WorldWideScience

Sample records for resistance high-temperature strength

  1. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  2. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  3. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  4. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  5. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  6. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  7. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  8. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  9. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  10. A study on heat resistance of high temperature resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu [Research Institute of Engineering Technology of CNPC, Tianjin (China)

    2005-04-15

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  11. A study on heat resistance of high temperature resistant coating

    International Nuclear Information System (INIS)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu

    2005-01-01

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  12. High strength H2S resistant steels and alloys for oil field tubular products

    International Nuclear Information System (INIS)

    Straatmann, J.A.; Grobner, P.J.

    1976-01-01

    New sources of oil and natural gas are more frequently occurring at greater depths in hostile surface and underground environments. The materials utilized in drilling and completing the wells require higher strength along with improved resistance to corrosive/embrittling attack by contaminants present in the deep, high pressure-high temperature formations. Higher strength steels having yield strengths in excess of 690 MPa and possessing improved resistance to sulfide stress corrosion cracking (SSC) have been developed and are currently being evaluated by the oil industry. The research to develop these new steels combined modifications of chemical compositions, heat treatment and processing variables. For most severe SSC environments and deep wells, it was necessary to provide even better alloys for tubular materials. The successful solution to the problem was found with the utilization of nickel-base alloys. These materials are being evaluated in commercial applications

  13. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  14. Laser beam joining of non-oxidic ceramics for ultra high temperature resistant joints

    International Nuclear Information System (INIS)

    Lippmann, W.; Knorr, J.; Wolf, R.; Reinecke, A.M.; Rasper, R.

    2004-01-01

    The excellent technical properties of silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) ceramics, such as resistance to extreme temperatures, oxidation, mechanical wear, aggressive chemical substances and radioactive radiation and also its high thermal conductivity and good temperature-shock resistance, make these ceramics ideally suited for use in the field of nuclear technology. However, their practical use has been limited so far because of the unavailability of effective joining techniques for these ceramics, especially for high temperature applications. A new joining technology (CERALINK registered ) has been developed in a network project which allowed high temperature resistant and vacuum-tight joining of SiC or Si 3 N 4 ceramics. A power laser is used as heat source, which makes it possible to join ceramic components in free atmosphere in combination with a pure oxidic braze filler. As no furnace is necessary, there are no limitations on the component dimensions by the furnace-geometry. During the joining process, the heated area can be limited to the seam area so that this technology can also be used to encapsulate materials with a low melting point. The seam has a high mechanical strength, it is resistant to a wide range of chemicals and radiation and it is also vacuum-tight. The temperature resistance can be varied by variation of the braze filler composition - usually between 1,400 C and >1,600 C. Beside the optimum filler it is also important to select the suitable laser wavelength. The paper will demonstrate the influence of different wave lengths, i. e. various laser types, on the seam quality. Examples are chosen to illustrate the strengths and limitations of the new technology

  15. Development of a high strength, hydrogen-resistant austenitic alloy

    International Nuclear Information System (INIS)

    Chang, K.M.; Klahn, D.H.; Morris, J.W. Jr.

    1980-08-01

    Research toward high-strength, high toughness nonmagnetic steels for use in the retaining rings of large electrical generators led to the development of a Ta-modified iron-based superalloy (Fe-36 Ni-3 Ti-3 Ta-0.5 Al-1.3 Mo-0.3 V-0.01 B) which combines high strength with good toughness after suitable aging. The alloy did, however, show some degradation in fatigue resistance in gaseous hydrogen. This sensitivity was associated with a deformation-induced martensitic transformation near the fracture surface. The addition of a small amount of chromium to the alloy suppressed the martensite transformation and led to a marked improvement in hydrogen resistance

  16. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  17. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  18. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  19. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  20. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  1. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  2. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  3. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  4. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  5. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  6. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature

    International Nuclear Information System (INIS)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1992-01-01

    We have developed an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of HEPA filters under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Several prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan at 700 degrees F for five minutes. The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. using a water saturated air flow at 95 degrees F. For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter

  7. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  8. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  9. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  11. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  12. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  13. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  14. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2010-05-01

    Full Text Available An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the relative resistance W(Ga at the melting point of gallium. The thermometers showed a correlation between the drift note and the values of W(Ga. It was found also that the HTSPRT which has a sensor with strip shaped support and low nominal resistance is more stable than the HTSPRT which has a sensor in the form of a coil wound on silica cross. The 0.25 Ω thermometer has better stability @ 7x10-6 0C (at TPW after 40 hour. Factors affecting the stability and accuracy of HTSPRT also will be discussed.

  15. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature

    International Nuclear Information System (INIS)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1993-01-01

    We have completed a preliminary study of an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of the standard deep pleated HEPA filter under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Three prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan (1,700 m 3 /hr) at 700 degrees F (371 degrees C) for five minutes.The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. (2.5 kPa) using a water saturated air flow at 95 degrees F (35 degrees C). For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter. Further studies are recommended to evaluate the improved HEPA filter and to assess its performance under more severe accident conditions

  16. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  17. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  18. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  19. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  20. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  1. Assessment of ECISS draft standard for derivation of high temperature proof strength values

    Energy Technology Data Exchange (ETDEWEB)

    Linde, L.; Sandstroem, R.

    1996-03-01

    New European material standards are under development and modern data evaluation techniques must be able to supply these standards with accurate design values. A draft standard for the derivation of high temperature proof strength values has been proposed. This standard (EDS) has been used to calculate strength values for six steels; one unalloyed steel, one 12 % Cr steel and four austenitic stainless steels. Although large data sets were available, it was not possible to satisfy the requirement in the EDS of 80 % temperature coverage in the proof strength data for several steels. It suggests that temperature coverage specified in the EDS is unrealistically high. Due to the limited number of heats satisfying the temperature coverage requirements for each steel, the statistical error in the derived values exceeds 10-20 % which must be considered as unacceptably high. Instead it is recommended that the full data sets are used irrespective of temperature coverage. The variation of proof strength values represented by the analysed heats did not cover the corresponding variation in the larger data set available. This was the case even for the steel where 16 heats satisfied the temperature coverage requirement. Thus a limited number of heats can not be expected to be a good representation of more complete data sets. This has the consequence that absolute strength values can not be derived without access to a standardised proof strength at room temperature. Two derivation methods investigated in this report are both based on the ISO 2605/III procedure for proof strength assessments at elevated temperature. Method I and II use an essentially temperature independent and temperature dependent reduction term respectively. The methods have been assessed by the same data sets for the six steels. One or both methods gave satisfactory results for most of the investigated steels. Presented results are based on work carried out in ECISS TC22 WG1. 17 refs, 20 figs, 7 tabs.

  2. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  3. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  4. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  5. Fracture Resistances of Y_2O_3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Kang, Suk Hoon; Lee, Yongbok; Kim, Sung Soo

    2012-01-01

    The fracture resistance and tensile properties of Y_2O_3 oxide dispersion strengthened steel containing 9 wt% Cr (9Cr-ODS) were measured at various temperatures up to 700°C. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below 500°C. The strength difference between the two materials was almost diminished at 700°C. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at 300°C and 500°C. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse Cr_2O_3 particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

  6. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  7. High-temperature strength of TiC-coated SUS316 stainless steel

    International Nuclear Information System (INIS)

    Kaneko, K.; Furuya, Y.; Kikuchi, M.

    1992-01-01

    Some ceramics-coated metals are nominated as first-wall material. TiC-coated type 316 stainless steel is expected to be superior to other materials in high-temperature strength and in its endurance properties at heavy irradiation. Delamination between ceramics layer and base-metal is considered to be one of the most important problems when such ceramics-coated metals are used in a temperature field with a gradient such as that of the first wall. In this report, the high-temperature strength of TiC-coated type 316 stainless steel, which should be that of the first wall of the fusion reactor, is investigated experimentally and computationally. A simple and precise thermal-stress testing system is developed. The effects of surface roughness as well as of the thermal stress and the residual stress on the bonding strength are investigated. The experimental and numerical results on the residual-stress distribution are compared with each other to confirm the reliability of the inelastic analysis using the finite-element method (FEM). It is expected that a suitable surface roughness makes the residual stress in the coated film small. The optimum range for the TiC-coating temperature is found using inelastic FEM analysis at the heating conditions used in the experiments. (orig.)

  8. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  9. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  10. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  11. Quasi-static puncture resistance behaviors of high-strength polyester fabric for soft body armor

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available A series of economical and flexible fabrics were prepared using high-strength polyester yarns with different fabric structures, weft density and number of layers. The effect of these factors on quasi-static puncture resistance was comparatively studied. The failure mode of the fabrics was analyzed with SEM photographs. Findings indicate that the structure and the weft density affected the quasi-static puncture resistance property of the fabrics, the plain fabrics had better puncture resistance property than twill and satin fabrics. The max puncture force and puncture energy of the plain fabrics with 160 yarn/10 cm reached the max values which were 107.43 N and 0.44 J, respectively. The number of layers had a linear relationship to quasi-static puncture resistance. The contact pressure and friction of the probe against the fibers were the main hindrance during the quasi-static puncture process and the breakage of the fibers during the penetration was caused by the bend and tensile deformation. Keywords: High-strength polyester fabrics, Fabric structure, Multiple-layer fabrics, Quasi-static puncture resistance

  12. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  13. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  14. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  15. Low temperature processing of tungsten-fibre high-strength composite

    International Nuclear Information System (INIS)

    Semrau, W.M.

    2001-01-01

    A tungsten nickel/iron compound with a high tungsten content up to over 90 percent by volume of tungsten and an ideal distribution of the nickel-iron multilayer-matrix avoiding tungsten - tungsten interfaces, has been processed without the use of any sintering process and thus resulted in avoiding temperatures of above 700 o C during the entire manufacturing process. An electrochemical coating of coarse tungsten powder with alternating layers of nickel and iron and a forging process at temperatures not exceeding 650 o C resulted in a high strength compound, which easily could be altered into a tungsten fiber compound with a fiber-length to fiber-diameter ratio of more than 10 3 . From the viewpoint of the metallurgist, easier handling systems are obtained when both a liquid phase and high temperatures with their risks for grain structures and grain boundaries are lacking. (author)

  16. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  17. Effect of some structural parameters on high-temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    The paper presents results of physicomechanical studied in high-temperature crack resistance of tungsten produced by powder metallurgy methods. It is shown that at high temperatures (>2000 deg C) a structure is formed in the material and fails at stresses independent of temperature. It is found that high-temperature tungsten crack resistance is affected neighter by changes in the effictive grain size, nor by appearance of grain-boundary microcraks in the material under high-temperature action

  18. Technical Developments and Trends of Earthquake Resisting High-Strength Reinforcing Steel Bars

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Byoungchul [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Shim, Jae-Hyeok [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Myoung-Gyu; Lee, Joonho [Korea University, Seoul (Korea, Republic of); Jung, Jun-Ho [Hyundai Steel, Incheon (Korea, Republic of); Kim, Bo-Sung [Daehan Steel, Busan (Korea, Republic of); Won, Sung-Bin [Dongkuk Steel, Kyungju (Korea, Republic of)

    2016-12-15

    Since reconstruction of old town in Korea requires high-rise and seismic design construction, many attentions have been paid to high strength seismic reinforced steel bar. In the present paper, technical developments and trends are summarized for developing next-generation seismic reinforced steel bar of grade 700 MPa. Steelmaking process requires high energy efficiency and refining ability. Effects of alloying elements are explained, and alloy design based on computational thermodynamics is introduced. On the other hand, it is considered that grain size refinement by the controlled rolling and low temperature transformation structures formed by the accelerated cooling are effective to obtain acceptable mechanical properties with high strength. Finite element simulation analysis is also useful to understand plastic deformation by rolling, internal and external heat transfer, and corresponding phase transformation of austenite phase to various low-temperature transformation structures.

  19. Technical Developments and Trends of Earthquake Resisting High-Strength Reinforcing Steel Bars

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Shim, Jae-Hyeok; Lee, Myoung-Gyu; Lee, Joonho; Jung, Jun-Ho; Kim, Bo-Sung; Won, Sung-Bin

    2016-01-01

    Since reconstruction of old town in Korea requires high-rise and seismic design construction, many attentions have been paid to high strength seismic reinforced steel bar. In the present paper, technical developments and trends are summarized for developing next-generation seismic reinforced steel bar of grade 700 MPa. Steelmaking process requires high energy efficiency and refining ability. Effects of alloying elements are explained, and alloy design based on computational thermodynamics is introduced. On the other hand, it is considered that grain size refinement by the controlled rolling and low temperature transformation structures formed by the accelerated cooling are effective to obtain acceptable mechanical properties with high strength. Finite element simulation analysis is also useful to understand plastic deformation by rolling, internal and external heat transfer, and corresponding phase transformation of austenite phase to various low-temperature transformation structures.

  20. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  1. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  2. ON THE HIGH TEMPERATURE BENDING STRENGTH OF CASTABLES

    Directory of Open Access Journals (Sweden)

    JIŘÍ HAMÁČEK

    2012-09-01

    Full Text Available The hot moduli of rupture (HMOR measurements have been performed for the low-cement castable (LCC, the ultra-low cement castable (ULCC, and the no-cement castable (NCC. All castables contained SiO2-Al2O3 based aggregates (burned fireclay and kaolin. The experimental data points have been described using the model based on the Varshni approach within the temperature region 1000-1200°C and by the model based on the Adam-Gibbs theory above 1400°C. A smooth but distinct transition between both temperature regions has been observed. The limits and applicability of the models have been analyzed. At lower temperature the loss of strength of castables was attributed to weakening of bonds most probably in the frontal process zone of cracking. At higher temperature, the liquid phase causes slowing down of the crack propagation by formation of the viscous bridging in the following wake region. And finally, at very high temperatures, the castable behaves as very viscous suspension which can be described using models originally developed for molten glasses.

  3. Pressure Resistance Welding of High Temperature Metallic Materials

    International Nuclear Information System (INIS)

    Jerred, N.; Zirker, L.; Charit, I.; Cole, J.; Frary, M.; Butt, D.; Meyer, M.; Murty, K.L.

    2010-01-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400 C has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  4. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    OpenAIRE

    Minho Yoon; Gyuyong Kim; Youngsun Kim; Taegyu Lee; Gyeongcheol Choe; Euichul Hwang; Jeongsoo Nam

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W?B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressi...

  5. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  6. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  7. Effect of elevated temperature on the compressive strength of ...

    African Journals Online (AJOL)

    Based on results of tests, partial replacement of cement with 10 % PSMS is recommended for use in concrete production and resistance to elevated temperature. The studies show that at this replacement, the concrete compressive strength is not adversely affected when the elevated temperature reaches 500°C. Keywords: ...

  8. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  9. Study on the high temperature crack resistance of tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1983-01-01

    The possibility of a multiple use of tungsten specimens in crack resistance tests in the temperature range of 600-2000 deg C is studied. It is established experimentally that the minimum length of growth of a main crack is 1x10 -4 m for the most effective repeated use of specimens. A flow diagram of mechanical tests is suggested for investigating high temperature tungsten crack resistance and estimating the degree of weakening the grain-boundary bond

  10. PM alloy 625M for high strength corrosion resistant applications

    International Nuclear Information System (INIS)

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper

  11. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  12. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  13. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  14. Ageing temperature effect on inclination of martensite high strength steels EhP699, EhP678, EhP679 to corrosion cracking

    International Nuclear Information System (INIS)

    Rozenfel'd, I.L.; Spiridonov, V.B.; Konradi, M.V.; Krasnorutskaya, I.B.; Fridman, V.S.

    1979-01-01

    Stated are the data permitting to judge of the role of ageing temperature in the total number of factors, determining the inclination to corrosion cracking of high strength maraging steels, which contain chromium as a main alloying element. The inclination of the EhP699, EhP678, EhP679 steels to corrosion cracking was estimated on smooth stressed specimens in 3 % NaCl solution with the use of electrochemical polarization. The tensile stress resulted from deflection; anode and cathode current density was 10 mA/cm 2 . It is shown, that resistance to corrosion cracking depends on the ageing temperature: maximum sensitivity to corrosion cracking the steels manifest at the ageing temperatures, providing for maximum strength (470-500 deg). At the ageing temperatures by 20-30 deg over the temperature of this maximum the sensitivity to corrosion cracking disappears, which may result from the loss of coherence of strengthening phase in a matrix, from particle coagulation and stress relaxation in the crack peak

  15. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  16. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  17. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  18. The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide

    Science.gov (United States)

    Kratochvíl, Petr; Švec, Martin; Král, Robert; Veselý, Jozef; Lukáč, Pavel; Vlasák, Tomáš

    2018-02-01

    The microstructural and high-temperature mechanical properties of Fe-26Al-xNb (x = 3 and 5 at. pct) are compared. The alloys were investigated "as cast" and after hot rolling at 1473 K (1200 °C). Scanning electron microscopes equipped with EDS and EBSD were used for the microstructure and phase identification. The addition of 3 at. pct of Nb into the Fe3Al matrix leads to the formation of C14 λ—Laves phase (Fe,Al)2Nb (LP) particles spread in the Fe3Al matrix, while an eutectic with thin lamellae of LP C14 λ—Laves phase (Fe,Al)2Nb and matrix is also formed in the iron aluminide with 5 at. pct of Nb. The presence of incoherent precipitates is connected with the enhancement of the high-temperature strength and creep resistance.

  19. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  20. The possibility to use TiAl intermetallics for high temperature applications

    International Nuclear Information System (INIS)

    Molotkov, A.V.

    1993-01-01

    Titanium aluminide TiAl is the promising heat resisting structural material with operation temperature up to 850-900 deg C. This intermetallic compound is characterized by low density and high specific values of elasticity moduli and heat resistance properties in wide temperature range, as compared to known heat resisting titanium, iron and nickel base alloys. Test batch of pressed blades was manufactured of TiAl with the use of powder technology. Results of testing showed, that endurance strength of blades exceeded by 30% the strength, required for operation. The calculations showed, that the use of such blades in gas-turbine cagines could provide 30-40% decrease of mass of compressor blading

  1. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  2. Method and alloys for fabricating wrought components for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Thompson, L.D.; Johnson, W.R.

    1983-01-01

    Wrought, nickel-based alloys, suitable for components of a high-temperature gas-cooled reactor exhibit strength and excellent resistance to carburization at elevated temperatures and include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength. The range of compositions of these alloys is given. (author)

  3. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  4. High-temperature abnormal behavior of resistivities for Bi-In melts

    International Nuclear Information System (INIS)

    Xi Yun; Zu Fangqiu; Li Xianfen; Yu Jin; Liu Lanjun; Li Qiang; Chen Zhihao

    2004-01-01

    The patterns of electrical resistivities versus temperature in large temperature range have been studied, using the D.C. four-probe method, for liquid Bi-In alloys (Bi-In(33 wt%), Bi-In(38 wt%), Bi-In(50.5 wt%), Bi-In(66 wt%)). The clear turning point of each resistivity-temperature curves of the liquid Bi-In alloys is observed at the temperature much above the melting point, in which temperature range the resistivity-temperature coefficient increases rapidly. Except for the turning temperature range, the resistivities of Bi-In alloys increase linearly with temperature. Because resistivity is sensitive to the structure, this experiment shows the structural transition in Bi-In melts at the temperature much higher than the liquidus. And it is suggested that there are different Bi-In short-range orderings in different Bi-In melts, so the resistivity-temperature curves have the turns at different temperatures and the resistivity-temperature coefficients are also different

  5. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  6. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  7. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  8. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  9. Development of leak detection system using high temperature-resistant microphones

    International Nuclear Information System (INIS)

    Morishita, Yoshitsugu; Mochizuki, Hiroyasu; Watanabe, Kenshiu; Nakamura, Takahisa; Nakazima, Yoshiaki; Yamauchi, Tatsuya

    1995-01-01

    This report describes the development and testing of a coolant leak detection system for an inlet feeder pipe of an advanced thermal reactor (ATR) using high temperature-resistant microphones. Such microphones must be resistant to both high temperatures and high radiation doses. Leakage sound characteristics, attenuation of the sound level in a heat insulating box for the inlet feeder pipes, and background noise were investigated using the experimental facility and the prototype ATR 'FUGEN'. The optimum frequency ranges for the microphone were then determined based on the observed leakage sound and background noise. The ability of the microphone to discriminate between leaks and other burst-type noises was also investigated by statistical analyses. Finally, it was confirmed that the present method could detect a leak within a couple of seconds. (author)

  10. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    International Nuclear Information System (INIS)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  11. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    Science.gov (United States)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  12. Monitoring of high temperature zone by resistivity tomography during in-situ heater test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2008-01-01

    In-situ heater test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature zone. So we have conducted resistivity tomography during the heater test. As a result, low resistivity zone was appeared near the heated area as starting the heating, and the zone was expanded. Resistivity of rock is proportional to resistivity of pore water. It is known that pore water resistivity decreases as the temperature rise. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. (author)

  13. The high temperature resistivity of Ba2YCu3O7-chi

    International Nuclear Information System (INIS)

    Xingkui, Z.; Shining, Z.; Hao, W.; Shiyuan, Z.; Ningshen, Z.; Ziran, X.

    1988-01-01

    The high temperature resistivity (rho), thermogravimetry (TG) and derivative thermogravimetric (DTG) have been used to characterize superconductor Ba 2 YCu 3 O 7-chi (BYCO) in O 2 , air and N 2 . The resistivity is linear from room temperature at 350 0 C and then deviate from linearity with oxygen evolution, the derivative of resistivity drho/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model

  14. The High Temperature Resistivity of Ba2YCu3O7-x

    Science.gov (United States)

    Xingkui, Zhang; Shining, Zhu; Hao, Wang; Shiyuan, Zhang; Su, Ye; Ningshen, Zhou; Ziran, Xu

    The high temperature resistivity (ρ), thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to characterize superconductor Ba2YCu3O7-x (BYCO) in O2, air and N2. The resistivity is linear from room temperature to 350°C and then deviate from linearity with oxygen evolution, the derivative of resistivity dρ/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model.

  15. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  16. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  17. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Devon S. Ellis

    2018-02-01

    Full Text Available The use of fiber reinforced polymer (FRP bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire, there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete of glass fiber reinforced polymer (GFRP bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  18. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures.

    Science.gov (United States)

    Ellis, Devon S; Tabatabai, Habib; Nabizadeh, Azam

    2018-02-27

    The use of fiber reinforced polymer (FRP) bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire), there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete) of glass fiber reinforced polymer (GFRP) bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  19. Changes in the flexural strength of engineering ceramics after high temperature sodium corrosion test. Influence after sodium exposure for 1000 hours

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Komine, Ryuji; Yoshida, Eiichi

    1998-02-01

    Engineering ceramics have excellent properties such as high strength, high hardness and high heat resistance compared with metallic materials. To apply the ceramic in fast reactor environment, it is necessary to evaluate the sodium compatibility and the influence of sodium on the mechanical properties of ceramics. In this study, the influence of high temperature sodium on the mechanical properties of sintered ceramics of conventional and high purity Al 2 O 3 , SiC, SiAlON, AlN and unidirectional solidified ceramics of Al 2 O 3 /YAG eutectic composite were investigated by means of flexure tests. Test specimens were exposed in liquid sodium at 823K and 923K for 3.6Ms. There were no changes in the flexural strength of the conventional and high purity Al 2 O 3 , AlN and Al 2 O 3 /YAG eutectic composite after the sodium exposure at 823K. On the contrary, the decrease in the flexural strength was observed in SiC and SiAlON. After the sodium exposure at 923K, there were also no changes in the flexural strength of AlN and Al 2 O 3 /YAG eutectic composite. In the conventional and high purity Al 2 O 3 and SiC, the flexural strength decreased and signs of grain boundary corrosion were detected by surface observation. The flexural strength of SiAlON after the sodium exposure at 923K increased instead of severe corrosion. In the specimens those showed no changes in the flexural strength, further exposure in sodium is needed to verify whether the mechanical properties degrade or not. For SiAlON, it is necessary to clarify the reason for the increased strength after the sodium exposure at 923K. (author)

  20. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  1. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  2. The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

    Directory of Open Access Journals (Sweden)

    Korsun Vladimyr Ivanovych

    2014-03-01

    Full Text Available The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

  3. Overview of Strategies for High-Temperature Creep and Oxidation Resistance of Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Santella, M. L.; Bei, H.; Maziasz, P. J.; Pint, B. A.

    2011-04-01

    A family of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys is under development for structural use in fossil energy conversion and combustion system applications. The AFA alloys developed to date exhibit comparable creep-rupture lives to state-of-the-art advanced austenitic alloys, and superior oxidation resistance in the ~923 K to 1173 K (650 °C to 900 °C) temperature range due to the formation of a protective Al2O3 scale rather than the Cr2O3 scales that form on conventional stainless steel alloys. This article overviews the alloy design approaches used to obtain high-temperature creep strength in AFA alloys via considerations of phase equilibrium from thermodynamic calculations as well as microstructure characterization. Strengthening precipitates under evaluation include MC-type carbides or intermetallic phases such as NiAl-B2, Fe2(Mo,Nb)-Laves, Ni3Al-L12, etc. in the austenitic single-phase matrix. Creep, tensile, and oxidation properties of the AFA alloys are discussed relative to compositional and microstructural factors.

  4. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  5. On the Effect of Natural Aging Prior to Low Temperature ECAP of a High-Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sebastian Fritsch

    2018-01-01

    Full Text Available Severe plastic deformation (SPD can be used to generate ultra-fine grained microstructures and thus to increase the strength of many materials. Unfortunately, high strength aluminum alloys are generally hard to deform, which puts severe limits on the feasibility of conventional SPD methods. In this study, we use low temperature equal-channel angular pressing (ECAP to deform an AA7075 alloy. We perform ECAP in a custom-built, cooled ECAP-tool with an internal angle of 90° at −60 °C and with an applied backpressure. In previous studies, high-strength age hardening aluminum alloys were deformed in a solid solution heat treated condition to improve the mechanical properties in combination with subsequent (post-ECAP aging. In the present study, we systematically vary the initial microstructure—i.e., the material condition prior to low temperature ECAP—by (pre-ECAP natural aging. The key result of the present study is that precipitates introduced prior to ECAP speed up grain refinement during ECAP. Longer aging times lead to accelerated microstructural evolution, to increasing strength, and to a transition in fracture behavior after a single pass of low temperature ECAP. These results demonstrate the potential of these thermo-mechanical treatments to produce improved properties of high-strength aluminum alloys.

