lift overhead under OSHA requirements (i.e., 25 pounds). We are considering designing the robot into two components (i.e., locomotor section and cutter/removal section) to aid human installation as well as incorporating composite materials. A more detailed list of all the technical modifications is given in this topical report

  15. Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta; Tripathi, S.K. [Panjab University, Centre of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2013-11-15

    This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al{sub 2}O{sub 3}/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N{sub ss}) and series resistance (R{sub s}) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias I-V, C-V, and G/w-V characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al{sub 2}O{sub 3} layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R{sub s}) and barrier height ({phi} {sub b}) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias I-V data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height ({phi} {sub e}) for MS and MIS diode. The N{sub ss} values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode. (orig.)

  16. The correlation of the results of capacitance mapping and of sheet resistance mapping in semi-insulating 6H-SiC

    International Nuclear Information System (INIS)

    Lin Shenghuang; Chen Zhiming; Liang Peng; Jiang Dong; Xie Huajie; Yang Ying

    2010-01-01

    A combination of complex surface capacitance mapping and sheet resistance mapping is applied to establish the origin of resistance variations on semi-insulating (SI) 6H-SiC substrates. The direct correlation between the capacitance quadrature and the sheet resistance is found in vanadium-doped SI samples. Regions with low capacitance quadrature show high sheet resistance. This indicates, associated with the nonhomogeneity of sheet resistance on the substrate, that the quality of crystallization is not good enough, which also leads to resistivity nonhomogeneity when comparing with different types of deep defects. According to the capacitance mapping, the region with bad crystallization quality has a high radio absorption coefficient. Another correlation is established between the capacitance in-phase and sheet resistance for the vanadium-doped sample. In this sample, the capacitance in-phase map shows not only the surface topography, but also the same distribution trend as the sheet resistance, namely, regions of high capacitance in-phase reveal high sheet resistance.

  17. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    Science.gov (United States)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  18. Importância da resitência insulínica na hepatite C crônica Insulin resistance in chronic hepatitits C

    Directory of Open Access Journals (Sweden)

    Edison Roberto Parise

    2007-06-01

    Full Text Available OBJETIVO: Revisar a importância da resistência insulínica no desenvolvimento da hepatite C crônica e sua interferência na resposta ao tratamento antiviral de pacientes infectados pelo vírus da hepatite C. FONTE DE DADOS: Revisão bibliográfica de trabalhos publicados pelo MEDLINE e dados dos próprios autores. SÍNTESE DE DADOS: Nos últimos anos, grande número de publicações tem demonstrado importante associação entre resistência insulínica e hepatite C crônica. Aumento na prevalência de diabetes mellitus tipo 2, desenvolvimento de esteatose hepática (principalmente nos pacientes com infecção pelo genótipo não-3, progressão mais rápida da doença e redução na taxa de resposta virológica sustentada ao tratamento com interferon peguilado e ribavirina, têm sido todos associados à presença de resistência insulínica nos pacientes infectados pelo vírus da hepatite C. A produção aumentada de fator de necrose tumoral pelo core do vírus da hepatite C é o principal mecanismo responsável pelo aparecimento da resistência insulínica. O fator de necrose tumoral afetaria a fosforilação do substrato do receptor de insulina diminuindo a captação de glicose e acarretando hiperinsulinemia compensatória. Aumento da siderose hepática e alterações dos níveis circulantes das adipocitocinas podem ter efeito adicional sobre a sensibilidade à insulina na hepatite C crônica. CONCLUSÕES: O diagnóstico e o tratamento da resistência insulínica nesses pacientes podem não só evitar o aparecimento das complicações, mas também prevenir a progressão da doença e, possivelmente, aumentar a taxa de resposta virológica sustentada ao tratamento com interferon peguilado e ribavirina.OBJECTIVE: To revise the importance of insulin resistance in the development of chronic hepatitis C and its interference in the response to the antiviral treatment of these patients. DATA SOURCE: Bibliographic revision of published papers in the

  19. Critical metal-insulator transition and divergence in a two-particle irreducible vertex in disordered and interacting electron systems

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav

    2014-01-01

    Roč. 90, č. 4 (2014), "045143-1"-"045143-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : metal-insulator transition * disordered and interacting electron systems * dynamical mean-field theory * critical behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  20. Acoustic and Thermal Testing of an Integrated Multilayer Insulation and Broad Area Cooling Shield System

    Science.gov (United States)

    Wood, Jessica J.; Foster, Lee W.

    2013-01-01

    A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.

  1. Systemic resistance induced by rhizosphere bacteria

    OpenAIRE

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to ...

  2. Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, D.L.; Graves, R.S.; Yarbrough, D.W.; Weaver, F.J.

    1991-09-01

    The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

  3. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  4. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  5. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    Science.gov (United States)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  6. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    KAUST Repository

    Shen, Shida

    2017-12-29

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  7. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  8. Particle contamination in gas-insulated systems: new control methods and optimum SF6/N2 mixtures

    International Nuclear Information System (INIS)

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    The feasibilities of two new separate techniques to control particle contamination in practical gas-insulated sytems were tested in a small-scale concentric cylinder geometry. In one technique an insulating coating was first formed on the particles in a contaminated system by low-pressure discharges in appropriate gases such as 1-C 3 F 6 and c-C 4 F 8 . When SF 6 was subsequently introduced into the same system at practical pressure as the operating insulation, the considerable harm ordinarily caused by particles was found to be eliminated. The nature of the coating formed also on the electrodes in this process was studied, with the conclusion that the observed benefits were primarily due to coating on particles, not on electrodes. In the second technique the particles, moved randomly by electrical stress, struck and adhered to the surface of a tacky insulating solid material; they were subsequently encapsulated in a melt-resolidify cycle without electrical stress. This trapping technique was also found to eliminate the harmful effects of particles in SF 6 at practical pressure. A technique for producing a trapping material with temperature characteristics appropriate for practical apparatus was devised. The effect of particle contamination on the dielectric strength of SF 6 /N 2 mixtures was studied as a function of total pressure and percentage of each gas. Optimum total pressure (approx. 6 atm) and optimum percentages (60% SF 6 /40% N 2 ) were observed in breakdown tests in particle-contaminated concentric cylinder geometry

  9. Development of test systems for characterizing emissions from spray polyurethane foam insulation (SPFI)

    Science.gov (United States)

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanates, amines, flame retardants (FRs), blowing agents, aldehydes and other organic compounds that may be emitted from SPFI is not well understood. EPA is de...

  10. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  11. Understanding The Resistance to Health Information Systems

    Directory of Open Access Journals (Sweden)

    David Ackah

    2017-07-01

    Full Text Available User resistance is users’ opposition to system implementation. Resistance often occurs as a result of a mismatch between management goals and employee preferences. There are two types of resistance to health iformation system namely active resistance and passive resistance. The manifestation of active resistance are being critical,  blaming/accusing, blocking, fault finding, sabotaging, undermining, ridiculing, intimidating/threatening, starting rumors, appealing to fear, manipulating arguing, using facts selectively, distorting facts and  raising objections. The manifestation of passive resistance are agreeing verbally but not following through, failing to implement change, procrastinating/dragging feet, feigning ignorance, withholding information, suggestions, help or support, and standing by and allowing the change to fail.

  12. Wave packets in mesoscopic systems. From time-dependent dynamics to transport phenomena in graphene and topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Krueckl, Viktor

    2013-05-01

    At the beginning of 21th century, the range of solid state materials was extended by crystals featuring charge excitations with a chiral spin or pseudo-spin texture close to the Fermi energy. Such exceptional electronic properties can be found in graphene or topological insulators, which both render a great potential for upcoming electronic devices. In this thesis, mesoscopic systems of such solid state materials are investigated by a time-dependent scheme, which describes the electronic excitations by the propagation of wave packets. Based on the time evolution of initial states dynamical and static observables are studied and new electronic phenomena are revealed. For example, the motion of electrons in graphene or topological insulators exhibit time-dependent features like Bloch-Zener oscillations or wave-packet revivals, which are not present in conventional electron gases. Also static properties, like transport characteristics, are encoded in the time evolution. For instance, the switching features of a topological insulator constriction can be extracted from a single wave-packet injected into a lead. The underlying effect builds the foundation of a novel charge and spin-transistor, which is presented in this thesis alongside other proposals for novel experiments in graphene or topological insulators.

  13. Thermal/acoustical insulation foam

    Science.gov (United States)

    Lin, R. Y.; Struzik, E. A.

    1976-01-01

    Lightweight low-density substance can be used as fire resistant insulation in aircraft. Material density can be controlled over range from 0.6-1.2 pounds per cubic foot and has good thermal and acoustic properties.

  14. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  15. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  16. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  17. Resistência insulínica pode prejudicar a redução da espessura mediointimal em adolescentes obesos Insulin resistance can impair reduction on carotid intima-media thickness in obese adolescents

    Directory of Open Access Journals (Sweden)

    Priscila de Lima Sanches

    2012-10-01

    Full Text Available FUNDAMENTO: O processo aterosclerótico no nível endotelial começa em idade precoce e parece estar associado com a obesidade e suas comorbidades como a resistência insulínica. OBJETIVO: O objetivo deste estudo foi verificar a influência da resistência insulínica em marcadores inflamatórios e subclínicos de aterosclerose em adolescentes obesos. MÉTODOS: Sessenta e seis adolescentes obesos pós-púberes foram divididos em dois grupos de acordo com o índice de resistência insulínica estimado pelo Modelo de Avaliação da Homeostase (HOMA-RI: com resistência insulínica (RI n = 39 e sem resistência insulínica (NRI n = 27, e foram submetidos a uma intervenção interdisciplinar ao longo de um ano. A espessura mediointimal da artéria carótida comum (EMIC, e o tecido adiposo visceral e subcutâneo foram determinados por ultrassonografia. A composição corporal, pressão arterial, índice HOMA-RI, perfil lipídico e as concentrações de adipocinas [leptina, adiponectina, e inibidor do ativador do plasminogênio-1 (PAI-1] foram analisados antes e após a terapia. RESULTADOS: Ambos os grupos apresentaram melhoras significativas na composição corporal, estado inflamatório (redução da concentração de leptina e PAI 1; aumento de adiponectina plasmática e redução da EMIC. Apenas o grupo NRI mostrou correlação positiva entre as alterações na gordura visceral (∆Visceral e mudanças na EMIC (∆ EMIC (r = 0,42, p BACKGROUND: The atherosclerotic process at the endothelial level begins in early ages and seems to be associated with obesity and its comorbidities as insulin resistance. OBJECTIVE: The aim of this study was to verify the influence of insulin resistance on inflammatory and subclinical markers of atherosclerosis in obese adolescents. METHODS: Sixty-six post-pubescent obese adolescents were divided in two groups according to homeostasis model assessment of insulin resistance (HOMA-IR measurement: with insulin resistance

  18. Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions

    OpenAIRE

    Sierra-Pérez, Jorge

    2016-01-01

    In the European Union, the building sector accounts for more than 40% of the total energy consumption and environmental impacts, representing the area with the greatest potential for intervention. In addition to the existing policies that promote energy efficiency in buildings, the embodied energy and the environmental impacts contained in the building materials should be considered. In the case of the construction of insulation façade systems, the environmental implications are different dep...

  19. Optimization Parameters of Air-conditioning and Heat Insulation Systems of a Pressurized Cabins of Long-distance Airplanes

    Science.gov (United States)

    Gusev, Sergey A.; Nikolaev, Vladimir N.

    2018-01-01

    The method for determination of an aircraft compartment thermal condition, based on a mathematical model of a compartment thermal condition was developed. Development of solution techniques for solving heat exchange direct and inverse problems and for determining confidence intervals of parametric identification estimations was carried out. The required performance of air-conditioning, ventilation systems and heat insulation depth of crew and passenger cabins were received.

  20. Effect of surface hybridization on RKKY coupling in ferromagnet/topological insulator/ferromagnet trilayer system

    Directory of Open Access Journals (Sweden)

    Cong Son Ho

    2017-05-01

    Full Text Available We theoretically investigate the RKKY exchange coupling between two ferromagnets (FM separated by a thin topological insulator film (TI. We find an unusual dependence of the RKKY exchange coupling Φex on the TI thickness (tTI. First, when tTI decreases, the coupling amplitude increases at first and reaches its maximum value at some critical thickness, below which the amplitude turns to diminish. This trend is attributed to the hybridization between surfaces of the TI film, which opens a gap below critical thickness and thus turns the surfaces into insulating state from semi-metal state. In insulating phase, diamagnetism induced by the gap-opening compensates paramagnetism of Dirac state, resulting in a diminishing magnetic susceptibility and RKKY coupling. For typical parameters, the critical thickness in Bi2Se3 thin film is estimated to be in the range of 3-5 nm.

  1. Photonic Floquet topological insulators

    Science.gov (United States)

    Rechtsman, Mikael C.; Zeuner, Julia M.; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-09-01

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on the surface. In two dimensions, surface electrons in topological insulators do not scatter despite defects and disorder, providing robustness akin to superconductors. Topological insulators are predicted to have wideranging applications in fault-tolerant quantum computing and spintronics. Recently, large theoretical efforts were directed towards achieving topological insulation for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional, and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. However, since magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatterfree edge states requires a fundamentally different mechanism - one that is free of magnetic fields. Recently, a number of proposals for photonic topological transport have been put forward. Specifically, one suggested temporally modulating a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, where temporal variations in solidstate systems induce topological edge states. Here, we propose and experimentally demonstrate the first external field-free photonic topological insulator with scatter-free edge transport: a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate acts as `time'. Thus the waveguides

  2. Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V2O3

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Aeppli, G.; Carter, S. A.; Dai, P.; Rosenbaum, T. F.; Honig, J. M.; Metcalf, P.; Trevino, S. F.

    1998-11-01

    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V2O3) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V2-yO3, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V2O3, and the antiferromagnetic and paramagnetic phases of insulating V1.944Cr0.056O3. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a ``single lobe'' spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V2O3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for ħωinsulator carry substantial magnetic spectral weight. However, they are extremely short-ranged, extending only to the nearest neighbors. The phase transition to the antiferromagnetic insulator, from the paramagnetic metal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d orbitals at the Fermi level in V2O3.

  3. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  4. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    International Nuclear Information System (INIS)

    Yew, M.C.; Ramli Sulong, N.H.; Chong, W.T.; Poh, S.C.; Ang, B.C.; Tan, K.H.

    2013-01-01

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  5. Quantum and Classical Optics of Plasmonic Systems: 3D/2D Materials and Photonic Topological Insulators

    Science.gov (United States)

    Hassani Gangaraj, Seyyed Ali

    At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the

  6. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  7. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  8. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  9. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  10. Superconductor-insulator transition in two-dimensional dirty boson systems

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, M. (Department of Theoretical Physics, Royal Institute of Technology, S-100 44 Stockholm (Sweden)); Sorensen, E.S. (Department of Physics, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)); Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)); Young, A.P. (Department of Physics, University of California, Santa Cruz, California 95064 (United States))

    1994-05-01

    Universal properties of the zero-temperature superconductor-insulator transition in two-dimensional amorphous films are studied by extensive Monte Carlo simulations of bosons in a disordered medium. We report results for both short-range and long-range Coulomb interactions for several different points in parameter space. In all cases we observe a transition from a superconducting phase to an insulating Bose glass phase. From finite-size scaling of our Monte Carlo data we determine the universal conductivity [sigma][sup *] and the critical exponents at the transition. The result [sigma][sup *]=(0.55[plus minus]0.66)(2[ital e])[sup 2]/[ital h] for bosons with long-range Coulomb interaction is roughly consistent with experiments reported so far. We also find [sigma][sup *]=(0.14[plus minus]0.03)(2[ital e])[sup 2]/[ital h] for bosons with short-range interactions.

  11. A system for the thermal insulation of a pre-stressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    This invention concerns the thermal insulation of a pre-stressed concrete vessel for a pressurised water nuclear reactor, this vessel being fitted internally with a leak-proof metal lining. Two rings are placed at the lower and upper parts of the vessel respectively. The upper ring is closed with a cover. These rings differ in diameter, are fitted with a metal insulating and mark the limits of a chamber between the vaporisable fluid and the internal wall of the vessel. This chamber is filled with a fluid in the liquid phase up to the liquid/vapor interface level of the fluid and with a gas above that level, the covering of the rings forming a cold fluid liquid seal. Each ring is supported by the vessel. Leak-proof components take up the radial expansion of the rings [fr

  12. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  13. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  14. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  15. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    Science.gov (United States)

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  16. Impacto do volume de gordura aspirado na resistência insulínica após lipoaspiração Impact of the aspirated volume of fat tissue in the insulin resistance after liposuction

    Directory of Open Access Journals (Sweden)

    Sérgio de Souza Oliveira

    2013-02-01

    Full Text Available OBJETIVO: investigar a resistência insulínica imposta pela lipoaspiração, correlacionando sua intensidade com a extensão da operação. MÉTODOS: A amostra foi formada de 20 pacientes do sexo feminino sem comorbidades, com idade entre 21 e 43 anos, índice de massa corporal entre 19 e 27 Kg/m², submetidas à lipoaspiração isolada ou associada à prótese de mamas. Foram coletados os indicadores de resistência insulínica no início e término da cirurgia para o cálculo do Homeostasis Model Assessment (HOMA-IR. As variáveis operatórias foram tempo de lipoaspiração, tempo de prótese de mamas, áreas corporais lipoaspiradas e gordura total aspirada. RESULTADOS: O tempo de lipoaspiração foi 94 a 278 min (média=174 min, tempo de prótese de mamas de 20 a 140 min (média=65 min, gordura total aspirada de 680 a 4280 g (média=1778 g. A análise estatística foi realizada por uma linha de corte de 1500 g de gordura aspirada e revelou uma resistência insulínica pelo índice de HOMA significativamente mais intensa no grupo >1500 g (aumento de 123% em relação ao grupo d"1500 g (aumento de 53%, a partir dos dados basais (p=0,02. As demais variáveis operatórias não apresentaram correlação significativa. CONCLUSÃO: A resistência insulínica apresenta aumento significativo na lipoaspiração, correlacionada ao volume de gordura aspirado.OBJECTIVE: To investigate insulin resistance imposed by liposuction, correlating its intensity with the extent of the operation. METHODS: The sample consisted of 20 female patients without comorbidities, aged between 21 and 43 years, body mass index between 19 and 27 kg/m², undergoing liposuction alone or associated with breasts' prosthesis. We assessed insulin resistance at the beginning and end of the procedure by calculating the Homeostasis Model Assessment (HOMA-IR. The operative variables were length of liposuction, breast prosthesis time, body areas submitted to liposuction and total fat

  17. Translucent Insulation

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1998-01-01

    Two new types of translucent materials are presented. One is translucent fiber insulation and the other type is a new type of hony-comb made of Celulose-acetat. Data for the materials and calculations of energy savings when using the materials in building envelopes are presented....

  18. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension 'Part 2: Laboratory results (300K--80K). 13 refs., 7 figs

  19. Metal-enclosed air-insulated switchgear for the use in railway power supply systems; Metallgekapselte, luftisolierte Bahnstromschaltanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Loenard, D.; Northe, J. [Balfour Beatty Rail GmbH Power Systems, Offenbach (Germany); Blecher, U. [Ritter Starkstromtechnik GmbH und Co. KG, Geschaeftsbereich Anlagen und Werk fuer Schaltanlagen, Olfen (Germany)

    2004-07-01

    The medium-voltage switchgear of type TracFeed TAC has been designed for the use in standard, booster (1AC) and autotransformer (2AC) 25 kV 50/60 Hz railway power supply systems. This railway switchgear is of metal-enclosed air-insulated design and has been type tested according to EN 62271-200. It meets the special requirements described in the paper entitled ''Requirements on medium-voltage switchgear for railway power supply'' published in No. 10/2003. (orig.)

  20. DYNAMICS MODEL OF MOISTURE IN PAPER INSULATION-TRANSFORMER OIL SYSTEM IN NON-STATIONARY THERMAL MODES OF THE POWER TRANSFORMER

    Directory of Open Access Journals (Sweden)

    V.V. Vasilevskij

    2016-06-01

    Full Text Available Introduction. An important problem in power transformers resource prognosis is the formation of moisture dynamics trends of transformer insulation. Purpose. Increasing the accuracy of power transformer insulation resource assessment based on accounting of moisture dynamics in interrelation with temperature dynamics. Working out of moisture dynamics model in paper insulation-transformer oil system in conjunction with thermodynamic model, load model and technical maintenance model. Methodology. The mathematical models used for describe the moisture dynamics are grounded on nonlinear differential equations. Interrelation moisture dynamics model with thermodynamic, load and technical maintenance models described by UML model. For confirming the adequacy of model used computer simulation. Results. We have implemented the model of moisture dynamics in power transformers insulation in interrelation with other models, which describe the state of power transformer in operation. The proposed model allows us to form detailed trends of moisture dynamics in power transformers insulation basing on monitoring data or power transformers operational factors simulation results. We have performed computer simulation of moisture exchange processes and calculation of transformer insulation resource for different moisture trends. Originality. The offered model takes into account moisture dynamics in power transformers insulation under the influence of changes of the power transformers thermal mode and operational factors. Practical value. The offered model can be used in power transformers monitoring systems for automation of resource assessment of oil-immersed power transformers paper insulation at different phase of lifecycle. Model also can be used for assessment of projected economic efficiency of power transformers exploitation in projected operating conditions.

  1. Resistência insulínica e sua relação com os componentes da síndrome metabólica

    Directory of Open Access Journals (Sweden)

    Carla Campos Muniz Medeiros

    2011-11-01

    Full Text Available FUNDAMENTO: Os portadores de resistência à insulina apresentam maior predisposição para desenvolver posteriormente Síndrome Metabólica (SM, Diabetes Mellitus tipo 2 e Doença Cardiovascular (DCV. OBJETIVO: Avaliar a associação entre resistência insulínica (RI e os componentes da síndrome metabólica. MÉTODOS: Estudo transversal envolvendo 196 indivíduos entre 2 e 18 anos, usuários do sistema único de saúde. A associação da RI com os componentes da SM foi avaliada pelo teste do qui-quadrado, adotando-se o valor do índice da homeostase glicêmica (HOMA-RI > 2,5, e pelo teste de variância (ANOVA e Tukey, por meio da comparação das médias dos componentes nos quartis do HOMA-RI. A análise estatística foi realizada através do SPSS 17.0, com a adoção do nível de significância de 5%. RESULTADOS: RI foi observada em 41,3% da população estudada e esteve associada à faixa etária entre 10-18 anos (p = 0,002 RP = 3,2, à SM em ambos os sexos [Masculino (p = 0,022 RP = 3,7 e Feminino (p = 0,007 RP = 2,7] e ao triglicerídeo alterado (p = 0,005 RP = 2,9 no sexo feminino. Os valores médios dos componentes da SM diferiram significativamente entre os quartis do HOMA-RI (p < 0,01, com exceção do HDL-colesterol. CONCLUSÃO: A resistência insulínica pode ser considerada um marcador de risco cardiovascular.