  6. Experimental Analysis of Concrete Strength at High Temperatures and after Cooling

    Directory of Open Access Journals (Sweden)

    E. Klingsch

    2009-01-01

    Full Text Available In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC. This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I, a portland limestone cement (CEM II-A-LL and a new, supersulfated slag cement (SSC. The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 

  7. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  8. Influence of austenization temperature on microstructure and mechanical properties of a new ultra-high strength low alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya-Ya; Xu, Chi; Su, Xiang; Sun, Yu-Lin; Pan, Xi; Cao, Yue-De; Chen, Guang [Nanjing Univ. of Science and Technology, Nanjing (China). Engineering Research Center of Materials Behavior and Design

    2017-07-01

    The effects of austenization temperature on the microstructures and mechanical properties of a newly designed ultra-high strength low alloy martensitic steel were systematically studied. The microstructures of the martensitic steels which were quenched from different temperatures between 860 and 980 C were investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) and discussed. The results showed that the martensite laths were found to coarsen slowly and the carbide precipitates dissolved gradually with increasing austenization temperature. As the austenization temperature increased from 860 to 980 C, the volume of retained austenite and the numerical ratio of high angle grain boundaries (HAGBs) were observed to increase while the numerical ratio of low angle grain boundaries (LAGBs) decreased. Rockwell C hardness (HRC), tensile strength and yield strength increased at first and then decreased, while impact toughness was greatly improved with increasing austenization temperature. The fracture mechanism was brittle fracture when austenitized at low temperatures, while it was ductile fracture when austenitized at high temperatures. The mechanical properties were significantly influenced by the formation of retained austenite, the dissolution of carbides, and the numerical ratio of HAGBs and LAGBs.

  9. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  10. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  11. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  12. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  13. Thermal Processing Effects on the Adhesive Strength of PS304 High Temperature Solid Lubricant Coatings

    Science.gov (United States)

    DellaCorte, Christopher; Edmonds, Brian J.; Benoy, Patricia A.

    2001-01-01

    In this paper the effects of post deposition heat treatments on the cohesive and adhesive strength properties of PS304, a plasma sprayed nickel-chrome based, high temperature solid lubricant coating deposited on stainless steel, are studied. Plasma spray deposited coating samples were exposed in air at temperatures from 432 to 650 C for up to 500 hr to promote residual stress relief, enhance particle to particle bonding and increase coating to substrate bond strength. Coating pull-off strength was measured using a commercial adhesion tester that utilizes 13 mm diameter aluminum pull studs attached to the coating surface with epoxy. Pull off force was automatically recorded and converted to coating pull off strength. As deposited coating samples were also tested as a baseline. The as-deposited (untreated) samples either delaminated at the coating-substrate interface or failed internally (cohesive failure) at about 17 MPa. Samples heat treated at temperatures above 540 C for 100 hr or at 600 C or above for more than 24 hr exhibited strengths above 31 MPa, nearly a two fold increase. Coating failure occurred inside the body of the coating (cohesive failure) for nearly all of the heat-treated samples and only occasionally at the coating substrate interface (adhesive failure). Metallographic analyses of heat-treated coatings indicate that the Nickel-Chromium binder in the PS304 appears to have segregated into two phases, a high nickel matrix phase and a high chromium precipitated phase. Analysis of the precipitates indicates the presence of silicon, a constituent of a flow enhancing additive in the commercial NiCr powder. The exact nature and structure of the precipitate phase is not known. This microstructural change is believed to be partially responsible for the coating strength increase. Diffusion bonding between particles may also be playing a role. Increasing the heat treatment temperature, exposure time or both accelerate the heat treatment process. Preliminary

  14. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    Science.gov (United States)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  15. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  16. Development of a leak detection system using high temperature-resistant microphones

    International Nuclear Information System (INIS)

    Morishita, Yoshitsugu; Mochizuki, Hiroyasu; Watanabe, Kenshiu; Nakamura, Takahisa; Nakajima, Yoshiaki; Yamauchi, Tatsuya

    1991-01-01

    This report describes the development of a detection system of coolant leak from an inlet feeder pipe of an Advanced Thermal Reactor (ATR) with high temperature-resistant microphones. A microphone having resistance to both high temperature and high radiation dose has been developed at first. The characteristics with regard to leakage sound, attenuation of sound level in a heat insulating box for the inlet feeder pipes and background noise were clarified by laboratory experiments and measurements in the prototype ATR 'Fugen'. On the basis of these experimental findings, appropriate frequency ranges were surveyed to detect the leakage sound with a high S/N ratio under the background noise. Reliability of the system to a malfunction caused by burst-type noises observed in the plant was also investigated by statistical analyses. Finally, it was confirmed that the present method could detect a leak within a couple of seconds. (author)

  17. A Challenge to Improve High-Temperature Platinum Resistance Thermometer

    Science.gov (United States)

    Tanaka, Y.; Widiatmo, J. V.; Harada, K.; Kobayashi, T.; Yamazawa, K.

    2017-05-01

    High-temperature standard platinum resistance thermometers (HTSPRTs) are used to interpolate the international temperature scale of 1990 (ITS-90), especially for temperatures between the aluminum and the silver points. For this, long-term stability of the HTSPRT is essential. CHINO R800-3L type SPRT, which has a nominal resistance at the triple point of water (TPW) around 0.25 Ω , is the one developed earlier for the interpolation of the ITS-90 at this temperature range. Further development to this previous model has been carried out for the purpose of improving the thermal stability. The improvement was focused on reducing the effect coming from the difference in thermal expansion between platinum wire and the quartz frame on which the platinum wire is installed. New HTSPRTs were made by CHINO Corporation. Some series of tests were carried out at CHINO and at NMIJ. Initial tests after the HTSPRT fabrication were done at CHINO, where thermal cycles between 500°C and 980°C were applied to the HTSPRTs to see change in the resistances at the TPW (R_{TPW}) and at the gallium point (R_{Ga}). Repeated resistance measurements at the silver point (R_{Ag}) were performed after completing the thermal cycling test. Before and after every measurement at silver point, R_{TPW} was measured, while before and after every two silver point realization R_{Ga} were measured. After completing this test, the HTSPRTs were transported to NMIJ, where the same repeated measurements at the silver point were done at NMIJ. These were then repeated at CHINO and at NMIJ upon repeated transportation among the institutes, to evaluate some effect due to transportation. This paper reports the details of the above-mentioned tests, the results and the analysis.

  18. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    Directory of Open Access Journals (Sweden)

    Stephen P Cohen

    Full Text Available Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61 containing Xa7, a bacterial blight disease resistance (R gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant

  19. The anchorage capacity of reinforcing bars at normal and high temperatures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    1982-01-01

    of the cross-section. A simple method for calculating the resistance to splitting is proposed, and a test method for determining the bond strength is presented. Test results are shown from a series of 280 specimens exposed to various maximum temperatures, and a relation between the bond strength......The anchorage failure of reinforcing bars is analysed, and it is shown that two modes of failures are possible: splitting or bond failure. It is concluded that the anchorage capacity cannot be estimated by means of a standard specimen, since splitting failure is dependent upon the geometry...... and the ultimate limit stress of concrete under plane strain conditions is indicated. The influence of high temperatures upon the anchorage resistance is explained, and the theory is illustrated by examples....

  20. A study on the improvement of oxidation resistance of OAE-added stainless steels for high temperature applications

    International Nuclear Information System (INIS)

    Kim, Dae Hwan; Kim, Gil Moo

    1996-01-01

    Since the manufacturing temperature of stainless steels is relatively high, oxidation at the elevated temperature becomes important. The chemical and physical properties of the protective oxide film which was formed on the stainless steels at high temperature for the oxidation resistance are important in determining the rate of oxidation and the life of equipment exposed to high temperature oxidizing environments. In this study, the oxidation behavior of STS 309S and STS 409L added by a small amount of oxygen active element(each + 0.5wt% Hf and Y) was studied to improve oxidation resistance. In the cyclic oxidation, while OAE-free specimens showed relatively poor oxidation resistance due to spallations and cracks of Cr-rich oxide layer, OAE-added specimens improved cyclic oxidation resistance assumably due to constant oxidation rate with stable oxide layers at high temperature. Especially Hf improved cyclic oxidation resistance by forming Cr-rich oxide layer preventing internal oxidation in STS 309S. (author)

  1. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  2. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  3. Borides - a new generation of highly resistant materials?

    International Nuclear Information System (INIS)

    Telle, R.

    1988-01-01

    High-duty ceramics are on advance in all sectors where materials with extremely good resistance to high temperatures and wear are required. The group of oxides, nitrides and carbides in use for quite a time now recently has been increased by the metal borides which offer among others economic advantages in certain applications. The drawbacks of these materials still to be reduced are their brittleness and susceptibility to oxidation and corrosion. Current research work on the thermodynamics of such systems, on the interaction between structure and properties, and on means to improve strength and resistance to wear are expected to soon open up new applications. (orig.) [de

  4. High-temperature protective coatings for C/SiC composites

    OpenAIRE

    Xiang Yang; Chen Zhao-hui; Cao Feng

    2014-01-01

    Carbon fiber-reinforced silicon carbide (C/SiC) composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C...

  5. Effect of grain size and cold working on high temperature strength of Hastelloy X

    International Nuclear Information System (INIS)

    Fujioka, J.; Murase, H.; Matsuda, S.

    1980-01-01

    Effect of grain size and cold working on creep, creep rupture, low cycle fatigue and tensile strengths of Hastelloy X were studied at temperatures ranging from 800 to 1000 0 C. In order to apply these data to design, the allowable design stresses were estimated by expanding the criteria of ASME Code Case 1592 to such a high temperature range. The allowable design stress increased, on the other hand, the low cycle fatigue life decreased with increasing grain size. Cold working up to a ratio of 5 per cent may not be a serious problem in design, because the allowable design stress and the fatigue life were little affected. The cause of these variations in strength was discussed by examining the initiation and growth of cracks, and the microstructures. (author)

  6. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  7. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  8. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  9. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  10. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  11. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Eatherly, W.S.

    1997-01-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle (∼1 degrees C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle (∼100 degrees C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475 degrees C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to ∼65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500 degrees C on one of these new heats of CuNiBe, similar to that observed in other heats

  12. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  13. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Muthalib, Makii; Stanley, Jamie; Lichtwark, Glen; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2015-08-15

    Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (-21.5 ± 8.8%) and tHb (-10.1 ± 7.7 μM) decreased after exercise (P < 0.05). During CWI, Q̇ (-1.1 ± 0.7 l) and Tmuscle (-6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased (P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased (P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased (P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high (P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT (P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature. Copyright © 2015 the American Physiological Society.

  14. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  15. New high-temperature flame-resistant resin matrix for RP/C

    Science.gov (United States)

    Kourtides, D. A.

    1981-01-01

    The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced thermoset and thermoplastic resins as matrices are discussed. The evaluated properties include anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and high-temperature mechanical properties. It is shown that graphite composites having the highest char yield exhibit optimum fire-resistant properties.

  16. Monitoring of high temperature area by resistivity tomography during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature, mechanical conditions or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50 m. The well with a diameter of 30 cm and 60 cm of height, was drilled and filled with groundwater. The heater was installed in the well for heating the surrounding rock mass. During the heating, temperature and deformation around the well were measured. To evaluate the influence of heating on sedimentary soft rocks, it is important to monitor the extent of heated area. Resistivity monitoring is thought to be effective to map the extent of the high temperature area. So we have conducted resistivity tomography during the heating test. The results demonstrated that the resistivity of the rock mass around the heating well decreased and this area was gradually expanded from the heated area during the heating. The decreasing rate of resistivity on temperature is correlated to that of laboratory experimental result and existing empirical formula between aqueous solution resistivity and temperature. Resistivity is changed by many other factors, but it is expected that resistivity change by other factors is very few in this test. This suggests that high temperature area is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the area heated by nuclear waste. (author)

  17. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  18. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  19. Effects of Moderate-Volume, High-Load Lower-Body Resistance Training on Strength and Function in Persons with Parkinson's Disease: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Brian K. Schilling

    2010-01-01

    Full Text Available Background. Resistance training research has demonstrated positive effects for persons with Parkinson's disease (PD, but the number of acute training variables that can be manipulated makes it difficult to determine the optimal resistance training program. Objective. The purpose of this investigation was to examine the effects of an 8-week resistance training intervention on strength and function in persons with PD. Methods. Eighteen men and women were randomized to training or standard care for the 8-week intervention. The training group performed 3 sets of 5–8 repetitions of the leg press, leg curl, and calf press twice weekly. Tests included leg press strength relative to body mass, timed up-and-go, six-minute walk, and Activities-specific Balance Confidence questionnaire. Results. There was a significant group-by-time effect for maximum leg press strength relative to body mass, with the training group significantly increasing their maximum relative strength (P.05. Conclusions. Moderate volume, high-load weight training is effective for increasing lower-body strength in persons with PD.

  20. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  1. Quantitative study on the effect of high-temperature curing at an early age on strength development of concrete. Experiment with mortar using moderate-heat portland cement

    International Nuclear Information System (INIS)

    Sugiyama, Hisashi; Chino, Shigeo

    1999-01-01

    The effect of high-temperature curing at an early age on the strength development of concrete using moderate-heat portland cement was quantitatively studied. High-temperature curing conditions were set so as to give systematic variations in the temperature-time factors. As a result, the integrated value of curing temperature during the period having a significant effect on the strength development was proposed as a parameter that expressed the degree of high-temperature curing. The effect of high-temperature curing on the strength development of concrete using moderate-heat portland cement could be exactly predicted with the integrated value of curing temperature during the period from 0 to 3 days. (author)

  2. Elastic Resistance Effectiveness on Increasing Strength of Shoulders and Hips.

    Science.gov (United States)

    Picha, Kelsey J; Almaddah, Muataz R; Barker, Jordan; Ciochetty, Tavis; Black, W Scott; Uhl, Tim L

    2017-09-12

    Elastic resistance is a common training method used to gain strength. Currently, progression with elastic resistance is based on the perceived exertion of the exercise or completion of targeted repetitions; exact resistance is typically unknown. This study's objective is to determine if knowledge of load during elastic resistance exercise will increase strength gains during exercises. Participants were randomized into two strength training groups, elastic resistance only and elastic resistance using a load cell (LC) that displays force during exercise. The LC group used a Smart Handle (Patterson Medical Supply, Chicago, IL) to complete all exercises. Each participant completed the same exercises three times weekly for 8 weeks. The LC group was provided with a set load for exercises whereas the elastic resistance only group was not. Participant's strength was tested at baseline and program completion, measuring isometric strength for shoulder abduction (SAb), shoulder external rotation (SER), hip abduction (HAb), and hip extension (HEx). Independent t-tests were used to compare the normalized torques between groups. No significant differences were found between groups. Shoulder strength gains did not differ between groups (SAb p>0.05; SER p>0.05). Hip strength gains did not differ between groups (HAb p>0.05; HEx p>0.05). Both groups increased strength due to individual supervision, constantly evaluating degree of difficulty associated with exercise and providing feedback while using elastic resistance. Using a LC is as effective as supervised training and could provide value in a clinic setting when patients are working unsupervised.

  3. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, C.S., E-mail: cst311@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kashyap, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India); Kim, D.H. [Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Chattopadhyay, K. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, Karnataka (India)

    2015-07-15

    Developments of aluminum alloys that can retain strength at and above 250 °C present a significant challenge. In this paper we report an ultrafine scale Al–Fe–Ni eutectic alloy with less than 3.5 at% transition metals that exhibits room temperature ultimate tensile strength of ~400 MPa with a tensile ductility of 6–8%. The yield stress under compression at 300 °C was found to be 150 MPa. We attribute it to the refinement of the microstructure that is achieved by suction casting in copper mold. The characterization using scanning and transmission electron microscopy (SEM and TEM) reveals an unique composite structure that contains the Al–Al{sub 3}Ni rod eutectic with spacing of ~90 nm enveloped by a lamellar eutectic of Al–Al{sub 9}FeNi (~140 nm). Observation of subsurface deformation under Vickers indentation using bonded interface technique reveals the presence of extensive shear banding during deformation that is responsible for the origin of ductility. The dislocation configuration in Al–Al{sub 3}Ni eutectic colony indicates accommodation of plasticity in α-Al with dislocation accumulation at the α-Al/Al{sub 3}Ni interface boundaries. In contrast the dislocation activities in the intermetallic lamellae are limited and contain set of planner dislocations across the plates. We present a detailed analysis of the fracture surface to rationalize the origin of the high strength and ductility in this class of potentially promising cast alloy.

  4. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    Science.gov (United States)

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  5. High Temperature Exposure of HPC – Experimental Analysis of Residual Properties and Thermal Response

    Directory of Open Access Journals (Sweden)

    Pavlík Zbyšek

    2016-01-01

    Full Text Available The effect of high temperature exposure on properties of a newly designed High Performance Concrete (HPC is studied in the paper. The HPC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000°C respectively. Among the basic physical properties, bulk density, matrix density and total open porosity are measured. The mechanical resistivity against disruptive temperature action is characterised by compressive strength, flexural strength and dynamic modulus of elasticity. To study the chemical and physical processes in HPC during its high-temperature exposure, Simultaneous Thermal Analysis (STA is performed. Linear thermal expansion coefficient is determined as function of temperature using thermodilatometry (TDA. In order to describe the changes in microstructure of HPC induced by high temperature loading, MIP measurement of pore size distribution is done. Increase of the total open porosity and connected decrease of the mechanical parameters for temperatures higher than 200 °C were identified.

  6. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  7. Effect of temperature on structural quality of the cement paste and high-strength concrete with silica fume

    International Nuclear Information System (INIS)

    Janotka, Ivan; Nuernbergerova, Terezia

    2005-01-01

    Experimental investigation conducted to study the thermo-mechanical properties of concrete at Temelin (Czech Republic), Mochovce (Slovakia), and Penly (France) nuclear power plants reveals structural integrity degradation between 100 and 200 deg C due to both a loss of water bound in hydrated cement minerals and subsequently air void formation. Test results indicate changes in strength, average pore radius and calculated permeability coefficients for Mochovce specimens exposed to temperatures up to 400 deg C. It demonstrates that the permeability coefficient measured on the basis of pore sizes using mercury intrusion porosimetry is suitable technique for the evaluation of concrete quality. It confirms that strength and permeability coefficient are equivalent structural quality variables of concrete. At 400 deg C gel-like hydration products are decomposed, at 600 deg C Ca(OH) 2 is dehydroxylated, and CaCO 3 dissociation to CaO and CO 2 accompanied with the re-crystallisation of non-binding phases from hydrated cement under re-combustion are dominant processes between 600 and 800 deg C. This stage of concrete is characterised by the collapse of its structural integrity, revealing residual compressive strength. This paper reports high-strength concrete behaviour subjected to temperatures up to 200 deg C. In accordance with previous results, research studies of structure-property relation show the changes in strength, dynamic modulus of elasticity, strain-stress behaviour, and shrinkage-induced deformations influenced by a hydrate phase decomposition. Volume reduction of the hydrate phase due to the loss of bound water mass is the cause of air void formation, and pore structure coarsening. The main attention is herein devoted to the evaluation of utility property decrease of high-strength concrete and microstructure degradation of the cement paste with the same composition than that in concrete when attacked by elevated temperatures

  8. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  9. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  10. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  11. Effect of Isothermal Bainitic Quenching on Rail Steel Impact Strength and Wear Resistance

    Science.gov (United States)

    Çakir, Fatih Hayati; Çelik, Osman Nuri

    2017-09-01

    The effect of heat treatment regimes on hardness, impact strength, and wear resistance of rail steel for high-speed tracks (rail quality category R350HT) is studied. Analysis of steel properties with a different structure is compared: pearlitic, and upper and lower bainite. It is shown that the steel with bainitic structure has the best impact strength, but wear resistance is better for steel with a lower bainite structure.

  12. High Temperature Degradation Behavior and its Mechanical Properties of Inconel 617 alloy for Intermediate Heat Exchanger of VHTR

    International Nuclear Information System (INIS)

    Jo, Tae Sun; Kim, Se Hoon; Kim, Young Do; Park, Ji Yeon

    2008-01-01

    Inconel 617 alloy is a candidate material of intermediate heat exchanger (IHX) and hot gas duct (HGD) for very high temperature reactor (VHTR) because of its excellent strength, creep-rupture strength, stability and oxidation resistance at high temperature. Among the alloying elements in Inconel 617, chromium (Cr) and aluminum (Al) can form dense oxide that act as a protective surface layer against degradation. This alloy supports severe operating conditions of pressure over 8 MPa and 950 .deg. C in He gas with some impurities. Thus, high temperature stability of Inconel 617 is very important. In this work, the oxidation behavior of Inconel 617 alloy was studied by exposure at high temperature and was discussed the high temperature degradation behavior with microstructural changes during the surface oxidation

  13. 22. lecture meeting of the association for heat-resistant steels and the association for high temperature materials 'long-term performance of heat-resistant steels and high-temperature materials'. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The proceedings volume contains 14 full papers discussing the long-term performance of high-temperature resistant materials (creep, creep fatigue, crack growth). 13 papers have been analysed and processed for separate retrieval from the ENERGY database. (orig./CB) [de

  14. Fabrication of Metallic Glass Powder for Brazing Paste for High-Temperature Thermoelectric Modules

    Science.gov (United States)

    Seo, Seung-Ho; Kim, Suk Jun; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho; Choi, Soon-Mok

    2018-06-01

    Metallic glass (MG) offers the advantage of outstanding oxidation resistance, since it has disordered atomic-scale structure without grain boundaries. We fabricated Al-based MG ribbons (Al84.5Y10Ni5.5) by a melt spinning process. We evaluated the adhesion strength of interfaces between the Al-based MG and a Ni-coated Cu electrode formed under various conditions at high temperature. In addition, we attempted to optimize the process conditions for pulverizing MG ribbons to high-energy ball milling and planetary milling. We confirmed that the electrical resistivity of the Al-based MG ribbon was substantially reduced after annealing at high temperature (over 300°C) due to crystallization.

  15. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  16. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  17. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  18. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  19. Effect of Curing Temperature on the Durability of Concrete under Highly Geothermal Environment

    Directory of Open Access Journals (Sweden)

    Yang Tang

    2017-01-01

    Full Text Available To determine the durability of concrete in the actual temperature and humidity of the tunnel environment, this study investigates the mechanical properties, permeability of chloride ion, relative dynamic elastic modulus, and mass loss ratio of concrete specimens cured in the temperature which varied from normal, 40, 60, 75, and 90°C, and the humidity was kept at 90% continuously. Experimental results reveal that the hot temperature curing environment may benefit early stage strength development but reduce the long-term strength. It is proved that 60°C is a critical point. At above 60°C, the strength of the concrete material and its resistance to chloride ion permeability showed a decreasing trend; however, in the appropriate temperature range, the frost resistance properties of the concrete are improved with increasing temperature.

  20. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  1. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  2. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  3. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  4. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  5. High-strength concrete and the design of power plant structures

    International Nuclear Information System (INIS)

    Puttonen, J.

    1991-01-01

    Based on the literature, the design of high-strength concrete structures and the suitability of high-strength concrete for the power plant structures have been studied. Concerning the behavior of structures, a basic difference between the high-strength concrete and the traditional one is that the ductility of the high-strength concrete is smaller. In the design, the non-linear stress-strain relationship of the high-strength concrete has to be taken into account. The use of the high-strength concrete is economical if the strength of the material can be utilized. In the long term, the good durability and wear resistance of the high-strength concrete increases the economy of the material. Because of the low permeability of the high-strength concrete, it is a potential material in the safety-related structures of nuclear power plants. The study discovered no particular power plant structure which would always be economical to design of high-strength concrete. However, the high-strength concrete was found to be a competitive material in general

  6. Improving UV Resistance of High Performance Fibers

    Science.gov (United States)

    Hassanin, Ahmed

    High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4

  7. The Grilled Effect of Particle's Distribution of Calsine Coke's at 900oC Temperature upon the Electric Resistivity, Hardness and CompressiveStrength Analysis

    International Nuclear Information System (INIS)

    NS, Kasilani; D, Imam; Dwi-Herwidhi

    2000-01-01

    Investigation of Calsine Coke's particle's distribution by grilledtreatment at 900 o C temperature upon the electric resistivity, hardness andcompressive strength analysis had been done. The Calsine Coke's were crushedand sieved to get a particle size about 63; 90; 106 μm, then mixed thevariety size particle with 33 % tar pitch 125 μm, be heated, shaped andpressed to be pellet. The pellets were grilled at 900 o C temperature during30 minutes and then these were analyzed. The whole analysis using 2-b mixedwas the best, particle ratio were 63:106 = 1:2 and pointed the electricresistivity 2.63 Ωm, the hardness 5.9 kg/mm 2 and the compressivestrength 1600 N. (author)

  8. High-temperature brazing of graphite using aluminium as brazing alloy

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The possibility of enhancing the strength of brazed joints, as well as the effect of the parameters of resistance heating of graphite VPP with PA-4 aluminium on the structure, composition and strength of the joint have been studied. It has been established that brazing of graphite materials, using an aluminium solder will produce a heat-resistant joint of a graphitic composition if the brazing temperature exceeds 2200 deg C. Thermocycling in the course of brazing results in a substantial (1.5-fold) increase in the strength of brazed joints

  9. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  10. Behavior of HPC with Fly Ash after Elevated Temperature

    OpenAIRE

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    For use in fire resistance calculations, the relevant thermal properties of high-performance concrete (HPC) with fly ash were determined through an experimental study. These properties included compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity at various temperatures (20, 100, 200, 300, 400 and 500∘C) for high-performance concrete. The effect of temperature on compressive strength, cubic compressive strength, cleavage strength,...

  11. Fatigue strength of welds and welded materials of high-temperature steels resistant to pressurized hydrogen of the type 2.25% Cr/1% Mo

    International Nuclear Information System (INIS)

    Burlat, J.; Cheviet, A.; Million, A.

    1986-01-01

    The aim of the study is to examine systematically the creep strength of welded joints (base material, heat influence zone and welded seam) and of pure welding materials of the type 2 1/4-3% Cr/1% Mo. According to the AD standard rules, the rule which stipulates that the creep strength of welded seams under full stress be calculated with the strength characteristic value reduced by 20% applies to all heat-resistant steels, if no rupture stress values for the welded joints are available. Manufacturers of steel and weld fillers together with the Union of Technical Control Associations (VdTUeV) have prepared a test programme according to which on the one hand welded joints are tested at right angles to their seams, and on the other pure welding material is tested with respect to its creep strength. The development of the testes and their results have been described. The first results are available as VdTUeV material performance sheets, for 2 materials, and as provisional VdTUeV specification sheets, for 3 weld fillers. With the tested materials, it becomes practically feasible to reduce the creep strength of longitudinally welded pressure-bearing components by about 20% of wall thickness. (orig.) [de

  12. Modeling of High Temperature Oxidation Behavior of FeCrAl Alloy by using Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Joon; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Refractory alloys are candidate materials for replacing current zirconium-base cladding of light water reactors and they retain significant creep resistance and mechanical strength at high temperatures up to 1500 ℃ due to their high melting temperature. Thermal neutron cross sections of refractory metals are higher than that of zirconium, however the loss of neutron can be overcome by reducing cladding thickness which can be facilitated with enhanced mechanical properties. However, most refractory metals show the poor oxidation resistance at a high temperature. Oxidation behaviors of the various compositions of FeCrAl alloys in high temperature conditions were modeled by using Bayesian neural network. The automatic relevance determination (ARD) technique represented the influence of the composition of alloying elements on the oxidation resistance of FeCrAl alloys. This model can be utilized to understand the tendency of oxidation behavior along the composition of each element and prove the applicability of neural network modeling for the development of new cladding material of light water reactors.

  13. High-temperature mechanical properties of high-purity 70 mass% Cr-Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, M.; Harima, N.; Takaki, S.; Abiko, K. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2002-01-16

    An ingot of high-purity 70 mass% Cr-Fe alloy was prepared by high-frequency induction melting in a high-purity argon atmosphere using a cold copper crucible. Its tensile properties such as hot-ductility and tensile strength were measured, and compared with the results for a high-purity 50 mass% Cr-Fe alloy, a high-purity 60 mass% Cr-Fe alloy and a Ni-based super-alloy. The formation of {sigma}-phase was also examined. The purity of a 70Cr-Fe alloy (70 mass% Cr-Fe alloy) ingot is more than 99.98 mass% and the total amount of gaseous impurities (C, N, O, S, H) in the 70Cr-Fe alloy is 69.9 mass ppm. The strength of the 70Cr-Fe alloy is higher than those of the 60Cr-Fe alloy and the 50Cr-Fe alloy at the temperatures between 293 and 1573 K, without decrease in ductility with increasing Cr content. The 70Cr-Fe alloy also possesses excellent high-temperature ductility. The {sigma}-phase was not observed after aging of 3.6 Ms at 873 K. Consequently, the 70Cr-Fe alloy is an excellent alloy as the base of super heat-resistant alloys. (orig.)

  14. Decarburization behavior and mechanical properties of Inconel 617 during high temperature oxidation in He environment

    International Nuclear Information System (INIS)

    Kim, Young Do; Kim, Dae Gun; Jo, Tae Sun; Kim, Hoon Sup; Lim, Jeong Hun

    2010-04-01

    Among Generation IV reactor concepts, high temperature gas-cooled reactors (HTGRs) are high-efficiency systems designed for the economical production of hydrogen and electricity. Inconel 617 is a solid-solution strengthening Ni-based superalloy that shows excellent strength, creep-rupture strength, and oxidation resistance at high temperatures. Thus, it is a desirable candidate for tube material of IHX and HGD in HTGRs. In spite of these excellent properties, aging degradation by long time exposure at high temperature induced to deterioration of mechanical properties and furthermore alloys' lifetime because of Cr-depleted zone and carbide free zone below external scale. Also, machinability of Inconel 617 is a important property for system design. In this study, oxidation and decarbrization behavior were evaluated at various aging temperature and environment. Also, cold rolling was carried out for the machinability evaluation of Inconel 617 and then microstructure change was evaluated

  15. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy)

    Science.gov (United States)

    Daoud, H. M.; Manzoni, A. M.; Wanderka, N.; Glatzel, U.

    2015-06-01

    Homogenizing at 1220°C for 20 h and subsequent aging at 900°C for 5 h and 50 h of a novel Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy) produces a microstructure consisting of an L12 ordered γ' phase embedded in a face-centered cubic solid-solution γ matrix together with needle-like B2 precipitates (NiAl). The volume fraction of γ' phase is ~46% and of needle-like B2 precipitates database; Thermo-Calc Software, Stockholm, Sweden). The high-temperature tensile tests were carried out at room temperature, 600°C, 700°C, 800°C, and 1000°C. The tensile strength as well as the elongation to failure of both heat-treated specimens is very high at all tested temperatures. The values of tensile strength has been compared with literature data of well-known Alloy 800H and Inconel 617, and is discussed in terms of the observed microstructure.

  16. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  17. Effect of elevated temperature on the mechanical strength of HEPA filters

    International Nuclear Information System (INIS)

    Elfawal, M.M.; Eladham, K.A.; Hammed, F.H.; Abdrabbo, M.F.

    1993-01-01

    The effect of elevated temperature on the mechanical strength of HEPA filters was studied in order to evaluate and improve their performance under high temperature conditions. As part of this study the mechanical strength of HEPA filter medium which is the limiting factor in terms of the filter strength was experimentally studied at elevated temperature up to 400 degree C, and thermal exposure times ranged from 2 min to 4 h. The failure pressures of HEPA filter units after long exposure to 250 degree C were also investigated. The test results show that the medium strength decreases with increase in temperature challenge and thermal exposure time due to burnout of the organic binder used to improve the strength and flexibility of the medium. The test results also show that the tensile strength of the conventional filter medium drops to about 40 % of the value at room temperature after exposure to 250 degree C for 6 h; therefore, the continuous exposure of the conventional filter medium to this temperature is critical. The average failure differential pressures of all commercial tested filters were found to lie between 9 and 18 kPa at ambient temperature and between 6 and 11 kPa after thermal challenge at 250 degree C for 100 h. It was found that swelling and capture of the ends of individual pleats has led to filter failure.3 fig., 2 tab

  18. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  19. High carotenoids content can enhance resistance of selected Pinctada fucata families to high temperature stress.

    Science.gov (United States)

    Meng, Zihao; Zhang, Bo; Liu, Baosuo; Li, Haimei; Fan, Sigang; Yu, Dahui

    2017-02-01

    Carotenoids are a class of natural antioxidants widely found in aquatic, and they have significant effects on the growth, survival, and immunity of these organisms. To investigate the mechanisms of carotenoids in high temperature resistance, we observed the immune response of selected pearl oyster Pinctada fucata (Akoya pearl oyster) families with different carotenoids contents to high temperature stress. The results indicated that the survival rate (SR) of P. fucata decreased significantly with increase in temperature from 26 °C to 34 °C and with the decrease of total carotenoids content (TCC); when the TCC was higher, the SR tended to be higher. TCC and total antioxidant capacity (TAC) decreased significantly at 30 °C with increasing stress time. Correlation analysis indicated that TAC was positively and linearly correlated with TCC, and SR was S-type correlated with TCC and TAC. Immune analysis indicated that levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in selected families (with higher TCC) under temperature stress (at 30 °C) were generally significantly lower than in the control group (with lowest TCC) and from 0 to 96 h, the levels of each of these substances varied significantly. Levels of SOD, CAT, and MDA within each family first rose from 0 to 3 h, then decreased to their lowest point after 24 h, and then rose again to their highest levels at 96 h. When TCC was higher, the levels of SOD, CAT, and MDA tended to be lower. These findings indicated that carotenoids play an important role in improving survival rates of P. fucata under high temperature stress by enhancing animals' antioxidant system, and could serve as an index for breeding stress-resistant lines in selective breeding practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo

    2018-04-14

    The thermal stability and contact resistance of TaAlN thin films as electrical contacts to SiGe thermoelectric elements are reported. We demonstrate that a sharp interface is maintained after the device annealed at 800°C for over 100h, indicating that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising contact material for high temperature thermoelectrics such as SiGe.

  1. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  2. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods.

    Science.gov (United States)

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2018-04-15

    Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Application of new design methodologies to very high-temperature metallic components of the HTTR

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Ohkubo, Minoru; Baba, Osamu

    1991-01-01

    The high-temperature piping and helium-to-helium intermediate heat exchanger of the High-Temperature Engineering Test Reactor (HTTR) are designed to be operating at very high temperatures of about 900deg C among the class 1 components of the HTTR. At such a high temperature, mechanical strength of heat-resistant metallic materials is very low and thermal expansions of structural members are large. Therefore, innovative design methodologies are needed to reduce both mechanical and thermal loads acting on these components. To the HTTR, the design methodologies which can separate the heat-resistant function from the pressure-retaining functions and allow them to expand freely are applied to reduce pressure and thermal loads. Since these design methodologies need to verify their applicability, the Japan Atomic Energy Research Institute (JAERI) has been performing many design and research works on their verifications. The details of the design methodologies and their verifications are given in this paper. (orig.)

  4. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  5. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  6. Effect of thermal exposure, forming, and welding on high-temperature, dispersion-strengthened aluminum alloy: Al-8Fe-1V-2Si

    Science.gov (United States)

    Kennedy, J. R.; Gilman, P. S.; Zedalis, M. S.; Skinner, D. J.; Peltier, J. M.

    1991-01-01

    The feasibility of applying conventional hot forming and welding methods to high temperature aluminum alloy, Al-8Fe-1V-2Si (FVS812), for structural applications and the effect of thermal exposure on mechanical properties were determined. FVS812 (AA8009) sheet exhibited good hot forming and resistance welding characteristics. It was brake formed to 90 deg bends (0.5T bend radius) at temperatures greater than or equal to 390 C (730 F), indicating the feasibility of fabricating basic shapes, such as angles and zees. Hot forming of simple contoured-flanged parts was demonstrated. Resistance spot welds with good static and fatigue strength at room and elevated temperatures were readily produced. Extended vacuum degassing during billet fabrication reduced porosity in fusion and resistance welds. However, electron beam welding was not possible because of extreme degassing during welding, and gas-tungsten-arc welds were not acceptable because of severely degraded mechanical properties. The FVS812 alloy exhibited excellent high temperature strength stability after thermal exposures up to 315 C (600 F) for 1000 h. Extended billet degassing appeared to generally improve tensile ductility, fatigue strength, and notch toughness. But the effects of billet degassing and thermal exposure on properties need to be further clarified. The manufacture of zee-stiffened, riveted, and resistance-spot-welded compression panels was demonstrated.

  7. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  8. Behavior of HPC with Fly Ash after Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available For use in fire resistance calculations, the relevant thermal properties of high-performance concrete (HPC with fly ash were determined through an experimental study. These properties included compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity at various temperatures (20, 100, 200, 300, 400 and 500∘C for high-performance concrete. The effect of temperature on compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity of the high-performance concrete with fly ash was discussed according to the experimental results. The change of surface characteristics with the temperature was observed. It can serve as a reference for the maintenance, design, and the life prediction of high-performance concrete engineering, such as high-rise building, subjected to elevated temperatures.

  9. At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb.

    Science.gov (United States)

    Magnus, C R A; Boychuk, K; Kim, S Y; Farthing, J P

    2014-06-01

    The purpose was to determine if an at-home resistance tubing strength training program on one shoulder (that is commonly used in rehabilitation settings) would produce increases in strength in the trained and untrained shoulders via cross-education. Twenty-three participants were randomized to TRAIN (strength-trained one shoulder; n = 13) or CONTROL (no intervention; n = 10). Strength training was completed at home using resistance tubing and consisted of maximal shoulder external rotation, internal rotation, scaption, retraction, and flexion 3 days/week for 4 weeks. Strength was measured via handheld dynamometry and muscle size measured via ultrasound. For external rotation strength, the trained (10.9 ± 10.9%) and untrained (12.7 ± 9.6%) arm of TRAIN was significantly different than CONTROL (1.6 ± 13.2%; -2.7 ± 12.3%; pooled across arm; P tubing training program on one limb can produce increases in strength in both limbs, and has implications for rehabilitation after unilateral shoulder injuries. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated-temperature

  11. Strength and low temperature toughness of Fe-13%Ni-Mo alloys

    International Nuclear Information System (INIS)

    Ishikawa, Keisuke; Maruyama, Norio; Tsuya, Kazuo

    1978-01-01

    Mechanical tests were made on newly developed Fe-13%Ni-Mo alloys for eryogenic service. The effects of the additional elements were investigated from the viewpoint of the strength and the low temperature toughness. The alloys added by Al, Ti or V have the better balance of these properties. They did not show low temperature brittleness induced by cleavage fracture in Charpy impact test at 77 K. The microfractography showed the utterly dimple rupture patterns on the broken surface of all specimens. It would be supposed that the cleavage fracture stress is considerably higher than the flow stress. These alloys are superior to some commercial structural materials for low temperature use in the balance between the strength at 300 K and the toughness at 77 K. Additionally, it is noted that these experimental alloys have a good advantage in getting high strength and high toughness by the rather simple heat treatment. (auth.)

  12. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    Science.gov (United States)

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  14. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  15. Proliferation resistance assessment of high temperature gas reactors

    International Nuclear Information System (INIS)

    Chikamatsu N, M. A.; Puente E, F.

    2014-10-01

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  16. Effects of Whole-Body Electromyostimulation versus High-Intensity Resistance Exercise on Body Composition and Strength: A Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Wolfgang Kemmler

    2016-01-01

    Full Text Available High-intensity (resistance exercise (HIT and whole-body electromyostimulation (WB-EMS are both approaches to realize time-efficient favorable changes of body composition and strength. The purpose of this study was to determine the effectiveness of WB-EMS compared with the gold standard reference HIT, for improving body composition and muscle strength in middle-aged men. Forty-eight healthy untrained men, 30–50 years old, were randomly allocated to either HIT (2 sessions/week or a WB-EMS group (3 sessions/2 weeks that exercised for 16 weeks. HIT was applied as “single-set-to-failure protocol,” while WB-EMS was conducted with intermittent stimulation (6 s WB-EMS, 4 s rest; 85 Hz, 350 ms over 20 minutes. The main outcome parameters were lean body mass (LBM as determined via dual-energy X-ray absorptiometry and maximum dynamic leg-extensor strength (isokinetic leg-press. LBM changes of both groups (HIT 1.25 ± 1.44% versus WB-EMS 0.93±1.15% were significant (p=.001; however, no significant group differences were detected (p=.395. Leg-extensor strength also increased in both groups (HIT 12.7±14.7%, p=.002, versus WB-EMS 7.3±10.3%, p=.012 with no significant (p=.215 between-group difference. Corresponding changes were also determined for body fat and back-extensor strength. Conclusion. In summary, WB-EMS can be considered as a time-efficient but pricy option to HIT-resistance exercise for people aiming at the improvement of general strength and body composition.

  17. Effect of Atomic Hydrogen on Preparation of Highly Moisture-Resistive SiNx Films at Low Substrate Temperatures

    Science.gov (United States)

    Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki

    2004-12-01

    Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.

  18. Applicability test of glass lining material for high-temperature acidic solutions of sulfuric acid in thermochemical water-splitting IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Tanaka, Nobuyuki; Terada, Atsuhiko; Onuki, Kaoru; Watanabe, Yutaka

    2010-01-01

    A key issue for realizing the thermochemical IS process for hydrogen production is the selection of materials for working with high-temperature acidic solutions of sulfuric acid and hydriodic acid. Glass lining material is a promising candidate, which is composed of steel having good strength and glass having good corrosion resistance. Since the applicability of glass lining material depends strongly on the service condition, corrosion tests using glass used in glass lining material and heat cycle tests using glass lining piping were carried out to examine the possibility of using the glass lining material with high-temperature acidic solutions of sulfuric acid. It was confirmed that the glass lining materials exhibited sufficient corrosion resistance and heat resistance in high-temperature sulfuric acid of the IS process. (author)

  19. Strength and gas-abrasive wear-resistance of zirconium carbide based cerments

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Dan'kin, A.A.; Markov, A.A.; Bogomol, I.V.

    1976-01-01

    Results relating to a study of cermet strength and wear resistance by means of a gas-abrasive flow are presented. It has been found that with a higher amount of the metallic binder (over 25 at.%) in zirconium carbide-based cermets the bending and compression strength and also hardness and wear resistance within the systems ZrC-Nb, ZrC-Mo, ZrC-W become lower. The interrelation of the cermet wear resistance of the various systems and their bending and compression strengths, which, in turn, depend on the electronic structure is shown

  20. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  1. Strength properties of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.; Burrow, R.C.; Debbas, E.B.

    1979-01-01

    A study is presented concerning the compressive strength, modulus of elasticity, and stress-strain relationships of concrete at elevated temperatures. A review of published results provides information for the development of upper and lower bound relationships for compressive strength and the modulus of elasticity and establishes exposure conditions for a lower bound thermal response. The relationships developed from the literature review are confirmed by the results of a verification test program. The strength and elasticity relationships provide a basis for the development of design stress-strain curves for concrete exposed to elevated temperatures

  2. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  3. Alkali-resistant glass fiber reinforced high strength concrete in simulated aggressive environment

    International Nuclear Information System (INIS)

    Kwan, W.H.; Cheah, C.B.; Ramli, M.; Chang, K.Y.

    2018-01-01

    The durability of the alkali-resistant (AR) glass fiber reinforced concrete (GFRC) in three simulated aggresive environments, namely tropical climate, cyclic air and seawater and seawater immersion was investigated. Durability examinations include chloride diffusion, gas permeability, X-ray diffraction (XRD) and scanning electron microscopy examination (SEM). The fiber content is in the range of 0.6 % to 2.4 %. Results reveal that the specimen containing highest AR glass fiber content suffered severe strength loss in seawater environment and relatively milder strength loss under cyclic conditions. The permeability property was found to be more inferior with the increase in the fiber content of the concrete. This suggests that the AR glass fiber is not suitable for use as the fiber reinforcement in concrete is exposed to seawater. However, in both the tropical climate and cyclic wetting and drying, the incorporation of AR glass fiber prevents a drastic increase in permeability. [es

  4. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    Science.gov (United States)

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  5. Development of strength evaluation method for high-pressure ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Takegami, Hiroaki, E-mail: takegami.hiroaki@jaea.go.jp; Terada, Atsuhiko; Inagaki, Yoshiyuki

    2014-05-01

    Japan Atomic Energy Agency is conducting R and D on nuclear hydrogen production by the Iodine-Sulfur (IS) process. Since highly corrosive materials such as sulfuric and hydriodic acids are used in the IS process, it is very important to develop components made of corrosion resistant materials. Therefore, we have been developing a sulfuric acid decomposer made of a ceramic material, that is, silicon carbide (SiC), which shows excellent corrosion resistance to sulfuric acid. One of the key technological challenges for the practical use of a ceramic sulfuric acid decomposer made of SiC is to be licensed in accordance with the High Pressure Gas Safety Act for high-pressure operations of the IS process. Since the strength of a ceramic material depends on its geometric form, etc., the strength evaluation method required for a pressure design is not established. Therefore, we propose a novel strength evaluation method for SiC structures based on the effective volume theory in order to extend the range of application of the effective volume. We also developed a design method for ceramic apparatus with the strength evaluation method in order to obtain a license in accordance with the High Pressure Gas Safety Act. In this paper, the minimum strength of SiC components was calculated by Monte Carlo simulation, and the minimum strength evaluation method of SiC components was developed by using the results of simulation. The method was confirmed by fracture test of tube model and reference data.

  6. Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures

    Science.gov (United States)

    Arslan Hafeez, Muhammad; Farooq, Ameeq

    2018-01-01

    The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.

  7. On-line monitoring of resistance of aqueous solutions at high temperature

    International Nuclear Information System (INIS)

    Hu Shilin; Zhang Pingzhu; Shang Weiguo

    1999-01-01

    The coulostatic measurement is a fast speed electrochemical test method. By this technology, analyzing Δ E(t)- T curves recorded under coulostatic perturbation, the solution resistance R l , resistance of coated film R f , capacity of coated film C f , Polarization resistance R p and double layer capacity C d are obtained. The resistance variety of 0.05N KCl is measured from room temperature up to 255 deg. C under saturation steam pressure. (author)

  8. The negative effect of Zr addition on the high temperature strength in alumina-forming austenitic stainless steels

    International Nuclear Information System (INIS)

    Moon, Joonoh; Jang, Min-Ho; Kang, Jun-Yun; Lee, Tae-Ho

    2014-01-01

    The effect of a Zr addition on the precipitation behavior and mechanical properties in Nb-containing alumina-forming austenitic (AFA) stainless steels was investigated using tensile tests, scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analysis. The TEM observation showed that a Zr addition led to the formation of a (Nb,Zr)(C,N) complex particle, which coarsened the Nb-rich carbonitride. Tensile tests were performed at an elevated temperature (700 °C), and both the tensile and yield strengths decreased with a Zr addition. This unexpected result of a Zr addition was due to the reduction of the precipitation strengthening by particle coarsening. - Highlights: • The effect of Zr on high temperature strength in AFA steel containing Nb was studied. • Both the tensile and yield strengths of an AFA steel decreased with Zr-addition. • This is due to the reduction of precipitation strengthening by particle coarsening. • Nb(C,N) and (Nb,Zr)(C,N) particles were precipitated in an AFA and Zr-added AFA steel. • The size of (Nb,Zr)(C,N) particle is much bigger than that of Nb(C,N) particle

  9. In-situ heating test in the sedimentary soft rock. Part 3. Monitoring of the extent of high temperature zone by resistivity tomography

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50m. Resistivity monitoring is thought to be effective to map the extent of high temperature zone. So resistivity tomography was conducted during the heating. The results demonstrated that the resistivity of the rock mass around the heater well was decreased and this area was gradually expanded from the heated area during the heating. Resistivity of rock is proportional to that of pore water which is known to decrease with increasing temperature. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the heated area by nuclear waste. (author)

  10. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  11. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  12. Processing and characterization of transformation-toughened ceramics with strength retention to elevated temperatures. Final report

    International Nuclear Information System (INIS)

    Cutler, R.A.; Brinkpeter, C.B.; Vircar, A.V.; Shetty, D.K.

    1994-09-01

    Monolithic and three-layered Al 2 O 3 -- 15 vol % ZrO 2 composites were fabricated by slip casting aqueous slurries. The outer and inner layers of three-layer composites contained unstabilized and partially stabilized ZrO 2 , respectively. Transformation of part of the unstabilized ZrO 2 led to surface compressive stresses in the outer layers. Strain gage, x-ray, indentation crack length, and strength measurements were used to determine the magnitude of residual stresses in the composites. The strength of the three-layer composites (∼1200 MPa) was 500--700 MPa higher than that of the monolithic outer layer composites at room temperature and 350 MPa higher at 750 degree C. The strength differential decreased rapidly above the m → t transformation temperature. Three-layered composites showed excellent damage resistance and improved reliability. Cam follower rollers were fabricated to demonstrate the applicability of this technique for making automotive components

  13. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  14. Assessment of the State of the Art of Ultra High Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  15. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  16. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  17. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    International Nuclear Information System (INIS)

    Dalgaard, S.B.

    1960-03-01

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315 o C up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  18. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, S B

    1960-03-15

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315{sup o}C up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  19. Investigation on powder metallurgy Cr-Si-Ta-Al alloy target for high-resistance thin film resistors with low temperature coefficient of resistance

    International Nuclear Information System (INIS)

    Wang, X.Y.; Zhang, Z.S.; Bai, T.

    2010-01-01

    The sputtering target for high-resistance thin film resistors plays a decisive role in temperature coefficient of resistance (TCR). Silicon-rich chromium (Cr)-silicon (Si) target was designed and smelted for high-resistance thin film resistors with low TCR. Valve metal tantalum (Ta) and aluminum (Al) were introduced to the Cr-Si target to improve the performance of the target prepared. The measures for grain refining in smelting Cr-Si-Ta-Al target were taken to improve the performance of the prepared target. The mechanism and role of grain refinement were discussed in the paper. The phase structure of the prepared target was detected by X-ray diffraction (XRD). Rate of temperature drop was studied to reduce the internal stress of alloy target and conquer the easy cracking disadvantage of silicon-rich target. The electrical properties of sputtered thin film resistors were tested to evaluate the performance of the prepared target indirectly.

  20. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Belal Alsubari

    2015-04-01

    Full Text Available Palm oil fuel ash (POFA has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC. POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  1. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Science.gov (United States)

    Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin

    2015-01-01

    Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  2. Creep property of carbon and nitrogen free high strength new alloys

    Energy Technology Data Exchange (ETDEWEB)

    Muneki, S., E-mail: ABE.Fujio@nims.go.j [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan); Okubo, H.; Abe, F. [Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science (Japan)

    2010-06-15

    The carbon and nitrogen free new alloys which were composed of supersaturated martensitic microstructure with high dislocation density before the creep test have been investigated systematically. These alloys were produced from the new approach which raised creep strength by the utilization of the reverse transformed austenite phase as a matrix and intermetallic compounds such as Laves phase and mu-phase as precipitates during heating before the creep test. It is important that these alloys are independent of any carbides and nitrides as strengthening factors. The high temperature creep test over 700 {sup o}C exceeds 50,000 h, and the test is continuous. Creep behavior of the alloys is found to be different from that of the conventional high-Cr ferritic steels. The addition of boron to the alloy pulled the recrystallization temperature up in the high temperature, and it became a creep test in the un-recrystallization condition, and the creep property of high temperature over 700 {sup o}C was drastically improved. The minimum creep rates of Fe-Ni alloys at 700 {sup o}C are found to be much lower than those of the conventional high Cr ferritic heat resistant steels, which is due to fine dispersion strengthening useful even at 700 {sup o}C in these alloys. As a result it became clear that the value for 100,000 h was exceeded at 700 {sup o}C and 100 MPa calculated from the Larson-Miller parameter at C = 20.

  3. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Kadonaga, Toshiki; Kikuma, Seiji.

    1982-01-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  4. Connections in Precast Buildings using Ultra High-Strength Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Hansen, Lars Pilegaard

    1995-01-01

    Ultra high-strength concrete adds new dimensions to the design of concrete structures. It is a brittle material but introducing fibres into the matrix changes the material into a highly ductile material. Furthermore, the fibre reinforcement increases the anchorage of traditional reinforcement bar...... and the fire resistance. Such a fibre reinforced ultra high-strength material has been used to develop a simple joint solution between slab elements in a column - slab building system....

  5. Processing and characterization of transformation-toughened ceramics with strength retention to elevated temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.A.; Brinkpeter, C.B. [Ceramatec, Inc., Salt Lake City, UT (United States); Vircar, A.V.; Shetty, D.K. [Univ. of Utah (United States)

    1994-09-01

    Monolithic and three-layered Al{sub 2}O{sub 3} -- 15 vol % ZrO{sub 2} composites were fabricated by slip casting aqueous slurries. The outer and inner layers of three-layer composites contained unstabilized and partially stabilized ZrO{sub 2}, respectively. Transformation of part of the unstabilized ZrO{sub 2} led to surface compressive stresses in the outer layers. Strain gage, x-ray, indentation crack length, and strength measurements were used to determine the magnitude of residual stresses in the composites. The strength of the three-layer composites ({approx}1200 MPa) was 500--700 MPa higher than that of the monolithic outer layer composites at room temperature and 350 MPa higher at 750{degree}C. The strength differential decreased rapidly above the m {yields} t transformation temperature. Three-layered composites showed excellent damage resistance and improved reliability. Cam follower rollers were fabricated to demonstrate the applicability of this technique for making automotive components.

  6. Slippage of steel in high and normal strength concrete

    International Nuclear Information System (INIS)

    Ahmed, K.; Siddiqi, Z.A.; Yousaf, M.