  2. Asutan Motor Searah dengan Tahanan Bertingkat (Direct Current Starting Motor With Grading Resistance)

    OpenAIRE

    Hasto, Agung Tri

    2003-01-01

    The electrical system must has as low aspossible resistance to get high efjisien. One .of that is starting system. In this system, lowest resistance reach when it only use armature resistance. But lower resistance make higher current. In other hand, highest current should not higher than insulation system could take. So this study trying tofind to get safety on the starting system.

  3. User resistance to information system implementations

    DEFF Research Database (Denmark)

    Campbell, Robert H.; Grimshaw, Mark

    2016-01-01

    Users often resist information system implementations and it has been established that this can cause an implementation to fail. In this paper, the user attitudes that can cause resistance are examined using an established attitude change theory from social and cognitive psychology: the Elaboration......-ranging study are presented that, in addition to supporting this argument, identifies and classifies 19 new heuristics and peripheral influences (in addition to the nine already known) that commonly, and adversely, affect user attitudes and responses to new information system implementations....

  4. Washing Off Polyurethane Foam Insulation

    Science.gov (United States)

    Burley, Richard K.; Fogel, Irving

    1990-01-01

    Jet of hot water removes material quickly and safely. Simple, environmentally sound technique found to remove polyurethane foam insulation from metal parts. Developed for (but not limited to) use during rebuilding of fuel system of Space Shuttle main engine, during which insulation must be removed for penetrant inspection of metal parts.

  5. Proliferation resistance assessment of nuclear systems

    International Nuclear Information System (INIS)

    1978-09-01

    The first part of the present paper describes the basic assessment procedure that is adopted in the analysis of the three generic nuclear systems. Once-through, fast breeder, and thermal recycle systems are then treated in Sections II, III, and IV, respectively. In each of these sections, a reference system is examined, possible technical and institutional improvements are considered, and alternative system types are indicated. Section V then discusses the relative proliferation resistance of the three generic systems. Although this paper emphasizes the analysis and comparison of individual fuel cycle alternatives, Section V indicates briefly how these analyses then have to be considered in a broader context where systems coexist

  6. Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Jan

    2015-03-27

    In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T{sub coh}. While the density is rather high for small filling, for larger filling T{sub coh} is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T{sub coh} and an enhanced mass renormalization m{sup *}/m∝T{sub coh}{sup -1}. Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N{sub c}=2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single

  7. Optimal use of antibiotic resistance surveillance systems.

    Science.gov (United States)

    Critchley, I A; Karlowsky, J A

    2004-06-01

    Increasing concern about the emergence of resistance in clinically important pathogens has led to the establishment of a number of surveillance programmes to monitor the true extent of resistance at the local, regional and national levels. Although some programmes have been operating for several years, their true usefulness is only now being realised. This review describes some of the major surveillance initiatives and the way in which the data have been used in a number of different settings. In the hospital, surveillance data have been used to monitor local antibiograms and determine infection control strategies and antibiotic usage policies. In the community, surveillance data have been used to monitor public health threats, such as infectious disease outbreaks involving resistant pathogens and the effects of bioterrorism countermeasures, by following the effects of prophylactic use of different antibiotics on resistance. Initially, the pharmaceutical industry sponsored surveillance programmes to monitor the susceptibility of clinical isolates to marketed products. However, in the era of burgeoning resistance, many developers of antimicrobial agents find surveillance data useful for defining new drug discovery and development strategies, in that they assist with the identification of new medical needs, allow modelling of future resistance trends, and identify high-profile isolates for screening the activity of new agents. Many companies now conduct pre-launch surveillance of new products to benchmark activity so that changes in resistance can be monitored following clinical use. Surveillance data also represent an integral component of regulatory submissions for new agents and, together with clinical trial data, are used to determine breakpoints. It is clear that antibiotic resistance surveillance systems will continue to provide valuable data to health care providers, university researchers, pharmaceutical companies, and government and regulatory agencies.

  8. Azole-Resistant Central Nervous System Aspergillosis

    NARCIS (Netherlands)

    van der Linden, Jan W. M.; Jansen, Rogier R.; Bresters, Dorine; Visser, Caroline E.; Geerlings, Suzanne E.; Kuijper, Ed J.; Melchers, Willem J. G.; Verweij, Paul E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  9. Azole-resistant central nervous system aspergillosis.

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Jansen, R.R.; Bresters, D.; Visser, C.E.; Geerlings, S.E.; Kuijper, E.J.; Melchers, W.J.G.; Verweij, P.E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  10. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  11. LITERATURE REVIEW: HEAT TRANSFER THROUGH TWO-PHASE INSULATION SYSTEMS CONSISTING OF POWDERS IN A CONTINUOUS GAS PHASE

    Science.gov (United States)

    The report, a review of the literature on heat flow through powders, was motivated by the use of fine powder systems to produce high thermal resistivities (thermal resistance per unit thickness). he term "superinsulations" has been used to describe this type of material, which ha...

  12. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  13. Proliferation resistance assessment of nuclear systems

    International Nuclear Information System (INIS)

    1978-09-01

    The paper focuses on examining the degree to which nuclear systems could be used to acquire nuclear weapons material. It establishes a framework for proliferation resistance assessment and illustrates its applicability through an analysis of reference systems for once-through cycles, breeder cycles and thermal recycle. On a more tentative basis, the approach is applied to various alternative technical and institutional measures. This paper was also submitted to Working Groups 5 and 8

  14. Induced systemic resistance by fluorescent Pseudomonas spp.

    OpenAIRE

    Bakker, P.A.H.M.; Pieterse, C.M.J.; Loon, L.C. van

    2007-01-01

    Fluorescent Pseudomonas spp. have been studied for decades for their plant growth-promoting effects through effective suppression of soilborne plant diseases. The modes of action that play a role in disease suppression by these bacteria include siderophore-mediated competition for iron, antibiosis, production of lytic enzymes, and induced systemic resistance (ISR). The involvement of ISR is typically studied in systems in which the Pseudomonas bacteria and the pathogen are inoculated and rema...

  15. Induced Systemic Resistance by Beneficial Microbes

    OpenAIRE

    Corn\\xe M.J. Pieterse; Christos Zamioudis; Roeland L. Berendsen; David M. Weller; Saskia C.M. Van Wees; Peter A.H.M. Bakker

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense...

  16. Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO3

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, Guenevere E. D. K.; Zhong, Zhicheng

    2016-01-01

    The two-dimensional metal forming at the interface between an oxide insulatorand SrTiO3 provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide...... heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO3 heterointerface based on the modulation-doped amorphous-LaAlO3/SrTiO3 heterostructure, which exhibits both highelectron mobility exceeding 10, 000 cm2/V s and low carrier density on the order of ~1012 cm-2....... Along with unambiguous Shubnikov-de Haasoscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional subbands. This provides new insight into the electronic structure of conducting oxide...

  17. Möbius Kondo insulators

    Science.gov (United States)

    Chang, Po-Yao; Erten, Onur; Coleman, Piers

    2017-08-01

    Heavy fermion materials have recently attracted attention for their potential to combine topological protection with strongly correlated electron physics. To date, the ideas of topological protection have been restricted to the heavy fermion or `Kondo' insulators with the simplest point-group symmetries. Here we argue that the presence of nonsymmorphic crystal symmetries in many heavy fermion materials opens up a new family of topologically protected heavy electron systems. Re-examination of archival resistivity measurements in the nonsymmorphic heavy fermion insulators Ce3Bi4Pt3 and CeNiSn reveals the presence of a low-temperature conductivity plateau, making them candidate members of the new class of material. We illustrate our ideas with a specific model for CeNiSn, showing how glide symmetries generate surface states with a novel Möbius braiding that can be detected by ARPES or non-local conductivity measurements. One of the interesting effects of strong correlation is the development of partially localization or `Kondo breakdown' on the surfaces, which transforms Möbius surface states into quasi-one-dimensional conductors, with the potential for novel electronic phase transitions.

  18. Surface and step dynamics of a semi-infinite insulating antiferromagnet system

    CERN Document Server

    Tamine, M

    2003-01-01

    We have carried out a theoretical study of the localized spin-wave modes near the surface step of the insulating Heisenberg antiferromagnet. In this work, we study the full magnetic problem arising from the absence of translational symmetry due to the presence of a magnetic surface and step. The calculation concerns in particular the spin fluctuation dynamics and employs the matching procedure in the random-phase approximation. Only the nearest neighbours exchange interactions are considered between the spins in the model. The analytical formalism presented here determines the bulk and evanescent spin fluctuation fields in the two-dimensional plane normal to the surface and step regions. The results are used to calculate the localized modes of magnons associated with the step and surface terraces. The present model may be generalized to treat the spin fluctuations dynamics of other extended surface imperfections or nanostructures, provided they preserve the translation symmetry of the ordered spins along a di...

  19. Optical partial discharge diagnostic in SF6gas insulated system via multi-spectral detection.

    Science.gov (United States)

    Ren, Ming; Song, Bo; Zhuang, Tianxin; Yang, Shujing

    2018-02-20

    Light emitted from partial discharges (PDs) in SF 6 gas is investigated in the view point of insulation status diagnostics. Light intensity and integral spectrum of PD are proved to have significant correlations with PD activities and the involved dielectric interfaces. Based on synchronous light pulse detections in ultraviolet (UV), visible (VIS) and near-infrared (NIR) regions, the multispectral stochastic PD diagnosis is realized with more information beyond the conventional PD detections. The optical PD detection is also compared with ultra-high frequency (UHF) PD detection and acoustic emission (AE) PD detection in term of linearity, sensitivity and statistical property. Beyond that, a clustering analysis is performed on the multispectral photon counts of different conditions by quantifying them in a ternary diagram where some distinguishable regions emerge for PD recognition. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Nonequilibrium steady states in correlated electron systems - Photoinduced insulator-metal transition and optical response

    International Nuclear Information System (INIS)

    Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2010-01-01

    To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.

  1. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    Directory of Open Access Journals (Sweden)

    Kenichi Miyazaki

    2016-05-01

    Full Text Available We investigated the effects of chromium (Cr and niobium (Nb co-doping on the temperature coefficient of resistance (TCR and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2 films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  2. Role of the resistivity of insulating field emitters on the energy of field-ionised and field-evaporated atoms

    International Nuclear Information System (INIS)

    Arnoldi, L.; Silaeva, E.P.; Vurpillot, F.; Deconihout, B.; Cadel, E.; Blum, I.; Vella, A.

    2015-01-01

    In order to improve the accuracy of laser atom probe analyses, it is important to understand all the physical processes induced by the combination of the high electrical field and the femtosecond laser beam during field evaporation. New information can be accessed from the energy of evaporated surface atoms or field-ionised atoms of an imaging gas. In order to study the ions energy, we combine La-APT and FIM analyses in a new experimental setup equipped with electrostatic lenses. We report measurements for semiconductors and oxides and we study the influence of the illumination conditions (laser power and wavelength), the evaporation rate, the sample geometry and the tip preparation processes. The results are discussed taking into account the resistive properties of non-metallic samples and the photo-stimulated conductivity. This work clarifies the role of the laser and DC field in the energy deficit of field evaporated ions. - Highlights: • Energy from field emitted ion was studied. • Ion energy is influence by ohmic effect in atom probe and Field Ion Microscopy. • Ion energy deficit can be reduce by laser illumination and cancelled metallisation. • Tip electrical resistance is strongly dependant of the tip preparation.

  3. An interim report on the materials and selection criteria analysis for the Compact Ignition Tokamak Toroidal Field Coil Turn-to-Turn Insulation System

    International Nuclear Information System (INIS)

    Campbell, V.W.; Dooley, J.B.; Hubrig, J.G.; Janke, C.J.; McManamy, T.J.; Welch, D.E.

    1990-01-01

    Design criteria for the Compact Ignition Tokamak, Toroidal-Field (TF) Coil, Turn-to-Turn Insulation System require an insulation sheet and bonding system that will survive cryogenic cycling in a radiation environment and maintain structural integrity during exposure to the significant compressive and shear loads associated with each operating cycle. For thermosetting resin systems, a complex interactive dependency exists between optimum peak value, in-service property performance capabilities of candidate generic materials; key handling and processing parameters required to achieve their optimum in-service property performance as an insulation system; and suitability of their handling and processing parameters as a function of design configuration and assembly methodology. This dependency is assessed in a weighted study matrix in which two principal programmatic approaches for the development of the TF Coil Subassembly Insulation System have been identified. From this matrix study, two viable approaches to the fabrication of the insulation sheet were identified: use of a press-formed sheet bonded in place with epoxy for mechanical bonding and tolerance take-up and formation of the insulation sheet by placement of dry cloth and subsequent vacuum pressure impregnation. Laboratory testing was conducted to screen a number of combinations of resins and hardeners on a generic basis. These combinations were chosen for their performance in similar applications. Specimens were tested to screen viscosity, thermal-shock tolerance, and cryogenic tolerance. Cryogenic shock and cryogenic temperature proved to be extremely lethal to many combinations of resin, hardener, and cure. Two combinations survived: a heavily flexibilized bisphenol A resin with a flexibilized amine hardener and a bisphenol A resin with cycloaliphatic amine hardener. 7 refs., 12 figs., 6 tabs

  4. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  5. Proliferation resistance assessment of thermal recycle systems

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the major proliferation aspects of thermal recycle systems and the extent to which technical or institutional measures could increase the difficulty or detectability of misuse of the system by would-be proliferators. It does this by examining the various activities necessary to acquire weapons-usable material using a series of assessment factors; resources required, time required, detectability. It is concluded that resistance to proliferation could be improved substantially by collecting reprocessing, conversion and fuel fabrication plants under multi national control and instituting new measures to protect fresh MOX fuel. Resistance to theft at sub-national level could be improved by co-location of sensitive facilities high levels of physical protection at plants and during transportation and possibly by adding a radiation barrier to MOX prior to shipment

  6. Bridging of shrinkage gaps by Exterior Thermal Insulation Composite Systems (ETICS); Zur Frage der Ueberbrueckung von Bewegungsfugen durch Waermedaemmverbundsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzel, H. [Fraunhofer-Institut fuer Bauphysik, Holzkirchen (Germany)

    1998-10-01

    The bridging performance in respect to shrinkage gaps of ETICS is a subject of controversy. Practitioners point out good experience, calculative examinations, however, support the requirement of special tests prior to technical approval. Experiments at a half-timbered facade where an ETICS was applied to dry-out the wall confirm their bridging ability during the shrinkage of the wooden studs. Therefore a special bridging test is generally not necessary for an insulation thickness of 80 mm or more. (orig.) [Deutsch] Zur Frage der Ueberbrueckung von Bewegungsfugen durch Waermedaemmverbundsysteme gibt es unterschiedliche Meinungen: Die Anwender weisen auf gute Erfahrungen in der Praxis hin, rechnerische Untersuchungen lassen hingegen eine spezielle Ueberpruefung fuer zweckmaessig erscheinen, die bisher bei der Zulassung solcher Systeme gefordert worden ist. Untersuchungen an einem Fachwerk-Versuchshaus mit nachtraeglich aufgebrachtem Waermedaemmverbundsystem bestaetigen dessen fugenueberbrueckende Eigenschaft beim Schwinden des Fachwerkholzes. Demnach ist bei Daemmschichtdicken von mindestens 80 mm ein Nachweis der Fugenueberbrueckungs-Faehigkeit generell nicht erforderlich. (orig.)

  7. Heat conduction coefficient and coefficient of linear thermal expansion of electric insulation materials for superconducting magnetic system

    International Nuclear Information System (INIS)

    Deev, V.I.; Sobolev, V.P.; Kruglov, A.B.; Pridantsev, A.I.

    1984-01-01

    Results of experimental investigation of heat conduction coefficient and coefficient of linear thermal expansion and thermal shrinkages of the STEF-1 textolite-glass widely used in superconducting magnetic systems as electric insulating and structural material are presented. Samples of two types have been died: sample axisa is perpendicular to a plae of fiberglass layers ad sample axis is parallel to a plane of fiberglass layers. Heat conduction coefficient was decreased almost a five times with temperature decrease from 300 up to 5K and was slightly dependent on a sample type. Temperature variation of linear dimensions in a sample of the first type occurs in twice as fast as compared to the sample of the second type

  8. Fractional Chern Insulator

    Directory of Open Access Journals (Sweden)

    N. Regnault

    2011-12-01

    Full Text Available Chern insulators are band insulators exhibiting a nonzero Hall conductance but preserving the lattice translational symmetry. We conclusively show that a partially filled Chern insulator at 1/3 filling exhibits a fractional quantum Hall effect and rule out charge-density-wave states that have not been ruled out by previous studies. By diagonalizing the Hubbard interaction in the flat-band limit of these insulators, we show the following: The system is incompressible and has a 3-fold degenerate ground state whose momenta can be computed by postulating an generalized Pauli principle with no more than 1 particle in 3 consecutive orbitals. The ground-state density is constant, and equal to 1/3 in momentum space. Excitations of the system are fractional-statistics particles whose total counting matches that of quasiholes in the Laughlin state based on the same generalized Pauli principle. The entanglement spectrum of the state has a clear entanglement gap which seems to remain finite in the thermodynamic limit. The levels below the gap exhibit counting identical to that of Laughlin 1/3 quasiholes. Both the 3 ground states and excited states exhibit spectral flow upon flux insertion. All the properties above disappear in the trivial state of the insulator—both the many-body energy gap and the entanglement gap close at the phase transition when the single-particle Hamiltonian goes from topologically nontrivial to topologically trivial. These facts clearly show that fractional many-body states are possible in topological insulators.

  9. Performance of LI-1542 reusable surface insulation system in a hypersonic stream

    Science.gov (United States)

    Hunt, L. R.; Shideler, J. L.; Weinstein, I.

    1976-01-01

    The thermal and structural performance LI-1542 reusable surface insulation (RSI) tiles was investigated. The test panel was designed to represent part of the surface structure on a space shuttle orbiter fuselage along a 1250 K isotherm. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1820 K, Reynolds numbers of 2 millon and 5 million per meter, and dynamic pressures of 26 and 65 kPa. The RSI tiles demonstrated good thermal protection and structural integrity. High temperatures were caused by misalinement in tile height, offset the tile longitudinal alinement, and leakage around thermal seals when differential pressure existed across the panel. The damage tolerance of LI-1542 RSI appeared high. The tile coating crazed early in the test program, but this did not effect the tile integrity. Erosion of the tile edges occurred at forward-facing steps and at the ends of longitudinal gaps because of particle impacts and flow shear.

  10. Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems

    Science.gov (United States)

    Gulbrandsen, Sverre A.; Brataas, Arne

    2018-02-01

    We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.

  11. Effects Of Radiation On Insulators

    Science.gov (United States)

    Bouquet, Frank L.

    1988-01-01

    Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.

  12. Irradiation effects on organic insulators

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1986-01-01

    The overall objective of this work is to contribute to development of organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnet confinement. The system for producing standard 3.2-mm (0.125-in) diameter rod specimens discussed in previous reports has been further refined to permit the fabrication of both fiber-reinforced and heat-resin specimens from hot-melt resin systems. The method has been successfully used to produce very high quality specimens duplicating the G-11CR system and specimens from a variant of that system eliminating a boron-containing additive. We have also produced specimens from an epoxy system suitable for impregnation or potting operations and from a bismaleimide polyimide system. These materials will be used in the first irradiation program in the National Low Temperature Neutron Irradiation Facility (NLTNIF) reactor at Oak Ridge. We have refined the 4-K torsional shear test method for evaluating radiation degradation of the fiber-matrix interface and have developed a method of quantitatively measuring changes in fracture energy as a function of radiation dose. Cooperative work with laboratories in Japan and England in this area is continuing and plans are being formulated for joint production, irradiation, and testing of specimens

  13. Operating experience with factory-made air-insulated 1AC/2AC switchgear systems; Erste Betriebserfahrungen mit fabrikgefertigten, luftisolierten 1AC-/2AC-Schaltanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Northe, J. [Balfour Beatty Rail GmbH, Offenbach (Germany); Loenard, D. [Bombardier Transportation GmbH, Mannheim (Germany)

    2007-07-01

    Today, factory-made air-insulated switchgear systems of the type TracFeed {sup registered} are available for all supply versions of 16.7 Hz and 50 Hz a.c. railways. These are supported by auxiliary equipment to ensure reliable railway operation through specific protective functions and a simplified line test. (orig.)

  14. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Desjarlais, Andre Omer [ORNL; SmithPhD, Douglas [NanoPore, Inc.; LettsPhD, John [Firestone Building Products; YaoPhD, Jennifer [Firestone Building Products

    2016-01-01

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Building energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.

  15. Direct observation of quantum superconducting fluctuations across the 2D superconductor-insulator transition

    International Nuclear Information System (INIS)

    Armitage, N.P.; Crane, R.W.; Sambandamurthy, G.; Johansson, A.; Shahar, D.; Zaretskey, V.; Gruener, G.