    2007-01-01

    Composite action of any reinforced concrete member is only possible if sufficient bond strength exists between steel reinforcing bars and concrete, which can adequately transfer shear stress between them. Bond strength is a function of compressive strength of concrete and hence high strength concrete has higher bond strength (1-2). Therefore required development length can be reduced. In order to investigate the effect of development length on bond stress and slip relationships, experimental investigation was carried out. In this experimentation 24 pull-out samples of high strength concrete and normal strength concrete were casted and tested. The results of this investigation revealed that by increasing the development length from 5db to 10db bond strength increases for both high and normal strength concrete as shown in Figure 11, 12 and 13. However in case of normal strength concrete increase in bond strength is more compared to that in high strength concrete as it is clear from Figure 11 and Figure 13. The increase in bond strength is observed even at 10db development length but the extent is less for 19 mm than 16 mm bars as shown in Figure 12 and Figure 13. This is in agreement with the earlier findings of Chen et al (3) and Harajli et al (1). However in case of HSC the total slippage at 10db is 50% greater than at 5db. This may be due to the fact that more no of concrete keys participate in resisting the slippage. (author)

  7. Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering

    International Nuclear Information System (INIS)

    Xie, Z.J.; Fang, Y.P.; Han, G.; Guo, H.; Misra, R.D.K.; Shang, C.J.

    2014-01-01

    The present study describes the microstructure and precipitation behavior in an ultra-high strength low carbon niobium–vanadium microalloyed steel that was processed by quenching and high frequency induction tempering. Ultrahigh yield strength of ∼1000 MPa with high elongation of ∼15% and high low temperature toughness of 55 J (half thickness) at −40 °C was obtained after quenching from austenitization at 900 °C for 30 min, and tempering at 600 °C for 15 min by induction reheating with a reheating rate of ∼50 °C/s. While the yield strength increase on tempering was similar for both induction reheating and conventional reheating (electrical resistance reheating), there was ∼100% increase in low temperature toughness in induction reheated steel compared to the conventional reheating process. The underlying reason for the increase in toughness was attributed to the transformation of cementite film observed in conventional reheating and tempering to nanoscale cementite in induction reheating and tempering. The precipitation of nanoscale carbides is believed to significantly contribute to ultra-high strength, good ductility, and high toughness in the high frequency induction reheating and tempering process

  8. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mondol, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Alam, T.; Banerjee, R. [Advanced Materials and Manufacturing Processes Institute and Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203-5017 (United States); Kumar, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2017-02-27

    The paper reports a significant improvement in tensile properties, in particular at 200 °C, of commercial 2219 Al alloy by addition of small amounts of Sc (0.8 wt%) and Mg (0.45 wt%), and employing copper mould suction casting followed by natural ageing and cold rolling. Microstructural examination and measurement of hardness were performed in order to explain the effects of Sc and Mg at each processing step. It is found that the remarkable improvement of room temperature strength occurs due to fine grain size, Al{sub 3}Sc and Al{sub 3}(Sc,Zr) dispersoids, GP zones on {100} and {111} planes, and work hardening. On exposure at 200 °C, the GP zones transform primarily to θ′ precipitates and a few Ω precipitates. Sc and Mg atoms segregate at the θ′/matrix interface, which suppress the coarsening of θ′ precipitates and make them stable at higher temperatures. Thus, the work reports extremely high 0.2% proof stress of 542 MPa at room temperature, 378 MPa at 200 °C and 495 MPa at room temperature after 200 h exposure at 200 °C accompanied by reasonable ductility. Theoretical yield strength is calculated on the basis of the observed microstructure and is found to be in good agreement with the experimentally obtained value.

  9. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy

    International Nuclear Information System (INIS)

    Mondol, S.; Alam, T.; Banerjee, R.; Kumar, S.; Chattopadhyay, K.

    2017-01-01

    The paper reports a significant improvement in tensile properties, in particular at 200 °C, of commercial 2219 Al alloy by addition of small amounts of Sc (0.8 wt%) and Mg (0.45 wt%), and employing copper mould suction casting followed by natural ageing and cold rolling. Microstructural examination and measurement of hardness were performed in order to explain the effects of Sc and Mg at each processing step. It is found that the remarkable improvement of room temperature strength occurs due to fine grain size, Al 3 Sc and Al 3 (Sc,Zr) dispersoids, GP zones on {100} and {111} planes, and work hardening. On exposure at 200 °C, the GP zones transform primarily to θ′ precipitates and a few Ω precipitates. Sc and Mg atoms segregate at the θ′/matrix interface, which suppress the coarsening of θ′ precipitates and make them stable at higher temperatures. Thus, the work reports extremely high 0.2% proof stress of 542 MPa at room temperature, 378 MPa at 200 °C and 495 MPa at room temperature after 200 h exposure at 200 °C accompanied by reasonable ductility. Theoretical yield strength is calculated on the basis of the observed microstructure and is found to be in good agreement with the experimentally obtained value.

  10. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  11. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  12. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  13. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  14. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  15. Strength Gains as a Result of Brief, Infrequent Resistance Exercise in Older Adults

    Directory of Open Access Journals (Sweden)

    James Fisher

    2014-01-01

    Full Text Available Chronological aging is associated with a decrease in skeletal muscle mass and bone mineral density, an increase in fat mass, frequency of falls and fractures, and the likelihood of obesity, diabetes, and coronary heart disease. Resistance exercise has been shown to counter all of these effects of aging and, in turn, reduce the risk of all-cause mortality. However, variables such as volume and frequency have become contentious issues, with recent publications suggesting that similar physiological adaptations are possible with both high- and low-volume approaches. The aim of this research was to consider strength increases as a result of brief, infrequent resistance exercise. The present study offers data from 33 (14 male and 19 female older adults (M=55 years who underwent brief (<15 minutes per exercise session, infrequent (2×/week, resistance exercise to a high intensity of effort (6-repetition maximum at a controlled repetition duration (10 seconds concentric : 10 seconds eccentric on 5 resistance machines (chest press, leg press, pull-down, seated row, and overhead press. Data is presented for training interventions of 12 weeks (male and 19 weeks (female. Significant strength increases were identified for all exercises. With the detailed health benefits obtainable, the present study suggests that resistance exercise can be efficacious in much smaller volumes than previously considered.

  16. High-frequency resistance training is not more effective than low-frequency resistance training in increasing muscle mass and strength in well-trained men.

    Science.gov (United States)

    Gomes, Gederson K; Franco, Cristiane M; Nunes, Paulo Ricardo P; Orsatti, Fábio L

    2018-02-27

    We studied the effects of two different weekly frequency resistance training (RT) protocols over eight weeks on muscle strength and muscle hypertrophy in well-trained men. Twenty-three subjects (age: 26.2±4.2 years; RT experience: 6.9±3.1 years) were randomly allocated into the two groups: low frequency (LFRT, n = 12) or high frequency (HFRT, n = 11). The LFRT performed a split-body routine, training each specific muscle group once a week. The HFRT performed a total-body routine, training all muscle groups every session. Both groups performed the same number of sets (10-15 sets) and exercises (1-2 exercise) per week, 8-12 repetitions maximum (70-80% of 1RM), five times per week. Muscle strength (bench press and squat 1RM) and lean tissue mass (dual-energy x-ray absorptiometry) were assessed prior to and at the end of the study. Results showed that both groups improved (ptrained subjects when the sets and intensity are equated per week.

  17. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition.

    Directory of Open Access Journals (Sweden)

    Wenfu Xiao

    Full Text Available Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.

  18. Strength versus temperature anomalies in metals

    CERN Document Server

    Fisher, D J

    2015-01-01

    Perhaps the best-known aspect of the behavior of metals, and indeed of most materials, is that they weaken with temperature. This weakening is however a problem in some applications. Only tungsten for instance, with its naturally high melting-point, was suitable for the manufacture of the filaments of incandescent light-bulbs. Even then, it was necessary to add oxide particles having a yethigher melting-point in order to prevent the weakening effect of grain-growth. These are alloys however which can be said to be weakened by heat, but nevertheless 'hang on' to enough strength to perform their

  19. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  20. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  2. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    International Nuclear Information System (INIS)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I.; Lee, S. H.; Eum, G. W.

    2015-01-01

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating

  3. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I. [Andong National University, Andong (Korea, Republic of); Lee, S. H.; Eum, G. W. [Corporate R and D Institute Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2015-04-15

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

  4. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  5. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    106. Behaviour of high-strength concrete incorporating ground granulated blast furnace slag at high-temperature. Comportement à haute température du béton à haute résistance à base de laitier granulé de haut fourneau. Imene Saadi*1 & Abdelaziz Benmarce2. 1Laboratoire Matériaux Géométraux et Environnement, ...

  6. Effect of high temperature or fire on heavy weight concrete properties

    International Nuclear Information System (INIS)

    Sakr, K.; EL-Hakim, E.

    2005-01-01

    Temperature plays an important role in the use of concrete for shielding nuclear reactors. In the present work, the effect of different durations (1, 2 and 3 h) of high temperatures (250, 500, 750 and 950 deg. C) on the physical, mechanical and radiation properties of heavy concrete was studied. The effect of fire fitting systems on concrete properties was investigated. Results showed that ilmenite concrete had the highest density, modulus of elasticity and lowest absorption percent, and it had also higher values of compressive, tensile, bending and bonding strengths than gravel or baryte concrete. Ilmenite concrete showed the highest attenuation of transmitted gamma rays. Firing (heating) exposure time was inversely proportional to mechanical properties of all types of concrete. Ilmenite concrete was more resistant to elevated temperature. Foam or air proved to be better than water as a cooling system in concrete structure exposed to high temperature because water leads to a big damage in concrete properties

  7. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  8. Effects of drop sets with resistance training on increases in muscle CSA, strength, and endurance: a pilot study.

    Science.gov (United States)

    Ozaki, Hayao; Kubota, Atsushi; Natsume, Toshiharu; Loenneke, Jeremy P; Abe, Takashi; Machida, Shuichi; Naito, Hisashi

    2018-03-01

    To investigate the effects of a single high-load (80% of one repetition maximum [1RM]) set with additional drop sets descending to a low-load (30% 1RM) without recovery intervals on muscle strength, endurance, and size in untrained young men. Nine untrained young men performed dumbbell curls to concentric failure 2-3 days per week for 8 weeks. Each arm was randomly assigned to one of the following three conditions: 3 sets of high-load (HL, 80% 1RM) resistance exercise, 3 sets of low-load [LL, 30% 1RM] resistance exercise, and a single high-load (SDS) set with additional drop sets descending to a low-load. The mean training time per session, including recovery intervals, was lowest in the SDS condition. Elbow flexor muscle cross-sectional area (CSA) increased similarly in all three conditions. Maximum isometric and 1RM strength of the elbow flexors increased from pre to post only in the HL and SDS conditions. Muscular endurance measured by maximum repetitions at 30% 1RM increased only in the LL and SDS conditions. A SDS resistance training program can simultaneously increase muscle CSA, strength, and endurance in untrained young men, even with lower training time compared to typical resistance exercise protocols using only high- or low-loads.

  9. Development of a high temperature austenitic stainless steel for Stirling engine components

    International Nuclear Information System (INIS)

    Anton, D.L.; Lemkey, F.D.

    1986-01-01

    An alloy, designed NASAUT 4G-A1, was developed which exhibited an excellent balance of oxidation resistance and high temperature strength while maintaining an austenitic matrix necessary for hydrogen compatibility. This alloy, having the composition 15Cr-15Mn-2Mo-1Nb-1Si-1.5C-bal. Fe in wt%, was microstructurally characterized and shown to contain a fine M/sub 23/C/sub 6/ precipitated phase. Subsequent heat treatments were shown to substantially modify this microstructure resulting in improved mechanical properties. Yield, creep and low cycle fatigue strengths were found to be superior to the best iron base alloy thus far identified as a potential heater head candidate material, XF-818

  10. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  11. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  12. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  13. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  14. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  15. High-strength beryllium block

    International Nuclear Information System (INIS)

    Pinto, N.P.; Keith, G.H.

    1977-01-01

    Beryllium billets hot isopressed using fine powder of high purity have exceptionally attractive properties; average tensile ultimate, 0.2% offset yield strength and elongation are 590 MPa, 430 MPa and 4.0% respectively. Properties are attributed to the fine grain size (about 4.0 μm average diameter) and the relatively low levels of BeO present as fine, well-dispersed particles. Dynamic properties, e.g., fracture toughness, are similar to those of standard grade, high-purity beryllium. The modulus of beryllium is retained to very high stress levels, and the microyield stress or precision elastic limit is higher than for other grades, including instrument grades. Limited data for billets made from normal-purity fine powders show similar room temperature properties. (author)

  16. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  17. Effects of high temperature neutron irradiation on the physical, chemical and mechanical properties of fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Matsuo, H.; Nomura, S.; Imai, H.; Oku, T.; Eto, M.

    1987-01-01

    Effects of neutron irradiation on the dimensional change, coefficient of thermal expansion(CTE), thermal conductivity, corrosion rate, Young's modulus and strengths were studied for the candidate graphite material IG-110 of the experimental very high temperature gas-cooled reactor(VHTR) after irradiation at 585 - 1273 deg C to neutron fluences of up to about 3 x 10 25 n/m 2 (E > 29 fJ) in the JMTR and JRR-2, and to about 7 x 10 25 n/m 2 (E > 29 fJ) in the HFR. The results were compared with the irradiation behaviors of other graphites. Dimensional shrinkage was observed in the whole irradiation temperature range, showing lower value than 2 %. The shrinkage rate showed the minimum in the irradiation temperature of around 850 deg C, followed by the increase for the samples irradiated at higher temperatures. The dimensional stability of the material was clarified to be almost the same with that of H451 graphite. The CTE, thermal resistivity and Young's modulus increased in the early stage of irradiation and then only the CTE decreased while the thermal resistivity and Young's modulus levelled off with further irradiation. The neutron fluence showing the maximum CTE shifted to the lower fluence with increasing irradiation temperature. The increases of both thermal resistivity and Young's modulus were remarkable for the samples irradiated at lower temperatures. Compressive and bending strengths measured at room temperature increased after irradiation as well. The corrosion rate with water-vapor of 0.65 % in helium at high temperatures decreased owing to irradiation and the reduction was independent of irradiation temperature and neutron fluence. The activation energy for the reaction was estimated to be the same before and after irradiation. (author)

  18. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

    Directory of Open Access Journals (Sweden)

    Xiong, Ming-Xiang

    2015-12-01

    Full Text Available Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.En este trabajo se presentan los resultados más relevantes del trabajo experimental realizado para valorar la laminación y las propiedades mecánicas residuales de hormigón de ultra-altas prestaciones tras su exposición a altas temperaturas. La resistencia a la compresión del hormigón de ultra-altas prestaciones osciló entre 160 MPa~185 MPa. El objetivo de este estudio fue descubrir una manera eficaz de prevenir desprendimientos y/o laminaciones en este hormigón y medir sus propiedades mecánicas después de ser sometido al fuego. Las variables estudiadas fueron la presencia y dosificación de fibras, velocidad de calentamiento y condiciones de curado. Los resultados mostraron, tras la exposición a altas temperaturas, que la resistencia a compresión y el módulo de elasticidad del hormigón de ultra-altas prestaciones disminuían más lento que las de un hormigón con resistencia normal. La fibra de polipropileno resultó más eficaz para prevenir

  19. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  20. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  1. VARIATION OF SUBSTRUCTURES OF PEARLITIC HEAT RESISTANT STEEL AFTER HIGH TEMPERATURE AGING

    Institute of Scientific and Technical Information of China (English)

    R.C.Yang; K.Chen; H.X.Feng; H.Wang

    2004-01-01

    The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12Cr1Mo V pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phasetransformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.

  2. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  3. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    Science.gov (United States)

    2009-01-01

    or any other high-strength steel. No special tools or grinding wheels are required. The only significant differences with S53 are  Machining... runout point and ** point) Fit for 4330 in Air (w/o runout points) Fit for S53 in Salt Fit for 300M in Salt Fit for 4330 in Salt MIL HNBK 5 for 300M in

  4. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  5. Iron aluminide useful as electrical resistance heating elements

    Science.gov (United States)

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  6. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis.

    Science.gov (United States)

    Sabag, Angelo; Najafi, Abdolrahman; Michael, Scott; Esgin, Tuguy; Halaki, Mark; Hackett, Daniel

    2018-04-16

    The purpose of this systematic review and meta-analysis is to assess the effect of concurrent high intensity interval training (HIIT) and resistance training (RT) on strength and hypertrophy. Five electronic databases were searched using terms related to HIIT, RT, and concurrent training. Effect size (ES), calculated as standardised differences in the means, were used to examine the effect of concurrent HIIT and RT compared to RT alone on muscle strength and hypertrophy. Sub-analyses were performed to assess region-specific strength and hypertrophy, HIIT modality (cycling versus running), and inter-modal rest responses. Compared to RT alone, concurrent HIIT and RT led to similar changes in muscle hypertrophy and upper body strength. Concurrent HIIT and RT resulted in a lower increase in lower body strength compared to RT alone (ES = -0.248, p = 0.049). Sub analyses showed a trend for lower body strength to be negatively affected by cycling HIIT (ES = -0.377, p = 0.074) and not running (ES = -0.176, p = 0.261). Data suggests concurrent HIIT and RT does not negatively impact hypertrophy or upper body strength, and that any possible negative effect on lower body strength may be ameliorated by incorporating running based HIIT and longer inter-modal rest periods.

  7. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  8. Weakening of flux-pinning strength for high-Tc superconductors in an alternating magnetic field

    International Nuclear Information System (INIS)

    Chen, Q.Y.

    1992-01-01

    This paper reports on the flux-pinning forces in high temperature superconductors which were found to be weakened in an ac field as the applied field strength or the frequency increases. In the weakly pinned regime, flux dynamics could be described with the concept of magnetic diffusion. Flux-motion-induced finite resistivity could lead to significant skin-effect which was reflected in the ac screening effectiveness. The frequency dependence of the relative local field within a superconducting hollow cylinder were used to deduce the flux-motion resistivity ρ. For superconducting YB 2 Cu 3 O 7 - x compounds at 77K it was found that ρ ∼(mu, Omega)-cm. The corresponding magnetic diffusion coefficient was ∼ 224 cm 2 /s. At 750 Hz the skin depth is around 1.54 mm as compared with the 2-mm sample wall thickness

  9. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  10. Concentric resistance training increases muscle strength without affecting microcirculation

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Hildebrandt, Wulf; Schroeder, Leif; Kinscherf, Ralf; Krix, Martin; Bachert, Peter; Delorme, Stefan; Essig, Marco; Kauczor, Hans-Ulrich; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 ± 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P 2 after training) and in absolute muscle strength (isometric, 146 ± 44 vs. 174 ± 50 Nm; isokinetic, 151 ± 53 vs. 174 ± 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 ± 75 vs. 326 ± 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 ± 1.2 vs. 1.1 ± 1.1 ml/min/100 g; blood flow velocity, 0.49 ± 0.44 vs. 0.52 ± 0.74 mm s -1 ). Also, the intensities of high-energy phosphates phosphocreatine and β-adenosintriphosphate were not different after training within the skeletal muscle at rest (β-ATP/phosphocreatine, 0.29 ± 0.06 vs. 0.28 ± 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at

  11. Concentric resistance training increases muscle strength without affecting microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany)], E-mail: MarcAndre.Weber@med.uni-heidelberg.de; Hildebrandt, Wulf [Immunochemistry, German Cancer Research Center (dkfz), Heidelberg (Germany); Schroeder, Leif [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kinscherf, Ralf [Department of Anatomy and Developmental Biology, University of Heidelberg, Heidelberg (Germany); Krix, Martin [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Bachert, Peter [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Delorme, Stefan; Essig, Marco [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [National Center for Tumor Diseases (NCT), Heidelberg (Germany)

    2010-03-15

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 {+-} 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P < 0.001) increase in CSA (60 {+-} 16 before vs. 64 {+-} 15 cm{sup 2} after training) and in absolute muscle strength (isometric, 146 {+-} 44 vs. 174 {+-} 50 Nm; isokinetic, 151 {+-} 53 vs. 174 {+-} 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 {+-} 75 vs. 326 {+-} 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 {+-} 1.2 vs. 1.1 {+-} 1.1 ml/min/100 g; blood flow velocity, 0.49 {+-} 0.44 vs. 0.52 {+-} 0.74 mm s{sup -1}). Also, the intensities of high-energy phosphates phosphocreatine and {beta}-adenosintriphosphate were not different after training within the skeletal muscle at rest ({beta}-ATP/phosphocreatine, 0.29 {+-} 0.06 vs. 0.28 {+-} 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric

  12. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  13. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  14. Creep and long-term strength of heat-resistant steels with different structures with the account taken of the type of stress deviator

    International Nuclear Information System (INIS)

    Giginyak, F.F.; Dragunov, Yu.G.; Mozharovskaya, T.N.; Titov, V.F.

    1993-01-01

    The results of the experimental investigations into creep and long-term strength of heat-resistant steels 15Kh2MFA and 15Kh2NMFA in the initial state and after heat-treatment simulating the metal irradiation embrittlement at the end of the product service date under static loading at the complex stress state and at high temperatures are presented. The experimentally substantiated equations of state describing creep and long-term stability of materials taking into account the type of the stress state are derived. (author)

  15. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  16. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    Science.gov (United States)

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  17. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  18. Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys during the press-hardening process

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M.; Benfer, S.; Fuerbeth, W. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Klesen, C.; Bleck, W. [Institut fuer Eisenhuettenkunde der RWTH Aachen, Intzestrasse 1, D-52072 Aachen (Germany)

    2012-10-15

    The need for lighter constructional materials in automotive industries has increased the use of high-strength steel alloys. To enhance passenger's safety press hardening may be applied to steel parts. However, as the steel parts are heated up to 950 C during this process they have to be protected by some kind of coating against the intense oxide formation usually taking place. As the coating systems used so far all have certain disadvantages in this work the ability of nano-particulate thin coatings obtained by the sol-gel process to improve the oxidation resistance of 22MnB5 steel is investigated. The coatings obtained from three sols containing lithium aluminum silicate and potassium aluminum silicate showed the best performance against oxidation. The structural properties of the coating materials were characterized using different methods like XRD and differential thermal analysis. Comparison of the oxidation rate constants proved the ability of the coatings to protect against oxidation at temperatures up to 800 C. Press-hardening experiments in combination with investigations on the thermal shock resistance of the coated samples also showed the ability of the coatings to stay intact during press hardening with only slight spalling of the coatings in the bending areas. The absence of any secondary intermetallic phases and layer residues during laser beam welding experiments on coated samples proves the suitability of the nano-particulate coatings for further industrial processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  20. Variation of over strength factor for mid-rise R.C. moment resisting frames

    International Nuclear Information System (INIS)

    Tasnimi, A. A.; Mahmoodi Sahebi, M.

    2001-01-01

    The over strength of a multi-storey structure (as a multi-degree of freedom system) is one of the parameters playing the evaluation of the behaviour factor. This is an important property when the structure exhibits inelastic behaviour and is described by over strength factor. The over strength factor and strength reduction factor due to ductility are considered in most seismic design codes of practice to reduce the elastic strength demand of the structure. In spite the importance of the over strength, its influence has not yet been quantified. This paper is a part of an investigation from which the first part was published in Amirkabir Journal No.36/Winter 1998, entitled as E stimation of over strength of low-ri sed flexural R.C. frames using nonlinear analysis . This paper investigates the variation of over strength factor for reinforced concrete moment resisting frames, having several stories (5 to 15) with various spans (3 to 5) and located in high seismicity regions using non-linear inelastic analysis. The results indicate that the over strength factor of these systems efforts 25 to 40 percent reduction in the elastic strength demand of such frames

  1. Primary defect transformations in high-resistivity p-type silicon irradiated with electrons at cryogenic temperatures

    CERN Document Server

    Makarenko, L F; Korshunov, F P; Murin, L I; Moll, M

    2009-01-01

    It has been revealed that self-interstitials formed under low intensity electron irradiationin high resistivity p-type silicon can be retained frozen up to room temperature. Low thermal mobility of the self-interstitials suggests that Frenkelpair sinsilicon can be stable at temperatures of about or higher than 100K. A broad DLTS peak with activation energy of 0.14–0.17eV can be identified as related to Frenkel pairs. This peak anneals out at temperatures of 120 140K. Experimental evidences are presented that be coming more mobile under forwardcurrent injection the self-interstitials change their charge state to a less positive one.

  2. EN AW-4032 T6 Piston Alloy After High-Temperature Exposure: Residual Strength and Microstructural Features

    Science.gov (United States)

    Balducci, Eleonora; Ceschini, Lorella; Morri, Alessandro; Morri, Andrea

    2017-08-01

    This study aims to evaluate the effects of prolonged thermal exposure on both microstructural evolution and mechanical properties of the EN AW-4032 T6 piston alloy. For the purpose, the experimental activities have been carried out on samples machined from forged and heat-treated automotive pistons. The effects of overaging have been investigated in the temperature range of 140-290 °C, firstly by evaluating the time-temperature-hardness curves and then by carrying out room-temperature tensile tests on overaged samples. The material softening was substantial and extremely rapid when the soaking temperature exceeded 250 °C. During overaging, both the tensile strength and the residual hardness considerably decreased, and a relationship between these parameters has been established. The alloy behavior in the plastic field has been modeled according to the Hollomon's equation, showing that both the strain hardening exponent and the strength coefficient are a function of the residual hardness. The results were finally related to the corresponding microstructural changes: OM and FEG-SEM metallographic and fractographic analyses on overaged samples gave evidence of coarsened precipitates along the grain boundaries.

  3. Mixed-Methods Resistance Training Increases Power and Strength of Young and Older Men.

    Science.gov (United States)

    Newton, Robert U.; Hakkinen, Keijo; Hakkinen, Arja; McCormick, Matt; Volek, Jeff; Kraemer, William J.

    2002-01-01

    Examined the effects of a 10-week, mixed-methods resistance training program on young and older men. Although results confirmed some age-related reductions in muscle strength and power, the older men demonstrated similar capacity to the younger men for increases in muscle strength and power via an appropriate, periodized resistance training…

  4. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Guo, Zaibing; Kim, Moon J.; Alshareef, Husam N.; Gnade, Bruce E.

    2018-01-01

    that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising

  5. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  6. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    International Nuclear Information System (INIS)

    Fabian, P.E.; Munshi, N.A.; Denis, R.J.

    2002-01-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 10 8 Gy

  7. Fracture resistance of the VNC-2USh steel with different content of diffusion-mobile hydrogen at low temperature

    International Nuclear Information System (INIS)

    Yablonskij, I.S.; Sankho, K.

    1979-01-01

    Presented are the investigation results for the diffusible hydrogen (DH) content effect on cracking resistance and mechanical properties of the VNC-2USh steel in the temperature range from -75-100 deg C. In this range σsub(B), σsub(0.2) and σ are not practically sensitive to the DH content change from 0.27 to 3 cm 3 /100g. At room temperature the increase of DH content in the above concentration range results in 45 % decrease of cracking resistance under static loading. At -75 deg C the cracking resistance does not depend on DH content. Within the temperature range from -40-75 deg C placed is a temperature boundary, separating the regions of predominant effects of hydrogen and low temperature embrittlement on repture strength of the VNC-2 steel at moderated rates of deformation

  8. The Composition and Temperature Effects on the Ultra High Strength Stainless Steel Design

    Science.gov (United States)

    Xu, W.; Del Castillo, P. E. J. Rivera Díaz; van der Zwaag, S.

    Alloy composition and heat treatment are of paramount importance to determining alloy properties. Their control is of great importance for new alloy design and industrial fabrication control. A base alloy utilizing MX carbide is designed through a theory guided computational approach coupling a genetic algorithm with optimization criteria based on thermodynamic, kinetic and mechanical principles. The combined effects of 11 alloying elements (Al, C, Co, Cr, Cu, Mo, Nb, Ni, Si, Ti and V) are investigated in terms of the composition optimization criteria: the martensite start (Ms) temperature, the suppression of undesirable phases, the Cr concentration in the matrix and the potency of the precipitation strengthening contribution. The results show the concentration sensitivities of each component and also point out new potential composition domains for further strength increase. The aging temperature effect is studied and the aging temperature industrially followed is recovered.

  9. Equivalent network for resistance and temperature coefficient of resistance versus temperature and composition of thick resistive films

    International Nuclear Information System (INIS)

    Kusy, A.

    1987-01-01

    Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated

  10. FREEZE-THAW AND FIRE RESISTANCE OF GEOPOLYMER MORTAR BASED ON NATURAL AND WASTE POZZOLANS

    Directory of Open Access Journals (Sweden)

    F.Nurhayat Degirmenci

    2017-12-01

    Full Text Available The purpose of this research was to investigate the resistance of pozzolan-based geopolymer mortars subjected to high temperatures and freeze-thaw cycles. Low calcium fly ash and granulated blast furnace slag as waste pozzolans and natural zeolite as a natural pozzolan were used as base materials for producing geopolymer mortar. The other purpose the research was to study the effect of alkaline activator ratio (Na₂SiO₃/NaOH on the performance of pozzolan-based geopolymer mortar specimens subjected to extreme temperatures. The influence of high temperatures on the properties of mortars was investigated at 300°C, 600°C, and 900°C. Fire and freeze-thaw and resistance of mortars were investigated in terms of visual appearance, weight loss and residual compressive strength. The minimal values of the residual compressive strength were obtained at 900°C for all mixtures. The residual compressive strength of all specimens was lower than the values obtained for specimens not subjected to any freeze-thaw resistance test, except those containing GGBS. The Na₂SiO₃/NaOH ratios of the alkaline activator solution used to prepare the geopolymer mortars have an effect on the weight losses and residual compressive strengths of the specimens subjected to high temperatures and freeze-thaw cycles. As the Na2SiO3/NaOH ratios increased, the weight and strength losses decreased.

  11. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men.

    Science.gov (United States)

    Schoenfeld, Brad J; Peterson, Mark D; Ogborn, Dan; Contreras, Bret; Sonmez, Gul T

    2015-10-01

    The purpose of this study was to compare the effect of low- versus high-load resistance training (RT) on muscular adaptations in well-trained subjects. Eighteen young men experienced in RT were matched according to baseline strength and then randomly assigned to 1 of 2 experimental groups: a low-load RT routine (LL) where 25-35 repetitions were performed per set per exercise (n = 9) or a high-load RT routine (HL) where 8-12 repetitions were performed per set per exercise (n = 9). During each session, subjects in both groups performed 3 sets of 7 different exercises representing all major muscles. Training was performed 3 times per week on nonconsecutive days, for a total of 8 weeks. Both HL and LL conditions produced significant increases in thickness of the elbow flexors (5.3 vs. 8.6%, respectively), elbow extensors (6.0 vs. 5.2%, respectively), and quadriceps femoris (9.3 vs. 9.5%, respectively), with no significant differences noted between groups. Improvements in back squat strength were significantly greater for HL compared with LL (19.6 vs. 8.8%, respectively), and there was a trend for greater increases in 1 repetition maximum (1RM) bench press (6.5 vs. 2.0%, respectively). Upper body muscle endurance (assessed by the bench press at 50% 1RM to failure) improved to a greater extent in LL compared with HL (16.6 vs. -1.2%, respectively). These findings indicate that both HL and LL training to failure can elicit significant increases in muscle hypertrophy among well-trained young men; however, HL training is superior for maximizing strength adaptations.

  12. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  13. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  14. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  15. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  16. Effective longitudinal strength of high temperature metal-matrix composites

    International Nuclear Information System (INIS)

    Craddock, J.N.; Savvides, I.

    1991-01-01

    Several models for predicting the longitudinal strength of fiber composites are presented, ranging from a simple netting analysis to a model incorporating curvilinear strain hardening for all the components. Results from these models are presented for tungsten fiber reinforced superalloys, FeCrAlY and MARM200. It is shown that a simple elastic limit micromechanical model does not always adequately describe the useful strength of the composites. The methods proposed here are shown to be more appropriate for predicting the effective composite strength. 2 refs

  17. Pristine carbon nanotubes based resistive temperature sensor

    International Nuclear Information System (INIS)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-01-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.

  18. Pristine carbon nanotubes based resistive temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Md Bayazeed, E-mail: bayazeed786@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Jamia Millia Islamia (New Delhi, India) (India); Saini, Sudhir Kumar, E-mail: sudhirsaini1310@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Sharma, Daya Shankar, E-mail: dssharmanit15@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Maulana Azad National Institute of Technology (MANIT, Bhopal, India) (India); Agarwal, Pankaj B., E-mail: agarwalbpankj@gmail.com [CSIR-Central Electronics Engineering Research Institute (CEERI, Pilani, India) (India); Academy for Scientific and Innovative Research (AcSIR, Delhi, India) (India)

    2016-04-13

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.

  19. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Science.gov (United States)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  20. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  1. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers.

    Science.gov (United States)

    Chung, Soohee; Lim, Hyung Mi; Kim, Sang-Dal

    2007-08-01

    To survive the commercial market and to achieve the desired effect of beneficial organisms, the strains in microbial products must be cost-effectively formulated to remain dormant and hence survive through high and low temperatures of the environment during transportation and storage. Dormancy and stability of Bacillus subtilis AH18 was achieved by producing endospores with enhanced heat resistance and using inorganic carriers. Heat stability assays, at 90 degrees C for 1 h, showed that spores produced under a sublethal temperature of 57 degrees C was 100 times more heat-resistant than the ones produced by food depletion at the growing temperature of 37 degrees C. When these highly heat-resistant endospores were formulated with inorganic carriers of natural and synthetic zeolite or kaolin clay minerals having substantial amount of micropores, the dormancy of the endospores was maintained for 6 months at 15-25 degrees C. Meanwhile, macroporous perlite carriers with average pore diameter larger than 3.7 microm stimulated the germination of the spores and rapid proliferation of the bacteria. These results indicated that a B. subtilis AH18 product that can remain dormant and survive through environmental temperature fluctuation can be formulated by producing heat-stressed endospores and incorporating inorganic carriers with micropores in the formulation step.

  2. High-temperature resistivity and thermoelectric properties of coupled substituted Ca3Co2O6

    Directory of Open Access Journals (Sweden)

    Meenakshisundaram Senthilkumar and Rajagopalan Vijayaraghavan

    2009-01-01

    Full Text Available Polycrystalline samples of Ca3−xNaxCo2−xMnxO6 (x=0.0–0.5 have been prepared by the sol-gel cum combustion method using sucrose in order to investigate the effects of the coupled substitution of Na and Mn on Ca and Co sites on the transport properties of Ca3Co2O6(Co326. The products were characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction (XRD, thermogravimetry (TGA, differential thermal analysis and scanning electron microscopy. XRD patterns reveal the formation of single-phase products up to x=0.5. Coupled substitution increases the solubility of both Na and Mn on Ca and Co sites, respectively, in contrast to the limited solubility of Na and Mn (x=0.2 when separately substituted. TGA confirms the formation of the Ca3Co2O6 phase at temperatures ~720 °C. The grain size of the parent and substituted products is in the range 150–250 nm. Electrical resistivity and Seebeck coefficient were measured in the temperature range 300–800 K. Resistivity shows semiconducting behavior for all the compositions, particularly in the low-temperature regime. The Seebeck coefficient increases with temperature throughout the measured temperature range for all compositions. The maximum Seebeck coefficient (200 μV K−1 is observed for x=0.5 at 825 K, and this composition may be optimal for high-temperature thermoelectric applications.

  3. Ultra-low Temperature Curable Conductive Silver Adhesive with different Resin Matrix

    Science.gov (United States)

    Zhou, Xingli; Wang, Likun; Liao, Qingwei; Yan, Chao; Li, Xing; Qin, Lei

    2018-03-01

    The ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conductive treatment of piezoelectric composite material due to the low thermal resistance of composite material and low adhesion strength of adhesive. An ultra-low temperature curable conductive adhesive with high adhesion strength was obtained for the applications of piezoelectric composite material. The microstructure, conductive properties and adhesive properties with different resin matrix were investigated. The conductive adhesive with AG-80 as the resin matrix has the shorter curing time (20min), lower curing temperature (90°C) and higher adhesion strength (7.6MPa). The resistivity of AG-80 sample has the lower value (2.13 × 10-4Ω·cm) than the 618 sample (4.44 × 10-4Ω·cm).

  4. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method.

    Science.gov (United States)

    Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua

    2014-04-09

    We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.

  5. A comparison of the microstructure and high temperature tensile properties of a novel P/M Mo-Hf-Zr-Ta-C alloy and TZM

    International Nuclear Information System (INIS)

    Warren, J.; Reznikov, G.

    2001-01-01

    The microstructure and elevated temperature quasi-static tensile yield and ultimate strength observed in a novel, forged Mo-based alloy (Mo-0.25 Hf-0.25 Zr-0.25 Ta-0.025 C) has been analyzed and compared to a standard forged TZM composition (Mo-0.50 Ti-0.08 Zr-0.02 C). The novel material exhibits the desirable forging characteristics typical of the widely used TZM composition yet possess a higher ultimate strength and 0.2 % offset yield strength in both the stress-relieved and recrystallized conditions over a 400 o -1200 o C temperature range. The greater strength measured in the novel composition has been attributed to the combined effects of precipitation of Hf, Zr and Mo-(carbide) precipitates that strengthen the matrix in the classical Orowan fashion and improved resistance to recrystallization after high temperature exposure. Elevated temperature creep behavior, not addressed in the study presented here, will be reported on in a subsequent analysis. (author)

  6. Combined resistive and laser heating technique for in situ radial X-ray diffraction in the diamond anvil cell at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)

    2013-02-15

    To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.

  7. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  8. Design of High Temperature Reactor Vessel Using ANSYS Software

    International Nuclear Information System (INIS)

    Bandriyana; Kasmudin

    2003-01-01

    Design calculation and evaluation of material strength for high temperature reactor vessel based on the design of HTR-10 high temperature reactor vessel were carried out by using the ANSYS 5.4 software. ANSYS software was applied to calculate the combined load from thermal and pressure load. Evaluation of material strength was performed by calculate and determine the distribution of temperature, stress and strain in the thickness direction of vessel, and compared with its material strength for designed. The calculation was based on the inner wall temperature of vessel of 600 o C and the outer temperature of 500 and 600 o C. Result of calculation gave the maximum stress for outer temperature of 600 o C was 288 N/ mm 2 and strain of 0.000187. For outer temperature of 500 o C the maximum stress was 576 N/ mm 2 and strain of 0.003. Based on the analysis result, the material of steel SA 516-70 with limited stress for design of 308 N/ mm 2 can be used for vessel material with outer wall temperature of 600 o C

  9. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  10. Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players.

    Science.gov (United States)

    Rivière, Maxence; Louit, Loic; Strokosch, Alasdair; Seitz, Laurent B

    2017-04-01

    Rivière, M, Louit, L, Strokosch, A, and Seitz, LB. Variable resistance training promotes greater strength and power adaptations than traditional resistance training in elite youth rugby league players. J Strength Cond Res 31(4): 947-955, 2017-The purpose of this study was to examine the strength, velocity, and power adaptations in youth rugby league players in response to a variable resistance training (VRT) or traditional free-weight resistance training (TRAD) intervention. Sixteen elite youth players were assigned to a VRT or TRAD group and completed 2 weekly upper- and lower-body strength and power sessions for 6 weeks. Training programs were identical except that the VRT group trained the bench press exercise with 20% of the prescribed load coming from elastic bands. Bench press 1 repetition maximum (1RM) and bench press mean velocity and power at 35, 45, 65, 75, and 85% of 1RM were measured before and after the training intervention, and the magnitude of the changes was determined using effect sizes (ESs). The VRT group experienced larger increases in both absolute (ES = 0.46 vs. 0.20) and relative (ES = 0.41 vs. 0.19) bench press 1RM. Similar results were observed for mean velocity as well as both absolute and relative mean power at 35, 45, 65, 75, and 85% of 1RM. Furthermore, both groups experienced large gains in both velocity and power in the heavier loads but small improvements in the lighter loads. The improvements in both velocity and power against the heavier loads were larger for the VRT group, whereas smaller differences existed between the 2 groups in the lighter loads. Variable resistance training using elastic bands may offer a greater training stimulus than traditional free-weight resistance training to improve upper-body strength, velocity, and power in elite youth rugby league players.

  11. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    Science.gov (United States)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  12. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  13. The effect of high temperatures on concrete incorporating ultrafine ...

    African Journals Online (AJOL)

    In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa) and HPC (compressive strength 75 MPa) were adopted. On the scale of the material, the identification of trends with temperature data such as porosity ...

  14. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  15. Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments

    International Nuclear Information System (INIS)

    Sivaprasad, K.; Ganesh Sundara Raman, S.; Mastanaiah, P.; Madhusudhan Reddy, G.

    2006-01-01

    The aim of the present work is to study the effect of magnetic arc oscillation and current pulsing on the microstructure and high temperature tensile strength of alloy 718 tungsten inert gas weldments. The magnetic arc oscillation technique resulted in refined Laves phase with lesser interconnectivity. The full benefits of current pulsing in breaking the dendrites could not be realized in the present study due to relatively higher heat input used in the welding process. In the direct aged condition weldments prepared using magnetic arc oscillation technique exhibited higher tensile strength due to the presence of refined and lesser-interconnected Laves particles. In the solution treated and aged condition, magnetic arc oscillated weldments exhibited lower tensile strength compared with the weldments made without arc oscillation due to the presence of large amounts of finer δ needles

  16. Saturation and negative temperature coefficient of electrical resistivity in liquid iron-sulfur alloys at high densities from first-principles calculations

    Science.gov (United States)

    Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico

    2018-03-01

    We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.

  17. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  18. The anomalous low temperature resistivity of thermally evaporated α-Mn thin film

    International Nuclear Information System (INIS)

    Ampong, F.K.; Boakye, F.; Nkum, R.K.

    2010-01-01

    Electrical resistivity measurements have been carried out on thermally evaporated α-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10 -6 Torr. The results show a resistance minimum, a notable characteristic of α-Mn but at a (rather high) temperature of 194±1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 μΩm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  19. The anomalous low temperature resistivity of thermally evaporated alpha-Mn thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ampong, F.K., E-mail: kampxx@yahoo.co [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Boakye, F.; Nkum, R.K. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2010-08-15

    Electrical resistivity measurements have been carried out on thermally evaporated alpha-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10{sup -6} Torr. The results show a resistance minimum, a notable characteristic of alpha-Mn but at a (rather high) temperature of 194+-1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 muOMEGAm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  20. Summary of workshop on high temperature materials based on Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Offices of Fossil Energy and Basic Energy Sciences of the Department of Energy jointly sponsored the Workshop on High Temperature Materials Based on Laves Phases in conjunction with the Tenth Annual Conference on Fossil Energy Materials held at the Radisson Summit Hill Hotel in Knoxville, Tennessee on May 14-16, 1996. The objective of this workshop was to review the current status and to address critical issues in the development of new-generation high-temperature structural materials based on Laves phases. The one-day workshop included two sessions of overview presentations and a session of discussion on critical scientific and technological issues. The Laves phases represent an abundant class of intermetallic alloys with possible high-temperature structural applications. Laves phases form at or near the AB{sub 2} composition, and there are over 360 binary Laves phases. The ability of these alloys to dissolve considerable amounts of ternary alloying additions provides over 900 combined binary and ternary Laves phases. Many Laves phases have unique properties which make them attractive for high-temperature structural use. At half their homologous temperature, they retain >0.85 of their ambient yield strength, which is higher than all other intermetallics. Many of the Laves phases also have high melting temperatures, excellent creep properties, reasonably low densities, and for alloys containing Cr, Al, Si or Be, good oxidation resistance. Despite these useful properties, the tendency for low-temperature brittleness has limited the potential application of this large class of alloys.

  1. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  2. Solar cell contact pull strength as a function of pull-test temperature

    Science.gov (United States)

    Yasui, R. K.; Berman, P. A.

    1972-01-01

    Four types of solar cell contacts were given pull-strength tests at temperatures between -173 and +165 C. Contacts tested were: (1) solder-coated titanium-silver contacts on n-p cells, (2) palladium-containing titanium-silver contacts on n-p cells, (3) titanium-silver contacts on 0.2-mm-thick n-p cells, and (4) solder-coated electroless-nickel-plated contacts on p-n cells. Maximum pull strength was demonstrated at temperatures significantly below the air mass zero cell equilibrium temperature of +60 C. At the lowest temperatures, the chief failure mechanism was silicon fracture along crystallographic planes; at the highest temperatures, it was loss of solder strength. In the intermediate temperatures, many failure mechanisms operated. Pull-strength tests give a good indication of the suitability of solar cell contact systems for space use. Procedures used to maximize the validity of the results are described.

  3. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    Science.gov (United States)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  4. Strength training improves fatigue resistance and self-rated health in workers with chronic pain

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus Due; Brandt, Mikkel

    2016-01-01

    of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual...... (Spearman's rho = -0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267.......-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P

  5. Alloying effect on the structure and properties of austenitic heat-resistant steels

    International Nuclear Information System (INIS)

    Levitin, V.V.; Grabovskij, V.Ya.; Korostelev, V.F.; Ryvkin, Yu.A.

    1978-01-01

    Investigated have been mechanical properties at test temperatures of 20-95O deg C, wear resistance, softening at thermomechanical cycling and microstructure of cast austenitic chromium-nickel steels (13%Cr + 35%Ni), produced by electroslag remelting with variations in Ti, Mo, Nb and W contents. Regression equations for relationship of the investigated characteristics to alloying element content have been obtained. Titanium, molybdenum and niobium increasing hardness and strength limit at room and high temperatures promote a decrease in ductility. Tungsten increases strength properties, wear resistance and thermal stability of the steels without negative effect on the impact strength. The impact strength decrease with an increase in alloying is due to brittle precipitations along the boundaries of as-cast grains, containing Ti, Mo, Nb and Si

  6. Corrosion behaviour of high temperature alloys in impure helium environments

    International Nuclear Information System (INIS)

    Shindo, Masami; Quadakkers, W.J.; Schuster, H.

    1986-01-01

    Corrosion tests with Ni-base high temperature alloys were carried out at 900 and 950 0 C in simulated high temperature reactor helium environments. It is shown that the carburization and decarburization behaviour is strongly affected by the Cr and Ti(Al) contents of the alloys. In carburizing environments, additions of Ti, alone or in combination with Al, significantly improve the carburization resistance. In oxidizing environment, the alloys with high Cr and Al(Ti) contents are the most resistant against decarburization. In this environment alloys with additions of Ti and Al show poor oxidation resistance. The experimental results obtained are compared with a recently developed theory describing corrosion of high temperature alloys in high temperature reactor helium environments. (orig.)

  7. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  8. Resistance training improves muscle strength and functional capacity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, E; Jakobsen, J

    2009-01-01

    strength and functional capacity in patients with multiple sclerosis, the effects persisting after 12 weeks of self-guided physical activity. Level of evidence: The present study provides level III evidence supporting the hypothesis that lower extremity progressive resistance training can improve muscle......OBJECTIVE: To test the hypothesis that lower extremity progressive resistance training (PRT) can improve muscle strength and functional capacity in patients with multiple sclerosis (MS) and to evaluate whether the improvements are maintained after the trial. METHODS: The present study was a 2-arm...... and was afterward encouraged to continue training. After the trial, the control group completed the PRT intervention. Both groups were tested before and after 12 weeks of the trial and at 24 weeks (follow-up), where isometric muscle strength of the knee extensors (KE MVC) and functional capacity (FS; combined score...

  9. High Temperature Effects on Yeast-like Endosymbiotes and Pesticide Resistance of the Small Brown Planthopper, Laodelphax striatellus

    Directory of Open Access Journals (Sweden)

    Xiao-jie ZHANG

    2008-12-01

    Full Text Available The newly-hatched nymphs of the small brown planthopper (SBPH, Laodelphax striatellus, including field and sensitive populations, were subjected to the high-temperature (35°C treatment. The number of yeast-like endosymbiotes in SBPH reduced by 23.47%–34.23%, 57.86%–61.51% and 88.96%–90.71% after the high-temperature treatment for 1 d, 2 d, and 3 d, respectively. However, the size of yeast-like endosymbiotes was not obviously affected. Resistance of SBPH to three insecticides (imidacloprid, chlorpyrifos and fipronil decreased with the increase of treatment time.

  10. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  11. Influence of the mix parameters and microstructure on the behaviour of concrete at high temperature

    International Nuclear Information System (INIS)

    Kanema, M.; Noumowe, A.; Gallias, J.-L.; Cabrillac, R.

    2005-01-01

    Concrete is used in structures likely to be exposed to high temperature. Data on the behaviour of concrete at high temperature are necessary to design buildings and other civil engineering structures in order to resist under accidental conditions (fire) or particular conditions of service (storage of radioactive waste). The present experimental study was carried out on the behaviour of five concretes containing the same nature and quantity of aggregates and presenting different water/cement ratios. Concrete specimens were submitted to heating-cooling cycles whose maximum temperatures were 150, 300, 450 and 600 degree C. Measurements of compressive and tensile strength, modulus of elasticity and permeability were carried out on cylindrical specimens before and after heating-cooling cycles. The results showed the influence of concrete mix parameters on the residual properties and the dehydration of the cement paste matrix, the evolution of the permeability and thermal stability of concrete when it is subjected to high temperature. (authors)

  12. The influence of annealing temperature on the strength of TRISO coated particles

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Neethling, J.H.; Rooyen, P.M. van

    2010-01-01

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 o C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 o C.

  13. EFFECT OF La2O3 ON HIGH-TEMPERATURE OXIDATION RESISTANCE OF ELECTROSPARK DEPOSITED Ni-BASED COATINGS

    OpenAIRE

    YUXIN GAO; JIAN YI; ZHIGANG FANG; HU CHENG

    2014-01-01

    The oxidation tests of electrospark deposited Ni-based coatings without and with 2.5 wt.% La2O3 were conducted at 960°C in air for 100 h. The oxidation kinetic of the coatings was studied by testing the weight gain. The phase structures and morphologies of the oxidized coatings were investigated by XRD and SEM. The experimental results show that the coatings with 2.5 wt.% La2O3 exhibits excellent high-temperature oxidation resistance including low oxidation rate and improved spallation resist...

  14. Cast thermally stable high temperature nickel-base alloys and casting made therefrom

    International Nuclear Information System (INIS)

    Acuncius, D.A.; Herchenroeder, R.B.; Kirchner, R.W.; Silence, W.L.

    1977-01-01

    A cast thermally stable high temperature nickel-base alloy characterized by superior oxidation resistance, sustainable hot strength and retention of ductility on aging is provided by maintaining the alloy chemistry within the composition molybdenum 13.7% to 15.5%; chromium 14.7% to 16.5%; carbon up to 0.1%, lanthanum in an effective amount to provide oxidation resistance up to 0.08%; boron up to 0.015%; manganese 0.3% to 1.0%; silicon 0.2% to 0.8%; cobalt up to 2.0%; iron up to 3.0%; tungsten up to 1.0%; copper up to 0.4%; phosphorous up to 0.02%; sulfur up to 0.015%; aluminum 0.1% to 0.5% and the balance nickel while maintaining the Nv number less than 2.31

  15. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  16. Aspects of high temperature corrosion of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M.; Bendick, W. [Salzgitter-Mannesmann-Forschung GmbH, Duisburg (Germany)

    2008-07-01

    The development of new boiler steels for power generation has to consider significant creep strength as well as oxidation and corrosion resistance. High temperature corrosion of boiler materials concerns steam oxidation as well as fireside corrosion of parts, in contact with the flue gas. It will be shown that depending on the quality of the fuel, especially chlorine and sulphur are responsible for most of the fireside corrosion problems. Corrosion mechanisms will be presented for flue gas induced corrosion (HCl) and deposit induced corrosion (chlorides and sulfates). Especially for the 700 C technology, deposit induced corrosion issues have to be considered and the mechanisms of corrosion by molten sulfates 'Hot Corrosion' will be explained. Finally, an overview will be given on the selection of suitable materials in order to minimise corrosion relates failures. (orig.)

  17. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents.

    Science.gov (United States)

    Lenz, Christian A; Vogel, Rudi F

    2015-04-01

    High pressure thermal (HPT) processing can be used to improve traditional preservation methods and increase food safety and durability, whereas quality related characteristics can be largely maintained. Clostridium (C.) botulinum type E is a non-proteolytic, psychrotrophic, toxin-producing spore former, commonly associated with aquatic environments in temperate regions of the northern hemisphere. Sporulation in nature is likely to occur under varying conditions including temperature and nutrient availability, which might affect resistance properties of resulting spores. In our study, we determined the effect of sporulation temperature (13-38 °C) on the resistance of three Clostridium botulinum type E strains to differently intense HPT treatments (200 MPa at 40 and 80 °C, and 800 MPa at 40 and 80 °C). Furthermore, the effect of cations on sporulation temperature-mediated alterations in HHP resistance was investigated. Results indicate that low and high sporulation temperatures can increase and decrease sporal HPT resistance, respectively, in a treatment-dependent (pressure level, treatment temperature) manner, whereas the trends observed are largely unaffected by pressure dwells (1 s-10 min). Furthermore, results show that the cation content of the sporulation medium (Ca(2+), Mg(2+), Mn(2+)) marginally influences and partially counteracts effects on the HPT resistance of spores grown at low and elevated temperatures, respectively. This suggests that sporulation temperature and medium cations provoke changes in some common spore resistance structures. Sporulation conditions can markedly affect spore resistance properties and, thus, should be considered for the experimental setup of worst case studies aiming to evaluate the effectiveness of food processes in terms of the inactivation of C. botulinum type E spores. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  19. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  20. Evaluating strength at ultra-high temperatures-Methods and results

    International Nuclear Information System (INIS)

    Voelkl, Rainer; Fischer, Bernd; Beschliesser, Manuel; Glatzel, Uwe

    2008-01-01

    Proprietary equipment for mechanical testing at ultra-high temperatures by ohmic heating is outlined. Strain is measured with a video extensometer with an accuracy of up to Δε-bar∼±0.00025%. Stability and accuracy of the test system are evaluated on Pt- and refractory alloys. These specially designed and built test facilities are compared to commercially available high-vacuum test chambers with tungsten heater

  1. Effect of heat curing methods on the temperature history and strength development of slab concrete for nuclear power plant structures in cold climates

    International Nuclear Information System (INIS)

    Lee, Gun Cheol; Han, Min Cheol; Baek, Dae Hyun; Koh, Kyung Taek

    2012-01-01

    The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to -10 degrees Celsius. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of 1200, 600, 200 mm and a design strength of 27 MPa were fabricated and cured at -10 degrees Celsius for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below 0 degrees Celsius within 40 h after exposure to -10 degrees Celsius, and then, the temperature dropped to -10 degrees Celsius and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around 5 degrees Celsius for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around 10 degrees Celsius for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after

  2. Problems of procedure for studying crack resistance

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Procedures are developed for studying crack resistance in sintered hot-worked tungsten within 20-2200 deg C. Certain structural properties of the installation for studying high-temperature crack resistance of tungsten are considered. Technological peculiarities of eccentric tensile strength of tungsten specimens and methodical peculiarities of initjation and fixation of initial cracks in specimens of different tungsten alloys are studied

  3. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  4. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  5. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  6. Low cycle fatigue strength of some austenitic stainless steels at room temperature and elevated temperatures

    International Nuclear Information System (INIS)

    Type 304, 316, and 316L stainless steels were tested from room temperature to 650 0 C using two kinds of bending test specimens. Particularly, Type 304 was tested at several cyclic rates and 550 0 and 650 0 C, and the effect of cyclic rate on its fatigue strength was investigated. Test results are summarized as follows: (1) The bending fatigue strength at room temperature test shows good agreement with the axial fatigue one, (2) Manson--Coffin's fatigue equation can be applied to the results, (3) the ratio of crack initiation to failure life becomes larger at higher stress level, and (4) the relation between crack propagation life and total strain range or elastic strain range are linear in log-log scale. This relation also agrees with the equations which were derived from some crack propagation laws. It was also observed at the elevated temperature test: (1) The reduction of fatigue strength is not noticeable below 500 0 C, but it is noted at higher temperature. (2) The cycle rate does not affect on fatigue strength in faster cyclic rate than 20 cpm and below 100,000 cycles life range. (3) Type 316 stainless steel shows better fatigue property than type 304 and 316L stainless steels. 30 figures

  7. Temperature dependence of the electrical resistivity of amorphous Co80-xErxB20 alloys

    International Nuclear Information System (INIS)

    Touraghe, O.; Khatami, M.; Menny, A.; Lassri, H.; Nouneh, K.