    2008-01-01

    We review our recent measurements of the complex AC conductivity of thin InO x films studied as a function of magnetic field through the nominal 2D superconductor-insulator transition. These measurements-the first to probe anything other than the ω=0 response of these archetypical systems-reveal a significant finite frequency superfluid stiffness well into the insulating regime. Unlike conventional fluctuation superconductivity in which thermal fluctuations can give a superconducting response in regions of parameter space that do not exhibit long range order, these fluctuations are temperature independent as T→0 and are exhibited in samples where the resistance is large (greater than 10 6 Ω/□) and strongly diverging. We interpret this as the first direct observation of quantum superconducting fluctuations around an insulating ground state. This system serves as a prototype for other insulating states of matter that derive from superconductors

  16. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    procedure incorporates specific steps exposing the wall to different climate conditions, ranging from cold and dry to hot and humid, with and without a pressure gradient. This study showed that air infiltration alone might decrease the thermal resistance of a residential wall by 15 %, more for industrial walls. Results from the research underpin a discussion concerning the importance of a holistic approach to building design if we are to meet the challenge of energy savings and sustainability. Thermal insulation efficiency is a main concept used throughout, and since it measures utilization it is a partial measure of sustainability. It is therefore proposed as a necessary design parameter in addition to a performance indicator when designing building envelopes. The thermal insulation efficiency ranges from below 50 % for a wood stud wall poorly designed with incorporated VIP, while an optimized design with VIP placed in an uninterrupted external layer shows an efficiency of 99 %, almost perfect. Thermal insulation efficiency reflects the measured wall performance full scale test, thus indicating efficiency under varied environmental loads: heat, moisture and pressure. The building design must be as a system, integrating all the subsystems together to function in concert. New design methodologies must be created along with new, more reliable and comprehensive measuring, testing and integrating procedures. New super insulators are capable of reducing energy usage below zero energy in buildings. It would be a shame to waste them by not taking care of the rest of the system. This thesis details the steps that went into this study and shows how this can be done Key words: Vacuum insulation panels, VIP, serpentine edge, thermal bridge, composite film, gas diffusion, defect dominated, holistic approach, building enclosure, integrated testing and modeling, energy equivalent, field performance, air flow, thermal insulation efficiency.

  17. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  18. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    Science.gov (United States)

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  19. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    Science.gov (United States)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  20. Mechanisms of rhizobacteria-mediated induced systemic resistance

    NARCIS (Netherlands)

    Hase, S.; Pieterse, C.M.J.; Loon, L.C. van

    2001-01-01

    Some of non-pathogenic rhizosphere bacteria reduce disease by activating a resistance mechanism in the plant called rhizobacteria-mediated induced systemic resistance (ISR). Rhizobacteria-mediated ISR resembles classic pathogen-induced systemic acquired resistance (SAR) in that both types of

  1. 24 CFR 200.946 - Building product standards and certification program for exterior finish and insulation systems...

    Science.gov (United States)

    2010-04-01

    ... System (EIFS), Class PB. (xiv) EIMA Test Method 105.01-95—Standard Test Method for Alkali Resistance of... the administrator's mark shall be permanently affixed on the package or container of base and finish...) The minimum thickness of the base and finish coatings. (3) The fiberglass mesh is installed properly...

  2. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems...

  3. SF6/plastic-film insulated outdoor bushing for metalclad switchgear using system voltages of Um = 420 kV and above

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, H.

    1981-10-01

    The objective of the work has been the development of SF/sub 2//plastic-film insulated outdoor bushings for metalclad switchgear using system voltages of Um = 420 kV and above. With the conclusion of the dielectric tests on prototypes for Um = 420 kV, an outdoor bushing suitable for series production is now available. For the system voltages of Um = 525 kV and Um = 765 kV, research specimen have been successfully tested.

  4. Reentrant Metal-Insulator Transitions in Silicon -

    Science.gov (United States)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by

  5. Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers

    Directory of Open Access Journals (Sweden)

    Issouf Fofana

    2016-08-01

    Full Text Available The condition of the internal cellulosic paper and oil insulation are of concern for the performance of power transformers. Over the years, a number of methods have been developed to diagnose and monitor the degradation/aging of the transformer internal insulation system. Some of this degradation/aging can be assessed from electrical responses. Currently there are a variety of electrical-based diagnostic techniques available for insulation condition monitoring of power transformers. In most cases, the electrical signals being monitored are due to mechanical or electric changes caused by physical changes in resistivity, inductance or capacitance, moisture, contamination or aging by-products in the insulation. This paper presents a description of commonly used and modern electrical-based diagnostic techniques along with their interpretation schemes.

  6. Free Radicals Mediate Systemic Acquired Resistance

    Directory of Open Access Journals (Sweden)

    Caixia Wang

    2014-04-01

    Full Text Available Systemic acquired resistance (SAR is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO and reactive oxygen species (ROS serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR] abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azelaic acid (AzA, which in turn induces production of the SAR inducer glycerol-3-phosphate (G3P. Notably, this NO/ROS→AzA→G3P-induced signaling functions in parallel with salicylic acid-derived signaling. We propose that the parallel operation of NO/ROS and SA pathways facilitates coordinated regulation in order to ensure optimal induction of SAR.

  7. Semiannual report for the period October 1, 1978 to March 31, 1979 of work on: (1) superconducting power transmission system development; and (2) cable insulation development

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-11

    The objective of the program is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors, and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications. Progress in cable conductor and cable insulation development and in the engineering facilities for fabricating and testing the superconducting cables is reported. (LCL)

  8. Sustainability of solid wall external insulation in existing UK housing

    Science.gov (United States)

    Eleni, Raskou

    2007-12-01

    The great contribution of the construction and operation of the buildings to the CO2 emissions in the UK that reach 45-50% of the total, therefore their huge impact on the greenhouse effect and global warming, forces the global and local authorities to set strict regulations as regards their energy demand and the thermal performance of their components. Especially in the case of existing buildings, which are the great majority of the building stock in Great Britain and whose overall performance is bad due to the degradation of their structure and low efficiency of their services, the UK Building Regulations set standards that require refurbishment actions so that the buildings can comply with them. This study focuses on the environmental performance and cost-effectiveness of the upgrade of external solid walls with external insulation systems, led by the concept that external insulation is considered thermally more efficient than internal insulation, and it is accredited by manufacturers and approval bodies providing guaranteed results. The choice of insulation material should be mostly based on factors such as longevity, thermal resistance and ozone depletion potential synthesis. The importance of embodied energy is considered less critical than the above as the energy savings from the use of insulation can be even 1000 times higher than the energy consumed for their manufacture and transport. Wet render systems are usually applied to low-rise buildings while dry-cladding systems, being more expensive, are most appropriate for high-rise buildings. "Wall Reform" system consists of phenolic Kingspan insulant and insulating render with polystyrene beads that increases the total thermal resistance of the system. Its application on an existing residential, currently uninsulated, building has shown that the system including 40mm phenolic can reduce the total of heating and cooling demand to 80% with a proportional decrease of the total costs and CO2 emissions. The

  9. Better and cheaper extra insulation

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    1998-01-01

    of buildings. The thermal performance of the systems is compared to an ideal situation, showing that there is still a potential of further savings by improving the design of the insulation systems.To improve the thermal performance of the systems a number of product developments are proposed.......In the current energy plan, focus in placed on further savings of heat in buildings. If the target of the energy plan should be achieved, there is a need for saving heat both in new and existing buildings.The article investigate and compare the properties of several systems for external insulation...

  10. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  11. An overview of the multilayer insulation system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.; Nicol, T.; Schoo, C.J.

    1991-08-01

    The MLI system for the SSC is designed to meet strict performance requirements over the 25 year life of the accelerator. Thermal measurements at 80K and 20K have been used to create an MLI system that limits heat flow to design values while incorporating features that permit the use of large-scale fabrication techniques. The result is a cost-effective means of mass-producing MLI blankets of consistent geometry and thermal performance

  12. Feasibility study on renewable energy systems and selected insulation applications : smart solutions for energy saving

    OpenAIRE

    Cuadra Fonseca, Sergio

    2013-01-01

    Energy represents a big challenge for future generations; not only mineral and fossil energy sources are being exhausted, but also GHG emissions pollute the environment and disrupt life natural cycles bringing serious irreversible impacts on earth. Renewable energy sources, on the other hand, are unexhausted and free of pollution; solar power systems play an important role in the generation of clean energy, being one of the most cost-effective solutions. Besides, solar power systems have ...

  13. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  14. General response formula and application to topological insulator in quantum open system.

    Science.gov (United States)

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  15. Adiposidade corporal, mas não resistência insulínica, associa-se ao polimorfismo -675 4G/5G no gene PAI-1 em uma amostra de crianças mexicanas

    Directory of Open Access Journals (Sweden)

    Ulises de la Cruz-Mosso

    2013-10-01

    Full Text Available OBJETIVO: Elaboramos este estudo para avaliar se o polimorfismo -675 4G/5G no gene inibidor 1 do ativador do plasminogênio se associa à obesidade e à resistência insulínica em crianças mexicanas. MÉTODOS: Foi realizado um estudo transversal em 174 crianças, 89 delas com peso normal e 85 obesas, variando sua idade de 6 a 13 anos. Todas as crianças eram do estado de Guerrero e foram recrutadas de três escolas primárias na cidade de Chilpancingo, México. Os níveis de insulina foram determinados por prova imunoenzimática. Foi usado o modelo de avaliação da homeostase para determinar resistência insulínica. O polimorfismo -675 4G/5G no gene PAI-1 foi analisado pelo método reação de polimerase em cadeia-polimorfismo no comprimento dos fragmentos de restrição. RESULTADOS: A prevalência de resistência insulínica no grupo obeso foi mais alta (49,41% do que no grupo com peso normal (16,85%. O polimorfismo 4G/5G do PAI-1 foi encontrado em equilíbrio de Hardy Weinberg. O genótipo 4G/5G contribuiu para um aumento significativo da relação cintura-quadril (β = 0,02, p = 0,006, da circunferência da cintura (β = 4,42, p = 0,009 e da espessura da prega subescapular (β = 1,79, p = 0,04, mas não se relacionou com a resistência insulínica. CONCLUSÃO: O genótipo -675 4G/5G do gene PAI-1 se associou a aumento da adiposidade corporal em crianças mexicanas.

  16. PECULIARITIES OF DESIGN OF CURTAIN WALL SYSTEMS TO ASSURE THERMAL INSULATION

    Directory of Open Access Journals (Sweden)

    Golunov Sergej Anatolevich

    2012-10-01

    The results of laboratory tests (given the adjustments for permissible tolerances may be regarded as the principal criteria in the assessment of applicability of a curtain wall system in the course of a major building repair project or a new construction to assure the required reliability and durability.

  17. Design of an insulator leakage current measurement system based on PLC

    Science.gov (United States)

    Sun, Changhai; Wu, Yan; Han, Wenqi

    2013-03-01

    It is usually difficult to detect a small current signal in a high-pressure environment with strong electromagnetic interference. The paper introduces a high-voltage electrical equipment that is used to measure the small current. The system consists of three parts including the DC high voltage generator, data acquisition modules and PC data display section. The experimental results show that the device can acquire weak current signal effectively. Data acquisition module can communicate with the PC software with Ethernet, and the users can store, query the data through a database easily.

  18. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  19. Performance of Topological Insulator Interconnects

    OpenAIRE

    Philip, Timothy M.; Hirsbrunner, Mark R.; Park, Moon Jip; Gilbert, Matthew J.

    2016-01-01

    The poor performance of copper interconnects at the nanometer scale calls for new material solutions for continued scaling of integrated circuits. We propose the use of three dimensional time-reversal-invariant topological insulators (TIs), which host backscattering-protected surface states, for this purpose. Using semiclassical methods, we demonstrate that nanoscale TI interconnects have a resistance 1-3 orders of magnitude lower than copper interconnects and graphene nanoribbons at the nano...

  20. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    Science.gov (United States)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  1. Theoretical and experimental investigation of acoustically induced vibrations in thermal insulation systems in air and helium at pressures up to 50 bars

    International Nuclear Information System (INIS)

    Bereczky, A.

    1985-06-01

    In High Temperature Gas-cooled Reactors thermal insulating systems are installed. The components of these systems are forced to mechanical vibrations by blower noise or pipe flow. In this paper the coupling between a liner insulation and a sound field has been investigated in air and helium at static pressure up to 50 bars and SPL up to 160 dB. In the theoretical part it is shown that, by applying the law of acoustic reciprocity, the response of a structure in a diffuse sound field can be calculated. The main parameter influencing the coupling between a sound field and a structure is the radiation efficiency of the structure. The highest degree of coupling occurs at the coincidence frequency. In the experimental part the radiation efficiency of a cover plate insulation was measured. Then the system was excited by narrow - or broadband noise, and the structure response was measured. The experimental results and theoretical predictions are in good agreement. From theory and experiment a modelling rule was derived. This rule shows under which conditions model test must be performed and how the results can be extrapolated to original reactor conditions. (orig.) [de

  2. Aerogels Insulate Against Extreme Temperatures

    Science.gov (United States)

    2010-01-01

    In 1992, NASA started to pursue the development of aerogel for cryogenic insulation. Kennedy Space Center awarded Small Business Innovation Research (SBIR) contracts to Aspen Systems Inc., of Marlborough, Massachusetts, that resulted in a new manufacturing process and a new flexible, durable, easy-to-use form of aerogel. Aspen Systems formed Aspen Aerogels Inc., in Northborough, Massachusetts, to market the product, and by 2009, the company had become the leading provider of aerogel in the United States, producing nearly 20 million square feet per year. With an array of commercial applications, the NASA-derived aerogel has most recently been applied to protect and insulate people s hands and feet.

  3. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  4. The one-particle scenario for the metal-insulator transition in two-dimensional systems at T = 0

    CERN Document Server

    Tarasov, Y V

    2003-01-01

    The conductance of bounded disordered electron systems is calculated by reducing the original dynamic problem of arbitrary dimensionality to a set of strictly one-dimensional problems for one-particle mode propagators. The metallic ground state of a two-dimensional conductor, which is considered as a limiting case of three-dimensional quantum waveguide, is shown to result from its multi-modeness. As the waveguide thickness is reduced, e.g., by applying a 'pressing' potential, the electron system undergoes a set of continuous phase transitions related to discrete variations of the number of extended modes. The closing of the last current carrying mode is regarded as a phase transition of the electron system from metallic to dielectric state. The obtained results agree qualitatively with the observed 'anomalies' of resistivity of different two-dimensional electron and hole systems.

  5. HEAT TRANSFER THROUGH CYANATE ESTER EPOXY MIX AND EPOXY GPAP–DETDA ELECTRICAL INSULATIONS AT SUPERFLUID HELIUM TEMPERATURE

    CERN Document Server

    Pietrowicz, S; Canfer, S; Jones, S; Baudouy, B

    2011-01-01

    In the framework of the European project EuCARD (FP7) aiming at constructing a high magnetic field accelerator magnet of 13 T with Nb3Sn superconducting cables, new electrical insulation are thermally tested. This technology will use “conventional” electrical insulation in combination with pressurized superfluid helium (He II) or saturated helium at atmospheric pressure as coolant. Two composite insulation systems composed of cyanate ester epoxy mix or a tri-functional epoxy (TGPAP-DETDA) with fiberglass tape frame, have been chosen as potential candidates. The knowledge of their thermal properties is necessary for the thermal design and therefore samples have been tested in pressurized He II where heat is applied perpendicularly to the fibers between 1.6 K and 2.0 K. Overall thermal resistance is determined as a function of temperature and the results are compared with other electrical insulation systems used for accelerator magnets.

  6. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  7. Newly developed foam ceramic body shows promise as thermal insulation material at 3000 deg F

    Science.gov (United States)

    Blocker, E. W.; Paul, R. D.

    1967-01-01

    Optimized zirconia foam ceramic body shows promise for use as a thermal insulation material. The insulating media displays low density and thermal conductivity, good thermal shock resistance, high melting point, and mechanical strength.

  8. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  9. Multipurpose Thermal Insulation Test Apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  10. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  11. 76 FR 16795 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-03-25

    ...] The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for Comments..., FDA requested comments on a document for the National Antimicrobial Resistance Monitoring System....fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistance...

  12. Puncture resistance of Type B transport systems

    International Nuclear Information System (INIS)

    Rack, H.J.; Cheresh, M.C.

    1980-01-01

    This report describes a recent attempt to develop a test method for use in screening materials and for evaluating the effects of certain parameters, for example section stiffness, on container penetration resistance. In addition, it illustrates the application of this procedure to the selection of a sheet steel for a transuranic waste (TRUPACT) container. The test consists of penetrating a specimen, normally 0.6 m square, with a punch (tup) attached to a falling weight and recording and analyzing the force-time history to determine the energy absorption during the impact event. The test as developed simulates certain aspects of the 10CFR71 drop test in order to provide a means of comparing, for example, the penetrating resistance of various steels, this resistance being defined as the energy required to initiate fracture in the specimen. In summary, this examination suggests that it should be possible to develop a laboratory test to rank and select materials for maximum puncture resistance. Although the initial results appear promising, more effort will be required before this procedure can be routinely applied to examining the various factors which control the puncture resistance of these materials. These results do, nonetheless, show that high-strength, low-alloy steels do offer significant advantages over mild steel for container penetration protection. Indeed, one of these steels, NAX-80, is presently considered as a prime candidate for the TRUPACT container being developed at Sandia National Laboratories

  13. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  14. Evaluation of the application of a thermal insulation system: in-situ comparison of seasonal and daily climatic fluctuations

    Czech Academy of Sciences Publication Activity Database

    Fořt, J.; Beran, Pavel; Konvalinka, P.; Pavlík, Z.; Černý, R.

    2017-01-01

    Roč. 57, č. 3 (2017), s. 159-166 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : in-situ monitoring * temperature * relative humidity * thermal insulation * energy sustainability * seasonal fluctuations Subject RIV: JN - Civil Engineering OBOR OECD: Construction engineering, Municipal and structural engineering https://ojs.cvut.cz/ojs/ index .php/ap/article/view/4087/4171

  15. The influence of insulation of walls of industrial objects on thermal regime at the heating system of gas infrared radiators

    OpenAIRE

    Nagornova Tatiana; Emelenchuk Vladimir

    2017-01-01

    The results of a numerical study of the process of heat transfer from the gas infrared emitters in the heated accommodation are represented. Simulation was conducted taking into account the heat withdrawal in the enclosing constructions and of heat exchange with the environment. The estimation of the average values of temperatures of air indoors in the dependence on the different intensity of heat withdrawal into the vertical walls is carried out (when the layer of insulation is present, and ...

  16. Effect of heat-insulating wall on input energy of a photovoltaic/solar/air-heat system for a residence; Jutaku no kodannetsuka ni yoru taiyoko netsu/taiki netsu system no donyu energy sakugen koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan)

    1996-10-27

    A proposal was made to introduce a photovoltaic/solar/air-heat system which positively utilizes natural energy in order to curtail consumption of fossil energy, corroborating that the system has greatly reduced energy input in the primary energy level in a house. This paper examines the effect of curtailment of energy input in the case of reducing the load of air conditioning through the high heat insulation of a house. The energy input was evaluated by calculating additional equipment energy needed newly for the high heat insulation. The system performance and the energy load varied greatly depending on weather conditions. The subject system consisted of solar cells, inverter, heat concentrator, heat storage tank, heat pump and gas hot-water supply device. The thickening of the insulation sharply reduced heating load in the house, thereby decreasing fuel energy substantially. An insulation material of 100mm thick was capable of reducing energy input by 16-23% compared with that of 50mm thick. 5 refs., 5 figs, 3 tabs.

  17. Experimental and Numerical Analysis of the Compressive and Shear Behavior for a New Type of Self-Insulating Concrete Masonry System

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2016-08-01

    Full Text Available The developed study aimed at investigating the mechanical behavior of a new type of self-insulating concrete masonry unit (SCMU. A total of 12 full-grouted wall assemblages were prepared and tested for compression and shear strength. In addition, different axial stress ratios were used in shear tests. Furthermore, numerical models were developed to predict the behavior of grouted specimens using simplified micro-modeling technique. The mortar joints were modeled with zero thickness and their behavior was applied using the traction–separation model of the cohesive element. The experimental results revealed that the shear resistance increases as the level of precompression increases. A good agreement between the experimental results and numerical models was observed. It was concluded that the proposed models can be used to deduct the general behavior of grouted specimens.

  18. Effects of pressure on doped Kondo insulators

    International Nuclear Information System (INIS)

    Lee, Chengchung; Xu, Wang

    1999-08-01

    The effects of pressure on the doped Kondo insulators (KI) are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation (CPA). A unified picture for both electron-type KI and hole-type KI is presented. The density of states of the f-electrons under the applied pressures and its variation with the concentration of the Kondo holes are calculated self-consistently. The specific heat coefficient, the zero-temperature magnetic susceptibility as well as the low temperature electric resistivity of the doped KI under various pressures are obtained. The two contrasting pressure-dependent effects observed in the doped KI systems can be naturally explained within a microscopic model. (author)

  19. 14 CFR 27.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 27.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard... attachment from its support structure, or deform a locally deformable attachment relative to its support...

  20. 14 CFR 29.952 - Fuel system crash resistance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system crash resistance. 29.952... crash resistance. Unless other means acceptable to the Administrator are employed to minimize the hazard... attachment from its support structure, or deform a locally deformable attachment relative to its support...

  1. Systemic resistance in Arabidopsis thaliana induced by biocontrol bacteria

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Wees, A.C.M. van; Pelt, J.A. van; Trijssenaar, A.; Westende, Y.A.M. van 't; Bolink, E.M.; Loon, L.C. van

    1996-01-01

    Systemic acquired resistance (SAR) is a pathogen-inducible defense mechanism in plants effective against a broad spectrum of plant pathogens. The resistant state is dependent on endogenous accumulation of salicylic acid (SA) and is associated with the activation of a specific set of genes encoding

  2. Helicobacter pylori resistance to six antibiotics by two breakpoint systems and resistance evolution in Bulgaria.

    Science.gov (United States)

    Boyanova, Lyudmila; Gergova, Galina; Evstatiev, Ivailo; Spassova, Zoya; Kandilarov, Naiden; Yaneva, Penka; Markovska, Rumyana; Mitov, Ivan

    2016-01-01

    Helicobacter pylori resistance to antibiotics is the main cause for eradication failures. Antibiotic resistance in 299 H. pylori strains from 233 untreated adults, 26 treated adults, and 40 untreated children was assessed by E tests and, for metronidazole, by breakpoint susceptibility testing and two breakpoint systems. Using EUCAST breakpoints (EBPs) and previous breakpoints (PBPs), overall resistance rates were: amoxicillin 4.0 and 0.6%, metronidazole 33.8 and 33.8%, clarithromycin 28.1 and 27.4%, levofloxacin 19.4 and 19.4%, tetracycline 3.7 and 1.5%, respectively, and rifampin 8.3% (EBP). Multidrug resistance was detected in treated and untreated adults and an untreated child and included 17 (EBPs) and 15 strains (PBPs). Differences between susceptibility categories were found for amoxicillin (3.5% of strains), clarithromycin (0.7%), and tetracycline (2.2%). Using PBPs, from 2005-2007 to 2010-2015, overall primary clarithromycin resistance continued to increase (17.9-25.6%) as noted in our previous study. However, in 2010-2015, overall primary metronidazole (24.0-31.5%) and fluoroquinolone (7.6-18.3%) resistance rates also increased. Primary resistance rates in children and adults were comparable. Briefly, differences in resistance rates by the two breakpoint systems affected the results for three antibiotics. National antibiotic consumption was linked to macrolide resistance in adults. Current primary H. pylori resistance to three antibiotics increased in all untreated patients and in the untreated adults, with the sharpest rise for the fluoroquinolones. The presence of fivefold H. pylori resistance to metronidazole, clarithromycin, tetracycline, levofloxacin, and amoxicillin according to EBPs is alarming.