    2008-01-01

    The temperature dependence of the electrical resistivity of amorphous Co 80-x Er x B 20 alloys with x=0, 3.9, 7.5 and 8.6 prepared by melt spinning in pure argon atmosphere was studied. All amorphous alloys investigated here are found to exhibit a resistivity minimum at low temperature. The electrical resistivity exhibits logarithmic temperature dependence below the temperature of resistivity minimum T min . In addition, the resistivity shows quadratic temperature behavior in the interval T min < T<77 K. At high temperature, the electrical resistivity was discussed by the extended Ziman theory. For the whole series of alloys, the composition dependence of the temperature coefficient of electrical resistivity α shows a change in structural short range occurring in the composition range 8-9 at%

  8. Pulse radiation effects in high temperature superconductors. [YBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A. (Joint Inst. for Nuclear Research, Dubna (Russia))

    1992-03-01

    Radiation effects in high temperature superconducting (HTSC) films, influenced by pulse electron and ion beams, are considered. The electron beams had kinetic energies E = 200-300 keV, current densities j = 10-2000 A/cm{sup 2} and pulse duration t{sub p} = 0.3-1.2 {mu}s; and ion beams of carbon, copper and silver with E = 200-350 keV, t{sub p} = 0.3 {mu}s and j = 5-15 A/cm{sup 2} were used in the experiments. The results of resistive threshold characteristics measurements by HTSC are described. Questions about the increase of critical current and electric strength of vacuum gaps with electrodes from HTSC are discussed. (orig.).

  9. Effects of High vs. Low Protein Intake on Body Composition and Maximal Strength in Aspiring Female Physique Athletes Engaging in an 8-Week Resistance Training Program.

    Science.gov (United States)

    Campbell, Bill I; Aguilar, Danielle; Conlin, Laurin; Vargas, Andres; Schoenfeld, Brad Jon; Corson, Amey; Gai, Chris; Best, Shiva; Galvan, Elfego; Couvillion, Kaylee

    2018-02-06

    Aspiring female physique athletes are often encouraged to ingest relatively high levels of dietary protein in conjunction with their resistance-training programs. However, there is little to no research investigating higher vs. lower protein intakes in this population. This study examined the influence of a high vs. low protein diet in conjunction with an 8-week resistance training program in this population. Seventeen females (21.2±2.1 years; 165.1±5.1 cm; 61±6.1 kg) were randomly assigned to a high protein diet (HP: 2.5g/kg/day; n=8) or a low protein diet (LP: 0.9g/kg/day, n=9) and were assessed for body composition and maximal strength prior to and after the 8-week protein intake and exercise intervention. Fat-free mass (FFM) increased significantly more in the HP group as compared to the LP group (p=0.009), going from 47.1 ± 4.5kg to 49.2 ± 5.4kg (+2.1kg) and from 48.1 ± 2.7kg to 48.7 ± 2 (+0.6kg) in the HP and LP groups, respectively. Fat mass significantly decreased over time in the HP group (14.1 ± 3.6kg to 13.0 ± 3.3kg; p<0.01) but no change was observed in the LP group (13.2 ± 3.7kg to 12.5 ± 3.0kg). While maximal strength significantly increased in both groups, there were no differences in strength improvements between the two groups. In aspiring female physique athletes, a higher protein diet is superior to a lower protein diet in terms of increasing FFM in conjunction with a resistance training program.

  10. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  11. The influence of annealing temperature on the strength of TRISO coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabel.vanrooyen@pbmr.co.z [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Pebble Bed Modular Reactor (Pty) Ltd., 1279 Mike Crawford Avenue, Centurion (South Africa)

    2010-07-31

    The integrity of the Pebble Bed Modular Reactor (PBMR) fuel, and specifically the SiC layer system of the Tristructural Isotropic (TRISO) coated particle (CP), namely inner pyrolytic carbon, silicon carbide and outer pyrolytic carbon (I-PyC-SiC-O-PyC), determines the containment of fission products. The PBMR fuel consists of TRISO coated particles (CPs) embedded in a graphite matrix. One of the characterization techniques investigated by PBMR is the determination of strength of CPs. It is a well known metallurgical fact that temperature, amongst many other parameters, may influence the strength of a material. A recently developed method for measuring the strength of the TRISO coated particles was used and is briefly described in this article. The advantages of this method are demonstrated by the comparison of strength measurements of five experimental PBMR CP batches as a function of annealing temperature. Significant modification of strength after annealing was measured with increased temperature within the range 1000-2100 {sup o}C. The interesting feature of decreasing standard deviation of the strength with increasing temperature will also be discussed with a possible explanation. A significant difference in coated particle strength is also demonstrated for two CP batches with layer thickness on the extremities of the SiC layer thickness specification. The effect of long duration annealing on these strength values will also be demonstrated by comparing results from 1 h to 100 h annealing periods of coated particles at a temperature of 1600 {sup o}C.

  12. Boron content effect on the high-temperature plasticity of corrosion resistant low-carbon austenite type steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Shmatko, M.N.; Chuvatina, S.N.

    1976-01-01

    With the concept that the state of grain and subgrain boundaries influences the hot plasticity of corrosion resistant steel as a starting point, the study was undertaken of the effect of boron microalloying up on the intergranular strength and of the action boron exerts upon the distribution (redistribution) of other phases present in austenitic 03Kh16N14M3 steels. An electron microscope study of the composition of redundant phases and that of the fine structure of steel have shown the effect of small additions of boron upon the hot plasticity of steel to be linked directly to its influence upon austenite disintegration and the precipitation along the boundaries of crystals of redundant phases in the course of hot plastic deformation. The action of boron upon the process plasticity of steel depends on the temperature and the rate of deformation which govern the kinetics of the precipitation of the redundant phases

  13. Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4

    Science.gov (United States)

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Brcic, Marino

    2015-02-01

    The paper presents and analyzes the experimental results of the effect of elevated temperatures on the engineering properties of steel 42CrMo4. Experimental data relating to the mechanical properties of the material, the creep resistance as well as Charpy impact energy. Temperature dependence of the mentioned properties is also shown. Some of creep curves were simulated using rheological models and an analytical equation. Finally, an assessment of fracture toughness was made that was based on experimentally determined Charpy impact energy. Based on the obtained results it is visible that the tensile strength (617 MPa) and yield strength (415 MPa) have the highest value at the room temperature while at the temperature of 700 °C (973 K) these values significantly decrease. This steel can be considered resistant to creep at 400 °C (673 K), but at higher temperatures this steel can be subjected to low levels of stress in a shorter time.

  14. Understanding size effects on the strength of single crystals through high-temperature micropillar compression

    International Nuclear Information System (INIS)

    Soler, Rafael; Wheeler, Jeffrey M.; Chang, Hyung-Jun; Segurado, Javier; Michler, Johann; Llorca, Javier; Molina-Aldareguia, Jon M.

    2014-01-01

    Compression tests of 〈1 1 1〉-oriented LiF single-crystal micropillars 1–5 μm in diameter were carried out from 25 °C to 250 °C. While the flow stress at ambient temperature was independent of the micropillar diameter, a strong size effect developed with elevated temperature. This behavior was explained by rigorously accounting for the different contributions to the flow stress of the micropillars as a function of temperature and pillar diameter: the lattice resistance, the forest hardening; and the size-dependent contribution as a result of the operation of single-arm dislocation sources. This was possible because the micropillars were obtained by chemically etching away the surrounding matrix in directionally solidified LiF–NaCl and LiF–KCl eutectics, avoiding any use of focused ion beam methods, yielding micropillars with a controlled dislocation density, independent of the sample preparation technique. In particular, the role of the lattice resistance on the size effect of micrometer-size single crystals was demonstrated unambiguously for the first time. This result rationalizes the different values of power-law exponent for the size effect found in the literature for face-centered cubic and body-centered cubic metals as well as for covalent and ionic solids

  15. The impact of a 12-week resistance training program on strength, body composition, and self-concept of Hispanic adolescents.

    Science.gov (United States)

    Velez, Amelia; Golem, Devon L; Arent, Shawn M

    2010-04-01

    Current evidence suggests that a resistance training program may be physically and psychologically beneficial for adolescents. The purpose of this study was to examine the effects of a structured resistance training program on strength, body composition, and self-concept in normal and overweight Hispanic adolescents. Male and female participants (n = 28; 16.1 +/- 0.2 y; 164.5 +/- 1.4 cm; 63.3 +/- 2.5 kg; 20.0 +/- 1.7% body fat [BF]) were recruited from a predominantly Hispanic high school. Prior to the 12-week program, strength, body composition, and self-concept were assessed. Subjects were randomly assigned to a control group (CON; n = 15) or to a resistance training group (RT; n = 13) that participated in supervised strength training 3 days/week. All measures were repeated at the end of the 12-week program. RT had significantly greater strength increases for bench press (p increased %BF. RT had an increase in condition/stamina competence (p = 0.008), attractive body adequacy (p = 0.017), and global self-worth (p = 0.013) from pretest to posttest, whereas no change was observed for CON. In conclusion, resistance training resulted in significant physiological and psychological improvements in Hispanic adolescents compared to typical school-based activities. These findings indicate that resistance training can be incorporated into the activities of Hispanic adolescents to promote improved health and fitness.

  16. Effect of deep stripping massage alone or with eccentric resistance on hamstring length and strength.

    Science.gov (United States)

    Forman, Jeffrey; Geertsen, Lisbeth; Rogers, Michael E

    2014-01-01

    Many studies have evaluated the effects of different interventions on hamstring length. However, little research has been conducted on the effects of deep stripping massage strokes (DSMS) alone, or combined with eccentric resistance, on hamstring length and strength. To determine: 1) if DSMS have an effect on hamstring length and strength and 2) if the effects on hamstring length and strength are any different when DSMS are combined with eccentric exercise. 89 Community College students and community members between the ages of 18 and 62 volunteered for the study. Of these, 64 demonstrated tight hamstrings on either one or both sides as defined by supine, passive terminal knee extension of ≤75° and participated in the study. Strength was assessed by pressing the posterior calcaneus into a strain gauge for approximately 5 s while seated with the knee flexed to 90°. On their tighter side, participants were administered longitudinal DSMS during 15, 10-s bouts of eccentric resistance with an elastic resistance band. On their other hamstring, participants were administered 15, 10-s longitudinal DSMS while lying passive. All massage strokes were performed at a depth of 7 out of 10 on a verbal pressure scale index. Afterwards, the hamstring flexibility and strength tests were repeated. Both DSMS with eccentric resistance (10.7%) and DSMS alone (6.3%) resulted in improved (p alone. Strength was not significantly affected by either treatment. These results suggest that DSMS increases hamstring length in less than 3 min but has no affect on strength. Furthermore, combining DSMS with eccentric resistance produces more hamstring flexibility gains than DSMS alone and does not affect strength. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    Science.gov (United States)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  18. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis.

    Science.gov (United States)

    Williams, Tyler D; Tolusso, Danilo V; Fedewa, Michael V; Esco, Michael R

    2017-10-01

    Periodization is a logical method of organizing training into sequential phases and cyclical time periods in order to increase the potential for achieving specific performance goals while minimizing the potential for overtraining. Periodized resistance training plans are proposed to be superior to non-periodized training plans for enhancing maximal strength. The primary aim of this study was to examine the previous literature comparing periodized resistance training plans to non-periodized resistance training plans and determine a quantitative estimate of effect on maximal strength. All studies included in the meta-analysis met the following inclusion criteria: (1) peer-reviewed publication; (2) published in English; (3) comparison of a periodized resistance training group to a non-periodized resistance training group; (4) maximal strength measured by 1-repetition maximum (1RM) squat, bench press, or leg press. Data were extracted and independently coded by two authors. Random-effects models were used to aggregate a mean effect size (ES), 95% confidence intervals (CIs) and potential moderators. The cumulative results of 81 effects gathered from 18 studies published between 1988 and 2015 indicated that the magnitude of improvement in 1RM following periodized resistance training was greater than non-periodized resistance training (ES = 0.43, 95% CI 0.27-0.58; P training status (β = -0.59; P = 0.0305), study length (β = 0.03; P = 0.0067), and training frequency (β = 0.46; P = 0.0123) were associated with a change in 1RM. These results indicate that undulating programs were more favorable for strength gains. Improvements in 1RM were greater among untrained participants. Additionally, higher training frequency and longer study length were associated with larger improvements in 1RM. These results suggest that periodized resistance training plans have a moderate effect on 1RM compared to non-periodized training plans. Variation in training stimuli

  19. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  20. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  1. Effect of cold working and aging on high temperature deformation of high Mn stainless steel

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Habara, Y.; Matsuki, R.; Aoyama, H.

    1999-01-01

    By the addition of N, the strength of high Mn stainless steel can be increased. Cold rolling and aging are effective to increase its strength further, and with those treatments this grade is often used for high temperature applications. In this study, creep deformation behavior and high temperature strength of the high Mn stainless steel in cold rolled and aged conditions are discussed as compared to Type 304 stainless steel. It has been revealed that as-rolled specimens show instant elongation at the beginning of creep tests and its amount is larger in the high Mn grade than in Type 304. Also, the creep rate of the high Mn stainless steel is smaller than that of Type 304. These facts may be related to the change in microstructure. (orig.)

  2. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  3. Research and development on is process components for hydrogen production. (2) Corrosion resistance of glass lining in high temperature sulfuric acid

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Iwatsuki, Jin; Kubo, Shinji; Terada, Atsuhiko; Onuki, Kaoru

    2009-01-01

    Japan Atomic Energy Agency has been conducting a research and development on hydrogen production system using High Temperature Gas-Cooled Reactor. As a part of this effort, thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (IS process) is under development considering its potential of large-scale economical hydrogen production. The IS process constitutes very severe environments on the materials of construction because of the corrosive nature of process chemicals, especially of the high temperature acidic solution of sulfuric acid and hydriodic acid dissolving iodine. Therefore, selection of the corrosion-resistant materials and development of the components has been studied as a crucial subject of the process development. This paper discusses corrosion resistance of commercially available glass-lining material in high temperature sulfuric acid. Corrosion resistance of a soda glass used for glass-lining was examined by immersion tests. The experiments were performed in 47-90wt% sulfuric acids at temperatures of up to 400degC and for the maximum immersion time of 100 hours using an autoclave designed for the concerned tests. In every condition tested, no indication of localized corrosion such as defect formation or pitting corrosion was observed. Also, the corrosion rates decreased with the progress of immersion, and were low enough (≅0.1 mm/year) after 60-90 hours of immersion probably due to formation of a silica rich surface. (author)

  4. Shape memory alloy resistance behaviour at high altitude for feedback control

    Science.gov (United States)

    Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.

    2017-12-01

    Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.

  5. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  6. 9% Cr steel high temperature oxidation. Solutions investigated for improving corrosion resistance of the steel

    Energy Technology Data Exchange (ETDEWEB)

    Evin, Harold Nicolas; Heintz, Olivier; Chevalier, Sebastien [UMR 5209 CNRS-Bourgogne Univ. (France). Lab. Interdisciplinaire Carnot de Bourgogne; Foejer, Cecilia; Jakani, Saad; Dhont, Annick; Claessens, Serge [OCAS N.V. ArcelorMittal Global R and D, Gent (Belgium)

    2010-07-01

    The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, but are facing their limits of use at temperature higher than 600 C, due to accelerated corrosion phenomena. Good knowledge of the mechanisms involved during their oxidation process is needed to prevent the degradation of the materials and to extend life time of the power plants components. Oxide layers thermally grown, on 9% Cr steels (provided by OCAS N.V), during isothermal tests between 600 C and 750 C in laboratory air under atmospheric pressure were investigated, by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The oxidation behaviour appeared very limited at 750 C, due to the presence of a breakaway, which can be linked to iron porous oxide grown over the surface of the samples. ''In situ'' X-ray Photoelectron spectroscopy (XPS) analyses were performed in air at 600 C after short exposures (between 5 min and 25 h). A complex mixture of iron oxide, Cr{sub 2}O{sub 3} and Cr (VI) species were characterized in the scales. The in-situ analyses were compared and related to XPS analyses performed on thick oxide scales formed on samples oxidized in air at 600 C for 100h. An oxidation mechanism is then proposed to understand the oxide scale growth in the temperature range 600 - 750 C. The second step of this study consists in improving the high temperature corrosion resistance of these steels without modifying their mechanical properties. Thus several solutions were investigated such as MOCVD coatings, pack cementation coatings, and tested in cycle conditions prior. (orig.)

  7. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  8. Self-weldability of various materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    Self-Weldability of Various Materials in High Temperature Sodium. The self-welding behavior of various materials was evaluated by measuring the tensile breakaway force of the specimen which had been self-welded in high temperature sodium. Experiments were carried out to investigate the influence of the sodium temperature and the contact stress on the self-welding behavior. The results obtained are as follows: (1) The self-welding behavior in sodium was recognized to initiate by the diffusion of the principal element through the real contact area. (2) Remarkable self-welding behavior was observed for SUS 316 material at 650 0 C, and for 2 1/4Cr-1Mo steel at a sodium temperature of 600 0 C. The self-welding force acting on the real contact area corresponds to the tensile strength of each material. (3) Hard chrome plating or hardfacing material showed good self-weld resistance, but the different combinations of SUS 316 with either of these materials were observed to easily cause self-welding. (4) The self-weldability of Cr 3 C 2 /Ni-Cr material varied with the preparing methods, especially, with the distribution of the binder composition contained in this material. (5) A derived equation was proposed to evaluate the self-welding force. It was found that the measured breakaway force was relatively equal to the self-welding force derived from this equation. (author)

  9. Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented.

    The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and

  10. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  11. Experimental Studies on the Synthesis and Performance of Boron-containing High Temperature Resistant Resin Modified by Hydroxylated Tung Oil

    Science.gov (United States)

    Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.

    2017-12-01

    In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.

  12. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  13. Heat-treatment, microstructure and mechanical properties of experimental high strength Fe--4Cr--0.4C steels

    International Nuclear Information System (INIS)

    Narasimha Rao, B.V.; Miller, R.W.; Thomas, G.

    1975-12-01

    The treatments involve high temperature (1100 0 C) austenitizing during the first solution treatment followed by either interrupted quenching (Ms-Mf range) or isothermal transformation to produce lower bainite. Finally, the steels are given a 900 0 C grain refinement treatment. Lower bainite was obtained by isothermally transforming austenite just above the Ms temperature. Tempering after the martensitic and bainitic treatments was also done in an attempt to improve the toughness of the material. The strength and toughness properties of as-quenched martensitic structures are somewhat superior while these properties of lower bainitic structures are comparable to those of a plain 0.4C steel. The properties of the nearly 100 percent bainite structure were unaffected by the cooling rate from the transformation temperature. Elimination of intergranular cracking produced toughness properties in quenched and tempered martensites which are far superior to those of lower bainite at the same strength level. It has also been shown that the toughness properties of as-quenched double-treated steels are superior to single treated steels. The chromium appeared to have a strong influence on the nature and morphology of carbides, as the bainitic as well as the martensitic structures showed marked temper resistance in the tempering range 200 to 500 0 C

  14. Temperature rise of the mask-resist assembly during LIGA exposure

    International Nuclear Information System (INIS)

    Ting, Aili

    2004-01-01

    Deep X-ray lithography on PMMA resist is used in the LIGA process. The resist is exposed to synchrotron X-rays through a patterned mask and then is developed in a liquid developer to make high aspect ratio microstructures. The limitations in dimensional accuracies of the LIGA generated microstructure originate from many sources, including synchrotron and X-ray physics, thermal and mechanical properties of mask and resist, and from the kinetics of the developer. This work addresses the thermal analysis and temperature rise of the mask-resist assembly during exposure in air at the Advanced Light Source (ALS) synchrotron. The concern is that dimensional errors generated at the mask and the resist due to thermal expansion will lower the accuracy of the lithography. We have developed a three-dimensional finite-element model of the mask and resist assembly that includes a mask with absorber, a resist with substrate, three metal holders, and a water-cooling block. We employed the LIGA exposure-development software LEX-D to calculate volumetric heat sources generated in the assembly by X-ray absorption and the commercial software ABAQUS to calculate heat transfer including thermal conduction inside the assembly, natural and forced convection, and thermal radiation. at assembly outer and/or inner surfaces. The calculations of assembly maximum temperature. have been compared with temperature measurements conducted at ALS. In some of these experiments, additional cooling of the assembly was produced by forced nitrogen flow ('nitrogen jets') directed at the mask surface. The temperature rise in the silicon mask and the mask holder comes directly from the X-ray absorption, but nitrogen jets carry away a significant portion of heat energy from the mask surface, while natural convection carries away negligibly small amounts energy from the holder. The temperature rise in PMMA resist is mainly from heat conducted from the silicon substrate backward to the resist and from the inner

  15. Variations in the microstructure and properties of Mn-Ti multiple-phase steel with high strength under different tempering temperatures

    Science.gov (United States)

    Li, Dazhao; Li, Xiaonan; Cui, Tianxie; Li, Jianmin; Wang, Yutian; Fu, Peimao

    2015-03-01

    There are few relevant researches on coils by tempering, and the variations of microstructure and properties of steel coil during the tempering process also remain unclear. By using thermo-mechanical control process(TMCP) technology, Mn-Ti typical HSLA steel coils with yield strength of 920 MPa are produced on the 2250 hot rolling production line. Then, the samples are taken from the coils and tempered at the temperatures of 220 °C, 350 °C, and 620 °C respectively. After tempering the strength, ductility and toughness of samples are tested, and meanwhile microstructures are investigated. Precipitates initially emerge inside the ferrite laths and the density of the dislocation drops. Then, the lath-shaped ferrites begin to gather, and the retained austenite films start to decompose. Finally, the retained austenite films are completely decomposed into coarse and short rod-shape precipitates composed of C and Ti compounds. The yield strength increases with increasing tempering temperature due to the pinning effect of the precipitates, and the dislocation density decreases. The yield strength is highest when the steel is tempered at 220 °C because of pinning of the precipitates to dislocations. The total elongation increases in all samples because of the development of ferrites during tempering. The tensile strength and impact absorbed energy decline because the effect of impeding crack propagation weakens as the retained austenite films completely decompose and the precipitates coarsen. This paper clarifies the influence of different tempering temperatures on phase transformation characteristics and process of Mn-Ti typical multiphase steels, as well as its resulting performance variation rules.

  16. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    Science.gov (United States)

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  17. Increasing strength, ductility and impact toughness of ultrafine-grained 6063 aluminium alloy by combining ECAP and a high-temperature short-time aging

    International Nuclear Information System (INIS)

    Meyer, L W; Schoenherr, R; Hockauf, M

    2010-01-01

    Since fully-dense ultrafine or nanocrystalline bulk materials can be processed, there has been an increasing scientific interest in several plastic deformation (SPD) procedures, particularly in the last decade. Especially the equal-channel angular pressing (ECAP) has widely been investigated due to its ability of producing billets sufficiently large for industrial applications in functional or structural components. The significant strength increase based on grain refinement is typically accompanied by a significant decrease in ductility and toughness. Within this work, a new methodology was applied for combining ECAP with a subsequent high-temperature short-time aging for the 6063 aluminium alloy. An increase in strength, ductility as well as impact toughness regarding its coarse grained counterparts was reached. More precisely, ultimate tensile strength, elongation to failure and impact toughness were increased by 46%, 21% and 40% respectively. This was observed after only one run of ECAP at room temperature in a solid-solution treated condition and an aging at 170 0 C for 18 minutes. The regular aging time for maximum strength at 170 0 C is around 6 hours. Longer exposure times lead to recrystallisation and, as for regular aging, it leads to overaging, both causing a decrease of properties. The work demonstrates a strategy for an efficient processing of commercial Al-Mg-Si alloys with outstanding mechanical properties.

  18. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  19. Effects of two programs of metabolic resistance training on strength and hypertrophy

    Directory of Open Access Journals (Sweden)

    Carolina Brandt Meister

    Full Text Available Abstract Introduction: The effects of low intensity resistance training combined with vascular occlusion have been investigated by several studies. Similar results on strength and hypertrophy have been observed when such method was compared to high intensity protocols. However, due to the specific apparatus needed to apply vascular occlusion (ex.: Kaatsu on some exercises, alternative forms of metabolic training might be used. In the present study, an isometric contraction was performed within each concentric-eccentric transition phase, for every repetition, to elicit metabolic stress. Objective: The aim of the present study was to analyze the effects of two resistance training protocols with metabolic characteristics on strength (1MR, circumference (CIRC and muscle thickness (measured with ultrasonography [MT]. Subjective perception of discomfort was also recorded with an analogical-visual pain scale (AVP. Methods: Twelve young, healthy men were trained with two different methods during 10 weeks. The right limb was trained with an isometric contraction within each concentric-eccentric transition phases for every repetition (ISO whereas the left limb was trained with a pneumatic cuff to apply vascular occlusion (OC on the knee extensor muscles. Both methods were trained at 20% 1MR. Results: It was observed increases on medial tight CIRC, proximal MT, medial MT, distal MT and 1MR, with no difference between both methods. The perception of discomfort was greater for ISO at the end of the third set and lower than reported by OC, at the beginning and end of the training program. Conclusions: Both protocols produced similar gains on strength and hypertrophy. The advantages of training with low loads are important to elderly or rehabilitation training programs. Other studies that compare this method with conventional resistance training are warranted.

  20. High Early-Age Strength Concrete for Rapid Repair

    Science.gov (United States)

    Maler, Matthew O.

    dosage was increased to 2.8 % by cement weight. When Type III Portland cement and Rapid Set cement were used, the opening time reduced to as low as 4.5 hours and 1 hour, respectively. The results for Type V Portland cement concretes showed that as cement factor increased so did mechanical properties until the cement factor exceeded 504 kg/m3 (850 lb/yd3), at which point the peak heat of hydration exceeded 46.1 °C (115 °F) and the mechanical properties decreased. Other evaluations on the studied High Early-Age Strength Type V Portland cement concretes revealed increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, corrosion resistance, and resistance to wear with increases in cement content. The addition of air-entrainment had adverse effects on compressive strength, absorption, and rapid chloride migration; while showing lower values for rapid chloride penetration. Curing had positive effects on all hardened properties of the studied HES concretes containing Type V cement. When examining the studied Type III Portland cement concretes, it was seen that an increase in cement content led to decreases in mechanical properties. It is noted that the peak heat of hydration for these concrete exceeded the threshold of 46.1 °C (115 °F). In addition, increases in cement factor also resulted in decreases in rapid chloride migration, frost resistance and resistance to wear. Increases in cement content resulted in increases in absorption, rapid chloride penetration, water permeability, drying shrinkage, and corrosion resistance. The use of air-entrainment imparted decreases in compressive strength and rapid chloride penetration, increases in absorption, and negligible effects on rapid chloride migration. Extending curing period resulted in beneficial effects on all properties of the studied Type III cement concretes. The studied CSA cement concretes had slightly decreasing strength trends as cement content was increased. Concretes containing

  1. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  2. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  3. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  4. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  5. Tests for determining impact resistance and strength of glass used for nuclear waste disposal

    International Nuclear Information System (INIS)

    Bunnell, L.R.

    1979-05-01

    Tests are described for determining the impact resistance (Section A) and static tensile strength (Section B) of glasses containing simulated or actual nuclear wastes. This report describes the development and use of these tests to rank different glasses, to assess effects of devitrification, and to examine the effect of impact energy on resulting surface area. For clarity this report is divided into two sections, Impact Resistance and Tensile Strength

  6. Size effects in olivine control strength in low-temperature plasticity regime

    Science.gov (United States)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  7. Fractographic investigation of stress corrosion cracking of steels for high-strength bolts

    International Nuclear Information System (INIS)

    Gladshtejn, L.I.; Goritskij, V.M.; Evtushenko, N.A.; Sokolov, S.P.; Panfilova, L.M.

    1980-01-01

    By the methods of quantitative fractography studied is the effect of chemical composition on stress corrosion cracking resistance in the mean agressive medium (pH=2.2) and the fracture structure of cylindrical delta samples with the notch (K=2.75) of high-strength chromium steel. It is shown that the alloying of the 40 steel with Cr, Si, V increases its strength under short-time loading but leads to forming of brittle areas in fracture under long time effect of corrosion medium

  8. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    Science.gov (United States)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  9. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  10. Tensile properties and temperature-dependent yield strength prediction of GH4033 wrought superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianzuo [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Li, Weiguo, E-mail: wgli@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xianhe; Kou, Haibo; Shao, Jiaxing; Geng, Peiji; Deng, Yong [State Key Laboratory of Coal Mine Disaster Dynamics and Control and College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Fang, Daining [LTCS and College of Engineering, Peking University, Beijing 100871 (China)

    2016-10-31

    The tensile properties of superalloy GH4033 have been evaluated at temperatures ranging from room temperature to 1000 °C. Fracture surfaces and precipitation were observed using a field-emission scanning electron microscope (FE-SEM). The alloy mainly consisted of γ’ precipitate particles homogeneously dispersed in the γ matrix interior. The effects of dynamic strain aging and precipitation on the strength were verified. A temperature-dependent yield strength model was developed to describe the temperature and precipitation effects on the alloy's yield behaviour. The model is able to consider the effect of precipitation strengthening on the yield strength. The yield behaviour of the precipitation-strengthened superalloy was demonstrated to be adequately predictable over a wide range of temperatures. Note that this model reflects the quantitative relationship between the yield strength of the precipitation-strengthened superalloy and the temperature, the elastic modulus, the specific heat capacity at constant pressure, Poisson's ratio, the precipitate particle size and the volume fraction of the particles.

  11. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    Science.gov (United States)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  12. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  13. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    Directory of Open Access Journals (Sweden)

    Ryszard Pawlak

    2016-12-01

    Full Text Available Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor.

  14. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  15. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  16. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    Science.gov (United States)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  17. Computer Aided Multi-scale Design of SiC-Si3N4 Nanoceramic Composites for High-Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vikas Tomer; John Renaud

    2010-08-31

    It is estimated that by using better and improved high temperature structural materials, the power generation efficiency of the power plants can be increased by 15% resulting in significant cost savings. One such promising material system for future high-temperature structural applications in power plants is Silicon Carbide-Silicon Nitride (SiC-Si{sub 3}N{sub 4}) nanoceramic matrix composites. The described research work focuses on multiscale simulation-based design of these SiC-Si{sub 3}N{sub 4} nanoceramic matrix composites. There were two primary objectives of the research: (1) Development of a multiscale simulation tool and corresponding multiscale analyses of the high-temperature creep and fracture resistance properties of the SiC-Si{sub 3}N{sub 4} nanocomposites at nano-, meso- and continuum length- and timescales; and (2) Development of a simulation-based robust design optimization methodology for application to the multiscale simulations to predict the range of the most suitable phase morphologies for the desired high-temperature properties of the SiC-Si{sub 3}N{sub 4} nanocomposites. The multiscale simulation tool is based on a combination of molecular dynamics (MD), cohesive finite element method (CFEM), and continuum level modeling for characterizing time-dependent material deformation behavior. The material simulation tool is incorporated in a variable fidelity model management based design optimization framework. Material modeling includes development of an experimental verification framework. Using material models based on multiscaling, it was found using molecular simulations that clustering of the SiC particles near Si{sub 3}N{sub 4} grain boundaries leads to significant nanocomposite strengthening and significant rise in fracture resistance. It was found that a control of grain boundary thicknesses by dispersing non-stoichiometric carbide or nitride phases can lead to reduction in strength however significant rise in fracture strength. The

  18. Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review.

    Science.gov (United States)

    Dorsch, Simone; Ada, Louise; Alloggia, Daniella

    2018-04-01

    Does progressive resistance training improve strength and activity after stroke? Does any increase in strength carry over to activity? Systematic review of randomised trials with meta-analysis. Adults who have had a stroke. Progressive resistance training compared with no intervention or placebo. The primary outcome was change in strength. This measurement had to be of maximum voluntary force production and performed in muscles congruent with the muscles trained in the intervention. The secondary outcome was change in activity. This measurement had to be a direct measure of performance that produced continuous or ordinal data, or with scales that produced ordinal data. Eleven studies involving 370 participants were included in this systematic review. The overall effect of progressive resistance training on strength was examined by pooling change scores from six studies with a mean PEDro score of 5.8, representing medium quality. The effect size of progressive resistance training on strength was 0.98 (95% CI 0.67 to 1.29, I 2 =0%). The overall effect of progressive resistance training on activity was examined by pooling change scores from the same six studies. The effect size of progressive resistance training on activity was 0.42 (95% CI -0.08 to 0.91, I 2 =54%). After stroke, progressive resistance training has a large effect on strength compared with no intervention or placebo. There is uncertainty about whether these large increases in strength carry over to improvements in activity. PROSPERO CRD42015025401. [Dorsch S, Ada L, Alloggia D (2018) Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. Journal of Physiotherapy 64: 84-90]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  19. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  20. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    Science.gov (United States)

    2010-06-02

    description of high temperature oxidation processes of composite ceramic materials of ZrB2 - SiC and ZrB2-SiC-Zr(Mo)Si2 systems up to high (~1300 °C...analysis was applied using MІN-7 mineralogical microscope and a set of standard immersion liquids with the known values of refraction coefficients...2.0 V) corresponds to the simultaneous formation of ZrO2 zirconium dioxide of monoclinic modification and Zr(OH)4 zirconium hydroxide which is

  1. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2014-01-01

    Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  2. An Influence of Ageing on the Structure, Corrosion Resistance and Hardness of High Aluminum ZnAl40Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-03-01

    Full Text Available Zn-Al-Cu alloys are used primarily because of their tribological properties as an alternative material for bronze, cast iron and aluminum alloy bearings and as a construction material. Particularly interesting are high aluminum zinc alloys. Monoeutectic zinc and aluminum alloys are characterized by the highest hardness, tensile strength and wear resistance of all of the zinc alloys. A significant problem with the use of the Zn-Al-Cu alloys is their insufficient resistance to electrochemical corrosion. Properties of Zn-Al-Cu alloys can be improved by heat treatment. The purpose of examination was to determine the effect of heat treatment (aging at various temperatures on the microstructure and corrosion resistance of the ZnAl40Cu3 alloy. The scope of the examination included: structural examinations, determination of hardness using Brinell’s method and corrosion resistance examinations. Ageing at higher temperatures causes a creation of areas where is an eutectoid mixture. The study showed that ageing causes a decrease in hardness of ZnAl40Cu3 alloy. This decrease is even greater, when the temperature of ageing is lower. The studies have shown a significant influence of ageing on the corrosion resistance of the alloy ZnAl40Cu3. Maximum corrosion resistance were characterized by the sample after ageing at higher temperatures.

  3. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soo Woo [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of)

    2017-04-15

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  4. High Temperature Properties and Recent Research Trend of Mg-RE Alloys

    International Nuclear Information System (INIS)

    Nam, Soo Woo

    2017-01-01

    For the applications in automotive, aircraft, aerospace, and electronic industries, the lightest structural Mg alloys have received much attention since 2000. There has been some progress for the improvement of the mechanical properties such as room temperature strength, formability and mechanical anisotropy. However, the high temperature strength of Mg alloys is very low to be used for the parts and structures of high temperature conditions. For the last decade, considerable efforts are concentrated for the development of Mg alloys to be used at high temperature. Newly developing Mg-RE alloys are the good examples for the high temperature use. In this regard, this review paper introduces the recent research trends for the development of Mg-RE alloys strengthened with some precipitates and the long period stacking ordered (LPSO) structures related RE elements.

  5. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  6. Effect of High Temperature or fire on heavy weight concrete properties used in nuclear facilities

    International Nuclear Information System (INIS)

    Sakr, K.

    2003-01-01

    In the present work the effect of different duration (1, 2 and 3 hours) of high temperatures (250 degree C, 500 degree C, 750 degree C and 950 degree C) on the physical and mechanical properties of heavy concrete shields were studied. The effect of fire fitting systems on ordinary concrete was investigated. The work was extended to determine the effect of high temperature or accidental fire on the radiation properties of heavy weight concrete. Results showed that ilmenite concrete had the highest density, absorption, and modulus of elasticity when compared to the other types of studied concrete and it had also higher values of compressive, tensile, bending and bonding strength than ordinary or baryte concrete. Ilmenite concrete had the highest attenuation of transmitted gamma rays in comparing to gravel concrete and baryte concrete. Ilmenite concrete was more resistant to elevated temperature than gravel concrete and baryte concrete. Foam or air as a fire fitting system in concrete structure that exposed to high temperature or accidental fire proved that better than water

  7. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    Science.gov (United States)

    2016-08-01

    Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) En gi ne er R es ea rc h an d D ev el op m en t Ce nt er Brett A...Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC) Brett A. Williams, Robert D. Moser, William F. Heard, Carol F...equipment and protocols for tests of both very-high-strength concrete (VHSC) and high- strength high-ductility concrete (HSHDC) to predict blast

  8. Polymer concrete composites for the production of high strength pipe and linings in high temperature corrosive environments

    Science.gov (United States)

    Zeldin, A.; Carciello, N.; Fontana, J.; Kukacka, L.

    High temperature corrosive resistant, non-aqueous polymer concrete composites are described. They comprise about 12 to 20% by weight of a water-insoluble polymer binder polymerized in situ from a liquid monomer mixture consisting essentially of about 40 to 70% by weight of styrene, about 25 to 45% by weight acrylonitrile and about 2.5 to 7.5% by weight acrylamide or methacrylamide and about 1 to 10% by weight of a crosslinking agent. This agent is selected from the group consisting of trimethylolpropane trimethacrylate and divinyl benzene; and about 80 to 88% by weight of an inert inorganic filler system containing silica sand and portland cement, and optionally Fe/sub 2/O/sub 3/ or carbon black or mica. A free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other organic peroxides and combinations thereof to initiate crosspolymerization of the monomer mixture in the presence of said inorganic filler.

  9. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  10. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  11. Double Bag VARTM for High Temperature Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cost and size are limiting factors in efforts to produce high strength, high stiffness, and high temperature composite parts. To address these issues, new processes...

  12. Creep Strength of Nb-1Zr for SP-100 Applications

    Science.gov (United States)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  13. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  14. The use of radiation for the production of high melt strength polypropylene

    International Nuclear Information System (INIS)

    Lugao, A.B.; Cardoso, E.C.L.; Hustzler, B.; Tokumoto, S.; Mendes, A.N.F.

    2001-01-01

    PP suffers from low melt strength, i.e., the melted PP does not exhibits an increase in resistance to stretching during elongation. It is well known that the melt-strength properties of a polymer increase with molecular weight and with long chain branching due to the increase in the entanglement level (high melt strength PP-HMSPP). In spite of been the most fast growing polymeric commodity nowadays those new grades of PP and its development have been barely studied and its general chemical characterization have been even less studied with few exceptions. HMSPP as proposed by Montell patents are produced by low temperature and low dose irradiation of high molecular weight isotatica PP in N 2 atmosphere. So the well-known reactions would be mostly degradation and crosslinking. Degradation however is supposed to be the first and more intense reaction a the initial steps as already shown. So, according to Montell patents, another reaction is likely to occur, branching or T links competing with crosslinkings or H links. Radical are likely to decay very fast in amorphous phase, but under annealing the radicals entrapped in the crystal phase is likely to move to the boundary and react. The group of professor Silverman has already hypothesized in T links formation and also studied the radical decay of PP. It is easy to understand the difficulties in differentiate Hs from Ts links and even these links if in very small amount from the bulk or from virgin polymer, as the Ts links and even these links if in very small amount from the bulk or from virgin polymer, as the chemical groups and links are chemically speaking essentially the same

  15. Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

    International Nuclear Information System (INIS)

    Kwon, S. O.; Bae, S. H.; Lee, H. J.; Lee, K. M.; Jung, S. H.

    2014-01-01

    Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased

  16. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34

    Directory of Open Access Journals (Sweden)

    Jan Červený

    2015-03-01

    Full Text Available Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34 is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.

  17. Mechanisms of High Temperature Resistance of Synechocystis sp. PCC 6803: An Impact of Histidine Kinase 34.

    Science.gov (United States)

    Červený, Jan; Sinetova, Maria A; Zavřel, Tomáš; Los, Dmitry A

    2015-03-02

    Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying responses and acclimation to different abiotic stresses. Changes in transcriptome, proteome, lipidome, and photosynthesis in response to short term heat stress are well studied in this organism, and histidine kinase 34 (Hik34) is shown to play an important role in mediating such response. Corresponding data on long term responses, however, are fragmentary and vary depending on parameters of experiments and methods of data collection, and thus are hard to compare. In order to elucidate how the early stress responses help cells to sustain long-term heat stress, as well as the role of Hik34 in prolonged acclimation, we examined the resistance to long-term heat stress of wild-type and ΔHik34 mutant of Synechocystis. In this work, we were able to precisely control the long term experimental conditions by cultivating Synechocystis in automated photobioreactors, measuring selected physiological parameters within a time range of minutes. In addition, morphological and ultrastructural changes in cells were analyzed and western blotting of individual proteins was used to study the heat stress-affected protein expression. We have shown that the majority of wild type cell population was able to recover after 24 h of cultivation at 44 °C. In contrast, while ΔHik34 mutant cells were resistant to heat stress within its first hours, they could not recover after 24 h long high temperature treatment. We demonstrated that the early induction of HspA expression and maintenance of high amount of other HSPs throughout the heat incubation is critical for successful adaptation to long-term stress. In addition, it appears that histidine kinase Hik34 is an essential component for the long term high temperature resistance.

  18. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-12-01

    It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged (T6 condition but the welds showed poor corrosion resistance. The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment. The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.

  19. Influência de diferentes condições higrotérmicas na resistência à tração de compósitos de fibra de carbono/epóxi modificada Influence of different hygrothermal conditions on the tensile strength of carbon/epoxy 8552 composites

    Directory of Open Access Journals (Sweden)

    José Antônio P. Cunha

    2006-01-01

    Full Text Available Este trabalho foi direcionado para a análise dos efeitos higrotérmicos na resistência à tração de compósitos poliméricos termorrígidos. Foram investigados os efeitos da umidade e da temperatura sobre as resistências à tração longitudinal e à tração transversal de compósitos ([0/0]s de fita de carbono unidirecional impregnada com resina epóxi 8552. Os ensaios de resistência à tração longitudinal, realizados à temperatura ambiente, mostraram que as amostras não perderam sua resistência quando condicionadas. Porém, os compósitos apresentaram uma redução na sua resistência quando submetidos à câmara de climatização (80 °C e 90% de umidade e ensaiados à temperatura elevada. Já nos ensaios de tração transversal foi observado que as amostras submetidas à câmara de névoa salina e ensaiadas à temperatura ambiente apresentaram uma pequena redução na sua resistência, porém as amostras submetidas à câmara de climatização mostraram uma redução acentuada na resistência As amostras ensaiadas à temperatura elevada e submetidas à câmara de névoa salina apresentaram uma pequena diminuição na sua resistência (11%. Já uma acentuada diminuição da resistência à tração transversal (51% foi observada quando as amostras de compósitos poliméricos foram submetidas à câmara de climatização e ensaiadas à temperatura elevada. Também foram obtidas fotomicrografias via microscopia eletrônica de varredura (MEV das seções de fraturas das amostras ensaiadas em tração em todos os tipos de condicionamento estudados no presente trabalho. Todos estes fatos mostraram que a matriz polimérica é afetada nos ensaios à temperatura elevada.This work focused the analysis of hygrothermal ageing effects on the tensile strength of thermoset laminated composites. Humidity and temperature effects on the longitudinal and transversal tensile strengths of carbon fiber/epoxy 8552 unidirectional laminates tape

  20. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  1. Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble

    Science.gov (United States)

    Rong, G.; Peng, J.; Jiang, M.

    2017-12-01

    High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for

  2. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2014-10-01

    Full Text Available Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 μA was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 °C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.

  3. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use

    Science.gov (United States)

    Levine, Stanley R.; Opila, Elizabeth J.; Halbig, Michael C.; Kiser, James D.; Singh, Mrityunjay; Salem, Jonathan A.

    2001-01-01

    Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e., air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e., higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation and high velocity thermal shock exposures are presented for ZrB2 plus 20 volume % SiC, ZrB2 plus 14 volume % SiC plus 30 volume % C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 volume % SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications.

  4. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  5. Temperature dependence of hole mobility in Mott insulators: Normal-state resistivity of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Kumar, N.

    1989-01-01

    We consider the diffusion of a hole injected in a Mott insulator described by a one-band Hubbard Hamiltonian at half-filling and in the atomic limit. The diffusion coefficient turns out to be temperature independent exactly giving 1/T dependence for the drift mobility via the Einstein relation. This is in marked disagreement with the (1/T)/sup 1/2/ dependence obtaining in the self-retracing path approximation at low temperatures. We note the possible relevance of our result to the linear T dependence of the normal-state resistivity observed in the high-T/sub c/ oxide superconductors

  6. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  7. Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet.

    Science.gov (United States)

    Edholm, Peter; Strandberg, Emelie; Kadi, Fawzi

    2017-07-01

    The effects of 24 wk of resistance training combined with a healthy diet on lower limb explosive strength capacity were investigated in a population of healthy elderly women. Participants ( n = 63; 67.5 ± 0.4 yr) were randomized into three groups; resistance training (RT), resistance training and healthy diet (RT-HD), and control (CON). Progressive resistance training was performed at a load of 75-85% one-repetition maximum. A major adjustment in the healthy dietary approach was an n-6/n-3 polyunsaturated fatty acid (PUFA) ratio below 2. Lower limb maximal strength, explosive force capacity during dynamic and isometric movements, whole body lean mass, and physical function were assessed. Whole body lean mass significantly increased by 1.5 ± 0.5% in RT-HD only. Isometric strength performance during knee extension as well as the performance in the five sit-to-stand and single-leg-stance tests increased similarly in RT and RT-HD. Improvements in dynamic peak power and time to reach peak power (i.e shorter time) during knee extension occurred in both RT (+15.7 ± 2.6 and -11.0 ± 3.8%, respectively) and RT-HD (+24.6 ± 2.6 and -20.3 ± 2.7%, respectively); however, changes were significantly larger in RT-HD. Similarly, changes in peak force and rate of force development during squat jump were higher in RT-HD (+58.5 ± 8.4 and +185.4 ± 32.9%, respectively) compared with RT (+35.7 ± 6.9 and +105.4 ± 22.4%, respectively). In conclusion, a healthy diet rich in n-3 PUFA can optimize the effects of resistance training on dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. NEW & NOTEWORTHY Age-related decline in lower limb explosive strength leads to impaired ability to perform daily living tasks. The present randomized controlled trial demonstrates that a healthy diet rich in n-3 polyunsaturated fatty acid (n-3 PUFA) enhances resistance training-induced gains in dynamic explosive strength

  8. Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious Composites

    Science.gov (United States)

    Toutanji, Houssam A.

    1999-01-01

    Concrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.

  9. Advanced technologies for manufacturing high strength sour grade UOE line pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Omura, Tomohiko; Takahashi, Nobuaki; Minato, Izuru; Yamamoto, Akio [Sumitomo Metal Industries, Ltd., Kashima, (Japan)

    2010-07-01

    A new kind of high strength pipeline has been manufactured for sour service in offshore pipelines. This paper first presents a review of developments in manufacturing technology to improve sour resistance. This was particularly the case with Grade UOE line pipe. The improvement was achieved by optimizing the continuous casting process, monitoring the shape of inclusions (such as MnS, CaS, Al2O3, CaO-Al2O3) and decreasing coarse precipitates (Nb(C,N), TiN). The study then used the HIC evaluation method to determine hydrogen induced cracking (HIC) resistance of the material and HAZ test for sulfide stress cracking (SSC) resistance. The evaluation of the NACE TM0284 solution A showed that these pipelines are able to resist severe sour conditions because of good HIC and SSC resistance. Optimizing others components like alloying elements and the ACC process would improve sour resistance in future applications.

  10. High-temperature stability of laser-joined silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marion, E-mail: marion.herrmann@tu-dresden.de; Lippmann, Wolfgang; Hurtado, Antonio

    2013-11-15

    Silicon carbide is recommended for applications in energy technology due to its good high-temperature corrosion resistance, mechanical durability, and abrasion resistance. The prerequisite for use is often the availability of suitable technologies for joining or sealing the components. A laser-induced process using fillers and local heating of the components represents a possible low-cost option. Investigations in which yttrium aluminosilicate glass was used for laser-induced brazing of SiC components of varying geometry are presented. A four-point bending strength of 112 MPa was found for these joints. In burst tests, laser-joined components were found to withstand internal pressures of up to 54 MPa. Helium leak tests yielded leak rates of less than 10{sup –8} mbar l s{sup −1}, even after 300 h at 900 °C. In contrast, the assemblies showed an increased leak rate after annealing at 1050 °C. The short process time of the laser technique – in the range of a few seconds to a few minutes – results in high temperature gradients and transients. SEM analysis showed that the filler in the seam predominantly solidifies in a glassy state. Crystallization occurred during later thermal loading of the joined components, with chemical equilibrium being established. Differences in seam structures yielded from different cooling rates in the laser process could not be equalized by annealing. The results demonstrated the long-term stability of laser-brazed SiC assemblies to temperatures in the range of glass transformation (900 °C) of the yttrium aluminosilicate filler. In technological investigations, the suitability of the laser joining technique for sealing of SiC components with a geometry approximating that of a fuel element sleeve pin (pin) in a gas-cooled fast reactor was proven.

  11. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2003-01-01

    Hydrogen in trapping states innocuous to environmental degradation of the mechanical properties of high-strength steels has been separated and extracted using thermal desorption analysis (TDA) and slow strain rate test (SSRT). The high-strength steel occluding only hydrogen desorbed at low temperature (peak 1), as determined by TDA, decreases in maximum stress and plastic elongation with increasing occlusion time of peak 1 hydrogen. Thus the trapping state of peak 1 hydrogen is directly associated with environmental degradation. The trap activation energy for peak 1 hydrogen is 23.4 kJ/mol, so the peak 1 hydrogen corresponds to weaker binding states and diffusible states at room temperature. In contrast, the high-strength steel occluding only hydrogen desorbed at high temperature (peak 2), by TDA, maintains the maximum stress and plastic elongation in spite of an increasing content of peak 2 hydrogen. This result indicates that the peak 2 hydrogen trapping state is innocuous to environmental degradation, even though the steel occludes a large amount of peak 2 hydrogen. The trap activation energy for peak 2 hydrogen is 65.0 kJ/mol, which indicates a stronger binding state and nondiffusibility at room temperature. The trap activation energy for peak 2 hydrogen suggests that the driving force energy required for stress-induced, diffusion during elastic and plastic deformation, and the energy required for hydrogen dragging by dislocation mobility during plastic deformation are lower than the binding energy between hydrogen and trapping sites. The peak 2 hydrogen, therefore, is believed to not accumulate in front of the crack tip and to not cause environmental degradation in spite of being present in amounts as high as 2.9 mass ppm. (author)

  12. High melt strength, tear resistant blown film based on poly(lactic acid)

    Science.gov (United States)

    Edmonds, Neil R.; Plimmer, Peter N.; Tanner, Chris

    2015-05-01

    A major problem associated with the commercial manufacture of thin films from PLA is inferior processing characteristics on blown film lines compared to low density polyethylene. PLA has poor melt strength (leading to bubble instability) and develops a permanent crease in the flattened film as it exits the tower of the film line. In addition, the thin film product has poor tear strength and an unacceptable `noise' level when converted into flexible packaging. Furthermore, fabricated articles based on PLA are known to show an unattractive tendency toward dimensional instability. This behaviour is associated with `cold crystallization', a phenomenon which also causes exudation of any plasticizer added for improving flexibility. Blow moulded articles based on PLA also exhibit dimensional sensitivity above 60°C. All of these issues have been overcome by the technology described in this paper. This has been accomplished without loss of the valuable compostability characteristic of PLA; this was confirmed by evaluation of film in a commercial composting operation. These results have been achieved through novel reactive compounding technology which: (a) Creates a PLA-rich structure containing long chain crosslinks, (b) generates a low glass transition temperature phase covalently bonded to the PLA structure, and (c) provides a material which performs like LDPE in a blown film manufacturing operation. The technology developed is covered by NZ Patent 580231 (3). The patent is held by UniServices Ltd, The University of Auckland, New Zealand.