  3. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  4. Exploring Homeowners’ Insulation Activity

    OpenAIRE

    Friege, J; Holtz, G; Chappin, E.J.L.

    2016-01-01

    Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners’ decision-making processes regarding insulation and to explore how situatio...

  5. INVESTIGATION OF LOSSES IN INSULATION OF HIGH-VOLTAGE CABLES WITH XLPE INSULATION

    Directory of Open Access Journals (Sweden)

    L.A. Shchebeniuk

    2016-09-01

    Full Text Available In this paper the authors calculate the losses in insulation system cable with XLPE-polyethylene as a solid dielectric insulation and with semiconductor polyethylene used as a conductor screen and a insulation screen. The paper is devoted to the investigation of losses in the insulation system of high- voltage XLPE-cables. The line of XLPE-cables in group running horizontally, provided that the cables are of equal diameter and emit equal losses. It is limited to the following: the air flow around the cables may be necessary restricted by proximity to next cables. The dielectric losses are voltage depended and related to the insulation system materials being used. All current in this insulation system are complex quantities containing both real (Re(I and imaginary (Im(I parts. Values of the loss factor of the insulation system at power frequency tgd are given astgd = Re(I/Im(I. It was proposed the quantities criterion of the loss factor of the insulation system to high voltage XLPE-cables. The work is devoted to creation of a method for calculation of the current rating of high-voltage cables in conditions function.

  6. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  7. KSI's Cross Insulated Core Transformer Technology

    International Nuclear Information System (INIS)

    Uhmeyer, Uwe

    2009-01-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  8. A Study of Transport Airplane Crash-Resistant Fuel Systems

    National Research Council Canada - National Science Library

    Robertson, S

    2002-01-01

    ...), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S...

  9. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  10. Analysis and Performance Evaluations of Chemical Agent Resistant Coating Systems

    National Research Council Canada - National Science Library

    Escarsega, John

    2001-01-01

    ...% reduction in volatile organic compounds (VOCs) compared to the solvent-based (SOL) system. Compared to the solvent-based formulation, the WR polyurethane maintains required chemical agent resistance and exhibits superior properties...

  11. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    Science.gov (United States)

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 75 FR 16817 - 2010 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Science.gov (United States)

    2010-04-02

    ... Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public Meeting; Request for... Meeting of the National Antimicrobial Resistance Monitoring System.'' The topic to be discussed is the results from the National Antimicrobial Resistance Monitoring System (NARMS) and related antimicrobial...

  13. 76 FR 37356 - 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public...

    Science.gov (United States)

    2011-06-27

    ...] 2011 Scientific Meeting of the National Antimicrobial Resistance Monitoring System; Public Meeting... Scientific Meeting of the National Antimicrobial Resistance Monitoring System.'' The topic to be discussed is animal and retail sampling methods for the National Antimicrobial Resistance Monitoring System (NARMS...

  14. The influence of insulation of walls of industrial objects on thermal regime at the heating system of gas infrared radiators

    Directory of Open Access Journals (Sweden)

    Nagornova Tatiana

    2017-01-01

    Full Text Available The results of a numerical study of the process of heat transfer from the gas infrared emitters in the heated accommodation are represented. Simulation was conducted taking into account the heat withdrawal in the enclosing constructions and of heat exchange with the environment. The estimation of the average values of temperatures of air indoors in the dependence on the different intensity of heat withdrawal into the vertical walls is carried out (when the layer of insulation is present, and without it.

  15. Calculating the Insulated Car Roof Opening System Components and Strength Analysis of Car Design in Its Various Embodiments

    Directory of Open Access Journals (Sweden)

    V. S. Kopytov

    2016-01-01

    Full Text Available Opening roof cars can be used in transportation of a diversity of goods that require weather protection. Their operation allows us to fulfill the tasks of the Ministry of Railways that is to ensure both the qualitative and lossless transportation of various national economy and special loads and the significant improvement in the technical and economic indexes of the industry. Thus, there are three embodiment options of the opening roofs: single-leaf roof with axial of rotation along one car side; double-leaf roof with axial of rotation of its flaps along both car sides; single-leaf roof with axial of rotation along the car end wall. The work analyses and compares the first two options of the opening systems of the car roof. Analysis of various schemes of opening the roof-insulated cars is based on kinematic and force calculations. The paper defines how the changing length of hydraulic cylinders depends on the stroke and on the arm of applied force, depending on the opening roof angle for various embodiment options. To find the forces acting on the cylinders were determined the forces acting on the roof and the total applied moment of all the forces acting on them with respect to the axial of rotation. Thus, the total applied moment was considered to comprise the weighting unbalance moments of the roof and snow on it, as well as a moment of the force of wind acting on the roof (dead wind or downwind. Upon finding how the changing total moment of the force applied to the roof depends on the rotation angle and on the change of the applied force arm of hydraulic cylinders, the work determines the forces acting on the cylinders. The maximum tensile and compression force acting on the cylinders allows us to define their geometric characteristics such as piston stroke, diameter of the rod, piston-and rod-working cavity. Using a software package SADAS (developed at the Department "Rocket Launching Complexes" in BMSTU the core models were built and

  16. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  17. Ensemble Classifiers for Predicting HIV-1 Resistance from Three Rule-Based Genotypic Resistance Interpretation Systems.

    Science.gov (United States)

    Raposo, Letícia M; Nobre, Flavio F

    2017-08-30

    Resistance to antiretrovirals (ARVs) is a major problem faced by HIV-infected individuals. Different rule-based algorithms were developed to infer HIV-1 susceptibility to antiretrovirals from genotypic data. However, there is discordance between them, resulting in difficulties for clinical decisions about which treatment to use. Here, we developed ensemble classifiers integrating three interpretation algorithms: Agence Nationale de Recherche sur le SIDA (ANRS), Rega, and the genotypic resistance interpretation system from Stanford HIV Drug Resistance Database (HIVdb). Three approaches were applied to develop a classifier with a single resistance profile: stacked generalization, a simple plurality vote scheme and the selection of the interpretation system with the best performance. The strategies were compared with the Friedman's test and the performance of the classifiers was evaluated using the F-measure, sensitivity and specificity values. We found that the three strategies had similar performances for the selected antiretrovirals. For some cases, the stacking technique with naïve Bayes as the learning algorithm showed a statistically superior F-measure. This study demonstrates that ensemble classifiers can be an alternative tool for clinical decision-making since they provide a single resistance profile from the most commonly used resistance interpretation systems.

  18. An analysis of system pressure and temperature distribution in self-pressurizer of SMART and calculation of sizing of wet thermal insulator and pressurizer cooler

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    To evaluate the amount of heat transfer from coolant to gas in reactor vessel heat transfer through the structure of pressurizer and evaporation/condensation on surface of liquid pool should be considered. And, also the heat exchange by pressurizer cooler and heat transfer to upper plate of reactor vessel should be considered. Thus, overall examinations on design variables which affect the heat transfer from coolant to gas are needed to maintain the pressurizer conditions at designed value for normal operation through heatup process. The major design variables, which affect system pressure and gas temperature during heatup, and the sizes of wet thermal insulator and pressurizer cooler, and volume of gas cylinder connected to pressurizer. A computer program is developed for the prediction of system pressure and temperature of pressurizer gas region with considering volume expansion of coolant and heat transfer from coolant to gas during heatup. Using the program, this report suggests the optimized design values of wet thermal insulator, pressurizer cooler, and volume of gas cylinder to meet the target conditions for normal operation of SMART. (author). 6 refs., 17 figs., 5 tabs.

  19. Thermal insulation blanket material

    Science.gov (United States)

    Pusch, R. H.

    1982-01-01

    A study was conducted to provide a tailorable advanced blanket insulation based on a woven design having an integrally woven core structure. A highly pure quartz yarn was selected for weaving and the cells formed were filled with a microquartz felt insulation.

  20. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  1. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  2. The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method

    Science.gov (United States)

    Rux, Lorelynn Mary

    Deregulation of the electric utility industry has increased the need to monitor the state of powerplant equipment, such as critical generators and motors, to improve availability and reduce life cycle costs via condition-based maintenance. To achieve these goals, nondestructive condition assessment and diagnostic tests are necessary to evaluate the quality and condition of a machine's stator winding insulation system. Periodic tests are generally conducted to monitor insulation aging, diagnose problems, or provide some assurance that the winding has a minimum level of electrical strength. The basic principles of insulation testing are presented herein, and the physical mechanisms that affect the current versus voltage response are described. A stator winding insulation model was developed based on this theoretical foundation for use in understanding and analyzing the macroscopic behavior of complex insulation phenomena. A comprehensive, controlled laboratory experiment was conducted on a set of stator coils that were deliberately manufactured with and without insulation defects. Specific defects were chosen to represent the types of insulation problems typically encountered during manufacture or as a result of in-service aging, and included lack of resin cure, loosely-applied insulating tapes, internal conductive contamination, reduced density of the groundwall insulation, and thermal cycling damage. Results are presented from a series of electrical tests conducted on the coil specimens to compare the effectiveness of various test methods in detecting the different insulation problems. The tests included insulation resistance, polarization index, ramped direct voltage, dissipation factor, dielectric spectroscopy, partial discharge, and recovery voltage measurements. Dielectric principles and testing experience obtained during this investigation were applied to a collection of test results obtained by the author from in-service machines during the past ten years

  3. Alkali-bonded composites for thermal and acoustic insulation

    OpenAIRE

    Medri, Valentina

    2012-01-01

    Geopolymers are alkali bonded ceramics that thank to their fully inolrganic nature have high temperature resistance depending on their compositions. An overview of the research of ISTEC on Alkali-bonded composites for thermal and acoustic insulation have been presented

  4. Elimination of particle effects in SF/sub 6/ insulated transmission systems. Fifth quarterly report, October 1, 1978-June 26, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dale, S.J.

    1980-01-01

    Progress is reported in a program for developing methods and equipment to eliminate the adverse effect of particle contamination in SF/sub 6/-insulated transmission systems, CGIT. Presently, CGIT systems are operated at about 10% of the dielectric strength capability of the SF/sub 6/ gas. Tests were made to compare a slotted particle trap elevated above the enclosure with a particle trap with slots flush with the enclosure surface. Aging tests on adhesive materials for particle traps are continuing. Mechanical vibration cleaning of the enclosure has been completed. A combination of air flow and mechanical vibration was found to be the most successful method and comparable to present methods of sheath cleaning. The results show that the application of the hybrid electrostatic-adhesive traps in combination with an effective voltage conditioning procedure offers the prospects of improved reliability for CGIT systems. (LCL)

  5. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  6. Managing the risk of glyphosate resistance in Australian glyphosate- resistant cotton production systems.

    Science.gov (United States)

    Werth, Jeff A; Preston, Christopher; Taylor, Ian N; Charles, Graham W; Roberts, Grant N; Baker, Jeanine

    2008-04-01

    Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton. Copyright (c) 2007 Society of Chemical Industry.

  7. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    OpenAIRE

    Tsioufis, Costas; Kordalis, Athanasios; Flessas, Dimitris; Anastasopoulos, Ioannis; Tsiachris, Dimitris; Papademetriou, Vasilios; Stefanadis, Christodoulos

    2011-01-01

    Resistant hypertension (RH) is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS) activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge po...

  8. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  9. Fatigue behavior of an insulation system for the ITER magnets in the load and strain controlled mode

    Energy Technology Data Exchange (ETDEWEB)

    Prokopec, R. [Atomic Institute of the Austrian Universities, Vienna University of Technology, 1020 Vienna (Austria); Humer, K. [Atomic Institute of the Austrian Universities, Vienna University of Technology, 1020 Vienna (Austria)], E-mail: khumer@ati.ac.at; Weber, H.W. [Atomic Institute of the Austrian Universities, Vienna University of Technology, 1020 Vienna (Austria)

    2007-10-15

    The application of glass-fiber reinforced plastics as insulation materials for fusion magnet coils (e.g. of ITER) requires a full mechanical material characterization under ITER relevant conditions. The tension-tension fatigue test is useful to simulate the pulsed tokamak operation of the ITER coils in the relevant range of 10{sup 4}-10{sup 5} cycles. The fatigue process can be run under load or strain control, which may influence the material behavior under cyclic load conditions. Therefore, investigations were performed at 77 K using an industrial glass-fiber reinforced composite impregnated with epoxy resin. For both the load and the strain controlled mode, R-values of 0.3 and 0.5 and a frequency of 10 Hz were chosen. The results are discussed with respect to the lifetime performance of ITER.

  10. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  11. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  12. Demonstration of Three Corrosion-Resistant Sustainable Roofing Systems

    Science.gov (United States)

    2013-06-01

    the location to demonstrate (1) a heat-resistant metal shingle roofing sys- tem with above-sheathing ventilation (ASV), (2) a sloped-roof conversion...3 2.2.1 Stone-coated metal shingle system with ASV...10 2.3.1 Stone-coated metal shingle system with ASV ......................................................... 10

  13. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  14. Irradiation and testing of compact ignition tokamak toroidal field coil insulation materials

    International Nuclear Information System (INIS)

    Kanemoto, G.K.; Sherick, M.J.; Sparks, D.C.

    1990-05-01

    This report documents the results of an irradiation and testing program performed on behalf of Martin Marietta Energy Systems, Inc. in support of the Compact Ignition Tokamak Research and Development program. The purpose of the irradiation and testing program was to determine the effects of neutron and gamma irradiation on the mechanical and electrical properties of candidate toroidal field coil insulation materials. Insulation samples were irradiated in the Advanced Test Reactor (ATR) in a large I-hole. The insulation samples were irradiated within a lead shield to reduce exposure to gamma radiation to better approximate the desired ration of neutron to gamma exposure. Two different exposure levels were specified for the insulation samples. To accomplish this, the samples were encapsulated in two separate aluminum capsules; the capsules positioned at the ATR core mid-plane and at the top of the fueled region to take advantage of the axial cosine distribution of the neutron and gamma flux; and by varying the length of irradiation time of the two capsules. Disassembly of the irradiated capsules and testing of the insulation samples were performed at the Test Reactor Area (TRA) Hot Cell Facilities. Testing of the samples included shear compression static, shear compression fatigue, flexure static, and electrical resistance measurements

  15. Quantum oscillations in insulators with neutral Fermi surfaces

    Science.gov (United States)

    Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.

    2018-02-01

    We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.

  16. A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent

    Directory of Open Access Journals (Sweden)

    Chan-Ki Jeon

    2017-01-01

    Full Text Available The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulation materials which are made of Styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral wool and glass wool is very weak with moisture, while it is nonflammable, so that its usage is very limited. Therefore, this study developed moisture resistance applicable to mineral wool and glass wool and measured the thermal conductivity of the samples which are exposed to moisture by exposing the product coated with moisture resistance and without moisture resistance to moisture and evaluated how the moisture affects thermal conductivity by applying this to inorganic insulation.

  17. Key Players of Cisplatin Resistance: Towards a Systems Pharmacology Approach

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    2018-03-01

    Full Text Available The major obstacle in the clinical use of the antitumor drug cisplatin is inherent and acquired resistance. Typically, cisplatin resistance is not restricted to a single mechanism demanding for a systems pharmacology approach to understand a whole cell’s reaction to the drug. In this study, the cellular transcriptome of untreated and cisplatin-treated A549 non-small cell lung cancer cells and their cisplatin-resistant sub-line A549rCDDP2000 was screened with a whole genome array for relevant gene candidates. By combining statistical methods with available gene annotations and without a previously defined hypothesis HRas, MAPK14 (p38, CCL2, DOK1 and PTK2B were identified as genes possibly relevant for cisplatin resistance. These and related genes were further validated on transcriptome (qRT-PCR and proteome (Western blot level to select candidates contributing to resistance. HRas, p38, CCL2, DOK1, PTK2B and JNK3 were integrated into a model of resistance-associated signalling alterations describing differential gene and protein expression between cisplatin-sensitive and -resistant cells in reaction to cisplatin exposure.

  18. Characterization of Textile-Insulated Capacitive Biosensors

    OpenAIRE

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing ...

  19. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance.

    Science.gov (United States)

    Gruner, Katrin; Zeier, Tatyana; Aretz, Christina; Zeier, Jürgen

    2018-04-16

    Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically-induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR-defective mlo2 mutants were still competent in systemically increasing the levels of the SAR-activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR-related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA- or Pip-inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during a P. syringae challenge. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...... that the variations of these types of insulation systems work for pipes with temperature above 0C and for ambient conditions within common ranges for industrial applications....

  1. Effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vaccum

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.

    1978-01-01

    The treatment of the surface of an alumina insulator with a Mn/Ti coating significantly increases its voltage-holdoff capability. Insulators treated with this coating had vacuum-holdoff voltages about 25% higher than did untreated insulators. During processing (quasimetallizing) the coating penetrates into the alumina, so it is fairly insensitive to damage by abrasion or electrical breakdown. The quasimetallized coatings is also comparable with subsequent metallizing and brazing of the alumina insulator. We conclude that the coating (1) decreases the surface resistivity of the insulator, (2) decreases the insulator's secondary-electron-emission yield, and (3) makes the surface of the insulator dielectrically more uniform

  2. Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Broholm, C. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)]|[Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Aeppli, G. [NEC, 4 Independence Way, Princeton, New Jersey 08540 (United States); Carter, S.A. [Department of Physics, University of California, Santa Cruz, California 95064 (United States); Dai, P. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Rosenbaum, T.F. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Honig, J.M.; Metcalf, P. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Trevino, S.F. [United States Army Research Laboratory, Adelphi, Maryland 20783 (United States)]|[Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    1998-11-01

    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V{sub 2}O{sub 3}) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V{sub 2{minus}y}O{sub 3}, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V{sub 2}O{sub 3}, and the antiferromagnetic and paramagnetic phases of insulating V{sub 1.944}Cr{sub 0.056}O{sub 3}. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a {open_quotes}single lobe{close_quotes} spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V{sub 2}O{sub 3} represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for {h_bar}{omega}{lt}k{sub B}T in the paramagnetic insulator carry substantial magnetic spectral weight. However, they are extremely short-ranged, extending only to the nearest neighbors. The phase transition to the antiferromagnetic insulator, from the paramagnetic metal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate {ital d} orbitals at the Fermi level in V{sub 2}O{sub 3}. {copyright} {ital 1998} {ital The American

  3. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  4. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  5. Improved Sprayable Insulation

    Science.gov (United States)

    Hill, W. F.; Sharpe, M. H.; Lester, C. N.; Echols, Sherman; Simpson, W. G.; Lambert, J. D.; Norton, W. F.; Mclemore, J. P.; Patel, A. K.; Patel, S. V.; hide

    1992-01-01

    MSA-2 and MSA-2A, two similar improved versions of Marshall sprayable ablator, insulating material developed at Marshall Space Flight Center to replace both sheets of cork and MSA-1. Suitable for use on large vehicles and structures exposed to fire or other sources of heat by design or accident. Ablative insulation turns into strong char when exposed to high temperature; highly desireable property in original spacecraft application and possibly in some terrestrial applications.

  6. Adsorptive refrigeration system using a solar collector with a thermal insulating module; Sistema de refrigeracao adsortivo com a utilizacao de um coletor solar com anteparo otico

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, Jose Mauricio [Paraiba Univ., Joao Pessoa, PB (Brazil). Laboratorio de Energia Solar]. E-mail: gurgel@les.ufpb.br; Espinola Junior, Jose [Paraiba Univ., Joao Pessoa, PB (Brazil). Curso de Pos-Graduacao em Engenharia Mecanica; Andrade Filho, Luiz Simao [Paraiba Univ., Joao Pessoa, PB (Brazil). Centro de Tecnologia. Dept. de Tecnologia da Construcao Civil; Marcondes, Francisco [Paraiba Univ., Joao Pessoa, PB (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    2000-07-01

    The use of a solid adsorption cooling unit based on the binary silica gel/water couple constitute an very promising way to harness solar energy refrigeration purposes. Here is presented a mathematical model for the simulation of the system under several use conditions and it was shown coherent when compared with some experimental results. The several accomplished simulations showed the need to be projected a modulate reactor that can offer cooling easiness during the night period and shown the advantage of the use of an solar collector that can be easily opened and your thermal insulating module placed across the glass close the thermal radiation when the desorption process finish. The simulations results presented here shown an better COP for this configuration through an better cooling of the collector at night. (author)

  7. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  8. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  9. Compact gas-insulated transformer. Fourteenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  10. Control system of power supply for resistance welding machine

    Directory of Open Access Journals (Sweden)

    Світлана Костянтинівна Поднебенна

    2017-06-01

    Full Text Available This article describes the existing methods of heat energy stabilizing, which are realized in thyristor power supplies for resistance welding machines. The advantages and features of thyristor power supplies have been described. A control system of power supply for resistance welding machine with stabilization of heat energy in a welding spot has been developed. Measurements are performed in primary winding of a welding transformer. Weld spot heating energy is calculated as the difference between the energy, consumed from the mains, and the energy losses in the primary and secondary circuits of the welding transformer as well as the energy losses in the transformer core. Algorithms of digital signal processing of the developed control system are described in the article. All measurements and calculations are preformed automatically in real-time. Input signals to the control system are: transformer primary voltage and current, temperature of the welding circuit. The designed control system ensures control of the welding heat energy and is not influenced by the supply voltage and impedance changes caused by insertion of the ferromagnetic mass in the welding circuit, the temperature change during the welding process. The developed control system for resistance welding machine makes it possible to improve the quality of welded joints, increase the efficiency of the resistance welding machine

  11. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  12. Via sidewall insulation for through cell via contacts

    Science.gov (United States)

    de Lafontaine, Mathieu; Jaouad, Abdelatif; Darnon, Maxime; Volatier, Maïté; Arès, Richard; Fafard, Simon; Aimez, Vincent

    2017-09-01

    Over the past few years, through cell via contacts (TCVC) architecture has been the object of a growing interest to replace standard front side and backside contact on concentrated photovoltaic (CPV) cells. The technology is based on transferring the front side contact to the backside using insulated and metallized vias. This architecture could reduce shading and series resistance, thus increasing device efficiency. However, the processes involved in TCVC fabrication increases the risk of creating short-circuit, reducing significantly the efficiency of the solar cell. Therefore, the electrical insulation must be defect free. In this paper, an insulation validation protocol is proposed in order to thoroughly study the insulation quality. This process has been used to compare two insulation deposition techniques candidates: plasma-enhanced chemical vapor deposition (PECVD) and plasma-enhanced atomic layer deposition (PEALD). Results show that the insulation validation protocol presents several strengths such as revealing defects otherwise unobservable even with scanning electron microscopy. PECVD insulation presents several insulation defects whereas PEALD presents almost no defects making it suited for via insulation.

  13. Research of water-base nano-PU paint for heat insulation

    Science.gov (United States)

    Jwo, Ching-Song; Jeng, Lung-Yue; Cheng, Ho; Chen, Sih-Li

    2008-12-01

    The purpose of this study is to research and produce water-base nano-PU paint with energy conservation, environmental consciousness and high efficiency of heat insulation, which can be enhance the traditional PU paint for performance improvement of heat insulation and range of application. In this study, research will be held on the two-stage synthesis method. The SiO2 nanoparticles are added into the water-base PU paint to improve the properties of traditional PU paint. Next, the fundamental properties of this paint, including water resistance, weather rsistance, weak acid solvent resistance, and heat insulation rate, will be measured and analyzed, and the performance of heat insulation will be evaluated in order to confirm the performance and practicability of the heat insulation of water-base nano-PU paint in this study. The experimental results show that for the SiO2/W-PU composite nanopaint prepared by two-stage synthesis method, the dispersion of SiO2 powder in the water-base PU (W-PU) paint is even. For the SiO2/W-PU nanocomposite paint prepared by adding SiO2 powder at 8% wt. to the marketed water-base PU, the water absorption of its experimental sample is enhanced by around 10.1 times, whereas its weak acid dissolve erosion rate is increased by 3.3 times. However, the average heat insulation rate in the thermal properties is also increased, increasing around 24.22% for the W-PU paint without SiO2 powder. Through the multilayered coating construction, the water-base nano-PU paint added with SiO2 powder can be used on any facility of heat insulation, including vehicle, safety helmet, umbrella, drapes, and outer wall of building. The newly developed water-base nano-PU paint with high thermal resistance is especially suitable for application to the shell coating of air conditioner and cooling tower,. Due to the better thermal resistance of this nanopaint, the problems of poor heat transfer and temperature rise of cooling water caused by direct sunlight can be

  14. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  15. Mineral insulated cable for atomic power station

    International Nuclear Information System (INIS)

    Miyajima, Toshinori; Oda, Eisuke.

    1980-01-01

    The investigation into the environment in normal and accidental states of molten metal-cooled reactors and high temperature helium-cooled reactors sometimes does not permit to employ the cables using rubber or plastic insulators. The general characteristics of mineral insulated, metal sheathed cables (MI cable) are introduced, which have the ideal performance as the cables durable such severe environment as mentioned above. The MI cables have copper sheaths and the copper conductors insulated with magnesium oxide. They have many extraordinarily excellent characteristics as compared with organic matter-insulated cables. The main features are: (1) they are non-flammable owing to high flame and heat endurance (2) they do not age because of the mineral insulator, (3) they are superior in water and oil endurance, (4) they have large mechanical strength, (5) their permissible current is high, and (6) they show excellent radiation durability. For severer environmental conditions, the MI cables with stainless steel sheaths are available. The stainless steel MI cables is suitable to high temperature sodium. The report describes the characteristics of magnesium oxide, and the electrical, mechanical and radiation resistive properties of the MI cables, such as tension fracture load, the lifetime at high temperature, A.C. break-down voltage and others. (Wakatsuki, Y.)

  16. Multilayer, high resolution, ion-bombardment-tolerant electron resist system

    International Nuclear Information System (INIS)

    Hunt, B.D.; Buhrman, R.A.

    1981-01-01

    A multilayer, high resolution electron resist system, which withstands ion bombardment, has been developed. This system consists of four layers which are, from top to bottom: AZ1350B, a thin metal interlayer, PMMA, and a copolymer of PMMA. The bottom two layers define the actual pattern dimensions. Two independent developers have been chosen for these two layers in order to obtain controllably undercut resist profiles ideal for liftoff applications, while maintaining high resolution in the upper PMMA layer. The top two layers of the four-level system serve to provide a protective metal coating which prevents crosslinking of the underlying polymer layer. This allows processing involving ion bombardment, such as ion milling or reactive ion etching. Without this protective metal layer, difficulty is often encountered in liftoff processing after ion bombardment, due to the presence of a thin crosslinked polymer layer which resists solvent penetration. This resist system has been used in conjunction with reactive ion beam oxidation to fabricate high quality, small area, niobium--lead alloy tunnel junctions in an edge geometry. Using a standard Cambridge EBMF-2 microfabricator, junctions with linewidths as small as 0.25 μm have been produced. With the edge geometry, this corresponds to junction areas smaller than 4 x 10 -10 cm 2

  17. BDP-30, a systemic resistance inducer from Boerhaavia diffusa L ...

    Indian Academy of Sciences (India)

    ... absolute sequence identity with trichosanthin, a ribosome-inactivating protein from Trichosanthes kirilowii, and a 78% and 100% homology respectively with an RIP from Bryonia dioica, bryodin. Further, effort was made to look at the fate of TMV in induced resistant Nicotiana tabacum cv. Xanthi, a systemic host of the virus, ...

  18. BDP-30, a systemic resistance inducer from Boerhaavia diffusa L ...

    Indian Academy of Sciences (India)

    2015-01-11

    Jan 11, 2015 ... exogenous application of chemicals such as salicylic acid or its synthetic analogues, leading to a long-term resistance to sub- sequent attack by diverse pathogens (Sticher et al. 1997;. Vallad and Goodman 2004; Fu and Dong 2013). In both local and systemic tissues of such plants, pathogenesis-related ...

  19. Calculating the Lightning Protection System Downconductors' Grounding Resistance at Launch Complex 39B, Kennedy Space Center

    Science.gov (United States)

    Mata, Carlos T.; Mata, Angel G.

    2012-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. Nine downconductors (each about 250 meters long) are connected to the catenary wire system. Each downconductor is connected to a 7.62-meter-radius circular counterpoise conductor with six equally spaced, 6-meter-long vertical grounding rods. Grounding requirements at LC39B call for all underground and aboveground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bonded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple directions around LC39B. The complexity of this grounding system makes the fall-of-potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the grounding impedance of the downconductors, an Earth Ground Clamp (EGC) (a stakeless device for measuring grounding impedance) and an Alternative Transient Program (ATP) model of the LPS are used. The EGC is used to measure the loop impedance plus the grounding impedance of each downconductor, and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding resistance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the EGC measurements.

  20. 76 FR 4120 - The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for...

    Science.gov (United States)

    2011-01-24

    ...] The National Antimicrobial Resistance Monitoring System Strategic Plan 2011-2015; Request for Comments... National Antimicrobial Resistance Monitoring System (NARMS) entitled ``NARMS Strategic Plan 2011-2015.../AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm or http://www.regulations...

  1. Monitoring and diagnostics of power transformer insulation

    Directory of Open Access Journals (Sweden)

    Kovačević Dragan S.

    2006-01-01

    Full Text Available Liberalization of the energy market drives utilities to a more cost-effective power system. Power transformers are the most complex, important, and critical components of the transition and distribution power systems. Insulation system is the key component of life extension, better availability and higher reliability of a transformer. In order to achieve both decreasing operational cost and reliable service condition-based maintenance is needed. Monitoring and diagnostics methods and techniques, for insulation condition assessment of power transformers, are described. Date base and knowledge rules diagnostics management system, in internet oriented environment, is outlined. .

  2. Semiannual report for the period April 1 to September 30, 1978 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project technical note No. 83

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-07

    Progress in the development, fabrication and testing of superconductors for HVAC power transmission systems is reported. Information is included on the materials evaluation of superconducting alloys, production of tapes from these alloys, principally Nb/sub 3/Sn cable insulation requirements and development, and the cryogenic equipment used in this research program. (LCL)

  3. Bacterial elicitors and plant signaling in induced systemic resistance

    OpenAIRE

    Bakker, P.A.H.M.; Pelt, J.A. van; Sluis, I. van der; Pieterse, C.M.J.

    2008-01-01

    Plant root colonizing, fluorescent Pseudomonas spp. have been studied for decades for their plant growth promoting properties and their effective suppression of soil borne plant diseases. The modes of action that play a role in disease suppression by these bacteria include siderophore-mediated competition for iron, antibiosis, and induced systemic resistance (ISR). The involvement of ISR is typically studied in systems in which the Pseudomonas bacteria and the pathogen are inoculated and rema...

  4. [Sensitivity and antibiotic resistance in infections of the musculoskeletal system].

    Science.gov (United States)

    Mata-Hernández, Argenis; Rivera-Villa, Adrián Huematzin; Miguel-Pérez, Adrián; Pérez-Atanasio, José Manuel; Torres-González, Rubén

    2016-01-01

    Infections of the musculoskeletal system are a devastating complication for patients, due to it's long rehabilitation process and even sometimes the removal of the implant, the chronicity of infection, is often due to lack of coverage in empirical antibiotics. A retrospective, observational, descriptive cohort study was performed. All cultures form musculoskeletal system infected patients reported of sensitivity and resistance of germs isolated were analyzed. A total of 143 positive results were included. Reported more frequent germ Staphylococcus aureus accounted for 75 positive cases, followed by Escherichia coli with 31 positive results. Antibiotics with better sensitivity according to the type of microorganisms were trimethoprim-sulfamethoxazole and vancomycin, levofloxacin and linezolid, gentamicin, erythromycin and amikacin. Regarding antibiotic resistance, those reported with the highest percentage were penicillin G, amoxicillin with clavulanic acid and ampicillin. We recommend using empirical treatments in musculoskeletal system infections, trimethoprim-sulfamethoxazole are the best choice because they have the same sensitivity compare with vancomycin and a resistance rate of 7.6%. Betalactamics have a high percentage of resistance and low sensitivity so we must consider alternatives.

  5. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  6. Development of programmable multi-channel earth resistivity system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Ki; Choi, Jong Ho; Park, In Wha [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Maximum 256 channel digital-stacking automatic electrical earth resistivity meter is upgrade-developed and field-tested with two commercially available systems (OYO McOHM and ABEM Terrameter) for Schlumberger vertical sounding and dipole-dipole arrays. The results of three systems are very well coincident for several dummy resistors and Schlumberger array in field site. The developed system K-Ohm shows even more reasonable quality data in sensitive dipole-dipole array measurements in comparison with the electrical survey instruments of digital stacking type manufactured by other countries. New Important features of upgraded programmable K-Ohm system are as follows ; 1) Auto-electrode-switching control by Notebook printer port, 2) receiving signal measurement by Notebook serial port, 3) interactive automatic dipole-dipole measurement software with two apparent resistivity sections compared in one Notebook display to minimize noisy data in field, 4) auto-saved field memo at any time appending to acquired data, 5) max 500 V{sub p-p} 500 mA transmitter (measuring cycle S/W programmable), 6) low-drift sigma - delta 24 bit A/D 0.0015 % linearity error with zero-offset and full - scale gain autocalibration, 7) DC 12 v operated and TX-RX 7,000 V optical-isolated, 8) electrodes grounding auto-tested, user-oriented any array sequential programmable control software. Further study will be focused on higher power TX and stand alone TX-RX system, and micro-resistivity system for in-borehole resistivity imaging. (author). 8 refs., 9 figs.

  7. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  8. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  9. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  10. CORROSION RESISTANCE OF WATER-THINNABLE PAINT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-12-01

    Full Text Available Anticorrosion protection on the basis of water-thinnable paint systems belongs among one of ecological ways of protection of metal parts. The aim of the experiment was to test corrosion resistance of water-thinnable systems Eternal antikor speciál V9503 and Colorlak aquarex V2115 in the salt spray environment according to the norm ČSN ISO 9227. Ductility of used paint systems in complience with the norm ČSN EN ISO 1520 will be also tested, it is a test according to Erichsen. At the end of the experiment measurement, the corrosion speed depending on paint coating thickness was analyzed.

  11. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  12. USAGE OF MICRO-MODULAR HEAT-INSULATION LAYER IN STRUCTURES OF WALL PANELS

    Directory of Open Access Journals (Sweden)

    V. D. Sizov

    2014-01-01

    Full Text Available The paper presents an analysis of requirements to existing heat-insulation layers in enclosure structures of wall panels has been carried out, a general principles on development of thermal insulation systems, substantiation on the necessity to develop a new wall panel design with improved thermal characteristics. The proposed design of the wall panel differs from the existing one in the fact that its external layer is made of protective sheets being perforated in their top and bottom parts with perforated aluminum foil layer placed on them. Air layer performs function of one of thermal insulation layers, and the second layer is made up in the form of several micro-modular sub-layers which are divided by perforated aluminum foil and a grid. An inner concrete layer is also separated from micro-modular layers by aluminum foil. Protective sheets and the grid can be made of aluminum or polyethylene.The arrangement of hollow micro-modular cells in the zone of negative temperatures prevents condensate accumulation. The arrangement of the perforated aluminum foil layers between micro- modular layers leads to increase in thermal resistance of the panel due to decrease of a radiant component in presence of several screens and does not interfere with a vapor permeability of thermal insulation layers from micro-modules. At the same time placement of a non-perforated foil layer on an inside panel layer interferes with penetration of water vapor from rooms in micro-modular thermal insulation layers.Technological principles lie in the arrangement of perforation slots in the top and bottom zones of protective sheets that allows to delete excess moisture from thermal insulation layers and air layer and also leads to improvement of thermo-technical characteristics, durability and reliability in construction operation as a whole. The executed calculations of heat and humidity fields in external enclosure structures confirm advantages of the presented technical

  13. Assessing the User Resistance to Recommender Systems in Exhibition

    Directory of Open Access Journals (Sweden)

    Chulmo Koo

    2017-11-01

    Full Text Available Under the paradigm shift toward smart tourism, the exhibition industry is making efforts to introduce innovative technologies that can provide more diverse and valuable experiences to attendees. However, various new information technologies have failed in a market in practice due to the user’s resistance against it. Since innovative technology, such as booth recommender systems (BRS, is changing, creating uncertainty among consumers, consumer’s resistance to innovative technology can be considered a normal reaction. Therefore, it is important for a company to understand the psychological aspect of the consumer’s resistance and make measures to overcome the resistance. Accordingly, based on the model of Kim and Kankanhalli (2009, by applying the perceived value, the technology acceptance model, and the status quo bias theory, this study focused on the importance of self-efficacy and technical support in the context of using BRS. To do this purpose, a total of 455 survey data that was collected from “Korea franchise exhibition” attendees were used to analyze the proposed model. Structural equation modeling was applied for data analysis. The result shows that perceived value was affected by relative advantage and switching cost, also switching cost reduced the perceived value. However, self-efficacy reduced the switching cost, thereby decreasing the resistance of exhibition attendees. In addition, technical support increased the relative advantage switching cost and the perceived value. Exhibition attendee’s resistance was significantly negatively affected by perceived value, and positively affected by switching cost. The results will provide balanced viewpoints between the relative advantage and switching cost for exhibition marketers, helping to strengthen the competitiveness in terms of sustainable tourism of exhibition.

  14. The realization of temperature controller for small resistance measurement system

    Science.gov (United States)

    Sobecki, Jakub; Walendziuk, Wojciech; Idzkowski, Adam

    2017-08-01

    This paper concerns the issues of construction and experimental tests of a temperature stabilization system for small resistance increments measurement circuits. After switching the system on, a PCB board heats up and the long-term temperature drift altered the measurement result. The aim of this work is reducing the time of achieving constant nominal temperature by the measurement system, which would enable decreasing the time of measurements in the steady state. Moreover, the influence of temperatures higher than the nominal on the measurement results and the obtained heating curve were tested. During the working process, the circuit heats up to about 32 °C spontaneously, and it has the time to reach steady state of about 1200 s. Implementing a USART terminal on the PC and an NI USB-6341 data acquisition card makes recording the data (concerning temperature and resistance) in the digital form and its further processing easier. It also enables changing the quantity of the regulator settings. This paper presents sample results of measurements for several temperature values and the characteristics of the temperature and resistance changes in time as well as their comparison with the output values. The object identification is accomplished due to the Ziegler-Nichols method. The algorithm of determining the step characteristics parameters and examples of computations of the regulator settings are included together with example characteristics of the object regulation.

  15. Exploring Homeowners’ Insulation Activity

    NARCIS (Netherlands)

    Friege, J; Holtz, G; Chappin, E.J.L.

    2016-01-01

    Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing

  16. Conducting and insulating materials

    OpenAIRE

    Bolotinha, Manuel

    2016-01-01

    Conducting materials may be classified into three groups: conductors, semiconductors and imperfect insulators. This section will cover only conductors. In general, metals and alloys are conductors of electricity. The most common metals used in electricity are copper, aluminium and their alloys. info:eu-repo/semantics/publishedVersion

  17. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment...

  18. Antimicrobial resistance, heavy metal resistance and integron content in bacteria isolated from a South African tilapia aquaculture system.

    Science.gov (United States)

    Chenia, Hafizah Y; Jacobs, Anelet

    2017-11-21

    Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.

  19. Insulation Test Cryostat with Lift Mechanism

    Science.gov (United States)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  20. Flux pumping for non-insulated and metal-insulated HTS coils

    Science.gov (United States)

    Ma, Jun; Geng, Jianzhao; Coombs, T. A.

    2018-01-01

    High-temperature superconducting (HTS) coils wound from coated conductors without turn-to-turn insulation (non-insulated (NI) coils) have been proven with excellent electrical and thermal performances. However, the slow charging of NI coils has been a long-lasting problem. In this work, we explore using a transformer-rectifier HTS flux pump to charge an NI coil and a metal-insulated coil. The charging performance comparison is made between different coils. Comprehensive study is done to thoroughly understand the electrical-magnetic transience in charging these coils. We will show that the low-voltage high-current flux pump is especially suitable for charging NI coils with very low characteristic resistance.

  1. Thermal Insulation Strips Conserve Energy

    Science.gov (United States)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  2. Root Cause Failure Analysis of Stator Winding Insulation failure on 6.2 MW hydropower generator

    Science.gov (United States)

    Adhi Nugroho, Agus; Widihastuti, Ida; Ary, As

    2017-04-01

    Insulation failure on generator winding insulation occurred in the Wonogiri Hydropower plant has caused stator damage since ase was short circuited to ground. The fault has made the generator stop to operate. Wonogiri Hydropower plant is one of the hydroelectric plants run by PT. Indonesia Power UBP Mrica with capacity 2 × 6.2 MW. To prevent damage to occur again on hydropower generators, an analysis is carried out using Root Cause Failure Analysis RCFA is a systematic approach to identify the root cause of the main orbasic root cause of a problem or a condition that is not wanted. There are several aspects to concerned such as: loading pattern and operations, protection systems, generator insulation resistance, vibration, the cleanliness of the air and the ambient air. Insulation damage caused by gradual inhomogeneous cooling at the surface of winding may lead in to partial discharge. In homogeneous cooling may present due to lattice hampered by dust and oil deposits. To avoid repetitive defects and unwanted condition above, it is necessary to perform major maintenance overhaul every 5000-6000 hours of operation.

  3. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.

    1997-08-22

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  4. Comparative Investigation of Pollution Accumulation and Natural Cleaning for Different HV Insulators

    OpenAIRE

    M. Dimitropoulou; D. Pylarinos; K. Siderakis; E. Thalassinakis; M. Danikas

    2015-01-01

    High Voltage insulators are scattered throughout any HV network and a single insulator fault may cause an excessive outage. Reliability is a key issue for electric power systems and fault-free performance of insulators greatly reflects on the reliability of the system. Environmental influence is rather important for the optimum selection of outdoor insulators and, therefore, field measurements provide valuable information. Utilities perform such measurements in order to decide upon the locati...

  5. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  6. Evaluation of new concepts for in situ vitrification: Power system, melt insulation, and off-gas containment

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.; Heath, W.O.; Richardson, R.L.

    1992-07-01

    In situ vitrification (ISV) is a thermal process that converts contaminated soil into a highly leach-resistant material resembling natural obsidian. The ISV process was developed by the Pacific Northwest Laboratory (PNL)(a) for the US Department of Energy (DOE) to treat soils contaminated with transuranics. Since 1980, ISV has grown from a concept to an innovative technology through bench-, engineering-, intermediate-, and full-scale tests. Efforts by PNL have developed ISV into a technology considered available for limited deployment to remediate contaminated soil. The technology has been transferred to a licensee for commercial application. In September 1991, PNL conducted an operational acceptance test (OAT) of the modified engineering-scale unit. The OAT provided an opportunity to conduct proof-of-principle testing of new concepts for ISV technology. This additional testing was permitted since it was determined that testing of these new concepts would have no impact on the OAT objective. In discussing the proof-of-principle portion of the engineering-scale test, this report presents conclusions from this work and also describes the conceptual bases of the tested concepts, the engineering-scale test equipment and setup, and test results

  7. Transcriptomics and knockout mutant analysis of rhizobacteria-mediated induced systemic resistance in Arabidopsis

    NARCIS (Netherlands)

    Verhagen, B.W.M.

    2004-01-01

    A classic example of induced resistance is triggered after infection by a necrotizing pathogen, rendering uninfected,distal parts more resistant to subsequent pathogen attack, and is often referred to as systemic acquired resistance (SAR). A phenotypically comparable type of induced resistance is

  8. Cryogenic Vacuum Insulation for Vessels and Piping

    Science.gov (United States)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  9. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  10. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    Most research on the acoustic environment in the modern Western hospital identifies raised noise levels as the main causal explanation for ranking noise as a critical stressor for patients, relatives and staff. Therefore, the most widely used strategies to tackle the problem in practice are insul......Most research on the acoustic environment in the modern Western hospital identifies raised noise levels as the main causal explanation for ranking noise as a critical stressor for patients, relatives and staff. Therefore, the most widely used strategies to tackle the problem in practice...... are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence...