  13. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  14. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    Science.gov (United States)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  15. Temperature dependent microwave performance of AlGaN/GaN high-electron-mobility transistors on high-resistivity silicon substrate

    International Nuclear Information System (INIS)

    Arulkumaran, S.; Liu, Z.H.; Ng, G.I.; Cheong, W.C.; Zeng, R.; Bu, J.; Wang, H.; Radhakrishnan, K.; Tan, C.L.

    2007-01-01

    The influence of temperature (- 50 deg. C to + 200 deg. C) was studied on the DC and microwave characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) on high resistivity Si substrate for the first time. The AlGaN/GaN HEMTs exhibited a current-gain cut-off frequency (f T ) of 11.8 GHz and maximum frequency of oscillation (f max ) of 27.5 GHz. When compared to room temperature values, about 4% and 10% increase in f T and f max and 23% and 39.5% decrease in f T and f max were observed when measured at - 50 deg. C and 200 deg. C, respectively. The improvement of I D , g m f T , and f max at - 50 deg. C is due to the enhancement of 2DEG mobility and effective electron velocity. The anomalous drain current reduction in the I-V curves were observed at low voltage region at the temperature ≤ 10 deg. C but disappeared when the temperature reached ≥ 25 deg. C. A positive threshold voltage (V th ) shift was observed from - 50 deg. C to 200 deg. C. The positive shift of V th is due to the occurrence of trapping effects in the devices. The drain leakage current decreases with activation energies of 0.028 eV and 0.068 eV. This decrease of leakage current with the increase of temperature is due to the shallow acceptor initiated impact ionization

  16. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  17. Progress In Developing an Impermeable, High Temperature Ceramic Composite for Advanced Reactor Clad And Structural Applications

    International Nuclear Information System (INIS)

    Feinroth, Herbert; Hao, Bernard; Fehrenbacher, Larry; Patterson, Mark

    2002-01-01

    Most Advanced Reactors for Energy and Space Applications require higher temperature materials for fuel cladding and core internal structures. For temperatures above 500 deg. C, metal alloys do not retain sufficient strength or long term corrosion resistance for use in either water, liquid metal or gas cooled systems. In the case of water cooled systems, such metals react exo-thermically with water during core overheating accidents, thus requiring extensive and expensive emergency systems to protect against major releases. Past efforts to apply ceramic composites (oxide, carbide or nitride based) having passive safety characteristics, good strength properties at high temperatures, and reasonable resistance to crack growth, have not been successful, either because of irradiation induced effects, or lack of impermeability to fission gases. Under a Phase 1 SBIR (Small Business Innovative Research) project sponsored by DOE's Office of Nuclear Energy, the authors have developed a new material system that may solve these problems. A hybrid tubular structure (0.6 inches in outside diameter) consisting of an inner layer of monolithic silicon carbide (SiC) and outer layers of SiC-SiC composite, bonded to the inner layer, has been fabricated in small lengths. Room temperature permeability tests demonstrate zero gas leakage at pressures up to 120 psig internal pressure. Four point flexural bending tests on these hybrid tubular specimens demonstrate a 'graceful' failure mode: i.e. - the outer composite structure sustains a failure mode under stress that is similar to the yield vs. stress characteristics of metal structures. (authors)

  18. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  19. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  20. Ultrasonic Monitoring of Setting and Strength Development of Ultra-High-Performance Concrete.

    Science.gov (United States)

    Yoo, Doo-Yeol; Shin, Hyun-Oh; Yoon, Young-Soo

    2016-04-19

    In this study, the setting and tensile strength development of ultra-high-performance concrete (UHPC) at a very early age was investigated by performing the penetration resistance test (ASTM C403), as well as the direct tensile test using the newly developed test apparatus, and taking ultrasonic pulse velocity (UPV) measurements. In order to determine the optimum surface treatment method for preventing rapid surface drying of UHPC, four different methods were examined: plastic sheet, curing cover, membrane-forming compound, and paraffin oil. Based on the test results, the use of paraffin oil was found to be the best choice for measuring the penetration resistance and the UPV, and attaching the plastic sheet to the exposed surface was considered to be a simple method for preventing the rapid surface drying of UHPC elements. An S-shaped tensile strength development at a very early age (before 24 h) was experimentally obtained, and it was predicted by a power function of UPV. Lastly, the addition of shrinkage-reducing and expansive admixtures resulted in more rapid development of penetration resistance and UPV of UHPC.

  1. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  2. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.

    2014-07-01

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  3. Effects of gamma oryzanol supplementation on anthropometric measurements & muscular strength in healthy males following chronic resistance training

    Directory of Open Access Journals (Sweden)

    Saghar Eslami

    2014-01-01

    Full Text Available Background & objectives: Enhanced muscle strength is seen when resistance exercise is combined with the consumption of nutritional supplements. Although there is a limited number of studies available about the efficacy of gamma oryzanol supplementation with resistance exercise in humans, but its usage as a nutritional supplement for strength is common in athletes. The aim of this study was to determine the effects of gamma oryzanol supplementation during 9-week resistance training on muscular strength and anthropometric measurements of young healthy males. Methods: In this double-blind clinical trial, changes of anthropometric measurements and muscular strength were studied after chronic resistance exercise and gamma oryzanol supplementation in 30 healthy volunteers (16 in supplement and 14 in placebo. Each day, gamma oryzanol supplement (600 mg and placebo (the same amount of lactose were consumed after training. The participants exercised with 80 per cent 1-Repetition Maximum (1-RM, for one hour and four days/week. Anthropometric measurements and subjects′ 1-RM for muscular strength were determined at the commencement and end of the 9-week study. Results: There was no significant difference between the baseline characteristics and target variables at baseline between the two groups. After gamma oryzanol supplementation, there was no significant difference in the means of anthropometric and skin fold measurements between the supplement and placebo groups. However, there were significant differences between the supplement and placebo groups for 1-RM of bench press and leg curl, which showed that gamma oryzanol improved muscle strength following resistance training. Interpretation & conclusions: Our findings indicated that 600 mg/day gamma oryzanol supplementation during the 9-week resistance training did not change anthropometric and body measurements, but it increased muscular strength in young healthy males. Further, studies need to be done

  4. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  5. Temperature dependence of bending strength for plasma sprayed zirconia coating; Plasuma yosha zirconia himaku no magetsuyosa no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Sakuma, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] Mizutani, T. [Tokyo Inst. of Tech. (Japan)] Kishimoto, K. [Tokyo Inst. of Tech. (Japan). Faculty of Engineering] Saito, M. [Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.

    1998-02-01

    Plasma sprayed zirconia applying to the thermal barrier coating in gas turbine has been developing for protecting the hot parts such as blades and nozzles from high-temperature enviroments. In this paper, four point bending tests under various temperature conditions are conducted on plasma sprayed zirconia and its mechanical properties are examined. Results show that the bending strength at room temperature for plasma sprayed zirconia is much lower than that of sintered zirconia and is decreased with the increase in temperature. However, Weibull modulus at each temperature is relatively large and the dispersion of bending strength is very small in comparison with that of sintered zirconia. It is also clarified by the SEM observations of fracture surface that many defects such as debonding and microcrack are responsible for the lower bending strength. 9 refs., 8 figs., 1 tab.

  6. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  7. Ceramic microsieves: influence of perforation shape and distribution on flow resistance and membrane strength

    NARCIS (Netherlands)

    Kuiper, S.; Brink, R.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    Ceramic microsieves with slit-shaped perforations were compared to sieves with circular-shaped perforations, regarding flow resistance and membrane strength. Destructive tests show that the highest strength is obtained if the perforations are placed in a non-alternating pattern. Especially for

  8. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating.

    Science.gov (United States)

    Ramadan, Mohamed Z

    2017-12-04

    Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation) of 30.44 (5.35) years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI), hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C) and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove). The data were analyzed using the Shapiro-Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA) of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C) had a significant influence on grip when compared to medium (25 °C) and high (45 °C) hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  9. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S.

    2013-01-01

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  10. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  11. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  12. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  13. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  14. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  15. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  16. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  17. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  18. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  19. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Lee, Soo–Wohn; Pyun, Young–Sik

    2017-01-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  20. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: aamanov@outlook.com [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Lee, Soo–Wohn [Department of Metals and Materials Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Pyun, Young–Sik [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of)

    2017-02-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  1. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  2. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  3. Construction of System for Seismic Observation in Deep Borehole (SODB) - Development of Multi-depth, High-temperature/pressure resistance seismometer

    International Nuclear Information System (INIS)

    Mamada, Yutaka

    2014-01-01

    The development of a high quality system for seismic observation in deep boreholes, the installation process at the NIIT site, and the data sharing plan for this observation were explained. The key points of the development were high temperature resistance (150 degrees Celsius), high pressure resistance (30 MPa), and a high dynamic/wide frequency range seismometer which allows for observation of micro-tremor to strong motions as well as a cascade-connection-type borehole seismometer, which allows multiple probes to be set at several depths in a single borehole. The developed system consists of broadband (0.1-50 Hz) and high dynamic range (up to 1000 gal) seismometer with electronic parts on the ground and only the pendulum part in the borehole (it became a servo-type seismometer). Durability and maintenance may be issues in the future. (author)

  4. Modification of the Strength Anisotropy in an Austenitic ODS Steel

    International Nuclear Information System (INIS)

    Kim, T. K.; Jang, J.; Kim, S. H.; Lee, C. B.; Bae, C. S.; Kim, D. H.

    2007-01-01

    Among many candidate alloys for Gen IV reactors, the oxide dispersion strengthened (ODS) alloy is widely considered as a good candidate material for the in-reactor component, like cladding tube. The ODS alloy is well known due to its good high temperature strength, and excellent irradiation resistance. For the previous two decades in the nuclear community, the ODS alloy developments have been mostly focused on the ferritic martensitic (F-M) steel-based ones. On the other hand, the austenitic stainless steels (e.g. 316L or 316LN) have been used as a structural material due to its good high temperature strength and a good compatibility with a media. However, the austenitic stainless steel showed unfavorable characteristics in the dimensional stability under neutron irradiation and cracking behavior with the media. It is thus expected that the austenitic ODS steels restrain the dimension stability under neutron irradiation. However, the ODS alloys usually reveal the anisotropic characteristic in mechanical strength in the hoop and longitudinal directions, which is attributed to the grain morphology strongly developed parallel to the rolling direction with a high aspect ratio. This study focuses on a modification of the strength anisotropy of an austenitic ODS alloy by a recrystallization heat treatment

  5. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  6. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    Science.gov (United States)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  7. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  8. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  9. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Directory of Open Access Journals (Sweden)

    Yubo ZUO

    2005-08-01

    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  10. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  11. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  12. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  13. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  14. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    Science.gov (United States)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  15. Insulin resistance and bone strength: findings from the study of midlife in the United States.

    Science.gov (United States)

    Srikanthan, Preethi; Crandall, Carolyn J; Miller-Martinez, Dana; Seeman, Teresa E; Greendale, Gail A; Binkley, Neil; Karlamangla, Arun S

    2014-04-01

    Although several studies have noted increased fracture risk in individuals with type 2 diabetes mellitus (T2DM), the pathophysiologic mechanisms underlying this association are not known. We hypothesize that insulin resistance (the key pathology in T2DM) negatively influences bone remodeling and leads to reduced bone strength. Data for this study came from 717 participants in the Biomarker Project of the Midlife in the United States Study (MIDUS II). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting morning blood glucose and insulin levels. Projected 2D (areal) bone mineral density (BMD) was measured in the lumbar spine and left hip using dual-energy X-ray absorptiometry (DXA). Femoral neck axis length and width were measured from the hip DXA scans, and combined with BMD and body weight and height to create composite indices of femoral neck strength relative to load in three different failure modes: compression, bending, and impact. We used multiple linear regressions to examine the relationship between HOMA-IR and bone strength, adjusted for age, gender, race/ethnicity, menopausal transition stage (in women), and study site. Greater HOMA-IR was associated with lower values of all three composite indices of femoral neck strength relative to load, but was not associated with BMD in the femoral neck. Every doubling of HOMA-IR was associated with a 0.34 to 0.40 SD decrement in the strength indices (p<0.001). On their own, higher levels of fasting insulin (but not of glucose) were independently associated with lower bone strength. Our study confirms that greater insulin resistance is related to lower femoral neck strength relative to load. Further, we note that hyperinsulinemia, rather than hyperglycemia, underlies this relationship. Although cross-sectional associations do not prove causality, our findings do suggest that insulin resistance and in particular, hyperinsulinemia, may negatively affect bone strength relative to

  16. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  17. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  18. The rupture strength of dissimilar joints in high temperature

    International Nuclear Information System (INIS)

    Groenwall, B.

    1992-05-01

    In dissimilar joints between austenitic stainless steels and ferritic steels the heat affected zone in the ferritic steel always is the weakest link. Two different joints where the ferritic steel has been 10CrMo910 (2.25Cr1Mo) and X20CrMoV121 respectively (162Cr1Mo0.3V) has been investigated through thermal cycling and isothermal creep testing. In this case the purpose has been to investigate the weakest link and therefore both 10CrMo910 and X20CrMoV121 have been welded to themselves using the TIG-method with Inconel 82 (70Cr20Cr3Mn2). 5Nb as filler wire. Crossweld specimens have been taken from the joints. To accelerate the testing the tip temperature at thermal cycling and the temperature at isothermal creep testing has been in the region 600-650 degrees C. Low ductile fracture, which is typical for failures in practice, has been obtained by using a moderate tensile stress, 63 N/mm 2 . In the high temperature range, 650 degrees C, the thermal cycling compared to the isothermal testing had no influence but in lower temperatures the cycling caused decreased time to rupture. The time to rupture in thermal cycling as well as in isothermal testing as a function of testing temperature can be fitted to exponential curve of type t = a x e bT (where t and T are time and temperature respectively). Through extrapolation of the measured data it has been found that 10CrMo910 in hard conditions that is thermal cycling has a life time at 500 degrees C of about 100 000 h. If the operational temperature is constant the life time will be about four times longer. The X20CrMoV121 on the other hand has a life time at thermal cycling at 500 degrees C and moderate tensile stress of about 3 000 000 h. This means that the tensile stress can be increased considerably. The cracks appear in 10CrMo910 closely to the fusion line but in the X20CrMoV121 steel cracking and fracture arise in the heat affected zone some millimeters from the fusion line. (au)

  19. Fire Related Temperature Resistance of Fly Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi R.

    2017-01-01

    Full Text Available The study presented in this paper is on the effect of heat treatment on fly ash based geopolymer mortar synthesized from fly ash (Class F –Low lime using alkaline binary activator solution containing sodium hydroxide (18 M and sodium silicate solution (MR 2.0, cured at 80oC for 24 h. 7 days aged specimen heated at elevated temperature (200°C, 400°C, 600°C and 800°C for the sustained period of 2hrs. The TGA/DTA analysis and thermal conductivity measurement as per ASTM C113 were carried out besides the compressive strengths. The thermal stability of the fly ash mortar at elevated temperature was found to be high as reflected in the observed value of f800°C/f30°C being more than 1 and this ratio was raised to about 1.3 with the addition of 2% Zirconium di oxide (ZrO2. No visible cracks were found on the specimens with and without ZrO2 when 800°C was sustained for 4 hrs in smaller specimens of size: 50 mm diameter x 100 mm height and in also bigger size specimens: 22 cm × 11 cm × 7 cm specimens. TGA/DTA analysis of the geopolymer paste showed that the retention of mass was around 90%. The addition of ZrO2 improved thermal resistance. The micro structure of the matrix found to be intact even at elevated temperature that was evident from the FESEM studies.

  20. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  1. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  2. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  3. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  4. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  5. FY 1998 annual summary report on advanced fabrication techniques for high-melting metal-based members. Development of techniques for creating members for high-efficiency power generation; 1998 nendo koyuten kinzokukei buzai no kodo kako gijutsu seika hokokusho. Kokoritsu hatsuden'yo buzai sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D programs were implemented to develop techniques for creating members of high-melting metals, having a very high melting point and potentially excellent high-temperature strength characteristics. These are expected to replace Ni-based superalloys for gas turbine members, to further increase operating temperature of the turbine. The programs were aimed to improve their high-temperature strength and toughness and hence their reliability by microscopically controlling their compositions and structures, and also aimed to improve their durability by coating them with a film capable of preventing oxidation and resisting to gas-induced corrosion to impart resistance to oxidation and corrosion to them. For the design of Nb-based solid solution alloys, it is found that dissolution of Mo at around 30 at.% or less and W at 20 at.% or less in Nb improves their high-temperature strength and toughness. For the design of high-strength Nb-based composite materials, it is found that Si-containing Nb-based composite materials, prepared by mechanical alloying, are amorphous or present in the form of solid solution of Ni supersaturated with Si. The R and D activities were also directed to development of techniques for creating Nb-based superhigh-temperature members, their evaluation, and imparting oxidation resistance to them. (NEDO)

  6. Use of anabolic androgenic steroids produces greater oxidative stress responses to resistance exercise in strength-trained men

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    Full Text Available The aim of this study was to determine the effect of anabolic androgenic steroids (AAS use on oxidative stress responses to a single session of resistance exercise in strength-trained men. Twenty-three strength trained men, with 11 self-reporting regular AAS use and 12 self-reporting never taking AAS (NAAS volunteered to participate in this study. Blood draws were obtained pre and post resistance exercise in order to evaluate changes in oxidative stress biomarkers levels (i.e., 8-hydroxy-2-deoxyguanosine [8-OHdG], malondialdehyde [MDA], and nitric oxide [NO], antioxidant defense systems (i.e., glutathione peroxidase [GPx] and catalase [CAT], and glucose (GLU levels. The AAS users had higher level of 8-OHdG (77.3 ± 17 vs. 57.7 ± 18.2 ng/mg, MDA (85.6 ± 17.8 vs. 52.3 ± 15.1 ng/mL, and GPx (9.1 ± 2.3 vs. 7.1 ± 1.3 mu/mL compared to NAAS at pre exercise (p < 0.05. Both the experimental groups showed increases in 8-OHdG (p = 0.001, MDA (p = 0.001, GPx (p = 0.001, NO (p = 0.04, CAT (p = 0.02 and GLU (p = 0.001 concentrations after resistance exercise, and the AAS group indicated significant differences in 8-OHdG (p = 0.02 and MDA (p = 0.05 concentrations compared with NAAS users at post exercise. In conclusion, use of AAS is associated with alterations in immune function resulting in oxidative stress, and cell damage; however, high-intensity resistance exercise could increase greater oxidative stress biomarkers in strength-trained men. Keywords: ROS, Strength exercise, Anabolic

  7. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    Science.gov (United States)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  8. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  9. The behavior of ZrO_2/20%Y_2O_3 and Al_2O_3 coatings deposited on aluminum alloys at high temperature regime

    International Nuclear Information System (INIS)

    Pintilei, G.L.; Crismaru, V.I.; Abrudeanu, M.; Munteanu, C.; Baciu, E.R.; Istrate, B.; Basescu, N.

    2015-01-01

    Highlights: • In both the ZrO_2/20%Y_2O_3 and Al_2O_3 coatings the high temperature caused a decrease of pores volume and a lower thickness of the interface between successive splats. • The NiCr bond layer in the sample with a ZrO_2/20%Y_2O_3 suffered a fragmentation due to high temperature exposure and thermal expansion which can lead to coating exfoliation. • The NiCr bond layer in the sample with an Al_2O_3 coating showed an increase of pore volume due to high temperature. - Abstract: Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO_2/20%Y_2O_3 and Al_2O_3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  10. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature.

    Science.gov (United States)

    Kis, András; Tholt, Gergely; Ivanics, Milán; Várallyay, Éva; Jenes, Barnabás; Havelda, Zoltán

    2016-04-01

    Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect-mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off-target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12-15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect-mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process. © 2015 BSPP and John Wiley & Sons Ltd.

  11. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  12. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  13. The Effects of Industrial Protective Gloves and Hand Skin Temperatures on Hand Grip Strength and Discomfort Rating

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Ramadan

    2017-12-01

    Full Text Available Daily working activities and functions require a high contribution of hand and forearm muscles in executing grip force. To study the effects of wearing different gloves on grip strength, under a variety of hand skin temperatures, an assessment of the maximum grip strength was performed with 32 healthy male workers with a mean age (standard deviation of 30.44 (5.35 years wearing five industrial gloves at three hand skin temperatures. Their ages and anthropometric characteristics including body mass index (BMI, hand length, hand width, hand depth, hand palm, and wrist circumference were measured. The hand was exposed to different bath temperatures (5 °C, 25 °C, and 45 °C and hand grip strength was measured using a Jamar hydraulic hand dynamometer with and without wearing the gloves (chemical protection glove, rubber insulating glove, anti-vibration impact glove, cotton yarn knitted glove, and RY-WG002 working glove. The data were analyzed using the Shapiro–Wilk test, Pearson correlation coefficient, Tukey test, and analysis of variance (ANOVA of the within-subject design analysis. The results showed that wearing gloves significantly affected the maximum grip strength. Wearing the RY-WG002 working glove produced a greater reduction on the maximum grip when compared with the bare hand, while low temperatures (5 °C had a significant influence on grip when compared to medium (25 °C and high (45 °C hand skin temperatures. In addition, participants felt more discomfort in both environmental extreme conditions. Furthermore, they reported more discomfort while wearing neoprene, rubber, and RY-WG002 working gloves.

  14. Tensile Strength of Finger Joints at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nielsen, Peter C.; Olesen, Frits Bolonius

    A series of test s aimed a t establishing the effect of temperature upon the tensile strength parallel-to-grain of finger jointed laminae for glulam has been conducted in the Fire Research Laboratory at Aalborg University Centre. The objective of this report is to present the background...

  15. Super ODS steels R and D for fuel cladding of next generation nuclear systems. 4) Mechanical properties at elevated temperatures

    International Nuclear Information System (INIS)

    Furukawa, Tomohiro; Ohtsuka, Satoshi; Inoue, Masaki; Okuda, Takanari; Abe, Fujio; Ohnuki, Somei; Fujisawa, Toshiharu; Kimura, Akihiko

    2009-01-01

    As fuel cladding material for lead bismuth-cooled fast reactors and supercritical pressurized water-cooled fast reactors, our research group has been developing highly corrosion-resistant oxide dispersion strengthened ferritic steels with superior high-temperature strength. In this study, the mechanical properties of super ODS steel candidates at elevated temperature have been evaluated. Tensile tests, creep tests and low cycle fatigue tests were carried out for a total of 21 types of super ODS steel candidates which have a basic chemical composition of Fe-16Cr-4Al-0.1Ti- 0.35Y 2 O 3 , with small variations. The testing temperatures were 700degC (for tensile, creep and low cycle fatigue tests) and 450degC (for tensile test). The major alloying parameters of the candidate materials were the compositions of Cr, Al, W and the minor elements such as Hf, Zr and Ce etc. The addition of the minor elements is considered effective in the control of the formation of the Y-Al complex oxides, which improves high-temperature strength. The addition of Al was very effective for the improvement of corrosion resistance. However, the addition also caused a reduction in high-temperature tensile strength. Among the efforts aimed at increasing high-temperature strength, such as the low-temperature hot-extrusion process, solution strengthening by W and the addition of minor elements, a remarkable improvement of strength was observed in ODS steel with a basic chemical composition of 2W-0.6Hf steel (SOC-14) or 2W-0.6Zr steel (SOC-16). The same behavior was also observed in creep tests, and the creep rupture times of SOC-14 and SOC-16 at 700degC - 100MPa were greater than 10,000 h. The strength was similar to that of no-Al ODS steels. No detrimental effect by the additional elements on low-cycle fatigue strength was observed in this study. These results showed that the addition of Hf/Zr to ODS-Al steels was effective in improving high-temperature strength. (author)

  16. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    International Nuclear Information System (INIS)

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  17. An assessment of thermal spray coating technologies for high temperature corrosion protection

    International Nuclear Information System (INIS)

    Heath, G.R.; Heimgartner, P.; Gustafsson, S.; Irons, G.; Miller, R.

    1997-01-01

    The use of thermally sprayed coatings in combating high temperature corrosion continues to grow in the major industries of chemical, waste incineration, power generation and pulp and paper. This has been driven partially by the development of corrosion resistant alloys, improved knowledge and quality in the thermal spray industry and continued innovation in thermal spray equipment. There exists today an extensive range of thermal spray process options, often with the same alloy solution. In demanding corrosion applications it is not sufficient to just specify alloy and coating method. For the production of reliable coatings the whole coating production envelope needs to be considered, including alloy selection, spray parameters, surface preparation, base metal properties, heat input etc. Combustion, arc-wire, plasma, HVOF and spray+fuse techniques are reviewed and compared in terms of their strengths and limitations to provide cost-effective solutions for high temperature corrosion protection. Arc wire spraying, HP/HVOF and spray+fuse are emerging as the most promising techniques to optimise both coating properties and economic/practical aspects. (orig.)

  18. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  19. High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11 Alloy

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-10-01

    Full Text Available Cast Mg–1Zn–1Ca alloy (ZX11 has been tested to evaluate its compressive strength between 25 °C and 250 °C, and workability in the range of 260–500 °C. The ultimate compressive strength of this alloy is about 30% higher than that of creep-resistant alloy Mg–3Sn–2Ca (TX32 between 25 °C and 200 °C, and exhibits a plateau between 100 °C and 175 °C, similar to TX32. This is attributed to Mg2Ca particles present at grain boundaries that reduce their sliding. The processing map, developed between 260 and 420 °C in the strain rate limits of 0.0003 s−1 to 1 s−1, exhibited two domains in the ranges: (1 280–330 °C and 0.0003–0.01 s−1 and (2 330–400 °C and 0.0003–0.1 s−1. In these domains, dynamic recrystallization occurs, with basal slip dominating in the first domain and prismatic slip in the second, while the recovery mechanism being climb of edge dislocations in both. The activation energy estimated using standard kinetic rate equation is 191 kJ/mol, which is higher than the value for lattice self-diffusion in magnesium indicating that a large back stress is created by the presence of Ca2Mg6Zn3 intermetallic particles in the matrix. It is recommended that the alloy be best processed at 380 °C and 0.1 s−1 at which prismatic slip is favored due to Zn addition. At higher strain rates, the alloy exhibits flow instability and adiabatic shear band formation at <340 °C while flow localization and cracking at grain boundaries occurs at temperatures >400 °C.

  20. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    Science.gov (United States)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.