  11. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  12. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  13. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  14. Peripheral nervous system insulin resistance in ob/ob mice.

    Science.gov (United States)

    Grote, Caleb W; Groover, Anna L; Ryals, Janelle M; Geiger, Paige C; Feldman, Eva L; Wright, Douglas E

    2013-05-10

    A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. The results indicate that insulin signaling abnormalities documented in other "insulin sensitive" tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy.

  15. Peripheral nervous system insulin resistance in ob/ob mice

    Science.gov (United States)

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  16. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  17. Large resistivity modulation in mixed-phase metallic systems.

    Science.gov (United States)

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-07

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  18. Determination of radiation resistant of electronic components in robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong [Kyungpook National University, Taegu (Korea); Kim, Do Sung [Taegu University, Taegu (Korea); Woo, Hong [Kyungsan University, Kyungsan (Korea)

    1998-04-01

    We investigated the characteristic change for the electronic components of the systems which were used in radiation area, when those were exposured by gamma rays. Bipolar transistor, FET, TTL, CMOS, operational amplifier, some capacitors, and several electronic components were selected for experiment. We applied irradiated gamma ray to the electronic components in the range of 10{sup 6} rad, by {sup 6}0Co(KAERI). We made up appropriate assessment circuit for each electronic component during the performance test, and assessed the reliability and radiation-resistance of them for the each radiation irradiation. (author). 59 refs., 35 figs., 8 tabs.

  19. The effects of UV radiation and electron bombardment on the flashover characteristics of alumina based high voltage insulators in vacuum

    CERN Document Server

    Goddard, B; Xu Ning Sheng; Latham, R V; Taylor, W; Chivers, D J

    1996-01-01

    The effects of UV and electron bombardment on the flashover characteristics of highly stressed alumina insulators in vacuum were investigated as part of a project to improve the performance of high voltage insulators in large particle accelerators at CERN. An experimental system has been developed which allowed photon and electron bombardment of stressed insulator samples under vacuum, in order to investigate the causes and characteristics of insulator flashover, and to identify sample preparations which could improve insulator performance.

  20. Magnetic and electrical response of Co-doped La{sub 0.7}Ca{sub 0.3}MnO{sub 3} manganites/insulator system

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, J.C., E-mail: Jyotish.debnath@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Wang, Jianli, E-mail: jcd341@uowmail.edu.au [Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2017-01-01

    We present a systematic study of the structural, magnetic and electrical properties of La{sub 0.7}Ca{sub 0.3}MnO{sub 3} (LCMO) and La{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Co{sub 0.05}O{sub 3} (LCMCO0 perovskite manganites. Most of the work is devoted to the electrical properties with a thorough discussion about different models for both the metallic and insulator states. With a view to understand the conduction mechanism in these materials, the resistivity of both materials was measured over a temperature range 5–300 K and in a magnetic field up to 1 T and the data were analysed by using several theoretical models. It has been observed that the metallic part of the temperature dependent resistivity (ρ) curve fits well with ρ=ρ{sub 0} +ρ{sub 2,5}Τ{sup 2,5}, indicating the electron–magnon scattering processes in the conduction of these materials. On the other hand, in the high temperature paramagnetic insulating regime, the adiabatic small polaron and VRH models fit well, thereby indicating that polaron hopping might be responsible for the conduction mechanism.

  1. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    Science.gov (United States)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  2. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  3. Assessment of reflective insulations for residential and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.

    1983-10-01

    A survey of available products, uses, and thermal resistance data for thermal insulations that use combinations of air gaps and reflective surfaces to form thermal barriers is presented. Reflective products like pipe insulation or high thermal resistance evacuated panels that are used exclusively in industrial applications are not included. A one-dimensional steady-state calculation has been developed to provide a way of discussing the R-values of refelctive assemblies and their sensitivity to properties like surface emissivity or positioning of foil surfaces in a cavity. The products considered are used in residential or commercial applications.

  4. A Semi Analytical Solution for the Optimum Insulation Thickness Problem

    International Nuclear Information System (INIS)

    Abdullah, A.M.; Mina, A.R.

    1995-01-01

    The problem of optimizing the thickness of insulation installed on large hot vessels has been solved using a semi-analytical method. Unlike the previous studies, the derived mathematical expressions for the optimum thickness and total cost of burned fuel and insulating material has been formulated in a general form which facilitates their application to any fuel and insulation characteristics and life time of the system. Moreover, the system analysis took into consideration the normally expected annual increase in fuel price. Also an expression for the net saving in fuel cost-due to the installation of insulation has been derived. The results showed that the required optimum insulation thickness increases as the lifetime of a vessel and fuel price based on the results it is recommended to: (i) Estimate the virtual lifetime of a vessel to calculate the corresponding correct optimum thickness of insulation, (ii) Install an insulation which is thicker somewhat (say 10%) than the optimum one to compensate for both the expected annual increase in fuel price and the natural deterioration in the thermal and mechanical characteristics of the insulation material. 4 figs

  5. The Investigation of Properties of Insulating Refractory Concrete with Portland Cement Binder

    Science.gov (United States)

    Kudžma, A.; Antonovič, V.; Stonys, R.; Škamat, J.

    2015-11-01

    The present work contains the results of experimental study on properties of insulating refractory concrete created on the basis of Portland cement (PC) binder and modified with microsilica (MS). The experimental compositions were made using Portland cement, lightweight aggregates (expanded clay and vermiculite) and microsilica additives. It was established that MS additives enable significant improvement of mechanical properties and thermal shock resistance of PC-based insulating concrete with values comparable to insulating refractory concrete based on calcium aluminate cement.

  6. Design and construction of a live insulator washing system for transformers; Diseno y construccion de un sistema de lavado en vivo para los aisladores de transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Lizama-Camara, Y.A. [Universidad Veracruzana, Veracruz (Mexico)]. E-mail: yahir_lizama@ieee.org; Mendieta-Antunez, J.A.; Blanco-Brisset, E. [Industrias IEM, Tlalnepantla, Estado de Mexico (Mexico)]. E-mail: unamanu@hotmail.com; Olivares Galvan, J.C.; Escarela-Perez, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Mexico, D.F. (Mexico)]. E-mails: jolivare_1999@yahoo.com; r.escarela@ieee.org

    2012-04-15

    Through the electrical industry history there have been developments of different cleaning methods to avoid the insulators flashover s due to pollution. This paper describes the principal cleaning methods applicable to transformers insulators, emphasizing the high pressure fixed-type live insulator washing method, which was applied for cleaning the insulators of 900 MVA transformer bank of the Laguna Verde power plant localized at the state of Veracruz in Mexico. We propose a transformer insulator cleaning methodology, which identifies the main variables to take into account (the voltage level of the transformers, the pollution level of the insulators, determination of the optimal wash time, the amount of water, the optimal pressure of water jet, the maximum conductivity of the water and the wind velocity), reference values are given for these variables. In addition, we present an economic cost analysis when applying a method of this kind in an electric substation. [Spanish] A lo largo de la historia de la industria electrica se han desarrollado diferentes metodos de limpieza para evitar las fallas de los aisladores de los transformadores debido a la contaminacion. Este articulo describe los principales metodos de limpieza aplicables a los aisladores de transformadores, enfatizando el sistema de lavado en vivo tipo fijo con agua a alta presion, metodo que fue aplicado para realizar la limpieza de los aisladores en el banco de transformadores de 900 MVA de la central electrica Laguna Verde, ubicada en el estado de Veracruz, en Mexico. Se propone una metodologia para la limpieza de los aisladores de transformadores, donde se identifican las principales variables a tomar en cuenta (el nivel de tension de los transformadores, nivel de contaminacion de los aisladores, determinacion del tiempo optimo de lavado, cantidad de precipitacion de agua, presion optima del chorro de agua, maxima conductividad del agua y las velocidades de los vientos) y se dan valores de

  7. The failure of the insulation system and the development of a rational criminal policy based means probation in Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Bałandynowicz

    2013-06-01

    Full Text Available In the present article, the proposal to reform the system by incorporating punishment the existing order of penal sanctions and measures the average power probation is wishful thinking, confirmed the need for its patency in the right voices representatives of science.There is, however, supporters of the department of the Ministry of Justice. However, based on the current catalog of criminal offenses, including taking into account the supervision of the conditional suspension, cancellation and premature release and independent supervision, can, in implementing rules create conditions for implementation of the first phase of that reform, assuming operation in the so-called guardianship as a prerequisite for clinical success of semi in Poland.

  8. Amphibious Vehicle Propulsion System. Volume 2

    Science.gov (United States)

    1990-01-30

    1 11 Ti rLE (Include Security Classification) AMPHIBIOUS VE _LE PROPULSION SYSTEM - FINAL REPORT VOL II (U) 12 oRSONAL AUTH .,) 𔃽a TYPE OF REPORT...Bearings shall be sized to support the specified shock loads as well as the specified torsional loads. 2.8.12 Insulation 2. Insulation of the...factor, tric system is designed for Improved efficiency and congiairesfstioe moad. electronic control reliability, as well as reduced using a resistive

  9. SF6 plastic film insulated outdoor bushing for metalclad switchgear operating at system voltages of 420 kV and above

    Science.gov (United States)

    Dietz, H.

    1981-10-01

    In replacement of conventional oil-paper bushings, a type of SF6 insulated bushing with polypropylene plastic film dielectricum was developed for outdoor operation of metalclad switchgear. Such bushings have the advantage of the conformity of the insulation with that of the matching switchgear and of the nonflammability of the SF6 gas. The choice of the plastic film, the winding technique, the thermal and dielectrical test program, and the high voltage long-term test program are described. Series production of a 420 kV bushing is under way and research specimens for 525 kV were successfully tested.

  10. Prospects and challenges for practical application of rhizobacteria-mediated induced systemic resistance

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2002-01-01

    Selected strains of plant growth-promoting rhizobacteria are able to induce a systemic resistance (ISR) in plants, which is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). The generally non-specific character of induced resistance constitutes an increase in the

  11. Insulating Structural Ceramics Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark J.; Tandon, Raj; Ott, Eric; Hind, Abi Akar; Long, Mike; Jensen, Robert; Wheat, Leonard; Cusac, Dave; Lin, H. T.; Wereszczak, Andrew A.; Ferber, Mattison K.; Lee, Sun Kun; Yoon, Hyung K.; Moreti, James; Park, Paul; Rockwood, Jill; Boyer, Carrie; Ragle, Christie; Balmer-Millar, Marilou; Aardahl, Chris; Habeger, Craig; Rappe, Ken; Tran, Diana; Koshkarian, Kent; Readey, Michael

    2005-11-22

    New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas

  12. Energy conservation by thermal insulation and refurbishment of the heating system in housing estate `Sudeckie` in Swiebodzice. Final monitoring report 1996 - 97 and 1997 - 98, Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The site for the project is located in South West Poland in the city of Swiebodzice, in a housing society called `Sudeckie`. The society is served by its own district heating network supplied from a coal fired boiler plant. There are plans for a future conversion of the boiler plant to natural gas, but as yet there is no gas pipeline in the district to supply the plant. The monitoring programme is based on the readings from energy meters installed in all buildings, in the boiler house and from data obtained from a number of thermologgers placed in selected apartments. The manual readings are done by the local staff in the housing society and the boiler house. In the 800 flats housing estate the energy saving activities are already showing good results by a clear and detectable drop in the energy consumption. The total energy savings due to thermal insulation, thermostatic valves and balancing valves in 1996-97 are approximately 15% and in 1997-98 the savings have increased to 30%. The effect from the installed thermostatic valves is improved comfort through better control of indoor temperature, as well as energy savings by reducing the excess heat. The boiler house has been furnished with variable speed pumps and frequency converters and automatic weather compensating equipment. The boiler house has also been equipped with a pressure holding system and control valves for heat control. In the houses thermostatic valves have been mounted at the radiators, and air venting equipment has been installed at the top of the risers. (EG)

  13. Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study

    Directory of Open Access Journals (Sweden)

    Lefeng Cheng

    2018-01-01

    Full Text Available This paper develops a novel dynamic correction method for the reliability assessment of large oil-immersed power transformers. First, with the transformer oil-paper insulation system (TOPIS as the target of evaluation and the winding hot spot temperature (HST as the core point, an HST-based static ageing failure model is built according to the Weibull distribution and Arrhenius reaction law, in order to describe the transformer ageing process and calculate the winding HST for obtaining the failure rate and life expectancy of TOPIS. A grey target theory based dynamic correction model is then developed, combined with the data of Dissolved Gas Analysis (DGA in power transformer oil, in order to dynamically modify the life expectancy calculated by the built static model, such that the corresponding relationship between the state grade and life expectancy correction coefficient of TOPIS can be built. Furthermore, the life expectancy loss recovery factor is introduced to correct the life expectancy of TOPIS again. Lastly, a practical case study of an operating transformer has been undertaken, in which the failure rate curve after introducing dynamic corrections can be obtained for the reliability assessment of this transformer. The curve shows a better ability of tracking the actual reliability level of transformer, thus verifying the validity of the proposed method and providing a new way for transformer reliability assessment. This contribution presents a novel model for the reliability assessment of TOPIS, in which the DGA data, as a source of information for the dynamic correction, is processed based on the grey target theory, thus the internal faults of power transformer can be diagnosed accurately as well as its life expectancy updated in time, ensuring that the dynamic assessment values can commendably track and reflect the actual operation state of the power transformers.

  14. Fatigue effects in insulation materials for fusion magnets

    International Nuclear Information System (INIS)

    Rosenkranz, P.

    2000-12-01

    thickness and to get information about the failure mechanisms in the specimen. Compared with a similar FE-analysis of the short beam shear test, the results show that for woven glass-fiber reinforced plastics the interlaminar shear strength is underestimated by up to 50 % by the common calculation method. The scaling program of the dynamic behavior did not show any systematic influence of the test geometry. Because of their high temperature stability and also in view of their high radiation resistance, ceramic-based insulation systems were recently suggested as alternative materials to organic insulation systems. The influence of reactor irradiation on the ultimate tensile strength and the interlaminar shear strength at 77 K of some newly developed ceramic insulation systems of various compositions were investigated in the static mode. According to swelling and weight loss, the radiation resistance and also the interlaminar shear strength of the materials would meet the ITER conditions, while the tensile properties fall below the ITER requirements. Finally the static and the dynamic tensile and interlaminar shear properties of a standard glass-fiber reinforced epoxy were investigated at 77 K after several steps of reactor and pure γ-irradiation. The results prove, that the materials fulfill the ITER requirements in the static and in the fatigue mode. (author)

  15. Electrical insulating liquid: A review

    Science.gov (United States)

    Mahanta, Deba Kumar; Laskar, Shakuntala

    Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  16. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  17. Outgassing of solid material into vacuum thermal insulation spaces

    Science.gov (United States)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  18. Dynamical preparation of Floquet Chern insulators.

    Science.gov (United States)

    D'Alessio, Luca; Rigol, Marcos

    2015-10-01

    Realizing topological insulators is of great current interest because of their remarkable properties and possible future applications. There are recent proposals based on Floquet analyses that one can generate topologically non-trivial insulators by periodically driving topologically trivial ones. Here we address what happens if one follows the dynamics in such systems. Specifically, we present an exact study of the time evolution of a graphene-like system subjected to a circularly polarized electric field. We prove that for infinite (translationally invariant) systems the Chern number is conserved under unitary evolution. For systems with boundaries, on the other hand, we show that a properly defined topological invariant, the Bott index, can change. Hence, it should be possible to experimentally prepare topological states starting from non-topological ones. We show that the chirality of the edge current in such systems can be controlled by adjusting the filling.

  19. Correlação entre a concentração sérica de interleucina-6 (IL-6 e biomarcadores de resistência insulínica em adultos jovens obesos

    Directory of Open Access Journals (Sweden)

    Luana Oliboni

    2016-10-01

    Full Text Available Introdução: O tecido adiposo é um importante órgão endócrino secretor de adipocinas como a interleucina-6 (IL-6, que estimula a produção de proteínas de fase aguda no fígado, conduzindo a um estado inflamatório subclínico associado ao surgimento de comorbidades presentes na obesidade, como a resistência à insulina (RI. O objetivo deste estudo foi avaliar a concentração de IL-6 em jovens obesos, com sobrepeso e de peso normal, correlacionando as concentrações dessa citocina com biomarcadores de RI. Métodos: Foi conduzido um estudo transversal que envolveu 149 indivíduos: 54 saudáveis (32 mulheres e 22 homens, 27 com sobrepeso (17 mulheres e 10 homens e 68 obesos (41 mulheres e 27 homens. As medidas antropométricas e as concentrações de IL-6, insulina, hemoglobina glicada e glicose foram determinadas, assim como os cálculos do Modelo de Avaliação da Homeostase (HOMA e da sensibilidade insulínica (SI. Resultados: Pacientes obesos mostraram níveis de IL-6, glicose, insulina e HOMA significativamente superiores e redução da SI quando comparados com pacientes de peso normal. Correlações positivas foram observadas entre IL-6, glicose, insulina e HOMA. Conclusão: Este estudo sugere que a IL-6 pode ter um papel-chave no desenvolvimento da RI em obesos e que o aumento de sua produção pode contribuir para a inflamação do tecido adiposo e interferir significativamente na atividade da insulina. Embora mais estudos clínicos sejam necessários para elucidar os reais mecanismos de interferência da IL-6 sobre a SI, sugere-se que essa citocina poderá ser, no futuro, uma determinação importante para avaliar e monitorar a RI em obesos jovens. Palavras-chave: Citocina; obesidade; diabetes; insulina

  20. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  1. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  2. Insulators: estructura y funciones

    OpenAIRE

    Fresán Salvo, Ujué

    2016-01-01

    [spa] Los insulators son complejos de DNA y proteínas, cuya función no solo consiste en impedir la comunicación enhancer-promotor y/o bloquear la expansión del silenciamiento de la heterocromatina como clásicamente se habían descrito. Median interacciones intra e intercromosomales, cuyo objetivo fmal es la organización del genoma en diferentes dominios, regulando por consiguiente las funciones del DNA. Uno de los objetivos de esta tesis fue la búsqueda de nuevas funciones de proteínas insulat...

  3. Impact of grounding and filtering on power insulation monitoring in insulated terrestrial power networks

    NARCIS (Netherlands)

    van Vugt, Pieter Karel Anton; Bijman, Rob; Timens, R.B.; Leferink, Frank Bernardus Johannes

    2013-01-01

    Insulated terrestrial power networks are used for reliable systems such as large production plants, hospital operating rooms and naval ships. The system is isolated from ground and a first fault, such as a short circuit between a phase and ground, will not result in disconnection of the power via

  4. Disorder enabled band structure engineering of a topological insulator surface

    International Nuclear Information System (INIS)

    Xu, Yishuai; Chiu, Janet; Miao, Lin; He, Haowei

    2017-01-01

    Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond the localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2 X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.

  5. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  6. Insulation coordination workstation for AC and DC substations

    International Nuclear Information System (INIS)

    Booth, R.R.; Hileman, A.R.

    1990-01-01

    The Insulation Coordination Workstation was designed to aid the substation design engineer in the insulation coordination process. The workstation utilizes state of the art computer technology to present a set of tools necessary for substation insulation coordination, and to support the decision making process for all aspects of insulation coordination. The workstation is currently being developed for personal computers supporting OS/2 Presentation Manager. Modern Computer-Aided Software Engineering (CASE) technology was utilized to create an easily expandable framework which currently consists of four modules, each accessing a central application database. The heart of the workstation is a library of user-friendly application programs for the calculation of important voltage stresses used for the evaluation of insulation coordination. The Oneline Diagram is a graphic interface for data entry into the EPRI distributed EMTP program, which allows the creation of complex systems on the CRT screen using simple mouse clicks and keyboard entries. Station shielding is graphically represented in the Geographic Viewport using a three-dimensional substation model, and the interactive plotting package allows plotting of EPRI EMTP output results on the CRT screen, printer, or pen plotter. The Insulation Coordination Workstation was designed by Advanced Systems Technology (AST), a division of ABB Power Systems, Inc., and sponsored by the Electric Power Research Institute under RP 2323-5, AC/DC Insulation Coordination Workstation

  7. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  8. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  9. Measure Guideline. Sealing and Insulating Ducts in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  10. Measure Guideline: Sealing and Insulating of Ducts in Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Puttagunta, S.

    2011-12-01

    This document begins with a discussion on potential cost and performance benefits of duct sealing and insulating. It continues with a review of typical duct materials and components and the overall procedures for assessing and improving the duct system.

  11. Utilidad del índice HOMA-IR con una sola determinación de insulinemia para diagnosticar resistencia insulínica Usefulness of HOMA-IR index with an only insulinemia determination to diagnose an insulin resistance

    Directory of Open Access Journals (Sweden)

    José Arturo Hernández Yero

    2011-08-01

    Full Text Available Introducción: el índice HOMA-IR es un procedimiento simple, poco invasivo, y que permite, mediante una fórmula validada y bien establecida, precisar un valor numérico expresivo de resistencia insulínica. Calcular el índice HOMA-IR con un solo valor de insulinemia pudiera presentar una mayor variabilidad, lo cual se trata de solucionar con al menos la media de 3 insulinemias, de acuerdo con la fórmula original. En varios estudios es habitual que se realice con una sola determinación de insulinemia. Por esa razón se decidió hacer un estudio en pacientes con diabetes tipo 2 y comparar los resultados en cuanto a sensibilidad y especificidad con una sola determinación de sangre para la insulinemia y glucemia. Objetivo: evaluar la sensibilidad y especificidad de cada una de las determinaciones de insulinemia realizadas cada 5 min contra la media de estas durante la aplicación de la fórmula para el índice HOMA-IR. Métodos: se estudiaron 60 pacientes con diagnóstico de diabetes tipo 2, que acudieron a los servicios de consulta externa y de orientación en el Centro de Atención al Diabético de La Habana. Tenían un tiempo de evolución de la diabetes menor de 5 años como promedio, con predominio en el sobrepeso corporal, fueron captados en un período de 6 meses de forma consecutiva, y se les realizaron determinaciones de insulinemias y glucemias en ayunas mediante trocar y extracción de sangre venosa a los 0,5 y 10 min, para realizarles el cálculo del modelo homeostático de Matthews conocido como HOMA-IR. Resultados: un 88,3 % tenía un HOMA-IR mayor de 3,2. La sensibilidad de una sola muestra de insulinemia, aunque elevada para confirmar el diagnóstico de resistencia insulínica, es variable, y la especificidad de una de las muestras resultó baja con un 14 %. Se aprecia una adecuada concordancia entre los valores predictivos positivos con la sensibilidad y los valores predictivos negativos con la especificidad de la prueba

  12. Insulation Retrofit under Low-Slope Roofs.

    Science.gov (United States)

    1982-02-01

    structures. bar -joist/steel-deck structural system, while others use wood or concrete. These buildings can be thermally Approach upgraded if the owner is...provided information about a building where insulation was supported on chicken- Sprayed Systems wire between steel bar joists (Figure 10). Pins and The...Jin ’rlcral ( ti h/ni. ni t ’mOiial Retionjttts There ire no pubhlic tesi neihiods for this Lluality. It iiisolatioii shall 11ot decompose Mt :use

  13. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Chang, Y.J.; Koo, C.H.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Lee, J.S.; Noh, T.W.; Kim, Hyun-Tak; Chae, B.G.

    2005-01-01

    Vanadium dioxide (VO 2 ) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO 2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO 2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO 2 occurs through metal and insulator phase coexistence

  14. Characterization of Textile-Insulated Capacitive Biosensors

    Directory of Open Access Journals (Sweden)

    Charn Loong Ng

    2017-03-01

    Full Text Available Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG signals measurements throughout the performance test.

  15. Characterization of Textile-Insulated Capacitive Biosensors

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  16. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  17. Analysis of a back flashover across insulator strings on a 115 kV transmission line tower by PSCAD

    Directory of Open Access Journals (Sweden)

    Worakit Anekthanasuwan

    2015-09-01

    Full Text Available Lightning striking on a transmission tower induces high ground potential rise and high voltage at tower arms in which potential is normally at ground level, and subsequently causes overvoltage across an insulator string. If this overvoltage is higher than the withstanding voltage of the insulator string according to the v-t (voltage-time curve, back flashover phenomena will occur and this event may cause outage. The main objective of this paper is to study the factors influencing the back flashover phenomena. The computer program PSCAD/EMTDC (Power System Computer Aided Design/Electromagnetic Transients including DC is used to simulate lightning striking on a transmission tower 115kV. Lightning current, transmission towers, ground resistance, insulator strings and back flashover phenomena are modeled. Main simulations are lightning striking on different towers, different soil resistivity, different lightning current magnitudes and wave shapes, different locations, and different phase angles of source voltage. Simulation results show that the higher tower encounters higher induced voltage. A back flashover occurs at the top tower arm easier than at the middle and lower arms. The higher soil resistivity induces higher voltage. The larger lightning current magnitude impacts on higher induced voltage. The longer rise time of lightning current generates lower induced voltage. Lightning strikes directly on tower generate higher voltage than that of striking on overhead ground wires.

  18. Wall Insulation; BTS Technology Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  19. Surface resistance of superconductors - examples from Nb - O systems

    International Nuclear Information System (INIS)

    Palmer, F.

    1988-01-01

    The observed surface resistance of most superconductors can be written as the sum of two terms. R/sub obs/ = R/sub BCS/ + R/sub res/. This paper is divided into three sections. The first section describes the BCS theory of surface resistance in terms of a simplified two-fluid model. The second section describes several possible causes of residual resistance including normal conducting materials, tunneling across cracks in the surface, and direct generation of phonons by the RF electric field. The last section describes recent experiments having to do with the effects of oxide layers on surface resistance. Layers grown in pure oxygen at room temperature were found to have little or no effect, but if these layers are heated to temperatures near 300 0 C, they can alter both the BCS resistance and the residual resistance. Heated oxide layers also increased the dependence of the residual resistance on ambient magnetic field. 31 references, 13 figures, 3 tables

  20. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  1. Antimicrobial Use and Resistance in Australia (AURA) surveillance system: coordinating national data on antimicrobial use and resistance for Australia.

    Science.gov (United States)

    Turnidge, John D; Meleady, Kathy T

    2017-06-22

    Objective The aim of the present study was to describe the process of establishment and coordination of the national Antimicrobial Use and Resistance in Australia (AURA) surveillance system. Methods Existing surveillance programs conducted by health organisations at state or multi-jurisdictional levels were reviewed, and gaps and opportunities identified for the development of a national system. In view of the time frame available as part of the Australian Government Department of Health funding agreement, the strategy used by the Australian Commission on Safety and Quality in Health Care was to commence work with existing surveillance programs, expanding and enhancing them and developing new systems where gaps were identified. Using the specifications of the AURA national system, the data from each of these elements were then analysed and reported. The system provides coverage for the acute and community sectors for antimicrobial use and antimicrobial resistance. Results The AURA surveillance system integrates eight streams of surveillance activities, including passive and targeted surveillance of antimicrobial use and resistance from hospitals (public and private) and the community (general practitioners and aged care homes). A gap was identified in timely surveillance of critical antimicrobial resistances (CARs), which resulted in the development of the national CARAlert system. The first comprehensive analyses of data across the surveillance programs was published in June 2016, providing baseline data for future reports to build on. Conclusion The AURA surveillance system has established the framework and foundation systems for an integrated and comprehensive picture of both antimicrobial use and resistance in Australia over time. National coordination and support will improve data collection, standardisation and analysis, and will facilitate collaboration across the states and territories, the Australian Government and the private sector. AURA publications

  2. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  3. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  4. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  5. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  6. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  7. Periodic table for Floquet topological insulators

    Science.gov (United States)

    Roy, Rahul; Harper, Fenner

    2017-10-01

    Dynamical phases with novel topological properties are known to arise in driven systems of free fermions. In this paper, we obtain a `periodic table' to describe the phases of such time-dependent systems, generalizing the periodic table for static topological insulators. Using K theory, we systematically classify Floquet topological insulators from the ten Altland-Zirnbauer symmetry classes across all dimensions. We find that the static classification scheme described by a group G becomes G×n in the time-dependent case, where n is the number of physically important gaps in the quasienergy spectrum (including any gaps at quasienergy π ). The factors of G may be interpreted as arising from the bipartite decomposition of the unitary time-evolution operator. Topologically protected edge modes may arise at the boundary between two Floquet systems, and we provide a mapping between the number of such edge modes and the topological invariant of the bulk.

  8. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  9. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  10. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  11. Crossover between Mott-insulator and band-insulator in the two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Odashima, Satoru, E-mail: odashima@iwate-jst-satellite.j [Japan Science and Tehnology Ageny, JST Satellite Iwate, 3-35-2 Iiokashinden, Morioka, Iwate 020-0852 (Japan)

    2009-03-01

    Electronic states of the two-orbital Hubbard model are investigated by means of the composite operator method. In addition to the transfer within the same kind of orbital, we introduce the off-diagonal transfer t', which provides the mixing of orbitals. In the t' = 0 case, the system shows the orbital selective Mott transition at U = 4. Upon adding t', the band gap goes wider. This increase of the gap originates from the crossover between the Mott-insulator and the band-insulator.

  12. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  13. Сombined Thermal Insulating Module of Mounted Vented Facades

    Directory of Open Access Journals (Sweden)

    Ryabukhina Svetlana

    2016-01-01

    Full Text Available In order to define an optimum type of mounted vented facades among the existing ones, comparative analysis of two façade modules has been conducted. The first module type is a widespread standard module of hinged vented facade and the second type is less applicable combined thermal insulating module. Those two technologies were compared thermal engineering and energy efficiency parameters. It was defined that the application of a thermal insulating module with combined insulation system improves thermal engineering parameters of the building as well as leads to a substantial savings. This article exposes innovative materials and structure of vented facades which can be applied in modern construction.

  14. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012.

    Directory of Open Access Journals (Sweden)

    William J Love

    2016-11-01

    Full Text Available Surveillance of antimicrobial resistance (AMR is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71. Unweighted modularity did not appear to change over time (p = 0.18, but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005 indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic

  15. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  16. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  17. Excavationless Exterior Foundation Insulation Exploratory Study

    Energy Technology Data Exchange (ETDEWEB)

    Mosimann, Garrett [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Wagner, Rachel [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Schirber, Tom [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  18. Electronic correlations in insulators, metals and superconductors

    International Nuclear Information System (INIS)

    Sentef, Michael Andreas

    2010-01-01

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  19. NEW, EFFICIENT AND GENERALLY APPLICABLE DESIGN OF RADON-PROOF INSULATIONS-A PROPOSAL FOR A UNIFORM APPROACH.

    Science.gov (United States)

    Jiránek, M

    2017-11-01

    A comparison of existing methods used for dimensioning radon-proof insulations showed that they generate significantly different thicknesses. As a consequence, they fail to provide relevant information about the applicability of particular waterproofing materials. A new, generally applicable and simple method for dimensioning radon-proof insulation is therefore proposed here. It is based on comparing two values: the radon resistance of the insulation, and the minimum radon resistance. Whilst the radon resistance of a particular insulation can be provided by the manufacturers in technical data sheets in dependence on the thickness and the radon diffusion coefficient, the minimum radon resistance is tabulated in dependence on the radon risk of the foundation soils and the parameters of the building. The new method allows fast, reliable and optimized design of radon-prof insulations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. RESISTIVITIES AND BAND STRUCTURES OF ALKALINE-EARTH-PNICTIDE SYSTEMS

    NARCIS (Netherlands)

    XU, R; DEGROOT, RA; VANDERLUGT, W

    1993-01-01

    The electrical resistivities p of the liquid Sr-Bi and Sr-Sb alloys have been determined for compositions covering the whole concentration range. Plotted as a function of composition the results resemble those obtained previously for Mg-Bi by other authors. There is a very sharp resistivity maximum

  1. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria.

    Science.gov (United States)

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A; Olatoye, Isaac O; Call, Douglas R; Douglas, Douglas R

    2015-06-25

    Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this

  2. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  3. Composition and process for making an insulating refractory material

    Science.gov (United States)

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  4. A methodology for resistance to change management in information systems projects

    OpenAIRE

    Vrhovec, Simon

    2015-01-01

    The rate of failed information systems development projects remains high despite increasing investments into information systems and their major importance for contemporary organizations. Resistance to change is one of the critical reasons for such high failure rates. Organizations faced resistance to change long before the emergence of first computers as it is a natural reaction to change. With the emergence of computers and introduction of information technology to organizations, resistance...

  5. Partial resistance in the Linum-Melampsora host-pathogen system: does partial resistance make the red queen run slower?

    Science.gov (United States)

    Antonovics, Janis; Thrall, Peter H; Burdon, Jeremy J; Laine, Anna-Liisa

    2011-02-01

    Five levels of disease expression were scored in a cross-inoculation study of 120 host and 60 pathogen lines of wild flax Linum marginale and its rust fungus Melampsora lini sampled from six natural populations. Patterns of partial resistance showed clear evidence of gene-for-gene interactions, with particular levels of partial resistance occurring in specific host-pathogen combinations. Sympatric and putatively more highly coevolved host-pathogen combinations had a lower frequency of partial resistance types relative to allopatric combinations. Sympatric host-pathogen combinations also showed a lower diversity of resistance responses, but there was a trend toward a greater fraction of this variance being determined by pathogen-genotype × host-genotype interactions. In this system, there was no evidence that partial resistances slow host-pathogen coevolution. The analyses show that if variation is generated by among population host or pathogen dispersal, then coevolution occurs largely by pathogens overcoming the partial resistances that are generated. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  6. Radiation tests on selected electrical insulating materials for high-power and high voltage application

    International Nuclear Information System (INIS)

    Liptak, G.; Schuler, R.; Haberthuer, B.; Mueller, H.; Zeier, W.; Maier, P.; Schoenbacher, H.

    1985-01-01

    This report presents a comprehensive set of test results on the irradiation of insulating materials and systems used for the windings of rotating machines, dry-type transformers, and magnet coils. The materials were: Novolac, bisphenol-A, and cycloaliphatic types of epoxy; saturated and unsaturated polyesterimide; silicone, phenolic, and acrylic resins. The reinforcement consisted of glass mat, glass roving, glass cloth, mica paper, polyester mat, polyester roving, polyester cloth, aromatic polyamide paper, or combinations thereof. The materials were irradiated in an 8 MW pool reactor up to integrated doses of 10 8 Gy. On most samples, flexural properties were examined as recommended by IEC Standard 544. For tapes and varnishes, the breakdown voltage was measured. The adhesion of copper bars glued together with an epoxy resin was examined by means of a lap-shear test. A cupping test by means of the Erichsen apparatus was used to measure the flexibility of varnishes. The results are presented in tables and graphs for each of the materials tested. Those from mechanical tests show that the radiation resistance of composite resin-rich insulations depends not only on the base resin combination and the reinforcement material but, to a large degree, also on the adhesion between the two. It appears that better adhesion, and consequently higher radiation resistance, is obtained by special surface treatments of glass fibres. For laminates, higher radiation resistance is obtained with glass mat and resin combinations than with glass cloth as reinforcing materials. The breakdown voltage tests show that the application of mechanical stress to most irradiated samples causes the insulation layer to crack, resulting in lower dielectric strength. For a number of materials, the critical properties of flexural strength and breakdown voltage are above 50% of the initial value at doses between 10 7 and 10 8 Gy, i.e. a radiation index of 7 to 8 at 10 5 Gy/h. (orig.)

  7. Reflective Insulation for Energy Conservation in South East Asia

    Science.gov (United States)

    San Teh, Khar; Yarbrough, David W.; Haw Lim, Chin; Salleh, Elias

    2017-05-01

    Thermal resistances have been measured for attic spaces insulated with reflective insulations. Three test units located in Malaysia were instrumented to provide heat flux and temperatures for the calculation of time-average RSI-values (RSI is representing R-value in SI units). The RSI for attics with enclosed reflective air spaces were in the range 2-3 m2·K/W while the uninsulated attics averaged about 0.4 m2·K/W. The RSI-values determined in this project were for heat-flow down, the predominant heat-flow direction for attic spaces in Equatorial regions. The observed thermal resistances due to the installation of the reflective insulation results in an 80-90% annual decrease in the heat transfer across the ceiling. This reduces utility usage for air conditioned units and improved comfort for occupants. The research demonstrates the use of transient data for the determination of thermal insulation performance and usefulness of enclosed reflective air spaces for thermal resistance.

  8. Gapped boundary phases of topological insulators via weak coupling

    Science.gov (United States)

    Seiberg, Nathan; Witten, Edward

    2016-12-01

    The standard boundary state of a topological insulator in 3 + 1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models.

  9. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  10. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  11. Thermal spray coating for corrosion under insulation (CUI) prevention

    Science.gov (United States)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  12. National Antimicrobial Resistance Monitoring System: Two Decades of Advancing Public Health Through Integrated Surveillance of Antimicrobial Resistance.

    Science.gov (United States)

    Karp, Beth E; Tate, Heather; Plumblee, Jodie R; Dessai, Uday; Whichard, Jean M; Thacker, Eileen L; Hale, Kis Robertson; Wilson, Wanda; Friedman, Cindy R; Griffin, Patricia M; McDermott, Patrick F

    2017-10-01

    Drug-resistant bacterial infections pose a serious and growing public health threat globally. In this review, we describe the role of the National Antimicrobial Resistance Monitoring System (NARMS) in providing data that help address the resistance problem and show how such a program can have broad positive impacts on public health. NARMS was formed two decades ago to help assess the consequences to human health arising from the use of antimicrobial drugs in food animal production in the United States. A collaboration among the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration, the United States Department of Agriculture, and state and local health departments, NARMS uses an integrated "One Health" approach to monitor antimicrobial resistance in enteric bacteria from humans, retail meat, and food animals. NARMS has adapted to changing needs and threats by expanding surveillance catchment areas, examining new isolate sources, adding bacteria, adjusting sampling schemes, and modifying antimicrobial agents tested. NARMS data are not only essential for ensuring that antimicrobial drugs approved for food animals are used in ways that are safe for human health but they also help address broader food safety priorities. NARMS surveillance, applied research studies, and outbreak isolate testing provide data on the emergence of drug-resistant enteric bacteria; genetic mechanisms underlying resistance; movement of bacterial populations among humans, food, and food animals; and sources and outcomes of resistant and susceptible infections. These data can be used to guide and evaluate the impact of science-based policies, regulatory actions, antimicrobial stewardship initiatives, and other public health efforts aimed at preserving drug effectiveness, improving patient outcomes, and preventing infections. Many improvements have been made to NARMS over time and the program will continue to adapt to address emerging resistance threats, changes in

  13. Investigation of S{sub 2}F{sub 10} production and mitigation in compressed SF{sub 6}-insulated power systems. Final report, Volume 1: Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Sauers, I.; Griffin, G.D.; James, D.R. [Oak Ridge National Lab., TN (United States); Brunt, R.J. Van; Olthoff, J.K.; Stricklett, K.L. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Morrison, H.D.; Chu, F.Y. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Frechette, M.F. [Hydro-Quebec, Varennes, Quebec (Canada)

    1995-10-01

    A CRADA was established in 1991 to study the production and mitigation of S{sub 2}F{sub 10}, one of a number of toxic by-products formed by electrical discharges in the insulating gas SF{sub 6}. Since compressed SF{sub 6} is extensively used as an insulation and current interruption medium in electric power equipment, ensuring the safe operation and maintenance of this equipment is an important issue for utilities, government agencies, and manufacturers. Each of the three research laboratories developed a highly sensitive detection method for S{sub 2}F{sub 10}: (1) Oak Ridge National Laboratory, gas chromatography/cryogenic enrichment (less than 10 ppbv sensitivity); (2) National Institute of Standards and Technology, gas chromatography/mass spectrometry/thermal conversion (less than 10 ppbv); (3) Ontario Hydro Technologies, Fourier transform infrared spectrometry (FTIR) (less than 100 ppbv). Studies showed that S{sub 2}F{sub 10} can be produced in the laboratory by corona, spark, and power arc discharges and that the production rates for each type of discharge decrease in that same respective order. In power arcs, SOF{sub 2} is by far the dominant species. The field survey provided baseline data and demonstrated the feasibility of taking and analyzing field samples using the techniques developed under this CRADA. It was found that in power arcs the amount of S{sub 2}F{sub 10} produced is relatively insignificant compared to the amount of the SOF{sub 2} produced. The knowledge gained from this CRADA should also be beneficial for the development of routine procedures for gas analysis, so that analysis of the decomposition products of SF{sub 6} will become a standard method for addressing the issues of health and safety, equipment reliability and aging, and diagnostics for GIS (Gas-Insulated Substations).

  14. Using and development of multi adversity resistance system in cotton

    Directory of Open Access Journals (Sweden)

    Metin Durmuş ÇETİN

    2014-12-01

    Full Text Available The basic approach in plant breeding, make it possible to show the full genetic potential of plant. This methods also protect the health of plant growth over the period, by increasing resistance to diseases and pests is expected to provide. For this purpose, by Bird in 1963, with the name of multi adversity resistance has been initiated in cotton breeding and for many years as a result of the work carried out important varieties and germplasm have been developed. Nowadays, those using for varieties resistant to stress factors such as heat and drought are evaluated. And successful results are obtained.

  15. Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

    Science.gov (United States)

    Johnson, W. L.; Fesmire, J. E.; Heckle, K. W.

    2015-12-01

    Cryogenic multilayer insulation (MLI) systems provide both conductive and radiative thermal insulation performance. The use of radiation shields with low conductivity spacers in between are required. By varying the distance and types of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. To understand how various combinations of different multilayer insulation (MLI) systems work together and to further validate thermal models of hybrid MLI systems, test data are needed. The MLI systems include combinations of Load-Bearing MLI (LB-MLI) and traditional MLI (tMLI). To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests. The basic hybrid construction consists of some number of layers of LB-MLI on the cold side of the insulation system followed by layers of tMLI on the warm side of the system. The advantages of LB-MLI on the cold side of the insulation blanket are that its low layer density (0.5 - 0.6 layer/mm) is better suited for lower temperature applications and is a structural component to support heat interception shields that may be placed within the blanket. The advantage of tMLI systems on the warm side is that radiation is more dominant than conduction at warmer temperatures, so that a higher layer density is desired (2 - 3 layer/mm) and less effort need be put into minimizing conduction heat transfer. Liquid nitrogen boiloff test data using a cylindrical calorimeter are presented along with analysis for spacecraft tank applications.

  16. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  17. Evaluation of thermal insulation materials

    Science.gov (United States)

    Wilbers, O. J.; Conti, J. C.; Mcgee, J. V.; Mcpherson, J. I.

    1973-01-01

    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting.

  18. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  19. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  20. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  1. Kit for performing puncture test on HV insulators

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, O.B.; Mello, D.R.; Cerqueira, W.R.; Alvarenga, E. [CEPEL, Rio de Janeiro, RJ (Brazil)

    1997-12-31

    A compact and easy way to handle puncture tests in high voltage electrical equipment was introduced. The characteristics of the main components of a new type of kit and some examples of its application were described. It is necessary to perform puncture tests on insulators used to support line conductors and to keep the necessary clearances between conductors and the tower. A puncture test is conducted by stressing the insulator with steep and short duration high voltage impulses. The special kit to handle the puncture tests was developed at CEPEL`s high voltage laboratory for performing tests up to 500 kV peak. The kit is composed of dry and compressed air insulated sphere gap, a very fast resistive divider and a structure which makes it easier to connect to conventional high voltage impulse generators. 3 refs., 1 tab., 7 figs.

  2. Unusual metal-insulator transition in disordered ferromagnetic films

    International Nuclear Information System (INIS)

    Muttalib, K.A.; Wölfle, P.; Misra, R.; Hebard, A.F.

    2012-01-01

    We present a theoretical interpretation of recent data on the conductance near and farther away from the metal-insulator transition in thin ferromagnetic Gd films of thickness b≈2-10 nm. For increasing sheet resistances a dimensional crossover takes place from d=2 to d=3 dimensions, since the large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L φ ≲b at strong disorder. The conductivity data in the various regimes obey fractional power-law or logarithmic temperature dependence. One observes weak localization and interaction induced corrections at weaker disorder. At strong disorder, near the metal-insulator transition, the data show scaling and collapse onto two scaling curves for the metallic and insulating regimes. We interpret this unusual behavior as proof of two distinctly different correlation length exponents on both sides of the transition.

  3. Disorder-Driven Metal-Insulator Transitions in Deformable Lattices.

    Science.gov (United States)

    Di Sante, Domenico; Fratini, Simone; Dobrosavljević, Vladimir; Ciuchi, Sergio

    2017-01-20

    We show that, in the presence of a deformable lattice potential, the nature of the disorder-driven metal-insulator transition is fundamentally changed with respect to the noninteracting (Anderson) scenario. For strong disorder, even a modest electron-phonon interaction is found to dramatically renormalize the random potential, opening a mobility gap at the Fermi energy. This process, which reflects disorder-enhanced polaron formation, is here given a microscopic basis by treating the lattice deformations and Anderson localization effects on the same footing. We identify an intermediate "bad insulator" transport regime which displays resistivity values exceeding the Mott-Ioffe-Regel limit and with a negative temperature coefficient, as often observed in strongly disordered metals. Our calculations reveal that this behavior originates from significant temperature-induced rearrangements of electronic states due to enhanced interaction effects close to the disorder-driven metal-insulator transition.

  4. BDP-30, a systemic resistance inducer from Boerhaavia diffusa L ...

    Indian Academy of Sciences (India)

    2015-01-11

    62 and CT-VIA-32, were purified from Cyamopsis tetragonoloba plants that were induced to resist virus infection following treatment with CIP-29, with. CT-VIA-62 sharing sequence homology with a lectin that possessed a ...

  5. Analysis of the Factors Affecting Resistance to Changes in Management Accounting Systems

    OpenAIRE

    Rodrigo Angonese; Carlos Eduardo Facin Lavarda

    2014-01-01

    Despite changes in the environment and management accounting practices, studies indicate that management accounting systems do not change or change at a much slower rate than expected. The stability of the management accounting systems used by companies may relate to resistance to changing these systems. This study analyzes the factors that contribute to resistance to implementing an integrated management system from the perspective of institutional theory, grounded in the old institutional e...

  6. Experimental and Mathematical Analysis of Multilayer Insulation below 80 K

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2000-01-01

    The Large Hadron Collider [1], presently under construction at CERN, will make an extensive use of multilayer insulation system (MLI). The total surface to be insulated will be of about 80000 m2. A mathematical model has been developed to describe the heat flux through MLI from 80 K to 4.2 K. The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid conduction. The mathematical model enables prediction of MLI behavior with regard to different MLI parameters, such as gas insulation pressure, number of layers and boundary temperatures. The calculated values have been compared to the experimental measurements carried out at CERN. Theoretical and experimental results revealed to be in good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  7. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    Science.gov (United States)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  8. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  9. Bidirectional negative differential thermal resistance in three-segment Frenkel–Kontorova lattices

    International Nuclear Information System (INIS)

    Ou, Ya-li; Lu, Shi-cai; Hu, Cai-tian; Ai, Bao-quan

    2016-01-01

    By coupling three nonlinear 1D lattice segments, we demonstrate a thermal insulator model, where the system acts like an insulator for large temperature bias and a conductor for very small temperature bias. We numerically investigate the parameter range of the thermal insulator and find that the nonlinear response (the role of on-site potential), the weakly coupling interaction between each segment, and the small system size collectively contribute to the appearance of bidirectional negative differential thermal resistance (BNDTR). The corresponding exhibition of BNDTR can be explained in terms of effective phonon-band shifts. Our results can provide a new perspective for understanding the microscopic mechanism of negative differential thermal resistance and also would be conducive to further developments in designing and fabricating thermal devices and functional materials. (paper)

  10. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis.

    Science.gov (United States)

    Yu, Linda Chia-Hui; Shih, Yi-An; Wu, Li-Ling; Lin, Yang-Ding; Kuo, Wei-Ting; Peng, Wei-Hao; Lu, Kuo-Shyan; Wei, Shu-Chen; Turner, Jerrold R; Ni, Yen-Hsuan

    2014-10-15

    Antibiotic usage promotes intestinal colonization of antibiotic-resistant bacteria. However, whether resistant bacteria gain dominance in enteric microflora or disseminate to extraintestinal viscera remains unclear. Our aim was to investigate temporal diversity changes in microbiota and transepithelial routes of bacterial translocation after antibiotic-resistant enterobacterial colonization. Mice drinking water with or without antibiotics were intragastrically gavaged with ampicillin-resistant (Amp-r) nonpathogenic Escherichia coli (E. coli) and given normal water afterward. The composition and spatial distribution of intestinal bacteria were evaluated using 16S rDNA sequencing and fluorescence in situ hybridization. Bacterial endocytosis in epithelial cells was examined using gentamicin resistance assay and transmission electromicroscopy. Paracellular permeability was assessed by tight junctional immunostaining and measured by tissue conductance and luminal-to-serosal dextran fluxes. Our results showed that antibiotic treatment enabled intestinal colonization and transient dominance of orally acquired Amp-r E. coli in mice. The colonized Amp-r E. coli peaked on day 3 postinoculation and was competed out after 1 wk, as evidenced by the recovery of commensals, such as Escherichia, Bacteroides, Lachnospiraceae, Clostridium, and Lactobacillus. Mucosal penetration and extraintestinal dissemination of exogenous and endogenous enterobacteria were correlated with abnormal epithelial transcytosis but uncoupled with paracellular tight junctional damage. In conclusion, antibiotic-induced enteric dysbiosis predisposes to exogenous infection and causes systemic dissemination of both antibiotic-resistant and commensal enterobacteria through transcytotic routes across epithelial layers. These results may help explain the susceptibility to sepsis in antibiotic-resistant enteric bacterial infection. Copyright © 2014 the American Physiological Society.

  11. Study of Temperature Distribution Along an Artificially Polluted Insulator String

    Science.gov (United States)

    Subba, Reddy B.; Nagabhushana, G. R.

    2003-04-01

    Insulator becomes wet partially or completely, and the pollution layer on it becomes conductive, when collecting pollutants for an extended period during dew, light rain, mist, fog or snow melting. Heavy rain is a complicated factor that it may wash away the pollution layer without initiating other stages of breakdown or it may bridge the gaps between sheds to promote flashover. The insulator with a conducting pollution layer being energized, can cause a surface leakage current to flow (also temperature-rise). As the surface conductivity is non-uniform, the conducting pollution layer becomes broken by dry bands (at spots of high current density), interrupting the flow of leakage current. Voltage across insulator gets concentrated across dry bands, and causes high electric stress and breakdown (dry band arcing). If the resistance of the insulator surface is sufficiently low, the dry band arcs can be propagated to bridge the terminals causing flashover. The present paper concerns the evaluation of the temperature distribution along the surface of an energized artificially polluted insulator string.

  12. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  13. Modification of the Sceptor system for rapid detection of methicillin-resistant staphylococci.

    Science.gov (United States)

    Denys, G A; Sahm, D F

    1986-01-01

    The 24-h Sceptor MIC system (Johnston Laboratories, Inc., Towson, Md.) was modified to allow rapid (6 h) detection of methicillin-resistant staphylococci. For 105 methicillin-resistant staphylococci tested, 90% of the results obtained by the 6-h method agreed with those obtained by disk agar diffusion. In comparison, 88 and 93% of the results obtained by the AutoMicrobic system (Vitek Systems, Inc., Hazelwood, Mo.) and the 24-h conventional Sceptor system, respectively, agreed with disk agar diffusion results. No false-resistant results were observed with 52 methicillin-susceptible staphylococci tested by any of the three methods. PMID:3093529

  14. Interleukin-6 and lung inflammation: evidence for a causative role in inducing respiratory system resistance increments.

    Science.gov (United States)

    Rubini, Alessandro

    2013-10-01

    Interleukin-6 is a multifunctional cytokine that has been shown to be increased in some pathological conditions involving the respiratory system such as those experimentally induced in animals or spontaneously occurring in humans. Experimental data demonstrating that interleukin-6 plays a significant role in commonly occurring respiratory system inflammatory diseases are reviewed here. Those diseases, i.e. asthma and chronic obstructive pulmonary disease, are characterised by mechanical derangements of the respiratory system, for the most part due to increased elastance and airway resistance. Recent findings showing that interleukin-6 has a causative role in determining an increase in airway resistance are reviewed. The end-inflation occlusion method was used to study the mechanical properties of the respiratory system before and after interleukin-6 administration. The cytokine was shown to induce significant, dose-dependent increments in both the resistive pressure dissipation due to frictional forces opposing the airflow in the airway (ohmic resistance) and the additional resistive pressure dissipation due to the visco-elastic properties of the system, i.e. stress relaxation (visco-elastic resistance). There were no alterations in respiratory system elastance. Even when administered to healthy mammals, interleukin-6 determines a significant effect on respiratory system resistance causing an increase in the mechanical work of breathing during inspiration. IL-6 hypothetically plays an active role in the pathogenesis of respiratory system diseases and the mechanisms that may be involved are discussed here.

  15. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  16. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  17. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  18. Metallic insulation transport and strainer clogging tests

    International Nuclear Information System (INIS)

    Hyvaerinen, J.; Hongisto, O.

    1994-06-01

    Experiments to probe the transport and clogging properties of metallic (metal reflective) insulation have been carried out in order to provide data for evaluation of their influence on the emergency core cooling and containment spray systems of the Finnish boiling water reactors in the event of a design basis accident. The specific metallic insulation tested was DARMET, provided by Darchem Engineering Ltd. The inner foils of Darmet are dimped. Available literature on the metallic insulation performance under design basis accident conditions has been reviewed. On the basis of the review a parametric approach has been chosen for the transport and clogging experiments. This approach involves testing a wide size range of various shapes of foil pieces. Five sets of experiments have been carried out. The first three sets investigate transport properties of the foil pieces, starting from sedimentation in stagnant waste pool and proceeding to transport in horizontal and vertically circulating flows. The clogging experiments have been addressed the differential pressures obtained due to accumulation of both pure and metallic and a mixture of metallic and fibrous (mineral wool) depris. (4 refs., 24 figs., 2 tabs.)

  19. Impact of doctors' resistance on success of drug utilization review system.

    Science.gov (United States)

    Choi, Jong Soo; Yun, Seong Hyeon; Kim, Dongsoo; Park, Seung Woo

    2014-04-01

    The drug utilization review (DUR) system, which checks any conflict event of medications, contributes to improve patient safety. One of the important barriers in its adoption is doctors' resistance. This study aimed to analyze the impacts of doctors' resistance on the success of the DUR system. This study adopted an augmented the DeLone and McLean Information System (D&M IS) Success Model (2003), which used doctors' resistance as a socio-technological measure. This study framework is the same as that of the D&M IS Success Model in that it is based on qualities, such as system, information, and services. The major difference is that this study excluded the variable 'use' because it was not statistically significant for mandatory systems. A survey of doctors who used computers to enter prescriptions was conducted at a Korean tertiary hospital in February 2012. This study is very meaningful in that it is the first study to explore the success factors of the DUR system associated with doctors' resistance. Doctors' resistance to the DUR system was not statistically associated with user usefulness, whereas it affected user satisfaction. The results indicate that doctors still complain of discomfort in using the DUR system in the outpatient clinical setting, even though they admit that it contributes to patient safety. To mitigate doctors' resistance and raise user satisfaction, more opinions from doctors regarding the DUR system have to be considered and have to be reflected in the system.

  20. Alkali-resistant bacteria in root canal systems.

    Science.gov (United States)

    Nakajo, K; Nakazawa, F; Iwaku, M; Hoshino, E

    2004-12-01

    The aim of this study was to isolate and identify alkali-resistant bacteria from the dentin of infected root canals. Bacteria from homogenized dentin powder made up from infected root canal walls from human teeth were cultured on buffer-enriched Brain Heart Infusion agar supplemented with 4% sheep blood (BHI-blood agar), adjusted to pH 7.0, 9.0 or 10.0. Incubation took place for 7 days at 37 degrees C in an anaerobic glove box. Bacterial strains selected according to colony and morphology were subcultured in buffer-enriched BHI broth adjusted to pH 9.0, 10.0 or 11.0 to confirm their growth as alkali-resistant bacteria. Polymerase chain reaction amplification using specific primer sets and 16S rDNA sequence analysis was performed for identification of alkali-resistant isolates. In the present study, 37 teeth extracted from 37 patients were used for preparation of the dentin powder samples. Bacteria were detected in 25 samples when standard BHI-blood agars (pH 7.0) were used. Of these, 29 strains from 15 samples were alkali resistant, 25 strains growing at pH 9.0 and 4 at pH 10.0. The alkali-resistant strains included Enterococcus faecium (10 strains) and Enterococcus faecalis (2 strains), Enterobacter cancerogenus (1 strains), Fusobacterium nucleatum (1 strains), Klebsiella ornithinolytica (2 strains), Lactobacillus rhamnosus (2 strains), Streptococcus anginosus (2 strains), Streptococcus constellatus (3 strains), and Streptococcus mitis (2 strains). Three strains were also identified as bacteria of genus Firmicutes or Staphylococcus at the genus level. The present study showed that many bacterial species in infected root canal dentin were alkali-resistant at pH 9.0 and/or pH 10.0, and belonged mainly to the genus Enterococcus.

  1. Castration-resistant prostate cancer: systemic therapy in 2012

    Directory of Open Access Journals (Sweden)

    Fernando C. Maluf

    2012-01-01

    Full Text Available Prostate cancer is the most common non-cutaneous neoplasm in the male population worldwide. It is typically diagnosed in its early stages, and the disease exhibits a relatively indolent course in most patients. Despite the curability of localized disease with prostatectomy and radiation therapy, some patients develop metastatic disease and die. Although androgen deprivation is present in the majority of patients with metastatic prostate cancer, a state of androgen resistance eventually develops. Castration-resistant prostate cancer, defined when there is progression of disease despite low levels of testosterone, requires specialized care, and improved communication between medical and urologic oncologists has been identified as a key component in delivering effective therapy. Despite being considered a chemoresistant tumor in the past, the use of a prostate-specific antigen has paved the way for a new generation of trials for castration-resistant prostate cancer. Docetaxel is a life-prolonging chemotherapy that has been established as the standard first-line agent in two phase III clinical trials. Cabazitaxel, a novel taxane with activity in cancer models resistant to paclitaxel and docetaxel, is the only agent that has been compared to a chemotherapy control in a phase III clinical trial as a second-line therapy; it was found to prolong the overall survival of patients with castration-resistant prostate cancer previously treated with docetaxel when compared to mitoxantrone. Other agents used in this setting include abiraterone and sipuleucel-T, and novel therapies are continually being investigated in an attempt to improve the outcome for patients with castration-resistant prostate cancer.

  2. An investigation on rapeseed oil as potential insulating liquid

    Science.gov (United States)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  3. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  4. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  5. A Parametric Study of Thermal Performance of an Exterior Wall Insulated with Vacuum Insulation Panels

    OpenAIRE

    Ciobanu, Adrian-Alexandru; Iacob, Adrian

    2013-01-01

    The requirements regarding thermal insulation of the new buildings and thermal rehabilitation of the existing buildings tend to reach a threshold of insulation which allows to fulfill the necessary requirements for a low-energy building. To achieve this level of thermal insulation involves using either thick layers of conventional insulation (polystyrene, mineral wool, etc.) or high thermal performance materials. Vacuum insulation panels are high performance thermal insulation characteri...

  6. Foliar application of systemic acquired resistance (SAR) inducers for ...

    African Journals Online (AJOL)

    nbuensanteai

    2013-08-14

    Aug 14, 2013 ... plants compared to the non-treated controls, with significant enhancement of these defense compounds being more pronounced in chitosan after pathogen challenging. These results further support the conclusion that chitosan and BTH prime for resistance instead of directly activating it (Aziz et al., 2006; ...

  7. Regeneration systems for pyramiding disease resistance into walnut rootstocks

    Science.gov (United States)

    This study was conducted to regenerate selected walnut rootstocks adventitiously. This is an essential step to be able to produce transgenic walnut rootstocks with superior traits, such as disease resistance. A series of plant tissue culture experiments were conducted on RX1 and VX211 rootstocks wit...

  8. Engineering Plants for Geminivirus Resistance with CRISPR/Cas9 System

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2016-02-14

    The CRISPR/Cas9 system is an efficient genome-editing platform for diverse eukaryotic species, including plants. Recent work harnessed CRISPR/Cas9 technology to engineer resistance to geminiviruses. Here, we discuss opportunities, emerging developments, and potential pitfalls for using this technology to engineer resistance against single and multiple geminivirus infections in plants.

  9. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  10. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Larsen, Poul Klenz; Hansen, Kurt Kielsgaard

    There are 1700 medieval churches in Denmark, and many of these have brick vaults. The thickness is only 12 – 15 cm, and the heat loss through this building component is large. Thermal insulation has not been permitted until now in respect for the antiquarian values and doubts about the effect...... on water vapour transport through the vault, and the risk of condensation inside the insulation. A new mortar was developed for thermal insulation of bricks vaults, consisting mainly of expanded perlite, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar...... joints. The insulation mortar is applied to the top side of the vault in a thickness of 10 cm, and covered by 10 mm lime plaster, reinforced with cattle hair. This assembly is resistant to the weight of a person, working with maintenance of the roof. The thermal conductivity of the insulation mortar...

  11. Impact of moisture content in AAC on its heat insulation properties

    Science.gov (United States)

    Rubene, S.; Vilnitis, M.

    2017-10-01

    One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.

  12. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1994-01-01

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  13. Metal–insulator transition in Ni-doped Na0.75CoO2: Insights from ...

    Indian Academy of Sciences (India)

    resistivity on lowering the temperature, with the metal-to-insulator transition temperature. (TMIT) increasing with the Ni ... The Ni-doped sample is seen to change over from a metallic to insulating behaviour at ~175 K. The ..... neutron diffraction to look for structural changes, viz., changes in bond lengths and site occupancies ...

  14. Requirements for thermal insulation on prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Neylan, A.J.; Wistrom, J.D.

    1979-01-01

    During the past decade, extensive design, construction, and operating experience on concrete pressure vessels for gas-cooled reactor applications has accumulated. Excellent experience has been obtained to date on the structural components (concrete, prestressing systems, liners, penetrations, and closures) and the thermal insulation. Three fundamentally different types of insulation systems have been employed to ensure the satisfactory performance of this component, which is critical to the overall success of the prestressed concrete reactor vessel (PCRV). Although general design criteria have been published, the requirements for design, materials, and construction are not rigorously addressed in any national or international code. With the more onerous design conditions being imposed by advanced reactor systems, much greater attention has been directed to advance the state of the art of insulation systems for PCRVs. This paper addresses some of the more recent developments in this field being performed by General Atomic Company and others. (author)

  15. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  16. Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators

    Science.gov (United States)

    2016-02-03

    facilitated transport experiments on topological insulators and Dirac and Weyl semimetals. These experiments resulted in several notable achievements and...Approved for Public Release; Distribution Unlimited Final Report: Acquisition of He3 Cryostat Insert for Experiments on Topological Insulators. The views...Experiments on Topological Insulators. Report Title The award enabled the PI to acquire a complete cryogenic system with a 9-Tesla superconducting magnet. The

  17. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  18. Metal-insulator transition in epitaxial vanadium sesquioxide thin films

    Science.gov (United States)

    Allimi, Bamidele S.

    Of all the transition metal oxides which exhibit metal-insulator transitions (MIT), one of the most extensively studied in recent years is the vanadium sesquioxide (V2O3), both from experimental and theoretical point of view. At a transition temperature of about 160 K at an ambient pressure of 1 atm, pure V2O3 transforms from a rhombohedral paramagnetic metallic (PM) to a monoclinic antiferromagnetic insulating (AFI) phase upon cooling, with a jump in the resistivity of about seven orders of magnitude. Experimental studies have focused more on bulk V2O3 and recently there have been significant interest in thin film fabrication of this material due to potential applications as thermal sensors, current limiters, Positive Temperature Coefficient (PTC) thermistors, and optical switches. This study addresses the deposition, characterization, and properties of high-quality epitaxial V2O3 thin films grown on a-, c-Al2O3 and c-LiTaO 3 substrates by a straightforward method of pulsed laser deposition (PLD). Various characterization techniques including X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray photoemission spectroscopy were used to examine the structural, crystallographic, and surface properties, while four point probe resistivity measurements were used to examine the electrical properties of the films. V2O3 thin films of different thicknesses ranging from 10-450 nm were deposited on c-Al 2O3 and c-LiTaO3 substrates by PLD to understand also the role of epitaxial strains. Resistivity measurements showed that depending on the thicknesses of films, different electrical transitions were exhibited by the samples. While some of the samples displayed the expected metal-insulator transition typical of bulk V2O3, some showed insulating behavior only and others exhibited metallic characteristics only over the whole temperature range. For example, for films on c-LiTaO3 with increasing film thickness, first an insulator-insulator, then a

  19. Scaling theory of quantum resistance distributions in disordered systems

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1991-01-01

    The large scale distribution of quantum Ohmic resistance of a disorderd one-dimensional conductor is derived explicitly. It is shown that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder single parameter scaling consistent with existing theoretical treatments is recovered. (author). 33 refs., 4 figs

  20. Metal resistance systems in cultivated bacteria: are they found in complex communities?

    Science.gov (United States)

    Gillan, David C

    2016-04-01

    Metal resistance systems found in complex bacterial communities by shotgun metagenomic approaches were reviewed. For that, 6 recent studies investigating 9 metal-contaminated environments (water or sediments) were selected. Of the 22 possible metal-resistance systems, only 14 were found in complex communities. These widespread and easily detected metal-resistance systems were mainly biogenic sulfide production (dsr genes), resistance mediated in the periplasm (CopK and multicopper oxidases such as PcoA/CopA), efflux proteins (HME-RND systems, P-type ATPases, and the cation diffusion facilitator CzcD) as well as proteins used to treat oxidative damages (e.g., SodA) and down-regulation of transporters. A total of 8 metal-resistance systems were not found in the complex communities investigated. These rare systems include metal resistance by phosphatases, ureases, metallophores, outer membrane vesicles, methylation genes and cytoplasmic metal accumulation systems. In this case rarity may also be explained by a lack of knowledge on the specific genes involved and/or analytical biases. Copyright © 2016 Elsevier Ltd. All rights reserved.